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ESSENTIAL MARKET SQUID (DORYTEUTHIS OPALESCENS) EMBRYO HABITAT:

A BASELINE FOR ANTICIPATED OCEAN CLIMATE CHANGE

MICHAEL O. NAVARRO,1,2* P. ED PARNELL1 AND LISA A. LEVIN1

1Scripps Institution of Oceanography, Center for Marine Biodiversity and Conservation and Integrative
Oceanography Division, 9500 Gilman Drive, La Jolla, CA 92093; 2University of Alaska Southeast,
Department of Natural Sciences, 11275 Glacier Highway, Juneau, AK 99801

ABSTRACT Themarket squidDoryteuthis opalescens deposits embryo capsules onto the continental shelf fromBaja California

to southern Alaska, yet little is known about the environment of embryo habitat. This study provides a baseline of environmental

data and insights on factors underlying site selection for embryo deposition off southern California, and defines current essential

embryo habitat using (1) remotely operated vehicle–supported surveys of benthos and environmental variables, (2) SCUBA

surveys, and (3) bottommeasurements of T, S, pH, andO2. Here, embryo habitat is defined using embryo capsule density, capsule

bed area, consistent bed footprint, and association with [O2] and pH (pCO2) on the shelf. Spatial variation in embryo capsule

density and location appears dependent on environmental conditions, whereas the temporal pattern of year-round spawning is

not. Embryos require [O2] greater than 160 mmol and pHT greater than 7.8. Temperature does not appear to be limiting (range:

9.9�C–15.5�C). Dense embryo beds were observed infrequently, whereas low-density cryptic aggregations were common.

Observations of dense embryo aggregation in response to shoaling of low [O2] and pH indicate habitat compression. Essential

embryo habitat likely expands and contracts in space and time directly with regional occurrence of appropriate O2 and pH

exposure. Embryo habitat will likely be at future risk of compression given secular trends of deoxygenation and acidification

within the Southern California Bight. Increasingly localized and dense spawning may become more common, resulting in

potentially important changes in market squid ecology and management.

KEY WORDS: squid, essential fish habitat, oxygen, embryo exposure, Loliginidae, Doryteuthis opalescens, climate change,

ENSO

INTRODUCTION

Market squidDoryteuthis opalescens range in theNorth East
Pacific from Baja California Sur, Mexico, to Southeast Alaska,
United States (Okutani & McGowan 1969, Wing & Mercer

1990). Essential habitat is defined within the Magnuson–
Stevens Act (United States) as ‘‘waters and substrate necessary
to fish (including invertebrates) for spawning, breeding, feeding,

or growth to maturity.’’ Market squid deposit their embryo
capsules predominantly onto sandy seafloor habitats on the
continental shelf (<100 m depth; Bernard 1980, Street 1983,
Zeidberg et al. 2011), which presently represents a coarse defi-

nition of essential habitat for this species. Utilization of soft
bottom habitats may be partly due to the availability of ex-
tensive sandy plains on the shelf (Revelle & Sheppard 1939) and

that adult squid may have no strong affinity toward a particular
sandy habitat (Young et al. 2011).

Market squid are a forage species (Morejohn et al. 1978)

within the California and Alaska current systems. This species
currently supports an important commercial fishery in Cal-
ifornia (Porzio 2013) and was proposed as the target of a new

commercial fishery in Southeast Alaska in 2018. Economic ex-
ploitation of market squid began in Monterey in the 1850s by
Chinese immigrants, later expanding to include Italian immi-
grants, and developed into a major fishery in the 1970s

(Vojkovich 1998, Brady 2008). Since the 1990s, the commercial
fishery has thrived in the Southern California Bight (SCB)
(Vojkovich 1998, Brady 2008, Porzio 2015). Market squid have

been commercially harvested at or close to the present annual
quota of 107,048m tons from the 2010 to 2011 through the 2014

to 2015 seasons (Porzio 2015) and, in 2014, constituted ;64%
of the entire biomass of all the marine species captured and 30%

of the ex-vessel value for all landings off California (Porzio
2015). The relative importance of catch among California
fisheries switched from fish to invertebrates in the 1990s, and the
importance of invertebrate fisheries has steadily increased

(Rogers-Bennett & Juhasz 2014). Therefore, fishery trends in
California reflect global patterns of fishing down food webs
(Pauly et al. 1998, Pauly & Palomares 2005). Overfishing has

decreased vertebrate predators of squid, thus, releasing controls
on nearshore squid populations (Caddy 1983). This has resulted
in the expansion of squid fishing especially in response to

shortages of finfish (Arkhipkin et al. 2015).
The greatest abundances of embryo capsules in the SCB

have been reported at temperatures between 10�C and 14.4�C
(Zeidberg et al. 2011). The majority of commercial fishing for
market squid off California occurs in the SCB (Porzio 2015)
where pH and [O2] decrease nonlinearly with depth and are
predicted to decline with a changing climate (Gruber et al. 2012,

Takeshita et al. 2015) in addition to periodic stress associated
with El Ni~no Southern Oscillation (ENSO) (Turi et al. 2018).
The compression of rockfish habitat has already been attributed

to decreased [O2] and pH (McClatchie et al. 2010). These de-
clines have also been shown to slow the development of mussel
larvae (Frieder et al. 2014) and squid embryos (Navarro et al.

2014, 2016, Pierce 2017).
Fishery-independent surveys of market squid embryo cap-

sules in the SCB were last conducted in the 1950s (McGowan

1954, Okutani & McGowan 1969). Recent surveys of com-
mercially fished areas suggest that areas used by squid embryos
(Zeidberg et al. 2011) and paralarvae (Koslow & Allen 2011,
Van Noord & Dorval 2017) are exposed to waters containing

low [O2] and pH. If so, impacts on squid populations would
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likely also affect other species. As a forage species, market squid
are an energetically integral part of the ecosystem both as predator

and prey. Market squid predators include finfish, seabirds, and
marine mammals (Morejohn et al. 1978). Thus, the characteriza-
tion of [O2], pH, and temperature conditions preferred by squid for
capsule deposition is necessary for defining essential habitat.

Market squid have high growth rates and a short generation
time (usually 6–8 mo; Yang et al. 1986, Jackson & Domeier
2003). Spawning ages of squid are highly dependent on ocean-

ographic conditions (e.g., ENSO), ranging from ;4.5 mo
(129–137 days) to ;8 mo (225–257 days; Jackson & Domeier
2003). Market squid are semelparous (Fields 1965), death oc-

curs within a week of spawning, and most viable embryos are
deposited on the first day of spawning (Perretti et al. 2015). Fast
growth rates and a short generation time likely enable market
squid populations to respond rapidly to changes in oceano-

graphic conditions (Jackson & Domeier 2003, Zeidberg et al.
2004, Pecl & Jackson 2008, Koslow & Allen 2011).

Observations of market squid spawning occur primarily

from October to May in the SCB (Henry et al. 2005), and occur
within the same areas and habitats each spawning season
(Fields 1965, Vojkovich 1998, Zeidberg &Hamner 2002). Fields

(1965) found that market squid consistently deposit embryo
capsules at or immediately next to aerated seawater inflow in
the laboratory, suggesting water motion and elevated levels of

[O2] and pH (low pCO2) are important cues for site selection.
Over large scales, embryo habitat for market squid are esti-

mated to likely encompass much of the continental shelf off Cal-
ifornia (Zeidberg et al. 2011), the central coast of Canada (Bernard

1980), and Southeast Alaska (Street 1983). In the SCB, whichmay
regularly comprise the largest portion of the commercial fishery
biomass for market squid (Dorval et al. 2013), environmental

conditions vary among years, seasons (Hickey 1979, Checkley &
Barth 2009, Send&Nam 2012), and days (Frieder et al. 2012) and
can be strongly event-based (Nam et al. 2011). In situ physico-

chemical conditions that embryos are exposed to during their
development are presently not known, including how squid em-
bryo habitat is influenced by seasonal, event, and daily variation.

