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Abstract

The Local Langlands Correspondence, Rapoport-Zink Spaces, and
Shimura Varieties

by
Alexander Bertoloni Meli
Doctor in Philosophy in Mathematics
University of California Berkeley
Professor Sug Woo Shin, Chair

The connection between the Langlands correspondence and the co-
homology of Rapoport-Zink spaces and Shimura varieties has been the
subject of extensive mathematical research over the past few decades.
In this thesis, we extend the existing theory in two key ways. Firstly,
we give an explicit combinatorial description of the cohomology of
Rapoport-Zink spaces of EL-type, building off of earlier work by Harris—
Taylor and Shin ([HTO01], [Shil2b], [HTO01]). Secondly, joint with Alex
Youcis, we state a list of axioms for the supercuspidal local Langlands
correspondence and prove that they characterize the correspondence in
certain cases. The most important of our axioms arises naturally in the
study of the cohomology of Shimura varieties and was first stated in
work of Scholze and Scholze—Shin ([Sch13b], [SS13]). We verify these

axioms in the case of unramified unitary groups.
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Introduction

This dissertation focuses on the local Langlands correspondence and
its relation to the cohomology of certain moduli spaces studied in arith-
metic geometry: Rapoport-Zink spaces and Shimura varieties. Our
study of this relationship provides new results in two directions. On
the one hand, we use representation theory to shed light on the struc-
ture of the etale cohomology of these moduli spaces. On the other, we
use the geometry of these spaces to prove new properties satisfied by
the Langlands correspondence. We begin with a general discussion of
the Langlands correspondence and its relation to Rapoport-Zink spaces
and Shimura varieties. We show how this relationship leads to some of
the key questions answered in this thesis and give a broad outline of our
main results. We leave detailed introductions and theorem statements
to the introductory sections of Parts 1, 2, and 3.

The key object of study in this thesis is the local Langlands corre-
spondence for a p-adic field F'. For the group GL,,, the correspondence
gives a bijection between certain irreducible GL, (F') representations
and n-dimensional Galois representations. More generally, the corre-
spondence states that there exists a natural finite-to-one map from the
set of isomorphism classes of irreducible admissible representations of
G(F), for G a reductive group, to the set of equivalence classes of ho-
momorphisms Lp — LG, where L is the Langlands group of F' (given
by the product Wg x SLy(C) where W is the Weil group of F') and
LG := G x Wp is the L-group of G.

One approach to the study of such a correspondence of representa-
tions is to find a natural representation of Wr x G(F') whose decom-
position into irreducible representations is governed by the Langlands
correspondence. In some sense, this approach is analogous to the the-
ory of Schur-Weyl duality where one relates the representation theory
of the symmetric group Sy and the group GL,(C) via the decomposi-
tion of the natural action of GL,(C) x Sy, on the k-fold tensor product
C"®..C"

In our case, the ¢-adic cohomology of Rapoport-Zink spaces provides
a natural choice of a Wr x G(F)-representation. For a certain class
of representations of G(F) known as supercuspidal representations, the
Kottwitz conjecture [RV14, Conjecture 7.3| gives a precise and rela-
tively simple description of the relationship between the “supercusp-
idal part” of the cohomology of Rapoport-Zink spaces and the local
Langlands correspondence. On the other hand, for general representa-
tions this relationship is known to be quite complicated and remains
mysterious.
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In Part 1 we restrict our attention to Rapport-Zink spaces that are
of unramified EL-type. Building on work of Shin [Shil2b], we are able
to give an explicit combinatorial description of the ¢-adic cohomology
of these spaces in terms of the local Langlands correspondence, the
Jacquet-Langlands correspondence, and parabolic induction functors.
Our description generalizes the Kottwitz conjecture in this case. We
then use this explicit description to verify a conjecture of Harris on
these cohomology spaces.

Parts 2 and 3 use formulas arising from geometry to prove new results
on the local Langlands correspondence. The key geometric objects of
Parts 2 and 3 are Shimura varieties, which are the global analogues
of Rapoport-Zink spaces. Parts 2 and 3 stem from work that was
completed jointly with Alex Youcis.

In Part 2 we prove that the local Langlands correspondence for un-
ramified unitary groups satisfies certain trace identities which we refer
to as the Scholze-Shin equations. These equations were first studied by
Scholze in [Sch13b] and generalized by Scholze—Shin in [SS13]. In our
setting, these equations relate the trace of a discrete series L-parameter
for an unramified unitary group U with the sum of the trace distri-
butions of the representations in its L-packet. Involved in this trace
identity are certain functions f;; that occur naturally in the study of
p-part of the cohomology of Shimura varieties and were first defined in
our case in the thesis of Alex Youcis ([Youl9]). We prove the Scholze-
Shin equations via a careful study of the p-part of the cohomology of
Shimura varieties following works of Langlands, Kottwitz, and Scholze.

