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Identifying Xenobiotic Transporter Involvement in Complex Drug-Drug Interactions

Jasleen K. Sodhi

ABSTRACT

Complex drug-drug interactions are defined as those in which both metabolic enzymes
and xenobiotic transporters are implicated as clinically significant determinants of drug
disposition. Both metabolic enzymes and xenobiotic transporters have the potential to
contribute to clearance pathways (i.e. metabolic, renal or biliary elimination) and bioavailability-
related processes (i.e. drug absorption, intestinal metabolism, or first pass hepatic elimination).
Transporters have the unique ability to influence the distribution of drug throughout the body,
in addition to influencing intestinal drug absorption or drug clearance via renal or biliary routes.
Thus, characterization of the contributions of metabolic enzymes and xenobiotic transporters is
crucial in anticipating any potential alterations in drug exposure due to a drug-drug interaction,
pharmacogenomic or disease state variance of activity or expression of relevant metabolic
enzymes or transporters.

Predictions of drug-drug interactions are routinely conducted based on results of in vitro
metabolic enzyme or xenobiotic transporter inhibition studies. However, translating such results
to clinical significance continues to challenge the field, particularly for transporter-mediated
interactions since the susceptibility of a drug to transporters in vitro does not always translate to
clinically significant in vivo involvement and due to a lack of specific and clinically validated index

substrates, inhibitors and inducers for major xenobiotic transporters. The objective of this
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research was to provide a framework for recognizing transporter involvement in clinical drug-
drug interactions, grounded in basic pharmacokinetic theory.

Since xenobiotic transporters can allow (or disallow) substrates access to various tissues
throughout the body, it was recognized that significant xenobiotic transporter interactions are
accompanied by changes in volume of distribution, in addition to potential changes in clearance,
which can result in counterintuitive changes in mean residence time and terminal half-life.
Metabolic interactions are not expected to result in any volume of distribution changes and this
hypothesis was extensively evaluated via examination of 72 intravenous metabolic drug-drug
interaction studies with clinically recommended index substrates and inhibitors. The results
indicate that volume of distribution is almost always unchanged in strictly metabolic interactions
with marked exposure changes, resulting in changes in mean residence time and half-life that are
equal but opposite to clearance changes, further highlighting that volume and clearance are
indeed independent parameters.

Understanding that metabolic interactions do not result in volume of distribution changes
can allow for estimation of bioavailability changes in oral drug-drug interactions, where the
extent of change in apparent volume of distribution will reflect changes in bioavailability alone
due to unchanged volume of distribution. Such estimates of changes in bioavailability can
subsequently be utilized to differentiate changes in clearance alone from measures of apparent
clearance following oral dosing. This approach can also be utilized to predict if an overall
exposure change for oral drug-drug interactions is primarily due to changes in systemic clearance

versus bioavailability.



To identify clinically significant intestinal transporter interactions, it was demonstrated
that alteration of intestinal transporter activity or expression will result in significant changes in
absorption rate, and such changes should always be used to implicate transporter involvement
in vivo. Inhibition of apical efflux transporters result in decreased absorption time, as efflux
transporter-mediated drug cycling between the enterocyte and gut lumen is prevented, while
efflux transporter induction results in prolonged absorption time, as reflected in values of mean
absorption time and time to maximum concentration.

Analyses of clinical data, such as examining changes in volume of distribution following
intravenous dosing, changes in absorption rate following oral dosing, and examining the
relationship between clearance changes and half-life and mean residence time changes, can
confirm transporter involvement of purported complex drug-drug interactions. Such an
approach was utilized to critically evaluate the purported clinical significance of the efflux
transporters P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) in the disposition
of apixaban, as has been indicated throughout the literature and even on the apixaban FDA label.
Rational examination of all published apixaban clinical drug-drug interaction studies, using the
proposed basic clinical pharmacokinetic methodologies, does not support the clinical significance
of the efflux transporters P-gp nor BCRP in apixaban disposition. In fact, inhibition or induction
of intestinal metabolism via cytochrome P450 3A4 (CYP3A4) can account for all exposure changes
of clinically significant drug-drug interactions, and lack of intestinal CYP3A4 inhibition can explain
all studies with no exposure changes.

Understanding the utility and limitations of experimental systems, as well as the inherent

assumptions of the pharmacokinetic equations utilized to translate such results, is crucial in



translating in vitro or in situ experimental information to an in vivo prediction of drug disposition.
For instance, there is limited benefit to using measurements of unbound liver-to-blood
partitioning (Kp,,) to improve predictions of drug-drug interactions, as DDIs can adequately be
predicted by the Extended Clearance Model without any measurements of intracellular drug
concentrations, a difficult task hindered by experimental variability. Further, the recognition that
Kp., has inherently assumed the well-stirred model implies that such approaches cannot account
for the nuances of intracellular drug distribution. Finally, recognition that clearance calculations
based on extraction ratio have inherently assumed the well-stirred model further highlights the
importance of understanding the assumptions inherent in basic pharmacokinetic relationships

that are universally utilized to characterize clinical drug disposition.
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CHAPTER 1. CHALLENGES IN THE PREDICTION OF XENOBIOTIC TRANSPORTER INVOLVEMENT

IN COMPLEX DRUG-DRUG INTERACTIONS

Drug exposure, or the integrated measurement of drug concentrations over time, is
considered the driving force for pharmacodynamic outcomes, such as the therapeutic efficacy or
potential toxicity of a drug. Drug exposure (AUC) is inversely proportional to clearance (CL), a
measure of the body’s ability to remove drug, and directly proportional to bioavailability (F), the

fraction of an extravascular dose that reaches systemic circulation intact:

F - Dose

AUC =
CL

Thus, CL and F are critical determinants of safe and efficacious dosing regimens. In drug-drug
interactions, any alterations in AUC can lead to a loss of efficacy or safety of a victim drug,
therefore, anticipation of the potential of a drug combination to alter AUC requires consideration
of how both CL and F change. Predictions of CL changes are routinely conducted in drug discovery
efforts, however, following oral dosing changes in extent of absorption or first pass extraction
due to a drug-drug interaction may also result in significant AUC changes. Such F changes are
often underemphasized as an important contributor in drug-drug interaction related exposure
changes as compared to CL changes.

Drug disposition is reliant on the action of metabolic enzymes and xenobiotic
transporters, both of which can influence the clearance and bioavailability of drug. Metabolic

enzymes can contribute to the systemic elimination of drug while xenobiotic transporters can



influence both the distribution of drug throughout the body as well as its elimination via renal or
biliary routes. Enzymes and transporters are expressed throughout the body including the
intestine, thus having the potential to contribute to both clearance and bioavailability.
Characterization of the contribution of enzymes and transporters to bioavailability and clearance
pathways is crucial in anticipating any potential alterations in drug exposure due to a drug-drug
interaction, pharmacogenomic or disease state variance of activity or expression of relevant
metabolic enzymes or transporters. In this context, complex drug-drug interactions are defined
as those in which both metabolic enzymes and xenobiotic transporters are implicated as clinically

significant determinants of drug disposition.

Prediction of Metabolic- and Transporter-Mediated Drug-Drug Interaction Potential
In Vitro Prediction Methodologies

In order to predict metabolic- versus transporter-mediated clearance or drug-drug
interaction potential, a number of in vitro studies are routinely performed in drug discovery and
development efforts. For victim drugs, in vitro metabolic stability studies with human liver
microsomes or hepatocytes can assess the potential for metabolic elimination, while the
potential for transporter-mediated uptake or efflux can be evaluated using hepatocytes or
transporter-overexpressing cell lines. To assess the metabolic inhibitory potential of a drug-of-
interest, in vitro inhibition studies are routinely conducted against the major cytochrome P450
(CYP) isoforms to assess the reversible or time-dependent inhibition potential of new chemical
entities. In addition, inhibitory studies with transporter probe substrates in hepatocytes or

transporter-overexpressing cell lines can be performed to assess inhibitory potential against the



major xenobiotic transporters. Many important recommendations relating to evaluating
metabolism-mediated and transporter-mediated drug interactions are been summarized by a

Guidance prepared by the Food and Drug Administration (FDA) [1].

Biopharmaceutics Drug Disposition Classification System

The purported clinical involvement of transporters and/or enzymes is often based on
results of the above mentioned in vitro investigations. However, it is further possible to
contextualize such in vitro results to clinical significance, to allow for anticipation of which drugs
may be susceptible to transporters in vivo, by utilizing the Biopharmaceutics Drug Disposition
Classification System (BDDCS) [2]. BDDCS is a simple drug classification system based on

permeability rate and solubility that can predict various drug disposition characteristics, such as

major route of elimination and the clinically significant involvement of transporters (Figure 1.1).
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Figure 1.1: Transporter effects following oral dosing and major route of elimination predicted
by the Biopharmaceutics Drug Disposition Classification System (BDDCS)



Due to the high solubility and rapid membrane permeability of BDDCS Class 1 drugs, it is theorized
that these drugs can rapidly cross biological membranes at concentrations high enough to either
saturate active transport, or render any transporter-mediated component to be only a minimal
part of total membrane passage. Thus, the clinically significant involvement of transporters in
vivo may be negligible, even if demonstrated to be a substrate in in vitro studies. The primarily
metabolized BDDCS Class 2 drugs are also highly permeable, however due to their low solubility
it is thought that (in some cases) the lower soluble concentrations available for passive diffusion
may either be incapable of saturating transporters or passive membrane passage does not
outweigh the active process. BDDCS Class 3 and 4 have unfavorable membrane permeability
characteristics and thus rely on transporters to cross membranes, and this theory is supported
by the fact that Class 3 and 4 drugs are primarily eliminated in the urine or bile (i.e. transporter-
dependent processes) rather than being metabolized. Thus, results of in vitro predictions of
elimination pathways (metabolism- versus transporter-mediated) can be considered in tandem

with BDDCS theory in order to make conclusions on the clinical relevance of in vitro results.

Current Limitations in the Prediction of Transporter-Mediated Drug-Drug Interactions
Predictions of strictly metabolic interactions are considered reasonable to anticipate from
in vitro studies [1] due to a strong understanding by the field of metabolizing enzymes that are
commonly implicated in drug metabolism, that is further bolstered by well-characterized clinical
specificities of routinely used metabolic inhibitors and inducers [3]. However, validation of
transporter-mediated drug-drug interactions continues to pose significant challenges. Although

regulatory agencies have recommended transporter substrates and inhibitors, there remains a



need for additional validated clinical transporter index substrates and inhibitors [3] and routinely-
used inhibitors are often not specific and may have inhibitory potential towards both enzymes
and transporters [4]. For example, rifampin is a commonly used in vitro and clinical inhibitor of
several organic anion transporting polypeptide (OATP) transporters, however it also has the
potential to inhibit CYP3A4 [3, 5, 6]. Upon multiple dosing, rifampin can strongly induce the
expression of the efflux transporter P-glycoprotein (P-gp) and hepatic and intestinal CYP3A4, in
addition to a number of other CYP isoforms [3, 5]. Rifampin has also been demonstrated to
induce the efflux transporter Breast Cancer Resistance Protein (BCRP) in vitro [7], although the
clinical relevance has not yet been established [7, 8]. In fact, the FDA has noted that improved
in vitro experimental methodologies are required to evaluate the induction potential of P-gp and
additional transporters, and pointed out that any such recommendations have been excluded
from the most recent drug-drug interaction guidance [1]. Further complicating the situation is
that additional xenobiotic transporters are continuously emerging and are suggested to be
clinically relevant by the field [9], such as the hepatic uptake transporter organic anion
transporter 2 (OAT2) [10] and the renal uptake transporter OATP4C1 [11], for which specific in
vitro and in vivo index substrates and inhibitors will need to be identified and/or validated. Thus,
significant advancement in in vitro methodologies to predict transporter interactions is required
by the field.

In complex drug-drug interactions, those in which both metabolic enzymes and
transporters have been implicated, prediction of exposure changes following oral dosing requires
estimating how enzymes and transporters will affect both systemic clearance and bioavailability.

Accurate estimation of the contribution of enzymes versus transporters is a difficult task, is



further complicated by the potential for enzyme-transporter interplay, and is a current area of
significant efforts by the field [12, 13]. Due to the limitations of tools to detect and predict
transporter-mediated interactions, it is of concern that a number of clinical investigations (and
even approved drug labeling) have concluded that drug-drug interactions are transporter
mediated based only on in vitro interaction potential and an observed change in AUC. This
highlights the need for advancement of clinical pharmacokinetic theory to identify hallmarks of
transporter involvement in interactions in which xenobiotic transporters are purported to be

clinically significant determinants of drug disposition.

Clinically Significant Transporter Interactions Result in Changes in Volume of Distribution
Xenobiotic transporters can allow or restrict drug access to various tissues throughout the
body. Therefore, it has been recognized that the function of transporters can influence a drug’s
volume of distribution (Vi) [14]. Thus, significant xenobiotic transporter interactions are
accompanied by changes in Vg, in addition to potential changes in transporter-mediated CL [14,
15]. Drug half-life and mean residence time (MRT) are dependent parameters that reflect the

influence of both CL and V,:
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Therefore, it is expected that in drug-drug interactions in which volume is unaffected (i.e. strictly
metabolic interactions), changes in CL will be accompanied by changes in MRT and half-life that

are of similar magnitude, but opposite in direction. This hypothesis will be extensively addressed



in Chapter 2. For transporter drug-drug interactions, it is possible that changes in both CL and
Vss can result in counterintuitive changes in MRT and half-life. For instance, a reduction in drug
CL that is accompanied by a shorter half-life, due to an even larger reduction in V.

Our laboratory has very recently thoroughly documented the expected changes in
pharmacokinetic parameters for interactions involving purely metabolic enzymes [16] versus
xenobiotic transporters [15]. For a number of clinically significant transporter drug-drug
interactions with the transporter substrates atorvastatin, rosuvastatin, pitavastatin and glyburide
and the inhibitor rifampin (single dose), the magnitude of MRT and half-life changes are not
predicted by changes in CL alone due to significant reduction in Vs [15]. For atorvastatin [17]
and rosuvastatin [18], decreased CL is associated with shorter MRT and half-life (rather than an
increase that would be intuitively expected) due to an even larger decrease in Vi. For
pitavastatin [19] and glyburide [20], similar changes in CL and Vi resulted in essentially

unchanged MRT and half-life.

Conclusions: Thesis Aims

This thesis aims to provide a framework for recognizing transporter involvement in clinical
drug-drug interaction studies, grounded in basic pharmacokinetic theory. The second chapter of
this thesis extensively evaluates the hypothesis that in strictly metabolic interactions, volume of
distribution remains unchanged. The analysis proceeded by examining 72 intravenous metabolic
drug-drug interaction studies with clinically recommended index substrates and inhibitors of the
major CYP isoforms. The results indicate that volume of distribution is largely unchanged in

significant drug-drug interactions with marked changes in exposure. Further examination of



these results highlights that in metabolic drug-drug interactions, changes in CL result in changes
in MRT or terminal half-life that are equal but opposite in direction, as would be expected for an
interaction in which volume does not change, and further highlights that volume and clearance
are indeed independent parameters.

With recognition that volume remains unchanged in strictly metabolic drug-drug
interactions (based on the findings of Chapter 2), Chapter 3 further applies this knowledge in a
methodology that allows for discrimination of bioavailability changes from clearance changes
following oral dosing of metabolic DDIs. Since volume will remain unchanged in such
interactions, changes in apparent volume of distribution at steady state (V./F) can provide
estimates of changes in bioavailability alone. The estimated bioavailability change can
subsequently be utilized to predict changes in CL from observed changes in apparent clearance
(CL/F). This approach can also be utilized to predict if an overall exposure change in an oral drug-
drug interaction is primarily due to a change in systemic clearance or/and due to a change in
bioavailability.

Chapter 4 describes another methodology that was developed to identify clinically
significant intestinal transporter interactions. It was demonstrated that clinically relevant
alteration of intestinal transporter activity or expression will result in significant changes in
absorption rate, and such changes should always be used to implicate transporter involvement
in vivo. Inhibition of efflux transporters results in decreased absorption time, as efflux
transporter-mediated drug cycling between the enterocyte and the gut lumen is prevented, while
efflux transporter induction results in prolonged absorption time, as reflected in values of mean

absorption time and time to maximum concentration.



Chapter 5 demonstrates how the pharmacokinetic methodologies presented in Chapters
2-4 can be practically implemented to identify evidence of transporter involvement in purported
complex-drug-drug interactions of apixaban. Throughout the literature and even on FDA
approval documentation, apixaban has been implicated as a drug that is susceptible to the efflux
transporters P-gp and BCRP [21], based only on in vitro results [22, 23]. However, we would
suspect that the clinical significance may be questionable due to the BDDCS Class 1 designation
of apixaban. The published apixaban clinical data were analyzed by examining the changes in
volume of distribution following intravenous dosing (based on Chapter 2), changes in absorption
rate following oral dosing (based on Chapter 4), and examining the relationship between
clearance changes and half-life and MRT changes (based on Chapter 2). Further, the clearance
versus bioavailability differentiation methodology presented in Chapter 3 was utilized to predict
the major site of interaction for all orally dosed drug-drug interactions. The results of this analysis
indicated that inhibition or induction of intestinal CYP3A4 metabolism can account for all
exposure changes observed with clinically significant drug-drug interactions, and lack of intestinal
CYP3A4 inhibition can explain all studies with no exposure changes.

Chapters 6 and 7 highlight the importance of understanding the limitations of in vitro or
in situ systems, as well as the inherent assumptions of the pharmacokinetic equations utilized to
translate such results. In Chapter 6 the unbound liver-to-blood partitioning coefficient (Kpy,) is
derived from first principles, highlighting that the relationship is based on the well-stirred model,
which cannot account for the nuances of intracellular drug distribution. Although it has been
suggested by the International Transporter Consortium that Kp,, may improve drug-drug

interaction predictions [24], simulations show that utilization of Kp,, changes may not correlate



with changes in systemic or intraorgan drug exposure, and thus may mislead an investigator. It
has been recently recognized that clearance calculations based on extraction ratio have
inherently assumed the well-stirred model [25], thus all clearance calculations are model-
dependent when drug concentrations entering and exiting an organ at steady-state are utilized.
Chapter 7 critically reviews previously published isolated perfused rat liver studies for high
clearance metabolized drugs for evidence of hepatic disposition model preference, concluding
that the well-stirred model can describe all well-designed perfusion studies. The consequence of
this analysis is our contention that the field has inappropriately interpreted a number of
experimental studies by accepting models of the liver that are not consistent with the
experimental data. Both Chapters 6 and 7 highlight the importance of understanding the
assumptions inherent in the basic pharmacokinetic relationships that are universally utilized to
characterize clinical drug disposition.

In summary, this thesis advances the clinical pharmacokinetic methodologies required to
analyze complex drug-drug interaction studies, and in particular provides tools for clinical
scientists to recognize clinically significant involvement of xenobiotic transporters. It further
points out the importance of understanding the limitations of experimental systems, as well as
the inherent assumptions of the pharmacokinetic equations utilized to translate in vitro or in situ

results, in the successful prediction of in vivo drug disposition.
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CHAPTER 2: VOLUME OF DISTRIBUTION IS UNAFFECTED BY METABOLIC DRUG-DRUG

INTERACTIONS”

Abstract

It has been recognized that significant transporter interactions result in volume of
distribution changes in addition to potential changes in clearance (CL). For drugs that are not
clinically significant transporter substrates, it is expected that drug-drug interactions (DDls)
would not result in any changes in volume of distribution. An evaluation of this hypothesis
proceeded via an extensive analysis of published intravenous (IV) metabolic DDIs, based on
clinically recommended index substrates and inhibitors of major cytochrome P450 (CYP)
isoforms. Seventy-two metabolic drug interaction studies were identified where volume of
distribution at steady state (Vi) values were available for the CYP index substrates caffeine
(CYP1A2), metoprolol (CYP2D6), midazolam (CYP3A4), theophylline (CYP1A2), and tolbutamide
(CYP2C9). Changes in exposure (AUC) up to 5.1-fold were observed, however ratios of Vi
changes have a range of 0.70 — 1.26, with one outlier displaying a Vi, ratio of 0.57. These results
support the widely-held founding tenant of pharmacokinetics that CL and V,; are independent
parameters. Knowledge that Vs is unchanged in metabolic DDIs can be helpful in discriminating
changes in CL from changes in bioavailability (F) when only oral dosing data are available. Since
Vss remains unchanged for IV metabolic DDIs, following oral dosing changes in Vi/F will reflect

changes in F alone. This estimation of F change can subsequently be utilized to assess changes

"Modified from the publication: Sodhi JK, Huang CH, Benet LZ. Volume of distribution is
unaffected by metabolic drug-drug interactions. Clin Pharmacokinet. 2020; [E-pub ahead of print,
July 28, 2020].
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in CL alone from calculations of CL/F. Utilization of this simple methodology for orally dosed
drugs will have a significant impact on how DDIs are interpreted from drug development and

regulatory perspectives.
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Introduction

Volume of distribution in pharmacokinetics (PK) is the theoretical volume in which a drug
must distribute to relate the observed systemic drug concentrations to the amount of drug
present in the body. It is a non-physiologic volume that reflects the degree of tissue distribution
of drug. It has been recognized that xenobiotic transporters can influence the volume of
distribution of drugs by allowing or restricting drug access to various tissues throughout the body
[1], and therefore significant transporter drug interactions may result in changes in volume of
distribution in addition to potential changes in clearance [2]. For drugs that are not clinically
significant transporter substrates, it is expected that drug-drug interactions (DDIs) would not
result in any changes in steady-state volume of distribution (V). Knowledge that Vi is
unchanged in metabolic DDIs can be helpful in implicating transporter involvement in complex
DDIs as well as in facilitating the discrimination of changes in clearance from changes in
bioavailability when only oral dosing data are available. Here we present a comprehensive

evaluation of the hypothesis that Vs remains unchanged in metabolic drug interaction studies.

Methods
Literature Search Strategy and Inclusion / Exclusion Criteria

Based on a recent compilation of recommended clinical index substrates of major drug
metabolizing enzymes and cytochrome P450 (CYP) isoforms [3], a comprehensive literature
search identified caffeine (CYP1A2), metoprolol (CYP2D6), midazolam (CYP3A4), theophylline
(CYP1A2) and tolbutamide (CYP2C9) as index substrates for which intravenous (1V) dosing drug

interaction data were available. Oral drug interaction studies of these index substrates were
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excluded from the analysis to avoid the confounding impact that changes in bioavailability (F)
would have on apparent volume of distribution (Vs /F). Due to the large number of IV interaction
studies for the probe substrate midazolam, the scope of the analysis was further refined to
primarily include DDIs involving index inhibitors with known clinical inhibitory specificities against
the various CYP isoforms and xenobiotic transporters, again based on the recent
recommendations of Tornio et al. [3]. If additional victim-perpetrator combinations were
investigated in these studies, these interaction data were also included in the analysis and
information regarding the in vivo substrate or inhibitory specificities of these drugs were
referenced from the literature [4-10]. Since Vi is not often reported by clinical investigators,
estimation of this parameter often proceeded via digitization and non-compartmental analysis
of published pharmacokinetic profiles. If Vi was not reported, studies were excluded if (1)
pharmacokinetic profiles were not reported and/or were difficult to reliably digitize, or if (2)
resulting estimates of AUC were greater than 25% different from reported values. The latter
aspect will be further discussed in the next section.

This analysis focuses on DDI studies conducted with the same subjects in the control and
treatment arms, and as such, four midazolam studies with a parallel study design were excluded.
However, some studies included in this analysis conducted the DDl investigation (within the same
person) in multiple populations, for example, with respect to pharmacogenomic variance of drug
metabolizing enzymes or in healthy versus disease state subjects. Thus, we also analyze changes
in Vs, of victim drug only between these populations to investigate the inherent potential of Vi

to change between different individuals.
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The specificities of all substrates and inhibitors are summarized, and in addition, the
Biopharmaceutics Drug Disposition Classification System (BDDCS) is listed. This simple system
classifies drugs based on solubility and permeability and can anticipate when metabolism versus
transporter-mediated processes (such as renal and biliary elimination) are the major route of

drug elimination [11].

Data Analyses

Thirty-one published DDI studies were examined and changes in exposure (AUC),
clearance (CL), Vss, mean residence time (MRT) and terminal half-life (t;/,,) were calculated and
reported as ratios of interaction/control. When individual PK data were reported, the ratios of
the parameters-of-interest were calculated for each individual and the average of this ratio for
all subjects was reported (and indicated in tables with a footnote). Although the initial volume
of distribution in the central compartment (V;) and terminal volume of distribution (V) are
commonly reported in clinical pharmacokinetic studies, our primary analysis was based on
changes in V as it is a non-compartmental parameter that represents the whole-body volume
of distribution, theoretically is independent of elimination measures [12], and is not associated
with a particular compartment or phase of the PK curve (as is the case for V;and V,for drugs that
display multi-compartment kinetics). Methods of each paper were carefully reviewed to ensure
reported Vs was appropriately calculated. For investigations in which Vs could not be
determined, data for V, were reported with the understanding that V, changes will only reflect
the same degree of change as Vi, if the victim drug follows a one compartment model or if the

distribution phase minimally affects measures of AUC and AUMC (area under the moment curve).
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For investigations that did not explicitly report all parameters-of-interest, the parameter
was either (1) back-calculated from reported data or (2) estimated by digitization of reported
plasma-concentration time profiles. Clearance and AUC could be calculated from one another if
only one of the two parameters were reported by using known dose and the equation:

CL = Dose / AUC. Similarly, CL can be used to calculate either Vi, or MRT (if one of the two

parameters were reported) using the following relationship [12]:

V,s = CL - MRT

If MRT values were not reported, MRT was calculated via non-compartmental methods using the

following relationship:

MRT = AUMC MIT
AUC

where MIT is mean input time. For IV bolus doses, MIT is zero. For IV infusions, MIT is defined as
half of the length of the dosing infusion time (t), i.e. MIT = T / 2. For investigations that did not
report Vs (or any of the other pharmacokinetic parameters of interest), plasma concentration-
time profiles were digitized using WebPlotDigitizer Version 4.2 (Ankit Rohatgi, San Francisco, CA,
USA) and non-compartmental analysis was conducted with WinNonlin Professional Edition
Version 2.1 (Pharsight, Mountain View, CA, USA). Digitized AUC values were compared to
reported AUC values and studies were excluded if reported average AUC values were greater

than 25% different from digitized values. All pharmacokinetic ratios calculated from digitization
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of published concentration-time profiles are specifically indicated in the data tables with a
footnote. Published values of pharmacokinetic parameters were reported in priority, with
digitization/reanalysis of reported average concentration-time profiles utilized only to
supplement unreported data. Each value in the data tables is annotated based on calculation
methods (published versus digitized, individual versus average PK data used for ratios, equations
used or assumptions made).