OBJECTIVE

The overall objective of this study was to develop methods to

evaluate the essential embryo habitat of market squidDoryteuthis
opalescens, with particular attention to physicochemical charac-
teristics. This study defines essential embryo habitat using two

main characteristics: (1) sites frequently selected by spawning
squid for egg deposition and (2) the physicochemical climate of
such realized embryo habitat. Site selection is a key determinant,

as spawning squid presumably deposit embryos in areas that op-
timize the development of their progeny, and hence, provide a
means to understand which habitats squid use. Thus, this study
defines the realized squid embryo habitat on biotic and chemical

environmental attributes in time and space, and characterizes
benthic capsule environmental exposures in these locations.

MATERIALS AND METHODS

Spawning Site

Market squid regularly use the same areas for spawning
throughout their range (Shimek et al. 1984, Jefferts et al. 1987,

Young et al. 2011). This study was conducted in northern La
Jolla, San Diego, CA (hereafter referred to as NLJ; 32.86� N,

117.28� W), where squid embryos have been consistently ob-
served, and spawning aggregations have been known to com-
mercial squid fishers since the early 1900s. This site also has the
longest history of in situ scientific observation of market squid

embryos throughout their range (McGowan 1954, Okutani &
McGowan 1969).

Temperature and salinity have been recorded at the

nearby (;1 km) Scripps Institution of Oceanography pier
since 1916 (McGowan et al. 2010). Environmental measure-
ments, including pH, [O2], salinity, temperature, and density

from the surface to the lower continental shelf have also been
monitored nearby (within ;6 km) since 2005 (Del Mar
mooring, NNW, 32.93� N, 117.31� W; Nam et al. 2011,
Send & Nam 2012). The carbonate chemistry of seawater

near the seafloor has been characterized and the rates of
ocean acidification have been predicted up to the year 2100
for the area (Takeshita et al. 2015). Geologically, the seafloor

in La Jolla has been described (Le Dantec et al. 2010, Switzer
et al. 2016) with particular consideration for the La Jolla
submarine canyon complex (Paull et al. 2013). Many known

squid spawning habitats are found next to submarine can-
yons. Northern La Jolla is regularly used by squid for
spawning, and NLJ is where the biological study of market

squid embryo beds first began (McGowan 1954, Okutani &
McGowan 1969). The largest squid embryo bed reported
(1.76 3 1012 embryos) was observed at this site, estimated to
have covered an area spanning 1.6 3 107 m2 (Okutani &

McGowan 1969). Importantly, these records were completed
before squid were targeted in the SCB by the commercial
fishery (Vojkovich 1998).

Environmental Data Acquisition within Embryo Habitat

Comprehensive environmental data from within the squid
embryo bed were documented from August 30, 2012 to
October 21, 2013 at the NLJ site. A SeapHOx instrument

(Martz et al. 2010, Bresnahan et al. 2014) was stationed 0.5 m
above the seafloor to measure seafloor water characteristics
(see Fig. 1 for instrument location). The SeapHOx recorded T,
S, pressure, O2, and pHT every 15 min between June 23, 2012

and July 4, 2013, spanning four deployments. A SeaBird
MicroCAT CTD (SBE 37SMP-IDO) mounted on the re-
motely operated vehicle (ROV) used for surveying the benthos

recorded T, S, P, and O2 at 1-min intervals (Figs. 1 and 2).
Temperature and [O2] were used to estimate pHT based on
Alin et al. (2012).

Biological Data Acquisition

Biological data were acquired on the inner shelf
(10–100 m depth, Fig. 1) using a Seabotix LBV150 ROV
equipped with two external light-emitting diode lights
(1,080 lumen, 140 deg beam angle) and red scaling lasers

separated by 5 cm (Switzer et al. 2016). Squid embryo cap-
sules were collected using SCUBA on 19 days distributed
throughout the study period (May 2012 to January 2014;

Navarro 2014). Taxon-specific depth and spatial data were
developed from ROV video surveys of seafloor megafauna.
Surveys were temporally stratified to include upwelling
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(spring and summer) and non-upwelling (fall and winter)

seasons. Areas of embryo beds were extrapolated from ROV
tracks, and densities were estimated from counts of mops
(capsule aggregations) and isolated embryo capsules at 5 sec

intervals. Mop sizes were categorized by the number of

capsules using a log4 classification (‘‘small’’ # 4, 5 #
‘‘medium’’ < 24, and 25 # ‘‘large’’ < 125 capsules). Density
was averaged for each survey (n ¼ 18) and multiplied by

Figure 1. Map showing study locations offshore of San Diego County, United States. The ROV, Seabotix 150, with an attached SeaBird CTD and O2

sensor circled in red (A). Remotely operated vehicle survey tracks are color coded to indicate survey date (B).Magnified view of survey tracks offshore of

Solana Beach with kelp forest shown in brown (C). Magnified view of survey track offshore of Point La Jolla with kelp forest indicated in gold (D).

Picture of the SeapHOx instrument at 30 m depth within squid embryo habitat (E).
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track survey area to estimate capsule totals. A regression
model was used to estimate seasonal squid embryo counts

from embryo collections (Navarro 2014) because the num-
ber of embryos per capsule has been shown to vary
(McGowan 1954, Fields 1965, Zeidberg et al. 2011). Embryo

abundance was calculated as the product of total capsule
count and the number of embryos per capsule.

RESULTS

Essential Squid Embryo Habitat

Oxygen, pH, and S were continuously measured within
embryo habitat for the first time, and temperature was mea-
sured in situ throughout embryogenesis across multiple cohorts.

Previously, studies of embryo capsule habitat at any given site
were limited to hours or days. This study mean observed values
of oxygen, pHT, S, and T were 187 mM (±52 mM), 7.88 (±0.12),
33.5 (±0.1), and 12.5�C (±1.7�C), respectively (±1 SE), when
squid were present (n ¼ 713; Table 1). Depth distributions of
oxygen varied considerably among days that ROV surveys were
conducted (Figs. 3 and 4).

Squid embryo habitat was concentrated in the shallow
margins of the shelf (<35m), usually next to, but not within kelp
forests [see Fig. 5 for ROV survey tracks, hill-shaded topogra-

phy, and kelp forest distributions from Parnell (2015)]. The
distribution of embryos observed during ROV surveys is shown
in Figure 6. Embryo depths were highly variable and ranged

from 10 to 92 m (Fig. 7, Tables 2 and 3). Essentially, embryo
habitat was limited to zones of high O2 and pH ([O2]

> 160 mmol kg–1, pHT > 7.8). Temperature, O2, and pH were
always the highest and salinity was the lowest at shallow depths
(<35 m). The deepest limit of embryo distribution was dynamic,

once extending to greater than 90m. This extension co-occurred
with the depth expansion of elevated O2 and pH. Embryo beds
were observed during most surveys at NLJ (eight of nine sur-
veys) at depths less than 50 m, whereas the embryo beds were

observed on only five of nine surveys at depths greater than or
equal to 50m (Tables 2 and 3). The deeper limit of squid embryo
habitat ranged from 33 to 91 m and the shallow boundary

ranged from 10 to 33 m. Embryo habitat was highly structured
and easily observed in the shallows when T, O2, and pH at depth
were at annual lows. By contrast, embryos weremore difficult to

observe (i.e., pseudo-cryptic) and found at all depths of the shelf
when T, O2, and pH were at annual highs. Environmental
conditions within and outside of embryo beds were significantly
different (P < 0.0001 for depth, temperature, salinity, oxygen,

Wilcoxon test; Table 1).
Adequate densities of spawning aggregations are vital for

marine predators and fishers to detect the spawning occurrence

of squid. In this study, embryo habitat was dense ($2 embryo
capsules/m2; Fig. 8, Table 3), primarily, when the shelf had
relatively low [O2] (<135 mM; Fig. 6) and pH. During these

periods, squid aggregated to those areas with the highest
available [O2] and pH, and contracted to depths of less than
or equal to 40 m. Embryo capsules were much less dense

Figure 2. Probability density distributions of surveyed depth (m) per ROV survey date. (A). August 1, 2012. (B). August 30, 2012. (C). September 30,

2012. (D). January 5, 2013. (E). February 12, 2012. (F). March 5, 2013. (G). March 26, 2013. (H). June 14, 2013. (I). June 26, 2013. (J). July 30, 2013.

