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STATISTICAL EMISSION OF LARGE FRAGMENTS:
A GENERAL THEORETICAL APPROACH”

Luciano G. Moretto*
Department of Chemistry and
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

ABSTRACT: A theory for the statistical emission of.large'frégments.is”
developed.i In'analogy with the fission saddle point,.a'ridge line in

the potential energy surface is defined which contiols the decay width
ofvthe systemuinto any two given iragments._ The normél modes at the‘.
ridge aré separated into three classes: decay modes, amplifying modes, .
.and non-amplifying modes. Amplifying modes are those whose thermal
fiuctuations are amplified and lead to a broadeniﬁg'of the kinetic energy
distributién.‘ Analytical expressions for the kiﬁetic energy distributions
are developed for various combinations of amplifying and non-amplifying
modes. The limit fér large amplifications is a gaussian kinetic energy
distribution. The limit for no amplification is a‘maxwellian-like
distribution. Thus the formalism comprehends the fission decay on one
hand and the neutron evéporation on the other. The angdiar distributions
are evaluated'in terﬁé of the ridge-line principal.momenfs pf inertia.

A genefal analytical expression has been derived-which prediéts; correctly

in both limits,the angular distributions of the evaporated neutrons and

of the fission‘fragments.

*
Work done under the auspices of the U.S. Energy Resources Development
Administration :

TS10an Fellow 1974-1976.



1. INTRODUCTION - |

The:sfatistical decay of the compouﬁd nuqieus.at relati?ely low
excitation energies occurs in the form of particle éyaporétion and 6f
fiSsion. In the first case, very light particleslare‘emitted, like neutrons,
protohs, alpha;particles; in the second case, very sizable fragments of
approximately half the mass of the compound nuclei are observed. Such a
dichotomy is stressed in the formalisms commonly_ﬁsed in the calcﬁlati¢n’
of thejdecay Qidths. The'standard evaporation formalism1~4) makes use of
the detailed balance principle to connect the compoqnd system with the
decayed syétem at infinite séparation of the two frégmehts (e.g., neutron
and residual nucleus). The direct transition probabiiity isAébtained

from the phase space volumes associated with the initial and final states

‘and from the inverse transition probability deduced from an optical model.

-The fission decay formalism, like the Bohrfwﬁeeler formalism,s)
takes'advantage of the saddle point in the nuclear pofential'energyuas a
function of deformation. At this point, which separates the compound
nucleus regibn from the region of the forming fragments, there is alphase
space constriction which controls the probability flow between the two
regions. Fufthérmore, the direct and inverse transition probabilities
are trivialiy‘relatéd to the velocity of the system along'the fission
coordinate. |

This apparent distinction betweén evaporatioﬁ and fission is rather
artificial. From the experimental sfandpoint; particles with mass inter-

mediate between the fission fragments and the alpha particles have been
’ t
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observed in high energy reactions6_8), and their créss section appears to
increase rapidly with excitation energy6). In faétfthe high energy and
angular momentum deposition associated with heavy ibﬁ reactions should
raise these particles from the limbo of immeasurabiy-low cross sections
into the more accessible region of ordinary cross sectiéhs, thus making
theée proceSses open to experimental invéstigation.

From a tﬁeoretical standpoint, the inhefent uni;y of the two
processes can bé easily shown. In this paper a special efforf will be
dédicated'fd-a detailed description of the emissibnvéf'intermediate particies.
An attempt will_be made to treat this problem on very general grounds, ' f
by trying to describe and classify the most relevant’aspect of the physiéév

in a manner which is as independent as possible from detailed models.

1
i
l
'
i
i

Specific modelé will be used only for the purpose of éxemplification.v
The emissioh‘probabilitieé, the kinetic energy distributions as we11 as
the angular distributions will be calculated analytipally. At the same
time the features of the forﬁalism whiéh port;ay.the essential unity of
the statistical decay process will be stressed.

Part of this work has been published elsewhere in preiiminafy

form’).

>2. POTENTIAL ENERGY ASPECTS: THElRIﬁGE'LINE
The nuclear potential energy surface V(xi);as a function of a set .
of deformation coordinates X; has been studied in detail by making use
10-12 '

of the liquid drop model ). The stationary pbints of this surface

can be obtained by solving the system of equations: |



8V(xi)
X,

In general, only the solutions of the above equations are the part of the
topology which is invariant with respect to a canoﬁical transformation of -
coordinates. In particular the ground state and the fission saddle point
are independent of the representation which is cﬁdsen? while‘the overall
topology of the potential energy depends upon the choice of the coordinates.
However, it is well known that the saddle point shapes for values of the
fissility parameter x < 0.7 are strongly constricted at the neck, so

that the two forming fission fragments are already well defined in their

A

maéses A1 and A2' In this way a mass asymmetry parameter 'KI—:—K;— can
be defined. This feature of the saddle point shape has been employed by
Nix%z) who introduced a particularly simple parameterization of saddle point
shapes.in terms of two touching spheroids. In the limit in whiéh the mass
asymmetry is a well defined quantity, it is possiﬁle‘to consider a cut of
the potential energy surface along the mass asymmetiy éoordinate passing
through the saddle point and such that, at any point of this cut, the
potential ehergy is stationary with respect to all other coordinates.