The average absolute differences in AUC and Vs were compared to one another for all 72
DDls, as well as the subset of DDIs with greater than 30% AUC change (i.e. ratios outside of the
range of 0.77 and 1.30, n=49), which could be considered a potentially clinically significant
interaction. To account for interactions resulting in a decrease in AUC, such as potential enzyme
induction, the inverse for all ratios less than unity was utilized in calculation of average absolute
AUC and V changes. Box plot representations of the data were generated to allow visual
depiction of any differences in degree of change in these two parameters, which indicate the
median, 25" and 75™ percentiles, range from minimum to maximum values, and depict each
individual point. To investigate if the classic trend of CL changes being equal (but opposite in
magnitude) to half-life and MRT changes in these metabolic DDIs, the relationship between

changes in half-life and MRT were compared to the inverse of the change in CL.

Results
Relevant information on the specificity of all substrates analyzed are outlined in Table 2.1
and the inhibitory specificities of the perpetrator drugs included in this analysis are listed in Table

2.2. The comprehensive literature search identified DDI studies for the following index substrates
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where Vi measurements were available: caffeine [13], metoprolol [14], midazolam [15-24],
theophylline [25-37], and tolbutamide [38] (Table 2.3). Any additional victim-perpetrator
combinations (with non-index substrates) investigated in these studies where Vi, measurements
were available were also analyzed, including alfentanil [19], antipyrine [26], and lidocaine [18]
(Table 2.4). When only V, values were available, these studies are summarized in Table 2.5 and
include the victim drugs antipyrine [39], desipramine [40], imipramine [40], and theophylline [39,

41-43].

Table 2.1: Enzyme Specificities of Clinical Index Substrates and Additional Victim Drugs

Other Relevant

Substrate BDDCS Class Enzyme Enzymes / Reference
Transporters
CYP1A2
N Multiple CYPs
Antipyrine 1 CYP2C9 [6]
CYP3A (2A6, 2B6, 2C, 2E1)
Alfentanil 1 CYP3A [4]

. Xanthine Oxidase
Caffeine ! CYP1A2 N-Acetyl Transferase Bl

Desipramine 1 CYP2D6 CYP3A [3]
Imipramine 1 CYP2C19 CYP2D6 [4]
Lidocaine 1 CYP3A CYP1A2 [6]
Metoprolol 1 CYP2D6 CYP3A [3]
Midazolam 1 CYP3A - [3]
Theophylline 1 CYP1A2 C(I(iz?il [3]
Tolbutamide 2 CYP2C9 OAT2 [3,9]

Abbreviations: ~ BDDCS, Biopharmaceutics Drug Disposition Classification System; CYP,
Cytochrome P450; OAT, Organic Anion Transporter
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Table 2.2: Inhibitory Specificities of Clinical Index Inhibitors and Additional Perpetrator Drugs

Other Rel t
o BDDCS erhelevan
Index Inhibitor Class Enzyme Enzymes / Reference
Transporters
0OCT2
MATE1
Cimetidine 3 CYP2C19 (4]
CYP3A CYP 1A2, 2C9, 2D6
Ciprofloxacin 4 CYP1A2 CYP3A4 [3]
CYP2C19
Clarithromycin 3 CYP3A4 P-gp [3]
Diltiazem 1 CYP3A4 CYP1A2,2D6 [4]
P-gp
Disulfiram 2 CYP2E1 CYP 1A2, 2C9, 2D6 [4]
Enoxacin 4 CYP1A2 [3]
Erythromycin 4 CYP3A4 P-gp [3]
Famotidine 3 Unknown
CYP2C9
Fluconazole 3 CYPIC19 CYP3A4 [3]
CYP2J2
Itraconazole 2 CYP3A4 [3]
P-gp
Ketoconazole 2 CYP3A4 CY:_ESQ [3]
Lidocaine 1 CYP3A4 CYP1A2 [6]
Nalidixic Acid 2 Unknown
Nelfinavir 2 CYP3A4 CYP2D6 (7]
Norfloxacin 4 CYP1A2 [8]
Ofloxacin 3 Unknown
Olanzapine 2 Unknown
Ondansetron 1 Unknown
Primaquine 1 Unknown
Quinidine 1 CYP2D6 P-gp (3]
I 0CT2
Ranitidine 3 CYP3A CYP 2C9, 2D6 (4]
Rifampin 2 OATPs CYP3A4 [5, 10]
(Single Dose) !
(Inducer)
Rifampin ) CYP3A (Inducer) [5]
(Multiple Dose) CYP2C9 CYP 1A, 2B6, 2C8, 2C19
P-gp
Ritonavir
2 CYP3A4 P- 3
(Single Dose) &P (3]
Ritonavir
. 2 CYP Inductio 3
(Multiple Dose) uction 3]
Sulfaphenazole 1 CYP2C9 (7]
Terbinafine 2 CYP2D6 CYP1A2 [3]
Verapamil 1 CYP3A4 P-gp [3]

Abbreviations: BDDCS, Biopharmaceutics Drug Disposition Classification System; CYP,
Cytochrome P450; MATE, Multidrug and Toxic Extrusion; OCT, Organic Cation Transporter; P-gp,
P-glycoprotein
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The changes in pharmacokinetic parameters (AUC, CL, Vs, MRT and ty/,,) of clinically
recommended index substrates are listed in Table 2.3 and additional victim drugs in Table 2.4,
totaling 72 DDI studies. For these primarily metabolized drugs, AUC ratios ranged from 0.44 - 5.1
while Vi ranged from 0.57 - 1.40. The average absolute difference in AUC ratios for these 72 DDI
studies averaged 1.69 + 0.78, while the average absolute difference in V,; averaged 1.10 £ 0.12.
For the 49 interactions with at least a 30% change, i.e., those interactions that could potentially
be clinically significant, the absolute AUC changes averaged 1.95 + 0.83, while Vi, averaged 1.11
+ 0.13. Figure 2.1 depicts box plot representations of these values. Of the 72 DDI studies
examined, only three (4.2%) resulted in greater than a 30% change in Vi (i.e. ratios outside of

the range of 0.77 to 1.30) with ratios of 0.70 [14], 1.40 [17] and 0.57 [23].

a. All Interactions b. AUC ratio > 1.3
(n=72) (n=49)
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Figure 2.1: Box plot depictions of the absolute magnitude of change in victim drug exposure
(AUC) and volume of distribution at steady state (V). Ratios are expressed as ratios of
interaction to control for (a) all drug-drug interactions (n=72) and (b) the subset of these
interactions that are potentially clinically significant (with absolute AUC ratios > 1.3; n=49). The
box indicates the median, 25" and 75" percentiles, the whiskers range from minimum to
maximum values, and each individual data point is also depicted.

32



An additional ten DDI studies were identified from five studies for which only V, was
reported and Vs could not be determined (due to lack of published pharmacokinetic profiles)
(Table 2.5). Changes in AUC ranged from 1.10 — 1.70, but V; only ranged from 0.89 — 1.24.

While the inclusion criteria of this analysis focused on studies that include the same
patients in the control and interaction phases, three DDI studies investigated here performed the
same drug interaction study in multiple groups, either with respect to pharmacogenomic
variance of metabolizing enzyme [14, 20] or disease state [27]. To investigate the impact of inter-
individual variability on Vi, the control phase (victim drug only) between each group were
compared to one another (Table 2.6). When comparing the PK of the index substrate alone
between groups, Vi for victim drug was observed to change with ratios of 0.51 (metoprolol with
CYP2D6 pharmacogenomics), 0.72 and 0.79 (midazolam with CYP3A5 pharmacogenomics), and
0.70 (healthy versus liver cirrhosis patients), while AUC was observed to change 0.98- to 2.56-
fold in these studies. In the same studies, however, minimal change in V,; was observed in the
same individual between the drug interaction versus control phases, with ratios ranging from

0.70 — 1.13 (Table 2.3).

Discussion

For primarily metabolized drugs, IV drug interaction studies resulted in minimal changes
to Vi. Changes in drug exposure (AUC) up to 5.1-fold were observed, however ratios of Vi
changes only had a range of 0.70 — 1.40, with one outlier displaying a 43% decrease in Vi (ratio
of 0.57) (Table 2.3) for a midazolam-ketoconazole interaction in healthy female Koreans where

the AUC ratio was 4.61 [23]. In contrast, a second midazolam-ketoconazole interaction study in
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healthy White subjects with a similar AUC ratio of 5.1 only exhibited a Vs, ratio of 1.20 [22]. The
trend of unchanged Vi; was observed for all index substrates and CYP isoforms investigated
(caffeine and theophylline, CYP1A2; metoprolol, CYP2D6; tolbutamide, CYP2C9; midazolam,
CYP3A4) [data not shown].

It should be noted that a listed high percent AUC extrapolation value does not necessarily
indicate that AUC (or pharmacokinetic parameters derived from AUC) are unreliable if the slope
of the elimination phase is adequately captured. Additionally, the pharmacokinetic parameters
reported by the original authors were used in priority to calculate the ratios presented in this
analysis, such as the frequently reported parameters AUC, CL and t;/,,. Estimation of less-
frequently reported parameters, such as Vi and MRT, proceeded via digitization of the average
concentration-time profiles reported by the original authors, and it should be noted that these
average profiles may not accurately represent changes within any one particular individual in the
DDI study.

When Vs was not reported (and could not be calculated due to the lack of published
pharmacokinetic curves), changes in V, were examined (Table 2.5). Changes in V, were minimal
(0.89 — 1.24). Examination of theophylline PK curves from the other studies in this analysis
indicate that the distribution phase of theophylline is very short, and therefore V, changes would
likely be similar to Vi changes. No such conclusions related to the potential similarity between
V, and Vs could be made for the antipyrine, desipramine or imipramine data due to the lack of
published IV pharmacokinetic curves in the other studies examined here.

Of note, the clinical studies included in this analysis were all conducted with the same

individuals in the control versus interaction arms, to minimize the confounding effects of inter-
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individual variability. Three of the studies examined here also conducted DDIs in multiple subject
groups with respect to disease state [27] or pharmacogenomic variance of drug metabolizing
enzyme [14, 20]. To examine the potential impact of inter-individual differences in Vs, the
pharmacokinetic parameters associated with the control arms (victim drug only) of each group
were compared to one another, resulting in Vs ratios of 0.51 —0.79 associated with AUC changes
of 0.98 — 2.56 (Table 2.6). In comparison to the earlier part of this analysis where changes in Vi
within the same individual (with and without addition of a perpetrator drug) were examined,
these same studies displayed Vi ratios of 0.70 — 1.26 associated with AUC increases of 1.12 —
3.08. Reported data related to the body weights of individuals in each arm are also noted in
Table 2.6. However, accounting for average differences in body weight between the two groups
does not necessarily result in Vi ratios that are closer to unity. For instance, the reported
differences in metoprolol V,; between CYP2D6 poor metabolizers (PM) and extensive
metabolizers (EM) resulted in a ratio of 0.51, and the reported values used to calculate this ratio
were normalized by body weight of each individual by the original investigators. This indicates
that volume of distribution differences in different individuals can be significant and do not only
depend on total body weight differences. Further, the variability associated with Vi, values was
much greater in EM than PM, with CV values of 44% and 22%, respectively. The issue of variability
between individuals is further compounded in pharmacogenomic studies where often only a very
small number of individuals can be recruited for the less frequently occurring genotypes.

This highlights that for the same drug, V.. may change significantly between subjects.
These findings are in contradiction to the belief that all pharmacokinetic parameters are expected

to be similar in homogenous populations, such as in healthy subjects, since the
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pharmacogenomic interactions studied here included healthy subjects in each arm. As a result,
we suggest that it may not appropriate to assume that V; is unchanged across different subject
populations and therefore, it is crucial to consider clinical study design (parallel versus crossover).
Further, based on this observation, we emphasize that examination of differences in
pharmacokinetics in different pharmacogenomic variance or disease state populations should be
considered as a qualitative outcome. Although changes in AUC and CL can reasonably be
compared between groups, however, since Vi, may inherently be different between individuals
in each group, changes in terminal half-life should not be considered significant nor be utilized to
suggest changes in dosing regimen between the two populations studied. Further investigation
into this finding is warranted, and is an area of high interest to our laboratory.

It should be noted that perpetrator drugs have the potential to displace victim drug from
plasma or tissue-binding sites, which may result in Vs changes. Changes in protein binding should
result in comparable changes for CL and Vi, resulting in no change in MRT or half-life. However,
we find no examples of such an interaction in the same subjects within our dataset. Thus, the
data presented here for IV metabolic drug interaction studies very strongly support our
contention that Vi, does not change to any significant degree for metabolic DDlIs.

The DDI studies evaluated here follow the classic pharmacokinetic trend of changes in CL
resulting in an equal but opposite change in MRT, due to the fact that Vi remains unchanged for
metabolic interactions [44]. These relationships are depicted in Figure 2.2, where the inverse of
ratios of CL changes are plotted against both MRT and t;,, ratios. The results for each
comparison fall very close to the line of unity, highlighting the intuitive trend that decreases in

CLresultinincreases in MRT and t;/, , of approximately equal magnitude. In comparing the AUC-
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MRT relationship to the AUC-t;/,, relationship, as expected the MRT relationship falls closer to
the line of unity than a few of the t;/,, points associated with larger 1/CL, as t;/,, may change
differently than MRT for drugs that display multi-compartment kinetics, and this difference is
likely amplified in DDI studies of a larger magnitude. In general, Figure 2.2 highlights that changes
in clearance are opposite in direction but similar in magnitude to MRT and t;/,, and this is in
sharp contrast to significant transporter-drug interactions, where decreases in clearance can

often be associated with decreases in half-life and MRT, due to changes in Vs [2].

MRT Ratios

0.1 T 1 0.1 T 1
0.1 1 10 0.1 1 10

1/CL Ratios 1/CL Ratios

Figure 2.2: Ratios of change in mean residence time (MRT) and terminal half-life (t;/,,)
compared with the inverse of change in clearance (CL). Red lines indicate the line of unity.

Knowledge that Vi largely remains unchanged for IV metabolic DDIs (based on the
analysis presented here) indicates that following an orally dosed DDI, changes in apparent
volume of distribution at steady state (V.s/F) will reflect changes in F alone. Such estimates of
changes in F can subsequently be utilized to estimate changes in systemic CL from measured

changes in apparent clearance (CL/F). Although this clearance versus bioavailability
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differentiation methodology will be discussed in further detail in Chapter 3, here the
methodology is introduced.

In the Quinney et al. [16] investigation of the interaction of midazolam and clarithromycin
in elderly subjects, the interaction was conducted following both oral and IV dosed midazolam.
Thus, estimates of changes in CL versus F based on the oral interaction study can be confirmed
by examining the observed changes resulting from the IV midazolam interaction study. Following
oral dosing, an 8.2-fold increase in midazolam exposure was observed (compared to only a 3.2-
fold increase in midazolam AUC in the IV drug interaction study) when clarithromycin was dosed
500 mg BID for 7 days (Table 2.7). Examination of changes in V,,/F following oral dosing provided
a predicted increase in F of 2.84-fold, and thus clearance was predicted to decrease by 60% (ratio
of 0.40). The observed change in bioavailability was a 2.12-fold increase and a 65% reduction of
CL (ratio of 0.35) (Table 2.7). Thus, recognition that Vss remains unchanged in metabolic
interactions allows the discrimination of two pharmacokinetic parameters thought to be
indistinguishable from one another following oral dosing. This methodology will be evaluated in

detail in Chapter 3.

Conclusions

Based on an extensive evaluation of 72 clinical DDI studies, Vss remains unchanged for IV
metabolic drug interactions as expected, with a small minority of outliers (only three) with ratios
indicating a change, where for the largest Vi, change, a second study of the same interacting
drugs in a different population did not show this marked Vi change. These results uphold the

widely-held founding tenant of pharmacokinetics that CL and Vi, are independent parameters.
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Differences in victim drug Vi can significantly vary throughout the population due to inter-
individual variability that may not necessarily be accounted for by body weight. This highlights
that differences in pharmacokinetic parameters observed between groups in pharmacogenomic
and disease state studies (or any clinical trial with a parallel study design) should be accompanied
with the understanding that Vi could differ significantly between groups. Therefore, although
changes in AUC and CL between groups indicate meaningful differences, terminal half-life
differences should be considered qualitative due to their dependence on the inherently variable
V,s value between individuals. Further, following oral dosing the changes in Vi,/F will reflect only
changes in F for metabolic interactions. Therefore, this estimation of F change can subsequently
be utilized to assess changes in CL alone from calculations of CL/F, two parameters that are

considered indistinguishable from one another following oral dosing.
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CHAPTER 3: ASIMPLE METHODOLOGY TO DIFFERENTIATE CHANGES IN BIOAVAILABILITY FROM

CHANGES IN CLEARANCE FOLLOWING ORAL DOSING OF METABOLIZED DRUGS'

Abstract

Accurately discriminating changes in clearance (CL) from changes in bioavailability (F)
following an oral drug-drug interaction is difficult without carrying out an intravenous interaction
study. This may be true for drugs that are clinically-significant transporter substrates, however,
for interactions that are strictly metabolic it has been recognized that volume of distribution
remains unchanged between both phases of the interaction study. With the understanding that
changes in volume of distribution will be minimal for metabolized drugs, the inverse of the
change in apparent volume of distribution at steady-state (Vss/F) can provide adequate estimates
of the change in bioavailability alone. Utilization of this estimate of F change in tandem with the
observed apparent clearance (CL/F) change in an oral drug-drug interaction can provide an
estimate of the change in clearance alone. Here, we examine drug-drug interactions involving
five known inhibitors and inducers of cytochrome P450 (CYP) 3A4 on victim drugs midazolam and
apixaban for which the interaction was carried out both orally and intravenously, allowing for
evaluation of this methodology. Predictions of CL and F changes based on oral data were
reasonably close to observed changes based on intravenous studies, demonstrating that this
simple yet powerful methodology can reasonably differentiate changes in F from changes in CL

for oral metabolic drug interactions when only oral data are available. Utilization of this relatively

" Modified from the publication: Sodhi JK, Benet LZ. A simple methodology to differentiate
changes in bioavailability from changes in clearance following oral dosing of metabolized drugs.
Clin Pharmacol Ther. 2020;108(2):306-315.
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simple methodology to evaluate DDIs for orally dosed drugs will have a significant impact on how

DDlIs are interpreted from a drug development and regulatory perspective.
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Introduction

Anticipation of extent of change in (CL) of victim drugs in drug-drug interaction (DDI)
studies is critical in recognizing potential drug combinations that may result in loss of efficacy or
a safety finding due to alterations in drug exposure (area under the curve; AUC), as changes in

clearance are inversely related to exposure changes (referred to subsequently as Equation 1):

F - Dose

AUC =
CL

Following oral dosing, however, changes in bioavailability (F) must also be considered since
changes in extent of absorption or first pass extraction due to a DDI may also result in AUC
changes. As evident in the above relationship, knowledge of dose and the readily measurable
AUC results in a ratio of CL to F, two parameters that are difficult to distinguish from one another
after oral dosing. Oral bioavailability can be estimated if the drug is also dosed intravenously (1V)
via examination of the dose-normalized AUC ratio from oral to IV administration. However, most
orally approved drugs have not been studied under IV dosing conditions and therefore these
clearance determinations are confounded by bioavailability.

Changes in half-life and mean residence time (MRT) are not related to F. Therefore, for
primarily metabolized drugs, one may attempt to differentiate changes in CL versus F in a DDI by
examining the magnitude of change in half-life and MRT compared to AUC and Cpax, as we have
recently reviewed [1]. If a drug were to follow simple one compartment disposition kinetics, the
change in half-life would reflect the change in CL, and knowing the change in AUC for an orally

dosed drug with a metabolic DDI, the change in F could be determined using the above
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relationship. However, for drugs only dosed orally this would not be known. Alternatively, low
extraction ratio drugs will have minimal first pass elimination, therefore changes in CL/F can be
primarily attributed to a change in CL rather than F. However, extraction ratio cannot be
determined if only oral data are available.

It is important to recognize that MRT and half-life are a function of both clearance and

volume of distribution as given in the following relationship [2]:

Vss [ F
CL/F

MRT =
where Vi is the volume of distribution at steady-state. And, it has been recognized that when
transporters are involved in drug disposition, significant transporter drug interactions may result
in volume of distribution changes in addition to potential changes in clearance [3]. Due to the
dependence of MRT and terminal half-life on both clearance and volume of distribution, attempts
to predict changes in drug concentration-time curves following DDI or pharmacogenomic
variance studies may prove challenging if changes in volume of distribution are not considered.
It is possible that interactions can alter Vi differently than CL, even resulting in half-life changes
that are counterintuitive to the direction of change in clearance (i.e. an interaction with a
decrease in clearance can also display a decrease in half-life due to large decreases in volume of
distribution). Recently, our laboratory has critically analyzed [4] and summarized [5] such
changes in apparent clearance (CL/F), apparent volume of distribution at steady state (Vs/F),
MRT and terminal half-life for orally dosed transporter substrates (atorvastatin [6], glyburide [7]

and rosuvastatin [8]) in clinical DDI studies with concomitant IV rifampin (an OATP1B1 and BCRP
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inhibitor). In all of these DDIs, a decrease in CL/F was associated with a decrease in terminal half-
life (rather than a prolonged half-life) due to a significant decrease in V/F.

However, for a metabolic drug interaction (no transporter involvement) it is expected that
volume of distribution would remain unchanged. In Table 3.1 V. changes are summarized for
exemplary clinical DDI studies involving IV administration of the primarily metabolized drugs
caffeine [9], midazolam [10, 11] and theophylline [12]. The magnitude of change in exposure
ranged from 1.3 — 3.2 in these DDI studies, however Vi, remains unchanged (0.92 — 1.1). A
comprehensive analysis of changes in V; for CYP index substrates in clinical IV DDI studies was
presented in Chapter 2, concluding that Vi is unaffected in strictly metabolic DDI studies. Here
we demonstrate how this understanding can be further applied to distinguish CL and F for DDIs

that only involve metabolism.

Utilization of the Clearance and Bioavailability Discrimination Methodology

With knowledge that Vs does not change for metabolic drug interactions, the inverse of
the change in Vi/F in the interaction versus control phase for oral metabolic interactions can
provide an estimate of change in F, as depicted in Figure 3.1. In other words, the change in V/F
is approximately equal to the inverse of the change in bioavailability in the interaction versus
control phase for metabolic interactions.

By accounting for the estimated change in bioavailability (from Figure 3.1) in the observed
ratio of change in apparent clearance (CL/F), it is possible to estimate the change in systemic

clearance alone, as depicted in Figure 3.2.
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This methodology is quite simple yet powerful, as it can provide reasonable estimates of

how changes in F can be differentiated from changes in CL for oral metabolic drug interactions

when only oral data are available.

Table 3.1: Changes in Exposure (AUC), Clearance (CL) and Volume of Distribution at Steady
State (V;;) in Intravenous Metabolic Drug-Drug Interactions

. ol oas DDI DDI VDDI
Victim Drug Primary Perpetrator Drug Inhibition | AUC CL sS Reference
Enzyme Target | gycCon | cLCon | VEO™
: N CYP2D6
Caffeine CYP1A2 Terbinafine CYP1AD 1.3 0.79 1.1 [9]
CYP3A4
Midazolam CYP3A4 Erythromycin P-gp 1.5 0.66 0.93 [10]
CYP3A4
Midazolam CYP3A4 Fluconazole CYP2C9 2.0 0.49 0.92 [11]
CYP2C19
CYP3A4
Midazolam CYP3A4 Itraconazole CYP2J2 3.2 0.31 1.1 [11]
P-gp
CYP1A2
Theophylline CYP1A2 Cimetidine 1.6 0.60 1.1 [12]
0CT2
. . . CYP1A2
Theophylline CYP1A2 Ciprofloxacin CYP3A4 1.4 0.69 1.0 [12]
Cimetidine + CYP1A2
Theophylline CYP1A2 . . CYP3A4 1.8 0.55 1.1 [12]
Ciprofloxacin 0CT2

Ratios are expressed as interaction / control
Abbreviations: AUC, area under the curve; CL, clearance; Con, control; CYP, cytochrome P450;
OCT, organic cation transporter; P-gp, P-glycoprotein; Vs, volume of distribution at steady-state
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Utilize inverse of V. /F ratio to estimate change in F alone

Estimated change in F

4 DDI 1 /‘JH

_ Vss I F Cont.
Cont.
VSS/ %Cont. Fppr.

F W‘/
Unchanged in metabolic DDIs
V,s Ratio=1

estimates change in F

Inverse of V,./F ratio <

Figure 3.1: The inverse of change in the apparent volume of distribution at steady state (V;s/F)
can provide estimates of change in bioavailability (F) in oral metabolic drug-drug interactions.

Utilize F change to estimate CL change from CL/F ratio

Estimated change in F
(from previous step)

(CL DDI
/F CLpp;r  Feont.

CL/FCOM' =CLC0nt. Fppr.,

\ ~~

Estimated change in CL

Observed change
in CL/F

Figure 3.2: Utilization of estimated change in bioavailability (F) can discriminate the change in
clearance (CL) from apparent clearance (CL/F) ratios.
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Methods

The CYP3A4 in vivo index substrate midazolam was selected as a model metabolized drug
for evaluation of the proposed methodology. Drug interaction studies were identified for which
midazolam was dosed both orally and IV as the victim drug, and the perpetrator was a clinically
recommended CYP3A4 inhibitor or inducer based on a recent compilation of clinical index
substrates and inhibitors [13]. Apixaban was also selected as an additional drug to further
evaluate this methodology.

Changes in exposure (AUC), clearance (CL), apparent clearance (CL/F), volume of
distribution at steady state (Vi), apparent volume of distribution at steady state (V./F),
bioavailability (F), and percent extrapolation of AUC were examined and reported as ratios of
interaction/control. The published pharmacokinetic values reported by the original investigators
were utilized in priority, however all clinical studies investigated here did not report Vi/F,
therefore it was necessary to utilize the published pharmacokinetic profiles to estimate this ratio
and supplement any other parameters not reported. This was achieved by digitization of victim
drug mean plasma-concentration time profiles that were subsequently analyzed by
noncompartmental analysis using WinNonlin Professional Edition Version 2.1 (Pharsight,
Mountain View, CA, USA). All pharmacokinetic ratios calculated from digitization of published
pharmacokinetic profiles are specifically indicated as a footnote for clarity. Digitized AUC values
were compared to reported AUC values and differences were found to be less than 20%,
indicating that the reported average concentration-time profiles investigated here reasonably

represented the study population. The percent of AUC extrapolations are listed following both
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IV and oral drug administration as an indication of the potential confidence in the derived
pharmacokinetic parameters.

Mean absorption time (MAT) was estimated, as we previously described [6], as the
reciprocal of the first-order absorption rate constant after the oral concentration-time data were
fit to a 2-compartment model with absorption from the gut compartment using WinNonlin.
Mean residence time (MRT) was calculated as the ratio of the area under the first moment curve
(AUMCy..) divided by AUCp.- for intravenous interactions. However, for oral interactions
calculation of MRT requires that MAT must be subtracted from the ratio of AUMC / AUC. The
second equation presented in this chapter was utilized to calculate Vi or Vi/F.