(K). August 14, 2013. (L). October 21, 2013. (M). October 25, 2013. (N). January 25, 2014.
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(<2 embryo capsules/m2) when O2 and pHT were the greatest

([O2]: 160.2–276.9 mM, pHT: 7.81–8.11; Table 3). Capsules were
observed broadly across the shelf at depths below 40 m during
these conditions.

Continuous measurements of pHT, T, S, and [O2] within
squid embryo habitat were highly variable both years (Fig. 9).
This variability occurred primarily at semidiurnal (M2) and

diurnal (K1) periods (Fig. 10). Power spectra of SeapHOx T,
O2, and pH were consistent with M2 and K1 internal wave
propagation on the shelf.

Substrate Selection

Adults attached their embryos to various soft and hard
substrates during the study. Most observations of embryos

occurred over unconsolidated substrata, with most of these
observations occurring on sand (;2# f# 3) as opposed to silts
and muds (f > 5). Embryo capsules were observed across sandy

bedforms including flats, ripples, and waves. Although surveys
over submarine canyon walls were only conducted when em-
bryos were observed as deep as the canyon rim, observations

indicate that squid embryo capsules were often present and only

at slightly lower densities than on the shelf above the canyon

(average density ¼ 4.23 capsules/m2). Submarine canyon walls
were themost used hard substrate for embryo deposition (five of
five ROV surveys). On the submarine canyon walls, market

squid attached capsules onto horizontal and vertical surfaces of
rocks and within rock crevices. Market squid were observed
attaching their capsules to lone kelp stipes outside of the kelp

forest and to artificial substrates, including scientific in-
struments in the study area.

Biotic Associations

Biotic interactions between squid embryos and other benthic
species were commonly observed. Embryo capsules were frequently
observedwith other shelf biota includingDiopatra spp. (polychaete:

2.3% of observations), Astropecten spp. (bivalve: 11.4%), Synodus
luciocepsis (teleost: 5.8%), Neverita lewisii egg cases (gastropod:
5.1%),Stylatula elongata (anthozoan: 5.1%), infaunalOphiuroidea

(4.1%), Adelgorgia phylloscellara (gorgonian: 3.6%), and Cancrid
crabs (2.4%). Of note, the gastropods Kelletia kelletii and Neo-
bernaya spadicea, as well as the teleosts Sebastes spp. were not ob-

served in association with embryo capsules.
Adults did not attach capsules on kelps near the NLJ site

(Fig. 5), although observations were made of embryo capsules
attached to kelp fronds outside of the forest (Navarro 2014).

Notably, there was a precipitous decline of capsules observed near
the edge of the kelp forest (Fig. 6). A 50-m-wide zone over the sand
next to the kelp forest mainly lacked embryo capsules (Fig. 6).

Within this area, capsuleswere observed only twice andwere at the
lowest densities of any of the areas observed atNLJ (0.09 capsules/
m2; Fig. 6B). The kelp edge habitat had similar chemical, physical,

and geological properties as nearby embryo beds.
Other areas having similar physicochemical characteristics

that were mainly unoccupied by squid embryos included areas
where the sand dollar Dendraster excentricus was densely dis-

tributed (approximately thousands/m2) and co-occurrence was
rare (only 0.5% of all market squid capsules were observed in
association with sand dollars). Furthermore, market squid

capsules were only observed as single-isolated capsules, where
they co-occurred with sand dollars.

Essential Embryo Habitat and Footprint through Year-Round Spawning

Market squid embryos occurred throughout all seasons
from the summer of 2012 through the fall of 2013 as observed in

Figure 3. Dissolved oxygen concentrations as a function of depth observed

during ROV surveys of the continental shelf. Data points are coded to

distinguish the date of the survey by a combination of symbols and color.

TABLE 1.

Environmental factors in and out ofDorteuthis opalescens embryo beds from ROV surveys (August 1, 2012 to July 30, 2013; depth
range$ 11.2–94.5 m).

Stat. T (�C) T (�C) [O2] (mM) [O2] (mM) pHest pHest D (m) D (m) S S

AVG 11.63 12.49 161.6 186.7 7.818 7.876 45.5 35.6 33.57 33.51

SD 1.45 1.71 47.1 52.2 0.103 0.116 19.7 13.1 0.12 0.12

MAX 16.45 15.46 276.9 266.3 8.110 8.060 94.4 91.5 33.93 33.90

MIN 9.59 9.87 84.4 88.2 7.660 7.670 11.2 11.3 33.35 33.31

N 1,101 713 1,101 713 1,101 713 1,101 713 1,101 713

c2 118.6 93.4 104.4 120.2 114.2

P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

pH was estimated using temperature and oxygen data (Alin et al. 2012). Underlined ¼ data acquired when D. opalescens embryo capsules were

absent; Italicized ¼ data acquired when D. opalescens embryo capsules were present. Bold and italicized ¼ significant. AVG ¼ average, MAX ¼
maximum, MIN ¼ minimum, N ¼ number of samples.
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the ROV surveys. Seasonal observations of capsules were fairly

uniform (spring ¼ 2, summer ¼ 3, fall ¼ 2, and winter ¼ 3; see
Tables 2 and 3). At NLJ, dying or dead spawning squid and
empty capsules (indicating hatched embryos) were commonly

observed. Embryo capsules were observed over large areas,
where mass spawning occurred (Fig. 5).

DISCUSSION

This study provides the first direct evidence that market
squid can spawn throughout the year in the SCB. Market

squid were first observed to spawn year-round in the 1940s off
Monterey, CA (Fields 1950). Previously in the SCB, year-
round spawning had only been inferred from statolith-based

age estimation (Jackson &Domeier 2003, Reiss et al. 2004). A
recent genetic study provided molecular evidence supporting
year-round spawning throughout regions of California and

indicated that squid self-recruit to their natal regions ;66%
of the time (Cheng 2015). Although self-recruitment was not
tested, it is the most parsimonious explanation for the timing
of squid spawning observed during the study. For many

species, likely including market squid, embryo habitat site
selection involves a mix of approaches from tradition-based
to individual assessment (Warner 1990). Although this area

of research is data poor for market squid, understanding how
female squid select sites to deposit embryos, along the gra-
dient from tradition to individual assessment, establishes a

foundation for understanding the environment that embryos

experience in nature.
The spatial pattern of embryo deposition was clearly af-

fected by variation in T, O2, pH, and S, whereas the timing of

spawning appears independent of abiotic factors. When shelf
sites with high [O2] and pHT ([O2] > 160 mmol, pHT > 7.8, re-
spectively) are limited to less than 40 m depth, squid typically
restricted capsule deposition to the shallows (#40 m depth) and