Each point 6n this line is then a saddle point wi;h'the constraint qf a
fixed mass ésymmetryf In analogy with the name ”éaddié point', we may
céll this line Ufidge line". 1In the limit of large hass asymmetfies,.the
two spheroid parameterization is expected to be a géod approximation even
for values of the fissility parameters larger than'037.' Furthermore,'

for very large mass asymmetries, the small fragment can be approximated

by a sphere, thus simplifying the problem substantially.
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The pofential energy along the ridge line‘is_éhown in the two
spheroid approximations for three nuclei (fig. l)i “In fig. 2, the
potential eﬁergy about the ridge point is plotted_as a function of the-
deformation of the two spheroids. The two spheroids are colinear and in
contact. In the same figure the Coulomb interacfiénfénergies of the fwo | ?

spheroids are shown.

3. STATISTICAL PARTITION AT THE RIDGE POINT AND:TOTAL DECAY WIDTH ' ,é
Assuming that the inertia'teﬁsor is known for‘fhe collective modes , ?
at the ridgé point, a simultaneous diagonalization of the potential and
kinetic energy expressions in the quadratic approximation is possible,
thus leading to the definition of the normal modeg'at'the ridge point.

In the limit of complete uncoupling between collective and intrinsic modes,

the decay width F(n), differential in n variablés, can be written as:

(n) ; 1 Ly pi2 S
n N s ce- X 2, 21 ]

r dedydpyﬂﬁdxidpi = Zmole) p | E BR(y) € 2my _ Z(%ixi + 2mi>]

- e :
dydp dx.dp. : ‘ _ %
x Y dJT( J;l 1) o ;

where X;5 pi.:are the normal mode's coordinates aﬁd‘tbnjugate momeﬁta;

y and P, are the mass asymmetry coordinate and momentum; BR(y) is the _ ‘5
ridge point'potential.energy; ¢ is the kinetic energy.of the fission-like
mode; a; and m. are the stiffnesses and the inertias associated with the
normal modes; p(E) ,is the compound nucleus level density; o*[....]1 is
the density of the intrinsic states at the ridge point.

If the collective degrees of freedom are coupled to the intrinsic
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modes, or in ofher words, if the motion along the collective coordinates
is viscous,‘£hen the form of the ridge phase-spaée is more difficult to
define. Ceftainly the phase-space associated with'the collective momenta
is‘going to.be limited by the fact that viscosity will prevent the system
from attaining‘high velocities. This may have a great importance in the
detérminafibn Qf the kinetic energy distributions;'as_will,be seen later.
By expanding the natural logarithm of the ridge'point,levél density.
invfirst ordef with respect to its argument, one obtains a rather accurate

and very useful approximation:

*
(E-B,) p P,
(n) - o1 PR Lk Ly 2, 1
r dedydp;frﬁxidpi = T em P oT|et Zn, M S T Zm,
dydp (dx.dp_) | v '
x Y de‘7-|__1ﬁ_!_ | (2)
. . *
where %— = Qlﬂﬂ_lfl
dx x=E-B

In this apﬁroximation energy is not conserved. Rather, the system is
characterized by a constant temperature T which’déscfibes the equilibrium
between the collective degrees of freedom and the far more numerous
‘infrinsic degrees of freedom which act as a thermostat.

This eXpresSion is essentially identical to -the differential decay

width for the fission process.

Equation (2) can be integrated to give the total decay width:

1

| To*E-B.) (2rTm )2 7, -
1 - 1 R y” T 1
A TS R ﬂ(h \/—ai )dy - O




Since it is rather unlikely that the quantities m., a, can be_determined
with sufficient accuracy, it may be wise to incorporate all of the phase-
space associated with the bound collective modes into a new levei density
expression 'pR._ The decay width then becomes:
, Ly
1 TpR(E-BR) (2nTmy)2dy

1 _ -
TY =2 Thm o TTh N -

This expression for large values of E can be written approximately as:

L
T(27Tm_)*dy B
1 _ 1 Yy ; R :
'dy = o 4 exp - —— | (5)

where the contribution of the mass asymmetry mode to. the phase-spacc has
been explicitly isolated. The leading factor in'thié expression is the
exponentiél; The pre-exponential factor is hard'td éalculate because of"
the inertial parameter my. However, there is reaéon.to expect tﬁat this
term varies slow1y with asymmetry y. Consequently we can estimate the
yield of the statistically emitted fragments to within an approximafely

constant factor (fig. 1).