Prediction of extent of change of Fand CL following oral dosing was calculated using the
methodology presented in Figure 3.1 and Figure 3.2, respectively. In each DDI presented, the
comparison of the change in terminal half-life following IV and oral dosing is also reported as
footnotes in Tables 2.2 — 2.5. Assuming the change in half-life following oral dosing accurately
reflected the change in CL, it is possible to then predict the change in F using the first equation

presented in this chapter.

Results

We identified clinical DDIs in the literature where the effects of widely-used metabolic
inhibitors or inducers were examined following both IV and oral dosing of the primarily
metabolized victim drug midazolam, as well as for an additional drug apixaban to further evaluate
this methodology. Sufficient data and concentration-time curves were available in the

publications for us to demonstrate the utility and potential reliability of this methodology.
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Midazolam was dosed orally and IV with and without the inhibitors clarithromycin [14],
fluconazole [15], itraconazole [11], and ritonavir [16], and both midazolam and apixaban were
dosed orally and IV with and without multiple dosing of the inducer rifampin [16, 17]. In each of
these six metabolic interactions, no significant change in Vs was observed following IV dosing of
the victim drug, with Vi ratios ranging from 0.87 to 1.19.

Table 3.2 displays the ratios of change in IV and oral midazolam pharmacokinetic
parameters in the perpetrator versus control phase for the clarithromycin [14], fluconazole [15],
and ritonavir [16] interaction studies. In the clarithromycin study, clarithromycin (500 mg BID; 7
days) caused a 63% decrease in midazolam IV clearance [14]. Assuming that this decrease in
clearance would also occur following oral dosing, the investigators estimated clarithromycin
increased oral bioavailability by 2.42-fold. Using the methodology proposed here to predict
changes in CL and F for the oral data only, with the assumption that Vi is unchanged for this
metabolic interaction, the predicted change in F was a 2.94-fold increase and that CL had
decreased 59%. In the fluconazole study, concomitant fluconazole administration (200 mg; single
dose) resulted in a 32% decrease in midazolam IV clearance (predicted 40% decrease from oral
study), and a 2.33-fold increase in oral bioavailability (predicted 2.38 increase from oral study)
[15]. In the ritonavir interaction, multiple dosing of ritonavir (800 mg; 14 days) resulted in a 71%
decrease in midazolam IV clearance (predicted 72% decrease from oral only study) and a 2.55-
fold increase in bioavailability (predicted 2.78 increase from oral only study) [16].

Changes in midazolam pharmacokinetic parameters in the interaction with itraconazole
(200 mg; 4 days (IV); 6 days (oral)) are listed in Table 3.3 [11]. Administration of itraconazole for

4 days resulted in a 69% decrease in IV midazolam clearance. The oral interaction between
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itraconazole and midazolam was studied on day 6, and with the assumption that alteration in
midazolam clearance is similar between day 4 (IV DDI) and day 6 (oral DDI), the resulting increase
in bioavailability is 2.46-fold. The methodology predicted a 2.00-fold increase in bioavailability
and a 70% reduction in clearance.

Table 3.4 shows the changes in oral and IV midazolam pharmacokinetic parameters due
to multiple doses of rifampin (600 mg QD; 14 days), which resulted in a 2.16-fold increase in
midazolam IV clearance and 81% decrease in bioavailability [16]. The oral midazolam interaction
data results in an 11.7-fold increase in CL/F, but by utilizing the methodology presented here, it
is possible to predict that the large change in CL/F is a result of an approximate 2.93-fold increase
in clearance and a 75% reduction in oral bioavailability.

Table 3.5 shows that multiple doses of rifampin caused a 1.64-fold increase in apixaban
IV clearance and a 24% decrease in oral bioavailability [17]. Using the methodology proposed

here for the oral data-only predicts that CL had increased 1.50-fold and that F decreased by 30%.

Discussion

Utilization of this relatively simple methodology to evaluate DDIs for orally dosed drugs
will have a significant impact on how DDIs are interpreted from a drug development and
regulatory perspective. For metabolic interactions, this methodology can reasonably
differentiate the extent of change in F from changes in CL when IV dosing data are unavailable.
Here we demonstrate the utility of this methodology for the primarily metabolized drug
midazolam, a commonly-used in vivo index substrate of CYP3A4, and for one study with apixaban,

for which both oral and IV interaction data were available in the same subjects.
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Table 3.2 outlines the results of the clarithromycin [14], fluconazole [15], and ritonavir
[16] drug interaction studies. In the clarithromycin-midazolam interaction study [14] significant
differences in exposure change (AUC ratios) were observed when comparing the IV and oral DDI
studies (2.66- and 7.0-fold, respectively), indicating that a significant change in both oral
bioavailability and clearance occurred as a result of the interaction. The methodology presented
here adequately distinguished the contribution of change in clearance from bioavailability in the
oral DDI; the estimated change in F differed by 21% from the observed change (2.94 estimated
vs. 2.42 observed), while the estimated change in CL only differed by 11% from the observed
change with IV dosing (0.41 estimated vs. 0.37 observed). In the midazolam-fluconazole
interaction study [15], the predicted changes in F and CL were quite close to observed changes
calculated with IV dosing data, with only a 2% difference in F (2.38 estimated vs. 2.33 observed)
and a 12% difference in CL (0.60 estimated versus 0.68 observed). In the ritonavir-midazolam
DDI [16], a 9% difference in F and only a 3% difference in CL was observed between predicted
and actual values. For all three of these interactions, assuming that changes in oral terminal half-
life accurately reflected the change in CL and using Eq. 1 would also have given reasonable
estimates of CL and F (as noted in footnotes b-d of Table 3.2).

In Table 3.3 for the itraconazole-midazolam DDI [11], the observed changes in CL were
remarkably close to predictions based on oral data only (3% difference in CL) accompanied by a
19% difference in F. Utilizing changes in oral terminal half-life to predict CL changes, then
subsequently using the first relationship presented in this chapter to estimate the changes in F,

would not have been as accurate, with prediction errors of 25% for both parameters.
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The induction effect of multiple dosing of rifampin on midazolam was examined [16]
(Table 3.4); the estimated change in F differed by 32% and the estimated change in CL differed
by 35% from observed values. Although a prediction error of 30% may be considered to be quite
high, it should be noted that the 12.3-fold decrease in exposure as a result of the rifampin-
midazolam oral DDI was significantly larger in magnitude than other midazolam DDls
investigated, which ranged from 3.9 [15] to 8.3 [16]. Of note, the estimated change in F and CL
based on oral terminal half-life changes and Eq. 1 resulted in much less accurate predictions, with
errors in Fand CL of 63% and 78%, respectively.

In contrast to the midazolam-rifampin DDI, estimates for the apixaban-rifampin
interaction study [17] were much closer to observed values with both F and CL differing by only
9% (although AUC only changed approximately 2-fold). As noted in footnote b of Table 5, the
estimated change in F and CL when using oral terminal half-life to predict CL changes resulted in
markedly poorer predictions, with errors in F and CL of 40% and 41%, respectively. Of note,
apixaban Vi following IV dosing indicates minimal change with a ratio of 0.87, suggesting that
transporters inhibited by rifampin are not involved in apixaban disposition, as was initially
discussed in Chapter 2. The success of the methodology in discriminating F and CL further
supports this observation since it relies on the assumption that Vi is unchanged. These findings
are contrary to the apixaban FDA label, which proposes that the efflux transporters BCRP and P-
gp may play a clinically significant role, and further demonstrates the utility of this simple
methodology in recognizing transporter versus metabolism drug interactions. A critical

examination of all available apixaban clinical interaction data will be discussed in Chapter 5.
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Methodology Scheme

Step-by-Step Guide to Appropriate Use of the Clearance and Bioavailability Discrimination Methodology

STEP 1: DETERMINE IF A DRUG INTERACTION AFFECTS ONLY METABOLIC ENZYMES

A. Does a Metabolic Interaction Exist?

« Victim Drug: Perform in vitro metabolic stability in human liver microsomes
and/or human hepatocytes

« Perpetrator Drug: Perform in vitro reversible and/or time-dependent CYP
inhibition assays

B. Is there Basis for a Transporter Interaction?

« Victim Drug: Perform in vitro uptake experiments in human hepatocytes and/or
transporter-overexpressing cell lines; utilization of transporter inhibitors can
bolster conclusions

« Perpetrator Drug: Perform in vitro transporter inhibition studies with probe
substrates of major xenobiotic transporters

C. Will an in vitro Transporter Interaction be Clinically Significant?

« BDDCS Class 1: Methodology is appropriate for use; in vitro transporter
involvement is not clinically significant

« BDDCS Class 2: Use methodology with caution; transporters may or may not be
involved in clinical disposition

« BDDCS Class 3 and 4: Methodology not recommended; transporter involvement
is clinically significant

D. Does in vivo Pharmacokinetic Data Suggest a Transporter Interaction?

« Compare ratios of changes in CL/F to Vs/F of victim drug in the interaction versus
control

« If the magnitude of change is greater in Vi/F than CL/F a transporter interaction
is likely

E. Is there Potential for Protein Binding Changes to Alter Volume of Distribution?

« Perform in vitro studies to determine if the perpetrator affects protein binding

of the victim drug

in vitro ADME assays

00 05 10 15 20
Log Concantration. Orug (1)

in vitro uptake assays

BDDCS theory

High solubilty

Lowsolubilty

Class 1

Methodology
Appropriate for
Use

biity

c
i
H

Class 2
Us

e
Methodology
with Caution

Class 3
Methodology
Not
Recomment ded

Low permeabilty

Class 4
Methodology
Not

Recommended

Examine in vivo data

CL/FLreuLed

treated
Ves/F

C]‘/ch!trnl

V. /F control
ss

Signifies a significant
transporter interaction

in vitro binding assays

STEP 2: ASSUME Vs IS UNCHANGED FOR | STEP 3: UTILIZE BIOAVAILABILITY CHANGE TO

STRICTLY METABOLIC INTERACTIONS ESTIMATE CHANGE IN CLEARANCE
Utilize the inverse of the Vi /F ratio Utilize the estimated change in F
to estimate change in bioavailability (F) to discriminate change in clearance (CL)

1

treated treated control
Vie/ F | yuetes g

control — tfcontrol  Ltreated
Ve /F /Vs,s F Cltreated CL/Ftreated

Fcontrol

V. /Ftreated Fcontrol
Ss ~

VSS/Fcontrol = Ftreated

Clcontrol - CL/Fcontrol

) Ftreated

64

Figure 3.3: Methodology scheme to guide appropriate use of the clearance (CL) and
bioavailability (F) discrimination methodology for strictly metabolic interactions. ADME,
Absorption, Distribution, Metabolism, Excretion; BDDCS, Biopharmaceutics Drug Disposition
Classification System; CYP, cytochrome P450; ICsq, concentration of drug producing half-maximal
inhibition; Vs, volume of distribution at steady state




Considerations to Guide the Appropriate Use of the Discrimination Methodology

It is important to recognize the assumptions and limitations of this methodology to
appropriately guide its use and prevent misinterpretations of interaction data. Calculation of
Vss/F relies on measurements of CL/F and MRT, two parameters that are derived from AUC, which
highlights the importance of accurate determination of AUC for the success of this methodology.
Adequate plasma sampling describing the terminal slope of the concentration-time profiles is
crucial since AUC must be extrapolated from the final time-point to infinity. Therefore, it is
imperative to inspect the percentage of AUC that has been extrapolated after the final sampling
time point to ensure that data estimates can be reliably interpreted. In our analysis, we point
out the percentage of total AUC that was extrapolated in each phase of the DDIs to highlight the
degree of AUC estimation; low extrapolation percentages indicate lower probability of error in
AUC determination, however, the converse is not necessarily true. Higher percent extrapolations
may or may not indicate inaccuracies in AUC determination; if the terminal phase of the
concentration-time profile is accurate, then the degree of extrapolation does not introduce error.
The degree of extrapolation in AUC determinations is magnified in calculations of the area under
the moment-time curve (AUMC), further affecting calculations of MRT following IV dosing (which
is calculated by the ratio of AUMC /AUC). Following oral dosing, the ratio of AUMC /AUC results
in the sum of MRT and mean absorption time (MAT). We proposed that MAT may be reasonably
approximated by estimating the oral absorption rate constant (k,) from pharmacokinetic profiles
(MAT = 1/k,) by fitting the data to a compartmental model that assumes first order absorption
from a single compartment absorption site [6]. Certainly, all drug absorption will not follow first

order kinetics from a one compartment absorption site, but the objective here is not to calculate
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MAT in each phase, but rather how MAT changes under conditions where a perpetrator is present
versus in its absence. The high relative accuracy of our predictions in Tables 3.2 — 3.5 suggests
that this assumption is reasonable. In three of the six interactions presented in Tables 3.2 - 3.5,
attempts to use changes in terminal half-life and Eq. 1 to predict the changes of CL and F would
not have been as accurate as the methodology proposed here. Since, when only oral DDI data
are available, it is not possible to know if estimates using Eq. 1 may be accurate, we recommend
that the procedure here always be preferred.

The methodology is only applicable to interactions where Vi is unchanged, hence its
appropriate application to strictly metabolic drug-drug interactions. Another scenario where it
is possible that Vs may change (even for purely metabolic interactions) is if a perpetrator drug
alters protein binding of the victim drug by displacing it from plasma or tissue proteins, resulting
in increased fraction unbound of victim drug. We believe that a protein binding interaction can
be adequately predicted based on in vitro analysis as detailed in Figure 3.3. Perpetrator drugs
could potentially alter blood flow that may result in increased or decreased clearance of victim
drugs, however changes in V; are not anticipated with changes in blood flow. Therefore, the
impact of such perpetrators is not expected to affect the utility of this methodology.

Finally, although the pharmacokinetic values reported by the original authors were
utilized in priority, the data analyzed here are partially based on average reported concentration-
time profiles since digitization was required to estimate the unreported V./F for all oral
interactions. When available, it may be more appropriate to utilize individual PK profiles to make
predictions of changes in CL and F for each subject based on this methodology. The limitation of

utilizing average pharmacokinetic concentration-time profiles is that in many cases average
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profiles do not accurately represent changes within a particular individual in the drug interaction
study. Utilizing the average drug concentrations of each subject at each time point results in
pharmacokinetic profiles that do not necessarily represent a single subject within the study.
Individual patient pharmacokinetic data are very rarely published, and further, drug interaction
studies for which a victim drug is administered both orally and IV in the same patients are quite
uncommon (we do not have such drug interaction data in our clinical archive), therefore it was
impossible to identify such data in the literature for utilization here. Thus, we propose that
utilization of this methodology be carried out for each subject in the DDI study. Efforts are
underway towards establishing collaborations with laboratories that may have access to such
data for further evaluation of the methodology.

For well-studied marketed drugs such as midazolam, it is often known whether or not
transporters are significantly involved in drug disposition due to the availability of well-designed
IV or oral interaction studies utilizing clinically-demonstrated transporter inhibitors. And for
most investigational drugs, there is good evidence of the pathways governing drug disposition
before drug-drug interaction studies are undertaken. However, if such data are not available for
a particular drug-of-interest, we suggest the use of the Biopharmaceutics Drug Disposition
Classification System (BDDCS) to anticipate which drugs may be susceptible to transporters in
vivo [18]. The unfavorable membrane permeability of BDDCS Class 3 and 4 compounds implies
their reliance on xenobiotic transporters to cross biological membranes in vivo, and this theory
is supported by the observation that Class 3 and 4 drugs are primarily eliminated by transporter-
dependent processes (i.e. renal or biliary excretion of unchanged drug). BDDCS Class 1 and 2

drugs have favorable permeability characteristics that allow passage across biological
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membranes via passive processes, which is supported by the observation that these drugs are
primarily metabolized. It is theorized that the rapid membrane permeability combined with the
high solubility of BDDCS Class 1 drugs allows these drugs to rapidly cross membranes at
concentrations high enough to saturate active transport, or alternatively the active transport
amounts are small compared to the passive permeability amounts, overcoming any potential
transporter effects in vivo, even if shown to be a transporter substrate in vitro [18]. BDDCS Class
2 drugs also display high permeability, but due to their low solubility it is thought that the
resulting lower soluble concentrations available for passive diffusion may be incapable of
saturating transporters, or passive transport may not be much greater than the contribution of
active transport. Therefore, involvement of uptake or efflux transporters cannot be ruled out in
the absorption and disposition of BDDCS Class 2 drugs despite their status as being primarily
metabolized. However, the in vitro transporter interaction studies proposed in our guide to
appropriate use of the methodology (Figure 3.3) will assist in making this decision. In summary,
the proposed methodology is appropriate for BDDCS class 1 drugs, not recommended for BDDCS
class 3 and 4, and should be used with caution for BDDCS class 2 drugs with recognition that
transporter involvement may or may not be clinically relevant. Evaluation of the association of
BDDCS class with the extent of change in Vi in IV interactions is an ongoing effort in our
laboratory to validate this hypothesis.

In addition to utilization of BDDCS to inform the appropriate use of our methodology, we
have outlined additional in vitro studies that may be helpful in identifying strictly metabolic
interactions (Figure 3.3). The recommendations outlined in Figure 3.3 will be helpful for

investigational compounds that inherently are less well-characterized than marketed drugs, as
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there is increased likelihood of clinical evidence regarding the potential involvement of
transporters versus enzymes with known index inhibitors.

Although our methodology relies on the assumption that Vi changes in transporter drug-
drug interactions, our laboratory has previously summarized how volume of distribution was
observed to change based on localization of the transporter (in the liver versus kidney) and if the
transporter affected is an uptake versus efflux transporter [3]. In general, large decreases in
volume of distribution are observed for hepatic uptake transporters, whereas renal uptake
transporter interactions do not result in volume of distribution changes, although there were
exceptions observed. Inhibition of hepatic efflux transporters generally leads to a decrease in
volume of distribution while renal tubule efflux transporter inhibition results in increased volume
of distribution. In analysis of transporter interactions, further consideration of the inhibitory
specificity of perpetrator drugs is necessary, as currently there are a limited number of well-
characterized and specific clinical transporter inhibitors [13]. Therefore, there may be specific
transporter interactions where Vs does not change significantly and this methodology may
appropriately discriminate CL from F changes. However, further validation is warranted prior to
applying this methodology to transporter interactions and is an ongoing effort of our laboratory,

and therefore we do not recommend its use for transporter interactions at this time.

Conclusions
For decades, the field has believed that changes in clearance could not be accurately
discriminated from changes in bioavailability for oral drug interaction studies without performing

an IV interaction study to confirm the extent of clearance changes. This has led to challenges in
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understanding the contribution of bioavailability change in oral DDI studies, often resulting in an
overprediction of clearance change and an underestimation of the impact bioavailability changes
can have on observed exposure. The ingenuity of this relatively simple methodology leverages
the understanding that volume of distribution appears to remain unchanged where disposition
is limited to metabolism, therefore calculation of changes in oral volume of distribution can
reliably provide estimation of bioavailability versus clearance changes. We recommend that this
methodology be routinely utilized in the evaluation of clinical drug-drug interaction studies.
Utilization of this relatively simple methodology to evaluate DDIs for orally dosed drugs will have
a significant impact on how DDIs are interpreted from a drug development and regulatory

perspective.
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CHAPTER 4: THE NECESSITY OF USING CHANGES IN ABSORPTION TIME TO IMPLICATE

INTESTINAL TRANSPORTER INVOLVEMENT IN ORAL DRUG-DRUG INTERACTIONS®

Abstract

In drug discovery and development, it is of high interest to characterize the potential for
intestinal drug-drug interactions to alter bioavailability of a victim drug. For drugs that are
substrates of both intestinal transporters and enzymes, estimating the relative contribution of
each process has proved challenging, especially since the susceptibility of drug to uptake or efflux
transporters in vitro does not always translate to clinically significant in vivo involvement. Here
we introduce a powerful methodology to implicate intestinal transporters in drug-drug
interactions based on the theory that clinically relevant intestinal transporter interactions will
result in altered rate of absorption of victim drugs. We present exemplary clinical drug-drug
interaction studies that utilize well-characterized clinical substrates and perpetrators to
demonstrate how mean absorption time (MAT) and time to maximum concentration (¢,,,,,) are
expected to change (or remain unchanged) when either intestinal transporters or metabolic
enzymes were/are altered. Acute inhibition of gut efflux transporters resulted in decreased MAT
and t,,4, Values, induction increased these values, while inhibition of intestinal metabolic
enzymes did not result in altered MAT or t,,,,,. Apixaban was selected to demonstrate the utility
of the methodology, as the purported involvement of both intestinal enzymes and transporters

has been suggested in its FDA package insert. Involvement of intestinal efflux transporters in

" Modified from the publication: Sodhi JK, Benet LZ. The necessity of using changes in absorption
time to implicate intestinal transporter involvement in oral drug-drug interactions. AAPS J.
2020;22(5):111.
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apixaban disposition is unlikely. Utilization of this simple but powerful methodology to implicate
intestinal transporter involvement will have significant impact on how drug-drug interactions are

interpreted.
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Introduction

Bioavailability is one of the most important factors in determining the dosing regimens of
orally dosed drugs. Oral bioavailability (F) is defined as the fraction of an oral dose that reaches
systemic circulation intact and therefore F is influenced by the extent of absorption of drug from
the intestinal gut lumen into the enterocyte (which may vary depending on both gut uptake and
efflux transporters), the degree of intestinal metabolism within the enterocyte, as well as the

extent of first-pass hepatic elimination, as defined by the following relationship:

F:FA'FG'FH

where F4 is the cumulative fraction of dosed drug arriving intact into the enterocytes, Fs is the
fraction of dose that escapes intestinal metabolism within the enterocyte and enters the portal
vein, and Fy is the fraction that is not metabolized on first pass through the liver. Bioavailability

is directly proportional to drug exposure (AUC, area under the concentration-time curve):

F - Dose

AUC =
CL

where CL is clearance. Therefore, the extent to which an orally dosed drug can reach the systemic
circulation, defined by its degree of intestinal absorption and ability to avoid intestinal and
hepatic first pass metabolism, directly defines the dose required to achieve therapeutically

effective drug concentrations.
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Consequently, in the discovery and development of new chemical entities, it is of high
interest to not only predict intestinal bioavailability, but also to characterize the potential for
intestinal drug-drug interactions to alter bioavailability of a victim drug [1-4]. Since CL
measurements are inherently confounded by F following oral dosing, measurement of F can be
achieved by comparing dose-normalized AUC values following oral and intravenous dosing of
drug (assuming CL has not changed between studies). As discussed in Chapter 3, we have
recently developed a methodology that allows discrimination of changes in CL from changes in F
in metabolic DDIs [5]. This is possible due to the recognition that volume of distribution at steady
state (Vis) remains unchanged in metabolic DDIs [6, 7] and therefore changes in apparent Vi
(Vss/F) will reflect the change in F alone, allowing one to differentiate changes in F from CL in oral
metabolic DDIs. This methodology may not be appropriate for use in clinically significant systemic
transporter DDIs, since Vi is expected to change in such interactions [8, 9].

Metabolic drug-drug interactions (DDIs) will have the potential to alter total
bioavailability via increasing or decreasing drug metabolism in the intestine and/or liver, thereby
altering the extent of Fs and/or F. Interactions involving xenobiotic transporters, however, will
have the potential to not only alter the extent of absorption (F4) by allowing or disallowing entry
of drug from the gut lumen into the enterocyte, but also can result in alterations of the rate of
absorption (k;). Efflux transporters expressed on the apical side of the enterocytes, such as P-
glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP), are able to pump drug from
inside the enterocyte back into the gut lumen, where drug may then re-enter the enterocytes.
Thus, for clinically significant transporter substrates, inhibition of intestinal efflux transporters

would prevent drug cycling between the enterocytes and gut lumen, thereby decreasing
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absorption time, while induction would increase absorption time. For apically expressed
intestinal uptake transporters, such as organic anion transporting polypeptide (OATP) 2B1,
inhibition would result in prolonged absorption, while induction would decrease absorption time
for clinically significant substrates. Therefore, it is expected that clinically significant intestinal
transporter DDIs will result in noteworthy changes in mean absorption time (MAT), the inverse
of the first order absorption rate constant (k;) and time of maximal concentration (¢,,4x)-

Often in complex DDIs, those in which both metabolic enzymes and transporters may be
implicated, it is difficult to discern the contribution of each process to overall disposition [10, 11].
This is true not only for understanding the contribution of metabolism versus transporter-
mediated elimination to systemic clearance, but also their individual impact on bioavailability,
and both sets of parameters contribute directly to changes in observed drug exposure.
Understanding of both of these complimentary aspects will allow investigators to anticipate the
magnitude of a potential DDI when either transporters or enzymes (or both) are affected. We
are concerned that a number of papers, and even approved drug labeling, have proposed that
drug interactions leading to changes in AUC are the result of intestinal transporter interactions
based primarily on in vitro measures of the interaction potential when, in fact, no changes in MAT
and t,,,,, are observed. In this investigation, we further explore how to interpret changes in MAT

and t,,4, to implicate intestinal absorptive transporter involvement in oral DDlIs.

Methods
To determine if intestinal absorptive transporters are involved in an oral DDI, changes in

MAT and t,,,, were examined for the interaction versus control phases of published clinical DDI
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studies. In addition, AUC, apparent clearance (CL/F), mean residence time (MRT), terminal half-
life (ti/2.), and V,/F were also examined and all parameters were reported as ratios of
interaction/control. Percent AUC extrapolation was also examined as a potential indication of
accuracy of parameters derived from AUC, with understanding that a high percent extrapolation
does not necessarily indicate inaccuracies if the elimination phase is accurately represented. All
reported ratios of AUC are dose-normalized. For studies in which victim drug was dosed to
steady-state, the AUC within the dosing interval (from 0 to 7) was utilized since this value is
mathematically equivalent to AUC extrapolated to infinity for a single dose [12], and in these
cases percent AUC extrapolation was not reported.

Clinical studies routinely publish t,,,, values, however, MAT or k, are less frequently
reported. Therefore, in cases where MAT values were not available, these values were calculated
by one of two means: (A) estimation from published concentration-time profiles via
compartmental fitting of the data, or (B) calculation using reported t;/,, and ¢, 4, values and the

following relationships:

k
in(*a/, )
tmax = k. —k
a e

kq:(1—e"ke T
_ (ke-(l—e-ka'ﬁ )
tmax = kg — ke
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where k, is the elimination rate constant (that reflects the slope of the terminal half-life) and
is the dosing interval. The first relationship describes t,,,, for a one-compartment model with
first order absorption following a single dose, while the second reflects the multiple-dose
relationship at steady state [13], where here k, is the elimination rate constant determined
during a dosing interval, not necessarily the terminal elimination rate constant after dosing has
stopped [14].

Both relationships ignore the drug distribution that almost all drugs will experience
following a single dose, therefore less faith can be attributed to calculations of k, using the first
single dose relationship. In contrast, at steady state, peripheral compartments will contain
accumulated drug and there will be far less distribution following oral dosing so that utilization
of the second t,,,, relationship is reasonably appropriate for any dug that has been dosed to
steady state, since all drugs approximate a one-compartment model at steady state regardless
of how many compartments are required to describe its kinetics following a single dose [14].
Therefore, more credence can be attributed to k, estimation based on the steady state ¢,
relationship. Of note, there are no explicit solutions of either relationship, however, they can be
solved iteratively for k, with known k, and ¢, values.

