
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Higher Auslander-Reiten Theory

Permalink
https://escholarship.org/uc/item/8b3866rt

Author
West, Jacob

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8b3866rt
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

RIVERSIDE

Higher Auslander-Reiten Theory

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

Jacob Richard West

March 2015

Dissertation Committee:

Professor Julia E. Bergner, Co-Chairperson
Professor Wee Liang Gan, Co-Chairperson
Professor Jacob Greenstein



Copyright by
Jacob Richard West

2015



The Dissertation of Jacob Richard West is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside



Acknowledgments

I have been fortunate to have two advisors during my time in graduate school. I

would like to thank my advisors Julie Bergner and Wee Liang Gan for generously giving

of their time and providing valuable feedback throughout this project. I would also like to

thank Jacob Greenstein for his part as a member of my Dissertation Committee.

I am grateful to my fellow graduate students for helping to make my time in graduate

school more enjoyable. I would especially like to acknowledge my officemates Mathew Lunde

and Soheil Safii for their support and camaraderie.

Most of all, I am deeply thankful for Auna Moser, without her unconditional love and

support none of this work would have been possible.

iv



ABSTRACT OF THE DISSERTATION

Higher Auslander-Reiten Theory

by

Jacob Richard West

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, March 2015
Professor Julia E. Bergner, Co-Chairperson
Professor Wee Liang Gan, Co-Chairperson

A development of Auslander-Reiten theory in the language of stable ∞-categories

is presented. An ∞-category is a special kind of simplicial set which provides a common

generalization of ordinary categories and nice topological spaces. Higher Auslander-Reiten

theory can therefore be understood as a homotopy-theoretic analogue of the classical theory,

which has proved to be an indispensable tool in many areas of representation theory.

We begin by introducing almost-split and irreducible morphisms in ∞-categories and

establish their basic properties in direct analogy with the classical notions. We go on

to describe morphisms determined by objects, a generalization of almost-split morphisms

originally formulated by Auslander that until recently received little attention. We prove,

using Brown representability, that every collection of maps with domain a compact object

C uniquely determines, up to homotopy, a minimal C-determined morphism. From this

result, the existence of almost-split and irreducible morphisms can be deduced.

We next describe the analogues of almost-split sequences in stable ∞-categories and

prove that they exist in any compactly generated stable ∞-category with sufficiently small
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objects. Building on our earlier study of morphisms determined by objects, we then intro-

duce Auslander functors on stable ∞-categories and show that they always exist on com-

pactly generated stable∞-categories. In good circumstances, Auslander functors specialize

to Serre functors. This observation leads to a general duality formula which specializes to

the classical Auslander-Reiten formula on the homotopy category.

Finally, we focus on an important class of examples of compactly generated stable∞-

categories associated to any Noetherian algebra over a complete local Noetherian ring. In

this situation, we give a construction of an Auslander-Reiten translation functor and explain

how it recovers the classical Auslander-Reiten translation on the associated (triangulated)

homotopy category.
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Chapter 1

Introduction

Higher Auslander-Reiten theory is a reformulation and generalization of classical

Auslander-Reiten theory in the language of higher categories. Broadly speaking, this en-

deavor lies somewhere in the intersection of representation theory and homotopy theory.

This work is a contribution to the ongoing efforts of many authors over the last 40 years to

develop and understand Auslander-Reiten theory in the broadest generality which supports

it. Auslander began these investigations in [5] working with generalized module categories.

Happel subsequently introduced Auslander-Reiten theory in triangulated categories in his

groundbreaking work on representations of finite dimensional algebras [24, 25, 26], which

was later extended to arbitrary compactly generated triangulated categories by Krause [36].

Here we develop Auslander-Reiten theory in stable ∞-categories, which may be viewed as

a higher categorical refinement of triangulated categories [46]. In particular, the theory

developed here recovers the Auslander-Reiten theory in the triangulated category setting.

In this chapter, we briefly review the history and early development of Auslander-Reiten
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theory as an important tool in representation theory. We then describe some of the ways

that Auslander-Reiten theory has been used and how it might be regarded as inherently

homotopical, motivating higher categories as an appropriate setting for this theory. We con-

clude with an overview of the material covered in this work, highlighting the main results

from each chapter.

1.1 Background

Auslander-Reiten theory originated in the early 1970s as a systematic approach to

the study of certain structural features common to categories of representations of Artin

algebras. A centerpiece of the theory is a special kind of short exact sequence called an

almost-split sequence, which may be thought of as the next simplest kind of short exact

sequence after split exact sequences. Let A be an abelian category. A short exact sequence

0→ X
f
→ Y

g
→ Z → 0 in A is called almost-split if the following conditions are satisfied:

(1) The sequence 0→ X
f
→ Y

g
→ Z → 0 is not split exact.

(2) Any morphism X → X ′ in A which is not a split monomorphism factors through f .

(3) Any morphism Z ′ → Z in A which is not a split epimorphism factors through g.

We summarize the situation with the following diagram:

Z ′

�� ��

0 // X

��

f
// Y

��

g
// Z // 0.

X ′
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Observe that conditions (2) and (3) are always satisfied by split exact sequences. Auslan-

der introduced almost-split sequences in [2, 3] to facilitate his proof (and generalization)

of the first Brauer-Thrall Conjecture, which asserts that a finite dimensional algebra is

either of finite representation type (i.e., there are only finitely many isomorphism classes

of indecomposable modules over this algebra) or else there are indecomposable modules of

arbitrarily large dimension. Auslander and Reiten subsequently established an important

existence theorem and many basic properties of almost-split sequences in their joint work

on the representation theory of Artin algebras [10, 11, 12, 13], thereby marking the begin-

ning of Auslander-Reiten theory. The classical theory of almost-split sequences found many

applications in the representation theory of finite dimensional algebras, as summarized for

instance by Reiten in [50] or Auslander in [7], and culminated in the books [21, 14].

The early success of the theory encouraged many authors to explore whether Auslander-

Reiten theory could be formulated in contexts broader than the original setting of finitely

generated modules over Artin algebras. This exploration began already with Auslander

and Reiten in their study of dualizing R-varieties, where R is a commutative Artinian ring

[9]. Auslander also established the existence of almost-split sequences in various categories

of modules over Noetherian k-algebras, with k a commutative Noetherian ring which is

complete and local [6]. Lenzing and Zuazua subsequently characterized the existence of

almost-split sequences in any Ext-finite abelian k-category, where k is a commutative Ar-

tinian ring [43]. Generalizing in a different direction, Happel introduced Auslander-Reiten

triangles in triangulated categories, as the correct replacement for almost-split sequences

in abelian categories, and proved their existence in the bounded derived category of a finite
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dimensional algebra over a field [24]. Krause later showed that Auslander-Reiten triangles

exist in any compactly generated triangulated category containing sufficiently small ob-

jects [36]. In efforts to unify the abelian and triangulated settings, Beligiannis introduced

Auslander-Reiten theory in abstract homotopy categories [16] and Liu developed the theory

in Krull-Schmidt categories [44], both works emphasizing the homotopy-theoretic nature of

the concepts and tools arising in the theory.

1.2 Motivation

The existence of almost-split sequences (or their generalization in Auslander-Reiten

triangles) in a category provides significant structural and finiteness information useful in

classification theorems. As already mentioned, the earliest example of this was in Aus-

lander’s work on the representation type of rings. Auslander showed in [3] that if an

Artinian ring R has finite representation type, then the category of R-modules has almost-

split sequences. Conversely, Auslander proved in [4] that if the category of modules over a

connected Artinian ring R has almost-split sequences and the associated Auslander-Reiten

quiver has a component of bounded length modules, then R has finite representation type.

Another example of the finiteness exhibited by the existence of an Auslander-Reiten theory

arises in Happel’s work [24, 26] showing that the bounded derived category of a finite dimen-

sional algebra A has Auslander-Reiten triangles if and only if A has finite global dimension.

Continuing with this theme, a recent preprint [1] argues that for a virtually Gorenstein

algebra A, the bounded Gorenstein derived category of A has Auslander-Reiten triangles

if and only if A is Gorenstein. Exercising the existence of Auslander-Reiten triangles in
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a different way, Jorgensen shows in [29, 31] that for a simply connected topological space

X with dimk H
∗(X; k) < ∞ and k a field, the bounded derived category associated to the

differential graded algebra of singular cochains on X over k has Auslander-Reiten triangles

if and only if X admits Poincaré duality over k. More generally, Reiten and van den Bergh

proved that for a k-linear triangulated category C which is Hom-finite and Krull-Schmidt,

C has Auslander-Reiten triangles if and only if C satisfies Serre duality [49]. While there are

still more examples, the above illustrate the kinds of finiteness and duality phenomena that

Auslander-Reiten theory makes available and how this information is used in classification.

An essential construction in Auslander and Reiten’s original work on almost-split

sequences was their translation functor (the dual of the Auslander-Bridger transpose [8]),

from which the existence of almost-split sequences was deduced. Crucially, this construction

is only well-defined on the stable module category; that is, the Auslander-Reiten translation

functor is well-defined up to stable equivalence, a notion of equivalence weaker than isomor-

phism. Moreover, Auslander’s early work in functor categories and Happel’s introduction

of Auslander-Reiten triangles reflected the understanding that short exact sequences are

a structural feature that is stronger than necessary to support Auslander-Reiten theory.

Indeed, Beligiannis employs homotopy (co)limits to build an Auslander-Reiten theory in

abstract homotopy categories [16].

Here we make the case that (∞, 1)-categories are the most natural setting for Auslander-

Reiten theory, encompassing all previous constructions. Roughly, an (∞, n)-category should

be thought of as a category equipped with k-morphisms for all k > 0 with the property

that a k-morphism is an equivalence when k > n, for an appropriate notion of equivalence.
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In the n = 1 case, there are at least five different models of (∞, 1)-categories which are all

known to be equivalent. For a survey of these various models, see [17]. A particularly flexi-

ble implementation of (∞, 1)-categories is Joyal’s theory of quasi-categories [32, 33, 34, 35],

which are simplicial sets satisfying the weak Kan condition of Boardman and Vogt [18].

This theory has been extensively developed by Lurie under the name∞-categories [45], and

subsequently used to encode a great deal of homotopical algebra in [46]. By construction,

higher categories naturally encode weaker notions of equivalence, and it turns out that

limits and colimits in (∞, 1)-categories generalize homotopy limits and colimits. While a

high tolerance for abstraction is often necessary when working with stable ∞-categories,

the upshot is that this setting often allows for more intuitive arguments and intrinsic char-

acterizations. In this way, the present work helps provide a unifying conceptual framework

for understanding the important ideas and tools of Auslander-Reiten theory.

1.3 Overview

We now discuss the organization and main results of this dissertation. Throughout

this work, we rely heavily on the ideas and results found in the books [45] and [46] by Lurie.

We will adopt the notation and conventions employed in those books.

In Chapter 2, we begin by reviewing some of the ideas and machinery of∞-categories

[23, 34, 45] and stable∞-categories [46], introducing the preliminary material necessary for

developing Auslander-Reiten theory in this setting. A common generalization of ordinary

categories and (nice) topological spaces,∞-categories are simplicial sets satisfying the weak

Kan condition of Boardman and Vogt [18]. Stable ∞-categories enjoy an exact structure
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that is reminiscent of classical abelian categories. An important property of every stable

∞-category C is that its (canonically associated) homotopy category hC is triangulated

(see [46, Theorem 1.1.2.15]). However, unlike its homotopy category, a stable ∞-category

remembers why morphisms are homotopic and should therefore be regarded as a refinement

of (topological) triangulated categories. A significant feature of this refinement is that the

construction of fibers and cofibers in a stable ∞-category is functorial (in contrast with

triangulated categories). Moreover, the fibers and cofibers of a stable ∞-category provide

the exact structure needed to support the construction of an Auslander-Reiten theory. While

nearly all the material in this chapter can be found elsewhere in the literature, especially

[45, 46], including it here is necessary to ensure that the content in this thesis is reasonably

self-contained.

Classical Auslander-Reiten theory identifies several inter-related classes of morphisms

which play a distinguished role. In Chapter 3, we introduce these various morphisms into

the ∞-categorical setting and establish their basic properties. An important theme of this

chapter is that definitions are always made relative to the homotopy category. Indeed, this

is a general principle in (∞, 1)-category theory because it ensures that the ideas and results

are homotopy invariant. After introducing almost-split morphisms in∞-categories, we give

in Proposition ?? a characterization of right almost-split morphisms in stable ∞-categories

in terms of their associated cofiber sequences. If a right almost-split morphism is also min-

imal, then Proposition 3.4.12 provides a characterization in terms of the associated fiber

sequences. There is a close relationship between almost-split morphisms and irreducible

morphisms, as clarified by Theorem 3.5.5 which characterizes irreducible morphisms in sta-
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ble∞-categories. Auslander recognized very early on that almost-split sequences arose as a

special case of a much more general notion, which he called morphisms determined by objects

[5]. We study morphisms determined by objects in Section 3.6, proving a useful character-

ization in Theorem 3.6.5 and discussing some closure properties of this class of morphisms.

The main result of this chapter is Theorem 3.7.4 which uses Brown representability to

prove that there exists morphisms in any compactly generated stable∞-category which are

right determined by compact objects. From this result, we deduce the existence of right

almost-split and irreducible morphisms.

In Chapter 4, we define Auslander-Reiten sequences in stable∞-categories, the higher

categorical analogues of almost-split sequences. After establishing their basic properties,

we give a characterization in Proposition 4.1.2 of Auslander-Reiten sequences in terms of

minimal almost-split morphisms. Our definition has the expected property that Auslander-

Reiten sequences in a stable∞-category induce Auslander-Reiten triangles in its associated

triangulated homotopy category and all Auslander-Reiten triangles arise in this way. In-

spired by Krause [36], we use a version of Brown representability to show in Theorem 4.1.5

that Auslander-Reiten sequences exist in any compactly generated stable ∞-category with

strongly indecomposable objects. In Section 4.2, we investigate the functorial relationship

between the end terms of an Auslander-Reiten sequence. To this end, we introduce the

notion of an Auslander functor on a compactly generated stable ∞-category and establish

in Theorem 4.2.12 that such functors always exist and are unique up to homotopy. Using

this result, we formulate an Auslander-Reiten duality formula and give a construction of an

Auslander-Reiten translation functor in Corollary 4.2.16.
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In Chapter 5, we specialize to an important class of examples of compactly generated

stable ∞-categories called derived ∞-categories, arising from ordinary abelian categories.

Specifically, to any abelian category A satisfying some mild conditions one can associate a

stable∞-category D(A) whose homotopy category is canonically equivalent to the classical

derived category of A (see [46, 1.3]). In this case, Theorem 5.2.3 gives another construction

of an Auslander-Reiten translation functor, which is a Serre functor that (in particular)

relates the end terms of an Auslander-Reiten sequence. In general such a functor need

not exist, but whenever it does the existence of Auslander-Reiten sequences follows as a

consequence. Our construction is modeled on the work of Krause and Le [40].
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Chapter 2

Preliminaries

In this chapter, we present the preliminary material necessary to develop Auslander-

Reiten theory in a higher categorical setting. Specifically, we work with a particular model

of (∞, 1)-categories originally called weak Kan complexes by Boardman and Vogt [18], and

later quasi-categories by Joyal [34]. This thesis relies heavily on the substantial development

of this model presented by Lurie in [45] and we will adopt the notation and conventions

there, using the term ∞-categories to refer to the objects of this model. There are however

several other models for an (∞, 1)-category which could be employed, all known to be equiv-

alent [17]. We chose the ∞-categorical model because its development is the most mature

presentation of (∞, 1)-categories to date. In Section 2.1, we review the definitions and basic

machinery we need for working with this model. The presentation here is extremely terse

in an effort to introduce the necessary ideas and material as rapidly as possible. For a more

detailed introduction to the rich theory of ∞-categories, see [23, 20] and [45, Chapter 1].

One of the primary structures in Auslander-Reiten theory is a special kind of exact
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sequence. In Section 2.3, we discuss the features of a particularly nice class of∞-categories,

called stable ∞-categories, which are equipped with the necessary exact structure for study-

ing Auslander-Reiten sequences. Nearly all the results in this chapter can be found in

[45, 46], as indicated throughout.

2.1 Simplicial sets and ∞-categories

Definition 2.1.1. Let ∆ denote the simplex category whose objects are the linearly ordered

sets [n] = {0, . . . , n} for all integers n ≥ 0 and morphisms are nondecreasing functions.

Remark 2.1.2. We can and frequently will replace ∆ with the much larger (but equivalent)

category of all finite linearly ordered sets and nondecreasing functions, while still referring

to it as ∆ by abuse of notation.

Definition 2.1.3. A simplicial set is a functor X : ∆op → Set. A morphism of simplicial

sets is a natural transformation of functors. Let Set∆ denote the category of simplicial sets.

Example 2.1.4. An important example of a simplicial set is the (combinatorial) n-simplex

∆n = Hom∆(−, [n]). Observe that this defines an embedding ∆ →֒ Set∆, [n] 7→ ∆n. By

Yoneda’s lemma, the n-simplices K[n] of a simplicial set K are in bijection with the set of

natural transformations HomSet∆(∆
n,K). We write Kn to denote either of these sets.

Remark 2.1.5. Let J be a nonempty finite linearly ordered set. Regarding J as an object of

∆ as in Remark 2.1.2, we write ∆J for the simplicial set ∆J = Hom∆(−, J). We frequently

use this notation when J is a subset of [n], in which case ∆J ⊆ ∆n as simplicial sets.
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Remark 2.1.6. As with any presheaf category, Set∆ is complete and cocomplete with

limits and colimits computed pointwise. In particular, Set∆ has an initial object given by

the empty simplicial set ∆−1 and a final object given by ∆0. Moreover, again as with any

presheaf category, Set∆ is a cartesian closed monoidal category. More precisely, if X and Y

are simplicial sets, then X×Y is the simplicial set with (X×Y )n = Xn×Yn and Y X is the

simplicial set given by (Y X)n = HomSet∆(∆
n × X,Y ). Then for all simplicial sets X, Y ,

and Z, we have a functorial bijection HomSet∆(Z ×X,Y ) ∼= HomSet∆(Z, Y
X). To see this,

first observe that if Z = ∆n, then the bijection is a consequence of the Yoneda Lemma.

Using that any simplicial set can be written as a colimit of representables, the result follows

by noting that both sides are compatible with the formation of colimits in Z. By setting

Z = Y X , we have an evaluation map e : Y X×X → Y where en : (f, σ) 7→ f(−, σ) : ∆n → Y .

Remark 2.1.7. Let δi : [n− 1]→ [n] be the injective function defined by

δi(j) =























j if j < i,

j + 1 if j ≥ i,

and let σi : [n+ 1]→ [n] be the surjective function defined by

σi(j) =























j if j ≤ i,

j − 1 if j > i.

It is tedious but not difficult to check that these functions generate the category ∆ (in that

every morphism decomposes uniquely as a composition of these). For any simplicial set X,

we let di = X(δi) and si = X(σi) and refer to these as the face and degeneracy maps of X,

respectively.
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Example 2.1.8. The functor ev0 : Set∆ → Set given by X 7→ X0, sending a simplicial set

X to its set of vertices X0, has a left adjoint c : Set→ Set∆, which associates to any set S

the constant simplicial set cS determined by cSn = S for all n ≥ 0. The constant functor

is fully faithful and determines a monomorphism cX0 → X for any simplicial set X. We

say that X is discrete if cX0 → X is an isomorphism. The functor c : Set → Set∆ has a

left adjoint π0 : Set∆ → Set, where π0X is the set of connected components of a simplicial

set X. More explicitly, π0X is the coequalizer (in Set) of the diagram

X1

d0
//

d1
// X0

so that two vertices of X0 are identified in π0X if there exists an edge between them. We

say that X is connected if π0X is a one-point set. One feature of the functor π0 is that it

preserves products.

Example 2.1.9. Let Λnj denote the simplicial set Λnj : ∆
op → Set which sends [m] to the

subset of Hom∆([m], [n]) consisting of all those functions α : [m] → [n] with the property

{j} ∪ α([m]) 6= [n]. By definition, we have Λnj ⊆ ∆n as simplicial sets. We refer to Λnj as

the (n, j)-horn or the j-horn of ∆n. If j ∈ {0, n}, we call Λnj an outer horn, otherwise Λnj is

called an inner horn. Geometrically, Λnj is the simplicial set obtained from ∆n by removing

the interior and the face opposite vertex j (also called the jth face of ∆n).

Definition 2.1.10. A simplicial set C is called an∞-category if for all n ≥ 2 and 0 < j < n,

any map Λnj → C can be extended to an n-simplex ∆n → C, as indicated in the diagram

13



below

Λnj
_�

��

// C

∆n.

>>

That is, a simplicial set C is an ∞-category if every inner horn in C can be lifted to a

simplex. Notice that this lift is not required to be unique.

Remark 2.1.11. Definition 2.1.10 was first formulated by Boardman and Vogt [18] under

the name weak Kan complexes (see Definition 2.1.19 below for the origin of this terminology).

Example 2.1.12. Any ordinary (small) category C gives rise to an ∞-category N(C) de-

termined by the equation N(C)n = HomCat([n],C), where on the right hand side we regard

[n] as a category so that HomCat([n],C) denotes the set of all functors [n]→ C. The functor

N: Cat→ Set∆ is called the (ordinary) nerve. It is not difficult to check that the nerve func-

tor is fully faithful. In this way, the theory of ∞-categories is a generalization of ordinary

category theory. Indeed, this generalization is remarkably robust, as shown in [45].

Remark 2.1.13. Motivated by Example 2.1.12, we use the following category-theoretic

language when working with ∞-categories. Let C be an ∞-category. We refer to the

vertices ∆0 → C as objects of C, and to the edges ∆1 → C as morphisms of C. We write

X ∈ C whenever X : ∆0 → C is an object of C. We write f : X → Y whenever f : ∆1 → C

is a morphism of C with source X = d1(f) and target Y = d0(f). If X ∈ C is an object, we

write idX = s0(X) : X → X and refer to this edge as the identity morphism on X. We also

use the notation 1X : X → X for the identity morphism on X.