in dense aggregations (>>2 capsules/m2). Loliginid embryos are
dependent on aerobic metabolism and can be negatively af-
fected by low [O2] (Roberts 2005, Zeidberg et al. 2011). By

contrast, when the high [O2] and pH zone expands to the 90-m
contour, squid appear to respond by laying embryo capsules
over a broader range of depths and at low densities effectively

making themmore cryptic. Crypsis is a primary defense strategy
for cephalopods (Hanlon & Messenger 1996), therefore, em-
bryos encompassing a larger area at lower density can poten-
tially increase their survival. The observations of the prevalence

of ‘‘cryptic’’ spawning events in this study are novel.
Squid embryo habitat is spatiotemporally dynamic because

environmental conditions on the southern California shelf are

highly variable. Internal waves are amplified near sharp topo-
graphic breaks, such as submarine canyons crests, where many
persistent egg deposition sites are located immediately up-shelf,

thus, enhancing physicochemical variability. All sessile organ-
isms that inhabit the shelf, including market squid embryos, are
exposed to oscillating physical conditions (frequency of 6–12 h)

Figure 4. Probability density distributions of dissolved oxygen, mmol/kg (mM) per ROV survey date. (A). August 1, 2012. (B). August 30, 2012. (C).

September 30, 2012. (D). January 5, 2013. (E). February 12, 2012. (F). March 5, 2013. (G).March 26, 2013. (H). June 14, 2013. (I). June 26, 2013. (J).

July 30, 2013. (K). August 14, 2013. (L). October 21, 2013. (M). October 25, 2013. (N). January 25, 2014.
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due to internal tides and waves. Often, water masses with high

[O2] and pH alternate with waters having low [O2] and pH
driven by thermocline variation at daily to seasonal scales.
Results of laboratory studies indicate that squid embryos can

survive in low [O2] and pH environments (Navarro et al. 2016,
Pierce 2017). Extended periods of low [O2] and pH are stressful
to market squid embryos as evidenced by decreased hatch rates
(Pierce 2017). A 2-wk period of upwelling in April 2013 when

[O2] and pH were consistently low was observed (Fig. 9). Ex-
posure to low pH and [O2] conditions will likely become in-
creasingly frequent given predicted changes in the California

Current System (Gruber et al. 2012). Chronic stressful expo-
sures may occur most frequently during strong La Ni~nas [pos-
itive Southern Oscillation Index, negative Multivariate ENSO

Index, and negative California Cooperative Oceanic Fisheries
Investigation (CalCOFI) temperature anomaly] and during
seasonal upwelling events (spring/summer), when the upwelling

index is sustained >200 m–3 s–1/100 m coastline (Jackson &

Domeier 2003, Nam et al. 2011, Send & Nam 2012). Local
physicochemical climates are hypothesized to control optimal
spawning habitat, and biotic interactions interact with these

climates to affect realized spawning habitat.

Optimal Embryo Habitat and ENSO

The relationship between market squid and ENSO appears
to vary among life stages. The results of this study indicate that
market squid have much more suitable habitat available for egg

deposition during El Ni~nos because T, O2, and pH through all
depths down to;100 m are conducive for embryo development
(Table 3). Conversely, shelf conditions are stressful for squid

embryos during La Ni~nas, (Navarro et al. 2016, Pierce 2017)
when [O2] and pH are depressed (Nam et al. 2011, Turi et al.
2018). Depressed pH and [O2] environments slow embryo

Figure 5. Remotely operated vehicle tracks indicating squid embryo presence (red) and absence (black) for all areas surveyed offshore of San Diego

County, United States (A). Magnified view of the surveys conducted offshore of Solana Beach (B) and north La Jolla (C). Kelp is indicated in khaki.
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growth rates, leading to a longer embryo period, increase the

frequency that embryos remained underdeveloped (Navarro
et al. 2016), decrease hatch rates, and significantly alter gene
expression of stress response in oxygen-sensitive genes and

transcriptome factors involved in developmental timing (Pierce

2017).
La Ni~na and other low [O2] conditions are clearly unfavorable

for developing embryos. There is recent evidence indicating that

Figure 6. Bubble plot of squid capsules (capsules/m
2
) observed among habitats for all ROV surveys at north La Jolla (NLJ) (A) and in relation to the

canyon and kelp forest edges (B).
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La Ni~na conditions are also adverse for the paralarval life stage
(Perretti & Sedarat 2016). Predicted environmental conditions at
the NLJ spawning site include increasing acidification (Gruber

et al. 2012, Takeshita et al. 2015) that will likely coincide with
reduced oxygenation andwarming (Turi et al. 2018). As periods of
low oxygen and pH exposure increase in frequency and intensity,
market squid embryo habitat will likely be compressed in time and

space, and the occurrence of large and dense spawning aggrega-
tions may become increasingly frequent. It is presently impossible
to gauge the relative importance of mass deposition and cryptic

deposition on squid population dynamics.

Biotic Control as a Driver of Realized-Embryo Habitat

Biotic interactions appear to be an important factor for

spawning site selection. Site selection affects the ability of em-
bryo capsules to remain anchored to the substrate long enough
for development. Such biological factors interact to define the

realized habitat of market squid and are essential for an accurate
understanding of embryo environmental exposure climates.

Adults may aggregate for defense, to overwhelm marine
mammals and other predators when embryo habitat is com-

pressed. Aggregated spawning has likely evolved to satiate
predators, enabling an adequate number of spawning squid to

mate and lay eggs. In this study, predation might influence
spawning site selection for embryo deposition. Embryo capsules

were rarely observed within the 50-m boundary adjacent to kelp
forests, both off La Jolla and Solana Beach. Areas adjacent to
kelp forests are hypothesized to represent a potential ‘‘zone of
fear’’ or an area with enhanced predation of spawning squid,

and represent a biotic control of squid embryo habitat. Preda-
tors of squid (e.g., fish) are abundant within and at the edges of
kelp forests. During this study, squid embryo capsules were

rarely observed within sand dollar beds. Avoidance of kelp
forests and their edges, and the avoidance of sand dollar beds
clearly limit embryo depositional habitat.

Possible predatory controls on embryo bed distribution
most commonly found in kelp beds include Kelletia kelletii,
Neobernaya spadicea (Zeidberg et al. 2004), and Sebastes spp.
(Zeidberg et al. 2011). In this study, observations of biota found

with squid embryo capsules differ from a report fromMonterey
Bay, which includes Patiria miniata, Mediaster aequalis, Pyc-
nopodia helianthoides, Citharichthys stigmaeus, and Rhinogo-

biops nicholsii (Zeidberg et al. 2004).
Observations of squid commonly using submarine canyon

walls as embryo habitat have not been reported previously (Young

et al. 2011). The lack of reporting may be an artifact that reflects
difficulties encountered in complex geological areas, where ROV
and AUV observations are problematic. The distributions of

embryo capsules observed in this study support the premise that
predation pressure on spawning squid dictates the realized embryo
habitat pattern rather than predation on embryos themselves.

Identifying the Population Bottleneck and Resolving the ENSO Paradox

For more than a decade, scientists have questioned why
market squid spawning is depressed when environmental con-
ditions (El Ni~nos) are favorable for embryo development and

growth. Jackson and Domeier (2003) found that squid grow
faster at warmer temperatures, yet, in nature, adult squid are

Figure 7. Probability density distributions of depth in ROV surveys, when

embryo capsules were (blue) and were not (black) observed.

TABLE 2.