The alternative methodology relies on digitization of published concentration-time
profiles of victim drug to estimate the MAT ratio, and this methodology was also used to
supplement any unreported pharmacokinetic ratios. In such cases, the mean plasma-
concentration time profiles of victim drug were digitized with WebPlotDigitizer Version 4.2 (San
Francisco, CA, USA) and subsequently analyzed using WinNonlin Professional Edition Version 2.1

(Pharsight, Mountain View, CA, USA). Mean absorption time (MAT) was calculated as the

80



reciprocal of the first-order absorption rate constant (k,) from fitting of the victim drug oral
concentration-time data to a 2-compartment model with absorption from the gut as we have
previously described [15]. If mean residence time (MRT) was not reported, MRT was calculated

by the following relationship:

AUMCy_,q
MRTsingle dose = W — MAT

where AUMC is the area under the moment curve, and both AUC and AUMC are extrapolated to
infinity for single dose studies. For steady state studies, the AUC within the dosing interval from
0 to t (AUCy_,) without extrapolation to infinity is mathematically equivalent to AUC
extrapolated to infinity for a single dose (AUC,_ ) [12]. However, the AUMC within a dosing
interval at steady-state (AUMC,_,;) is less than AUMC,_,,, for a single dose [16, 17], therefore
the following relationship for orally dosed drugs was utilized to calculate MRT for steady-state

studies [18]:

AUMCy,; + T - AUC,
MRTsteqay state = AUC, - MAT
=T

where AUC,_,, refers to the extrapolation of steady-state AUC from the end of the dosing
interval to infinity, which is calculated as the quotient of the concentration at the end of the
dosing interval divided by the terminal phase rate constant. Calculation of V,/F was achieved

using the following relationship [19]:
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Vs _ CL MRT
F F

where CL/F was calculated by dividing dose by AUC,_,, for single dose studies, and by dividing
dose by AUC),_,, for steady-state studies.

All pharmacokinetic ratios were calculated using published data in priority, and
supplemented with data derived from digitized values only when necessary. The source of all
data used in calculated pharmacokinetic ratios is noted as footnotes.

A number of substrates of metabolic enzymes and transporters were selected for
evaluation of the proposed methodology, with clinically recommended in vivo index substrates
used in priority [20]. The studies investigated here were selected to include an example of (A)
inhibition of intestinal transporters (BCRP; rosuvastatin with single-dose rifampin) [21], (B)
induction of intestinal transporters (P-gp; talinolol with multiple-dosed rifampin) [22], (C)
inhibition of intestinal / hepatic metabolic enzymes (CYP3A4; triazolam with fluconazole) [23],
and (D) inhibition of primarily hepatic metabolic enzymes only (CYP2C19; omeprazole with
clarithromycin) [24]. In addition, the proposed methodology was used to evaluate the purported
involvement of intestinal efflux transporters in apixaban disposition [25], a drug for which
involvement of both metabolic enzymes and efflux transporters has been suggested throughout
the literature.

All selected clinical studies had a crossover design, in order to minimize the impact of any

potential inter-individual variability between treatment and control groups, which was
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highlighted in Chapter 2, and with the assumption that within the same individual, the dissolution
and distribution of drug within the intestinal lumen are similar for both arms of the clinical study.

Analysis of involvement of intestinal transporters proceeded via examination of ratios of
change in MAT and t,,,,. Ratios that indicated greater than 30% change (i.e. ratios outside of
the range of 0.77 and 1.30) were considered to be a potentially clinically significant intestinal
transporter interaction.

Simulations were conducted based on the t,,,,, relationships presented above to examine
the relationship between MAT and t,,,, for a rapidly versus more slowly absorbed drug with
MAT values of 0.5 hr and 2 hr, respectively. The impact of 15 min changes in MAT on single-dose

and steady-state t,,,,, Were examined.

Results

We identified and analyzed orally dosed clinical DDI studies from the literature in which
intestinal transporters or metabolic enzymes were affected, as well as for an additional drug
apixaban to further evaluate the utility of this methodology to implicate intestinal transporter
involvement in oral DDIs. Intestinal transporter DDI studies were selected to include examples
of both inhibition [21] and induction [22] by rifampin. Metabolic DDI studies were selected to
highlight a significant intestinal metabolic interaction of the victim drug triazolam [23] versus a
metabolic interaction that primarily occurs in the liver for omeprazole [24]. Details of these drug
interaction studies, including the substrate and inhibitory specificities of victim and perpetrator

drugs, respectively, are outlined in Table 4.1.
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Table 4.2 displays the ratios of change in oral pharmacokinetics in the DDI studies that
affect intestinal transporters, namely, acute inhibition of intestinal transporters (BCRP) with
single dose rifampin (victim drug rosuvastatin) [21] and the induction of intestinal transporters
(P-gp) with multiple dose rifampin (victim drug talinolol) [22]. In the single dose rifampin study,
600 mg IV rifampin caused a 3.37-fold and 3.21-fold increase in AUC in White and Asian subjects,
respectively. Additionally, a significant decrease in MAT and t,,,,,, was observed in both groups;
Whites showed a 53% decrease in MAT and 50% decrease in t,,,, and Asians displayed a 66%
decrease in MAT and 45% decrease in t,,,,. In the multiple-dose rifampin study, 600 mg PO
rifampin for 9 days resulted in a 35% reduction in talinolol AUC, accompanied by marked
increases in MAT (1.70-fold) and t,,,4, (1.35-fold).

Table 4.3 displays the ratios of change in oral pharmacokinetics in the DDI studies that
affect metabolic enzymes, outlining (1) a triazolam—fluconazole interaction in which CYP3A4
(both intestinally and hepatically expressed) is inhibited [23] and (2) an omeprazole-
clarithromycin DDI in which the primary interaction is due to CYP2C19 (primarily expressed in the
liver with minor intestinal expression) [24]. In the CYP3A4 inhibition study, multiple doses of PO
fluconazole resulted in a 2.46-fold increase in oral exposure of single-dosed triazolam. This was
accompanied by minimal changes in MAT (ratio of 0.87) and ¢, (ratio of 1.11). In the CYP2C19
inhibition study, multiple doses of clarithromycin resulted in a 1.91-fold increase in steady-state
omeprazole AUC, while MAT only decreased by 8% and t,,,,, increased 11%.

Table 4.4 displays the ratios of change in oral pharmacokinetics of apixaban dosed with
multiple doses of rifampin, and shows a 52% decrease in apixaban exposure [25]. This change is

accompanied with minimal change in MAT (8% decrease) and an unchanged t,,,, ratio.
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Table 4.5: Regional Expression of Clinically Significant Efflux and Uptake Transporters in the

Intestine, Liver, Kidney and Brain

Transporter Intestinal Hepatic Renal Brain
Type Transporter Localization Localization Localization Localization
BCRP Apical Bile Canaliculi Apical (Blood)
MDR1 (P-gp) Apical Bile Canaliculi Apical (Urine) Apical (Blood)
MRP2 Apical Bile Canaliculi Apical (Urine)
MRP3 Basolateral Sinusoidal (Basolateral)
THTR1 Basolateral Basolateral
Efflux BSEP Bile Canaliculi
MDR3 Bile Canaliculi
MATE1 Bile Canaliculi Apical (Urine)
MATE2-K Apical (Urine)
MRP4 Sinusoidal (Basolateral) | Apical (Urine) Apical (Blood)
MRP6 Sinusoidal (Basolateral)
OATP2B1 Apical Sinusoidal (Basolateral)
ASBT Apical
MCT1 Apical
PEPT1/PEPT2 Apical Apical (Urine)
THTR2 Apical Apical (Urine)
OCT1 Sinusoidal (Basolateral)
OAT2 Sinusoidal (Basolateral) Basolateral
OAT7 Sinusoidal (Basolateral)
Uptake OATP1AZ Apical (Blood)
OATP1B1 Sinusoidal (Basolateral)
OATP1B3 Sinusoidal (Basolateral)
NTCP Sinusoidal (Basolateral)
OAT1/3 Basolateral
OATP4C1 Basolateral
0CT2 Basolateral
URAT1 Apical (Urine)
OSTa/B Basolateral Sinusoidal (Basolateral)
ENT1 Basolateral Sinus?ilzacla(gzlslgral'lceral) Apical (Urine) Basolateral (Brain)
Bidirectional ENT2 Basolateral Sinusoidal (Basolateral) Basolateral Basol.ateral (Brain)
Apical (Blood)
OAT4 Apical
OCTN1/2 Apical (Urine)
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Discussion

The methodology proposed here is a simple but powerful tool to evaluate the clinically
significant involvement of intestinal transporters for orally dosed drugs. Utilization of this simple
methodology will allow pharmaceutical scientists to better predict when an intestinal DDlIs is
expected to occur, as well as anticipate the degree to which exposure may change based on an
improved understanding of potential determinants of F for a drug-of interest. In this chapter, we
present exemplary clinical DDI studies that utilize well-characterized clinical substrates and
perpetrators to understand how MAT and t,,,, are expected to change (or remain unchanged)
when either intestinal transporters or metabolic enzymes were/are altered.

Table 4.2 outlines two clinical studies in which the major apical efflux transporters BCRP
or P-gp were either inhibited [21] or induced [22] by rifampin. In the single-dose rifampin study,
intestinal inhibition of BCRP resulted in a greater than 3-fold increase in exposure of the BCRP
substrate rosuvastatin in both Whites and Asians that were wild-type carriers for both BCRP and
OATP1B1 [21]. This significant interaction was accompanied by decreases in MAT and t,,q,
(ranging from approximately 2- to 3-fold reduction) as would be expected for inhibition of an
intestinal efflux transporter. In the multiple-dose rifampin study, induction of P-gp resulted in a
35% decrease in talinolol exposure and both MAT and t,,,,,, markedly increased (1.70- and 1.35-
fold, respectively) [22].

In summary, inhibition of efflux transporters results in decreased MAT and induction of
efflux increases MAT values. Changes in t,,4, trend in the same direction, although not always
to the same degree since changes in elimination half-life will also have an impact on t,,,,, as

evidenced by the single dose and steady state t,,,,, relationships presented above.
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Table 4.3 displays two metabolic DDIs in which the interaction either occurs due to
CYP3A4 in both the intestine and liver [23], or due to CYP2C19 (with minor CYP3A4 contribution)
that is primarily expressed in the liver with minimal intestinal involvement [24]. No changes in
MAT values were observed in either study, as would be expected when transporters are not
involved in absorption processes. These observations further demonstrate the utility of the
proposed MAT methodology to implicate intestinal transporter involvement.

In order to identify clinically significant transporter involvement in DDIs, we have recently
published guides to understanding DDIs involving transporters [8] and metabolic enzymes [6]. As
discussed in the Introduction to this chapter, in clinically significant transporter interactions the
magnitude of change in V,, can often be larger than the change in CL, resulting in counterintuitive
changes in t1/,, and MRT (i.e., decreases in CL can be associated with a shorter elimination half-
life). This trend can be observed in the rosuvastatin — rifampin DDI, where an approximate 70%
reduction in CL is associated with shorter t;/,, and MRT values due to an approximate 90%
reduction in Vs/F as a result of the inhibition of the hepatic uptake transporters OATP1B1/1B3
(Table 4.2). This is in contrast to the classic pharmacokinetic trend where changes in CL are
associated with an equal but opposite change in t;/,, and MRT (due to unchanged Vs in metabolic
DDIs), which was extensively reviewed for a large number of strictly metabolic DDIs in Chapter 2.
These guiding concepts, in addition to the MAT methodology proposed here, can help discern
transporter involvement in purported complex DDIs and were applied to the drug apixaban.

Apixaban is an anticoagulant factor Xa inhibitor that is primarily metabolized by CYP3A4.
The involvement of the efflux transporters P-gp and BCRP has also been suggested throughout

the literature as well as in the apixaban FDA label [26-28]. Multiple dosing of rifampin resulted

91



in an approximate 2-fold reduction in apixaban exposure, however, there was no change in MAT
(ratio of 0.92) and t,,,, (ratio of 1.00) (Table 4.4), suggesting that the in vitro susceptibility of
apixaban to P-gp is not clinically significant. Additionally, the increase in clearance is associated
with a decrease in MRT of similar magnitude, as would be expected for a metabolic interaction
as outlined in Chapter 2.

These results are consistent with the Biopharmaceutics Drug Disposition Classification
System (BDDCS), a simple drug classification system based on permeability rate and solubility
that can anticipate which drugs may be susceptible to transporters in vivo [29]. Apixaban is a
BDDCS Class 1 drug with favorable membrane permeability characteristics and high solubility,
allowing free passage across biological membranes via passive processes (rather than reliance on
xenobiotic transporters to cross membranes). It is theorized that due to the rapid membrane
permeability and high solubility of BDDCS Class 1 drugs, these drugs can rapidly cross biological
membranes at concentrations high enough to either saturate active transport or render the
active uptake to only be a minimal part of total uptake. Thus, the clinically relevant involvement
of transporters in vivo may be negligible even if the drug is demonstrated to be a substrate in in
vitro studies [29]. BDDCS Class 2 drugs are also highly permeable, but due to their low solubility
it is thought that the lower soluble concentrations available for passive diffusion may (in some
cases) either be incapable of saturating transporters or passive uptake due to the low solubility
does not outweigh the active process, and therefore transporters may or may not be involved
for these primarily metabolized BDDCS Class 2 drugs. BDDCS Class 3 and 4 have unfavorable
membrane permeability characteristics and thus rely on transporters to cross membranes, and

this theory is supported by the fact that Class 3 and 4 drugs are primarily eliminated in the urine
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or bile (i.e. transporter-dependent processes) rather than being metabolized. The BDDCS classes
of the victim drugs investigated here are displayed in Table 4.1 and nicely highlights that the
transporter interactions are associated with BDDCS class 3 victim drugs, while the metabolic
interactions are associated with BDDCS class 1 drugs. We propose that BDDCS can be utilized for
development compounds (that are inherently less well-studied than the index substrates

highlighted here) to help anticipate contributing factors in prediction of intestinal DDIs.

Utilization of the Clearance and Bioavailability Discrimination Methodology to Predict Major Site
of Drug-Drug Interaction

As presented in Chapter 3, knowledge that Vi is unchanged in strictly metabolic
interactions can help differentiate changes in CL from changes in F in metabolic DDIs, a very
useful finding to allow investigators to understand the contribution of each parameter in overall
observed exposure changes [5]. For the two metabolic DDIs investigated here, the CL and F
differentiation methodology estimated that in the CYP3A4 triazolam-fluconazole DDI, the
observed 2.46-fold increase in exposure was due to a 48% reduction in CL and a 1.27-fold increase
in F, while in the omeprazole-clarithromycin CYP2C19 DDI, the observed 1.91-fold increase in
exposure was due almost entirely to a 53% decrease CL (with a minor 10% reduction in F).
Although confirming IV data were not available, these estimates are consistent with the fact that
CYP3A4 is expressed extensively in the intestine and liver, whereas CYP2C19 expression is minor
in the intestine, therefore it is expected that the interaction would primarily occur hepatically.

In the apixaban-rifampin DDI investigated above, the DDI study was conducted after both

PO and IV dosing of apixaban, allowing for confirmation (from the IV interaction study) of the
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estimated change in CL versus F based on the oral interaction data. These results were presented
in Chapter 3, and showed that the observed 52% reduction in apixaban oral exposure following
multiple dosing of rifampin was estimated to be a result of a 30% reduction in F and a 1.5-fold
increase in CL based on oral interaction data. This result is consistent with the susceptibility of
apixaban to CYP3A4, as this isoform is expressed both intestinally and systemically. The IV
interaction data confirmed that these estimates were remarkably close to the observed changes
in F (24% reduction) and CL (1.64-fold observed), with estimated and observed values only

differing by 9% for each parameter.

Considerations to Guide the Appropriate Use of the Mean Absorption Time Methodology

To appropriately guide use of the MAT methodology, it is important to highlight its
assumptions and limitations to prevent any misinterpretations of interaction data. First,
following oral dosing, changes in MAT can only implicate modulation of those transporters that
are expressed in the intestine, but will not necessarily provide information on involvement of
transporters that are only expressed in the liver and/or kidney (but not the intestine). Table 4.5
outlines the regional expression of major xenobiotic transporters in the intestine, liver, kidney
and brain adapted from the International Transporter Consortium’s recommendations on
clinically significant xenobiotic transporters [30].

Second, in this investigation we examined commonly used index substrates and inhibitors
with known specificities for transporters and enzymes, however this may not be the case for
compounds in development. For victim drugs, in vitro metabolic stability and transporter assays

can be conducted to characterize potential determinants of drug disposition, and in tandem with
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BDDCS theory, conclusions can be made on the clinical relevance of such results. For perpetrator
drugs, the intestinal inhibitory potential can be calculated by comparing the maximum
perpetrator concentration in the gut [I4,.] to its inhibitory potential (ICs,) for the major enzymes
or transporters involved in intestinal disposition, where ratios of [I4,:]/ICs, greater than 10
indicate potential for clinically significant inhibition [31]. This aspect is quite important as
currently there are a limited number of well-characterized (and specific) clinical inhibitors of
transporters [20] and commonly-used metabolic inhibitors may have the potential to inhibit
xenobiotic transporters [32]. Further, consideration towards the rate of absorption of potential
inhibitors relative to that of substrate drugs should be accounted for, as intestinal inhibition will
only occur if inhibitor is still present in the intestine. It has been demonstrated that predictions
of changes in overall exposure as a result of a DDI have been improved by incorporating the k, of
perpetrator drug [33, 34]. Here, we extend this concept towards understanding the potential for
an intestinal DDI to occur if perpetrator drug is more rapidly absorbed, and suggest that further
investigation is warranted.

The third crucial aspect in utilization of the MAT methodology is ensuring that for analysis
of rapidly absorbed drugs, there is sufficient clinical sampling in the absorption phase to
adequately estimate MAT. For instance, the absorption rate of the CYP3A4 index substrate
midazolam is extremely rapid, with reported k, values of 9.6 hrt [35] and greater than 5 hrt [36],
which correspond to MAT values of 6.25 min and less than 12 min, respectively. The study by
Smith and coworkers (1981) included intensive sampling up to 1 hour (8 points) and reported
tmax Was approximately 20 min [35], while the study by Heizmann et al. (1983) only included 4

time points up to 1 hour and t,,,,ranged from 15 — 30 min between individuals [36]. However,
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in the large majority of DDI studies, average MAT or k, values are rarely reported, and in the
absence of access to individual patient data, digitization of average concentration-time profiles
introduces additional error for drugs with short MAT values. The reported pharmacokinetic
profiles are generated from the average drug concentrations of all subjects at each time point,
and therefore results in profiles that do not necessarily represent any single subject within the
study. As a result, these profiles may not be able to adequately account for potential inter-
individual variability in aspects such as lag-time, absorption rate, secondary peaks, and thus we
recommend that in practice, this methodology be carried out for each individual in a DDI study.
Of the numerous midazolam DDI studies available in the literature, we were only able to identify
one ketoconazole interaction study that not only had extensive absorption phase sampling (with
time points at 10, 20, 30, 45, 60 and 90 min), but of equal importance, absorption rate was
calculated for each subject and average values were reported [37], resulting in an MAT ratio of
1.19 but a 1.50-fold increase in t,, 4, (due to a 15 min increase from 30 min to 45 min).
Simulations have been previously conducted investigating the impact of a reduced
sampling schedule on estimations of MAT, confirming that minimal error was associated for a
theoretical drug with an MAT of 1 hr, however, the resulting error in MAT estimation becomes
increasingly larger for drugs that are more rapidly absorbed (for theoretical drugs for which the
MAT was decreased to 0.33 hr and 0.2 hr) [38]. The issue of estimating MAT when sampling is
not adequate could potentially be overcome by using the two t,,,, relationships presented
above for (A) a victim drug that follows one-compartment kinetics after a single dose or (B) any
victim drug that is dosed to steady state in tandem with reported t,,,, and ti., values to

calculate MAT. However, this still depends on adequate capture of t;», which is quite
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reasonable in most DDI studies, and t,,,,,., which may pose a challenge for rapidly absorbed drugs.
Rapidly absorbed drugs will inherently have less time points describing the absorption phase as

compared to drugs with larger t,,,4, values.
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Figure 4.1: Simulated changes in time to maximal concentration (t,,,,,) based on changes in
mean absorption time (MAT). Simulated t,,,,, is indicated as a blue line. Values of MAT range
from 0.1 to 3 hr. Panel A depicts a one-compartment drug, with an elimination half-life of 4 hr,
following a single dose. Panel B depicts a drug dosed to steady state, with an elimination half-
life of 4 hr, and a dosing interval of 6 hr. Horizontal red lines in each panel indicate the impact of
15 min changes in MAT on t 4, for a rapidly absorbed drug (MAT = 0.5 hr; MAT ranges from 0.25
to 0.75 hr) versus a less-rapidly absorbed drug (MAT = 2 hr; MAT ranges from 1.75 to 2.25 hr)

Figure 4.1 depicts the impact that 15 min changes in MAT will have on t,,,, for both a
rapidly absorbed drug (MAT = 0.5 hr) and a drug that that is less-rapidly absorbed (MAT = 2 hr),
for both a single-dose of a drug that follows one-compartment kinetics and for the steady-state
tmax relationship. Clearly, a small change in MAT has a greater impact on t,,,, for rapidly
absorbed drugs, compared to a drug with larger MAT values. This also highlights that if t,,,,, is
not adequately captured due to minimal absorption phase sampling, calculated MAT values can

display large differences for rapidly absorbed drugs, that may not reflect real changes in
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absorption. Examination of the midazolam-ketoconazole pharmacokinetic profiles reported by
Lee and coworkers (1996) clearly demonstrates a significantly larger degree of variability with
the absorption-phase time points as compared to the elimination phase [37], indicating the
possibility that at inter-individual differences in drug absorption are more pronounced for rapidly
absorbed drugs.

Because absorption rate may be inherently different for different people, it is crucial that
an analysis using this methodology proceeds only when the DDI was conducted within the same
subjects using a crossover study design. In Chapter 2, Vi differences for victim drugs in DDI
studies conducted in multiple populations were investigated, revealing significant differences
that could not be accounted for by body weight [7]. It is expected that the same may be true for
MAT values in different people, for instance, depending on the differences in degree of
transporter expression throughout the population. Indeed, there is evidence in the literature of
the association of MAT with age [39] and disease state potentially as a result of changes in blood
flow, gut motility, pH or edema [40-42]. Thus, it is recommended that this MAT methodology
should only be used qualitatively for parallel design studies to implicate transporter involvement;
that s, for disease state and pharmacogenomic studies that are conducted with different subjects
in each arm.

In situations where absorptive processes have the potential to be saturated, or in
situations of dose-limited solubility of victim drug, the relationship between MAT and dose
should be taken into account. This point is particularly relevant when different doses of victim
drug are administered in the control versus interaction arms, as this practice is common for

clinical DDI studies for which a significant systemic interaction is expected, and therefore a lower
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dose is given in the interaction arm. Such differences in victim drug dosage levels will result in
significant differences in drug concentrations within the intestinal lumen, which can be
particularly relevant to saturation of absorptive processes because drug concentrations in the
intestinal lumen can approach concentrations in the mM range. For example, cefatrizine has
been observed to display dose-dependent absorption characteristics [43] and incorporation by
Reigner et al. [44] of saturable absorption by Michaelis-Menten type kinetics into compartmental
models resulted in improved data fitting. These authors concluded that involvement of a carrier-
mediated transporter system was the most likely explanation, and involvement of the intestinal
uptake polypeptide transporter (PEPT) has more recently been implicated in cefatrizine
absorption [45].

A relevant point to mention here is that even if rate of absorption has the potential to be
saturated, overall extent of absorption (reflected in bioavailability measurements) will only be
decreased if absorption changes are such that there is insufficient time for absorption to occur.
In other words, the overall rate of absorption may decrease, however, extent of absorption as
reflected in total bioavailability measurements may or may not change. Indeed, in the cefatrizine
bioavailability investigation mentioned above, a dose-dependent MAT increase was observed
when dose was increased from 250 mg to 500 mg and 1000 mg, however, total bioavailability
(approximately 75%) was unchanged between the two lower doses, whereas the 1000 mg dose
was associated with a marked decrease in Fto 46.8% [43].

It is important to note that there are situations in which MAT (and t,,,,) may change
outside of transporter modulation, as was briefly mentioned above. Such scenarios primarily

include modulation of gastric emptying [46] and food effects [47], but might also be due to
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viscosity [48], osmolality that can have an effect on luminal fluid volume [49], intestinal pH and
solubility [50], which could potentially result in changes in absorption rate of victim drug.
However, it would be expected that for the great majority of DDI studies these factors would be
kept constant in both phases of the study when conducted within the same individual. It is
possible that perpetrator drug may influence victim drug absorption, for instance, by altering
intestinal pH or solubility of victim drug, resulting in changes in victim drug absorption rate that
are not transporter-related. It is proposed that that such false-positive results can be rationalized
based on in vitro transporter studies or further understood if dose-dependent DDIs are
conducted. Further, this approach relies on the reasonable assumption that within the same
individual, dissolution and distribution of drug within the intestinal lumen remain relatively
constant between both arms of the clinical study. As discussed in detail above, investigations
into validating this assumption should rely heavily on utilization of individual subject data and

intensive absorptive phase sampling, particularly for rapidly absorbed drugs.

Improvements to Current Clinical Pharmacology and Translational Science Approaches

Very recently, the efforts of many groups have been directed towards better predicting
drug disposition related to complex DDIs and identifying clinical evidence of transporter-
mediated DDIs [10, 11, 51, 52]. Rodrigues et al. presented a review to identify clinical evidence
of induction of hepatic and intestinal OATPs [51], while Yu et al. focused on intestinal OATP2B1
interactions for known substrates [52]. In general, the basis of these investigations focuses only

on changes in AUC and/or Cne. However, it is proposed here that the potential for intestinal
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OATP-mediated DDIs would be strengthened by incorporation of the presently discussed MAT
methodology, that significant intestinal transporter interactions will alter rate of absorption.

The localization of OATP2B1 (the primary intestinal OATP) in the apical versus basolateral
membrane has been debated in recent years, as recently highlighted by the International
Transporter Consortium [30]. Even amongst those scientists who agree on basolateral expression
of OATP2B1, the direction of transport has been further questioned (enterocyte to blood versus
blood to enterocyte), and the evidence for both sides has been nicely summarized by McFeely et
al. [53]. In addition to the development of specific probe substrates and inhibitors of OATP2B1,
it is proposed here that the MAT methodology will provide our field with an additional tool to
confirm the apical versus basolateral localization of OATP2B1, and such evaluations are currently
of high interest to our laboratory.