Example 2.1.14. Any topological spaceX gives rise to an∞-category Sing(X) determined

by Sing(X)n = HomTop(|∆
n| , X), where HomTop(|∆

n| , X) is the set of all continuous maps

14



from the (topological) n-simplex |∆n| =
{

(x0, . . . , xn) ∈ R
n+1 :

∑n
i=0 xi = 1, xi ≥ 0

}

to X.

The functor Sing : Top→ Set∆ is called the singular simplicial complex.

Remark 2.1.15. An important result (due to Quillen) is that Sing : Top → Set∆ is the

right Quillen functor in a Quillen equivalence which identifies simplicial sets with topological

spaces (up to weak homotopy equivalence). The left adjoint |−| : Set∆ → Top is called

geometric realization, computed explicitly as the coequalizer (in Top) of the diagram

∐

[k]→[m]

Xk ×∆m //
//

∐

[n]

Xn ×∆n

where each Xn is given the discrete topology and the parallel arrows are determined by the

canonical maps Xm ×∆k → Xk ×∆k and Xm ×∆k → Xm ×∆m for each [k]→ [m] in ∆.

Definition 2.1.16. A morphism of simplicial sets X → Y is a weak homotopy equivalence

if the induced map |X| → |Y | of topological spaces is a weak homotopy equivalence.

Definition 2.1.17. LetK be a simplicial set. The opposite simplicial set Kop is the functor

Kop : ∆op → Set determined by setting Kop([n]) = K([n]op), where [n]op denotes the same

set as [n] endowed with the opposite ordering (see Remark 2.1.2).

Remark 2.1.18. A simplicial set C is an ∞-category if and only if Cop is an ∞-category:

indeed, C has the extension property with respect to the horn inclusion Λnj ⊆ ∆n if and

only if Cop has the extension property with respect to the horn inclusion Λnn−j ⊆ ∆n.

Definition 2.1.19. A simplicial setK is called aKan complex if for all n ≥ 2 and 0 ≤ j ≤ n,

any map Λnj → K can be extended to an n-simplex ∆n → K, as indicated in the diagram
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below

Λnj
_�

��

// K

∆n.

==

Let Kan denote the full subcategory of Set∆ spanned by the Kan complexes.

Remark 2.1.20. By definition, every Kan complex is in particular an ∞-category.

Example 2.1.21. Let X be a topological space. Since |∆n| deformation retracts onto each

of its horns |Λnj |, the simplicial set Sing(X) is a Kan complex. For this reason, we often refer

to Kan complexes as spaces. Indeed, the Quillen equivalence of Remark 2.1.15 asserts that

the unit and counit morphisms K → Sing |K| and |Sing(X)| → X are both weak homotopy

equivalences.

Example 2.1.22. Let C be an ∞-category. The collection of morphisms between any two

objects of an ∞-category can be organized into a Kan complex (see [45, 1.2.2]). More

precisely, for any objects X,Y ∈ C, let HomC(X,Y ) = {X} ×C C∆1
×C {Y }, so that an

n-simplex of HomC(X,Y ) is a morphism σ : ∆n×∆1 → C such that σ|∆n×{0} is constant

at X and σ|∆n×{1} is constant at Y . We use the notation MapC(X,Y ) to denote any Kan

complex with the same weak homotopy type as HomC(X,Y ), and refer to MapC(X,Y ) as

the mapping space of morphisms from X to Y .

Definition 2.1.23. Let C be an ∞-category. We say that two morphisms f : X → Y and

g : X → Y are homotopic in C if there exists a 2-simplex σ : ∆2 → C of the form

X
g

  

X

1X
>>

f
// Y.
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In this case, we write f ≃ g and refer to σ as a homotopy from f to g.

More generally, we write h ≃ gf if there exists a 2-simplex σ : ∆2 → C of the form

Y
g

  

X

f
>>

h
// Z.

A morphism f : X → Y in C is called an equivalence if there exists a morphism f ′ : Y → X

such that ff ′ ≃ 1Y and f ′f ≃ 1X . We say that X and Y are equivalent if there exists an

equivalence between them. We will generally understand that all meaningful properties of

objects are invariant under equivalence. Similarly, all meaningful properties of morphisms

are invariant under homotopy and under composition with equivalences.

Proposition 2.1.24 ([45, 1.2.3.5]). Let C be an ∞-category containing objects X and Y .

The relation of homotopy is an equivalence relation on the set of edges joining X and Y .

Proposition 2.1.25 ([45, 1.2.3.8]). Let C be an ∞-category. There exists an ordinary

category hC, called the homotopy category of C, whose objects are the vertices of C and

whose morphisms are homotopy equivalences classes of edges of C.

Remark 2.1.26. Let C be an ∞-category. A morphism f : X → Y in C is an equivalence

if and only if the homotopy equivalence class [f ] is an isomorphism in hC. More generally,

we have HomhC(X,Y ) = π0MapC(X,Y ).

Definition 2.1.27. Let C be an ∞-category. For any simplicial set K, we write Fun(K,C)

to denote the simplicial set CK of Remark 2.1.6.

Proposition 2.1.28 ([45, 1.2.7.3]). Let C be an ∞-category. For any simplicial set K,

Fun(K,C) is again an ∞-category.
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Definition 2.1.29 ([35]). A map of simplicial sets X → Y is a weak categorical equivalence

if for every ∞-category C, the induced map hFun(Y,C)→ hFun(X,C) is an equivalence (of

ordinary categories).

Definition 2.1.30. A map of simplicial sets F : C→ D is called a functor whenever both

C and D are ∞-categories.

Remark 2.1.31. Any functor F : C → D induces an ordinary functor hF : hC → hD.

Moreover, by construction of the mapping space in Example 2.1.22, any functor F : C→ D

induces a map of simplicial sets MapC(X,Y )→ MapD(FX,FY ).

Definition 2.1.32. Let F : C → D be a functor of ∞-categories. We say that F is fully

faithful if the induced map MapC(X,Y )→ MapD(FX,FY ) is a weak homotopy equivalence.

We say that F is essentially surjective if the induced functor hF : hC → hD is essentially

surjective.

Proposition 2.1.33 ([45, 2.2.5.8]). A functor F : C → D of ∞-categories is a weak cate-

gorical equivalence if and only if it is fully faithful and essentially surjective.

Definition 2.1.34. A simplicial set X is called weakly contractible if the geometric real-

ization |X| is weakly contractible, that is, if there exists a weak homotopy equivalence from

|X| to the one-point space.

Definition 2.1.35. Let C be an ∞-category. An object X ∈ C is called initial if for every

object Y ∈ C, the mapping space MapC(X,Y ) is weakly contractible. Dually, an object

Z ∈ C is called final if for every object Y ∈ C, the mapping space MapC(Y, Z) is weakly

contractible.
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Initial and final objects are examples of colimits and limits (of empty diagrams).

General limits and colimits can be defined in the ∞-categorical setting (see [45, Chapter

4]), and these possess many of the properties familiar form ordinary category theory. For

instance, the following useful result will be used frequently in the sequel.

Lemma 2.1.36 ([45, 4.4.2.1]). Let C be an ∞-category and let ∆2 ×∆1 → C be a diagram

in C, depicted as

X

��

// Y

��

// Z

��

X ′ // Y ′ // Z ′.

Suppose that the left square is a pushout in C. Then the right square is a pushout if and

only if the outer square is a pushout.

Definition 2.1.37 ([45, 5.2.7.6]). Let C be an ∞-category and D ⊆ C a full subcategory.

We will say that a morphism f : C → D in C exhibits D as a D-localization of C if D ∈ D

and composition with f induces a weak homotopy equivalence

MapD(D,E)→ MapC(C,E)

for every object E ∈ D. In this situation, we will also say that f : C → D is a localization

of C relative to D.

Proposition 2.1.38 ([45, 5.2.7.8]). Let C be an ∞-category and D ⊆ C a full subcategory.

The following conditions are equivalent:

(1) For every object C ∈ C, there exists a localization f : C → D relative to D.

(2) The inclusion D ⊆ C admits a left adjoint.
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2.2 Additive ∞-categories

Definition 2.2.1. Let C be an ∞-category. A zero object of C is an object which is both

initial and final. We say that C is pointed if it contains a zero object.

Lemma 2.2.2. Let C be an ∞-category. Then C is pointed if and only if the following

conditions are satisfied:

(1) The ∞-category C has an initial object ∅.

(2) The ∞-category C has a final object ∗.

(3) There exists a morphism f : ∗ → ∅ in C.

Proof. The “only if” direction follows by taking the morphism f to be the identity. Con-

versely, we have a morphism g : ∅→ ∗ because ∅ is initial, and moreover f ◦g ≃ id∅. Using

that ∗ is final, it must also be that g ◦ f ≃ id∗. This shows that f is an equivalence, and

hence C is pointed.

Remark 2.2.3. Let C be an ∞-category with a zero object 0. For any X,Y ∈ C, the

natural map

MapC(0, Y )×MapC(X, 0)→ MapC(X,Y )

has contractible domain. We therefore obtain a well-defined morphism X → Y in the

homotopy category hC, which we will refer to as the zero morphism and also denote by 0.

We say that a morphism is nonzero if it is not homotopic to a zero morphism.

Definition 2.2.4. An ∞-category C is additive if it satisfies the following conditions:

(1) The ∞-category C is pointed.
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(2) The ∞-category C admits finite products.

(3) The ∞-category C admits finite coproducts.

(4) For every pair of objects X,Y ∈ C, the canonical map X ∐ Y → X × Y classified by

the matrix








idX 0

0 idY









is an equivalence.

(5) The homotopy category hC is enriched in abelian groups.

Remark 2.2.5. The conditions of Definition 2.2.4 are overdetermined. That is, conditions

(1), (2), and (5) together imply that hC is additive, which implies condition (4); similarly,

conditions (1), (3), and (5) together also imply that hC is additive. Compare this with

[46, Definition 2.4.5.3]. We have chosen to present Definition 2.2.4 in this way because

various weaker notions appear in the literature by relaxing some of the above conditions.

For instance, in [22, 2.1], the authors say that an ∞-category is preadditive if it satisfies

conditions (1), (2), (3), and (4); in [27, 4.4.13], an∞-category satisfying conditions (1), (3),

and (4) is called 0-semiadditive.

Remark 2.2.6. Let C be an ∞-category satisfying conditions (1), (2), (3), and (4) of

Definition 2.2.4. Then hC is canonically enriched in commutative monoids. To see this, let

f, g : X → Y be two morphisms in C and define f + g : X → Y as the composition

X
δ
→ X ×X

f,g
−→ Y × Y ≃ Y ∐ Y

δ′
→ Y

where δ and δ′ are the diagonal and codiagonal maps, respectively. This endows HomhC(X,Y )
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with the structure of a commutative monoid with identity given by the unique zero mor-

phism from X to Y . Consequently, condition (5) should be understood as requiring the

existence of additive inverses. See also [22, Definition 2.6].

Remark 2.2.7. Let D be an ordinary category that admits finite coproducts. A cogroup

object of D is an object X ∈ D equipped with a comultiplication map X → X ∐ X with

the following property: for every object Y , the induced multiplication

HomD(X,Y )×HomD(X,Y ) ∼= HomD(X ∐X,Y )→ HomD(X,Y )

determines a group structure on the set HomD(X,Y ). By Remark 2.2.6, if C is an additive

∞-category, then every X ∈ C is a cogroup object of hC.

Proposition 2.2.8. Let C be a pointed ∞-category which admits finite products and finite

coproducts. Then C is additive if and only if hC is additive.

Proof. The “only if” statement follows from Remark 2.2.5. If hC is additive, then in par-

ticular hC is enriched in abelian groups. Moreover, for any X,Y ∈ hC, the canonical map

X ∐ Y → X × Y in C induces an isomorphism in hC (because hC is additive) and hence

determines an equivalence in C.

Remark 2.2.9. Let C be an ∞-category containing objects X and Y , and satisfying con-

ditions (2), (3), and (4) of Definition 2.2.4. To emphasize the equivalence of condition (4),

it is customary to denote both the product and the coproduct by X⊕Y . We refer to X⊕Y

as the biproduct or direct sum of X and Y .

Definition 2.2.10. Let C be an additive ∞-category. An object X ∈ C is decomposable
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if there exist nonzero objects X1, X2 ∈ C together with an equivalence X ≃ X1 ⊕X2. An

object of C is called indecomposable if it is not decomposable.

Remark 2.2.11. Let C be an additive ∞-category. For any object X ∈ C, it is possible to

extract an E1-ring spectrum EndC(X) with the property that HomhC(X,X) = π0 EndC(X)

is an (ordinary) associative ring with multiplication given by composition of endomorphisms

(see [46, 7.1.2.2]). We will say that an objectX ∈ C is strongly indecomposable if π0 EndC(X)

is a local ring.

The next result establishes the expected relationship. It is an immediate consequence

of Lemma 3.1.11 proved in the next chapter.

Proposition 2.2.12. Let C be an additive∞-category. If X ∈ C is strongly indecomposable,

then X is indecomposable.

Definition 2.2.13. Let C be an additive ∞-category. An object X ∈ C is called Krull-

Schmidt if X is equivalent to a finite direct sum of strongly indecomposable objects. If every

nonzero object of C is Krull-Schmidt, we will say that C is a Krull-Schmidt ∞-category.

Proposition 2.2.14. Let C be an additive ∞-category. Then C is Krull-Schmidt if and

only if hC is Krull-Schmidt.

Proof. This follows from the definition together with Proposition 2.2.8.
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2.3 Stable ∞-categories

Definition 2.3.1. Let C be a pointed∞-category. A triangle in C is a diagram ∆1×∆1 → C,

depicted as

X

��

f
// Y

g

��

0 // Z

where 0 is a zero object of C. We say that a triangle in C is a fiber sequence if it is a pullback

square, and a cofiber sequence if it is a pushout square. We will generally abuse terminology

and say that f is a fiber of g (respectively, g is a cofiber of f) whenever a triangle as above

is a fiber sequence (respectively, cofiber sequence). In this situation, we engage in further

abuse by simply referring to X = cofib(g) and Z = fib(f) as the fiber of g and cofiber of f ,

respectively. (See Proposition 2.3.4 below.)

Remark 2.3.2. More explicitly, a triangle consists of the following data:

(1) A pair of morphisms f : X → Y and g : Y → Z.

(2) A 2-simplex of the form

Y
g

  

X

f
??

h
// Z,

which identifies h with the composition g ◦ f .

(3) A 2-simplex

0

��

X

??

h
// Z,

which we view as a nullhomotopy of h.
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We will generally indicate a triangle by specifying only the pair of maps,

X
f
→ Y

g
→ Z,

with the data of (2) and (3) implicitly assumed.

Definition 2.3.3 ([46, 1.1.1.9]). An ∞-category C is stable if it satisfies the following

conditions:

(1) There exists a zero object 0 ∈ C.

(2) Every morphism in C admits a fiber and a cofiber.

(3) A triangle in C is a fiber sequence if and only if it is a cofiber sequence.

The definition of a stable ∞-category is an axiomatization of the essential features

of stable homotopy theory, with axioms analogous to those defining abelian categories.

In fact, a central example of a stable ∞-category is an ∞-category Sp of spectra, whose

homotopy category hSp can be identified with the classical stable homotopy category (see

[46, 1.4.3] for more details). An important property of every stable ∞-category C is that

its homotopy category hC is triangulated (see Theorem 2.3.16 below). However, unlike its

homotopy category, a stable ∞-category remembers why morphisms are homotopic and

should therefore be regarded as a refinement of (topological) triangulated categories. A

significant feature of this refinement is that the construction of fibers and cofibers in a

stable ∞-category is functorial (in contrast with triangulated categories).

Proposition 2.3.4 ([46, 1.1.1.7]). Let C be a stable ∞-category. There exist functors

fib: Fun(∆1,C)→ Fun(∆1 ×∆1,C) and cofib: Fun(∆1,C)→ Fun(∆1 ×∆1,C),
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which associate to any morphism in C a fiber and cofiber sequence, respectively.

Proof Sketch. Let E ⊆ Fun(∆1 ×∆1,C) denote the full subcategory spanned by the cofiber

sequences. Let θ : E→ Fun(∆1,C) be the forgetful functor, written informally as,

(

X
f
→ Y

g
→ Z

)

7→
(

X
f
→ Y

)

.

The goal is to prove that θ is a trivial Kan fibration, and therefore admits a section

cofib: Fun(∆1,C)→ Fun(∆1 ×∆1,C),

which is well-defined up to a contractible space of choices. More explicitly, we decompose

this forgetful functor as the composition θ = θ0θ1, written informally as,

X

��

f
// Y

g

��

X

��

f
// Y X

f
// Y

�

θ1
// �

θ0
//

0 // Z 0

and show that each of the forgetful functors θ0 and θ1 are trivial Kan fibrations. The result

follows by observing that each domain in the above diagram is an appropriate Kan extension

of the corresponding codomain, then applying [45, Proposition 4.3.2.15].

Remark 2.3.5. Composing the fiber functor of Proposition 2.3.4 with evaluation at initial

vertex then gives a functor fib: Fun(∆1,C) → C, which we refer to using the same name,

by abuse of terminology. Similarly, composing the cofiber functor with evaluation at the

final vertex gives cofib: Fun(∆1,C)→ C.

Lemma 2.3.6. Let C be a stable ∞-category. Suppose the following diagram

X

α

��

f
// Y

β
��

g
// Z

γ

��

X ′
f ′

// Y ′
g′

// Z ′

26



is a morphism of cofiber sequences. Then

(1) If α and β are equivalences, then γ is also an equivalence.

(2) If β and γ are equivalences, then α is also an equivalence.

Proof. We prove (1), the proof of (2) is similar. Let E ⊆ Fun(∆1 × ∆1,C) be the full

subcategory spanned by the cofiber sequences, and let θ : E → Fun(∆1,C) denote the for-

getful functor, written informally as θ : (X → Y → Z) 7→ (X → Y ). Statement (1) is that

the functor θ is conservative. The construction of the cofiber functor in Proposition 2.3.4

amounts to showing that θ is a trivial Kan fibration (and therefore admits a section which

we call the cofiber functor). As a trivial Kan fibration, θ is in particular a left fibration and

left fibrations are conservative by [45, 2.1.1.5].

Lemma 2.3.7. Let C be a stable ∞-category. Suppose X
f
→ Y

g
→ Z is a fiber sequence and

β : Z ′ → Z is any morphism in C. Then there exists a fiber sequence X
f ′
→ Y ′ g′

→ Z ′ and a

morphism α : Y ′ → Y in C such that the following diagram is a morphism of fiber sequences

X

idX
��

f ′
// Y ′

α

��

g′
// Z ′

β

��

X
f

// Y
g

// Z.

Proof. Consider the expanded diagram

X

idX
��

f ′
// Y ′

α

��

g′
// Z ′

β
��

X
f

// Y
g

// Z,

where the right square is a pullback and the left square (in particular, the map f ′ : X → Y ′)

is a consequence of this pullback, so that g′f ′ ≃ 0. To prove that this diagram is a morphism
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of fiber sequences, it suffices to show that

X

��

f ′
// Y ′

g′

��

0 // Z ′

is a pullback. For this, consider the diagram

X

��

f ′
// Y ′

g′

��

α
// Y

g

��

0 // Z ′
β

// Z.

The outer rectangle is a pullback since f ≃ αf ′ and X
f
→ Y

g
→ Z is a fiber sequence. By

construction, the right square is a pullback. Hence, by Lemma 2.1.36, we conclude that the

left square is also a pullback.

By a dual argument, we also have:

Lemma 2.3.8. Let C be a stable ∞-category. Suppose that X
f
→ Y

g
→ Z is a cofiber

sequence and α : X → X ′ is any morphism in C. Then there exists a cofiber sequence

X ′ f ′
→ Y ′ g′

→ Z and a morphism β : Y → Y ′ in C such that the following diagram is a

morphism of cofiber sequences

X

α

��

f
// Y

β
��

g
// Z

idZ
��

X ′
f ′

// Y ′
g′

// Z.

The next proposition gives a nice characterization of stable ∞-categories.

Proposition 2.3.9 ([46, 1.1.3.4]). Let C be a pointed ∞-category. Then C is stable if and

only if the following conditions are satisfied:

(1) The ∞-category C admits finite limits and finite colimits.
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(2) A square ∆1 ×∆1 → C depicted as

X

��

// Y

��

X ′ // Y ′

is a pushout in C if and only if it is a pullback in C.

Remark 2.3.10. Another important consequence of Proposition 2.3.4 is the existence of a

suspension functor Σ: C→ C on a stable ∞-category C, given as

Σ: C ∼= Fun(∆0,C)→ Fun(∆1,C)→ C,

where Fun(∆0,C) → Fun(∆1,C) associates to any object X a morphism X → 0, and the

second functor is the cofiber. Analogously, the loop functor Ω: C→ C is given by

Ω: C ∼= Fun(∆0,C)→ Fun(∆1,C)→ C,

where the first functor sends X to 0 → X and the second is the fiber of this morphism.

When C is a stable ∞-category, these functors are mutually inverse equivalences.

Remark 2.3.11. Let C be a stable ∞-category. The suspension functor Σ: C → C is

essentially characterized by the existence of natural homotopy equivalences

MapC(ΣX,Y )
∼
−→ ΩMapC(X,Y ).

This assertion follows from the fact that a square

X

��

// 0

��

0 // ΣX

29



is a pushout in C if and only if, for every Y ∈ C, the diagram

MapC(ΣX,Y )

��

// MapC(0, Y )

��

MapC(0, Y ) // MapC(X,Y )

is a homotopy pullback of Kan complexes. Since 0 is initial, MapC(0, Y ) is contractible, and

consequently the homotopy pullback determines an equivalence MapC(ΣX,Y )
∼
→ ΩMapC(X,Y ).

In particular, π0MapC(Σ
2X,Y ) ≃ π2MapC(X,Y ) is an abelian group. Since Σ is an equiv-

alence of ∞-categories, for every Z ∈ C we can choose X ∈ C such that Σ2X ≃ Z. Hence,

HomhC(Z, Y ) = π0MapC(Z, Y ) is an abelian group and moreover this group structure de-

pends functorially on Z, Y ∈ hC.