4. THE KINETIC ENERGY DISTRIBUTiON; AMPLIFYING AND.NON-AMPLIFYING MODES
In the case of charged particle evaporation;_the greatest fracfion
of the kinetic éﬁergy of the particle ét infinity'originates from the
Céulomb repulsioﬁ. Therefore great care must be taken in describing the
shape of the system at the time of divisioﬁ, becausé_the distance between
the centroids of the two charges is critiqal in deferminihg the Coulomb

energy. In the present treatment, the relevant shapé is that of the ridge
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point, whiCh;at all times, we consider degenerate‘with the scission con-
figuratioﬁ. - As can be seen from the two spheroid model or from the
spheroid-sphere model, the ridge point configuration can be substantially
elongated (shape polarization of the two fragments)vso:that £he distance
between the centroids of the two charge distributioné-is larger than thaf

of two touching'spheres. Thus the Coulomb energy-is smaller than the

nominal Coulomb barrier (corresponding to two touching spheres), and apparent
SUbCodlomb barrier emission may result. An indicétion of SubCou}omb barrier

13’14). This effect,

emission is already available in 4He evaporation
which is ordinafily'attributed to quantum mechanical barrier penetration,
finds here a possible explanation which is entirely classical. A similar,
but more pronounced effect, has been observed in fhé emission of complex |
particles frém‘high energy bombardments7’8). The extreme limit 6f this
effect is visible in the fission process where the kinetic energies are
indeed spbstantiélly lower than the Coulomb energiés 6f two touching
spheres.

A second point, very relevant to this discussion, is the origin of
the width of the kinetic energy distribuﬁions. In-the case of neutron
evaporation, the kinetic energy width originates fromvihe statistical
fluctuations associated with the neutron degrees of fieedom (translational
modes). In the case of charged particle emission, fluctuations in kinetic
energy may also arise from fluctuations in various bound collective degrees
of freedom. Tﬁese shape fluctuations can contribute greatly to the kinetic
energy fluctuation, as can be seen in the following example.v Let us

plot the ridge point potential energy for the sphere-spheroid model as

- a function of the spheroid deformation (fig. 3). On the same graph let



us plot the Coulomb interaction energy of the two touching fragments,
also as a function of the sphefoid deformation. In second order in the

deformation parameter z = B - Be s the potential .energy has the form:

q

V. = V, + kz (6)

VvV = E --cz . o - (7)

The fluctuation in potential energy associated with the deformation mode

in equilibrium with a thermostat with temperature T is of the order % T.

The corresponding fluctuation in Coulomb energy is};'

_oJor L e '
9% = 2k - 2 (8)

P

where the parameter p = cz/k is dependént only upon the potential energy
of the ridgé point mode in question. The width o fqr sufficiently large
values of the parameter p may become the dominant contribution to the
spread in kinefic energy. A pictorial way to explain such an amplification
of a fluctuatibn is to compare the system in.question to an amplifier.

The input to. the amplifier is a white noise of mean amplitude % T.

Because of the characteristics of the amplifier, an 6ﬁtput signal of mean
amplitude \/5T7§—> is emitted. bThe parameter p "then can be properly
called amplification pérameter and a degree of freedom with such a general
structure can be called amplifying mode. In general, a mode is amplifying

when at various elongations (deformations) the relative contribution of
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surface and Coulomb energy to the total potential enefgy changes wideiy.

At the other extreme we have non-amplifyiﬂé modes when their
potential energies arise almost exclusively from Coulomb energy. For
instance the 6sciilation of the spherical small fragmeht about the tip of
the large spheroidal fragment can be considered a noﬁ4ampiifying mode.

As the fragment rolls (or slides) away from the tip of the spheroid towards
the equator; the Coulomb energy increases because of the decreasing disténce
betweeh theitwb fragments, while the surface energy éf the system chénges

only in higher order and can be considered approximately constant.