Alluri et al. [10] in their recent article “Transporter-enzyme interplay and the hepatic drug
clearance: what have we learned so far?” outline approaches to predict potential complex DDlIs,
however, discussion of intestinal interactions is notably lacking. For orally dosed drugs, the
contribution of intestinal interactions to overall exposure changes can be significant and is often
overlooked. This highlights that improved methodologies to predict or characterize intestinal
DDIs is an area that warrants further efforts by the field, and it is recommended that such efforts

be founded on the MAT and t,,,, theory presented here.

Conclusions
Here a powerful methodology is introduced to implicate intestinal transporters in DDlIs,

based on the theory that clinically relevant intestinal transporter interactions will result in altered
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rate of absorption of victim drugs. Interactions involving the two major intestinal drug
transporters, BCRP and P-gp, are highlighted and demonstrate that the expected directional
changes in MAT and t,,,,, are observed for both inhibition and induction of intestinally expressed
transporters. If MAT and t,,,,, remain unchanged in a DDI, it can be inferred that (A) intestinal
absorptive transporters are not significantly involved clinically in the DDI and (B) any changes in
F as a result of the interaction are not due to alteration in intestinal transporters activity or
expression. It is also possible that equivalent effects on uptake and efflux transporters may be
observed resulting in unchanged MAT, and this possibility is currently being investigated by our
laboratory. Based on the t,,,, relationships presented above, it is recognized that changes in
t1/2,, can impact t,,4, values. Therefore, in such situations focus should be on MAT changes,
although both of these parameters should trend in the same direction if MAT has been
adequately captured. This simple but powerful methodology will allow investigators to implicate
transporters in complex DDIs, allow clinical validation of additional transporter inhibitors due to
the current lack of specific inhibitors, further investigate the potential for transporter induction,
characterize emerging intestinal transporters, and help the field solve transporter-related

debates, such as the localization and/or direction of OATP2B1 within the enterocyte.
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CHAPTER 5: INTESTINAL EFFLUX TRANSPORTERS P-GP AND BCRP ARE NOT CLINICALLY

RELEVANT IN APIXABAN DISPOSITION

Abstract

The involvement of the intestinally expressed xenobiotic transporters P-glycoprotein (P-
gp) and Breast Cancer Resistance Protein (BCRP) have been implicated in apixaban disposition
based on in vitro studies. Recommendations against co-administration of apixaban with
inhibitors of these efflux transporters can be found throughout the literature as well as in the
apixaban FDA label. However, the clinical relevance of such findings is questionable due to the
high permeability and high solubility characteristics of apixaban. Using recently developed
methodologies to discern metabolic- from transporter- mediated drug-drug interactions
described in detail in previous chapters, a critical evaluation of all published apixaban drug-drug
interaction studies was conducted to investigate the purported clinical significance of efflux
transporters in apixaban disposition. Examination of mean absorption time changes in these
clinical studies does not support the clinical significance of intestinal efflux transporters in
apixaban disposition. Further, there is little evidence that efflux transporters are clinically
significant determinants of systemic clearance based on changes in apparent clearance being
equal in magnitude to changes in mean residence time and terminal half-life. Inhibition or
induction of intestinal CYP3A4 can account for exposure changes of apixaban in all clinically

significant drug-drug interactions, and lack of intestinal CYP3A4 inhibition can explain all studies

" Modified from the publication: Sodhi JK, Liu S, Benet LZ. Intestinal efflux transporters P-gp and
BCRP are not clinically relevant in apixaban disposition. Pharm Res. 2020; 37(10):208.
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with no exposure changes, regardless of the potential for these perpetrators to inhibit intestinal

or systemic efflux transporters.
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Introduction

Apixaban is an anticoagulant factor Xa inhibitor approved for a number of indications
including stroke or blood clot prevention and treatment of deep vein thrombosis or pulmonary
embolism [1]. Apixaban is primarily metabolized by cytochrome P450 (CYP) 3A4 (with minor
contributions of other isoforms such as CYP 1A2, 2C8, 2C9, 2C19, and 2J2) [1]. The involvement
of the intestinally-expressed efflux transporters P-glycoprotein (P-gp) and Breast Cancer
Resistance Protein (BCRP) has also been suggested throughout the literature [2, 3], as well as in
the apixaban Food and Drug Administration (FDA) label [1]. However, in vitro susceptibility to
transporters does not always translate to clinically significant outcomes, and this is particularly
true for high-solubility drugs that display high membrane permeability characteristics (i.e.
Biopharmaceutics Drug Disposition Classification System (BDDCS) Class 1 drugs) [4] for which a
significant degree of passive passage across biological membranes is achieved, potentially
rendering any transporter-assisted passage clinically insignificant. Thus, the purported clinically
significant involvement of efflux transporters in the disposition of apixaban (BDDCS Class 1) is
questionable. Understanding major contributors to drug disposition is critical in the clinical
setting to allow for appropriate dosing and in particular, how to adjust dose based on disease
state, due to pharmacogenomic variance, or in anticipation of a drug-drug interaction (DDI).

Clearance (CL) is a critical determinant of drug dosing regimens, as it is inversely related
to drug exposure (AUC; area under the concentration-time curve) that ultimately is believed to

drive the therapeutic efficacy and potential toxicity of a drug:

AUC = F - Dose
- CL
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where F denotes fractional bioavailability following an oral dose, and is assumed to be 1 for an
intravenous (1V) dose. Characterization of the contributors to clearance pathways, i.e., metabolic
enzymes and/or xenobiotic transporters, is crucial in anticipating potential changes in clearance
due to DDIs or pharmacogenomic variance of metabolic enzymes or transporters.

Our laboratory has thoroughly detailed and documented the expected changes in
pharmacokinetic parameters for interactions involving purely metabolic enzymes [5, 6] versus
xenobiotic transporters [7, 8]. As thoroughly discussed in Chapter 2, inhibition or induction of
metabolic enzymes results in changes in CL and AUC that are directionally intuitive and translate
to rational changes in mean residence time (MRT) and terminal half-life (t;/.), as volume of
distribution at steady state (V) remains unchanged for metabolic interactions [5, 6], as depicted

in the following relationship [9]:

NS
~
oy

N

MRT =

®)
h
~
T3

It is considered reasonable to predict strictly metabolic interactions based on in vitro studies [10]
due to a strong understanding by the field of the metabolizing enzymes commonly implicated in
drug metabolism, which is further bolstered by well-characterized clinical specificities of
routinely used metabolic inhibitors and inducers [11].

The FDA has provided guidance on predicting clinically significant transporter interactions
[10], however, such predictions are not as straightforward and are even more challenging when

both enzymes and transporters are involved in drug disposition, i.e., in so-called “complex DDIs”.
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We have recently thoroughly discussed how to appropriately predict changes in exposure when
transporters are involved using the Extended Clearance Model, which not only requires
understanding of how transporter-mediated active influx and efflux intrinsic clearances will
potentially change, but also requires estimation of passive diffusion and changes in metabolic
and biliary elimination [12]. The methodologies employed to estimate each of these elimination
processes are not trivial, and each requires a different set of experimental conditions. Further,
the susceptibility of a drug to uptake or efflux transporters in vitro does not always translate to
clinically significant in vivo involvement [4]. Additionally, validated clinical transporter probe
substrates and inhibitors are lacking [11]; routinely-used inhibitors are often not specific and may
have inhibitory potential towards both enzymes and transporters [13], and additional xenobiotic
transporters are continuously emerging and suggested to be clinical relevant by the field [14-16].
Furthermore, clinically significant transporter interactions can affect V, for victim drugs [8] in
addition to potential CL changes, resulting in counterintuitive changes in changes in MRT and
ti/2, that are not necessarily opposite in magnitude to CL changes [7], further complicating
pharmacokinetic predictions. Thus, the challenge in predicting exposure changes for complex
DDlIs is beyond simply accurately estimating the contribution of metabolism versus transporters,
is further complicated by the potential for enzyme-transporter interplay, and is currently an area
of significant efforts by the field [17, 18].

Oral dosing changes in F (due to altered absorption or first pass extraction) are often
underemphasized as an important contributor in DDI-related exposure changes as compared to
CL changes, as depicted in the AUC relationship presented earlier in this chapter. Discriminating

changes in CL from changes in F has been believed not possible without also performing an IV
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DDI study to estimate changes in CL alone; however, most orally approved drugs have only been
studied when orally administered. We have recently discussed that for low extraction ratio
drugs, the minimal first pass elimination can indicate that changes in apparent clearance (CL/F)
are primarily due to changes in CL alone [5]. Further, as discussed in Chapter 3 for purely
metabolic interactions, knowledge that Vi is unchanged can allow for estimation of F changes by
examining the change in apparent volume of distribution at steady state (Vss/F), which can further
be utilized to predict changes in CL alone [19]. As presented in Chapter 4 for clinically significant
intestinal transporter substrates, alteration of transporter activity or expression will result in
significant changes in absorption rate and we maintain that such changes should always be used
to implicate transporter involvement in vivo [20]. However, changes in absorption rate may not
necessarily translate to changes in extent of absorption if there is still sufficient time for
absorption to occur, an additional consideration that complicates pharmacokinetic predictions
of intestinal transporter substrates.

Utilization of these guiding principles in analyzing clinical data of purported complex DDlIs,
such as examining changes in absorption rate or V., can allow validation of the clinical
significance of transporter involvement based on in vitro predictions. In Chapters 3 and 4, we
have applied these concepts in the evaluation of an apixaban-rifampin interaction, however,
additional apixaban interaction studies are available in the literature. Here, we critically evaluate
all published apixaban clinical DDI studies using the guiding principles mentioned above to

investigate the purported clinical significance of P-gp and BCRP in apixaban disposition.
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Methods

As presented in Chapter 4, to determine if intestinal transporter involvement is clinically
significant in oral DDIs, changes in mean absorption time (MAT) or time to maximum
concentration (tn.x) can be compared between the interaction versus control phase of clinical
DDI studies [20]. For clinically significant intestinal transporter DDIs, inhibition would result in
decreased MAT and t,qy, and induction would result in increases in these values. Values of tax
are routinely reported, however, MAT values are less frequently reported and therefore were
estimated by digitizing published pharmacokinetic concentration-time profiles using
WebPlotDigitizer Version 4.2 (San Francisco, CA, USA) and fitting resulting data to a 2-
compartmental model with first-order absorption from the gut using WinNonlin Professional
Edition Version 2.1 (Pharsight, Mountain View, CA, USA) to estimate absorption rate (k,; MAT =
1 / k;), as previously described by our laboratory [21]. If pharmacokinetic curves were not
published, MAT was calculated using published tpn.,c and t;;, values using the single-dose
relationship between the three parameters, as presented in Chapter 4. It should be noted that
tmax Values are observed values and these values depend heavily on the sampling scheme
employed by the clinical investigators. However, any such errors have much less impact on drugs
with large t.xvalues such as apixaban (3-4 hr) [1]. Simulations presented in Chapter 4 in Figure
4.1 illistrate the impact of 15 min errors in MAT (which could occur due to minimal absorption
phase sampling) for both a rapidly absorbed drug (MAT = 0.5 hr; = 1.33 hr) and a less-rapidly
absorbed drug (MAT = 2 hr; t,ex = 3.2 hr) highlight that such errors have markedly less impact on

drugs with larger t,q values [20].
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Changes in AUC, CL/F, Vs/F, MRT, ti1/,, are reported as ratios of interaction to control,
where ratios of AUC were dose-normalized. Percent AUC extrapolation is also examined as a
potential indication of the accuracy of any parameters derived from AUC, with the understanding
that high percent extrapolations are only indicative of inaccuracies if terminal half-life is not

adequately captured. MRT was calculated using the following relationship:

AUC

where AUMC is area under the moment curve, and both AUC and AUMC are extrapolated to
infinity since all clinical investigations were conducted for a single-dose of apixaban. V./F is
calculated using the second equation above. Published clinical values are utilized in calculation
of ratios in priority, with digitization utilized only to supplement any unreported parameters-of-
interest.

Ratios of change in MAT or t .« that indicated greater than 30% change (i.e. ratios outside
of the range of 0.77 and 1.30) were considered to be potential evidence of a clinically significant
intestinal transporter interaction. If MAT does not significantly change, it can be inferred that
either xenobiotic transporters expressed in the intestine are not clinically significant
determinants of apixaban disposition or that intestinal transporters are not inhibited or induced
in that particular DDI [20].

A comprehensive literature search identified clinical apixaban DDI studies with the
perpetrators atenolol [22], cyclosporine [23], diltiazem [24], enoxaparin [25], famotidine [26],

ketoconazole [24, 27], naproxen [28], rifampin [29], and tacrolimus [23]. In addition, a study with
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activated charcoal [30] and two studies investigating the influence of pharmacogenomic variance
with respect to CYP3A5, P-gp and/or BCRP [31, 32] were identified and are critically discussed to
compliment the analysis of clinical DDI studies.

Inhibitory or induction-related specificities of each perpetrator were documented to
assess potential alteration of CYP3A, P-gp and/or BCRP activity or expression based on a recent
compilation of clinically recommended index inhibitors of drug metabolizing enzymes and drug
transporters [11]. In addition, the inhibitory potential of perpetrator drugs in the intestine and
systemic circulation were investigated by considering the maximum perpetrator concentration
in the gut [/yu] or systemic circulation (Cnax) With respect to each inhibitor’s half maximal
inhibitory concentration (/Csp) for CYP3A4, P-gp and BCRP. Values of [/,,] are estimated by
considering perpetrator dose divided by the volume of water with which the perpetrator drug
was dosed (and if unreported a standard value of 250 mL was utilized in calculations). Reported
values of perpetrator C,qx were utilized; however if unreported, these values were referenced
from the literature for a similar perpetrator dosing scheme. Fraction unbound in plasma (f, piasma)
values were also tabulated to further contextualize systemic inhibitory potential based on
unbound concentrations and were cited from reference [33] unless otherwise noted. Based on
the FDA DDI Guidance, values of [ly.]/ICso > 10 indicate a potentially significant intestinal
interaction, and values of Cqx > 0.1 indicate a potentially significant systemic interaction [10].

The rifampin-apixaban DDI study was conducted following both oral and IV administration
[29], therefore the clearance versus bioavailability differentiation methodology for metabolic
DDIs [19] was utilized to predict changes in CL versus F. This analysis was presented in Chapters

3 and 4, and is included again here for reference. Predicted changes in pharmacokinetic
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parameters were compared to actual changes based on IV dosing, and provided further insight
into the hypothesis that the reported in vitro susceptibility to efflux transporters by apixaban
may be clinically insignificant. In addition, predictions of changes in CL versus F were performed
for all clinically significant DDIs to characterize the contribution of changes in F versus CL, and the

major site of interaction (intestine versus liver), for each interaction.

Results

Implicating intestinal transporter involvement in apixaban disposition proceeded via
examination of changes in apixaban absorption rate in clinical DDIs, based on the MAT
methodology to identify clinically significant intestinal transporter interactions, as presented in
Chapter 4. Table 5.1 details the inhibitory specificities of the nine perpetrators investigated
against CYP3A4, P-gp and BCRP, and summarizes the expected intestinal or systemic inhibitory
outcomes based on calculations of [/g,t] or Cmax divided by ICso. Clinically significant alterations
in intestinal efflux capacity (based on values of [/4,]/ICso > 10) were expected for cyclosporine,
diltiazem, ketoconazole, rifampin, and tacrolimus, and not expected or unknown for atenolol,
enoxaparin, famotidine, and naproxen. Clinically significant inhibition of systemic efflux
transporters based on values of Cq/ICso > 0.1 were expected for cyclosporine and diltiazem,
however, consideration of unbound plasma systemic concentrations (Cmaxu) Of these inhibitors
does not support systemic inhibitory potential, as unbound perpetrator concentrations are not
sufficiently high. Based on multiple dosing of rifampin, clinically significant induction in both

intestinal and systemic P-gp is expected.
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Clinically insignificant DDI changes in pharmacokinetic parameters are presented in Table
5.2 (atenolol, cyclosporine, enoxaparin, famotidine, tacrolimus). Clinically significant DDIs are
listed in Table 5.3 (diltiazem, ketoconazole, naproxen, rifampin). No changes in MAT values were
observed for 10 of the 11 interactions studied, with ratios of interaction to control ranging from
0.92 —1.12, indicating that intestinal transporters are not clinically significant in these DDIs with
a number of potent inhibitors (and one inducer) of P-gp and/or BCRP. These conclusions would
be further bolstered if individual patient data were available for analysis, as these results relied
on analysis of published average pharmacokinetic profiles. A modest prolongation of MAT and
tmax Was observed only for the diltiazem-apixaban interaction [24], with an MAT ratio of 1.38 and
a tmax ratio of 1.33.

Table 5.4 displays the ratios of change in IV and oral apixaban pharmacokinetics following
multiple dosing of rifampin [29] that was previously reported in Chapters 3 and 4. By assuming
that this interaction is purely metabolic, and based on the recently published clearance versus
bioavailability differentiation methodology [19] presented in Chapter 3, the observed 52%
reduction in oral apixaban exposure following multiple dosing of rifampin was estimated to be a
result of a 1.5-fold increase in CL and a 30% reduction in F. These estimates were compared to
actual changes in CL and F based on the IV interaction data, indicating that the observed change
in CL was 1.64-fold yielding a 24% reduction in F, supporting the accuracy of our method for
predicting the differentiation of changes in clearance from changes in bioavailability for oral

metabolic DDlIs.
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Although confirming IV data were not available for the remaining four clinically significant
DDIs, Table 5.5 displays the predicted changes in CL versus F for these interactions with the
assumption that all interactions are purely metabolic, based on the recently described CL versus
F discrimination methodology [19] in Chapter 3. Predicted changes in systemic CL were minimal,
ranging from 0.77 — 1.04, while predicted changes in F ranged from 1.43 — 1.79. Additionally,
estimates of [lgutl/ICs0, Cmax/ICs0, and Cmaxu/ICso Were calculated, suggesting that all four
interactions are predicted to be primarily intestinal, rather than systemic.

A clinical study was identified in which activated charcoal was dosed both 2 hr and 6 hr
post apixaban oral dosing [30]. Although no change in Cpax Or tmex Was observed, AUC and ti/,,
both decreased. For the 2 hr and 6 hr dose, AUC decreased to 0.49 and 0.71, respectively, while
t1/2,, decreased to 0.40 and 0.37, respectively.

Two pharmacogenomic studies were identified in which differences in apixaban
disposition were investigated with respect to CYP3A5, P-gp and/or BCRP [31, 32]. The first study
investigated apixaban disposition in patients with atrial fibrillation and acute stroke with respect
to gene polymorphisms in CYP3A5 and ABCB1 (P-gp), concluding that these polymorphisms do
not affect the pharmacokinetics of apixaban [31]. The second study investigated dose-
normalized apixaban plasma trough concentrations in 70 measurements from 44 patients with
atrial fibrillation [32]. The investigators concluded that P-gp pharmacogenomics did not impact
plasma trough concentrations, however, patients exhibiting either ABCG2 (BCRP) or CYP3A5 gene

polymorphisms had higher plasma trough concentrations.
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Discussion

Discerning involvement of transporters versus metabolic enzymes is challenging,
particularly because the susceptibility of drug to efflux or uptake transporters in vitro does not
always translate to clinically significant in vivo involvement [4]. Further, following oral dosing
DDlIs, separating changes in CL or Vs from F, as well as consideration of the impact of both CL and
Vss on MRT and half-life, makes discerning clinically significant transporter involvement a difficult
task. Based on the recognition that significant intestinal transporter interactions will result in
discernable changes in MAT (and therefore tna) [20], it is possible to implicate intestinal
transporters in oral DDI studies, with no change indicating that intestinal transporters are not
relevant (Chapter 4). Apixaban t,.x occurs approximately 3-4 hours after oral dosing [1, 63], a
value large enough to sensitively detect changes in absorption rate under standard
pharmacokinetic sampling schemes [20].

No change in apixaban absorption rate was observed in 10 of 11 oral DDI studies with
MAT ratios ranging from 0.92 — 1.12 (Table 5.2 and Table 5.3), which included perpetrator drugs
with significant potential to inhibit P-gp and BCRP based on in vitro data (Table 5.1). These results
are consistent with the BDDCS class 1 designation of apixaban (high permeability, high solubility),
which proposes that such drugs’ high solubility characteristics allows very high concentrations of
drug to passively diffuse, greatly overwhelming any transporter-mediated effects at clinically
relevant concentrations [4]. It is noteworthy that the ketoconazole-apixaban interaction was
conducted at both a clinically relevant dose (10 mg) and a microdose (25 pg), and thus it may be
expected that for the lower dose, transporter effects can no longer be overwhelmed due to lower

overall concentrations. However, in both studies no changes in MAT or t,,.x Were observed, and
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the degree of changes in exposure and clearance were almost identical between both studies,
indicating at both apixaban concentrations the interaction was primarily due to a process for
which soluble concentrations are irrelevant; i.e., CYP3A4 inhibition. Although these results are
striking, conclusions would be further strengthened if it were possible to examine patient data in
order to calculate changes in MAT and t,qx for each individual.

The diltiazem-apixaban DDI resulted in a 1.38-fold change in MAT and a 1.33-fold change
in tmax, both values that are very close to our cutoff of 1.30 but suggesting a potentially significant
intestinal transporter interaction. If this result was truly reflective of inhibition of P-gp, then it
would be expected that other P-gp inhibitors, in particular more potent inhibitors, should also
show similar changes in absorption rate. The diltiazem estimate of [/4,]//Cso for P-gp ranges from
19.6 to 694 and is not markedly different from estimates for cyclosporine (53.9 — 450),
ketoconazole (298 — 4,630 and 746 — 11,600), and tacrolimus (29.6 — 37.7). Ketoconazole also
significantly inhibits intestinal BCRP, with [/g,:]/ICso estimates of 251 and 628 for both studies.

It is possible that non-transporter mediated changes in absorption rate may be
responsible for these results, such as changes in pH or gastric emptying by the perpetrator drug
diltiazem. However, apixaban does not contain ionizable groups (Figure 5.1), and thus potential
changes in gastric pH by diltiazem should not alter apixaban solubility or absorption, and this
hypothesis was nicely confirmed in the famotidine study, where changes in gastric pH had no
effect on apixaban pharmacokinetics [26]. Further, changes in gastric emptying by diltiazem are
not expected [64], therefore perhaps this outcome is related to limitations associated with
utilizing published average pharmacokinetic profiles, as such graphical representations do not

necessarily represent any single subject within the study. The study authors indicate diltiazem
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had no effect on t;,a [24], however since we only had access to published median t,,x values our
calculated t,q ratio was 1.33. Thus, we again highlight that conclusions from utilization of the
MAT methodology discussed in Chapter 4 will be strengthened if absorption rate is calculated for
each individual in the study. It should also be recognized that tp. is influenced by both
absorption rate and elimination rate parameters, as highlighted in Chapter 4, and we have
recently published the single dose and steady-state mathematical relationships for reference
[20]. Therefore, implicating intestinal transporter involvement based on t, ratios alone may
mislead an investigator, such as in the atenolol or famotidine results where tq ratios are 1.33
and 0.67, respectively, while the respective MAT ratios of 1.07 and 1.03 show no change in

absorption rate.

Figure 5.1. Chemical structure of apixaban

As intestinal efflux transporter involvement is unlikely to contribute to apixaban

bioavailability, we further investigate the potential involvement of systemic P-gp/BCRP inhibition
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to affect apixaban disposition. Examination of the inhibitory potential of perpetrators associated
with clinically insignificant DDIs (Table 5.2) reveals that only cyclosporine had the potential to
inhibit systemic P-gp with a calculated Cpax/ICsp value of > 0.39 and a Cax,u//Cso value of > 0.027
(based on values presented in Table 5.1), yet no change in apixaban exposure was observed. Of
the clinically significant inhibitory DDIs, only diltiazem was expected to achieve systemic
concentrations capable of inhibiting P-gp, with similar Cp/ICso values of > 0.17 and Cpax,u/ICso
of >0.023, highlighting when compared to cyclosporine that the observed diltiazem AUC ratio of
1.4 is likely not due to inhibition of P-gp. Further, significant transporter interactions are
expected to result in marked changes in Vi of victim drugs [7, 8], however changes in V in the
IV rifampin-apixaban DDI were minimal (ratio 0.87) (Table 5.4). Based on Chapter 2, purely
metabolic DDIs do not affect the Vi, of victim drug [5, 6], thus following oral dosing it is possible
to estimate the relative change in CL versus F by attributing the observed change in Vi /Fto F
alone [19], as described in Chapter 3. Table 5.4 demonstrates that utilization of this methodology
for the oral interaction data results in remarkably accurate predictions of CL versus F change,
further supporting that for an interaction with a potent inducer of CYP3A4 and P-gp, apixaban is
primarily susceptible to alterations in metabolic enzymes rather than transporters.

Examination of the clinically significant DDIs listed in Table 5.3 show that in general,
changes in CL/F were similar in magnitude to Vi/F, resulting in unchanged MRT and t;/,,,
suggesting that these significant DDIs are primarily due to changes in F. Table 5.5 utilizes the CL
versus F differentiation methodology to predict the extent of change in CL and F to understand if
the observed exposure changes are primarily due to an intestinal or systemic effect. Based on

this analysis, predicted changes in systemic CL were minimal (0.77 — 1.04) whereas predicted
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changes in F ranged from 1.43 — 1.79. These results suggest that these significant exposure
changes are primarily driven by intestinal interactions, and taken together with the unchanged
absorption rates associated with these interactions, we conclude intestinal CYP3A4 is responsible
for all significant apixaban DDIs. This conclusion is further rationalized by examining the
intestinal versus systemic CYP3A4 inhibitory potential listed in Table 5.5, as all four perpetrators
have [/yut]/ICsovalues greater than 10, however, Cpax,u/ICso is only greater than 0.1 for diltiazem.

Itis noteworthy that the cyclosporine and tacrolimus DDI studies did not result in clinically
significant changes in exposure [23], given their potential to inhibit intestinal CYP3A4. It is
possible that since the aim of this DDI study was to examine the impact of clinically relevant
systemic cyclosporine and tacrolimus concentrations achieved in transplant patients on apixaban
disposition, the oral dosing of these perpetrators was not necessarily at the same time as
apixaban dosing. This aspect was not clearly described within the methods, however the study
design scheme published within that article [23] does indicate there was some amount of time
between dosing of perpetrator and apixaban. Thus, we hypothesize the true intestinal
perpetrator concentrations may be much lower than we report in Table 5.1.