Proposition 2.3.12. Every stable ∞-category is an additive ∞-category.

Proof. Let C be a stable ∞-category. By definition, C is pointed. By Proposition 2.3.9, C

admits finite products and finite coproducts. Remark 2.3.11 shows that hC is enriched in

abelian groups. Thus, C is an additive ∞-category (see Remark 2.2.5).

Corollary 2.3.13. Let C be a stable ∞-category. Then hC is additive.

Proof. Combine Proposition 2.3.12 and Proposition 2.2.8.

Notation 2.3.14. Let C be a stable∞-category and n be an integer. If n is nonnegative, we

let X 7→ X[n] denote the nth power of the suspension functor Σ: C→ C. If n is nonpositive,

we let X 7→ X[n] denote the (−n)th power of the loop functor Ω: C → C. We will use the

same notation to indicate the induced functors on the homotopy category hC.
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Definition 2.3.15. Let C be a stable ∞-category. Suppose we are given a diagram

X
f
→ Y

g
→ Z

h
→ X[1]

in the homotopy category hC. We will say that this diagram is a distinguished triangle if

there exists a diagram ∆2 ×∆1 → C, depicted as

X

��

f̃
// Y

g̃

��

// 0′

��

0 // Z
h̃

//W

where 0, 0′ ∈ C are zero objects, both squares are pushouts, f̃ and g̃ are representatives

of the homotopy classes f and g, respectively, and h : Z → X[1] is the composition of the

homotopy class of h̃ with the equivalence W ≃ X[1] determined by the outer rectangle

(Lemma 2.1.36).

Theorem 2.3.16 ([46, 1.1.2.15]). Let C be a stable ∞-category. The suspension functor

Σ: C→ C together with the collection of distinguished triangles described above endows the

homotopy category hC with the structure of a triangulated category.

Definition 2.3.17. Let C be a stable ∞-category. For any objects X and Y in C and

any integer n, we define the (Yoneda) Ext-groups Extn
C
(X,Y ) to be the abelian groups

HomhC(X[−n], Y ) ∼= HomhC(X,Y [n]).

Remark 2.3.18. Let C be a stable ∞-category. Any cofiber sequence X
f
→ Y

g
→ Z in C

gives rise to a long exact sequences

· · · → Extn−1
C

(W,Z)→ ExtnC(W,X)→ ExtnC(W,Y )→ ExtnC(W,Z)→ Extn+1
C

(W,X)→ · · ·

and

· · · → Extn−1
C

(X,W )→ ExtnC(Z,W )→ ExtnC(Y,W )→ ExtnC(X,W )→ Extn+1
C

(Z,W )→ · · ·
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for any W ∈ C and all n ∈ Z. To see this, fix an integer n. We will prove the exactness

of the first sequence; the argument for the second sequence is similar. Using that [n] is an

auto-equivalence, we are free to replace W by W [n], so we are reduced to proving that

Ext−1
C

(W,Z)→ Ext0C(W,X)→ Ext0C(W,Y )→ Ext0C(W,Z)→ Ext1C(W,X)

is exact. Extending the cofiber sequence X
f
→ Y

g
→ Z to a diagram

ΩZ

e

��

// 0

��

X

��

f
// Y

g

��

// 0

��

0 // Z
h

// ΣX

where all squares are pushouts and pullbacks (by Proposition 2.3.9) shows that the compo-

sition of any two successive maps in the sequence

Ext−1
C

(W,Z)→ Ext0C(W,X)→ Ext0C(W,Y )→ Ext0C(W,Z)→ Ext1C(W,X)

is zero. Next, observe that any map w : W → Y such that gw ≃ 0 can be extended to a

map of fiber sequences as indicated:

W

��

idW
//W

w

��

// 0

��

X
f

// Y
g

// Z.

This proves that the sequence is exact at Ext0
C
(W,Y ). The same argument, applied to the

fiber sequences ΩZ
e
→ X

f
→ Y and Y

g
→ Z

h
→ ΣX, respectively, establishes exactness at

Ext0
C
(W,X) and Ext0

C
(W,Z), as desired.

We will need an additional hypothesis on the stable∞-categories under consideration,

namely we will primarily work with compactly generated stable ∞-categories.
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Definition 2.3.19. Let C be an ∞-category.

(1) An object C of C is called compact if C admits filtered colimits and the functor

MapC(C,−) : C→ S commutes with filtered colimits (see [45, 5.3.1] and [45, 5.3.4.5]).

(2) C is called compactly generated if there exists a (small) ∞-category D which admits

small colimits such that C is generated under filtered colimits by D (which can be

identified with the full subcategory of compact objects of C) (see [45, 5.5.7.1] and [45,

5.5.1.1]).

In the case of stable ∞-categories, compactness and compact generation take a par-

ticularly nice form.

Theorem 2.3.20 ([46, 1.4.4.1]).

(1) A stable ∞-category C admits small colimits if and only if C admits small coproducts.

(2) Suppose F : C→ D is an exact functor between stable∞-categories which admits small

colimits. Then F preserves small colimits if and only if F preserves small coproducts.

(3) Let X be an object of a stable ∞-category C. Then X is compact if and only if the

following condition is satisfied: For every morphism f : X →
∐

α∈A Yα in C, there

exists a finite subset A0 ⊆ A such that f factors (up to homotopy) through
∐

α∈A0
Yα.

Corollary 2.3.21. Let C be a compactly generated stable ∞-category. The full subcategory

Cc ⊆ C spanned by the compact objects is again stable.

Proof. Note that the zero object is compact. We must show that Cc is stable under the

formation of fibers and cofibers. Since translations are equivalences, Cc is stable under
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translations. It therefore suffices by [46, Lemma 1.1.3.3] to show that Cc is stable under

cofibers. Suppose f : X → Y is a morphism of compact objects and let g : Y → Z ≃ cofib(f)

be a cofiber. We must show that Z is compact. By Theorem 2.3.20, we must show that for

every collection of objects {Wα}α∈A with coproduct W , the canonical morphism

⊕

α∈A

Ext0C(Z,Wα)→ Ext0C(Z,W )

is an isomorphism. Using the cofiber sequence X → Y → Z, we have a long exact sequence

(see Remark 2.3.18)

⊕

α Ext
−1
C

(Y,Wα)

��

h0
// Ext−1

C
(Y,W )

��
⊕

α Ext
−1
C

(X,Wα)

��

h1
// Ext−1

C
(X,W )

��
⊕

α Ext
0
C
(Z,Wα)

��

h2
// Ext0

C
(Z,W )

��
⊕

α Ext
0
C
(Y,Wα)

��

h3
// Ext0

C
(Y,W )

��
⊕

α Ext
0
C
(X,Wα)

h4
// Ext0

C
(X,W ).

By the compactness of X and Y , the morphisms h0, h1, h3 and h4 are all isomorphisms. It

now follows from the Five Lemma that h2 is an isomorphism.

Lemma 2.3.22. Let C be a compactly generated stable ∞-category. Suppose {Sα : α ∈ A}

is a set of compact generators of C. If f : C → D is a morphism in C such that the induced

map HomhC(Sα, C) → HomhC(Sα, D) is an isomorphism for every index α ∈ A, then f is

an equivalence in C.

Proof. Enlarging if necessary, we may assume without loss of generality that the collection

{Sα : α ∈ A} is stable under the formation of suspensions. To establish the desired result,
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it suffices to show that for every object X ∈ C, the map f : C → D induces a homotopy

equivalence φX : MapC(X,C) → MapC(X,D). Let C′ denote the full subcategory of C

spanned by those objects for which φX is an equivalence. We wish to prove that C′ = C.

Since C′ is stable under colimits, it suffices to show that each Sα belongs to C′. Since each

Sα is a cogroup object, each φSα is a map of group objects of the homotopy category H of

spaces. Therefore, φSα is a homotopy equivalence if and only if it induces an isomorphism

of groups πnMapC(Sα, C) → πnMapC(Sα, D) for every n ≥ 0 (here the homotopy groups

are taken with respect to the base points given by the group structures, i.e. the zero

morphisms). Replacing Sα with ΣnSα, we are reduced to the case n = 0: that is, to the

bijectivity of the maps HomhC(Sα, C)→ HomhC(Sα, D), which completes the proof.
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Chapter 3

Distinguished morphisms

Auslander-Reiten theory isolates several classes of morphisms which play a distin-

guished structural role in the categories in which they exist. In this chapter, we introduce

these various morphisms and study their properties. By construction, the results of this

chapter recover the classical analogues after passing to the homotopy category. In particular,

we show that there is a close relationship between almost-split and irreducible morphisms

mirroring the classical theory. Auslander recognized in [5, 4] that almost-split morphisms

are instances of a more general notion he called morphisms determined by objects. While

little attention has been given to morphisms determined by objects in the literature, Ringel

recently made a strong case for why Auslander’s insight deserves further investigation [51].

We introduce almost-split morphisms in Section 3.2 and discuss their properties in any

additive ∞-category. In Section 3.4, we show that minimal almost-split morphisms have

particularly nice features. Section 3.5 investigates the relationships between almost-split

morphisms and irreducible morphisms. In Section 3.6, we study how morphisms are de-
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termined by objects, giving a useful characterization in Theorem 3.6.5. Finally, in the

last section of this chapter, we discuss existence of these various distinguished morphisms.

Theorem 3.7.4 is the main result of this chapter, proving the existence of morphisms deter-

mined by compact objects in any compactly generated stable ∞-category. The existence

of almost-split morphisms and irreducible morphisms then follows as consequences of the

earlier work in this chapter.

3.1 Retractions and idempotents

Definition 3.1.1. Let C be an ∞-category. A morphism r : X → Y in C is called a

retraction (of X) if there exists a 2-simplex ∆2 → C corresponding to a diagram

X
r

  

Y

i
>>

idY
// Y.

In this case, we will also say that i is a section (of X) and Y is a retract of X. Equivalently,

r : X → Y is a retraction in C if it is a retraction in the homotopy category hC.

If X
f
→ Y

g
→ Z is a triangle in a pointed ∞-category C, and f is a retraction, then

since f has a right inverse (up to homotopy) and gf ≃ 0, it follows that g ≃ 0. Similarly, if

g is a section, then f ≃ 0. Under certain conditions, we also have the converse statements:

Lemma 3.1.2. Let C be a pointed ∞-category.

(1) If X
f
→ Y

g
→ Z is a fiber sequence in C and g ≃ 0, then f is a retraction.

(2) If X
f
→ Y

g
→ Z is a cofiber sequence in C and f ≃ 0, then g is a section.
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Proof.

(1) If g ≃ 0, then, using that X
f
→ Y

g
→ Z is a fiber sequence, the triangle

Y

��

1
// Y

g

��

0 // Z

induces a map Y → X together with a 2-simplex ∆2 → C,

X
f

  

Y

>>

1
// Y

exhibiting f as a retraction.

(2) If f ≃ 0, then an analogous argument using that X
f
→ Y

g
→ Z is a cofiber sequence

shows that g is a section.

Remark 3.1.3. Let C be a stable ∞-category, and suppose X
f
→ Y

g
→ Z is a (co)fiber

sequence in C. By Lemma 3.1.2, f ≃ 0 if and only if g is a section; similarly, g ≃ 0 if and

only if f is a retraction.

Remark 3.1.4. Observe that a morphism is both a section and a retraction if and only if it

is an equivalence. In particular, if C is a pointed ∞-category with a section s : X → Y such

that X
s
→ Y → 0 is a fiber sequence, then Lemma 3.1.2 implies that s is an equivalence.

Similarly, if r : X → Y is a retraction and 0→ X
r
→ Y is a cofiber sequence in C, then r is

an equivalence.
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Lemma 3.1.5. Let C be a stable ∞-category and suppose X
f
→ Y

g
→ Z is a fiber sequence

in C. Then f is a section if and only if g is a retraction.

Proof. Consider the expanded diagram,

X

��

f
// Y

g

��

// 0

��

0 // Z

��

h
// ΣX

Σf

��

0 // ΣY

where the squares with zero objects in the upper right and lower left corners are pushouts.

Using Lemma 2.1.36 (twice), we deduce that all squares are pushouts. Then f is a section

if and only if Σf is a section if and only if h ≃ 0 if and only if g is a retraction, where the

last two equivalences are a consequence of Lemma 3.1.2.

Definition 3.1.6. Let Idem denote any simplicial set which has exactly one nondegenerate

n-simplex σn for each n ≥ 0 with the property that diσn = σn−1 for all n ≥ 1 and 0 ≤ i ≤ n.

An idempotent in an ∞-category C is a map of simplicial sets Idem→ C.

Remark 3.1.7. Definition 3.1.6 is a simply rephrasing of [45, Definitions 4.4.5.2 and

4.4.5.4], as those definitions involve additional data necessary for discussing the splitting of

coherent idempotents in greater generality than we require here.

Remark 3.1.8. Let C be an∞-category. Giving an idempotent F : Idem→ C is equivalent

to giving, for each n ≥ 0, an n-simplex ∆n → C of C satisfying conditions which exhibit a

“coherent idempotent” by explicitly specifying the homotopy (associativity) data between

iterated compositions of an idempotent of hC. More concretely, F0 determines an object X
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of C, F1 gives a morphism e : X → X of C, F2 selects a 2-simplex σ : ∆2 → C of the form

X
e

  

X

e
>>

e
// X

exhibiting a homotopy e ≃ e2 which witnesses that e is an idempotent of hC, and for n > 2

the n-simplex specified by Fn records the various homotopy relations between e and en.

Remark 3.1.9. Let C be an ∞-category. Any retraction r : X → Y in C gives rise to an

idempotent e ≃ i ◦ r in the homotopy category hC. In general, this idempotent may not

lift to a (coherent) idempotent of C; for a counter-example, see [46, 1.2.4.8]. However, in

the case that C is a stable ∞-category, this distinction vanishes; that is, every idempotent

of hC can be lifted to an idempotent of C by [46, 1.2.4.6]. We refer to idempotents of the

form e ≃ i ◦ r arising from retractions as split idempotents. If every idempotent in C is a

split idempotent, we say that C is idempotent complete.

Proposition 3.1.10 ([45, 4.4.5.16]). Let C be an ∞-category. If C admits filtered colimits,

then C is idempotent complete.

Lemma 3.1.11. Let C be an additive ∞-category containing an object X.

(1) If 0X and idX are the only idempotents of X, then X is indecomposable.

(2) If 0X and idX are the only idempotents of X, then every retraction r : X → X and

every section s : X → X is an equivalence.

(3) If EndhC(X) is a local ring, then the only idempotents are 0X and idX .

(4) Assume idempotents in EndhC(X) split. If X is indecomposable, then the endomor-

phism ring EndhC(X) is local.
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Proof. (1) Suppose X ≃ X1 ⊕ X2. Let i1 : X1 → X and p1 : X → X1 be the canonical

biproduct inclusion and projection of X1. Then p1i1 ≃ idX1
and i1p1 is an idempotent of

X. By assumption, either i1p1 ≃ 0X which implies X ≃ X2 or i1p1 ≃ idX which implies

X ≃ X1.

(2) Assume X 6≃ 0. Suppose there exist morphisms r : X → X and i : X → X such

that ri ≃ idX . If the idempotent ir 6≃ idX , then by assumption ir ≃ 0X . This implies

idX ≃ ri ≃ (ri)(ri) ≃ r(ir)i ≃ 0X , a contradiction.

(3) Assume EndhC(X) is local and let e ∈ EndhC(X) be an idempotent. Since

EndhC(X) is local, either e or (idX −e) is an equivalence. In the first case, e2 ≃ e im-

plies e ≃ idX ; in the second case, (idX −e)
2 ≃ (idX −e) implies e ≃ 0X .

(4) We prove the contrapositive. Suppose e : X → X is a nontrivial idempotent. Then

(idX −e) is also a nontrivial idempotent and, by assumption, both e and (idX −e) are split

idempotents. That is, there exist (nontrivial) objects Y and Z together with morphisms

r : X → Y , i : Y → X, p : X → Z, and q : Z → X such that ri ≃ idY , e ≃ ir, pq ≃ idZ ,

and (idX −e) ≃ qp. The morphisms r and p induce a unique map α : X → Y ⊕Z such that

r ≃ πY α and p ≃ πZα, where πY and πZ are the canonical biproduct projections. Similarly,

the morphisms i and q induce a unique map β : Y ⊕Z → X such that i ≃ βιY and q ≃ βιZ ,

where ιY and ιZ are the canonical biproduct inclusions. We claim that the morphisms α

and β exhibit an isomorphism X ∼= Y ⊕ Z. First, observe that

βα ≃ β(ιY πY + ιZπZ)α ≃ ir + qp ≃ e+ (idX −e) ≃ idX .

It remains to show that αβ ≃ idX⊕Y . Note that rqp ≃ 0 implies rq ≃ 0 because p is a
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retraction and qpi ≃ 0 implies pi ≃ 0 because q is a section. Then

αβ ≃ (ιY πY + ιZπZ)αβ(ιY πY + ιZπZ)

≃ ιY πY (αβ)ιY πY + ιY πY (αβ)ιZπZ + ιZπZ(αβ)ιY πY + ιZπZ(αβ)ιZπZ

≃ ιY (ri)πY + ιY (rq)πZ + ιZ(pi)πY + ιZ(pq)πZ

≃ ιY πY + ιZπZ = idY⊕Z .

This argument proves that X is decomposable.

Corollary 3.1.12. Let C be a compactly generated stable ∞-category. An object X ∈ C is

indecomposable if and only if X is strongly indecomposable.

Proof. Assume X is strongly indecomposable, that is, EndhC(X) is a local ring. Then

Lemma 3.1.11(3) combined with Lemma 3.1.11(1) shows that X is indecomposable.

Conversely, suppose thatX is indecomposable. By Proposition 3.1.10, C is idempotent

complete. Hence, Lemma 3.1.11(4) implies that X is strongly indecomposable.

3.2 Almost-split morphisms

Definition 3.2.1. Let C be an ∞-category.

(1) A morphism f : X → Y in C is called left almost-split if f is not a section and for any

morphism f ′ : X → Y ′ in C which is not a section, there exists a 2-simplex ∆2 → C

of the form

Y

!!

X

f
>>

f ′
// Y ′.
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(2) A morphism g : Y → Z in C is called right almost-split if g is not a retraction and

for any morphism g′ : Y ′ → Z in C which is not a retraction, there exists a 2-simplex

∆2 → C of the form

Y
g

  

Y ′

>>

g′
// Z.

Equivalently, a morphism f : X → Y is left (right) almost-split in C if it is left (right)

almost-split in the homotopy category hC.

Remark 3.2.2. A morphism is left almost-split in C if and only if it is right almost-split

in Cop (see Definition 2.1.17). Consequently, we will mainly focus our attention on right

almost-split morphisms. The theory of left almost-split morphisms follows by duality.

Remark 3.2.3. By Definition 3.2.1, if g : Y → Z is right almost-split, then any morphism

g′ : Y → Z such that g′ ≃ g is again right almost-split. Similarly, the collection of right

almost-split morphisms is closed under composition with equivalences. Another important

feature is that the basic properties of almost-split morphisms only depend on the structure

of the homotopy category.

Lemma 3.2.4. Let C be an additive ∞-category. If g : Y → Z is a right almost-split

morphism in C, then the endomorphism ring EndhC(Z) is local with unique maximal ideal

given by ImHomhC(Z, g) ⊆ EndhC(Z).

Proof. Let J = ImHomhC(Z, g) = [g] ◦ HomhC(Z, Y ). By Lemma A.1.3, it suffices to

show that J is the unique maximal right ideal of EndhC(Z). The set J is an abelian

group because HomhC(Z, Y ) is an abelian group and composition is linear. The abelian
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group J is moreover a right ideal because J is closed under composition on the right by

an endomorphism of Z, which is the product structure on EndhC(Z). To see that J is

maximal, suppose I ⊂ EndhC(Z) is a proper right ideal. If [φ] ∈ I, then φ cannot be a

retraction, otherwise I = EndhC(Z). Using that g : Y → Z is right almost-split, it follows

that φ : Z → Z factors through g and thus I ⊆ J .

Corollary 3.2.5. Let C be an additive ∞-category. If g : Y → Z is a right almost-split

morphism in C, then Z is indecomposable.

Proof. Combine Lemma 3.2.4 and Lemma 3.1.11.

Remark 3.2.6. There is an alternative proof of Corollary 3.2.5 which does not rely on

knowing that EndhC(Z) is a local ring. Suppose Z = Z1⊕Z2 with both Z1 and Z2 nontrivial,

and let i1 : Z1 → Z and i2 : Z2 → Z be the canonical inclusions. Because i1 and i2 are not

retractions, they each factor through g, so that i1 ≃ gh1 and i2 ≃ gh2 for some h1 : Z1 → Y

and h2 : Z2 → Y . If p1 : Z → Z1 and p2 : Z → Z2 are the canonical projections, then this

implies g(h1p1 + h2p2) ≃ i1p1 + i2p2 ≃ idZ , contradicting that g is not a retraction.

Corollary 3.2.7. Let C be an additive ∞-category. If g : Y → Z is a right almost-split

morphism in C with Y 6≃ 0, then g is not a section.

Proof. Assume g : Y → Z is a section with retraction r : Z → Y . Then gr : Z → Z is an

idempotent. Combining Lemma 3.2.4 and Lemma 3.1.11(3), either gr ≃ idZ or gr ≃ 0Z .

The first case implies that g is a retraction, a contradiction. The second case implies r ≃ 0,

again a contraction because Y 6≃ 0.
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Remark 3.2.8. Since any proper ideal of EndhC(Z) must consist of nonisomorphisms,

Lemma 3.2.4 implies that every endomorphism of Z which is not an equivalence factors

through g : Y → Z.

In fact, Remark 3.2.8 admits a slight generalization.

Lemma 3.2.9. Let C be an additive ∞-category containing an object a nonzero object W

such that EndhC(W ) is a local ring. If g : Y → Z is a right almost-split morphism in C,

then any morphism r : W → Z which is not an equivalence factors through g.