5. DETAILED EVALUATION OF THE FINAL KINETIC ENERGY DISTRIBUTIONS -
A detailed expression for the kinetic energy distribution at infinity
cannot be obtained without a well defined model for the ridge point'degrees-

of freedom. In what follows we shall try to obtain results which are on

"one hand as simple as possible, on the other very géneral and dependent

only upon the essential features of any specific model. The following
assumptions Qill be made: |
i) The ridge point modes are of three kihds, amplifying modes,
non-amplifying modes, and one decay mode
ii) The decay mode and the non-amplifying modes contribute théir
total energy (potential and kinetic) to the final kiﬁetic
energy, while the amplifying modes contribute only the coﬁlombic
part of the.potential energy.
Some justification of these assumptioﬁs can be found in the sphere-
spheroid model or in the two spheroid models. In both of these models

there is a fairly well defined separation of the ridge modes in the
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amplifying and non-amplifying classes. Furthermqre,'the kinetic energy
associated with the amplifying modes is mainly in the form of kinetic
energy of vibration of the fragments and should not appear to any gfeat
extent in the final kinetic energy. In what follows, different combinatidhs

of the various kinds of degrees of freedom will be empidyed and various

analytical expressions will be derived.

'5.1. One Decay Mode and One Amplifying Mode

The deéay width takes the following form:

_ dy(2nTm )*p (E-B_) ; p.° - dzdp_de
4) A y R R 1 ( z > z
r**/dydedzdp. = exp - ={e + =2~ + V(z2) ) ———
. . pZ h 2n o(E) P T. . 2mZ 2 h
(9

In'this exéression- Z, P,» n&, and V(z) are theicoOrdinate, cbnjugate
momentum, inertia and potential energy of the amplifying mode; e is the
kinetic energy of the decay mode. |

Since the kihetié énergy associated with the amplifying mode is
not expected‘to contribute to the final kinetic enefgy,'one can integrate
directly over P, Furthefmore, one can expres§ V(ﬁj in the quadratic

approximation: -
V(z) = B, + kz - - {10)

One then obtains:

1 1
5 5
dy(2n T my) pR(E - BR) (2w m, T)

(3) _ ) 1 2 ]
r dydedz = o TR h exp [ T (e + kz)(de?z
' ~ 11

Let us now assume that the kinetic energy at infinity is given by:
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k = Ecoulomp * ¢ E_ Eo-ezre '(12)

where E0 is the Coulomb interaction energy at the fidge point and ‘¢z is
its first order dependence upon the deformation parameter z. Then the

kinetic energy distribution at infinity is:
By 1 x 2
P(Ek)dEk_ e dEk / exp - Tz € + ;—7 (Ek —EO -€) : de (13)

where all the irielevant multiplicative factors have been dropped.

2 .
Letting 1%—‘=p and Ek--E0 = X one obtains:

o X 2Eo+p . P -2X |
P(x)dx « exp(- f) erf —2— _ erf 22X (4x | . (14)
‘ . 2

VT 2VpT

‘"Even for small_charged particles, and rather large temperatures, the

argument of the first error function is quite large.  Consequently,

- 2E +p
erf —— = 1 ,
24/pT
and _ o , ' - (15)
P(x)dx « 'exp(—%)erfciailzz-dx
: 2v/pT

5.2. One'Dééay Mode,vOne Amplifying Mode and One Non-Amplifying Mode
Let us label the non-amplifying degree of freedom as t. The decay

width can be written as:

4 L 2
, z . 3
r (S)d dedzdtd o= dY(Z“Tmy) pR(E BR) dZ(ZTrmZT) dtdpt exp-le+ kZz + at2 + pt ) de

(16)
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Since all the terms in ¢, t, P, contribute to the final kinetic energy,

we can collect them, account for the associated phavse—space and obtain:

Ex

| . Lk :
P(E,)dE, dEk[ 2 exp T{z 5 (E, - E_ - 2) }dSL (a7

0

where one has set, as before:

E, = Eg-—cz+t . . (a8

After integ—i_‘ation one obtains:

y ' . 2E +p . .
P(x)dx =« {(2x-p)exp (— i)[erf 0 = erf-B:—zi(—
- T 2vpT 2T '(_19)

. ' . 2 -
2 2\ - (2E_+p) " +4px
2VPT o (-%ﬁ‘—)--exp ( 0 _ )

4pT - j

Again, if E_ >> v pT , the above expression can be simplified as follows:

P(x)dx « {(2x p) exp (- —-) erfc . + 2" exp( . +4x >},dx_ ,

(20)

5.3. One Decay Mode, One Amplifying Mode and Two Non-Amplifying Modes

EqUatio'n (17), with t_he addition of one extra non-amplifying mode,

becomes:
E

k L
2 1§ k | 2
P(Ek)dEk dEk / L e‘xp -7 {SL +:£(Ek -EQ - JL_) }dSL (21)
o .