The impact of activated charcoal was also investigated, where activated charcoal was
dosed during the absorption phase of apixaban (2 hr after dosing) and after apixaban absorption
was complete (6 hr after dosing) [30]. Activated charcoal is often used in situations of drug
overdose, as drug is adsorbed on to activated charcoal in the intestine thus reducing extent of
absorption. Activated charcoal studies can also be utilized to investigate the potential of a drug
to undergo enterohepatic recycling, as reabsorption of drug is prevented after biliary excretion

into the intestine. Between the 2 hr and 6 hr doses of activated charcoal, AUC decreased with
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ratios of 0.49 and 0.71, respectively, while t;/,, decreased similarly with ratios of 0.40 and 0.37,
respectively. The differential changes in AUC with respect to dosing time support the expected
outcome that a larger decrease in F would be observed when activated charcoal was dosed
during the apixaban absorption phase. The modest reduction in exposure associated with the 6
hr dose of activated charcoal (AUC ratio of 0.71) is not likely due to prevention of enterohepatic
recirculation by activated charcoal, as biliary excretion is a minor elimination pathway [65] and
none of the pharmacokinetic profiles in any investigated study displayed the characteristic
secondary peaks commonly associated with enterohepatic recirculation. Thus, the study authors
hypothesize that apixaban undergoes enteroenteric recycling (recycling between systemic
circulation and intestinal lumen via passive diffusion) that is prevented when apixaban is
adsorbed on to activated charcoal. This may explain the observed similar reduction in t;/,, for
both the 2 hr and 6 hr doses, as there may be an increase in extent of direct apixaban elimination
into the feces via the intestine when activated charcoal is present. We agree that further
mechanistic studies are warranted, however, these results underscore the potential bidirectional
ability of apixaban to cross intestinal membranes between gut lumen and systemic circulation
via passive diffusion, further countering the hypothesis that apixaban is susceptible to the action
of transporters.

We identified two pharmacogenomic studies in which CYP3A5, P-gp and/or BCRP
pharmacogenomics were investigated. The first study concluded that differences in CYP3A5 and
P-gp pharmacogenomics do not affect the pharmacokinetics of apixaban [31]. The second study
investigated BCRP pharmacogenomics in addition to CYP3A5 and P-gp. Pharmacokinetic

parameters were not assessed, however, investigators associated pharmacogenomics with dose-
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normalized trough concentration measurements taken 10 — 14 hr post apixaban dosing, for 70
measurements from 40 patients. The investigators concluded that BCRP and CYP3A5
pharmacogenomics, but not P-gp pharmacogenomics, impacted dose-normalized trough
concentrations. However, it is unclear if these results accounted for the differences in sampling
time between individuals in each group, or even with respect to multiple samples from the same
individual. Thus, we reserve any conclusions related to apixaban pharmacogenomics and suggest

further research is warranted.

Conclusions

Throughout the literature [66-69], and even in the apixaban FDA label [1], authors
routinely cite the clinically significant DDI studies listed in Table 5.3 as evidence that P-gp and/or
BCRP is a clinically significant determinant of apixaban disposition, confirming results of in vitro
transporter studies [2, 3]. However, rational examination of these clinical studies using basic
pharmacokinetic theory simply does not support the clinical significance of efflux transporters in
apixaban disposition. These conclusions are not limited to the involvement of intestinal efflux
transporters (based on changes in absorption time) for P-gp and BCRP, there is also little evidence
that these transporters are clinically significant determinants of systemic clearance. Inhibition or
induction of intestinal CYP3A4 can account for exposure changes of apixaban in all clinically
significant DDIs, and lack of intestinal CYP3A4 inhibition can explain all studies with no exposure
changes, regardless of the potential for these perpetrators to inhibit intestinal or systemic efflux

transporters.
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CHAPTER 6: CHALLENGING THE RELEVANCE OF UNBOUND TISSUE-TO-BLOOD PARTITION

COEFFICIENT (Kp..) ON PREDICTION OF DRUG-DRUG INTERACTIONS”

Abstract

The purpose of this work is to examine the theoretical and practical utility of the liver-to-
blood partition coefficient (Kp,,) for predicting drug-drug interactions, and to compare the Kp,,-
approach to the extended clearance concept AUCg-approach. To address this, the Kp,,
relationship was derived from first principles. Theoretical simulations investigated the impact of
changes in a single hepatic-disposition process on unbound systemic exposure (AUCg,) and
unbound hepatic exposure (AUCy,) versus Kp,,. Practical aspects regarding Kp,, utilization were
examined by predicting the magnitude of DDI between ketoconazole and midazolam employing
published ketoconazole Kp,, values. The theoretical examination found that the Kp,, hepatic-
disposition relationship is based on the well-stirred model. Simulations emphasize that changes
in influx and efflux intrinsic clearances will result in Kp,, changes, however AUCy, remains
unchanged. Although incorporation of Kp,, is believed to improve DDI-predictions, utilizing
published ketoconazole Kp,, values resulted in prediction errors for a midazolam DDI. In
conclusion, there is limited benefit in using Kp,, for drug-drug interaction predictions as the
AUCg-based approach can reasonably predict drug-drug interactions without measurement of
intracellular drug concentrations, a difficult task that is hindered by experimental variability.

Further, Kp,, changes can mislead as they may not correlate with changes in AUCg, or AUCy,.

" Modified from the publication: Sodhi JK, Liu S, Benet LZ. Challenging the relevance of unbound
tissue-to-blood partition coefficient (Kpyy) on prediction of drug-drug interactions. Pharm Res.
2020;37:73.
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The well-stirred model basis of Kp,, when applied to hepatic-disposition implies that nuances of

intracellular drug distribution are not considered by the Kp,, model.
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Introduction

It is generally accepted that estimation of tissue- or target-specific unbound drug
concentration is imperative to accurately assess in vivo pharmacological efficacy, drug-drug
interaction (DDI) potential and toxicological effects of therapeutic drugs [1]. However, unbound
systemic drug concentrations have historically been used as a surrogate to estimate potential
pharmacokinetic or pharmacodynamic drug effects in accordance with the free drug theory [2],
largely due to the difficulty in accurately determining intracellular drug concentrations. The free
drug theory assumes a rapid equilibrium between unbound drug concentration in the blood and
the tissues, i.e., that unbound blood concentration is equal to unbound tissue concentration (Cg,,
= Cy,y). Here, we consider the liver as our target organ. However, this assumption may not be
valid for substrates of active cellular transport, since one may assume that active uptake would
result in increased intracellular unbound drug accumulation, whereas efflux would decrease
tissue-specific unbound drug concentration. Therefore, differential concentrations of unbound
drug in the blood versus tissue are often anticipated in the in vivo scenario, and are often
considered crucial in predictions related to drug disposition.

The unbound liver-to-blood partition coefficient (Kp,,) has been developed to provide
estimates of unbound intracellular drug concentrations based on the extended clearance model
[3]. The value of Kp,, is governed by active and passive drug passage into and out of the liver, as
well as by hepatic elimination (metabolism and biliary excretion) and is based on a single
unbound drug driving-force concentration in the liver, as depicted in panel A of Figure 6.1. As
we have recently reviewed [4, 5] and others in the field have recognized [6-12], the assumption

that a single liver concentration drives the various processes of basolateral efflux, biliary
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elimination and metabolism implies that the extended clearance model is a well-stirred model
construct. Here we derive Kp,, to demonstrate that Kp,, is also a well-stirred model concept
when attempting to predict hepatic elimination and question the relevance of Kpu,

determinations for predicting drug-drug interactions.

A. B
Blood Cs. Blood Cs.
A
A : 4
I
Psefﬁ int PSinﬁ int : Kpuu Psefﬁ int Psinﬁ int
\ 4 1 v
i CH,ef)iu
Liver Chu Liver
CH,biI,u CH,met,u
CLyint CLyint it | CLiy int met

Figure 6.1: Schematic representation of liver-to-blood partition coefficient (Kp,,) that relates
unbound concentration of drug in the blood (Cs,,) to unbound concentration of drug in the liver
(Cu,u). Differential concentrations are determined by the active and passive transporter influx
and efflux intrinsic clearances (PSintinf and PSin.er) as well as intrinsic hepatic clearance (CLy;int),
which represents the irreversible loss of drug by metabolism and biliary excretion. The average
unbound concentration in the liver driving these processes is depicted in (A) and the individual
driving force concentrations are depicted in (B).

Methods
The derivation of Kp,, was conducted based on mass balance principles, with

consideration of the amount of drug within the liver with respect to time under steady state
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conditions due to active plus passive influx and efflux intrinsic membrane passage clearances
(PSingint, PSefeint), intrinsic metabolic plus biliary elimination (CLy,ine), and fraction unbound of drug
in the blood (f,5) and within the liver (f, ). The resulting Kp,, relationship was compared with
previously derived [4] relationships of systemic and organ exposure (AUCg, and AUC ) following
oral dosing, which include considerations of oral bioavailability as indicated by the fraction of oral
dose that is absorbed (Fgps) and the fraction that escapes gut elimination (Fg).

To illustrate the relevance of Kp,, on predictions of drug-drug interactions, simulations
were conducted to explore the impact of up to a 10-fold increase or decrease in an individual
disposition process (PSintint, PSeffint, CLH,int OF Faps:Fs) on Kpyuy, AUCg,, and AUC,, using the derived
relationships presented here.

Kp., is commonly employed to estimate intracellular concentrations of perpetrator drugs
to predict the inhibitory potential on hepatic disposition processes, such as metabolic or biliary
elimination. Here, a metabolic drug interaction between IV midazolam (victim drug) and
ketoconazole (perpetrator) [13] was selected to investigate if predictions of changes in AUC were
improved by addition of Kp,, to estimate intracellular ketoconazole concentrations. Predicted
ratios of midazolam systemic exposure in the ketoconazole versus control phases (AUCr) were

calculated using the FDA recommended basic model for reversible inhibition [14]:

I
AUC =1+ Umazu] ’"I;‘x'”]
i

where Imqy ., is the maximal unbound plasma concentration of the inhibitor drug ketoconazole

and K; is the unbound inhibition constant of ketoconazole on cytochrome P450 (CYP) 3A4-
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mediated midazolam metabolism. The K; value was calculated by averaging reported inhibition
constants of ketoconazole on CYP3A4-mediated formation of 1-hydroxymidazolam, and was
found to be 0.061 uM as summarized by Greenblatt et al. [15]. The value for /,q, Was calculated
by multiplying ketoconazole f,piusma by the observed maximum ketoconazole plasma
concentration in the clinical study investigated [13]. The ketoconazole f, pasma utilized was 0.029
[16] and /e Was estimated to be 3.0 pg/ml (5.6 uM) from visual inspection of published IV
plasma concentration time profiles [13]. Measured human ketoconazole Kp,, values from the
literature [7, 17, 18], as well as simulated Kp,, values between 0.1 and 10, were utilized to adjust
Imaxu (i-€., [Imaxu] * Kpuu) to account for intracellular ketoconazole concentrations in contact with
hepatic CYP3A4 in prediction of the magnitude of the ketoconazole-midazolam drug-drug
interaction. The ketoconazole Kp,, values identified from the literature and the methodologies
employed for Kp,, determination are listed as follows: 0.32 (extended clearance method) [18];
0.58 (extended clearance method) [7]; 0.72 (homogenization method) [18]; 0.97 (temperature
method) [18]; 1.04 (temperature method) [17]; 3.18 (homogenization method) [17]; and 4.67

(log D 7.4 method) [18].

Results and Discussion

The Unbound Liver-to-Blood Partition Coefficient is Only Consistent with the Well-Stirred Model of
Hepatic Elimination when Correlated with Hepatic Elimination Parameters
The liver model in Figure 6.1 Panel B depicts the various hepatic processes that govern

liver-to-blood drug partitioning, with the reasonable consideration that the driving-force hepatic
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concentration for basolateral efflux (Cyey) may not necessarily be equal to the apical
concentration driving biliary elimination (Cy i) nor the average hepatic concentration driving
metabolic elimination (Cy met). Solving for the change in total hepatic drug amount (Ay) with time

(i.e. the mass balance relationship) gives the following relationship:

dAy
7 = PSinf,int ' fu,B ’ CB - PSeff,int ' fu,H ’ CH,eff - CLH,int,met ' fu,H ' CH,met - CLH,int,bil 'fu,H ’ CH,bil

where PS;: values represent the total of both intrinsic active and passive basolateral influx (inf)
and efflux (eff) into and out of the liver, f, 5 is the unbound fraction of drug in the blood, f, 4 is
the unbound fraction of drug within the liver, CLyin:me: is the intrinsic metabolic clearance,
CLu,intpir is the intrinsic biliary secretion clearance, Cgis the total concentration of drug in the
blood, and Cy is the total drug concentrations in the liver driving basolateral efflux (eff), apical
biliary elimination (bil), and metabolism (met).

Although differentiating the various concentrations driving their respective hepatic
processes may be a reasonable assumption (as depicted in Figure 6.1 Panel B), there are currently
no reliable analytical methods available to differentiate these various intracellular
concentrations. Further, the utility of this model is limited when attempting to calculate a single
partition coefficient to predict clinically relevant outcomes, especially when multiple processes
determine hepatic concentration. But by adopting the well-stirred model of hepatic disposition,
it follows that the hepatocyte is a ‘well-stirred” compartment and that a single hepatic
concentration (Cy) drives all intracellular processes. This scenario is depicted as Figure 5.1 Panel

A, has been previously elucidated [5], and is given by the following relationship:
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dAy
7 = PSinf,int ) fu,B - Cp — (CLH,int + PSeff,int) 'fu,H - Cy

where CLy intis the sum of the intrinsic biliary secretion and intrinsic metabolism clearances.
. L . dAy, .
At steady state, the change in total drug amount over time inside the liver (d—t”) is equal

to zero, therefore the above relationship can be solved for the ratio of unbound concentration

of drug in the liver to that in the blood (Cy,,/Cs ), in other words, Kpy,.

Kp _fu,H' CH _ CH,u _ PSinf,int
e fu,B - Cp CB,u PSeff,int + CLH,int

This relationship is widely utilized throughout the industry to predict relevant unbound liver
concentrations at steady-state [3, 6, 12, 18-21].

The Kpy, relationship is a well-stirred model concept when related to liver transport or
elimination processes since it is based on the mass balance relationship where Cy is the single
liver concentration that drives biliary elimination, metabolic clearance, and efflux of drug back
into the blood. Only in the well-stirred model does a single concentration drive all hepatic
processes at steady state; therefore, Kp,, when expressed in terms of elimination parameters is
not consistent with alternate hepatic disposition models, such as the parallel tube or axial
dispersion models, where the concentrations at the basolateral and apical hepatocyte
membranes driving efflux and biliary elimination, respectively, as well as the average

concentration driving metabolism, are all assumed to be different concentrations (Figure 5.1
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Panel A). Recognition that Kp,, is based on the well-stirred model has been noted previously by
the International Transporter Consortium [1] and as we have recently reviewed [4, 5], it is well-
recognized throughout the field that inclusion of transporters in calculations of hepatic
elimination are only consistent with the well-stirred model. Therefore, utilization of Kp,, must
be accompanied with appreciation that the apparent Kp,, value is a mere estimation of degree
of partitioning based on a useful but simplified model of whole-hepatocyte cytosolic drug

concentration. This limitation, amongst others, will be discussed in further detail subsequently.

Questioning the Utility of Kp,, for Drug-Drug Interaction or Pharmacogenomic Variance Predictions

Estimation of Kp,, is often utilized in attempts to improve pharmacokinetic or
pharmacodynamic predictions, as cytosolic unbound drug concentrations are more relevant than
systemic concentrations for predictions of tissue-specific potency or toxicity and drug disposition
(such as metabolic or biliary elimination). The International Transporter Consortium has outlined
these useful applications of Kp,, in a 2013 review article and the authors conclude that “The
intracellular concentration of unbound form of a drug is an important parameter for predicting
drug efficacy, toxicity, and DDIs” [1]. We agree that determination of Kp,, is undoubtedly
relevant for predicting drug potency or toxicity, as pharmacodynamic effects are driven by
unbound intracellular drug concentrations, however the aspects related to the importance of
Kp,, in drug-drug interaction prediction should be further clarified.

To examine the utility of Kp,,in DDI predictions, we take the integral of the concentrations
over all time for the numerator and denominator of the two middle terms in the equation directly

above for the Kp,, relationship
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Kp _ fu,H' AUCH _ AUCH,u _ PSinf,int
b fu,B - AUCy AUCB,u PSeff,int + CLH,int

where AUC, is the area under the concentration time curve of unbound drug at the respective
sites following either an oral or IV dose.
As we have recently demonstrated [4] and others in the field have previously recognized,

following oral dosing the equations describing systemic and hepatic AUC, are given by:

AUCB,u _ Faps = Fg - (CLH,int + PSeff,int)
Dose,rq PSinf,int ’ CLH,int

AUCH,u _ Faps * Fg
Doseoral CLH,int

where Fgs is the fraction of the dose absorbed intact and F¢ is the fraction of the dose that
escapes intestinal elimination. As expected, dividing the dose-normalized AUCy, relationship by
the dose-normalized AUCg, relationship results in the Kp,, relationship. The same Kp,,
relationship would be derived utilizing the more complicated equations for AUCy,, and AUCg,
following IV dosing from reference [4].

These relationships describing systemic and hepatic AUC, indicates that unbound AUC, in
the liver and blood following oral dosing are not a function of protein binding, therefore any

changes in protein binding (either hepatic or systemic) will have little clinical relevance on
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pharmacodynamic outcomes such as efficacy and toxicity [22]. According to these equations,
hepatic DDIs will only occur if the perpetrator drug affects Faps, Fs, CLint, PSinfint OF PSeffint.
Therefore, knowledge of intracellular unbound concentrations via measurements of f, s, fun or
Kp,, will not provide any relevant information regarding predictions of clinically significant
changes in systemic or organ drug exposure resulting from DDIs or pharmacogenomics variance.
Such changes are simply a multiple of how CLy int, PSinfint, PSeftint, Fabs and Fg change for an orally
dosed victim drug, and knowledge of Kp,, is unnecessary to make that prediction. Therefore, we
emphasize that evaluation of AUCk (AUC ratios expressed as AUCinteraction/ AUCcontror) iS @ more
useful approach than evaluating rate determining steps, B or Kp,, in predictions of DDls.
Recently, we have critically assessed the pharmacokinetic changes expected for
transporter substrates [5] and the impact of changes in CLy,in: and Fs on the pharmacokinetics of
metabolized victim drugs [23] in drug-drug and pharmacogenomic interactions utilizing this
extended clearance concept AUCg-based approach. Utilization of the AUCy, and AUCg,
relationships provides a clearer understanding of the effect of perpetrator drugs on the
magnitude of DDIs than Kp,,-based analysis. For hepatic uptake transporter substrates, a
perpetrator drug that markedly inhibits or induces relevant uptake transporters will require a
human DDI study to quantitate the effect on systemic concentrations (independent of whether
the drug is eliminated by metabolism or not), however, no clinically relevant intrahepatic
interaction will be expected. For drugs that are eliminated by metabolism, a perpetrator that
significantly inhibits or induces metabolism will require a human DDI study to quantitate the
systemic concentration effect, with recognition that both hepatic and intestinal metabolism may

be affected. Intrahepatic concentrations will also be affected, therefore DDI studies for
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metabolic interactions should also measure changes in organ-specific pharmacodynamic
outcomes (such as efficacy and toxicity) as changes in both CLy,: and Fs will influence
intrahepatic concentrations. For drugs that are eliminated into the bile, perpetrator drugs with
the potential to inhibit apical biliary efflux transporters within the hepatocyte may result in
clinically significant systemic concentration changes requiring a human DDI study, as well as
potential intrahepatic concentration changes requiring consideration of potential
pharmacodynamic changes. Inhibition of basolateral efflux (PSefin:) can impact both the systemic
and intrahepatic concentrations of all drugs, regardless of their major route of elimination. In
summary, changes in intracellular unbound concentrations as a result of drug-drug or
pharmacogenomic interactions can reasonably be predicted based on the AUCg-based approach
without knowing Kp,, or f, .

An excellent example of quantitative drug-drug interaction predictions of OATP1B1
substrates based on the extended clearance AUCk values approach was conducted by Varma et
al. [24]. In that study, Kp,, was not used in predictions of DDI, rather, the theoretical changes in
Kp., were derived using the above-presented Kp,, relationship and by considering predicted
changes in the individual clearance and transport parameters (under the assumption that PS.g nt
was only comprised of passive processes) and these changes were compared to observed AUCg
values. The analysis categorizes interactions in four groups based on direction of change in AUCg
versus Kpy,: (a) increased systemic exposure and increased Kp,,, (b) increased systemic exposure
but decreased Kp,,, (c) decreased systemic exposure and decreased Kp,,, and (d) decreased
systemic exposure but increased Kp,,, highlighting that changes in Kp,, are not always in the

same direction as systemic exposure. For perpetrators that inhibit hepatic active uptake (i.e.,
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active portion of PSjnsint) via OATP1B such as cyclosporine and rifampin (single dose), the expected
increase in AUCg of victim OATP substrates is observed based on examination of the AUCg,
relationship. Consideration of the AUCy, relationship would result in understanding that
intrahepatic exposure remains unchanged when uptake is inhibited, which is important since
efficacy of the statins (prototypical OATP1B substrates) relies on unbound intrahepatic
concentrations to drive efficacy. However, if the Kp,, relationship had been utilized, inhibition
of PSinrint would predict a decreased unbound liver-to-blood drug concentrations of the victim
drug, which may potentially mislead the investigator into thinking that unbound intracellular
exposure has decreased, when in reality the reduced Kp,, value is a result of the increase in
systemic unbound concentrations and that this change is not relevant for statin’s effects. Varma
et al. [24] acknowledge this point by indicating that “these results have potential implications for
clinical practice — particularly using statins. Arguably, dose adjustments based on plasma
exposure during comedication may avoid systemic adverse events such as myopathy and
rhabdomyolysis, but could lead to lack of clinical efficacy due to reduced hepatic concentrations”.

To further illustrate the impact of changes in a single disposition process (such as PSjqfint
as discussed by Varma et al. [24]) on observed AUCg,, AUCy,, and Kpy, values, simulations were
conducted to vary a single parameter by 10-fold in each direction (Figure 6.2). Changes in CLy jnt,
PSingint, PSeffint, OF Faps:Fc were examined (x-axis) and resulting fold-changes in observed AUCg,,,
AUCy,, and Kpy, are depicted (y-axis). Changes in PS.in: (Figure 6.2 Panel B) or PScsin: (Figure 6.2
Panel C) result in no change in unbound liver exposure (blue lines), however, unbound systemic
exposure (red lines) and Kp,, (green lines) are observed to change inversely. Changes in Fups-Fg

(Figure 6.2 Panel D) result in no change in Kp,, due to proportional changes in both systemic and
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liver unbound exposure. Increases in CLyn: (Figure 6.2 Panel A) result in decreases in all three
parameters to different degrees, with an observed linear impact on unbound liver exposure (blue
line). These simulations exemplify why utilization of Kp,, may mislead and why examination of
systemic and hepatic AUC, ratios should preferentially be utilized.

We further emphasize that these AUC, relationships describe unbound drug exposure,
and that multiplying both sides of these equations by f, s or f, ., respectively, results in the

relationships for total AUC:

AUCp :fu,B “Faps * Fg - (CLH,int + PSeff,int)
Doseyrq PSinf,int ’ CLH,int

AUCy :fu,H * Faps * Fg
Doseoral CLH,int

Examination of these relationships further emphasizes that changes in protein binding will
definitely impact total drug concentrations, however, these changes will not alter unbound
systemic or hepatic concentrations that ultimately drive efficacy and toxicity. The nuanced
importance of this concept can best be illustrated when considering drug level monitoring, where
a change in protein binding would result in altered total blood concentrations and may ultimately
influence a clinician to make a dose adjustment. However, consideration of the unbound
exposure relationships reveal that unbound exposure had not changed and such dose

adjustments could lead to lack of efficacy or safety.
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Figure 6.2: Expected fold difference outcomes for systemic unbound exposure (AUCg ), hepatic
unbound exposure (AUCy ) and Kp,, based on changes in (A) CLintH, (B) PSingint, (C) PSesint OF (D)
Fo-Fg. Resulting changes in AUCg,, are indicated by the red lines, changes in AUCy,, are indicated
by the blue lines, and changes in Kp,, are indicated by the green lines.
The Appropriate Role of Kpy, in Predicting PK/PD and Drug-Drug Interactions

As mentioned above, Kp,, is useful in predicting pharmacodynamic (PD) drug effects

driven entirely by unbound intracellular drug concentrations, such as drug efficacy or toxicity

associated with a specific organ [21,25-27]. This is particularly relevant for statins, as drug
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efficacy is a function of intrahepatic concentrations, however systemic or muscle exposure may
drive undesirable myopathy side effects. Evaluation of Kp,, may also be useful when estimating
free liver concentrations based on readily measurable plasma concentrations in a clinical study.
Thus, an in vitro measurement of Kp,, has the potential to allow for estimations of drug exposure
within the organ, a concentration that is extremely difficult to measure, which can help inform
potential for pharmacological and adverse effects.

Determination of Kp,, may also be helpful in improving predictions of pharmacokinetic
drug disposition (i.e. in prediction of hepatic drug elimination). Recently, Riccardi et al. [28]
demonstrated improved clearance predictions for transporter and enzyme substrates involving
in vitro hepatocyte clearance determinations in the presence of 4% bovine serum albumin, to
account for protein-facilitated uptake mechanisms, as recently described by Bowman and Benet
[29]. A modified version of Kp,, that accounts for unbound drug partitioning between the liver
tissue and the liver plasma was utilized in the mathematical model and was estimated with
consideration of measured partitioning between the hepatocytes and the protein-augmented
buffer, resulting in improved clearance predictions.

With respect to drug interaction prediction, Kp,, can be utilized in improving predictions
of inhibitory potential of an intracellular perpetrator drug, but only in regards to processes driven
by intracellular concentrations, i.e. metabolic elimination (CLjx¢ ), biliary elimination (CLint i) and
basolateral efflux (PSintf), Since active uptake processes (PSintins) into the liver would be driven
by systemic perpetrator concentrations (Figure 6.1). Predictions of inhibitory potential of
perpetrator drugs are routinely performed and according to the FDA Draft Guidance [14] the

change in systemic exposure of victim drug as a result of a perpetrator can estimated by the AUCx
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relationship presented in the Methods, reflecting a basic interaction with a reversible inhibitor
of a single hepatic disposition process. More complex models involving time-dependent
inhibitors or inhibition of multiple pathways are commonly integrated in physiologically-based
pharmacokinetic (PBPK) modeling approaches, and are essentially based on integration of
individual specific models for each process into the AUCy,, and AUCg, relationships to predict
overall AUC changes in complex drug-drug interactions [24, 30, 31]. Determinations of Kp,, are
theoretically valuable in accounting for the true unbound concentration of an intracellular
inhibitor in order to more accurately predict drug interaction potential, but the uncertainty of
Kpy,, measurements via the different procedures employed belies the usefulness of this approach
as we show below.