Proof. We must show that r : W → Z is not a retraction. Suppose to the contrary that

there exists i : Z → W such that ri ≃ idZ . Then ir : W → W is an idempotent in hC with

ir 6≃ idW because r is not an equivalence. Using that EndhC(W ) is local, Lemma 3.1.11(3)

gives that ir ≃ 0W . But this implies that W is a zero object, a contradiction.

With some additional hypotheses, Lemma 3.2.4 admits a converse.

Lemma 3.2.10. Let C be an additive ∞-category. Assume g : Y → Z is a morphism in C

satisfying the following properties:

(1) The endomorphism ring EndhC(Z) is local with radEndhC(Z) = ImHomhC(Z, g).

(2) Every morphism g′ : Y ′ → Z in C such that ImHomhC(Z, g
′) ⊆ ImHomhC(Z, g) factors

through g.

Then g : Y → Z is right almost-split.

Proof. If g′ : Y ′ → Z is not a retraction, then ImHomhC(Z, g
′) ⊆ radEndhC(Z). Since

radEndhC(Z) = ImHomhC(Z, g), we have that g′ factors through g, as desired.
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Lemma 3.2.11. Let C be an additive∞-category. Suppose that g : Y → Z is a right almost-

split morphism in C. If h : W → Z is not a retraction and has the property that g factors

through h, then h is right almost-split.

Proof. Suppose g′ : Y ′ → Z is not a retraction. Since g is right almost-split, there exists

k : Y ′ → Y such that g′ ≃ gk. Since g factors through h, there exists k′ : Y →W such that

g ≃ hk′. Hence, g′ ≃ gk ≃ h(k′k) shows that g′ factors through h.

Definition 3.2.12. Let C be a pointed ∞-category. A nonzero object Z in C is called

almost-simple if the morphism 0→ Z is right almost-split.

Proposition 3.2.13. Let C be a stable ∞-category. A nonzero object Z ∈ C is almost-

simple if and only if the cofiber of any morphism Y → Z is equivalent to either a zero

morphism or a section.

Proof. Let g : Y → Z be any morphism and consider the cofiber sequence Y
g
→ Z

h
→ W .

Suppose 0 → Z is right almost-split. If g : Y → Z is a retraction, then hg ≃ 0 implies

h ≃ 0. If g : Y → Z is not a retraction, then g ≃ 0 because 0 → Z is right almost-split.

Using Lemma 3.1.2, we conclude that h is a section.

Conversely, suppose g is not a retraction. Then, using Lemma 3.1.2 together with

the assumption that C is stable, it must be that h is not equivalent to a zero morphism.

Consequently, h is a section, which implies that g ≃ 0. Thus, 0→ Z is right almost-split.

3.3 Divisible morphisms

Definition 3.3.1. Let C be an ∞-category.

46



(1) A nonzero morphism h : Z → W is called left divisible if it factors through every

nonzero morphism α : W ′ →W , that is, there exists β : Z →W ′ such that h ≃ αβ.

(2) A nonzero morphism h : Z → W is called right divisible if it factors through every

nonzero morphism β : Z → Z ′, that is, there exists α : Z ′ →W such that h ≃ αβ.

(3) A morphism h : Z →W is called divisible if it is both left divisible and right divisible.

Remark 3.3.2. A morphism is left divisible in C if and only if it is right divisible in Cop

(see Definition 2.1.17). Consequently, we will mainly focus our attention on right divisible

morphisms. The theory of left divisible morphisms follows by duality.

There is a close relationship between almost-split morphisms and divisible morphisms.

Proposition 3.3.3. Let C be a stable ∞-category. Suppose Y
g
→ Z

h
→ W is a cofiber se-

quence in C. Then the morphism g : Y → Z is right almost-split if and only if the morphism

h : Z →W is right divisible.

Proof. We will make repeated use of Lemma 3.1.2 in this argument.

First, assume that g : Y → Z is right almost split and let β : Z → Z ′ be any nonzero

morphism. Since g is not a retraction, h is nonzero. If Z ′′ α
→ Z

β
→ Z ′ is a fiber sequence,

then α is not a retraction and thus factors through g. As h is a cofiber of g, it follows that

hα ≃ 0. But β is a cofiber of α (because C is stable), therefore h factors through β.

Conversely, suppose α : Z ′′ → Z is not a retraction. Note that g is not a retraction

because h is nonzero, and any cofiber β : Z → Z ′ of α is nonzero. Hence, by assumption, h

factors through β and consequently hα ≃ 0. It now follows that α factors through g, as a

fiber of h (because C is stable).
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Remark 3.3.4. Proposition 3.3.3 might be summarized by the following diagram:

Z ′′

~~

α

��

Y
g

// Z

β
��

h
//W

Z ′

==

where β : Z → Z ′ is any nonzero morphism.

Corollary 3.3.5. Let C be a stable ∞-category. If h : Z →W is a right divisible morphism

in C, then Z is strongly indecomposable.

Proof. Suppose h : Z → W is right divisible and consider the fiber sequence Y
g
→ Z

h
→ W .

By Proposition 3.3.3, the morphism g : Y → Z is right almost-split. It now follows from

Lemma 3.2.4 that Z is strongly indecomposable.

Proposition 3.3.6. Let C be an additive ∞-category. If h : Z → W is a right divisible

morphism in C, then the left EndhC(W )-module HomhC(Z,W ) has an essential simple socle

generated by the homotopy equivalence class [h] ∈ HomhC(Z,W ).

Proof. Let H be the EndhC(W )-submodule of HomhC(Z,W ) generated by the morphism

[h] : Z → W . If M is any nontrivial submodule of HomhC(Z,W ) and m : Z → W is a

nonzero morphism representing an element of M , then by right divisibility there exists a

morphism w : W → W such that h ≃ wm. Hence, H ⊆ M , which shows (in particular)

that H is an essential submodule. The socle S of HomhC(Z,W ) is the intersection of all

essential submodules, so S ⊆ H ⊆ S.
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Theorem 3.3.7. Let C be an additive∞-category. If h : Z →W is a left divisible morphism

in C, then the natural map

θ : HomhC(−,W )→ HomR(HomhC(Z,−),HomhC(Z,W )),

where R = EndhC(Z), is a monomorphism.

Proof. We will show that θX is a monomorphism for any X ∈ C. It suffices to show that if

α : X →W is nonzero, then θX [α] is nonzero; that is, we must show that there exists some

β : Z → X such that θX [α]([β]) = [αβ] is not zero. However, since α : X → W is nonzero

and h : Z →W is left divisible, there exists β : Z → X such that h ≃ αβ, as desired.

3.4 Minimal morphisms

Definition 3.4.1. Let C be an ∞-category.

(1) A morphism f : X → Y in C is called left minimal if every ψ : Y → Y fitting into a

diagram ∆2 → C of the form

Y
ψ

  

X

f
>>

f
// Y

is an equivalence.

(2) A morphism g : Y → Z in C is called right minimal if every ψ : Y → Y fitting into a

diagram ∆2 → C of the form

Y
g

  

Y

ψ
>>

g
// Z
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is an equivalence.

(3) We say that a morphism is minimal if it is both left minimal and right minimal.

Equivalently, a morphism f : X → Y is left (right) minimal in C if it is left (right) minimal

in the homotopy category hC.

Example 3.4.2. Let C be an ∞-category. Any section in C is right minimal. Similarly,

any retraction in C is left minimal. Every equivalence is minimal.

Remark 3.4.3. Let C be an ∞-category. A morphism g : Y → Z is right minimal in C if

and only if every morphism ψ : g → g in the slice category C/Z over Z is an equivalence;

that is, π0MapC/Z
(g, g) is a group.

Remark 3.4.4. Let C be an ∞-category. Assume g : Y → Z in C is nullhomotopic. Then

g is right minimal if and only if every endomorphism ψ : Y → Y is an equivalence; that is,

π0MapC(Y, Y ) is a group.

Lemma 3.4.5. Let C be an additive ∞-category. If g : Y → Z is a nonzero morphism in C

such that EndhC(Z) is local, then g is left minimal.

Proof. Suppose g ≃ ψg for some ψ : Z → Z. Since g 6≃ 0 and (1− ψ)g ≃ 0, it follows that

(1− ψ) cannot be an equivalence. Since EndhC(Z) is local, we must conclude that ψ is an

equivalence.

Corollary 3.4.6. Let C be an additive ∞-category. If g : Y → Z is a right almost-split

morphism in C, then g is left minimal.

Proof. Combine Lemma 3.4.5 and Lemma 3.2.4.
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Corollary 3.4.7. Let C be a stable ∞-category. If h : Z →W is a right divisible morphism

in C, then h is right minimal.

Proof. Combine the dual of Lemma 3.4.5 and Lemma 3.3.5.

We say that a morphism is minimal left almost-split if it is both left minimal and

left almost-split, and similarly for minimal right almost-split morphisms. These notions are

dual, so as above we restrict our attention to right minimal morphisms.

Lemma 3.4.8. Suppose g : Y → Z and g′ : Y ′ → Z ′ are both minimal right almost-split

morphisms in an ∞-category. Then for any equivalence ψ : Z → Z ′, there exists an equiv-

alence φ′ : Y → Y ′ such that ψg ≃ g′φ′.

Proof. Assume ψ : Z → Z ′ is an equivalence with homotopy inverse ψ′ : Z ′ → Z. Then the

composition ψ′g′ is not a retraction because g′ is not a retraction and consequently, using

that g is right almost-split, there exists φ : Y ′ → Y such that gφ ≃ ψ′g′. Similarly, there

exists φ′ : Y → Y ′ such that g′φ′ ≃ ψg. Since g is right minimal, g ≃ ψ′g′φ′ ≃ (ψ′ψ)g

implies that ψ′ψ is an equivalence; and because g′ is right minimal, g′ ≃ ψgφ ≃ (ψψ′)g′

implies that (ψψ′) is an equivalence. It now follows that φ′ is an equivalence.

We now turn our attention to the interplay between minimal almost-split morphisms

in cofiber sequences of a stable ∞-category.

Lemma 3.4.9. Let C be a stable ∞-category and suppose that X
f
→ Y

g
→ Z is a cofiber

sequence in C. Then f is right minimal if and only if g is left minimal.

Proof. Suppose f is right minimal and that the following diagram commutes (up to homo-
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topy):

Y

idY
��

g
// Z

φ
��

Y
g

// Z.

Completing this diagram to a map of cofiber sequences gives a morphism ψ : X → X, as

follows,

X

ψ
��

f
// Y

idY
��

g
// Z

φ

��

X
f

// Y
g

// Z.

Since f is right minimal, ψ is an equivalence. Therefore, by Lemma 2.3.6, φ is an equivalence.

The converse is proved similarly.

Lemma 3.4.10. Suppose X
f
→ Y

g
→ Z is a cofiber sequence in a stable ∞-category C. If

g : Y → Z is not a retraction and EndhC(Z) is local, then f : X → Y is left minimal.

Proof. By Lemma 3.1.5, f is not a section because g is not a retraction. Suppose ψ : Y → Y

is such that f ≃ ψf . This assumption induces a map of cofiber sequences as follows

ΩZ

φ
��

e
// X

idX
��

f
// Y

ψ

��

ΩZ
e

// X
f

// Y.

Since C is a stable ∞-category, Ω: C → C is an equivalence. It follows that EndhC(ΩZ) is

local because EndhC(Z) is local. Hence, either φ or (1 − φ) is an equivalence. If (1 − φ) is

an equivalence, then e(1− φ) ≃ 0 implies that e ≃ 0. By Lemma 3.1.2, this implies that f

is a section, a contradiction. Hence, φ is an equivalence and therefore ψ is an equivalence

by Lemma 2.3.6.

Proposition 3.4.11. Suppose X
f
→ Y

g
→ Z is a cofiber sequence in a stable ∞-category C.

If g : Y → Z minimal right almost-split, then f : X → Y is left almost-split.
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Proof. Since g is not a retraction, f is not a section, by Lemma 3.1.5. Suppose α : X → X ′

is not a section. By Lemma 2.3.8, we have an induced morphism of cofiber sequences

X

α

��

f
// Y

β

��

g
// Z

idZ
��

X ′
f ′

// Y ′
g′

// Z,

where the left square is a pushout. By way of contradiction, suppose that f ′ is not a

section. Then g′ is not a retraction and hence factors through g, as g is right almost-split.

Consequently, there exists β′ : Y ′ → Y such that g′ ≃ gβ′. The morphism in Fun(∆1,C)

given by

Y ′

β′

��

g′
// Z

idZ
��

Y
g

// Z

then induces a morphism of cofiber sequences (up to a contractible space of choices)

X ′

α′

��

f ′
// Y ′

β′

��

g′
// Z

idZ
��

X
f

// Y
g

// Z.

Composition then gives the following morphism of cofiber sequences,

X

α′α
��

f
// Y

β′β
��

g
// Z

idZ
��

X
f

// Y
g

// Z.

Since g is right minimal, g ≃ g(β′β) implies that (β′β) is an equivalence. It follows from

Lemma 2.3.6 that (α′α) is an equivalence, but this contradicts our assumption that α is not

a section. Hence, f ′ is a section and thus α factors through f , which proves that f is left

almost-split.
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Proposition 3.4.12. Suppose X
f
→ Y

g
→ Z is a cofiber sequence in a stable ∞-category C.

If g : Y → Z minimal right almost-split, then f : X → Y is minimal left almost-split.

Proof. Combine Proposition 3.4.11 and Lemma 3.4.10.

3.5 Irreducible morphisms

Definition 3.5.1. Let C be an∞-category. A morphism f : X → Y in C is called irreducible

if f is neither a section nor a retraction and whenever there is a diagram ∆2 → C of the

form

W
r

  

X

i
>>

f
// Y

either r is a retraction or i is a section. Equivalently, a morphism f : X → Y is irreducible

in C if it is irreducible in the homotopy category hC.

Irreducible morphisms are closely related to minimal almost-split morphisms.

Proposition 3.5.2. Let C be an additive ∞-category. If g : Y → Z be a minimal right

almost-split morphism in C with Y 6≃ 0, then g is irreducible.

Proof. Assume g ≃ g1g2 for some morphisms g1 : Y
′ → Z and g2 : Y → Y ′. As a right

almost-split morphism, g is not a retraction. By Corollary 3.2.7, g is also not a section. If

g1 is not a retraction, then since g is right almost-split there exists k : Y ′ → Y such that

g1 ≃ gk. Using that g is right minimal, g ≃ g1g2 ≃ g(kg2) implies that kg2 : Y → Y is an

equivalence. We conclude that g2 is a section, proving that g is irreducible.

Proposition 3.5.2 admits a slight refinement in stable ∞-categories.
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Proposition 3.5.3. Let g : Y → Z be a right almost-split morphism in a stable∞-category.

If h : X → Z is an irreducible morphism, then there exists a morphism i : W → Z such that

g ≃ (h, i) : X ⊕W → Z (as objects of the slice category over Z).

Proof. As an irreducible morphism, h is not a retraction. Since g is right almost-split, there

exists k : X → Y such that h ≃ gk. Since h is irreducible and g is not a retraction, it must

be that k is a section. Let j : Y → X be such that jk ≃ idX . Consider the cofiber sequence

X

��

k
// Y

c

��

0 //W.

By Lemma 3.1.5, c : Y → W is a retraction. Using this pushout, (idY −kj)k ≃ 0 implies

that there exists d : W → Y be such that dc ≃ idY −kj. Because c is a retraction and

cdc ≃ c, we also have that cd ≃ idW . Now, j : Y → X and c : Y → W determine a

morphism α : Y → X ⊕W ; similarly, k : X → Y and d : W → Y determine a morphism

β : X ⊕W → Y . It is not difficult to check that α and β are mutually inverse equivalences.

Let i ≃ gd : W → Z, and let γ = (h, i) : X ⊕W → Z be the induced morphism. Writing

ιX : X → X ⊕W and ιW : W → X ⊕W for the canonical inclusions, h ≃ γιX ≃ gk ≃ gβιX

and i ≃ γιW ≃ gd ≃ gβιW implies γ ≃ gβ, by uniqueness.

Proposition 3.5.3 admits a converse.

Proposition 3.5.4. Let C be an additive ∞-category. If g = (h, i) : X ⊕ W → Z is a

minimal right almost-split morphism in C such that h : X → Z is neither a section nor a

retraction, then h is irreducible.

Proof. Assume h ≃ pq for q : X → Y and p : Y → Z with p not a retraction. We must show
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that q is a section. Since g is right almost-split, there exists
(

s
t

)

: Y → X ⊕W such that

p ≃ (h i)
(

s
t

)

≃ hs+ it. Therefore,

(h, i)









sq 0

tq 1W









≃ (hsq + itq, i) ≃ (h, i).

Since g = (h, i) is right minimal, we have that
(

sq 0
tq 1W

)

is an equivalence. It follows that q

is a section, as desired.

Theorem 3.5.5. Let X
f
→ Y

g
→ Z be a cofiber sequence in a stable ∞-category. Then the

following statements are equivalent:

(1) The morphism f : X → Y is irreducible.

(2) For any g′ : Y ′ → Z there exists either a morphism h : Y ′ → Y such that g′ ≃ gh or

a morphism h′ : Y → Y ′ such that g ≃ g′h′.

Proof. First, assume that f : X → Y is an irreducible morphism. Any g′ : Y ′ → Z gives

rise to a map of cofiber sequences

X

idX
��

i′
// E

r

��

j
// Y ′

g′

��

X
f

// Y
g

// Z

where the right square is a pullback, by Lemma 2.3.7. Since f ≃ ri′ is irreducible, either r

is a retraction or i′ is a section. In the first case, there exists i : Y → E such that ri ≃ idY

and consequently g ≃ g′(ji). In the second case, Lemma 3.1.5 implies that j is a retraction.

Hence, there exists k : Y ′ → E such that jk ≃ idY ′ and consequently g′ ≃ g(rk).
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Now, assume statement (2) holds. Assume that f ≃ ri and consider the induced map

of cofiber sequences

X

idX
��

i
// E

r

��

j
// Y ′

g′

��

X
f

// Y
g

// Z

so that Y ′ ≃ cofib(i). Observe that the right square is a pushout by Lemma 2.1.36, and

hence also a pullback. If there exists a morphism h : Y ′ → Y such that g′ ≃ gh, then using

this pullback there exists k : Y ′ → E such that h ≃ rk and jk ≃ idY ′ . This implies that j

is a retraction and thus i is a section, by Lemma 3.1.5. On the other hand, if there exists

h′ : Y → Y ′ such that g ≃ g′h′, then again using that the right square is a pullback gives a

morphism k′ : Y → E such that h′ ≃ jk′ and rk′ ≃ idY . Hence, r is a retraction.

Corollary 3.5.6. Let X
f
→ Y

g
→ Z be a cofiber sequence in a stable ∞-category. If

g : Y → Z is right almost-split and nonzero, then f : X → Y is irreducible.

Proof. By Theorem 3.5.5, it suffices to show that for every g′ : Y ′ → Z there exists either

h : Y ′ → Y such that g′ ≃ gh or h′ : Y → Y ′ such that g ≃ g′h′. If g′ is not a retraction,

then there exists h : Y ′ → Y such that g′ ≃ gh because g is right almost-split. On the other

hand, if g′ is a retraction, then there exists j : Z → Y ′ such that g′j ≃ idZ . Consequently,

h′ ≃ jg is such that g ≃ g′h′, as desired.

3.6 Morphisms determined by objects

Definition 3.6.1 (Auslander [5]). Let C be an ∞-category containing an object C. A

morphism g : Y → Z is called right C-determined (or right determined by C) if for any
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morphism g′ : Y ′ → Z, there exists a 2-simplex ∆2 → C of the form

Y
g

  

Y ′

>>

g′
// Z

whenever ImHomhC(C, g
′) ⊆ ImHomhC(C, g) ⊆ HomhC(C,Z). Equivalently, a morphism

g : Y → Z is right C-determined if it is right C-determined in hC.

Example 3.6.2. Let C be an ∞-category. Every equivalence of C is right C-determined

for every object C ∈ C.

Remark 3.6.3. It is not difficult to check that the collection of right determined morphisms

is closed under homotopy and composition with equivalences.

Another important class of examples comes from right almost-split morphisms.

Proposition 3.6.4. Let C be an additive ∞-category. A morphism g : Y → Z is right

almost-split if and only if the following conditions are satisfied:

(1) The endomorphism ring EndhC(Z) is local with radEndhC(Z) = ImHomhC(Z, g).

(2) The morphism g : Y → Z is right Z-determined.

Proof. The “if” statement is Lemma 3.2.10. Conversely, assume that g : Y → Z is right

almost-split. By Lemma 3.2.4, we know that EndhC(Z) is a local ring with unique max-

imal ideal radEndhC(Z) = ImHomhC(Z, g). Now, suppose g′ : Y ′ → Z be such that

ImHomhC(Z, g
′) ⊆ ImHomhC(Z, g). It follows that g′ is not a retraction and hence fac-

tors through g. Thus, g : Y → Z is right Z-determined.

We now come to our main result of this section.
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Theorem 3.6.5. Let C be an additive ∞-category. Suppose C ∈ C and set R = EndhC(C).

Fix a morphism g : Y → Z and suppose η : HomhC(−, Z) → HomR(HomhC(C,−), E) is a

natural transformation for some right R-module E. Then the sequence

HomhC(−, Y )
[g]◦−

// HomhC(−, Z)
η

// HomR(HomhC(C,−), E) (∗)

is exact if and only if the sequence

HomhC(C, Y )
[g]◦−

// HomhC(C,Z)
ηC

// HomR(HomhC(C,C), E) (∗′)

is exact and g : Y → Z is right C-determined.

Proof. Using that η is a natural transformation, we first observe that for any α : X → Z,

the following diagram commutes

HomhC(Z,Z)

ηZ
��

[α]∗
// HomhC(X,Z)

ηX
��

HomR(HomhC(C,Z), E)
βα

// HomR(HomhC(C,X), E)

where βα(γ) = γ ◦ [α]∗. Consequently,

ηX([α]) = (ηX ◦ [α]
∗)([idZ ]) = (βα ◦ ηZ)([idZ ]) = ηZ([idZ ]) ◦ [α]∗

shows that ηX([α]) = 0 if and only if ImHomhC(C,α) ⊆ Ker ηZ([idZ ]). In particular, setting

X = C, we have ηZ([idZ ]) ◦ [α]∗ = ηC([α]) : EndhC(C)→ E for any α : C → Z. Evaluating

this morphism on [idC ] shows that ηZ([idZ ])([α]) = ηC([α])([idC ]). Consequently, we have

Ker ηC ⊆ Ker ηZ([idZ ]). Using that ηC([α]) is an R = EndhC(C) module homomorphism

and hence completely determined by its value on [idC ], we also have Ker ηZ([idZ ]) ⊆ Ker ηC .