)dx



-13-

where one has employed the usual expression for the kinetic energy. -

After integration one obtains:

' 2E +p o 1.
P(x)dx « {(%pz + %I + x%- px) exp(-.—);-)[erf—i-— - erf-sz] '

2VpT 2v/pT

o 5T 2, ax2 ' (2E_ +p) "~ + 4px
: | + 2_E“.I_[(zx -p) exp<_ P_;pTx_> - (2Eo +p). 'exp(— v o4pT dx

Again, if E_ >> v/pT the above expression becomes:

P(x)dx « {(1{‘ p2 + % v x2 - px) exp (- %) erfc-L.zx—

2\(pT
o 2 2 , ’ -
+'“?§§:-(2x-p)'eXP<41121?35—)}dx o U (23)
2/ P

6. COMMENTS ON THE FEATURES OF THE KINETIC ENERGY DISTRIBUTION EXPRESSIONS
AND THEIR ASYMPTOTIC LIMITS '

The first observation one can make about the three_quations derived
above concerns the different way in which the amplifying and the non-
aﬁblifjing modes manifest themselves. The'amplifyiﬁgvmode affecfs the
.kinetic energyvdistribufion through the aﬁplificatibn parameter p, whiéh
depends upon fhe potenfial energy.feétures of the systém'at tﬁe ridge
. point.  The non-amplifying modes affect the kinetic énergy distribution

only through their number and not through any feature related either to

the potential energy or to the inertia.
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The second observation deals with the most probable values aﬁd'the
width of thé kinetig energy distribution at constaﬁthalues of._p...Aé
can be seen frdm fig. 4, the most_probéble energy shift toWards higher
values as thé number of non-amplifying modes increasés. For suffiéiéntly
large values-bf p, the widih of the distribution is essentially detefmined
by>‘p and increases slightly with increasing nﬁmber of nOn—aﬁplifying
modes. | | -

.In all the cases, but especially at large_valﬁes-of b, a subSténtial
fraction of the kinetic energy distribution‘occufs‘below the néminai" J
Coulomb barfier (fig. 4). Again, this effect in the'éresent model érisés
simply from classical factors associated with_shabe poiarizatiqn ahd
statistiéél fluctuations at the ridge point..‘If has nothing to»do with
quanfum meChaniCal penetration of the barrigr, whiéh:has not beén'included
in the model. | |

A tﬁird-aspect of this calculation has to db with the general
appearance of the kinetic energy spectra. All of the~three equations

'prediét a highly_asymmetric,rnaxwellian—like shape for small values.df p
(fig. 4). This can be seen best in Eq. (20)Vand Eq.:(23).‘ At small P
values the'first term, containing erfc, dominates, giviﬁg rise to a
strong asymmetry. At large valﬁes of p the term containing'effc.tends

‘to zero and the second term, which is a gaussian, dominates.
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6.1. Limiting Expressions for p=0"

First, let us consider the limit to whichvthe”three expressions,
Eqs. (15), (20), and (23), tend when the amplification parameter p tends

to zero. This occurs when the charge of the emitted particle goes to

zero. Under these conditions x = Ek' By noticing that in this limit
the function erfc tends to a non-zero constant[ji?aerfc(-x) =-g],one
obtains:
exp - Ek/T. - | (24a)
P(Ek)dEk « . Ek exp - Ek/T . dEk (24b)
2 ' .
Ek exp - Ek/T. | o .(24c)

It appears that one can write a general expression as:

" exp - E /T dE 2

P(Ek)dEk « E X

k

where n is'thé number of non-amplifying degréésnof fréedom. The exact
meaning of.the limit p+0 can only be determined from a specific model.

In the casévof thébsphere—spheroid model, the non?émpiifying modes,
COrrésponding tb the oscillation of the sphére aBout the tip of the v
spheroid,beéomé unbound since. the charge.of the light'particle.gbes Fo

zero and-the shape polarization of the large fragmentvvanishes. In the ”
case'in whi¢h a'non—amp1ifying-mode becomes unbound, the partition function
loses oné quadratic term in the coordinate but retains the quadraéic term
in the momentﬁm, On the other hand this does notiﬁappen automatiéally‘

in our formalism where we always assume the presence of quadratic terms

associated with both the coordinate and the momentum for each mode.
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Consequently if one considefs the two degenerate non-amplifying modeé
associated with the oscillation of a small sphere about the fip of the.
spheroid, one should use the third kind of equétidn [Eq. (24c)]_if p > 0.
On the other hand, for p=0 one should‘uée instead the limiting fbrm of the
second kind of equation, namely Eq. t24b). The casé of neutrdnremiséion

" can well be described as the iimiting case of two non-amplifying ﬁodes.