Recently, lwasaki et al. [17] introduced Kp,, into their PBPK models to potentially improve
the predictability of twenty-two CYP-mediated DDIs. The authors determined Kp,, by three
methods (temperature, homogenization and in vivo rat studies) and incorporated these values
into their predictive models; model outcomes of these simulations were compared to that of
simulations conducted without consideration of Kp,, (i.e., Kp,, = 1). These authors concluded
that the accuracy of DDI predictions improved upon inclusion of Kp,,, however, although root
mean square error (RMSE) showed a moderate improvement (5.12 versus 2.31-3.91), there was
no change in average fold error (AFE) (1.45 versus 1.36-1.43) nor in percent within 2-fold (86.4%
versus 81.8-100%). The purported improvement of DDI predictions based on RMSE values
appears to rely entirely on one interaction (itraconazole-triazolam; AUCg = 27.1) for which drug
interaction potential was underpredicted. It is telling that the experimental determinations of

Kp,, for itraconazole in that report vary greatly between methodologies utilized, with values

162



ranging from 4.16 to 22.6. Aspects related to variability in the Kp,, value due to the intricate

methodologies required will be discussed in further detail subsequently.

Predicted AUC Ratio

KPuy

Figure 6.3. Predicted magnitude of metabolic drug-drug interaction between ketoconazole
(perpetrator) and midazolam (victim) based on Tsunoda et al. [13]. The ratio of AUC for the
interaction phase divided by the control phase is plotted on the y-axis. The observed clinical AUC
ratio of 5.1 is indicated by the horizontal red line (red dotted lines indicate two-fold differences
from this value). Predictive midazolam AUC ratios for simulations incorporating Kp,, values
(ranging from 0.1 to 10) that would be observed for reversible CYP3A4 inhibition by ketoconazole
are indicated by the black line. Experimental measures of Kp,, from the literature are presented
as symbols on this line: purple triangles, temperature method; green diamonds, homogenization
method; blue circle, Log D method; yellow squares, extended clearance method.
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To investigate if predictions of AUCg for a simple metabolic interaction could be improved
with implementation of Kp,, to assess relevant inhibitory concentrations, the CYP3A4-mediated
interaction between IV midazolam (victim drug) and ketoconazole (perpetrator) [13] was
predicted utilizing the AUCk relationship presented in the Methods. Maximum unbound
concentration (/maexu) Of ketoconazole was determined to be 0.16 uM and average unbound
inhibitory constant (K;) was 0.061 uM, resulting in a predicted AUC; of 3.6, as compared to the
observed ratio of 5.1 as indicated by the solid red line in Figure 6.3. Published values of
ketoconazole Kp,, were utilized to attempt to improve prediction of unbound intracellular
ketoconazole concentrations in contact with CYP3A4 and these values were supplemented by
simulations of Kp,, ranging from 0.1 to 10, as indicated by the solid black line. To achieve a
predicted AUCrof 5.1, a Kp,, value of 1.5 is necessary, however the reported literature Kp,, values
ranged almost 15-fold, from 0.32 — 4.67. Thus, depending on the methodology employed,
drastically different predictions are achieved. Further, a 4.4-fold difference in Kp,, value for the
homogenization method was observed between labs (0.72 [18] vs. 3.18 [17]), highlighting the

large degree of inter-lab variability associated with these measurements.

Limitations in the Utility of Kp,, Values

Although utilization of Kp,, values should theoretically improve the optimization and
development of novel therapeutics, significant limitations related to Kp,, methodology result in
limited benefits of its implementation, including (1) its basis upon the well-stirred model, which

ignores the nuances of intracellular-drug distribution, (2) labor-intensive determination
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methodologies that are (3) prone to a high degree of variability in outcome with respect to
experimental methodology employed and inter-lab variability.

First, the simplification of driving-force concentrations may result in noteworthy
limitations in the utility of Kp,,. If subcellular drug localization is not uniform, Kp,, may over- or
under-estimate true unbound drug concentrations relevant for the process-of-interest. For
instance, discerning any differences between potential inhibition of hepatic metabolism,
basolateral transport and apical transport processes poses a challenge when only the average
intracellular concentration is known. Further, Kp,, cannot account for the effects of subcellular
drug accumulation, which may occur due to pH or electrochemical differences between cytosol
and organelles (particularly in lysosomes and mitochondria). If drug accumulates in subcellular
compartments, measurement of apparent Kp,, would result in an overestimate of true
intracellular cytosolic drug concentration and confound predictions of hepatic disposition of
processes associated with unbound cytosolic drug concentrations.

The impact of subsequent subcellular drug partitioning on the apparent Kp,, value has
been investigated by a number of groups, with particular focus on lysosomal trapping, which is
known to affect basic compounds (Table 6.1) [18, 32]. For basic drugs, that is diltiazem,
erythromycin, imatinib, propranolol, and verapamil, a significant decrease in the apparent Kp,,
value was observed when lysosomal trapping was inhibited by chloroquine. The largest Kp,,
decrease was observed for imatinib (5.3-fold reduction) when lysosomal trapping was inhibited,
highlighting that traditional measurements of apparent Kp,, would have significantly
overpredicted cytosolic unbound drug concentration by approximately 5-fold. Data summarized

in Table 6.1 support that this trend is not as apparent for acidic drugs (such as diclofenac,
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indomethacin and simvastatin acid). The value of Kp,, for verapamil varied greatly between

reports (5.7 versus 0.7), highlighting the issues surrounding inter-lab variability.

Table 6.1: Published Kp,, Values with Respect to Subcellular Partitioning

Fold
Charge Kpuy Chloroquine . Method
Dr K ] Difference
ue Class Pua 1 Chloroquine | Conc. (uUM) : [Reference]
in Kp,,
2.2 0.5 0.85 H ot
. . omogenization
Diclofenac Acid 2.6 2.6 5 1.0 Method®; [32]
2.7 50 1.0
1.4 0.5 1.1 ’ ot
. . omogenization
Indomethacin Acid 1.3 1.6 5 1.2 Method®; [32]
1.5 50 1.2
i ati 1.3 0.5 1.9 ’ ot
Imvastatin . omogenization
Acid Acid 0.70 1.6 5 2.3 Method®; [32]
1.1 50 1.6
1.9 0.5 0.66 H ot
s . omogenization
Diltiazem Basic 2.9 1.2 5 0.41 Method®; [32]
0.63 50 0.22
Temperature
. . 11.5 3.36 0.5 0.29 Method; [18]
Erythromycin Basic Homogenization
0.11 0.06 0.5 0.55 Method; [18]
Temperature
N . 2.71 0.56 0.5 0.21 Method; [18]
Imatinib Basic Homogenization
1.30 0.25 0.5 0.19 Method; [18]
3.3 0.5 0.70 H ot
. omogenization
Propranolol Basic 4.7 1.6 5 0.34 Method®; [32]
1.4 50 0.30
5.3 0.5 0.93 H ot
. . omogenization
Verapamil Basic 5.7 3.7 5 0.65 Method®; [32]
1.8 50 0.32
Temperature
. . 0.73 1.05 0.5 1.4 Method; [18]
Verapamil Basic Homogenization
0.67 0.41 0.5 0.61 8

Method; [18]

®Values were digitized from Figure 5 of Mateus et al. [32]
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Further in the Riede et al. report [18], erythromycin Kp,, values varied 100-fold between
determination methodologies (homogenization method (0.11) versus temperature method
(11.5)) within the same lab, demonstrating the need for reliable and consistent methodologies
for Kp,, determination. In summary, these studies highlight that subcellular drug accumulation
may result in inflated apparent Kp,, values, resulting in an overestimation of true unbound
intracellular cytosolic drug concentrations, as well as potential underestimation of subcellular
accumulation, which may be relevant for certain pharmacological targets, such as for respiratory
indications with targets located in the lung [26]. Until significant advancements in experimental
and analytical methodology to detect the nuances of subcellular drug distribution, utilization of
Kp,, in pharmacokinetic or pharmacodynamic predictions should be accompanied with
recognition of the inherent limitations of the simple but useful single-concentration well-stirred
model assumption.

We emphasize that measurement of Kp,, is not a trivial task, either involving (1)
determination of total drug partitioning (Kp) that is further corrected by measures or predictions
of incubational and hepatic binding (fyinc and f,u, respectively) or by (2) measurement of
individual hepatic disposition intrinsic clearances for incorporation into the Kp,, equation, which
must be conducted under multiple experimental conditions to isolate each process. Therefore,
it is to be expected that experimental outcome may be plagued with variability issues. In a
subsequent publication, we will evaluate the reliability of human in vitro Kp,, measurements with
respect to inter- and intra-lab variability, experimental methodology, and with consideration of
the theoretical Kpy, values expected for transport substrates (versus drugs with no clinical

significant transporter involvement for which values are expected to be close to or less than 1).
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As demonstrated here for a limited dataset, our evaluation will report significant variability in

measurements for the same drug across different methodologies and by different labs.

Conclusions

Although Kp,, may be useful in improving predictions of pharmacodynamics, there is
limited benefit of utilization of Kp,, in improving drug-drug interaction predictions. In DDI
predictions of victim drug, dependence on extended clearance concept-based AUCg equations is
a more reasonable approach, as changes in Kp,, can potentially mislead an investigator to
incorrectly conclude that the Kp,, change has resulted in altered intrahepatic concentrations, an
aspect crucial for tissue-specific efficacy or toxicity. Further, utilization of the AUCg equations in
DDI prediction can reasonably predict the magnitude of DDIs and does not require any
measurement of Kp,, or f, u, potentially difficult tasks plagued with a high degree of variability
between laboratories and between methodologies. The appropriate use of Kpy, is in improving
predictions related to pharmacodynamics (i.e. efficacy and toxicity), drug disposition (hepatic
clearance or biliary elimination) or in characterizing the inhibitory potential of perpetrator drugs
for processes driven by intracellular unbound drug concentrations. Consideration that Kp,, is
based on a well-stirred model interpretation of hepatic elimination must be taken into account,
as nuances of intracellular drug distribution are not considered by the Kp,, model. Finally, a
significant degree of variability in Kp,, values has been suggested in the literature and therefore
utilization of this difficult-to-measure theoretical value may result in a large prediction error

depending on the particular methodology used. This necessitates the development of reliable
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and consistent experimental Kp,, determination methodologies to support its role in improving

predictive models related to drug disposition.
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CHAPTER 7: ARE THERE ANY EXPERIMENTAL PERFUSION DATA THAT PREFERENTIALLY
SUPPORT THE DISPERSION AND PARALLEL TUBE MODELS OVER THE WELL-STIRRED MODEL OF

ORGAN ELIMINATION?"

Abstract

In reviewing previously published isolated perfused rat liver studies, we find no
experimental data for high clearance metabolized drugs that reasonably or unambiguously
support preference for the dispersion and parallel tube models versus the well-stirred model of
organ elimination when only entering and exiting drug concentrations are available. It is likely
that the investigators cited here may have been influenced by: 1) the unphysiologic aspects of
the well-stirred model, which may have led them to undervalue the studies that directly test the
various hepatic disposition models for high clearance drugs (for which model differences are the
greatest); 2) experimental assumptions made in the last century that are no longer valid today,
related to the predictability of in vivo outcomes from in vitro measures of drug elimination and
the influence of albumin in hepatic drug uptake; and 3) a lack of critical review of previously
reported experimental studies, resulting in inappropriate interpretation of the available
experimental data. The number of papers investigating the theoretical aspects of the dispersion,
parallel tube and well-stirred models of hepatic elimination greatly outnumber the papers that
actually examine the experimental evidence available to substantiate these models. When all

experimental studies that measure organ elimination using entering and exiting drug

" Modified from the publication: Sodhi JK, Wang H-J, Benet LZ. Are there any experimental
perfusion data that preferentially support the dispersion and parallel-tube models over the well-
stirred model of organ elimination? Drug Metab Dispos. 2020;48(7):537-543.
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concentrations at steady state are critically reviewed, the simple but unphysiologic well-stirred

model is the only model that can describe all trustworthy published available data.
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Introduction

Forty-eight years ago, Rowland [1] defined steady-state organ clearance (here hepatic,
CLy) as the fraction of the entering drug blood concentration (C;,) that is eliminated by the organ
multiplied by organ blood flow (Qy), with the ratio of concentration terms designated as the

extraction ratio (ER). This relationship will be referred to subsequently as Equation 1.

This simple but useful relationship allowed for clearance measurements based only on
knowledge of entering and exiting concentrations and organ blood flow. In 2018, Benet et al.
maintained that Eq. 1 was only consistent with the well-stirred model of hepatic elimination,
since the amount lost at steady-state, Qy ® (Cin — Cour), Was divided by the drug concentration
entering the liver (C;,) to obtain CL4, and no other concentrations within the liver were considered
in the clearance determination [2]. These are solely characteristics of the well-stirred model. In
a Commentary accompanying that paper [3], Rowland and Pang write that Eq. 1 is model
independent and “simply express[es] proportionality between observed rate of elimination and
a reference concentration”, and as they had earlier indicated [4] that “by definition” organ
clearance is given by Eq. 1.

In the present chapter, we do not further discuss the theoretical differences of Benet et
al. [2] versus Rowland and Pang [3] with respect to Eq. 1, rather we objectively review and
critically evaluate the experimental data available when Eq. 1 is used to calculate organ

clearance. If there is truth to the assertion that Eq. 1 is model independent there should be

177



experimental data supporting preference for the dispersion or parallel tube models versus the
well-stirred model when Eq. 1 is used to calculate organ clearance. There are numerous papers
related to the theoretical basis of alternate models of hepatic elimination (which we agree are
more physiologically-relevant than the well-stirred model), and even more papers by hundreds
of authors throughout the field where such models are utilized, including by widely employed
PBPK programs. However, there are very few experimental papers that directly test the
differences between the theoretical organ disposition models, as we review here. Let us be clear.
We agree that the well-stirred model (also called the venous equilibration model) is
unphysiologic. We agree that there is zonal distribution of the metabolic activity of enzymatic
processes within the liver. We agree that there is dispersion within the liver that is neither zero
nor infinite. The purpose of this paper is to examine for the first time all of the experimental data
when only entering and exiting concentrations for an organ of elimination are available, with

respect to which model is consistent with the Eq. 1 definition of hepatic elimination.

Methods
Literature Search

Previously published isolated perfused rat liver (IPRL) studies were identified from the
literature as it is possible to directly distinguish the models of hepatic elimination with such
isolated organ studies, and because such IPRL studies were commonly utilized and cited by the
field as support of one hepatic disposition model versus another. A schematic of a typical single-
pass IPRL study is presented as Figure 7.1. Since the well-stirred model, dispersion model, and

parallel tube model quantitatively predict similar clearance values for low and moderately
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extracted drugs, analysis focused only on high extraction ratio substrates (ER > 0.7) where the
models can maximally be discriminated from one another. The literature search resulted in
identification of only four publications that performed IPRL studies for high clearance drugs
(lidocaine [4, 5], meperidine [5] and propranolol [6, 7]) in which model differentiation was
possible. Four additional studies were identified for two high clearance non-drug substances
(galactose [8] and taurocholate [9-11]) and five studies for which the low clearance drugs,
diazepam and diclofenac, were manipulated to behave like a high clearance drug by altering
protein binding [10, 12-15]. All discussed publications are listed in Table 7.1. These studies were
critically examined with respect to the degree of discrepancy that the experimental data had with
predictions from each hepatic disposition model, with the purpose of potentially identifying
experimental data that cannot be described by the well-stirred model.

In evaluating the validity of results of steady-state IPRL studies, it is important to ensure
that the viability of the IPRL is maintained throughout the experimentation period. Key points to
consider include (1) length of perfusion times, with preference for shorter duration times, (2)
ensuring elimination follows first-order kinetics at concentrations tested, (3) flows should be
optimized as to not damage to liver at very high flow rates and ensure the vasculature is fully
perfused, which may be an issue for flow rates that are too low and (4) adequate oxygenation of
the system. For the purposes of model discrimination, the selected drugs should be high ER and

perfusion rate limited.
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Figure 7.1: Schematic representation of an isolated perfused rat liver (IPRL) study and its utility
in evaluating hepatic disposition models. By using a known entering drug concentration (C,)
and measuring the exiting drug concentration (C,.), it is possible to evaluate the various hepatic
disposition models by predicting the C,,: associated with each model (and comparing this value
with measured C,,). Perturbations in protein binding or perfusate flow are often utilized to
evaluate which model is most predictive of such changes. Depicted in the figure are the two
boundary hepatic disposition models: (1) the well-stirred model (which assumes instantaneous
and non-incremental metabolism) and (2) the parallel-tube model (which assumes log-linear
decline of drug concentrations). The dispersion model falls between these two boundaries, as
the loss of drug depends on the specific degree of dispersion assumed by the model.

Model Discrimination
Investigators conducted IPRL studies with known Cj, values and measured C,,: values

under different experimental conditions that alter experimental flow (Q) or protein binding (f.).

Cout

Experimental results were reported as ER, availability (F = ), or the ratio of observed C,,:

mn
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values under different experimental conditions. Investigators then compared these observed
outcome measurements with the predicted value expected for the well-stirred model versus the
values expected for the alternate parallel tube and dispersion models. In all of these studies,
clearance was calculated by Eq. 1 under the assumption that Eg. 1 is model independent. It
should be noted that if Eq. 1 is not model independent, then the expected values for the parallel
tube and dispersion models reported by these investigators would be incorrect. However, here
we accept these comparisons and the model independent assumption of Eq. 1 to objectively

evaluate the available experimental data under the same assumptions made by the investigators.

In Vitro to In Vivo Extrapolation (IVIVE) Approach

An alternate indirect approach to test model discrimination was previously proposed by
Roberts and Rowland [16] and further presented by Iwatsubo et al. [17], in which in vitro
measures of intrinsic clearance (CL;;) were scaled up to predictions of in vivo CLj, following
physiologically-based IVIVE techniques for a number of drugs with published IPRL data. These
IVIVE-predicted in vivo CL,: values were then utilized to calculate an efficiency number (Ry) (Ry =
fu® CLint/ Q) based on IPRL experimental conditions and plotted against experimentally observed
hepatic availability (F), which was calculated using Eq. 1 and the extraction ratio/bioavailability
relationship (ER = 1 —F). Finally, these values were compared with the hepatic availability values

expected for the various hepatic disposition models.
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Table 7.1: Summary of Isolated Perfused Rat Liver (IPRL) Studies for High Clearance Substrates

Test Compound Category Condition Altered Reference
Lidocaine Drug (1.6?fHoId) Pang and Rowland, 1977 [4]
Lidocaine Drug (l.S?fHoId) Ahmad et al., 1983 [5]

';gif:g?:;? Drug (l.S?fHoId) Ahmad et al., 1983 [5]
Propranolol Drug (2.7§o|d) Jones et al., 1984 [6]
Propranolol Drug (5.7{;old) Jones et al., 1985 [7]
Galactose Non-Drug Substrate (1-4 to(iF.IS-fold) Keiding and Chiarantini, 1978 [8]
Taurocholate Non-Drug Substrate (Single pasj;u: 11.1-fold) Smallwood et al., 1988 [9]
Taurocholate Non-Drug Substrate (Recirculatjicruwg; 18-fold) Smallwood et al., 1988 [9]
Taurocholate Non-Drug Substance (14.gljfold) Ching et al., 1989 [10]
Taurocholate Non-Drug Substrate (7.4{;old) Roberts et al., 1990 [11]
Taurocholate Non-Drug Substrate (3.7(-21:Iold) Roberts et al., 1990 [11]
Diazepam® Drug (13.£fold) Ching et al., 1989 [10]
Diazepam® Drug (1.3{;old) Rowland et al., 1984 [12]
Diazepam® Drug (2.7{;old) Diaz-Garcia et al., 1992 [14]
Diazepam® Drug (2.0(-2fHoId) Diaz-Garcia et al., 1992 [14]
Diazepam® Drug (1.4{;old) Wang and Benet, 2019 [15]
Diclofenac” Drug (333Jiufold) Hussein et al., 1993 [13]

Abbreviations: f,, fraction unbound (protein binding); Qu, hepatic flow
“Low clearance drug manipulated to be high clearance in absence of plasma proteins
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Results
Isolated Perfused Rat Liver (IPRL) Studies of High Clearance Drugs

The various hepatic disposition models diverge from one another as clearance value
increases, therefore high clearance (extraction ratio) compounds are the most appropriate for
testing model discrimination. There are only four published isolated rat perfusion (IPRL) studies
that evaluate these models for high extraction ratio drugs [4-7]. All four of those studies,
including two from the Rowland laboratory, conclude that the data are consistent with the well-

stirred model, not alternate hepatic clearance models.
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Figure 7.2: Experimental lidocaine isolated perfused rat liver (IPRL) results and models of
hepatic elimination from Pang and Rowland [4]. The well-stirred model (WSM) appears as a
solid line and the parallel-tube model (PTM) appears as a dashed line.
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In the first of the two Rowland publications, Pang and Rowland [4] evaluated the effect
of changing organ blood flow on the extraction ratio of lidocaine as depicted in Figure 7.2. The
title of the paper indicates the results: “Experimental evidence for acceptance of the well-stirred
model over the parallel tube model using lidocaine in the perfused rat liver in situ preparation”.
In the second Rowland publication, Ahmad et al. also evaluated the effect of changing blood flow
on the extraction ratio of lidocaine and meperidine (pethidine), displaying figures that markedly
differentiate the experimental outcome between the well-stirred model and the parallel tube
model for both drugs [5]. The concluding sentence of the abstract of that paper states, “The
experimental findings indicate that the well-stirred model more accurately predicts the
elimination of highly cleared drugs with perturbation of flow than does the parallel tube model.”

Two additional studies were published by Jones et al. [6, 7] that evaluated the effect of
changing protein binding on the extraction ratio of propranolol. The advantage of altering
protein binding (as opposed to flow) is that it is possible to vary binding over a much larger range
than flow can be varied, due to liver integrity issues resulting from flow rates that are too high or
too low. In the Jones et al. (1984) study, a 2.7-fold change in propranolol protein binding was
achieved when albumin concentration was varied [6]. The following year Jones et al. (1985)
reported an average 5.7-fold change in protein binding when a;-acid glycoprotein (AAG) was the
binding protein examined [7]. In contrast, in the Rowland studies, flow was only able to be varied
by 1.6-fold [4] and 1.5-fold [5]. Results for both Jones et al. studies show clear preference for the
well-stirred model [6, 7]. At the beginning of the concluding paragraph of the Jones et al. (1984)
paper, they state, “Although there may be no simple anatomical explanation for the applicability

of one or other model, it is clear that the venous equilibration model precisely describes the
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hepatic elimination of propranolol. Operationally, the liver is behaving as a well mixed
compartment, however ‘unphysiological’ this may seem” [6]. In the first sentence of the
concluding paragraph of Jones et al. (1985) they warn that “the a priori thinking which rules out
the venous equilibrium model on the grounds of physiological ‘irrelevance’ deserves careful
reappraisal” [7]. In the final sentence, Jones et al. [7] quote Cobelli et al. “it would seem
unjustified to contravene the ‘principle of parsimony’ by invoking a more complex model when
the simpler model will do” [18].

The four studies above are the only published IPRL studies for high clearance drugs, and

they are all consistent with the well-stirred model as acknowledged by the authors.

Isolated Perfused Rat Liver (IPRL) Studies of Non-Drug Substrates

Non-drug substances have also been studied in IPRL experiments. A frequently cited study
is that of Keiding and Chiarantini [8] who examined galactose elimination in recirculating rat liver
perfusions, versus the single pass perfusions utilized in the studies discussed above. Although
this paper, which concludes that sinusoidal perfusion (the parallel tube model) is consistent with
the experimental data, is frequently cited, it appears the field has accepted the conclusion
without examination of the experimental data. Galactose had been previously demonstrated to
be a high clearance substrate by Goresky et al. [19] where it is reported that “the extraction is
almost complete, i.e., the hepatic venous blood is almost completely cleared of galactose” at the
galactose concentrations tested by Keiding and Chiarantini [8]. However, the experimental
results of the Keiding and Chiarantini [8] study are not consistent with galactose being a high

clearance substance as would be expected for galactose. At flow rates of 10-11 ml/min, the
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lowest C,u/Cin values of the 10 experiments reported are 0.32 and 0.34 (experiment 9),
corresponding to ER values of 0.68 and 0.66. However, the average ER value for the 20
measurements in the 10 experiments was 0.46 + 0.11 (SD). For the 6-7 ml/min infusions the
lowest Cou/Cin is 0.12 (ER = 0.88) but values are as high as 0.45 (ER = 0.55), and in fact, only 3 of
all 10 experiments support galactose being a high clearance drug (ER > 0.7) at the 6-7 ml/min
infusion. The average ER of all 10 experiments was 0.68 + 0.10 (SD).

Of further concern with the Keiding and Chiarantini [8] report is that when comparing
clearance from the 10-11 ml/min to the 6-7 ml/min conditions, for four of the 10 experiments
clearance is higher at the lower blood flow of 6-7 ml/min (experiments 1, 2, 3 and 5). No model
of hepatic elimination is consistent with this outcome. Perhaps these unacceptable results are a
function of suboptimal experimental conditions, as the authors mention that measured galactose
concentrations were not corrected for perfusate volume changes due to evaporation, since they
reason that the degree of evaporation in the recirculating system was approximately equal to the
volume of galactose infusate (22 ml). Further, no studies were conducted to confirm that
galactose elimination was in a linear range at the concentrations tested. Finally, based on the
average rat liver weight of 6.87 g, a flow rate of 6 ml/min corresponds to an average flow rate of
0.87 ml/min/g, which is likely too low to fully perfuse the livers.

The second high-clearance compound investigated in IPRL studies is taurocholate.
Smallwood et al. investigated taurocholate in the IPRL with changing fraction unbound in both
recirculating and single-pass perfusion studies [9]. In both experimental designs, the
experimental data were fit equally well by the well-stirred and the dispersion models, and in fact

these two models could not be differentiated from one another (represented by the same line in
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their Figure 2) due to a very high average fitted dispersion numbers of 5.0 x 10’ (single-pass) and
13.3 (recirculating). The authors acknowledge that when the dispersion number is sufficiently
large (approaches infinity) the dispersion model approaches the well-stirred model (infinite
mixing) and that their observed dispersion numbers were “sufficiently large that the dispersion
model has ‘collapsed’ into the venous equilibrium model extreme.” Yet they conclude,
“Moreover, perhaps it is time to relinquish the venous equilibration model, which, though
operationally accurate, is conceptually flawed,” which highlights the hesitation of the field to
accept a model that best fits the data simply because of its limited physiological relevance.