Now, assume that the sequence (∗) is exact. In particular, the induced sequence (∗′)

is exact. It remains to show that g : Y → Z is right C-determined. Suppose g′ : Y ′ → Z
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is a morphism in C such that ImHomhC(C, g
′) ⊆ ImHomhC(C, g). We will show that

η ◦ [g′]∗ = 0. Assuming this momentarily, exactness of (∗) implies that there exists a

unique map HomhC(−, Y
′)→ HomhC(−, Y ) which factors [g′]∗ through [g]∗. By the Yoneda

embedding, this unique map arises from a morphism [h] : Y ′ → Y such that [g′] = [g] ◦ [h].

To show that η◦[g′]∗ = 0, we must show that for allX ∈ C, ImHomhC(X, g
′) ⊆ Ker ηX ,

that is, for all ψ : X → Y ′ we must show that ηX([g
′ψ]) = 0. By our naturality calculation

above, ηX([g
′ψ]) = 0 is equivalent to the condition ImHomhC(C, g

′ψ) ⊆ Ker ηZ([idZ ]).

By exactness of (∗′), we have that Ker ηC = ImHomhC(C, g). By our assumptions

on g′ : Y ′ → Z, we have ImHomhC(C, g
′ψ) ⊆ ImHomhC(C, g

′) ⊆ ImHomhC(C, g) = Ker ηC .

Noting that Ker ηC ⊆ Ker ηZ([idZ ]) (as shown above) completes the proof.

Conversely, assume (∗′) is exact and that g : Y → Z is right C-determined. We

must show that for every X, ImHomhC(X, g) = Ker ηX . By our calculation above, for any

δ : X → Y , we have ηX([g] ◦ [δ]) = 0 if and only if ImHomhC(C, gδ) ⊆ Ker ηZ([idZ ]). Using

exactness of (∗′), we have ImHomhC(C, gδ) ⊆ ImHomhC(C, g) = Ker ηC ⊆ Ker ηZ([idZ ]).

Hence, ImHomhC(X, g) ⊆ Ker ηX . If α : X → Z is such that ηX([α]) = 0, then we know

ImHomhC(C,α) ⊆ Ker ηZ([idZ ]). We must show α factors through g. Exactness of (∗′)

implies Ker ηC = ImHomhC(C, g), and the above calculation shows Ker ηZ([idZ ]) = Ker ηC .

Hence, ImHomhC(C,α) ⊆ ImHomhC(C, g). Using that g is right C-determined, the proof

is complete.

Remark 3.6.6. Let C be a stable ∞-category. Fix a morphism g : Y → Z and consider
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the cofiber sequence

Y

��

g
// Z

h
��

0 //W.

By Remark 2.3.18, this cofiber sequence induces, for every X ∈ C, an exact sequence

HomhC(X,Y )→ HomhC(X,Z)→ HomhC(X,W ).

Now, suppose η : HomhC(−, Z) → HomR(HomhC(C,−), E) is a natural transformation,

where C ∈ C, R = EndhC(C), and E is some right R-module. Observe that if there exists

a monomorphism δ : HomhC(−,W )→ HomR(HomhC(C,−), E) such that η = δ ◦ [h]∗, then

the corresponding sequence

HomhC(−, Y )
[g]◦−

// HomhC(−, Z)
η

// HomR(HomhC(C,−), E)

is exact. To see this, let α : X → Z be any morphism in C. Then ηX([α]) = 0 if and

only if δX([hα]) = 0. Since δX is a monomorphism, this implies hα ≃ 0. As g ≃ fib(h), we

conclude that α factors through g, proving Ker η ⊆ Im([g]∗). Conversely, for any ψ : X → Y ,

ηX([g] ◦ [ψ]) = δX([h] ◦ [g] ◦ [ψ]) = 0 because hg ≃ 0. Hence, Ker η = Im([g]∗).

Corollary 3.6.7. Let C be a stable ∞ category and suppose Y
g
→ Z

h
→ W is a fiber

sequence. If there exists a left divisible morphism k : C → W for some C ∈ C, then the

morphism g : Y → Z is right C-determined. In particular, if h : Z → W is left divisible,

then g : Y → Z is right Z-determined.

Proof. Combine Theorem 3.3.7 and Remark 3.6.6.

Remark 3.6.8. Let C be a stable ∞-category. Suppose C ∈ C and set R = EndhC(C).

Theorem 3.6.5 implies that for any W ∈ C, the morphism 0 → W is right C-determined
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if and only if there exists a monomorphism δ : HomhC(−,W ) → HomR(HomhC(C,−), E),

for some right R-module E. Consequently, using Remark 3.6.6, a morphism g : Y → Z is

right C-determined if the canonical morphism 0 → W ≃ cofib(g) is right C-determined.

Moreover, by Theorem 3.3.7, if k : C →W is a left divisible morphism, then 0→W is right

C-determined and (using Lemma 3.6.13 below) any pullback of this morphism is again right

C-determined.

Remark 3.6.9. Let C be an additive ∞-category. Suppose C ∈ C and set R = EndhC(C).

Suppose δ : HomhC(−,W ) → HomR(HomhC(C,−), E) is a natural transformation. The

proof of Theorem 3.6.5 showed that, for any α : X → W , δX([α]) = δW ([idW ]) ◦ [α]∗. Con-

sequently, Ker δX([α]) = {ε : C → X : [αε] ∈ Ker δW ([idW ])}. The proof of Theorem 3.6.5

also showed that Ker δW ([idW ]) = Ker δC (by observing that δW ([idW ])([α]) = δC([α])([idC ])

and evaluation at the identity determines an isomorphism HomR(R,E) → E). Therefore,

if Ker δC = 0, then Ker δX([α]) = KerHomhC(C,α); and if δC is an isomorphism, then

δW ([idW ]) is an isomorphism (as the composition of δC with evaluation at [idC ]).

Proposition 3.6.10. Let C be an ∞-category containing an object C. Suppose g : Y → Z

and g′ : Y ′ → Z are both right C-determined and right minimal. Then there exists an

equivalence α : Y ′ → Y such that g′ ≃ gα if and only if ImHomhC(C, g) ∼= ImHomhC(C, g
′).

Proof. Assume α : Y ′ → Y is an equivalence in C such that g′ ≃ gα. Then α induces

an isomorphism HomhC(C, Y
′) → HomhC(C, Y ) which exhibits the desired isomorphism

ImHomhC(C, g
′) ∼= ImHomhC(C, g).

Conversely, assume that ImHomhC(C, g
′) = ImHomhC(C, g). Since g is right C-

determined and ImHomhC(C, g
′) ⊆ ImHomhC(C, g), there exists α : Y ′ → Y such that g′ ≃
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gα. Similarly, using that g′ is right C-determined and ImHomhC(C, g) ⊆ ImHomhC(C, g
′),

there exists α′ : Y → Y ′ such that g ≃ g′α′. Hence, g ≃ g′α′ ≃ g(αα′) implies (αα′) is an

equivalence because g is right minimal. Likewise, using that g′ is right minimal, we have

that (α′α) is also an equivalence. These equivalences together imply that α : Y ′ → Y is an

equivalence, as desired.

We now investigate some of the closure properties of right C-determined morphisms.

Lemma 3.6.11. Let C be an ∞-category containing an object C. The collection of right

C-determined morphisms in C is closed under the formation of retracts. That is, given a

diagram

Y

g

��

q
//W

f

��

p
// Y

g

��

Z
i

// X
r

// Z

in C such that pq ≃ idY and ri ≃ idZ , if f : W → X is right C-determined, then g : Y → Z

is right C-determined.

Proof. Suppose g′ : Y ′ → Z is such that ImHomhC(C, g
′) ⊆ ImHomhC(C, g). Then

ImHomhC(C, ig
′) ⊆ ImHomhC(C, ig) = ImHomhC(C, fq) ⊆ ImHomhC(C, f).

Since f : W → X is right C-determined, there exists j : Y ′ → W such that ig′ ≃ fj, which

implies g′ ≃ g(pj), as desired.

Remark 3.6.12. Note that the assumption pq ≃ idY was not used in the above proof.

Lemma 3.6.13. Let C be an ∞-category containing an object C. The collection of right

C-determined morphisms in C is closed under the formation of pullbacks. That is, given a
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pullback diagram

W

f
��

p
// Y

g

��

X
q

// Z

in C, if g : Y → Z is right C-determined, then f : W → X is right C-determined. Moreover,

if q : X → Z is right C-determined, then so is the composition k ≃ qf ≃ gp : W → Z.

Proof. Suppose f ′ : W ′ → X is a morphism in C such that ImHomhC(C, f
′) ⊆ ImHomhC(C, f).

Then qf ≃ gp implies

ImHomhC(C, qf
′) ⊆ ImHomhC(C, qf) = ImHomhC(C, gp) ⊆ ImHomhC(C, g).

Since g : Y → Z is right C-determined, there exists j : W ′ → Y such that qf ′ ≃ gj. Using

that the above diagram is a pullback, there exists a : W ′ → W such that f ′ ≃ fa. Hence,

f : W → X is right C-determined.

Now, suppose that q : X → Z is also right C-determined and that k′ : W ′ → Z is

such that ImHomhC(C, k
′) ⊆ ImHomhC(C, k). Then ImHomhC(C, k

′) ⊆ ImHomhC(C, q)

and ImHomhC(C, h
′) ⊆ ImHomhC(C, g). Using that q is right C-determined, there exists

r : W ′ → X such that k′ ≃ qr; likewise, there exists h : W ′ → Y such that k′ ≃ gh because

g is right C-determined. Using the pullback, there exists b : W ′ → W such that pb ≃ h.

Hence, k′ ≃ gh ≃ g(pb) ≃ kb, as desired.

Lemma 3.6.14. Let C be an ∞-category which admits coproducts and contains an object

C. Assume D is an object of C equipped with a morphism D → Y ′ for all Y ′ ∈ C. If

g : Y → Z is right C-determined, then g : Y → Z is right (C ∐D)-determined.

Proof. Suppose g′ : Y ′ → Z is such that ImHomhC(C ∐D, g
′) ⊆ ImHomhC(C ∐D, g) and

let d : D → Y ′ be the given morphism. Then for any φ : C → Y ′, there is an induced
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morphism γ = (φ, d) : C ∐ D → Y ′. Since ImHomhC(C ∐ D, g
′) ⊆ ImHomhC(C ∐ D, g),

there exists ψ : C ∐ D → Y such that gψ = g′γ. Consequently, if i : C → C ∐ D is the

canonical morphism, then g′φ = g′γi = gψi shows that ImHomhC(C, g
′) ⊆ ImHomhC(C, g).

Since g is right C-determined, there exists j : Y ′ → Y such that g′ ≃ gj, as desired.

Remark 3.6.15. If C is a pointed∞-category, then for any objectD ∈ C there is a canonical

morphism D → Y ′ (the zero morphism) for every Y ′ ∈ C. Thus, if C admits coproducts,

then Lemma 3.6.14 implies that a right C-determined morphism is right (C∐D)-determined

for every object D of C.

3.7 Existence theorems

Following ideas of Krause [36], we use a version of Brown representability to prove the

existence of morphisms determined by objects in compactly generated stable ∞-categories.

From this, we derive the existence of minimal right almost-split morphisms.

The following version of Brown’s theorem is due to Jacob Lurie, see [46, 1.4.1.2].

Theorem 3.7.1 (Brown representability). Let C be a presentable ∞-category containing a

set of objects {Cα}α∈A with the following properties:

(1) Each object Cα is a cogroup object of the homotopy category hC.

(2) Each object Cα ∈ C is compact.

(3) The ∞-category C is generated by the objects Cα under small colimits.

Then a functor F : hCop → Set is representable if and only if it satisfies the following

conditions:
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(a) For every collection of objects Xβ in C, the map F (
∐

β Xβ)→
∏

β F (Xβ) is a bijection.

(b) For every pushout square

X

��

// X ′

��

Y // Y ′

in C, the induced map F (Y ′)→ F (X ′)×F (X) F (Y ) is surjective.

Remark 3.7.2. If C is a stable ∞-category, then every object of C is a cogroup object

of hC. Consequently, if C is a compactly generated stable ∞-category, then C satisfies the

hypotheses of Theorem 3.7.1.

Lemma 3.7.3. Let C be a compactly generated stable ∞-category. Let C be a compact

object of C and set R = EndhC(C). For any (ordinary) right R-module Q, the functor

F = HomR (HomhC(C,−), Q) : (hC)op → Ab

is representable.

Proof. By Theorem 3.7.1, it suffices to show that

(a) For every collection of objectsXβ in C, the map F (
∐

β Xβ)→
∏

β F (Xβ) is a bijection.

(b) For every pushout square

X

��

// X ′

��

Y // Y ′

in C, the induced map F (Y ′)→ F (X ′)×F (X) F (Y ) is surjective.

For every collection of objects {Xβ} in C, the coproduct
∐

β Xβ in C agrees with the

coproduct in hC. Moreover, an arbitrary coproduct
∐

β Xβ can be obtained as a filtered
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colimit of finite coproducts. Since C is compact, the functor corepresented by C commutes

with filtered colimits; since the hom-functor commutes with finite colimits, it follows that

HomhC(C,−) : hC→ RModR

sends coproducts to coproducts. For any object Q in RModR, the hom-functor

HomR(−, Q) : (RModR)
op → Ab

sends colimits in RModR to limits in Ab, and hence F
(

∐

β Xβ

)

∼=
∏

β F (Xβ). This estab-

lishes condition (a).

Next, observe that for any cofiber sequence U
µ
→ V

ν
→ W in C, the functor F gives

rise to a sequence F (W )
F (ν)
→ F (V )

F (µ)
→ F (U) in Ab which is exact at F (V ). To see this,

note that F (µ) ◦F (ν) = F (ν ◦ µ) = 0; and if ϕ : C → V is any map such that νϕ ≃ 0, then

the following diagram can always be completed to a map of cofiber sequences, as indicated,

C

��

idC
// C

ϕ

��

// 0

��

U
µ

// V
ν

//W.

From this, it follows that the sequence

HomhC(C,U)
[µ]◦−

// HomhC(C, V )
[ν]◦−

// HomhC(C,W )

is exact at HomhC(C, V ). For any object Q ∈ RModR, the hom-functor HomR(−, Q) carries

colimits in RModR to limits in Ab; consequently, the sequence F (W )
F (ν)
→ F (V )

F (µ)
→ F (U)

in Ab is exact at F (V ), as desired.

Now, suppose that

X

��

f
// X ′

��

Y
g

// Y ′
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is a pushout diagram in C. We must show that the induced map F (Y ′)→ F (X ′)×F (X)F (Y )

is surjective. By Lemma 2.3.8, we can extend this diagram to a map of cofiber sequences

X

��

f
// X ′

��

// Z

idZ
��

Y
g

// Y ′ // Z

where here Z = cofib(f) ≃ cofib(g). Since C is stable, Σ: C → C is an equivalence with

(up to weak homotopy) inverse Ω: C→ C. The induced maps Z → ΣX and Z → ΣY then

give rise to boundary maps F (X)
∼
→ F (ΩΣX)→ F (ΩZ) and F (Y )

∼
→ F (ΩΣY )→ F (ΩZ),

making the following diagram a map of exact sequences in Ab:

F (Z)

φ

��

a
// F (Y ′)

s

��

F (g)
// F (Y )

t
��

c
// F (ΩZ)

ψ

��

F (Z)
b

// F (X ′)
F (f)

// F (X)
d

// F (ΩZ)

where φ and ψ are bijections.

We would like to see that the induced map q : F (Y ′)→ F (X ′)×F (X)F (Y ) is surjective.

This statement follows from a diagram chase: suppose that (x′, y) ∈ F (X ′) ×F (X) F (Y ).

Then F (f)(x′) = t(y) ∈ F (X) implies that ψc(y) = dt(y) = 0. Since ψ is injective, we

have c(y) = 0. So, there exists y′ ∈ F (Y ′) such that F (g)(y′) = y. Now, since t(y) =

t(F (g)(y′)) = F (f)(s(y′)) = F (f)(x′), we have that F (f)(s(y′) − x′) = 0. So, there exists

w ∈ F (Z) such that b(w) = s(y′) − x′. Since φ is surjective, there exists w′ ∈ F (Z) such

that φ(w′) = w. Then a(w′) ∈ F (Y ′) is such that s(y′ − a(w′)) = s(y′) − b(φ(w′)) =

s(y′) − b(w) = s(y′) − (s(y′) − x′) = x′ and F (g)(y′ − a(w′)) = y − F (g)(a(w′)) = y. This

implies q(y′ − a(w′)) = (x′, y), as desired.

This argument proves that condition (b) holds. Hence, the functor F satisfies the

conditions of Theorem 3.7.1 and is therefore representable.

68



Using Brown representability, we now establish the existence of morphisms determined

by objects in compactly generated stable ∞-categories.

Theorem 3.7.4. Let C be a compactly generated stable ∞-category. Suppose C ∈ C is

compact and set R = EndhC(C). For any arbitrary object Z and any (right) R-submodule

H ⊆ HomhC(C,Z), there exists a right minimal map g : Y → Z which is right C-determined

and satisfies ImHomhC(C, g) = H.

Proof. Let µ : HomhC(C,Z)/H → E be an injective envelope in the category of right R-

modules (which always exists). Since C is compact, the functor

HomR(HomhC(C,−), E) : (hC)op → Ab

is representable, by Lemma 3.7.3. Let T (C,E) be a representing object, so that

θ : HomhC(−, T (C,E))
∼
−→ HomR(HomhC(C,−), E).

Applying this isomorphism to the composition

HomhC(C,Z)
π
→ HomhC(C,Z)/H

µ
→ E

and choosing a representative gives a morphism γ : Z → T (C,E) (unique up to homotopy).

Suppose the diagram

Y

��

g
// Z

γ

��

0 // T (C,E)

is a cofiber sequence in C. We claim that the morphism g : Y → Z satisfies the desired

properties. The cofiber sequence above yields an exact sequence (see Remark 2.3.18)

HomhC(−, Y )
[g]◦−

// HomhC(−, Z)
[γ]◦−

// HomhC(−, T (C,E)).

69



Therefore, setting η = θ ◦ [γ]∗ gives an exact sequence

HomhC(−, Y )
[g]◦−

// HomhC(−, Z)
η

// HomR(HomhC(C,−), E).

Theorem 3.6.5 now implies that g is right C-determined. Using that θ is a monomor-

phism, Remark 3.6.9 shows that KerHomhC(C, γ) = Ker θZ([γ]) = H. Hence, by exactness,

ImHomhC(C, g) = H.

It remains to show that g is right minimal. By Proposition 3.4.9, g is right minimal if

and only if γ is left minimal. Suppose that ϕ : T (C,E)→ T (C,E) is such that [ϕ]◦[γ] = [γ].

Using that θC is an isomorphism, Remark 3.6.9 shows that θT (C,E)([idT (C,E)]) is again an

isomorphism. Set α = θT (C,E)([idT (C,E)]) and let ψ = α ◦ [ϕ]∗ ◦ α
−1 : E → E. Then we

calculate

µπ = θZ([γ]) = α ◦ [γ]∗ = α ◦ [ϕ]∗ ◦ [γ]∗ = ψ ◦ α ◦ [γ]∗ = ψ ◦ θZ([γ]) = ψµπ.

This gives µ = ψµ because π is epic. Since µ is an injective envelope, it is left minimal. It

follows that ψ is an isomorphism, and thus ϕ is an equivalence. Therefore, γ is left minimal

and we conclude that g is right minimal.

Corollary 3.7.5. Let C be a compactly generated stable ∞-category. If Z ∈ C is a strongly

indecomposable compact object, then there exists a minimal right almost-split morphism

g : Y → Z in C.

Proof. By Theorem 3.7.4, there exists a right minimal morphism g : Y → Z which is right

Z-determined and satisfies ImHomhC(Z, g) = radEndhC(Z). By Proposition 3.6.4, we have

that g : Y → Z is also right almost-split.
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Corollary 3.7.6. Let C be a compactly generated stable ∞-category. If Z ∈ C is a strongly

indecomposable compact object, then there exists a minimal right divisible morphism h : Z →

W in C.

Proof. By Corollary 3.7.5, there exists a minimal right almost-split morphism g : Y → Z.

By Proposition 3.3.3, taking a fiber sequence Y
g
→ Z

h
→ W gives a morphism h : Z → W

which is right divisible. By Corollary 3.4.7, the morphism h is right minimal. By Lemma

3.4.9, the morphism h is also left minimal because g is right minimal.

Corollary 3.7.7. Let C be a compactly generated stable ∞-category. If Z ∈ C is a strongly

indecomposable compact object, then there exists an irreducible morphism f : X → Y in C

such that Z ≃ cofib(f).

Proof. By Corollary 3.7.5, there exists a right almost-split morphism g : Y → Z. Taking

a cofiber sequence X
f
→ Y

g
→ Z gives a morphism f : X → Y . By Corollary 3.5.6, the

morphism f : X → Y is irreducible.
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Chapter 4

Auslander-Reiten theory

One of the main structural tools in classical Auslander-Reiten theory is the almost-

split sequence, a nonsplit short exact sequence whose existence has significant consequences

for the objects appearing at the ends of the sequence. In particular, almost-split sequences

are invariants of their end-terms. In this chapter, we introduce Auslander-Reiten sequences

in stable ∞-categories as the higher categorical analogues of almost-split sequences. We

prove in Proposition 4.1.7 that Auslander-Reiten sequences are homotopy invariants of the

end-terms, and in Theorem 4.1.5 that Auslander-Reiten sequences exist in any compactly

generated stable ∞-categories with strongly indecomposable compact objects. As in the

abelian setting, the characterization of Auslander-Reiten sequences in Proposition 4.1.2

shows that they are uniquely determined, up to homotopy, by either one of the morphisms

occurring in the sequence.