As was sthn ébove, the proper limiting form is Eq. (24b) which is similar
to a maxwellian. The same prediction is obtaiﬁedvfroh more qonventional .
theories. A detailed deécription of the smooth traﬁsitioﬁ from>charged.-
particle emission to neufron'emiésion requires the khdwledge Ofvtﬁe onset
of anharmoniéities in the non-amplifying modes at“poféntial‘energies
larger than f‘;‘_This can only be done by-investigéting é specific‘model

and goesvbeyond the scope of this paper.

6.2 '“Limiting Expressions for Large Amplificatioﬁ Pafametérs and for

More than One Amplifying Mode

Large amplification parameters are expected for systems with large
atomic number emitting rather large fragments. As can be seen in fig. (4),

the contribution of the decay mode and of fhe non-amplifying modeé to the

kinetic energy distribution becomes less and less important as p increases.

This is partiCularly evident in the tendency df the kinetic energy disfri—
bution to bec¢mevmore symmetfical and nearly géussiah at large values of
p- In thesé ééseé, more fhan one amplifying mode may be preseht‘and the
two sphéroid model wifh two amplifying modes may bé_ﬁore appfopriate than
the sphere-spheroid model. 1If, for the moment, one overiooks the

contribution of the decay mode and of the non-ampiifying modes to the
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‘mean and to the width of the final kinetic energy distribution, one can
easily calculate the kinetic energy distribution resulting from two-
amplifying modés. Let the two amplifying modes be £ and n. The

probability of deformation of the system is:

| , - -
P(g,mdedc = exp -3 (KjE° + k,n®) didn e
where'kl"and k2 are the sfiffnesées of the two normal modes. The total

kinetic energy can be written as:

E, = Ej-c&-c,n L o (27)

By substituting Eq. (27) into Eq. (26) and intégrating‘over all the

possible cqnfigurationé leading to the same kinetic energy, one obtains:

2 g
X< .
P(x)d « exp - ————— dx 28
o °12 _ sz
where x =-Ek-ch and p1 = -1;; and p2 § -T;;

This résult can be easily generalized to any number of amplifyihg

modes:
2

P(x)dx « éxp - (29)

T)p;
2
In other words the kinetic energy is a gau551an of w1dth o° = 1/Zp T.
~The effect of the decay mode and of the non- ampllfylng modes on
- the mean and the width of the kinetic energy dlstrlbutlon can be estimated
as follows. ‘The mean kinetic energy.assbciated with one decay mode and

n non-amplifying modes is:
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00

[ €n+1 exp(-e/T)de

_ 0
€ = o = (n+ 1T . (30)
f e” exp(-e/T)de
0
The corresponding width can be written as:
]’(e—E)z el exp(-e/T)de
2 0 : : 5 T2
o] = po = (n+1)T" . {31)

f " exp(—e/TjdéA

Therefore the kinetic energy distribution can be written down more

accurately as:

P(x)dx « exp - ———————— dx (32)
(p, + P,)T + 2(n+ 1T R

" where x = Ek'—E; -_(néfl)T .

6.3. Angular Momentum Effects in the Kinetic Energy Distributions

The géneralizationlbf.the formalism to the case of a.given.hon—zero
angular momentuﬁ-is straightforward.' The ridge potential energy'is médified
to include the rbtational energy of the system at the ridge. This involves
the evaluation of the ridge moment of inertia as a-function of thé'defor4
mation coordinates. Invthe éase of a single amplifyihg mode, a constant k,
analogous to that defined in Eq. (6) can be intrpdﬁced. Thé kinetic energy
at.infinity depéhds both upon the'Couiomb energy as wé;l as ﬁpon the
rotational kihétic energy aésociated'with the'orbitaljéngular_momentum

of the two touching fragments. One can then define the following quantity:



"
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V o= V +5u w S _ (33)

where p 1is the'reduced mass of the two fragments in contact; r is. the .

distance betWeen the centroids of the two fragments; w is the angular

tvélocity of the‘system defined by

I = wé/ = w(e[l +J2 + ubrz) | (34)

In this expression I is the total angular momentum and e[i;ué are the

moments of inertia of the two fragments. As in Eq. (7), one can expand

*
V- as follows;

V = E_ - cz k R ‘(35)

This equation defines the quantity c and an amplification parameter
P = c2/kvcan bevintfoduced. All the previous expreSsions can now be used
provided one redefines x as x = Ek --Eo. The definition of temperature

also must account for the kinetic energy tied up in the form of rotational

energy at the ridge:

The resulting kinetic energy distributions for a fixed I must then be

integrated over the angular momentum distribution of the compound nucleus.
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7. THE ANGULAR DISTRIBUTIONS

The ridge point configuration, for the greafvmajority of cases, can
be identifiedeith the scission configuration. F;rthermore, the'disinte—
gration axis*énd the symmetry axis of the system at the ridge point should
épproximately coincide. As a consequence, the pfdjection K qf the total
angular moméntum I on'the.symmetry/disintegratiqn.axis should remain
conStant.from the ridge point fo infinity.' Such éI¢§hdition implies.a
felation bethen the total angular momentum and the orbital angular momen-

tum of the two frégments,-thus determining the final angular distribution.