In Part 3, we study the problem of the characterization of the local
Langlands correspondence for supercuspidal representations. Our ap-
proach is inspired by Scholze’s proof of the Langlands correspondence
in the GL,, case and in particular, crucially uses the Scholze—Shin equa-
tions. We give a list of axioms that we show uniquely characterize the
local Langlands correspondence for certain groups. In particular, com-
bining parts 2 and 3, we deduce a new characterization of the local
Langlands correspondence in the case of unramified unitary groups.
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Part 1. The /[-adic Cohomology of Unramified Rapoport-Zink
Spaces and Harris’s Conjecture

1.1. INTRODUCTION

Our goal in this Part is to give a description of the [-adic coho-
mology of unramified Rapoport-Zink spaces of EL-type. These spaces
are moduli spaces of p-divisible groups associated to unramified Weil-
restrictions of general linear groups and can be thought of as general-
izations of Lubin-Tate spaces.

This generalizes, for these particular spaces, the Kottwitz conjecture
stated in [RV14, Conj 7.3]. The Kottwitz conjecture describes the su-
percuspidal part of the l-adic cohomology of Rapoport-Zink spaces, and
is known in the cases we consider by work of Shin [Shil2b, Cor 1.3]. We
prove our description of this cohomology is compatible with a conjec-
ture of Harris [HarO1, Conj 5.4], generalizing the Kottwitz conjecture
to parabolic inductions of supercuspidal representations.

Our main result describes the cohomology of these Rapoport-Zink
spaces as a formal alternating sum (indexed by certain root theo-
retic data) of representation-theoretic constructions including the local
Langlands correspondence, parabolic inductions, and Jacquet modules.

We prove our result inductively using two formulas from the litera-
ture. The first of these is Shin’s averaging formula [Shil2b, Thm 7.5]
which is proven using Mantovan’s formula [Man05, Thm 22]. Manto-
van’s formula connects the cohomology of Rapoport-Zink spaces, [gusa
varieties and Shimura varieties. The second formula is the Harris-
Viehmann conjecture of [RV14, Conj 8.4] which relates the cohomology
of so-called non-basic Rapoport-Zink spaces to a product of Rapoport-
Zink spaces of lower dimension. A proof of this conjecture is expected
to appear in a forthcoming paper of Scholze.

To carry out our induction, we prove combinatorial analogues of the
above formulas phrased purely in terms of root-theoretic data. Inter-
estingly, we are able to prove these analogues for general quasisplit
reductive groups, though at present we can only connect them to the
cohomology of Rapoport-Zink spaces of unramified EL-type. To do so
in other cases, one would need to generalize Shin’s averaging formula.

We now describe the main results of this Part more precisely. We
fix an algebraic closure @ of Q,. We study Rapoport-Zink spaces of
unramified EL-type which we denote M ,,. These are moduli spaces of
p-divisible groups coming from an unramified EL-datum consisting of

(1) a finite unramified extension F' = Q, of Q,,



(2) a finite dimensional F' vector space V' which defines the group
G = ResF/QpGL(V),

(3) a Gg,-conjugacy class of cocharacters {u}, with 1 : G,, — G,
and such that the weights of p are elements of {0, 1}.

(4) an element b of a finite set B(G, 1) which defines a group .J,
that is an inner twist of a Levi subgroup M, of G.

Roughly one can think of b, as specifying the Newton and Hodge
polygons of a p-divisible group and J, as the automorphism group of
the isocrystal b.

Let Q)" denote the maximal unramified extension of @, inside @,

and let Qp" denote its completion. Then the spaces M, , are formal
Our o rig
schemes over Qp". One constructs a tower of rigid spaces My , over

the generic fiber Mgfz of My ,,, where the index U runs over compact
open subgroups of G(Q,). Associated to such a tower we have a co-
homology space [H*(G, b, 1)] which is an element of the Grothendieck
group Groth(G(Q,) x J,(Q,) x WE{;»}G) of admissible representations
of G(Qp), Jo(Qy) and W, . where the latter group is the Weil group
of the reflex field, Ey,,, of {u}. This construction can be thought of
as an alternating sum of a direct limit over U < G of [-adic cohomol-
ogy groups with the actions of G(Q,) and J,(Q,) arising from Hecke
correspondences and isogenies of p-divisible groups, respectively. We
refer to §1.3.1 for a precise definition.
The cohomology object [H*(G, b, 11)] gives rise to a map of

Grothendieck groups

Mantgy,, : Groth(J,(Q,)) — Groth(G(Q,) x WE{u}G>

which maps a representation p to the alternating sum of the J,(Q,)-
linear Ext groups of [H*(G, b, u)] and p.