In their original work, Auslander and Reiten established the existence of almost-split

sequences using an isomorphism between injectively and projectively stable morphisms, now
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called the Auslander-Reiten formula. In Section 4.2, we study a more general duality phe-

nomenon building on our earlier work on morphisms determined by objects. We introduce

Auslander functors on additive ∞-categories and show in Theorem 4.2.12 that compactly

generated stable ∞-categories always admit such functors. In good circumstances, this

construction yields an Auslander-Reiten translation functor as shown in Corollary 4.2.16.

An analogue of the Auslander-Reiten formula on the homotopy category then follows as a

consequence.

4.1 Auslander-Reiten sequences

Definition 4.1.1. Let C be a stable ∞-category. An Auslander-Reiten sequence in C is a

cofiber sequence

X
f
→ Y

g
→ Z

such that f is left almost-split and g is right almost-split.

A consequence of the above definition is that any Auslander-Reiten sequence in a

stable∞-category C induces an Auslander-Reiten triangle in hC (see Definition 2.3.15), and

conversely for every Auslander-Reiten triangle in hC there is a homotopy equivalence class

of Auslander-Reiten sequences over it in C. We next establish a useful characterization of

the Auslander-Reiten sequences in C.

Proposition 4.1.2. Let C be a stable ∞-category and suppose X
f
→ Y

g
→ Z is a fiber

sequence. Then the following are equivalent:

(1) The fiber sequence X
f
→ Y

g
→ Z is an Auslander-Reiten sequence.
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(2) The morphism f is left almost-split and EndhC(Z) is local.

(3) The morphism f is minimal left almost-split.

(4) The morphism g is right almost-split and EndhC(X) is local.

(5) The morphism g is minimal right almost-split.

Proof. We prove that (1) ⇒ (2) ⇒ (3) ⇒ (1). The proof that (1) ⇒ (4) ⇒ (5) ⇒ (1) is

dual to our arguments here. The implication (1) ⇒ (2) is a consequence of the definition

combined with Lemma 3.2.4. Lemma 3.4.10 shows that (2) ⇒ (3). The implication (3) ⇒

(1) follows from the dual of Proposition 3.4.12.

Proposition 4.1.3. Let C be a stable ∞-category. Suppose ∆2 ×∆1 → C is a diagram in

C, depicted as

X

��

f
// Y

g

��

// 0

��

0 // Z
h

//W

where both squares are pullbacks. Then the fiber sequence X
f
→ Y

g
→ Z is an Auslander-

Reiten sequence in C if and only if the morphism h : Z →W is divisible.

Proof. By Proposition 3.3.3, the morphism h : Z → W is right divisible if and only if

g : Y → Z is right almost-split. Consider the extended diagram

X

��

f
// Y

g

��

// 0

��

0 // Z

��

h
//W

k
��

0 // V
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where all squares are pushouts. The dual of Proposition 3.3.3 implies that h : Z → W is

left divisible if and only if k : W → V is left almost-split if and only if f : X → Y is left

almost-split. It now follows that h : Z → W is divisible if and only if X
f
→ Y

g
→ Z is an

Auslander-Reiten sequence.

Proposition 4.1.4. Let C be a stable ∞-category. If X
f
→ Y

g
→ Z is an Auslander-Reiten

sequence in C such that f and g are both nonzero, then f and g are irreducible.

Proof. Apply Corollary 3.5.6 and its dual.

The equivalences of Proposition 4.1.2 imply that the study of Auslander-Reiten se-

quences is equivalent to the study of minimal almost-split morphisms. In particular, our

work in Section 3.7 now bares fruit with the following existence result.

Theorem 4.1.5. Let C be a compactly generated stable ∞-category. If Z ∈ C is a strongly

indecomposable compact object, then there exists an Auslander-Reiten sequence X → Y → Z

in C.

Proof. By Corollary 3.7.5, there exists a minimal right almost-split morphism g : Y → Z

in C. It now follows from Proposition 4.1.2 that any cofiber sequence X → Y
g
→ Z is an

Auslander-Reiten sequence.

Remark 4.1.6. Let C be a stable ∞-category and suppose g : Y → Z is a minimal right

almost-split morphism. Consider the following diagram in which every square is a pushout
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and 0 denotes a zero object in C,

X

��

f
// Y

g

��

// 0

��

0 // Z

��

// U

��

// 0

��

0 // V //W.

By Lemma 2.1.36, all rectangles are pushouts, so that there exists an equivalence of cofiber

sequences

ΣX

��

Σf
// ΣY

��

Σg
// ΣZ

��

U // V //W.

It follows that U → V →W is again an Auslander-Reiten sequence.

In view of Theorem 4.1.5, we can construct Auslander-Reiten sequences X → Y → Z

in a compactly generated stable ∞-category C whenever Z is a strongly indecomposable

compact object. However, the construction of this sequence (via Brown representability)

is such that the objects X and Y are generally not compact. This observation leads to

the following natural question: can we construct Auslander-Reiten sequences in Cc ⊆ C,

the full (stable) subcategory of C spanned by the compact objects? This question has a

subtlety: an Auslander-Reiten sequence in Cc may not be an Auslander-Reiten sequence in

C because the almost-split condition depends on the ambient category under consideration.

Nevertheless, we can establish a precise relationship between Auslander-Reiten sequences

in Cc and in C using the notion of purity, first introduced in the setting of triangulated

categories by Krause [37].

We begin by proving a general uniqueness statement for Auslander-Reiten sequences

in a stable∞-category. Observe that the uniqueness statement below can be read as saying
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that Auslander-Reiten sequences are homotopy invariants of their end-terms.

Proposition 4.1.7. Let C be a stable∞-category. Suppose X
f
→ Y

g
→ Z and X ′ f

′

→ Y ′ g
′

→ Z ′

are both Auslander-Reiten sequences in C. Then the following are equivalent:

(1) There is an equivalence X ≃ X ′.

(2) There is an equivalence Z ≃ Z ′.

(3) The cofiber sequences are equivalent.

Proof. Equivalences in functor categories are computed pointwise, so (3) ⇒ [(1) ∧ (2)].

We will show that (1) ⇒ (3). The argument for (2) ⇒ (3) is then completely analogous.

Assuming (1), suppose α′ : X → X ′ and α : X ′ → X exhibit the equivalence X ≃ X ′, that

is, αα′ ≃ 1X and α′α ≃ 1X′ . Since f and f ′ are both minimal left almost-split, they are

in particular not sections. Consequently, using the left almost-split property, there exist

maps β : Y → Y ′ and β′ : Y ′ → Y such that fα ≃ β′f ′ and f ′α′ ≃ βf . These equivalences

together give f ≃ (β′β)f and f ′ ≃ (ββ′)f ′. Since f and f ′ are both left minimal, we have

that both (β′β) : Y → Y and (ββ′) : Y ′ → Y ′ are equivalences. These equivalences together

imply that β is an equivalence. Now, the cofiber functor induces a map γ : Z → Z ′, which

is an equivalence by Lemma 2.3.6.

We now introduce the requisite notions of purity (see [37]).

Definition 4.1.8. Let C be an ∞-category.

(1) A morphism f : X → Y in C is a pure-monomorphism if the induced map

HomhC(C,X)→ HomhC(C, Y )
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is a monomorphism for every compact object C of C.

(2) An object I of C is pure-injective if every pure-monomorphism I → Y is a section.

(3) A map j : X → I is a pure-injective envelope if I is pure-injective and for every

2-simplex ∆2 → C of the form

I
i

��

X

j
??

k
// Y

k : X → Y is a pure-monomorphism if and only if i : I → Y is a pure-monomorphism.

Following the work of Krause in [38], our next result establishes a relationship between

the Auslander-Reiten sequences of a compactly generated stable ∞-category C and those

in the full (stable) subcategory Cc ⊆ C spanned by the compact objects of C.

Theorem 4.1.9. Let C be a compactly generated stable ∞-category, let Cc ⊆ C be the

full subcategory of C spanned by the compact objects, and suppose we have the following

morphism of sequences in C

X ′

ϕ

��

f ′
// Y ′

ψ

��

g′
// Z

1Z
��

X
f

// Y
g

// Z.

Assume that X ′, Y ′, and Z are all compact objects.

(1) If X
f
→ Y

g
→ Z is an Auslander-Reiten sequence in C and ϕ : X ′ → X is a pure-

monomorphism, then X ′ f
′

→ Y ′ g
′

→ Z is an Auslander-Reiten sequence in Cc.

(2) If X ′ f ′
→ Y ′ g′

→ Z is an Auslander-Reiten sequence in Cc and ϕ : X ′ → X is a pure-

injective envelope, then X
f
→ Y

g
→ Z is an Auslander-Reiten sequence in C.
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Proof. We first prove (1). Since X
f
→ Y

g
→ Z is an Auslander-Reiten sequence, g is right

almost-split and hence Z has a local endomorphism ring. Consequently, to show that

X ′ f ′
→ Y ′ g′

→ Z is an Auslander-Reiten sequence in Cc, it suffices to show that f ′ is left

almost-split in Cc, by Proposition 4.1.2. Let β : X ′ → C ′ be any morphism in Cc which is

not a section, and let α : C → X ′ be a fiber of β. We have that α is nonzero by Lemma 3.1.2,

and because ϕ is a pure-monomorphism it follows that ϕα is again nonzero. If γ : ΩZ → X

is a fiber of f , then γ factors through ϕα, by the dual of Proposition 3.3.3. The induced map

γ′ : ΩZ → X ′ is such that γ ≃ ϕγ′. Therefore, using again that ϕ is a pure-monomorphism,

the fact that γ factors through ϕα now implies that γ′ factors through α. Invoking the dual

of Proposition 3.3.3 once more, this implies that f ′ is left almost-split.

We now prove (2). As above, it suffices to show that f is left almost-split. Suppose

that β : X → X ′′ is not a section. Since X is a pure-injective object, the map β cannot be a

pure-monomorphism. Consequently, βϕ is again not a pure-monomorphism, as ϕ is a pure-

injective envelope. Hence, there exists a compact object C and a nonzero map α : C → X ′

such that (βϕ)α ≃ 0. But γ′ : ΩZ → X ′ factors through α, by the dual of Proposition 3.3.3,

for γ′ a fiber of f ′. If γ : ΩZ → X is a fiber of f , then γ ≃ ϕγ′ and hence βγ ≃ 0. Thus,

because f is a cofiber of γ, we have that β factors through f , as desired.

Corollary 4.1.10. Let C be a compactly generated stable ∞-category, let Cc ⊆ C be the

full subcategory of C spanned by the compact objects, and suppose X
f
→ Y

g
→ Z is an

Auslander-Reiten sequence in C with Z compact. Then there exists an Auslander-Reiten

sequence X ′ f
′

→ Y ′ g
′

→ Z in Cc if and only if there exists a pure-monomorphism ϕ : X ′ → X

in C.
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Proof. Suppose that X ′ f
′

→ Y ′ g
′

→ Z is an Auslander-Reiten sequence in Cc. Let σ : X
′ → X ′′

be a pure-injective envelope in C (which always exists). By Lemma 2.3.8, there exists a

morphism of cofiber sequences

X ′

σ

��

f ′
// Y ′

��

g′
// Z

1Z
��

X ′′
f ′′

// Y ′′
g′′

// Z.

It now follows from Theorem 4.1.9(2) that X ′′ f
′′

→ Y ′′ g
′′

→ Z is an Auslander-Reiten sequence

in C. By Proposition 4.1.7, we conclude that X ≃ X ′′.

Conversely, suppose ϕ : X ′ → X is a given (nonzero) pure-monomorphism with X ′ a

compact object. If γ : ΩZ → X is a fiber of f , then the dual of Proposition 3.3.3 implies

that γ factors through ϕ because f is left almost-split; that is, there exists γ′ : ΩZ → X ′

such that γ ≃ ϕγ′. Extend this morphism to a cofiber sequence ΩZ
γ′
→ X ′ f ′

→ Y ′ g′
→ Z.

Finally, using that f ′ is a cofiber of γ′, these data extend to a map of cofiber sequences

ΩZ

1ΩZ

��

γ′
// X ′

ϕ

��

f ′
// Y ′

ψ

��

g′
// Z

1Z
��

ΩZ
γ

// X
f

// Y
g

// Z.

Therefore, by Theorem 4.1.9(1), we conclude that X ′ f ′
→ Y ′ g′

→ Z is an Auslander-Reiten

sequence in Cc.

4.2 Auslander-Reiten duality

Let C be a compactly generated stable ∞-category. In Theorem 3.7.4, we established

a general existence result for right determined morphisms in C. The proof of this theorem
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relied on a natural isomorphism

θ : HomhC(−, T (C,E))
∼
−→ HomR(HomhC(C,−), E)

constructed in Lemma 3.7.3, using Brown representability. Our goal in this section is to

study the functorality of this isomorphism in C and E, as well as the interplay between

this construction and the translation functor [n] : C → C (see Notation 2.3.14). We begin

by first making the observation that the natural transformation θ is completely determined

by the functor HomhC(C,−) together with a single additional morphism. This observation

has essentially already been made in the proof of Theorem 3.6.5 and in Remark 3.6.9, but

we make it explicit here.

Lemma 4.2.1. Let C be an additive ∞-category. Suppose C ∈ C and set R = EndhC(C).

Write ψ = HomhC(C,−) : hC → Ab for the functor corepresented by C. Then any natural

transformation

θ : HomhC(−, T )→ HomR(HomhC(C,−), E)

is completely determined by ψ and the R-module morphism θT ([idT ]) : HomhC(C, T )→ E.

Moreover, θT ([idT ]) = ev[idC ] ◦ θC : HomhC(C, T )→ HomR(EndhC(C), E)→ E.

Proof. Assume θ is a natural transformation as above. Then the morphism θT ([idT ]) exists

and for any α : Z → T , naturality gives a commuting diagram

HomhC(T, T )

θT
��

[α]∗
// HomhC(Z, T )

θZ
��

HomR(HomhC(C, T ), E)
βα

// HomR(HomhC(C,Z), E),

where βα(µ) = µ ◦ ψ([α]). In particular, we have θZ([α]) = θT ([idT ]) ◦ ψ([α]).
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Conversely, suppose µT : HomhC(C, T ) → E is given. Set θT ([idT ]) = µT and for

every morphism α : Z → T in C, define θZ([α]) = µT ◦ ψ([α]). To see that these definitions

determine a natural transformation θ as above, let f : Z ′ → Z be any morphism in C and

observe that

(θZ′ ◦ [f ]∗)([α]) = θZ′([α] ◦ [f ]) = µT ◦ ψ([α] ◦ [f ]) = (µT ◦ ψ([α])) ◦ ψ([f ]) = (βf ◦ θZ)([α])

ensures the requisite diagrams commute.

Finally, we note that if α : C → T , then θC([α])([idC ]) = θT ([idT ])(α).

Remark 4.2.2. Let C be an additive ∞-category. Suppose R is a ring equipped with a

(unital) ring homomorphism ρ : R → EndhC(C) for some C ∈ C, and let ψ = HomhC(C,−)

denote the functor corepresented by C. For every object Z ∈ C, write ψZ for the following

morphism, induced by the functor ψ,

ψZ : HomhC(Z, T )→ HomR(HomhC(C,Z),HomhC(C, T )).

For any natural transformation

θ : HomhC(−, T )→ HomR(HomhC(C,−), E),

let θT ([idT ])Z denote the morphism

θT ([idT ])Z : HomR(HomhC(C,Z),HomhC(C, T ))→ HomR(HomhC(C,Z), E)

induced by composition with θT ([idT ]) : HomhC(C, T )→ E.

By Lemma 4.2.1, we have θZ = θT ([idT ])Z ◦ ψZ . If any two of these morphisms are

isomorphisms, then so is the third. In the case that θ is a natural isomorphism, every θZ is
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an isomorphism. Consequently, every ψZ is a section and every θT ([idT ])Z is a retraction.

Moreover, θT ([idT ]) = ev[idC ] ◦ θC is an isomorphism if and only if ev[idC ] is an isomorphism,

and in this case every θT ([idT ])Z is an isomorphism, which implies every ψZ is an isomor-

phism. However, it need not be the case that θT ([idT ]) is an isomorphism. On the other

hand, if E = HomhC(C, T ), then θ = HomhC(C,−) which is generally not an isomorphism

without additional finiteness assumptions.

Proposition 4.2.3. Let C be an additive ∞-category. Suppose there exists an object C

of C equipped with a unital ring homomorphism ρ : R → EndhC(C) together with a natural

isomorphism

θ : HomhC(−, TE)
∼
−→ HomR(HomhC(C,−), E)

for every right R-module E ∈ RModR. Then there exists a functor T (C,−) : RModR → hC,

unique up to isomorphism, verifying the isomorphisms, natural in Z and E,

HomhC(Z, T (C,E)) ∼= HomR(HomhC(C,Z), E).

Proof. For each E ∈ RModR, define T (C,E) = TE. We must show that this defi-

nition is functorial. Let e : E → E′ be any morphism of R-modules. Writing eZ for

HomR(HomhC(C,Z), e), we have a commuting diagram

HomhC(Z, TE)

θZ
��

ẽZ
// HomhC(Z, TE

′)

θ′Z
��

HomR(HomhC(C,Z), E)
eZ

// HomR(HomhC(C,Z), E
′)

where ẽZ = (θ′Z)
−1 ◦ eZ ◦ θZ . Setting Z = TE and evaluating at the identity produces

a morphism [Te] = ẽTE([idTE ]) : TE → TE′. We claim that ẽZ = HomhC(Z, [Te]); that
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is, for any α : Z → TE, we must show ẽZ(α) = [Te] ◦ α. Using Lemma 4.2.1 and writing

ψ = HomhC(C,−), we calculate

ẽZ(α) = (θ′Z)
−1
(

e ◦ θZ(α)
)

= (θ′Z)
−1
(

e ◦ θTE([idTE ]) ◦ ψ(α)
)

and [Te] = ẽTE([idTE ]) = (θ′TE)
−1
(

e ◦ θTE([idTE ])
)

implies

ẽZ(α) = (θ′Z)
−1
(

θ′TE([Te]) ◦ ψ(α)
)

= (θ′Z)
−1
(

θ′TE′([idTE′ ]) ◦ ψ([Te]) ◦ ψ(α)
)

= (θ′Z)
−1
(

θ′Z([Te] ◦ α)
)

= [Te] ◦ α.

Hence, the natural isomorphisms θ(C,E) vary functorially in E and thereby determine a

functor T (C,−) : RModR → hC satisfying the stated properties.

Remark 4.2.4. Note that the ring homomorphism ρ : R→ EndhC(C) of Proposition 4.2.3

was inconsequential in the proof.

Our next goal is fix a right R-module E and study the functorality in C (whenever

this makes sense) of the natural isomorphism

θ(C,E) : HomhC(−, T (C,E))
∼
−→ HomR(HomhC(C,−), E).

Let f : C → C ′ be any morphism. To establish a morphism between θ(C,E) and θ(C ′, E), we

must have that f induces an R-module homomorphism HomhC(C
′, Z) → HomhC(C,Z) for

every Z. Consequently, the ring R cannot depend on any fixed object C and the R-module

structure maps ρC : R→ EndhC(C) must have the property that f ◦ ρC(r) = ρC′(r) ◦ f for

all r ∈ R. It is convenient to repackage this information in a more sophisticated form.
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Definition 4.2.5. Let C be an additive ∞-category. The center of C, denoted Z(C), is the

ring of natural transformations of the identity functor on the homotopy category hC, that

is, Z(C) = Nat(IdhC, IdhC).

The functorality we are seeking in the above discussion is now equivalent to giving

a unital ring homomorphism R
ρ
→ Z(B), where B ⊆ C is the full additive subcategory

spanned by those objects C for which a natural isomorphism θ(C,E) exists. Observe that

for any C ∈ B, the evaluation map evC : Z(B) → EndhC(C) is a ring homomorphism with

image in the center of EndhC(C). That is, the requisite R-module structure above is given

by the composition ρC = evC ◦ρ. To summarize, Proposition 4.2.3 shows that the natural

transformations θ(C,E) are automatically functorial in E, but functorality in C requires

the additional structure of a ring homomorphism R→ Z(B) as a prerequisite. It turns out

that this structure is also sufficient.

Proposition 4.2.6. Let C be an additive ∞-category. Suppose B ⊆ C is a full additive

subcategory equipped with a unital ring homomorphism ρ : R → Z(B) such that for some

fixed right R-module E, there exists a natural isomorphism

θ : HomhC(−, TC)
∼
−→ HomR(HomhC(C,−), E)

associated to every object C ∈ B. Then there exists a functor T (−, E) : hB → hC, unique

up to isomorphism, verifying the isomorphisms, natural in Z and C,

HomhC(Z, T (C,E)) ∼= HomR(HomhC(C,Z), E).

Proof. For each C ∈ B, define T (C,E) = TC. We must show that this definition is

functorial. Let f : C → C ′ be any morphism in B. Writing fZ for HomR(HomhC(f, Z), E),
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we have a commuting diagram

HomhC(Z, TC)

θZ
��

f̃Z
// HomhC(Z, TC

′)

θ′Z
��

HomR(HomhC(C,Z), E)
fZ

// HomR(HomhC(C
′, Z), E)

where f̃Z = (θ′Z)
−1 ◦ fZ ◦ θZ . Setting Z = TC and evaluating at the identity produces a

morphism [Tf ] = f̃TC([idTC ]) : TC → TC ′. We claim that f̃Z = HomhC(Z, [Tf ]); that is,

for any α : Z → TC, we must show f̃Z(α) = [Tf ] ◦ α. Using Lemma 4.2.1 and the notation

ψ = HomhC(C,−) and f
Z = HomhC(f, Z), we calculate

f̃Z(α) = (θ′Z)
−1
(

θZ(α) ◦ f
Z
)

= (θ′Z)
−1
(

θTC([idTC ]) ◦ ψ(α) ◦ f
Z
)

.