This approach is similar to the theory of fission fragment angular3distrifI

‘ butionls). In the fission theory, the assumptioﬂ’df constant K- from

. saddle to_ihfinity is somewhat uncertain, especially for very heavy

elements, due to'the complicated dynamical evoluation:leading from Sad41é -

to scission. In our case, due to the closeness of the ridge and the
B scission points, the theory ought to work even better than in fission.

The differential cross section can be written as followsl6);

o max PI(K) . : S
do _ Y, £ S . :
. 0 /1 °T . _ _ .
' where
o
r 2.2 o '
I f hel 1 1 2 2
F.(K) = s—— exp |-—5+—( 5 - =—)|exp{(-K /2K
A T e u e <J1_JC> ( 0
. Tt (37)
. e . th oy I
oy is the reaction cross section for the I~ partijal wave, and WK(G) can

be written in the classical limit as:
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21 + 1 » (38)

wle) «
. K 2 K 2
ST v sin“g - —
‘ : . 12

In Eq. (37) <g% is the compound nucleus moment of inertia; Ko2 is the

~standard deviation of the statistical distribution of K values and is

‘givén by: v
2 <leff T - o
Ko = ——~;5——— - : (39)

The QUantity-cieff is related to the prinCipal'moments-ofvinertia,»
cJZ" and 411 , of the system at the ridge point'by the relation:

11

-t 1 __1
‘M’eff' cyﬂn <JZL

(40)

It is worth considering that, at fixed temperature. T, the width of the
K distribution becomes broader as the. ridge configurationvbeCOmes more
compact.

If one assumes that FT.= Pn, the integration over K of Eq. (36)

max -
' Izsinze ) I?sinze,
2IdI exp {- > I 5 :
4K | 4K

2 (41)

gives:

exp - 812

In this expression E)_is the modified Bessel function of order O and

n? [ 1 1

S (cﬂﬂn ) clﬂ,> ’ (42)
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c[h being the moment of inertia of the residual nucleus after neutron’
- . . . 2 . .' ’ ‘. . v
emission. If- 612 <1 then exp - BI =1 and the integral becomes

of the form:

, Zmax 2 .
' max - v : _
Wy = 12 / eXP(_Z)IO(Z)dZ - . 2 _exp(‘-zmax) (IO(Zmax) +.Il(zmax))
: sin“@ sin“® . © _
0 . . . (43)
202 12 sin%e o |
where 2z = Isin® z = max ,and I,, I. are the modified
: 2 ’ max 2 0’ 71 »
4K, 4K,

Bessel functiohs of order 0, 1. Explicitly, one‘bbtains:__

i : 2 sin%e I;ax sine ' I;ax sine
W) « exp |- ———— L, |———— ]+ I, | — (44)

2 : 4k 2
41(o 4](o L 4-4Ko

In order to obtain a better accuracy one can expand the denominator to

higher order:

2 . _ |
Bl ~ 14 pr? s

- In many cases, for large temperatures, such an expahsion ought to be
adequate even at rather large angular momenta. Thé‘angular distribution

becomes then{

W(e) = exp(-z_ ) [Io(zmax) R Il(zmax)]

. (46)
BImax ' | '
+H exp(-zmax)[lo(zmax) f 2/3 Il(zmax)-' 1/3 IZ(Zmaxi]
- : | Iliax
This expression has two interesting limits: as p = 5 tends to
o 4K
0.

infinity (either because Ko2 tends to zero or because

I
t
|
!
i
i
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Imax becomes very large) one can use the asymptotic expression for the

Bessel functions:

-z 2 o o
e 4v- - 1 o
I1(z) = —m (l - — +-....> : ' 47y .
v 572 .82z _ o

1
-

Then if one keeps only the lowest term in the z ° expansion one obtains:

gim 1 : ' PP
pre w(e) sin® - N (48).