The map Mantg;,, has been studied by many authors. Harris and
Taylor [HTO01] used this construction to prove the local Langlands cor-
respondence for general linear groups. It also appears naturally in Man-
tovan’s work relating the cohomology of Shimura varieties, Igusa va-
rieties, and Rapoport-Zink spaces [Man05]. Fargues studied Mantg
for basic b in some EL and PE L-cases in [Far04]. Shin combined Man-
tovan’s formula with his trace formula description of the cohomology
of Igusa varieties to prove instances of local-global Langlands compat-
ibilities [Shill].

In [Shil2b], Shin proved an averaging formula for Mantc j ,, which is
key to our work. He defined a map

Red, : Groth(G(Q,)) — Groth(.J,(Q,))



which up to a character twist is given by composing the un-normalized
Jacquet module

JacGen : Groth(G(Q,)) — Groth(My(Q,))
with the Jacquet-Langlands map of Badulescu [Badl]
LJ : Groth(M,(Q,)) — Groth(J,(Q,)).

Shin uses global methods and so necessarily works with a large but
inexplicit class of representations which he denotes accessible. This set
loosely consists of those representations isomorphic to the p-component
of an automorphic representation appearing in the cohomology of a
certain unitary similitude group Shimura variety. In particular, the
essentially square integrable representations in Groth(G(Q,)) are ac-
cessible. R
In what follows r_, is a finite dimensional representation of G x
WE{M}G which restricts to the representation of highest weight —u on

@, and LL is the semisimplifed local Langlands correspondence from
[HT01]. Shin shows the following result.

Theorem 1.1.1 (Shin’s Averaging Formula). Assume 7 is an accessi-
ble representation of G(Q,). Then

Y. Mantgu(Redy(m)) = [r][r—u o LL(m)lws, ],
beB(G 1) “

where the above formula is correct up to a Tate twist which we omait for
clarity and [r][p] is our notation for an element w[Xlp € Groth(G(Q,) %
{nta

Additionally we have the conjecture of Harris and Viehmann which
allows us to write Mante,, for non-basic b (b is basic when it corre-
sponds to an isocrystal with a single slope) in terms of Mant¢ v such
that G’ is a general linear group of smaller rank than G. This conjec-
ture was formulated in work of [Har01] and [RV14] and is expected to
be proven in forthcoming work of Scholze. In what follows, Ind is the
un-normalized parabolic induction functor.

Conjecture 1.1.2 (Harris-Viehmann).

Mantgp,, = Z Indgb (@leManth,_ i)

G,
(Mb »/‘L/)GZJ\/{Iib/

where we omit a Tate twist which we discuss at length in §1.3.2. The
finite set I]\Gjb“ , is described in Proposition 1.2.25.



Shin’s averaging formula and the Harris Viehmann conjecture allow
one to compute Mantq  , o Red, recursively. The latter lets us compute
Mantc: ., for non-basic b given that we know Mantey v for G of lower
rank and the former lets us compute Mants,,, for the unique basic
b € B(G, ) if we know it for all non-basic b € B(G, ). One of our
main results is to give a non-recursive description of Mantg,, o Red,
which we now describe.

Let G = Resp/g,GL(V) as before, choose a rational Borel subgroup
B of GG, and a rational maximal torus 7' < B < . Then we consider
pairs (Mg, pus) where Mg < T is a Levi subgroup of a parabolic sub-
group Ps containing B, and pg € X,(T') is dominant as a cocharacter
of Mg. We call a pair of the above form a cocharacter pair for G.

We associate to a cocharacter pair (Mg, pug) the map of representa-

tions [Ms, ps] - Groth(G(Qy)) — Groth(G(Qp) x W, , ), which up
to a character twist is given by

> [(IndZ, o [us] o Jacke) (m)]

Ymg

and
[1s] : Groth(Ms(Q,)) — Groth(Ms(Q,) x WE{ust)
given by
> [m][ropg o LL(m)]

Then our main result, which follows from Theorem 1.3.12 is

Theorem 1.1.3. Suppose Mantgy,,, corresponds to a tower of unram-
ified Rapoport-Zink spaces of EL-type. We assume that the Harris-
Viehmann conjecture is true. Then if p € Groth(G(Q,)) is essentially
square-integrable, we have

Mantgo,(Reds(p) = 31 (~1)"s[ M, us](p),

(Mg,115)ERG b1

where Ry, 15 a collection of cocharacter pairs with a combinatorial
definition and (—1)"¥s ™ s an easily determined sign.