Noting that ψ(α)◦fZ = fTC ◦ψ′(α) and [Tf ] = f̃TC([idTC ]) = (θ′TC)
−1
(

θTC([idTC ])◦f
TC
)

,

the above calculation implies

ẽZ(α) = (θ′Z)
−1
(

θ′TC([Tf ]) ◦ ψ
′(α)

)

= (θ′Z)
−1
(

θ′TC′([idTC′ ]) ◦ ψ′([Tf ]) ◦ ψ′(α)
)

= (θ′Z)
−1
(

θ′Z([Tf ] ◦ α)
)

= [Tf ] ◦ α.

Hence, the natural isomorphisms θ(C,E) vary functorially in C and thereby determine a

functor T (−, E) : hB→ hC satisfying the stated properties.

Remark 4.2.7. The proof of Proposition 4.2.6 is nearly identical to that of Proposition

4.2.3, except that we must exercise the R-module structure precisely when observing that

the R-module homomorphisms ψ(α) = HomhC(C,α) and f
Z = HomhC(f, Z) commute.
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Remark 4.2.8. In the situation of Proposition 4.2.6, the functor T (−, E) : hB→ hC com-

mutes with any auto-equivalence F : hC→ hC which restricts to a functor hB→ hB. To see

this, it suffices to show that HomhC(Z, T (FC)) ∼= HomhC(Z,F (TC)) for all Z ∈ C. Since F

is an auto-equivalence, for any Z ∈ C we can find W such that Z ≃ FW . Now, using that

F is fully faithful, we have

HomhC(Z, T (FC)) ∼= HomhC(FW,T (FC)) ∼= HomR(HomhC(FC,FW ), E)

∼= HomR(HomhC(C,W ), E) ∼= HomhC(W,TC)

∼= HomhC(FW,F (TC)) ∼= HomhC(Z,F (TC)).

This yields the desired natural isomorphism TF ∼= FT .

Remark 4.2.9. In the situation of Proposition 4.2.6, the functor T (−, E) : hB→ hC may

not be full nor faithful. To see this, observe that (suppressing E in the notation) the induced

map

HomhB(C,D)→ HomhC(TC, TD)

coincides with the composition

HomhB(C,D)

((

// HomR(HomR(HomhC(C,D), E), E)

��

HomR(HomhC(D,TC), E)

��

HomhC(TC, TD)

where the horizontal arrow is the canonical R-module (evaluation) morphism and the verti-

cal arrows are the structural isomorphisms arising in the construction of T (−, E). It follows
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that T (−, E) is fully faithful if and only if the canonical R-module morphism

HomhC(C,D)→ HomR(HomR(HomhC(C,D), E), E)

is an isomorphism.

Remark 4.2.10. Let C be an additive ∞-category. Suppose B ⊆ C is a full additive

subcategory equipped with a unital ring homomorphism ρ : R → Z(B) such that for every

right R-module E, there exists a natural isomorphism

θ(C,E) : HomhC(−, T (C,E))
∼
−→ HomR(HomhC(C,−), E)

associated to every object C ∈ B. Then by Propositions 4.2.3 and 4.2.6, for each C ∈ B

and each E ∈ RModR, we have functors T (C,−) : RModR → hC and T (−, E) : hB → hC,

unique up to isomorphism. It is not difficult to check that for any f : C → C ′ and any

e : E → E′, the following diagram commutes

T (C,E)

T (C,e)

��

T (f,E)
// T (C ′, E)

T (C′,e)
��

T (C,E′)
T (f,E′)

// T (C ′, E′).

Hence, in this situation, we have a functor T : hB× RModR → hC.

Definition 4.2.11. Let C be an additive ∞-category. Suppose B ⊆ C is a full additive

subcategory equipped with a unital ring homomorphism ρ : R → Z(B). A right Auslander

functor on C is any functor

T ρ : hB× RModR → hC

verifying the isomorphisms, natural in every variable,

HomhC(Z, T (C,E)) ∼= HomR(HomhC(C,Z), E).
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We often suppress ρ in the notation, writing T in place of T ρ and leaving ρ implicit.

Theorem 4.2.12. Let C be a compactly generated stable ∞-category. Then C admits a

canonical right Auslander functor.

Proof. Let Cc ⊆ C denote the full subcategory spanned by the compact objects of C. Set

R = Z(Cc), so that ρ : R→ Z(Cc) is just the identity. For any pair (C,E) ∈ hCc × RModR,

Lemma 3.7.3 yields a natural isomorphism

θ(C,E) : HomhC(−, T (C,E))
∼
−→ HomR(HomhC(C,−), E).

Combining Propositions 4.2.3 and 4.2.6 together with Remark 4.2.10, there exists a functor

T : hCc × RModR → hC, unique up to isomorphism, verifying the required natural isomor-

phisms.

Corollary 4.2.13. Let C be a compactly generated stable ∞-category. Let Cc ⊆ C denote

the full subcategory spanned by the compact objects and suppose ρ : R → Z(Cc) is a unital

ring homomorphism. Then for every integer n ∈ Z, there exist an isomorphism, natural in

every variable,

ExtnC(Z, T (C,E)) ∼= HomR(Ext
−n
C

(C,Z), E).

Proof. By Theorem 4.2.12, there exists a right Auslander functor T : hCc × RModR → hC

verifying the isomorphisms, natural in every variable,

HomhC(Z, T (C,E)) ∼= HomR(HomhC(C,Z), E).

As a stable ∞-category, the functor [n] : hC → hC induced by the loop and suspension
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functors on C is an auto-equivalence. Thus, for any n ∈ Z, we have canonical isomorphisms

ExtnC(Z, T (C,E)) ∼= HomhC(Z[−n], T (C,E))

∼= HomR(HomhC(C,Z[−n]), E)

∼= HomR(Ext
−n
C

(C,Z), E),

which completes the proof.

Remark 4.2.14. Let C be a compactly generated stable ∞-category. In the situation of

Corollary 4.2.13, we will refer to the isomorphisms

ExtnC(Z, T (C,E)) ∼= HomR(Ext
−n
C

(C,Z), E)

collectively as the Auslander-Reiten duality on C.

Remark 4.2.15. Let C be a compactly generated stable ∞-category. By Theorem 4.2.12,

we have a right Auslander functor T : hCc × RModR → hC. Let hC0 ⊆ hC denote the

essential image of T . Then any morphism g : Y → Z in C with cofiber W ≃ cofib(g) in

hC0 is right C-determined for some compact object C of hCc. To see this, observe that the

defining isomorphisms of T together with Theorem 3.6.5 imply that 0 → T (C,E) is right

C-determined for any E ∈ RModR. If Y
g
→ Z → T (C,E) is a cofiber sequence, then it is

also a fiber sequence because C is stable. Using Lemma 3.6.13, the pullback of 0→ T (C,E)

along any morphism is again right C-determined. It follows that g is right C-determined.

Corollary 4.2.16. Let C be a compactly generated stable ∞-category. Let C0 ⊆ C denote

the full subcategory spanned by the strongly indecomposable compact objects of C. Then

there exists a functor τ : hC0 → hC satisfying the following property: if X → Y → Z is any

Auslander-Reiten sequence in C with Z ∈ C0, then X ≃ τZ.
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Proof. By Theorem 4.2.12, there exits a right Auslander functor T : hCc × RModR → hC,

where R = Z(Cc). Let E ∈ RModR be an injective envelope of R, regarded as a right

R-module (note that because C is presentable, R is a set without changing universe). Then

because Z is compact, we have an isomorphism

HomhC(Z, T (Z,E)) ∼= HomR(HomhC(Z,Z), E).

By the proof of Theorem 3.7.4, the morphism γ : Z → T (Z,E) corresponding under the

above isomorphism to the morphism EndhC(Z) → EndhC(Z)/ radEndhC(Z) → E is left

minimal and any fiber of γ is right Z-determined. That is, suppose that in the following

diagram,

ΩT (Z,E)

��

f ′
// Y ′

g′

��

// 0

��

0 // Z
γ

// T (Z,E)

every square is a pullback in C. Then g′ right minimal by Lemma 3.4.9 and right almost-

split by Proposition 3.6.4, and thus ΩT (Z,E)
f ′
→ Y ′ g′

→ Z is an Auslander-Reiten sequence

by Proposition 4.1.2. It now follows from Proposition 4.1.7 that X ≃ ΩT (Z,E). Hence,

defining τ : hC0 → hC as the composition

τ : hC0
∼= hC0 × {E} // hCc × RModR

T
// hC

[−1]
// hC

completes the proof.

Remark 4.2.17. Let C be a compactly generated stable ∞-category. In the situation of

Corollary 4.2.16, we will refer to the functor τ as an Auslander-Reiten translation functor.

Moreover, we say that X ≃ τZ is the Auslander-Reiten translate of Z.
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Remark 4.2.18. Let C be a compactly generated stable∞-category. The Auslander-Reiten

duality of Remark 4.2.14 restricted to the full subcategory of strongly indecomposable com-

pact objects reduces to the following Auslander-Reiten formula, with (−)∗ = HomR(−, E),

Extn+1
C

(W, τZ) ∼= Ext−n
C

(Z,W )∗.
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Chapter 5

Derived ∞-categories

To any abelian category A with enough projectives or enough injectives, one can

associate a stable ∞-category D(A) whose homotopy category is canonically equivalent to

the classical derived category of A (see [46, Section 1.3]). Generalizing an earlier result

of Krause [39], Lurie showed in [46, Theorem 1.3.6.7] that when A is a locally Noetherian

abelian category, the stable ∞-category D(A) is compactly generated.

In this chapter, we first review the construction of these algebraic stable∞-categories

associated to ordinary abelian categories. To this end, we study the differential graded cat-

egory of chain complexes with values in an additive category and recall Lurie’s construction

of a differential graded nerve functor. Focusing on an important example, we then show

how to explicitly construct an Auslander functor

T : K(A)→ K(A)

on a compactly generated stable ∞-category K(A) arising from the locally Noetherian

abelian category A of modules over a Noetherian k-algebra, where k is a complete local
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Noetherian ring. Our construction closely follows Krause and Le [40], which generalizes a

similar construction going back to Happel [24, 26]. The functor T has the property that it

recovers the translation functor of Krause and Le after passing to the homotopy category. In

contrast with the Auslander-Reiten translation functor of Corollary 4.2.16, the construction

in this chapter occurs entirely at the ∞-categorical level (see Theorem 5.2.3).

5.1 Differential graded categories

Definition 5.1.1. Let A be an additive category. A chain complex A = (A∗, d∗) with

values in A is a composable sequence of morphisms in A

· · · // A2
d2
// A1

d1
// A0

d0
// A−1

// · · ·

such that dn−1 ◦ dn = 0 for all n ∈ Z. The maps dn are called the differentials of the chain

complex A. We denote by Ch(A) the collection of all chain complexes with values in A.

The collection of chain complexes with values in an additive category can be organized

into a differential graded category. Before explaining this construction, we first recall the

definition of a differential graded category.

Definition 5.1.2. Let k be a commutative ring. A differential graded category C over k

consists of the following data:

• A collection of objects ObC.

• For every pair of objects X and Y of C, a chain complex of k-modules

· · · → MapC(X,Y )1 → MapC(X,Y )0 → MapC(X,Y )−1 → · · ·
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denoted MapC(X,Y ).

• For every triple of objects X, Y , and Z, a composition map

MapC(Y, Z)⊗k MapC(X,Y )→ MapC(X,Z)

which we can identify with a collection of k-bilinear maps

◦ : MapC(Y, Z)p ×MapC(X,Y )q → MapC(X,Z)p+q

satisfying the Leibniz rule: d(g ◦ f) = dg ◦ f + (−1)pg ◦ df .

• For every object X, an identity morphism idX ∈ MapC(X,X)0 satisfying

g ◦ idX = g idX ◦f = f

for all g ∈ MapC(X,Y )p and f ∈ MapC(Y,X)q.

The composition law is required to be associative in the following sense: for every triple

f ∈ MapC(W,X)p, g ∈ MapC(X,Y )q, and h ∈ MapC(Y, Z)r, we have

(h ◦ g) ◦ f = h ◦ (g ◦ f).

In the special case where k = Z is the ring of integers, we refer to a differential graded

category over k simply as a differential graded category or dg-category.

Example 5.1.3. A dg-category with a single object is a differential graded ring.

Example 5.1.4. Let A be an additive category. We regard Ch(A) as a differential graded

category as follows:

• The objects of Ch(A) are the chain complexes with values in A.
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• For every pair of chain complexes (A, dA) and (B, dB), we construct a chain complex

of abelian groups MapCh(A)(A,B)∗ by setting, for every integer p,

MapCh(A)(A,B)p =
∏

n∈Z

HomA(An, Bn+p)

with differentials dp : MapCh(A)(A,B)p → MapCh(A)(A,B)p−1 given by the formula

(dpf)n = dBn+p ◦ fn − (−1)pfn−1 ◦ d
A
n .

Observe that for any triple of chain complexes A, B, and C in Ch(A), composition in A

gives a bilinear map

MapCh(A)(B,C)p ×MapCh(A)(A,B)q → MapCh(A)(A,C)p+q

satisfying the Leibniz rule: d(g ◦ f) = dg ◦ f + (−1)pg ◦ df . Consequently, the above

construction endows Ch(A) with the structure of a differential graded category (over Z).

Moreover, if k is a commutative ring and A is an additive k-category, then Ch(A) is a

differential graded category over k.

Construction 5.1.5 ([46, 1.3.1.6]). Let C be a differential graded category over a commu-

tative ring k. We associate to C a simplicial set Ndg(C), called the differential graded nerve

of C, as follows: For each n ≥ 0, we define Ndg(C)n to be the set of all ordered pairs

({Xi : i ∈ [n]} , {fI : I ⊆ [n]})

where:

• For 0 ≤ i ≤ n, the Xi are objects of C.
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• For every subset I = {i− < i1 < · · · < im < i+} with m ≥ 0, fI is an element of the

k-module MapC(Xi− , Xi+)m satisfying the equation

dfI =
∑

1≤j≤m

(−1)j
(

fI−{ij} − f{ij<···<im<i+} ◦ f{i−<i1<···<ij}

)

.

If α : [m] → [n] is a nondecreasing function, then the induced map Ndg(C)n → Ndg(C)m is

given by

({Xi : i ∈ [n]} , {fI : I ⊆ [n]}) 7→ (
{

Xα(j) : j ∈ [m]
}

, {gJ : J ⊆ [m]})

where

gJ =











































fα(J) if α|J is injective

idXi if J = {j, j′} and α(j) = α(j′) = i

0 otherwise.

Remark 5.1.6. Let C be a differential graded category over a commutative ring k. The

0-simplices Ndg(C)0 of the simplicial set Ndg(C) can be identified with the objects of C.

The 1-simplices of Ndg(C) are pairs of objects X and Y of C together with a degree 0 map

f ∈ MapC(X,Y )0 such that df = 0. A 2-simplex of Ndg(C) consists of a triple of objects

X, Y , Z, a triple of maps f ∈ MapC(X,Y )0, g ∈ MapC(Y, Z)0, h ∈ MapC(X,Z)0 satisfying

df = dg = dh = 0, together with a degree 1 map p ∈ MapC(X,Z)1 satisfying dp = (g◦f)−h.

Proposition 5.1.7 ([46, 1.3.1.10]). Let C be a differential graded category over a commu-

tative ring k. Then the simplicial set Ndg(C) is an ∞-category.

Proof. Fix n ≥ 2 and 0 < j < n, and let φ0 : Λ
n
j → Ndg(C). We must show that φ0 can

be extended to an n-simplex φ : ∆n → Ndg(C). The image of φ0 consists of the data of
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a pair ({Xi : 0 ≤ i ≤ n} , {fI : I ⊆ [n]}) where the Xi are objects of C and the morphisms

fI ∈ MapC(Xi− , Xi+)m are defined for every subset I = {i− < i1 < · · · < im < i+} ⊆ [n]

such that I 6= [n], [n]− {j}, and satisfy the equation

dfI =
∑

1≤k≤m

(−1)k
(

fI−{ik} − f{ik<···<im<i+} ◦ f{i−<i1<···<ik}

)

.

To extend these data to an n-simplex, we must produce morphisms f[n]−{j} and f[n] such

that the above equation still holds. Setting f[n] = 0, there is a unique solution for f[n]−{j}

satisfying our constraints:

f[n]−{j} =
∑

0<k<n

(−1)j+kf{k<···<n} ◦ f{0<···<k} −
∑

0<k<n
k 6=j

(−1)j+kfI−{k}.

Definition 5.1.8. Let A be an additive category. We denote by K(A) the ∞-category

Ndg(Ch(A)) and refer to K(A) as the ∞-category of chain complexes with values in A.

The importance of the differential graded nerve to our present discussion is the fol-

lowing result.

Proposition 5.1.9 ([46, 1.3.2.10]). Let A be an additive category. Then the ∞-category

K(A) is stable.

Remark 5.1.10. Let A be an additive category. The cofiber of a morphism f : A→ B in

K(A) can be identified with the mapping cone M(f) of f in Ch(A), where in each degree

M(f)n = An−1 ⊕Bn.

As justification for our notation, we next observe that the homotopy category hK(A)

can be canonically identified with K(A), the classical category of chain complexes modulo

98



homotopy (see Remark 5.1.13 below). To see this, we first observe that two other categories

can be extracted from the data of a differential graded category.

Remark 5.1.11. Let C be a differential graded category over a commutative ring k.

There is a category uC associated to C with the same objects and with morphisms

given by, for each pair of objects X and Y ,

HomuC(X,Y ) = Z0(MapC(X,Y )∗) = {f ∈ MapC(X,Y )0 : df = 0} .

We refer to uC as the category underlying the differential graded category C.

There is another category associated to C, called the homotopy category of C and

denoted hC, which consists of the following data:

• The objects of hC are the objects of C.

• For every pair of objects X and Y in hC, we define

HomhC(X,Y ) = H0(MapC(X,Y )∗) = coker(MapC(X,Y )1
d
→ HomuC(X,Y )).

More explicitly, a morphism [f ] ∈ HomhC(X,Y ) is an equivalence class of morphisms

f ∈ HomuC(X,Y ), where two maps f, g ∈ HomuC(X,Y ) are equivalent if there exists

a map h ∈ MapC(X,Y )1 such that dh = f − g.

• Composition in hC is determined by the formula [g] ◦ [f ] = [g ◦ f ].

Proposition 5.1.12 ([46, 1.3.1.11]). Let C be a differential graded category over a commu-

tative ring k. The homotopy category hC of C is canonically isomorphic to the homotopy

category hNdg(C) of the ∞-category Ndg(C).
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Proof. Using the identification of Ndg(C)0 with the objects of C together with description of

the morphisms Ndg(C)1 supplied by Remark 5.1.6, we have a functor uC→ hNdg(C) which

is bijective on objects and surjective on morphisms. To complete the proof, observe that

the homotopy relation of Definition 2.1.23 applied to Ndg(C) (via the description of Ndg(C)2

in Remark 5.1.6) agrees with the (homology) relation defining hC in Remark 5.1.11.

We can now describe the homotopy category hK(A) explicitly.

Remark 5.1.13. Let A be an additive category. The differential graded category Ch(A)

(see Example 5.1.4) has two other categories canonically associated to it (see Remark 5.1.11).

The category underlying the differential graded category Ch(A) has morphisms given

by

HomCh(A)(A∗, B∗) =
{

f ∈ MapCh(A)(A∗, B∗)0 : df = 0
}

.

More explicitly, f ∈ HomCh(A)(A∗, B∗) consists of a sequence of maps {fn : An → Bn : n ∈ Z}

such that (d0f)n = dBn ◦fn−fn−1◦d
A
n = 0. These maps are precisely the morphisms of chain

complexes in the additive category (Definition 5.1.1). Succinctly stated, the category un-

derlying the differential graded category Ch(A) is the additive category of chain complexes

usually also denoted Ch(A).

The homotopy category hCh(A) has morphisms given by

HomhCh(A)(A∗, B∗) = H0(MapCh(A)(A∗, B∗)∗).

Here [f ] ∈ HomhCh(A)(A∗, B∗) is an equivalence class of morphisms in HomCh(A)(A∗, B∗),

where two morphisms f, g ∈ HomCh(A)(A∗, B∗) are equivalent if there exists h ∈ MapCh(A)(A∗, B∗)1
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such that dh = f − g. More explicitly, we have

(d1h)n = dBn+1 ◦ hn + hn−1 ◦ d
A
n = fn − gn.

In other words, f and g are chain morphisms which are considered equivalent if they are

chain homotopic, that is, if their difference is nullhomotopic. This homotopy category is

often denoted K(A) = hCh(A).

Combining the above observation with Proposition 5.1.12, we see that hK(A) =

hNdg(Ch(A)) can be canonically identified with the category K(A) of chain complexes mod-

ulo homotopy.

Remark 5.1.14. A consequence of Theorem 2.3.20 is that a stable ∞-category C is com-

pactly generated if and only if the triangulated category hC is compactly generated (see [46,

1.4.4.3] and [47]). In other words, we can find examples of compactly generated stable ∞-

categories C by finding compactly generated triangulated categories which can be realized

as the homotopy category of C. One such example is the stable∞-category of spectra which

is freely generated by a single compact object (the sphere spectrum) under small colimits

(see [46, 1.4.4] for more details). By Remark 5.1.13, another source of examples arises from

homotopy categories of chain complexes K(A) = hK(A) which are compactly generated for

appropriate abelian categories A. Krause showed in [39] that if Ainj is the full subcategory

of injective right R-modules over a Noetherian ring R, then K(Ainj) is compactly generated.

A result of Neeman [48], generalizing an earlier result of Jorgensen [30], established that

if Aproj is the full subcategory of projective R-modules over a left coherent ring R (this

holds in particular for any Noetherian ring), then K(Aproj) is compactly generated. We will

return to the compactly generated stable ∞-category K(Ainj) in Theorem 5.1.22 below.
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Definition 5.1.15. Let C and D be differential graded categories over a commutative ring

k. A differential graded functor F : C→ D consists of the following data:

• For every object X of C, an object F (X) of D.

• For every pair of objects X and Y of C, a morphism of chain complexes of k-modules

FX,Y : MapC(X,Y )→ MapD(F (X), F (Y )).