A reviewer of our published manuscript on this topic has questioned the trustworthiness
of the Smallwood et al. report [9], as the authors used total radioactivity as a measure of
taurocholate (which forms a sulfate), and because experimental details related to the duration
of these experiments were not clearly stated (although they can be deduced and appear to be a
reasonable length of time). Additionally, rat liver weights are not reported, therefore it is not
possible to assess the viability of the preparation for a continued high flow rate of 32 ml/min,
which typically should not exceed 3 ml/min/g liver weight. However, reported rat liver weights
from other IPRL studies cited here and in the literature range from 5.51 — 15.4 g for rats weighing
200 — 400 g. Therefore, a flow rate of 32 ml/min could be reasonably sustained for rat livers
weighing approximately 10.5 g, which is quite likely in this study given that the rats weigh
between 250 to 300 g. Smallwood and coworkers [10] repeated their single-pass IPRL studies
with taurocholate one year later, and again found that in each of their six replicates the well-
stirred model best describes taurocholate elimination, since “dispersion number was greater

than 10" in all experiments and was therefore taken as infinite.”
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Figure 7.3: Hepatic availability (F) predictions of the well-stirred and dispersion models of
taurocholate availability with changes in fraction unbound in the perfusate for two different
experiments reported by Roberts et al. [11]. The well-stirred model is represented by the upper
solid line and the dispersion model is represented by the lower dashed line. Observed hepatic
availability values (mean * SD) are depicted for experiments containing 5% albumin (f, = 0.14),
0.5% albumin (f, = 0.56), or 0% albumin (f, = 1.0) and are experimentally calculated by Cout/Cin.
Roberts et al. also investigated taurocholate elimination in IPRL studies by varying both
protein binding and flow [11]. Figure 7.3 depicts experimental data from two different
experiments from this publication in which protein binding is altered by experiments containing
0%, 0.5% or 5% albumin (at a flow rate of 10 ml/min) versus the hypothetical well-stirred and
dispersion models. In this figure, two values are from the experiments designed to alter protein

binding (0.5% versus 5% albumin) at a flow of 10 ml/min, and two values are from the 10 ml/min

experiments designed to alter flow, which were run at both 0% and 5% albumin. From Figure
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7.3, it is difficult to suggest a preference of one model versus another, especially given the large
standard deviations for the potentially discriminating data points with the moderate protein
binding value. The authors comment on the inadequacy of the fit to the well-stirred model but
make no direct comparison with the dispersion model until the final sentence of the manuscript
where they excuse its insufficiency by indicating that “alterations in albumin content results in
availabilities that require an albumin-mediated transport system to be used in conjunction with
the dispersion model.”

Roberts et al. [11] further purport to show preference for the dispersion model over the
well-stirred model when blood flow changes, although no model comparison figure is provided.
The authors state, “The well-stirred model is unphysiological...if the well-stirred model were
applied to the flow data in Table V, availabilities of 0.007 (observed 0.048 + 0.061 SD) and 0.12
(observed 0.18 + 0.08 SD) would be predicted from 0 and 5% albumin at 37 ml/min using 10
ml/min data. With the correction for volume changes, the predicted availabilities are 0.004 and
0.059. Thus, the well-stirred model does not account for the data obtained in this study.” The
standard deviations listed above were not in the original text but have been added by us. The

authors again do not directly evaluate the fit of experimental data with variable flow to the

dispersion model as they do for the well-stirred model.

Isolated Perfused Rat Liver (IPRL) Studies of Diazepam and Diclofenac
There are three experimental IPRL clearance studies with the low hepatic clearance drug
diazepam and one with diclofenac from the last century, where the drug has been manipulated

to be high clearance in the absence of plasma proteins [10, 12-14]. One study demonstrates
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preference of diazepam for the parallel tube model [12] and the other three studies demonstrate
preference of diazepam [10, 14] and diclofenac [13] for the axial dispersion model versus the
well-stirred model. In the case of the Hussein et al. diclofenac study [13], the authors admit that
“the improvement [of the dispersion model] over the well-stirred model was statistically
significant in four of the eight preparations only,” highlighting the variability associated with their
results, as well as that the reported success of the dispersion model was due to the fact that it
was approximating the well-stirred model in half of their replicates. A similar degree of variability
in model preference was also observed in the Ching et al. [10] diazepam study, where for six
replicates that support the dispersion model, three were fit with dispersion numbers of
approximately zero (the parallel-tube model) and one was fit with a dispersion number of infinity
(the well-stirred model).

Further, it should be highlighted that except for zero addition of protein to the perfusion
solution, no other experimental results in these studies can adequately differentiate organ
hepatic clearance models in all four of these publications. Additionally, the high degree of
variability associated with the zero protein experiments for these highly protein bound drugs is
noteworthy. Wang and Benet [15] very recently repeated these diazepam IRPL studies at zero
protein concentration but also at very low albumin concentrations (0.025 and 0.05%) with the
intent of including more than a single model-discriminating experimental data point as well as
potential mitigation of the variability associated with zero protein addition conditions. Results
confirmed that at zero albumin concentration, data were consistent with the parallel tube model

as reported by Rowland et al. [12]. The results exhibited high variability, as also was seen in the
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previous Rowland laboratory studies. However, at 0.025% and 0.05% albumin the results were

preferentially consistent with the well-stirred model.
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Figure 7.4: Plots of Fy vs f,-CLint/Qy including the theoretical well-stirred, parallel tube and
dispersion model relationships based on data from Roberts and Rowland [16] and Iwatsubo et
al. [17]. Data points assuming no error in IVIVE prediction are depicted. The five high extraction
ratio compounds included in this analysis (alprenolol, lidocaine, meperidine, phenacetin and
propranolol) are labeled. Additional compounds (low and moderate extraction ratio) are labeled
with the following abbreviations: 5-HT, 5-hydroxytryptamine; ANP, antipyrine; CMZ,
carbamazepine; DZP, diazepam; ETB, ethoxybenzamide; HBT, hexobarbitone; PYT, phenytoin;
TLB, tolbutamide; TPT, thiopental. Blue, green and red lines depict the well-stirred, dispersion
and parallel tube model relationships, respectively.
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In Vitro to In Vivo Extrapolation (IVIVE) Approaches

An alternate indirect methodologic approach to evaluate previously published IPRL data
was proposed by Roberts and Rowland [16] to support the dispersion model. In that analysis, in
vitro measures of CL;,: have been used following IVIVE techniques to predict in vivo CL;,; for drugs
with published IPRL data. The predictions of in vivo CLj,: were further utilized to calculate an
efficiency number (Ry = f, ® CLin:/ Qu) based on experimental conditions of Q4 and f, from the
IPRL studies and these values were plotted against experimentally observed hepatic availability
(F) from the same IPRL studies. For ten drugs the predictive Ry values were determined and for
high extraction ratio compounds (alprenolol, lidocaine, meperidine, phenacetin and propranolol)
the results appear to be best described by the dispersion model (Figure 7.4). This analysis was
further presented subsequently by Iwatsubo et al. [17] and included four additional drugs from
the literature, which have also been incorporated in Figure 7.4.

The outcome for this indirect approach in support of the dispersion model is unexpected
since for three of the five high clearance compounds included in this analysis, there are published
IPRL experimental studies directly testing model preference, showing that the data only fit the
well-stirred model: changing blood flow for lidocaine [4, 5] and meperidine [5]; changing protein
binding for propranolol [6, 7]. How can this difference be explained? In contrast to Roberts and
Rowland [16], Iwatsubo et al. [17] emphasize that the indirect IVIVE analysis is dependent on the
assumption that in vitro determination of CL;,; will accurately predict in vivo CLj,; and CLy.
Iwatsubo et al. argued in 1996 that this was a valid assumption and that any difference between
predicted and observed clearance was negligible. They provide the data available in 1996 to

support this contention. But with time, it has been recognized by these authors that this
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assumption is incorrect [20] and as Rowland and Pang [3] note “IVIVE tends to underpredict the
estimated in vivo hepatic clearance (Halifax et al. [21]) for poorly understood reasons.” Bowman
and Benet [22] recently reported that of 19 drugs shown clinically in humans to be high ER, only
1 (5.5%) of 18 from human hepatocyte CL;,: measurements and only 3 (15.8%) of 19 from human
microsomal CL;,: measurements were correctly predicted to be high ER. For studies of high in
vivo ER drugs in rats, only 2 (22.2%) of 9 were predicted to be high ER by rat hepatocytes and
only 2 (25%) of 8 were predicted to be high ER by rat microsomes, supporting observations by
the field that the IVIVE underprediction is not a species-specific phenomenon.

For the high clearance compounds included in Figure 7.4, the supplemental table to Wood
et al. [23] shows that the CL;,: under-prediction for lidocaine in human hepatocytes is 11-fold and
for microsomes 32-fold; the alprenolol under-prediction in human hepatocytes is 2.6-fold and for
microsomes 3.4-fold; the propranolol under-prediction in human hepatocytes 6.7-fold and for
microsomes 18-fold; the phenacetin under prediction in human hepatocytes is 28.6-fold and for
microsomes 20.2-fold. Values for meperidine are not reported. To be fair, however, the previous
analyses [16, 17] are for rats and no rat values are given in Wood et al. [23] for lidocaine,
alprenolol, meperidine and phenacetin. For propranolol in rat hepatocytes, Wood et al. [23]
report a 1.9-fold under-prediction, but for microsomes a 3.2-over-prediction. In Figure 7.5 Panel
E, we again present the original published relationship between F and the three models of hepatic
organ elimination assuming that IVIVE predictions are valid [16, 17]. In Figure 7.5 Panels A-D, we
present the results that would be obtained accounting for the IVIVE under-predictions for all
drugs, (including the values presented above for high clearance compounds) by utilizing

published IVIVE discrepancy values from human hepatocytes (Figure 7.5 Panel A), human
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microsomes (Figure 7.5 Panel B), rat hepatocytes (Figure 7.5 Panel C) and rat microsomes (Figure
7.5 Panel D) based on Wood et al. [23]. The IVIVE underprediction corrections result in a
rightward shift in the data closer to the well-stirred model fit, and this trend is particularly striking
for human microsomes (Figure 7.5 Panel B). It is obvious today that in vitro CL;,: markedly
underpredicts in vivo CL;,: and the Roberts and Rowland [16] and Iwatsubo et al. [17] analyses
today might be very different then that published last century. Therefore, an IVIVE-based
approach to model discrimination cannot reliably be trusted without consideration of the degree

of underprediction expected for the drugs studied.

Vascular Dispersion and Axial Tissue Diffusion

Rivory et al. (1992) attempted to explain “the paradoxical ability of the venous-
equilibration model to describe the steady-state kinetics of lipophilic drugs such as lidocaine,
meperidine and propranolol” versus more physiological relevant models. The authors attempt
to validate the complex but physiologically-relevant Tissue-Diffusion model in a 43-page paper
with 35 equations, and propose that “vascular dispersion is of major importance to the
availability of poorly diffusible compounds, whereas axial tissue diffusion becomes increasingly
dominant for highly diffusive and partitioned substances.” Reanalysis of a number of the above
IPRL experiments [4-6] result in figures that essentially demonstrate that the Tissue-Diffusion

model can also accommodate the data by approximating the well-stirred model fits.
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Figure 7.5: Plots of Fy vs f,-CLint/Qy based on data from Roberts and Rowland [16] and Iwatsubo
et al. [17] that have been corrected for in vitro to in vivo underprediction error. Original data is
corrected for degree of observed in vitro to in vivo extrapolation (IVIVE) error in humans and rats
as reported by Wood et al. [23] based on in vitro data from (A) human hepatocyte, (B) human
microsomes, (C) rat hepatocytes, and (D) rat microsomes. Original data points assuming no error
in IVIVE prediction are depicted in E. The five high extraction ratio compounds included in this
analysis (alprenolol, lidocaine, meperidine, phenacetin and propranolol) are labeled in each
figure. Blue, green and red lines depict the well-stirred, dispersion and parallel tube model
relationships, respectively.
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Discussion

Although alternate models to the well-stirred model for hepatic drug elimination have
been examined since 1977, we find no comprehensive review of the concordance of these
models with experimental IPRL results. The evaluation of high ER compounds in model-
discrimination is critical, as each hepatic disposition model diverges from one another for high
clearance compounds. Surprisingly, there are only four IPRL studies that have directly evaluated
these models for high ER drugs [4-7]. In all four of these studies, data are preferentially consistent
with the well-stirred model; a fact acknowledged by the authors in each publication.

High clearance non-drug substrates have also been evaluated in IPRL studies for galactose
and taurocholate. The frequently cited Keiding and Chiarantini galactose IPRL study concluded
that the parallel-tube model is preferentially consistent with the experimental data [8], however,
critical examination of their experimental results calls their conclusion into question. Although
galactose is known to be a high clearance compound [19, 25], galactose did not have a high ER in
any experiment run at 10-11 ml/min (with an average ER of 0.46 + 0.11). At the 6-7 ml/min
infusions, galactose was only observed to be a high ER compound in 3 of 10 replicates. But of
utmost concern, clearance was observed to increase as flow was decreased from 10-11 ml/ml to
6-7 ml/min in 4 of 10 experiments. This outcome violates hepatic physiology and no model of
hepatic disposition is consistent with this outcome. The validity of the Keiding and Chiarantini
publication [8] in support of the parallel tube model is highly questionable and these data should
not be further cited in the literature as supporting an alternate model of hepatic elimination.

A second high clearance non-drug substance, taurocholate, was investigated by

Smallwood et al. under conditions of altered protein binding [9]. In both single-pass and
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recirculating perfusion studies, their dispersion model fits had collapsed into the well-stirred
model with very high average fitted dispersion numbers (5.0 x 10’ (single-pass) and 13.3
(recirculating)), as evidenced by both models being represented by the same line in their Figure
2. Although they acknowledge that when dispersion number approaches infinity, the dispersion
model simply approximates the well-stirred model, they hesitate to accept the conclusion that
the well-stirred model is adequate due to its limited physiological relevance. Ching et al.
repeated the taurocholate single-pass IPRL studies, again finding that the well-stirred model best
fits the observed data [10]. Taurocholate was also investigated by Roberts et al. in IPRL
experiments that varied protein binding and flow [11]; resulting data are plagued with high
variability precluding the ability to conclude model preference. Their experimental data from
studies that altered protein binding are depicted in Figure 7.3 and clearly no conclusion can be
drawn given the huge variability associated with the model-discriminating protein binding
measurements. No figure is presented for experiments that altered flow. Although authors
consistently describe the inadequacy of the well-stirred model fits, no direct comparisons nor
statistical analyses are provided regarding the dispersion model fits.

Four studies were identified where low ER drugs were manipulated to be high clearance
in the absence of plasma proteins; one study indicates preference of diazepam for the parallel-
tube model [12] and the other three indicate preference of diazepam [10, 14] and diclofenac [13]
for the dispersion model. The conclusions of these studies hinged on the experimental
measurements conducted without plasma proteins that were plagued with a high degree of
variability, resulting in inconsistencies in model preference for each replicate. For instance, the

diclofenac study [13] reported that the success of the dispersion model over the well-stirred
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model was only statistically significant in four of eight experiments, highlighting that the
purported success of the dispersion model was simply due to its approximation of the well-stirred
model in half of their replicates. Significant variability in model preference was also observed in
the Ching et al. [10] diazepam study; for six experiments reported to prefer the dispersion model,
three were fit with dispersion numbers of zero (parallel-tube model) and one was fit with a
dispersion number of infinity (the well-stirred model). In all these studies, the only model
discriminating conditions are those with zero protein in the perfusion media and the high degree
of variability associated with this condition is particularly noteworthy. For these reasons, we
repeated these diazepam IPRL studies with additional low albumin concentrations (0.025 and
0.05%) to include more than a single model-discriminating experimental data point [15]. These
results confirmed the high degree of variability associated with the experimental measurement
with zero protein in the perfusate. However, for the two additional very low albumin
concentrations, results were preferentially consistent with the well-stirred model. Recent
studies in the Poulin, Sugiyama and Benet laboratories with hepatocytes report markedly
improved IVIVE predictability in the presence of albumin than in its absence [26-28]. This could
also explain the differences seen by Roberts et al. [11] with zero protein concentration for
taurocholate. Therefore, although our diazepam IPRL results (in the absence of protein in the
perfusion media) support the high variability and outcomes observed by Rowland and coworkers,
such results cannot be reasonably interpreted as supporting preference for any model.

Previous indirect model-discrimination approaches presented by Roberts and Rowland
[16] and Iwatsubo et al. [17] are reproduced in Figure 7.4, but are dependent on the assumption

that IVIVE of hepatic clearance is accurate. Based on the contemporary understanding that in
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vitro measures of drug metabolism inexplicably and significantly underpredict in vivo drug
clearance [21], it is reasonable that the IVIVE-based predictions of in vivo CL;; used in
determination of Ry (x-axis) are underpredictions. Accounting for average IVIVE underprediction
error (as recently reported [23]) for the drugs included in this analysis clearly demonstrates the

rightward shift of data points towards the well-stirred model relationship (Figure 7.5).

Conclusions

Thus, in response to the title of this chapter, we find no experimental data that reasonably
or unambiguously supports preference for the dispersion or parallel-tube models versus the well-
stirred model of organ elimination when only entering and exiting drug concentrations are
available, except for the studies of highly bound diazepam and diclofenac only at zero protein
concentration. However, there are data that unambiguously show that C,,;/C;, measurements
with changing blood flow and protein binding can only be fit by the well-stirred model. This
outcome is unexpected if Eq. 1 is assumed to be model-independent, as it would be expected
that data would sometimes support the well-stirred model (infinite mixing), sometimes the
parallel-tube model (zero mixing) and sometimes neither of these models.

We propose a simple reason why success is not consistent for more “physiological”
hepatic models (compared to the well-stirred model) based on our contention of the model-
dependence of Eq. 1. That is, experimental data for steady-state IPRL studies for high clearance
drugs are consistent with Eq. 1, the well-stirred model relationship. When alternate hepatic

disposition models approximate the boundary condition of the well-stirred model, successful

fitting of the data is observed. Other explanations previously proposed to support alternate
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methodologies and models are flawed in assuming IVIVE is accurate and that perfusion studies
in the absence of albumin yield exaggerated outcomes compared to even the smallest presence
of protein. In our recent studies of diazepam, we confirmed the high variability associated with
zero protein addition, however at two additional model-differentiating low albumin
concentrations, the data were best described by the well-stirred model [15].

It is difficult to understand why the four IPRL studies that directly test model preference
for highly cleared drugs that support the well-stirred model are undervalued by the field. Perhaps
the investigators were influenced by the unphysiologic aspects of the well-stirred model, by
assumptions made last century that are no longer valid today, and by lack of critical review of
previously reported studies, resulting in inappropriate interpretation of the available
experimental data. We emphasize the frequently cited quote of 1965 Nobel Prize physicist
Richard Feynman “It doesn’t matter how beautiful your theory is, it doesn’t matter how smart
you are. If it doesn’t agree with experiment, it’s wrong” [29]. We agree that the dispersion model
is more physiologic than the well-stirred model and believe that it is more beautiful. We know
that it is impossible for the well-stirred model to capture the complexities of liver physiology,
including heterogeneity in enzymatic expression and dispersive flow throughout the liver. But,
when experimental studies are limited to measurements for the entering and exiting drug
concentrations of the elimination organ at steady state and Eq. 1, only the well-stirred model
analysis is possible. The results summarized here do not indicate that the well-stirred model is
an accurate representation of true hepatic elimination, it simply highlights that the well-stirred
model is the best we can do when Eq. 1 is utilized to calculate clearance. With recent

advancement of experimental and analytical techniques that can allow us to measure dynamic
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intracellular hepatic concentrations, with respect to time as well as location within the organ,
there is significant potential for our field to drastically improve the current oversimplified models

of organ disposition.
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CHAPTER 8. CONCLUSIONS

The important influence of xenbiotic transporters in drug disposition is widely recognized,
as transporters can be responsible for drug clearance (i.e renal or biliary elimination), drug
distribution throughout the body by allowing or restricting drug access to various tissues, and
following oral dosing can influence bioavailability by restricting or facilitating the intestinal
absorption of xenobiotics. It is universally agreed that there are significant challenges associated
with prediction of transporter-mediated drug disposition. Due to the lack of specific and
clinically-validated tool compounds (index substrates, inhibitors, and inducers) for the major
xenobiotic transporters, there are still significant challenges in not only properly interpreting in
vitro transporter studies, but also in translating those results to the in vivo scenario. The same
issues associated with non-specific inhibitors and substrates persists into the clinic, where often
it is difficult to validate if a purported transporter-mediated interaction based on in vitro
interaction potential is indeed clinically relevant. As the field continues to identify additional
xenobiotic transporters of potential clinical relevance, the issue of non-specific tool compounds
is further compounded.

It is of concern that it is common for clinical investigations to conclude that a particular
transporter is clinically significant based only on an in vitro interaction potential in tandem with
an observed change in drug exposure. Further, following oral dosing it is rare for investigators to
characterize the bioavailability versus systemic clearance changes, as they both contribute to
overall exposure change. These issues necessitate significant advancement of the clinical

pharmacokinetic theory surrounding the validation of clinically significant involvement of
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xenobiotic transporters. This led to the development of the methodologies discovered in this
dissertation research, in order to provide a framework to recognize transporter involvement in
clinical drug-drug interaction studies, strongly founded in basic pharmacokinetic theory.

In Chapter 2 we demonstrated that in strictly metabolic interactions for drugs dosed
intravenously, volume of distribution does not change. This results in intuitive changes in mean
residence time and half-life that are equal in direction but opposite in magnitude of clearance
changes. The results of this analysis are in contrast to significant transporter interactions that
have the potential to result in large changes in volume of distribution, which can also be
associated with changes in clearance and half-life that are in the same direction (i.e. reduction in
clearance associated with a shorter half-life). Thus, the recognition that volume of distribution
has the potential to change in significant transporter interactions is further strengthened as a
clinical tool since it was extensively validated that volume does not change for metabolic
interactions. Further, comparing the direction of change in clearance versus half-life or mean
residence time can further discern a metabolic interaction from one that may involve
transporters.

In Chapter 3 we developed a methodology that can allow for differentiation of clearance
changes from bioavailability changes in oral metabolic drug-drug interactions, two parameters
that are considered indistinguishable from one another following oral dosing. Based on the
findings of Chapter 2 that volume of distribution is unchanged in strictly metabolic interactions,
it was recognized that following oral dosing changes in apparent volume of distribution at steady
state will reflect changes in bioavailability alone. Thus, the estimated change in bioavailability

can be utilized to predict changes in systemic clearance from measurements of apparent
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clearance. This methodology can further be utilized to identify the major site of interaction (i.e.
intestinal versus systemic). These findings provide powerful tools for clinical pharmacologists
and drug investigators to make predictions on the contribution of oral bioavailability in drug
interactions, as it has been believed by the field for decades that this could not accurately be
determined without performing an IV interaction study to confirm the extent of clearance
changes.

In Chapter 4 we developed another powerful methodology to identify intestinal
transporter involvement in oral drug-drug interactions. This methodology is based on the
recognition that clinically relevant intestinal transporter interactions will result in altered rate of
absorption of victim drugs, thus examination of changes in mean absorption time should always
be incorporated when implicating intestinally-expressed transporters in a drug-drug interaction.
This methodology is particularly useful since for orally dosed drugs, the contribution of intestinal
interactions to overall exposure changes can be significant and is often overlooked. Further, this
simple but robust methodology will not only allow investigators to implicate transporters in
complex drug-drug interactions, it will also allow clinical validation of additional transporter
inhibitors due to the current lack of specific inhibitors, allow further investigation of the potential
for transporter induction, characterize emerging intestinal transporters, and provide the field
with the tools necessary to solve transporter-related debates, such as the localization and/or
direction of OATP2B1 within the enterocyte.

In Chapter 5 we integrate all of the above-mentioned methodologies and concepts in
investigation of the purported complex drug-drug interactions involving the victim drug

apixaban. Throughout the literature and even in the apixaban FDA label, intestinally expressed
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efflux transporters are implicated as a significant determinant of apixaban disposition. However,
rational examination of all available apixaban clinical studies using the proposed framework does
not support the clinical significance of efflux transporters in apixaban disposition. Not only were
no changes in mean absorption time observed for perpetrator drugs with the significant potential
to inhibit such transporters (Chapter 4), minimal change in volume of distribution was observed
following intravenous dosing (Chapter 2), confirming that transporters are not clinically
significant determinants of disposition intestinally nor systemically. Utilization of the clearance
versus bioavailability differentiation methodology revealed that all clinically significant
interactions could reasonably be explained by intestinal CYP3A4 interactions, and all clinically
insignificant interactions could be explained by a lack of CYP3A4 inhibition potential by
perpetrators. This chapter demonstrates in detail the practical application of all of the
methodologies developed in this dissertation towards the identification of transporter drug-drug
interactions, and highlights the powerful conclusions that can be made based on a firm
understanding of simple pharmacokinetic theory.

In Chapter 6 we derive the liver-to-blood partition coefficient (Kp,,) from first principles
and discuss the theoretical and practical utility of Kpy,-based predictions of drug-drug
interactions. Although Kp,, may be useful in improving predictions of pharmacodynamics, there
is limited benefit of utilization of Kp,, in improving drug-drug interaction predictions. Utilization
of the extended clearance concept-based AUCr equations is a more reasonable approach as
changes in Kp,, can potentially mislead an investigator to incorrectly conclude that the Kp,,
change has resulted in altered intrahepatic concentrations, an aspect crucial for tissue-specific

efficacy or toxicity. Further, utilization of the AUCk equations in DDI prediction can reasonably
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predict the magnitude of DDIs and does not require any measurement of Kp,, or f, x, potentially
difficult tasks plagued with a high degree of variability between laboratories and between
methodologies. Consideration that Kp,,is based on a well-stirred model interpretation of hepatic
elimination must be taken into account, as nuances of intracellular drug distribution are not
considered by the Kp,, model. Finally, a significant degree of variability in Kp,, values has been
suggested in the literature and therefore utilization of this difficult-to-measure theoretical value
may result in a large prediction error depending on the particular methodology used.

Finally, Chapter 7 critically evaluates all published experimental IPRL data that were
conducted to identify which hepatic disposition model can best describe liver metabolism. The
premise of this study was based on the recent recognition by our laboratory that when clearance
calculations are based on extraction ratio, the well-stirred model has inherently been assumed.
Here we hypothesized that if this were true, all experimental data should prefer the well-stirred
model, and if we were incorrect, then there should be experimental evidence in the literature
that supports alternate models of hepatic disposition. Based on this analysis, we found no
experimental data that reasonably or unambiguously supports preference for the dispersion or
parallel-tube models versus the well-stirred model of organ elimination, rather, we found a
number of studies that unambiguously support the well-stirred model and cannot be fit by the
other models. Further, all four IPRL studies that directly test model preference for highly cleared
drugs only support the well-stirred model, and this fact is acknowledged by the original authors.
It is difficult to understand why these results are undervalued, but perhaps it is due to the simple
and unphysiologic nature of the well-stirred model that results in the reluctance to admit it can

most adequately describe clearance when extraction ratio is utilized in calculations.
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This thesis significantly advances the clinical pharmacokinetic methodologies required to
analyze complex drug-drug interaction studies. It further points out the importance of
understanding the utility and limitations of experimental systems, as well as the inherent
assumptions of the pharmacokinetic equations utilized to translate such results, in the successful
translation of in vitro or in situ experimental information to a prediction of in vivo drug
disposition. For instance, the simple recognition by our laboratory that extraction ratio is a well-
stirred model derivative is challenged by highly respected leaders in our field, that have obviously
invested decades believing its model independence. However, persistence in a preferred ‘belief’
is contrary to the spirit of science. Theories and models can be complex and beautiful or simple
and succinct; however, it is the experimental data that determines their success. And, it is our

responsibility as scientists to follow the data alone towards advancing the success of our field.
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