Spatial surveys (ROV): summary data.

Survey

number Date Season ROV coordinates Location

Survey depth

range (m)

Doryteuthis opalescens embryo

depth range (m)

1 August 1, 2012 Summer 32.80� N, 117.31� W Pacific Beach 38.2–75.1 Absent

2 August 30, 2012 Summer 32.86� N, 117.28� W NLJ 33.4–91.5 33.4–91.5

3 August 30, 2012 Summer 32.93� N, 117.30� W Del Mar 40.6–94.4 Absent

4 September 30, 2012 Fall 32.95� N, 117.28� W Solana Beach 22.0–40.0 22.0–40.0

5 January 5, 2013 Winter 32.86� N, 117.28� W NLJ 28.5–71.0 28.5–33.4

6 January 5, 2013 Winter 32.80� N, 117.31� W Pacific Beach 39.9–70.8 Absent

7 February 12, 2013 Winter 32.86� N, 117.28� W 7 NLJ 11.2–65.1 11.3–55.3

8 March 5, 2013 Winter 32.86� N, 117.28� W 8 NLJ 21.0–77.4 24.7–64.1

9 March 26, 2013 Spring 32.86� N, 117.28� W NLJ 19.0–78.9 21.2–68.4

10 June 14, 2013 Spring 32.86� N, 117.28� W NLJ 16.1–75.9 21.6–40.6

11 June 26, 2013 Summer 32.86� N, 117.28� W NLJ 13.2–74.8 24.9–48.3

12 June 26, 2013 Summer 32.80� N, 117.31� W Pacific Beach 19.6–80.3 Absent

13 July 30, 2013 Summer 32.86� N, 117.28� W NLJ 11.2–82.8 10.3–65.5

14 July 30, 2013 Summer 32.70� N, 117.27� W Point Loma 31.2–50.5 31.2–50.5

15 August 14, 2013 Summer 32.93� N, 117.30� W Del Mar 23.9–93.8 Absent

16 October 21, 2013 Fall 32.86� N, 117.28� W NLJ 6.2–103.1 Absent

17 October 21, 2013 Fall 32.93� N, 117.30� W Del Mar 8.8–126.1 23.1–40.2

18 January 25, 2014 Winter 32.93� N, 117.32� W Del Mar 36.5–146.5 Absent
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larger during cold years such as La Ni~na (Lowry & Carretta

1999, Brady 2008). Not only are squid larger, but also many
report a higher abundance of squid during La Ni~na (Vojkovich
1998, Reiss et al. 2004, Koslow&Allen 2011, Dorval et al. 2013,

Van Noord & Dorval 2017). Jackson and Domeier (2003)
explained this paradox suggesting that the market squid pop-
ulation must go through a population bottleneck. They inferred
that a lack of food was responsible and that the juvenile stage was

the most likely stage for bottlenecks to occur. Jackson and
Domeier (2003) made this inference based on evidence that
large squid were associated with upwelling environments during

their early life stages. They posited that upwelling increased food
supplies for growing juveniles. By contrast, adults inhabiting
areas with little upwelling grew to smaller sizes (Jackson &

Domeier 2003). Jackson and Domeier (2003) did not test their
bottleneck hypothesis for any squid life stages. Perretti and
Sedarat (2016) investigated the paralarval bottleneck hypothesis

using field samples collected by the CalCOFI. They found that

paralarvae, standardized by age, were larger during El Ni~no than
they were during La Ni~na, providing no evidence of population
bottlenecks at the paralarval stage (Perretti & Sedarat 2016).

Instead, Perretti and Sedarat (2016) proposed that juvenile squid
experience a bottleneck due to food limitation associated with El
Ni~no. VanNoord andDorval (2017) proposed that market squid
recruit to the fishery in the highest numbers when the timing of

juveniles matches periods with the highest concentrations of eu-
phausiids, typically in spring. Sampling both juvenile squid and
their prey may shed light on the interacting effects of oceano-

graphic factors and trophic pathways (Ralston et al. 2018). A
recent increase in commercial squid catch in California (CDFG
preliminary report) coincides with increased upwelling in the SCB

(Wells et al. 2017), supporting these hypotheses.
Another factor that is problematic for determining the oc-

currence of population bottlenecks is that field sampling

methods likely introduce significant temporal bias. As such,
interpreting data is often difficult. For example, in this study,
squid capsules varied greatly in density and areal coverage
making most spawning events cryptic to the fishery, and po-

tentially to classical sampling techniques. Data from aging
studies and this study indicate that squid spawn and hatch in the
SCB every month (Jackson & Domeier 2003, Reiss et al. 2004).

Yet, studies of spawning squid and paralarvae focus on periods
when squid form dense aggregations (and lay dense embryo
capsules which lead to dense paralarvae), potentially, in-

troducing an aggregation bias in sampling methods that is dif-
ficult to eliminate. Previously, researchers attempting to
understand sampling error by relating paralarval and embryo
abundances strongly cautioned that paralarval sampling should

not be analyzed quantitatively (Okutani & McGowan 1969).
Researchers also have found that areas with high squid paral-
arval densities did not coincide with areas having abundant

zooplankton (Okutani & McGowan 1969, Van Noord &
Dorval 2017). Okutani and McGowan (1969) also suggested
that squid abundance is not adequately sampled by CalCOFI

because nets are designed to catch fish, not squid (Okutani &
McGowan 1969). Other authors have gone further and sug-
gested that CalCOFI sampling of paralarvae offshore may not

TABLE 3.

Estimated total embryo count per ROV survey.

Survey

number

Max [O2]

(mM) Max pH

O2/pH

max

zone depth

(m)

Squid max

density

depth

(m)

Squid max

density

(capsules/

m2)

Squid

average

density

(capsules/m2)

Estimated

bed area

(m2)

Estimated

embryo/

capsule

Estimated

total

embryo

count

2 250.3–266.3 8.00–8.06 33.4–43.1 42.0 1.5 0.063 569,720 129 4,630,114

4 250.6–276.9 8.03–8.11 12.5–32.0 28.1 350.1 7.919 516,852 128 523,897,726

5 190.3–194.2 7.88–7.89 28.5–38.2 29.2 5.2 1.548 15,494 141 3,381,844

7 254.8 8.01 11.3–29.7 28.7 3.7 0.158 294,949 153 7,130,097

8 185.3–199.1 7.86–7.89 21.0–34.8 29.2 9.7 0.267 371,430 162 16,065,833

9 160.2–184.0 7.81–7.86 26.6–31.2 27.9 71.4 3.714 731,642 171 464,661,444

10 202.6–212.5 7.89–7.90 19.1–26.1 28.0 7.9 0.183 78,494 219 3,145,804

11 169.7–182.4 7.83–7.88 13.3–19.4 27.8 21.2 1.859 193,653 227 81,720,210

13, 14 204.6–239.6 7.90–7.98 10.3–22.5 24.9 146.7 4.365 317,686 254 352,221,645

17 198.7–214.8 7.86–7.90 23.1–39.4 35.9 0.224 0.086 42,640 249 913,093

The depth range where squid-embryo densities were highest closely tracked the inner-shelf depth where O2 and pH levels were at their maximums,

respectively.