These data are required to satisfy the following conditions:

• For every object X of C, we have FX,X(idX) = idF (X).

• For every triple of objects X, Y , Z of C and every pair of morphisms f ∈ MapC(X,Y )p

and g ∈ MapC(Y, Z)q, we have FX,Z(g ◦ f) = FY,Z(g) ◦ FX,Y (f).

Remark 5.1.16. By [46, Proposition 1.3.1.20], the differential graded nerve (Construction

5.1.5) determines a right Quillen functor C 7→ Ndg(C) from Catdg k, differential graded

categories over k endowed with the Dwyer-Kan-Tabuada model structure [46, Proposition

1.3.1.19], to the category of simplicial sets Set∆, endowed with the Joyal model structure [45,

Theorem 2.2.5.1]. In fact, the proof of [46, Proposition 1.3.1.20] shows that Ndg preserves

weak equivalences. Explicitly, if F : C → D is a differential graded functor such that for

every pair X,Y ∈ C, the morphism of chain complexes of k-modules FX,Y : MapC(X,Y )→

MapD(FX,FY ) is a quasi-isomorphism and the induced functor hC→ hD is an equivalence

of categories, then the functor Ndg(F ) : Ndg(C)→ Ndg(D) is an equivalence of∞-categories.

In particular, a functor F : A → B of additive categories gives rise (canonically) to

a differential graded functor F̃ : Ch(A) → Ch(B) obtained by applying F componentwise,
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and hence a functor of ∞-categories Ndg(F̃ ) : K(A) → K(B). By abuse of notation, we

often simply write F in place of Ndg(F̃ ). Observe that if F : A → B is an equivalence

of categories, then the induced functor F̃ : Ch(A) → Ch(B) is again an equivalence of

differential graded categories. Consequently, by [46, Proposition 1.3.1.20], the corresponding

functor Ndg(F̃ ) : K(A)→ K(B) is an equivalence of ∞-categories.

We next discuss resolutions of objects.

Definition 5.1.17. Let A be an abelian category.

(1) A chain complex Q ∈ Ch(A) is called dg-injective if every Qn ∈ A is injective and for

every exact complex E ∈ Ch(A), the chain complex MapCh(A)(E,Q) is again exact.

(2) A chain complex P ∈ Ch(A) is called dg-projective if every Pn ∈ A is projective and

for every exact complex E ∈ Ch(A), the chain complex MapCh(A)(P,E) is again exact.

The importance of dg-injective and dg-projective objects in Ch(A) is that these ob-

jects serve as the appropriate generalizations (from a homological point of view) of injective

and projective objects in A. Indeed, the projective objects in Ch(A) are nothing but con-

tractible (split) complexes of projective objects, and consequently not very useful. On the

other hand, dg-projective objects of Ch(A) are those complexes P for which the functor

MapCh(A)(P,−) preserves quasi-isomorphisms. We record this well-known fact in the next

Lemma.

Lemma 5.1.18. Let A be an abelian category and assume f : X → Y is a quasi-isomorphism

in Ch(A).

103



(1) If Q is dg-injective, then the induced map MapCh(A)(Y,Q) → MapCh(A)(X,Q) is a

quasi-isomorphism.

(2) If P is dg-projective, then the induced map MapCh(A)(P,X) → MapCh(A)(P, Y ) is a

quasi-isomorphism.

Proof. We prove (1), the proof of (2) is similar. Recall that a morphism of chain complexes

f : X → Y is a quasi-isomorphism if and only if the mapping cone M(f) is exact (see

Remark 5.1.10). Since Q is dg-injective, we have that MapCh(A)(M(f), Q) is again exact.

It remains to observe that MapCh(A)(M(f), Q) is isomorphic to the mapping cone of the

induced morphism MapCh(A)(Y,Q)→ MapCh(A)(X,Q), which completes the proof.

Another reason to consider dg-injective and dg-projective objects is that they arise

naturally in resolutions of unbounded complexes. For more details, see for instance [55, 15,

19, 28, 53].

Lemma 5.1.19 ([55]). Let R be a ring. For every complex X of R-modules, there exist

quasi-isomorphisms X → Q and P → X where Q is dg-injective and P is dg-projective.

Remark 5.1.20. Lemma 5.1.19 can be formulated and proved in the more general situation

of Grothendieck abelian categories, but we do not need that level of generality here.

Let A be an abelian category. Let Chdgp(A) ⊆ Ch(A) denote the full subcategory of

chain complexes spanned by the dg-projectives and set Kdgp(A) = Ndg(Chdgp(A)). Simi-

larly, let Chdgi(A) ⊆ Ch(A) denote the full subcategory of chain complexes spanned by the

dg-injectives and set Kdgi(A) = Ndg(Chdgi(A)). By Proposition 5.1.9, Kdgp(A) and Kdgi(A)

are both stable ∞-categories.
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Proposition 5.1.21. Let R be a ring. Let A denote the category of right R-modules.

(1) The inclusion of ∞-categories Kdgp(A) →֒ K(A) admits a right adjoint G.

(2) Let α be a morphism in K(A). Then G(α) is an equivalence in Kdgp(A) if and only

if α is a quasi-isomorphism of chain complexes.

(3) The composite F : Kdgi(A) →֒ K(A)
G
→ Kdgp(A) is fully faithful.

Proof. To show that the inclusion Kdgp(A) →֒ K(A) admits a right adjoint, it suffices by

Proposition 2.1.38 (applied to opposite categories) to show that for every object X of K(A)

there exists a morphism f : X ′ → X with X ′ ∈ Kdgp(A) such that for every P ∈ Kdgp(A),

the induced map

MapCh(A)(P,X
′)→ MapCh(A)(P,X)

is an isomorphism in the homotopy category, that is, a quasi-isomorphism. By Lemma

5.1.18, it suffices to find a quasi-isomorphism f : X ′ → X. By Lemma 5.1.19, there exists

X ′ ∈ Kdgp(A) and a quasi-isomorphism f : X ′ → X, completing the proof of the first

statement.

Let α : X → Y be a morphism in K(A). By Lemma 5.1.19, α gives rise to a commu-

tative diagram

G(X)

��

G(α)
// G(Y )

��

X
α

// Y

in which the vertical arrows are quasi-isomorphisms. It follows that G(α) is a quasi-

isomorphism if and only if α is a quasi-isomorphism. As a morphism between projective
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complexes, G(α) is a quasi-isomorphism if and only if G(α) is a chain homotopy equivalence,

which proves the second statement.

To prove the last assertion, let X,Y ∈ K(A) and consider the diagram

MapCh(A)(X,Y )→ MapCh(A)(GX,Y )← MapCh(A)(GX,GY )

induced by the quasi-isomorphisms GX → X and GY → Y of Lemma 5.1.19. If Y is

dg-injective, then the first map in the above diagram is a quasi-isomorphism by Lemma

5.1.18(1). For any X ∈ K(A), we have that GX ∈ Kdgp(A) and so the second map in the

above diagram is also quasi-isomorphism by Lemma 5.1.18(2). This argument proves that

F is fully faithful.

In view of Theorem 4.1.5, we are most interested in those stable ∞-categories K(A)

which are compactly generated. Following Krause [39], Lurie proved the following result:

Theorem 5.1.22 ([46, 1.3.6.7]). Let A be a locally Noetherian abelian category, and let

Ainj ⊆ A denote the full subcategory spanned by the injective objects. Then K(Ainj) is a

compactly generated stable ∞-category. Moreover, an object Q ∈ K(Ainj) is compact if and

only if it satisfies the following conditions:

(1) Q is (equivalent to) a left-bounded complex of injectives; in particular, Hn(Q) ∼= 0 for

n≫ 0.

(2) The homology objects Hn(Q) vanish for n≪ 0.

(3) For all n ∈ Z, Hn(Q) is a Noetherian object of A.
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If A is a category of unitary right modules over a right Noetherian ring, then is a

locally Noetherian abelian category. More generally, any closed subcategory of A is locally

Noetherian. See [52] for more examples and details.

5.2 An Auslander-Reiten translation functor

For the remainder of this section, we fix a commutative Noetherian ring k which is

complete and local, and a Noetherian k-algebra R. Let M denote the category of right R-

modules. Our assumptions on R ensure that M is a locally Noetherian abelian k-category

(see [52]). By Theorem 5.1.22, the stable ∞-category K(Minj) is compactly generated and

compact objects are quasi-isomorphic to bounded complexes of finitely generated right R-

modules. Moreover, since any left-bounded complex of injectives is dg-injective, we see that

every compact Q ∈ K(Minj) is dg-injective.

Let E be an injective cogenerator in the category of k-modules (explicitly, we may take

an injective envelope E = E(k/m) where m denotes the unique maximal ideal of k). The

(contravariant) functor D = Homk(−, E) determines a self-duality on the full subcategory

of finite length k-modules. In general the functor D does not implement a Morita duality,

however, it does for instance when k is a commutative Noetherian ring which is complete

and local, by a result of Matlis (see [42, 19.55]). Our construction of an Auslander-Reiten

translation functor will make use of the so-called Nakayama functors given by

ν = DHomR(−, R) : M→M

η = HomR(DR,−) : M→M.

It is well known that the Nakayama functors form an adjoint pair (ν, η) which induce a

107



mutually inverse equivalence of categories

M
fg
proj

ν
//
M

fg
injη

oo

between the full subcategory M
fg
proj ⊆M spanned by the finitely generated projective right

R-modules and the full subcategory M
fg
inj ⊆ M spanned by the finitely generated injec-

tive right R-modules (e.g., [54, Lemma 5.1]). Using Remark 5.1.16 and [45, 5.2.2.8], the

Nakayama functors (ν, η) : K(M) → K(M) are adjoint and induce an equivalence of ∞-

categories

K(Mfg
proj)

ν
//
K(Mfg

inj).η
oo (5.2.0.1)

Our goal is show that the Nakayama functor ν implements the functorial representabil-

ity essential for constructing an Auslander-Reiten translation functor. We begin by recall-

ing that Ch(M) carries a closed monoidal structure. If X is any chain complex of right

R-modules and Y is any chain complex of left R-modules, then we define a chain complex

of k-modules X ⊗R Y via the equation

(X ⊗R Y )n =
∐

k∈Z

Xk ⊗R Yn−k

with differential dn : (X⊗Y )n → (X⊗Y )n−1 determined by dXk ⊗1+(−1)k⊗dYn−k on each

component. An important property of this construction is the adjoint isomorphism

Mapk(X ⊗R Y, Z)
∼= MapR(X,Mapk(Y, Z))

where Z is any complex of k-modules. (For ease of notation here, we have written Mapk

and MapR in place of the appropriate MapCh(A) mapping complex (see Example 5.1.4)).

Let Ch−(M) ⊆ Ch(M) denote the full subcategory of Ch(M) spanned by those chain

complexes X such that Xn = 0 for n ≪ 0; that is, Ch−(M) consists of right-bounded
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complexes. Similarly, let Ch+(M) denote the full subcategory of Ch(M) spanned by those

chain complexes Y such that Yn = 0 for n ≫ 0; that is, Ch+(M) consists of left-bounded

complexes.

Lemma 5.2.1. For any X ∈ Ch−(M) and Y ∈ Ch+(M), there is a natural morphism of

k-module complexes

Y ⊗R MapR(X,R)→ MapR(X,Y )

which is an isomorphism if every Xn is a finitely generated projective right R-module.

Proof. For any right R-modules M and N , the homomorphism ϕ : N ⊗R HomR(M,R) →

HomR(M,N) given by ϕ(n ⊗ f)(m) = nf(m) is an isomorphism provided M is finitely

generated and projective.

Viewing R as concentrated in degree 0, we have

(Y ⊗R MapR(X,R))n =
∐

j∈Z

Yj ⊗R MapR(X,R)n−j

=
∐

j∈Z

(

Yj ⊗R
∏

i∈Z

HomR(Xi, Ri+n−j)

)

=
∐

j∈Z

(Yj ⊗R HomR(Xj−n, R))

ϕ
→
∐

j∈Z

HomR(Xj−n, Yj) ∼=
∏

i∈Z

HomR(Xi, Yi+n)

= MapR(X,Y )n,

where the isomorphism between the coproduct and product follows from the boundedness

assumptions on X and Y , which imply only finitely many nonzero terms in the coproduct.
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Lemma 5.2.2. For any X ∈ Ch−(M) and Y ∈ Ch+(M), there is a natural morphism of

k-module complexes

βX,Y : DMapR(X,Y )→ MapR(Y, νX), (5.2.2.1)

which is an isomorphism if every Xn is a finitely generated projective right R-module.

Proof. Let α : Y ⊗R MapR(X,R)→ MapR(X,Y ) be the morphism of k-module complexes

constructed in Lemma 5.2.1, which is an isomorphism if every Xn is finitely generated and

projective. Then

DMapR(X,Y ) = Mapk(MapR(X,Y ), E)

α∗

→ Mapk(Y ⊗R MapR(X,R), E)

∼= MapR(Y,Mapk(MapR(X,R), E))

= MapR(Y, νX),

where the last isomorphism is the usual adjunction.

Theorem 5.2.3. Let G : K(M)→ Kdgp(M) be the (unbounded) projective resolution functor

of Proposition 5.1.21. Then the endofunctor

T : K(Minj) →֒ K(M)
G
→ Kdgp(M) →֒ K(Mproj)

ν
→ K(Minj)

has the following properties:

(1) The functor T is exact and preserves all coproducts.

(2) The functor T is fully faithful when restricted to the full subcategory of compact objects

Kc(Minj) ⊆ K(Minj).
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(3) The functor T satisfies the Auslander-Reiten formula, that is, for any X,Q ∈ K(Minj)

such that Q is compact, there is an equivalence

DMapK(Minj)(Q,X) ≃ MapK(Minj)(X,TQ). (5.2.3.1)

(4) The functor T admits a right adjoint.

Proof. As a right adjoint, G commutes with limits. As a left adjoint, the functor ν commutes

with colimits, and hence finite limits because K(Mproj) is a stable ∞-category. It follows

that T is exact by [46, 1.1.4.1]. To see that G commutes with arbitrary coproducts, consider

the diagram

∐

αGXα

%%

// G
∐

αXα

yy
∐

αXα

The right vertical arrow is a quasi-isomorphism by Lemma 5.1.19. The left vertical arrow is a

quasi-isomorphism because homology commutes with arbitrary coproducts (in this setting).

It follows that the horizontal arrow is a quasi-isomorphism. This proves the first statement.

To prove the second statement, first note that every compact object is dg-injective. By

Proposition 5.1.21, we have that G is fully faithful on compact objects. Next, observe that

G sends compact objects to bounded complexes of finitely generated projectives. Using

5.2.0.1, this observation implies that ν is also fully faithful on compact objects. It now

follows that T is fully faithful on compact objects.

To establish the Auslander-Reiten formula, it suffices to assume thatX is also compact

because K(Minj) is compactly generated. By Lemma 5.1.19 and the properties of Q as a

compact object, there exists a quasi-isomorphism GQ→ Q where GQ is a bounded complex
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of finitely generated projective right R-modules. Since X is compact, it is dg-injective, and

hence by Lemma 5.1.18 induces a quasi-isomorphism

MapCh(Minj)(Q,X)→ MapCh(Minj)(GQ,X).

Using that the functor D preserves quasi-isomorphisms, we have a quasi-isomorphism

DMapCh(Minj)(GQ,X)→ DMapCh(Minj)(Q,X).

Finally, the properties of GQ allow us to apply the isomorphism βGQ,X of (5.2.2.1) giving

MapCh(Minj)(X, νGQ)
∼=
← DMapCh(Minj)(GQ,X)

∼
→ DMapCh(Minj)(Q,X).

This establishes the Auslander-Reiten formula (5.2.3.1).

To prove the last statement, it suffices by [45, 5.5.2.9] to show that T preserves small

colimits. Since T preserves all coproducts and K(Minj) is a presentable stable ∞-category,

it follows from Theorem 2.3.20 that T preserves small colimits.

Remark 5.2.4. In the situation of Theorem 5.2.3, the right adjoint to T can be described

explicitly as the Nakayama functor η followed by an injective resolution.

The existence of Auslander-Reiten sequences now follows as a consequence of the exis-

tence of an Auslander-Reiten translation functor, which determines a functorial relationship

between the end terms.

Corollary 5.2.5. If Z ∈ K(Minj) is compact and strongly indecomposable, then there exists

an Auslander-Reiten sequence X → Y → Z in K(Minj). Moreover, X ≃ ΩTZ.

Proof. Observe that D = Homk(−, E) is exact because E is injective. Therefore, D com-

mutes with the formation of homology. Combining this observation with Proposition 5.1.12
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and Remark 5.1.13, the Auslander-Reiten formula (5.2.3.1) of Theorem 5.2.3 induces an

isomorphism (functorial in Q and Z) on the homotopy category

HomK(Minj)(Q, TZ)
∼= Homk(HomK(Minj)(Z,Q), E).

The proof of Theorem 4.1.5 now establishes the desired result.
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Appendix A

Some algebra

A.1 Local rings

The material here is standard, but included for completeness. We used notes by E.L.

Lady as a reference for some of the material in this section, available online [41].

Definition A.1.1. A unital ring is called local if it has a unique maximal left ideal.

Lemma A.1.2. Let R be a nontrivial unital ring. If r, s ∈ R are such that rs = 1 and

sr 6= 1, then neither sr nor 1− sr is left or right invertible.

Proof. We have sr(1−sr) = 0 = (1−sr)sr. If sr is left or right invertible, then (1−sr) = 0

implies sr = 1, a contradiction. Likewise, if (1− sr) is left or right invertible, then sr = 0

implies 1 = rs = (rs)2 = r(sr)s = 0, contradicting the nontriviality of R.

Theorem A.1.3. Let R be a unital ring. The following are equivalent:

(a) R is local.
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(b) R has a unique maximal right ideal.

(c) The Jacobson radical J(R) is the unique maximal left ideal and the unique maximal

right ideal of R.

(d) 1 6= 0 in R and the sum of any two non-units in R is a non-unit.

(e) 1 6= 0 in R and if r ∈ R, then r or 1− r is a unit.

Proof. (a)⇒ (b): Let m ⊂ R be the unique maximal left ideal of R. We first show that m

is a right ideal. For any r ∈ R, mr is a left ideal. If mr = R, then mr = 1 for some m ∈ m.

Since rm ∈ m, we know rm 6= 1. Thus, by Lemma A.1.2, (1 − rm) is not left invertible.

Consequently, R(1− rm) 6= R is a proper left ideal and so (1− rm) ∈ R(1− rm) ⊂ m, since

m is the unique maximal left ideal of R. But then 1 = (1− rm) + rm ∈ m, a contradiction.

Therefore, mr 6= R implies mr ⊂ m, which shows that m is a right ideal.

Now, suppose I ⊂ R is a right ideal and i ∈ I. If RI = R, then ri = 1 for some r ∈ R.

But as above, ir ∈ I implies ir 6= 1. Again, by Lemma A.1.2, this implies that both ir and

1− ir do not have left inverses. Hence, R(ir) 6= R and R(1− ir) 6= R are both proper left

ideals and therefore contained in m. But this implies 1 ∈ m, a contradiction. So, RI 6= R is

a proper left ideal and I ⊂ RI ⊂ m, which shows that m is also the unique maximal right

ideal of R.

(b)⇒ (a): This follows by an argument completely analogous to the one above.

(a) ∧ (b) ⇔ (c): Since J(R) is the intersection of all maximal left ideals of R, the

equivalence is clear.

(a) ∧ (b) ⇒ (d): Let m ⊂ R be the unique maximal left ideal of R. If r ∈ R is left

invertible, then Rr = R, and so r 6∈ m. By (b), m is also the unique maximal right ideal, it

115



follows that rR = R. Hence, r is also right invertible and thus invertible. Now, if r, s ∈ R

are both non-units, then they are not left invertible, which implies that Rr 6= R and Rs 6= R

from which we conclude r, s ∈ m, since m is the unique maximal left ideal. Hence, r+s ∈ m,

which shows that r + s is a non-unit.

(d) ⇒ (a): Let I be the collection of all non-units in R. By assumption, I is an

abelian group. If r, s ∈ R are such that rs = 1 and sr 6= 1, then by Lemma A.1.2 we have

that sr and (1 − sr) are elements of I. But this implies 1 is a non-unit, which is absurd.

Therefore, left invertible implies invertible under these assumptions, and I consists of all

elements of R which are not left invertible. Consequently, for any r ∈ R and i ∈ I, ri cannot

be left invertible since i is not left invertible. So, ri ∈ I and I is a left ideal. Moreover, if J

is a proper left ideal, then no element of J is left invertible, that is, J ⊂ I. Hence, I is the

unique maximal left ideal of R.

(d)⇒ (e): Let I be the unique maximal left ideal of R consisting of all elements of R

which are not left invertible. If r ∈ R is not invertible, then r is not left invertible, by the

argument above. Therefore, Rr ⊂ I. If R(1 − r) ⊂ I, then R = Rr + R(1 − r) ⊂ I, which

is absurd. Therefore, R(1 − r) 6⊂ I is a left ideal not contained in I. Since I is the unique

maximal left ideal of R, it must be that R(1− r) = R. So, (1− r) is left invertible, which

in this case implies invertible.

(e) ⇒ (d): Suppose r, s ∈ R are both non-units. If r + s is a unit, then v(r + s) =

1 = (r + s)v, for some v ∈ R. So, rv = 1 − sv and vr = 1 − vs. If rv is not a unit, then

sv = 1 − rv is a unit, which implies that s has a right inverse. If vr is not a unit, then

vs = 1− vr is a unit, which implies that s also has a left inverse. Since this cannot be, we
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must have that vr is a unit, and so r has a left inverse. Let u ∈ R be such that ur = 1.

Since r is a non-unit, it must be that ru 6= 1. Therefore, by Lemma A.1.2, ru and 1 − ru

are both non-units, contradicting our assumptions. We conclude that r + s must also be a

non-unit.

Remark A.1.4. The statement and arguments above (particularly in (d)) shows that the

set of non-units of R forms a unique maximal left ideal, equal to J(R), which is equivalent

to the complement of all left invertible elements. The same argument shows that this ideal

is also equal to the complement of all right invertible elements.
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