On the other hand, as p—>0 (either because Imax=='0.or.K-o2 > ©) one obtains:

2im
p*e

W(6) = constant . ' (49)

These ‘two limits represent the two eXtreme'éésés fof the éoupling
betwe¢n totai1and orbital angular mohentum. The Céupling is maXimum in:
the first case and non—éxistent in the second case. Clearly the coupling
parameter p - depends upon the principal moments of inertia of the ridge
configuration. This allows oﬁe to make a very simplé predictidn. At
constant Imax’ jﬁ becomes larger‘the’bigger the difference between t{m '
and t/i , or in other words, the more elongated the ridge configuration is.
Thus the aniéotropy W(0)/W(90) will progressively_inciease as one
éonsiders the emission of a neutron; an alphavparticlé, a lithium particle,
a berillium particle, etc; (see fig. 5). It is amusing to notice that
Ed; (46) gives reasonable predictiéns fbr the angular distributibn of
neutrons as well. The ridge point configuration fof.the neutron emission
is.represented by a neutron just outside the nucleus. The principai

moments of inertia can be approximately expressed as follows:
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G el G0

where tﬂ(,is the moment of inertia of the residual nucleus, u is the

reduced mass of the neutron nucleus system and R is the distance between

~ . 2
neutron and nucleus when they are in contact. In many cases ti? >> pyR™ .

Thus the quantity 2z takes the approximate form:

2

o 2 .2 2.2 . 2. '
. LI SNRE s1n6<—1——_1_) . R T ax Sin' 0 L1
- 4T e a1l L
o
272 L2 F g
- B 'Imax‘ sin’6 uRz' _ ER uR2 . 2 T . -
o~ = T o sin 6 : - 51
| a7t o -
where Eﬁ ‘is the mean rotational energy of the residual nucleus.
Similarly, |
.~ Q/ ~ : | 2 Z . ER.MR2
o, = = </ and LRI = .= T = a
- - ,- sin’s 7
Expanding Eq. (46] to first order in z we obtain:‘: :
: E . 'E, 2 E, 2 '
- | 2 2 N R R
YW(G) .l—l/zZ +1/zBImax(1 - /3Z)v" ;+TI.— EQ;—"'I/z-;I-[,{-—R—Sin.ZGI
o L2 | : o .
= 1+ a-%asin’e _ o : : (53)

The normalized angular distribution in first order takes the form:

W®) 1+ a-%qsine : .2
w(o0) 1 +1/22 ' ~ (1 -%a) (1 +a-%asin®e)
E. 2
= 1+Y4qcos’ =1 +3 R MR
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The very same normalized distribution has been obtained by Ericson from

a more conventional evaporation theory17).

‘8. CONCLUSION

Thé fofma1ism developed in this paper alloﬁs one to describe the
decay of abhighly excited compound nucleus by the emissioh of a sizable
fragment.  The'only limitation of the formalism lies in the éssumptioﬁ'
that the ridge point and the scission point coincideQ 'Su¢h an approxi-‘
mation is adequate for fragments as large as_fissibﬁ.fragments_for éompound
nuclei with *<.7. For.compound nuclei of_largef x values the approxi-
mation is only satisfied for progressively larger.asymhetries. The
kinetic energy distributions can be expressed in terms of one or more °
amplification pafgmeters obtained from the potentiél energy surfaée,_and
from a single statistical parameter, the nuclear temperatﬁre. .Similérly
the angular distributions aré calculated from thevprinéipal moments of.
inertia at the ridge, from the temperature and from‘the angular momentum
distribution;: The amplification pafameters and thé ﬁOments of inertia

can, but need not, be determined from the liquid drop model.
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FIGURE CAPTIONS _ .
Ridge.iine potential energies and corresponding‘relative yields |
fbr three systems. The potential energies have been caléulated
by means of the two touching spheroid model. »Thé yigids havév
been calculated by assuming T=2.0 MeV.

Total potential energies and Coulomb interaction energies in the

 ridge point region as a function of the deformation of two

tduching spheroids. The energies are in MeV. The deforma;ions
DEFl,_DEFZ refer to the large and small f;agment respectiveiy..
The'defqrmation parameters are defined as:thé ez-deformation'in
the‘fecent Nilsson papers. The two orthogonéi arron center at
the ridge point and are in the direction of the principal axes

of the lowest constant energy ellipse. The light frégmenté are
chosén‘with the same.charge to mass ratio as the compound nucleus.
Pdtenfial energy and Coulomb interaction energy as a function.
of the deformation of the large fragment tsphere—spheroid model) .
The thermai fluctuations about the ridge poinf result in 1arge1y
amplified fluctuations in the Couibmb rebulSion ehergy.

Kinetic energy distributions at various temperafﬁres for different
valuéé of the amplification parameter p. .Thé three analyFical
expfessions derived in the text have been eﬁployed. The curves
corresponding to Egs. (iS), (26);v(23) éan be identified by E -
theii progressive shift towards higher kineti; energies. The
arrows indicate the energiés corresponding'fb'the nominal'Coulohb
energies. |
Angﬁlar.distributions of various fragments emitted by the compoundv

208 4 212

Pb + 200 MeV He - Po.

nucleus formed in the reaction
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