Figure 8. Probability density distribution comparisons of depth (A) and

oxygen (B) with two distinct squid capsule aggregation types, ‘‘few’’ (#5

capsules/m
2
, black) and ‘‘abundant’’ ($25 m

–2
, blue). The arrow high-

lights high density of observations of abundant, compared with the ‘‘few’’

classification, when dissolved oxygen was low.
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provide an accurate proxy for assessing squid interannual

abundance (Zeidberg & Hamner 2002).
This study demonstrates how market squid can change their

behavior within a spawning site. Also, market squid can also mi-

grate among spawning sites, likely following prey, when El Ni~no

affects coastal water mass distributions (Bernard 1980, Street

1983, Wing & Mercer 1990). During these time periods, market

squidmore heavily use spawning sites in the northern parts of their

range. These include sandy subtidal regions of Northern Cal-

ifornia, Oregon (Jefferts et al. 1987), Washington, Vancouver Is-

land (Shimek et al. 1984), the central coast of Canada (Bernard

1980), and Southeast Alaska (Wing &Mercer 1990). Egg capsules

were reported in the Gulf of Alaska, near Kodiak Island in 2016

(Foy, personal communication). The spatial scale of study should

encompass the geographic range of their embryo sites to un-

derstand the among-site dynamics along with those within a site.
Sampling has been improvedwithmore recent assessments that

focus on nearshore CalCOFI stations and manta tows (unbridled

net; Koslow & Allen 2011). A recent development uses increased

spatiotemporal paralarval surveys designed a priori to target and

catch squid (VanNoord &Dorval 2017) and juvenile data sets are

beginning to emerge (Ralston et al. 2018).Yet, future researchmay

still benefit by comparing squid sampling methods to improve the

scientific understanding of their precision, accuracy and associated

error. For any given life stage, methods are needed that ac-

count for (1) spatiotemporal patchiness (especially within and

among embryo habitat sites), (2) highly variable densities and

abundances, and (3) behavioral plasticity within pelagic and

benthic habitats.Of themobile stages, the juvenile stage is themost
data poor but may also be the most important to understand
market squid population bottlenecks.

Improving Abundance Estimation

The ‘‘illusion of plenty’’ represents an error that occurs when

assessing aggregated spawning populations (Erisman et al. 2011).
Large aggregations of spawning market squid are often cited as
an indicator of a large population size when, in reality, it may be

more reflective of a population that is displaced in response to
habitat compression. Without reliable biomass estimates and
knowledge of nonspawning adult distributions (Cheng 2015), it is

difficult to know the magnitude at which population abundances
are changing relative to the magnitude that population distribu-
tions are changing. Of note, highO2 and pH zonesmay have been

limiting in the early 1950s (CalCOFI Archives, McClatchie et al.
2010) when the total abundance estimate for squid embryos was
1.76 3 1012 (Okutani & McGowan 1969). This estimate is three
orders of magnitude larger than the largest measured abundance

of 5.23 3 109 in this study (Table 3). Furthermore, densities re-
ported before the development of the mature fishery were as high
as 10,400 embryo capsule/m2 (Okutani & McGowan 1969).

Density counts in SCB in 2001 to 2002 were reported as high as
1,338 capsules/m2 (Zeidberg et al. 2011). This study reports den-
sities as high as 350 embryo capsules/m2. Heavy fishing pressure

Figure 9. SeapHOx data at the fixed north La Jolla site (30 m deep). Temperature, dissolved oxygen and pH data from June 2012 to July 2013 (A).

Histograms of temperature, dissolved oxygen and pH (B).
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can lead to less egg deposition despite high spawning biomass

(Moltschaniwskyj & Pecl 2007). Potential ecological effects of
overfishing this keystone species are great because squid bring
nutrients and energy from the slope to the shelf. Reductions in

their numbers could alter food webs and energy budgets for many
species (Morejohn et al. 1978, Lowry & Carretta 1999).

ACKNOWLEDGMENTS

The research was funded by the National Oceanic and

Atmospher ic Administrat ion (NOAA) Grant No.
NA10OAR4170060, California Sea Grant College Program
Project No. R/CC-04, the Scripps Mia Tegner Scholarship,

the WWW Foundation in collaboration with Bryce Rhodes,
and the Fenmore Scholarship. We thank Tony Koslow, Martin
Tresguerres, and Uwe Send for their advice in support of our

study. We thank Todd Martz for the development of the

SeapHOx and thank Yui Takeshita for his help with the

SeapHOx data. We thank the California Department of Fish

and Wildlife for their assistance, especially Dianna Porzio. We

thank the California Wetfish Producers, Inc., especially Diane

Pleshner-Steele, for their cooperation andwillingness workwith

scientists. We are grateful to Phil Zerofski and Rich Walsh for

small boat operation and dive support, SIO Divers Charles

Perretti, Chris Sullivan, and Javier Naretto for their help with

collections. Ryan Switzer, Carli Kierstead, and Christina

Bonsell kindly assisted with ROV operations. The statements,

findings, conclusions, and recommendations are those of the

authors and do not necessarily reflect the views of California

Sea Grant, state agencies, NOAA, NSF, or the U.S. Depart-

ment of Commerce.

LITERATURE CITED

Alin, S. R., R. A. Feely, A. G. Dickson, J. M. Hernandez-Ayon,

L. W. Juranek, M. D. Ohman & R. Goericke. 2012. Robust em-

pirical relationships for estimating the carbonate system in the

southern California Current System and application to CalCOFI

hydrographic cruise data (2005–2011). J. Geophys. Res. 117:C05033.

Arkhipkin, A. I., P. G. K. Rodhouse, G. J. Pierce, W. Sauer, M. Sakai,

L. Allcock, J. Arguelles, J. R. Bower, G. Castillo, L. Ceriola, C.-S.

Chen, X. Chen, M. Diaz-Santana, N. Downey, A. F. Gonz�alez,
J. Granados Amores, C. P. Green, A. Guerra, L. C. Hendrickson,

C. Ib�a~nez, K. Ito, P. Jereb, Y. Kato, O. N. Katugin, M. Kawano,

H. Kidokoro, V. V. Kulik, V. V. Laptikhovsky, M. R. Lipinski,

B. Liu, L.Mari�ategui,W.Marin, A.Medina, K.Miki, K.Miyahara,

N. Moltschaniwskyj, H. Moustahfid, J. Nabhitabhata, N. Nanjo,

C. M. Nigmatullin, T. Ohtani, G. Pecl, J. A. A. Perez, U. Piatkowski,

P. Saikliang, C.A. Salinas-Zavala,M. Steer, Y. Tian,Y.Ueta,D.Vijai,

T. Wakabayashi, T. Yamaguchi, C. Yamashiro, N. Yamashita &

L. D. Zeidberg. 2015. World squid fisheries. Fish. Sci. Aquacult.

23:92–252.

Bernard, F. R. 1980. Preliminary report on the potential commer-

cial squid of British Columbia. Department of Fisheries and

Oceans Resource Services Branch, Pacific Biological Station.

Canadian Technical Report of Fisheries and Aquatic Sciences

942. 51 pp.

Brady, B. C. 2008. Long-term changes in biological characteristics and

fishery of Loligo opalescens. MS thesis, California State University,

San Jose, CA. 93 pp.

Figure 10. Spectral densities of temperature (A), dissolved oxygen (B), pH (C), and pressure (D). Red lines indicate K1 and M2 frequency tidal cycles.

NAVARRO ET AL.612



Bresnahan, P. J., T. R. Martz, Y. Takeshita, K. S. Johnson &

M. LaShomb. 2014. Best practices for autonomous measurement of

seawater pH with the Honeywell Durafet. Methods Oceanogr.

9:44–60.

Caddy, J. F. (ed.). 1983. The cephalopods: factors relevant to their

population dynamics and to the assessment and management of

stocks. In: Advances in assessment of world cephalopod resources.

FAO Fisheries Technical Paper 231. Rome, Italy: FAO. pp.

416–457.

Checkley, D. M. & J. A. Barth. 2009. Patterns and processes in the

California Current System. Prog. Oceanogr. 83:49–64.

