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Abstract 
Demographic data are aggregated over areal units to protect privacy and are often inconsistent over 
time. Areal interpolation methods are used to estimate population in one census year within the 
units of another year to construct temporally consistent small census units. This research enhances 
these methods by using three advanced spatial refinement approaches, tested in Mecklenburg 
County, North Carolina to estimate population in 2000 within census tracts from the 2010 census. 
The results demonstrate the effectiveness of spatial refinement in reducing estimation errors, 
systematically. The proposed methods can be used to analyze micro-scale spatio-temporal 
demographic processes with minimum estimation error.    

1. Introduction 
Spatial analysis on demographic data aggregated over incompatible boundaries represents a 
challenge, particularly when the data were collected over historical inconsistent units. To 
understand micro-scale spatio-temporal demographic processes, data need to be collected over 
temporally consistent fine-resolution census geographies such as census tracts. However, in 
reality, their boundaries change over time due to population fluctuations, especially in rapidly 
growing areas. 

Areal interpolation transfers the variable of interest from source zones to target zones and is 
used in temporal demographic applications (Gregory 2002; Schroeder 2007). In such applications, 
source populations in one census year (enumerated in source zones) are estimated within 
enumeration units from the target census completed in another year (target zones).  

If the underlying assumptions of areal interpolation methods are not met, accuracy can be very 
low. Therefore, recent studies have developed spatially refined interpolation techniques with the 
objective of decreasing population estimation errors (Buttenfield et al. 2015; Ruther et al. 2015).  

Areal interpolation methods are based on population density and area calculations. It can be 
expected that if these methods are constrained to spatially refined inhabited sub-areas of source 
and target zones, area and population density estimates will be more precise and realistic. 
Commonly, the spatially refined sub-areas are delineated using ancillary variables presumably 
related to population distribution in a dasymetric mapping approach (e.g., Mennis 2003). 

This research extends the previous efforts, leveraging three advanced spatial refinement 
strategies to estimate total population enumerated in census tracts in 2000 within census tract 
boundaries used in the 2010 census.  

2. Study Area and Data 
The study area spans Mecklenburg County, North Carolina. It includes both urban areas of 
Charlotte at its center and large rural areas at its margins and has a history of rapid population 
growth. 
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Primary datasets include census tracts and census blocks from the 2000 and 2010 decennial 
censuses. Residential parcels, NLCD 2001 and 2011 and TIGER/Line data for road networks are 
used as ancillary datasets for spatial refinement.  

3. Methods 

3.1 Unrefined Areal Interpolation 
Target Density Weighting (TDW) as a versatile areal interpolation method is included in this 
research and assumes the ratios of population densities of atoms (intersections of source and target 
zones) to source zones remain the same over time (Schroeder 2007).  

3.2 First Spatial Refinement 
The first strategy applies TDW to only refined sub-areas of source and target zones delineated by 
residential parcels as the ancillary variable (Zoraghein et al. 2016). The built-year attribute that 
records when the main structure of a parcel was built is used to match parcels with the census year. 

3.3 Second Spatial Refinement 
In addition to the geometric footprints of residential parcels, the second refinement uses their 
housing type to cap or amplify population density within different residential zones. For example, 
the population density of parcels of type apartments is higher than parcels with single-family 
residences, and this inherent diversity is addressed in this strategy. 

Expectation Maximization (EM) is an iterative statistical optimization technique (Dempster et 
al. 1977), used for the second strategy. All the residential parcels of the same type (e.g., 
condominium) form control zones, and population density for each zone is estimated through EM. 
Some control zones include parcels with high variability in area. Thus, assuming one population 
density value for these zones is unrealistic. Therefore, “Enhanced EM” (EEM) is applied to address 
this issue.  

EEM first identifies the three control zones that represent the highest variability in parcel area 
measures and the three control zones with the highest number of parcels. Each of these control 
zones are divided into four homogeneous control sub-zones using a quantile classification scheme 
for parcel area. For example, instead of using only one single-family residential control zone, four 
sub-zones of that type are included in EEM. The remaining steps are the same as EM.  

3.4. Third Spatial Refinement 
The third strategy is not confined to only residential parcels. It leverages additional complementary 
ancillary variables such as NLCD developed classes (21, 22, and 23) and road network buffer 
zones (100m buffer distance). The NLCD class selection follows Ruther et al. (2015) for 
delineating refined areas. 

This methodology refines initial residential parcels as follows: if a parcel contains instances of 
the developed NLCD classes, only those instances are used for spatial refinement. However, if no 
developed land exists, the intersection area of the parcel with road buffers is used to spatially refine 
the parcel.  

This refinement specifically targets rural settings, where large residential parcels overestimate 
residential areas while NLCD underestimates developed land as a well-known limitation of such 
databases (e.g., Leyk et al. 2014).  
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3.5. Validation 
To derive ground-truth population values for each target zone, block population values in 2000 are 
aggregated to the target zone boundaries. Accuracy metrics such as Mean Absolute Error (MAE), 
Median Absolute Error, Root Mean Square Error (RMSE) and 90% percentile of absolute error 
are calculated based on measured and estimated tract values, and compared across the methods. 

4. Results 
Table 1 summarizes the results of all three refinement levels.  
 

Table 1. Accuracy metrics of unrefined and refined methods. 
Method MAE Median 

Absolute Error 
RMSE 90th Percentile 

Error 
Refinement 

Level 
TDW 330 138 531 931 Unrefined 

Refined TDW 235 99 379 672 First 
Modified Refined TDW 178 75 283 503 Third 

EM 447 262 702 1352 Second 
Modified EM 236 136 390 611 Third 

EEM 192 101 334 498 Second 
Modified EEM 152 66 274 382 Third 

 
Figure 1 shows the error maps. Moreover, Table 2 includes the mean normalized absolute 

errors of the third refinement methods divided by the mean normalized absolute errors of either 
first or second refinement methods for both total and rural target tracts. 

  

 
Figure 1. Absolute error maps of the methods. 
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Table 2. Comparison of the third refinement with first/second refinement. 

Method Total Tracts Rural Tracts 
ModRefAW/RefAW 0.82 0.28 

ModRefTDW/RefTDW 1.13 0.53 
ModRefPM/RefPM 0.87 0.29 

ModEM/EM 0.88 0.22 
ModEEM/EEM 1.25 0.38 

 
As a coarse approximation for rural tracts, the number of rural households within each target 

tract is divided by its total count of households. Each tract with a proportion greater than 0.1 (10%) 
is considered rural. 

5. Discussion and Future Research 
Both Table 1 and Figure 1 demonstrate that spatial refinements reduce the error metrics, 
consistently. Refined TDW is more accurate than the unrefined method, and the third refinement 
is more accurate than the first. The pattern is similar in Areal Weighting (AW) and Pycnophylactic 
Modeling (PM) although not included in this paper. The third refinement outperforms EM and 
EEM as the second refinement methods. The most accurate method is Modified EEM. 

As expected, the third refinement results in significant improvements for rural target tracts 
across all the methods even when it results in less accuracy for total target tracts (Table 2). A value 
lower than 1 indicates the mean normalized absolute error is lower for the third spatial refinement 
method than either the first or second spatial refinement approaches. 

Future research will focus on data-driven optimization approaches for determining road buffer 
distance and expand the analyses to longer time periods and different study areas.  
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