Cheng, S. H. T. 2015. Genome-wide SNPs reveal complex fine-scale

population structure in the California market squid fishery (Dor-

yteuthis opalescens). In: Evolution and population genomics of

loliginid squids. PhD diss., UCLA: Biology 0123. Available at:

http://escholarship.org/uc/item/0zw3h4ps.

Dorval, E., P. R. Crone & J. D. McDaniel. 2013. Variability of egg

escapement, fishing mortality and spawning population in the

market squid fishery in the California Current Ecosystem. Mar.

Freshwater Res. 64:80–90.

Erisman, B. E., L. G. Allen, J. T. Claisse, D. J. Pondella, III,

E. F. Miller & J. H. Murray. 2011. The illusion of plenty: hyper-

stability masks collapses in two recreational fisheries that target fish

spawning aggregations. Can. J. Fish. Aquat. Sci. 68:1705–1716.

Fields, W. G. 1950. A preliminary report on the fishery and on the bi-

ology of the squid Loligo opalescens. Calif. Fish Game 36:366–377.

Fields, W. G. 1965. The structure, development, food relations, re-

production, and life history of the squid, Loligo opalescens, Berry.

California Department of Fish and Game Fish Bulletin 131. 105 pp.

Frieder, C. A., J. P. Gonzalez, E. E. Bockmon, M. O. Navarro &

L. A. Levin. 2014. Can variable pH and low oxygen moderate ocean

acidification outcomes for mussel larvae? Global Change Biol.

20:754–764.

Frieder, C. A., S. H. Nam, T. R. Martz & L. A. Levin. 2012. High

temporal and spatial variability of dissolved oxygen and pH in a

nearshore California kelp forest. Biogeosciences 9:3917–3930.

Gruber, N., C. Hauri, Z. Lachkar, D. Loher, T. L. Frolicher &

G. Plattner. 2012. Rapid progression of ocean acidification in the

California Current System. Science 337:220–223.

Hanlon, R. T. & J. B. Messenger (eds.). 1996. Defence. In: Ceph-

alopod behaviour. pp. 66–77. 1st ed. Cambridge, UK: Cam-

bridge University Press. 232 pp.

Henry, A., K. Lazar, C. Chan, J. McDaniel, M. Fluharty, N. Rojek,

D. Johnston, K. Hill, M. Yaremko, C. Kong, V. Taylor, T. Tanaka,

R. Read, T. Tillman & D. Sweetnam. 2005. Final market squid

fisheries management plan, 25 March 2005. Monterey, CA: De-

partment of Fish and Game, State of California Resources Agency,

Marine Region. 566 pp.

Hickey, B. M. 1979. The California Current System-hypotheses and

facts. Prog. Oceanogr. 8:191–279.

Jackson, G. D. &M. L. Domeier. 2003. The effects of an extraordinary

El Ni~no/La Ni~na event on the size and growth of squid Loligo

opalescens off southern California. Mar. Biol. 142:925–935.

Jefferts, K., J. Burczynski &W. G. Pearcy. 1987. Acoustical assessment

of squid (Loligo opalescens) off the Central Oregon Coast.

Can. J. Fish. Aquat. Sci. 4:1261–1267.

Koslow, J. A. & C. Allen. 2011. The influence of the ocean environ-

ment on the abundance of market squid, Doryteuthis (Loligo)

opalescens, paralarvae in the Southern California Bight. CalCOFI

Rep. 52:205–213.

Le Dantec, N., L. J. Hogarth, N. W. Driscoll, J. M. Babcock,

W. A. Barnhardt & W. C. Schwab. 2010. Tectonic controls on near-

shore sediment accumulation and submarine canyon morphology

offshore La Jolla, southern California. Mar. Geol. 268:115–128.

Lowry,M. S. & J. V. Carretta. 1999.Market squid (Loligo opalescens) in

the diet of California sea lions (Zalophus californianus) in southern

California (1981–1995). CalCOFI Rep. 40:196–207.

Martz, T. R., J. G. Connery & K. S. Johnson. 2010. Testing the Hon-

eywell Durafet� for seawater pH applications. Limnol. Oceanogr.

Methods 8:172–184.

McClatchie, S., R. Goericke, G. Auad, R. Cosgrove & R. Vetter. 2010.

Oxygen in the Southern California Bight: multidecadal trends and

implications for demersal fisheries. Geophys. Res. Lett. 37:L19602.

McGowan, J. A. 1954. Observations on the sexual behavior and

spawning of the squid, Loligo opalescens, at La Jolla, California.

California Department of Fish and Game Fish Bulletin 40. pp.

47–54.

McGowan, J. A., M. Carter & M. Hilbern. 2010. Pacific Coast, near-

shore sea surface temperature, salinity and density 1916–2010. Ab-

stract C-11 presented on 7 December 2010 at the CalCOFI

Conference, CalCOFI, La Jolla, CA, 6–8 December.

Moltschaniwskyj, N. A. & G. T. Pecl. 2007. Spawning aggregations of

squid (Sepioteuthis australis) populations: a continuum of �micro-

cohorts�. Rev. Fish Biol. Fish. 17:183–195.

Morejohn, G. V., J. T. Harvey & L. T. Krasnow. 1978. The importance

of Loligo opalescens in the food web of marine vertebrates in

Monterey Bay. California Department of Fish and Game Fishery

Bulletin 169. pp. 67–97.

Nam, S. H., H. Kim & U. Send. 2011. Amplification of hypoxic and

acidic events by La Ni~na conditions on the continental shelf off

California. Geophys. Res. Lett. 38:L22602.

Navarro, M. O. 2014. Consequences of environmental variability for

spawning and embryo development of inshore market squid Dor-

yteuthis opalescens. PhD diss., UC San Diego: Oceanography.

b8354584. Available at: http://escholarship.org/uc/item/11j0t2js.

Navarro, M. O., E. E. Bockmon, C. A. Frieder, J. P. Gonzalez &

L. A. Levin. 2014. Environmental pH, O2, and capsular effects on

the geochemical composition of statoliths of embryonic squid Dor-

yteuthis opalescens. Water 6:2233–2254.

Navarro, M. O., G. T. Kwan, O. Batalov, C. Y. Choi, N. T. Pierce &

L. A. Levin. 2016. Development of embryonic market squid, Dor-

yteuthis opalescens, under chronic exposure to low environmental

pH and [O2]. PLoS One 11:e0167461.

Okutani, T. & J. A. McGowan. 1969. Systematics, distribution, and

abundance of the epiplanktonic squid (Cephalopoda: Decapoda)

larvae of the California Current 1954–March 1957. Bull. Scripps

Inst. Oceanogr. Univ. Calif. 14:1–90.

Parnell, P. E. 2015. The effects of seascape pattern on algal patch

structure, sea urchin barrens, and ecological processes. J. Exp. Mar.

Biol. Ecol. 465:64–76.

Paull, C. K., D. W. Caress, E. Lundsten, R. Gwiazda, K. Anderson,

M. McGann, J. Conrad, B. Edwards & E. J. Sumner. 2013. Anat-

omy of the La Jolla Submarine Canyon system: offshore southern

California. Mar. Geol. 335:16–34.

Pauly, D., V. Christensen, J. Dalsgaard, R. Froese & F. Torres, Jr. 1998.

Fishing down marine food webs. Science 279:860–863.

Pauly, D. &M.-L. Palomares. 2005. Fishing downmarine foodweb: it is

far more pervasive than we thought. Bull. Mar. Sci. 76:197–211.

Pecl, G. T. & G. D. Jackson. 2008. The potential impacts of climate

change on inshore squid: biology, ecology and fisheries. Rev. Fish

Biol. Fish. 18:373–385.

Perretti, C. T. & M. Sedarat. 2016. The influence of the El Ni~no
Southern Oscillation on paralarval market squid (Doryteuthis opa-

lescens). Fish. Oceanogr. 25:491–499.

Perretti, C. T., P. J. Zerofski & M. Sedarat. 2015. The spawning dy-

namics of California market squid (Doryteuthis opalescens) as

revealed by laboratory observations. J. Molluscan Stud. 82:37–42.

Pierce, N. T. 2017. Developmental transcriptomics of the California

market squid, Doryteuthis opalescens. PhD diss., UC San Diego:

Marine Biology. Available at: http://escholarship.org/uc/item/

3z71g769.

Porzio, D. 2013. Review of selected California fisheries for 2012: coastal pe-

lagic finfish, market squid, Pacific herring, groundfish, highly-migratory

ESSENTIAL MARKET SQUID HABITAT 613

http://escholarship.org/uc/item/0zw3h4ps
http://escholarship.org/uc/item/11j0t2js
http://escholarship.org/uc/item/3z71g769
http://escholarship.org/uc/item/3z71g769


species, white seabass, Pacific halibut, red sea urchin and sea cu-

cumber. CalCOFI Rep. 54:12–36.

Porzio, D. 2015. Review of selected California fisheries for 2014: coastal

pelagic finfish, market squid, groundfish, Pacific herring, Dungeness

crab, ocean salmon, true smelts, hagfish, and deep water ROV

surveys of MPAs and nearshore habitat. CalCOFI Rep. 56:1–30.

Ralston, S., E. Dorval, L. Ryley, S. M. Sakuma & J. C. Field. 2018.

Predicting market squid (Doryteuthis opalescens) landings from pre-

recruit abundance. Fish. Res. 199:12–18.

Reiss, C. S., M. R. Maxwell, J. R. Hunter & A. Henry. 2004. In-

vestigating environmental effects on population dynamics of Loligo

opalescens in the Southern California Bight. CalCOFI Rep.

45:87–97.

Revelle, R. & F. P. Sheppard. 1939. Sediments off the California coast.

In: Trask, P. D., editor. Recent marine sediments, 1st edition. Tulsa,

OK: American Association of Petroleum Geologists. pp. 245–282.

Roberts, M. J. 2005. Chokka squid (Loligo vulgaris reynaudii) abun-

dance linked to changes in South Africa�s Agulhas Bank ecosystem

during spawning and the early life cycle. ICES J.Mar. Sci. 62:33–55.

Rogers-Bennett, L. & C. I. Juhasz. 2014. The rise of invertebrate fish-

eries and the fishing down of marine food webs in California. Calif.

Fish Game 100:218–233.

Send, U. & S. Nam. 2012. Relaxation from upwelling: the effect on

dissolved oxygen on the continental shelf. J. Geophys. Res. 117:

C04024.

Shimek, R. L., D. Fyfe, L. Ramsey, A. Bergey, J. Elliott & S. Guy. 1984.

A note on spawning of the Pacific market squid, Loligo opalescens

(Berry, 1911), in the Barkley sound region, Vancouver Island,

Canada. Fish Bull. 2:445–446.

Street, D. 1983. Squid fishery development project of Southeast Alaska.

Anchorage, AK: Alaska Fisheries Development Foundation, Inc.

60 pp.

Switzer, R.D., P.E. Parnell, J.L. Leichter & N.W. Driscoll. 2016. The

effects of tectonic deformation and sediment allocation on shelf

habitats and megabenthic distribution and diversity in southern

California. Estuar. Coast. Shelf Sci. 169:25–37.

Takeshita, Y., C. A. Frieder, T. R. Martz, J. R. Ballard, R. A. Feely,

S. Kram, S. Nam, M. O. Navarro, N. N. Price & J. E. Smith. 2015.

Including high-frequency variability in coastal ocean acidification

projections. Biogeosciences 12:5853–5870.

Turi, G., M. Alexander, N. S. Lovenduski, A. Capotondi, J. Scott,

C. Stock, J. Dunne, J. John & M. Jacox. 2018. Response of O2 and

pH to ENSO in the California Current System in a high-resolution

global climate model. Ocean Sci. 14:69–86.

Van Noord, J. & E. Dorval. 2017. Oceanographic influences on the

distribution and relative abundance of market squid paralarvae

(Doryteuthis opalescens) off the southern and central California

coast. Mar. Ecol. (Berl.) 38:e12433.

Vojkovich, M. 1998. The California fishery for market squid (Loligo

opalescens). CalCOFI Rep. 39:55–60.

Warner, R. R. 1990. Resource assessment versus tradition inmating-site

determination. Am. Nat. 135:205–217.

Wells, B. K., I. D. Schroeder, S. J. Bograd, E. L. Hazen, M. G. Jacox,

A. Leising, N. Mantua, J. A. Santora, J. Fisher, W. T. Peterson,

E. Bjorkstedt, R. R. Robertson, F. P. Chavez, R. Goericke,

R. Kudela, C. Anderson, B. E. Lavaniegos, J. Gomez-Valdes,

R. D. Brodeur, E. A. Daly, C. A. Morgan, T. D. Auth, J. C. Field,

K. Sakuma, S.McClatchie, A. R. Thompson, E. D.Weber,W.Watson,

R. M. Suryan, J. Parrish, J. Dolliver, S. Loredo, J. M. Porquez,

J. E. Zamon, S. R. Schneider, R. T. Golightly, P.Warzybok, R. Bradley,

J. Jahncke, W. Sydeman, S. R. Melin, J. Hildebrand, A. J. Debich &

B.Thayre. 2017. State of theCaliforniaCurrent 2016–2017: still anything

but ‘‘normal’’ in the north. CalCOFI Rep. 58:1–55.

Wing, B. L.&R.W.Mercer. 1990. Temporary northern range extension

of the squid Loligo opalescens in Southeast Alaska. Veliger

33:238–240.

Yang, W. T., R. F. Hixon, P. E. Turk, M. E. Krejci, W. H. Hulet &

R. T. Hanlon. 1986. Growth, behavior, and sexual maturation of the

market squid, Loligo opalescens, cultured through the life cycle. Fish

Bull. 84:771–798.

Young, M. Y., R. G. Kvitek, P. J. Iampietro, C. D. Garza, R. Maillet &

R. T. Hanlon. 2011. Seafloor mapping and landscape ecology ana-

lyses used to monitor variation in spawning site preference and

benthic egg mop abundance for the California market squid (Dor-

yteuthis opalescens). J. Exp. Mar. Biol. Ecol. 407:226–233.

Zeidberg, L. D., J. L. Butler, D. Ramon, A. Cossio, K. Stierhoff &

A. Henry. 2011. Estimation of spawning habitats of market squid

(Doryteuthis opalescens) from field surveys of eggs off central and

southern Califonia. Mar. Ecol. (Berl.) 33:326–336.

Zeidberg, L. D. & W. M. Hamner. 2002. Distribution of squid paral-

arvae, Loligo opalescens (Cephalopoda: Myopsida), in the Southern

California Bight in the three years following the 1997–1998 El Ni~no.

Mar. Biol. 141:111–122.

Zeidberg, L. D., W. Hamner, K. Moorehead & E. Kristof. 2004. Egg

masses of Loligo opalescens (Cephalopoda: Myopsida) in Monterey

Bay, California following the El Ni~no event of 1997–1998. Bull.

Mar. Sci. 74:129–141.

NAVARRO ET AL.614