Shin conjectures ([Shil2b, Conj 8.1]) that the averaging formula
holds for all admissible representations of G(Q,). If this were indeed
the case, then our result would also immediately hold for all admissible
representations of G(Q,).

A crucial part of the proof of the above theorem is the following
unconditional result, which is perhaps interesting in its own right.

Theorem 1.1.4 (Imprecise version of Theorem 1.2.24 and Corollary
1.2.28). For general quasisplit G and a cochcaracter o (not necessarily



minuscule), combinatorial analogues of Shin’s formula and the Harris-
Viehmann conjecture hold true.

This result suggests that perhaps the combinatorics of cocharacter
pairs is related to Mantg,, , in cases more general than Rapoport-Zink
spaces of unramified EL-type. However, we caution the reader that
the existence of nontrivial L-packets and nontrivial endoscopy in more
general groups will likely complicate the situation.

In §1.4, we use our combinatorial formula to prove the EL-type cases
of a conjecture of Harris ([Har01, Conj 5.4]). This conjecture describes
Mantg, ,(I$(p)) for p a supercuspidal representation of M(Q,) for M
a Levi subgoup of G. In this case, I{, denotes normalized parabolic
induction. In particular, we show the following result, which is Con-
jecture 1.4.4.

Theorem 1.1.5 (Harris conjecture). We assume that Shin’s averaging
formula holds for all admissible representations of G(Q,) and that the
Harris-Viehmann conjecture is true. Let p be a supercuspidal represen-
tation of M(Q,). Then up to a precise character twist and sign which
we omit for clarity,

Mante,s,. (L (Ing" (p))) = [157(p)] ® rowoLL(p)

G,
(M,,u’)EReleg
.. . a
for an explicit set of cocharacter pairs Rel}}’.

We prove our result for I§;(p) not necessarily irreducible and b not
necessarily basic, which is a generalization of what Harris conjectured
for the G we consider.

Finally, in Appendix 1.5.1 we give an example to show that for gen-
eral representations p, one cannot hope for an expression as simple as
that in Harris’s conjecture.

1.2. COCHARACTER FORMALISM

In this section we define and study the notion of a cocharacter pair.
This notation will be used in the third and fourth sections of this part,
where we describe the cohomology of certain Rapoport-Zink spaces in
terms of cocharacter pairs. We endeavor to use a similar notation to
[Kot97].

This section is divided into five subsections. These are structured
so that the first contains the basic definitions and the fourth and fifth
subsections contain the most important results. The second and third



subsections prove a number of technical lemmas that the reader may
want to skip at first and refer to as necessary.

1.2.1. Notation and Preliminary Definitions. For the remainder
of this section, we fix G a connected quasisplit reductive group defined
over Q,. This is a significantly more general setting than we will need
for applications in this part. However, we choose to work in this gen-
erality because doing so is both conceptually clearer and potentially
useful for future applications. The ideas in §5 of [Kot97] might allow
one to remove the quasisplit assumption, but we do not attempt this
here as it is unnecessary for the applications. Moreover, Kottwitz’s
study of the set B(G) in that section relies on understanding the qua-
sisplit case first.

Remark. The reader will notice that most of this section makes sense
over an arbitrary field. The assumption that we work over Q, is used
in section 1.2.4 when we connect cocharacter pairs to the set B(G)
defined by Kottwitz. However, in §5.1 of [Kot97], Kottwitz shows that
over Q,, the set B(G) is parametrized by a disjoint union of sets of

the form X*(Z(Ms)")" for Mg a standard Levi subgroup of G. These
latter sets make sense over general fields and one could make sense
generally of all the results of this section by replacing B(G) with the
sets parametrizing it.

Since G is quasisplit, we can pick a Borel subgroup B < G defined
over Q, and a maximal split torus A < B of G. We choose T to be a
maximal torus defined over Q, satisfying A < T' < B. We define X*(A)
and X, (A) respectively to be the character and cocharacter groups of
Ag-.

@{‘he group G has a relative root datum
(X*(A),d*(G, A), X, (A), D (G, A)), where &*(G, A) and @.(G, A) re-
spectively denote the set of relative roots and relative coroots of G and
the torus A. Our choice of Borel subgroup B determines a decom-
position ®*(G, A) = &*(G, A)T [[P*(G, A)~ of positive and negative
roots and a subset A < ®*(G, A)* of simple roots. Analogous state-
ments are also true for the coroots. The set of parabolic subgroups
P > B defined over Q, are called standard parabolic subgroups. We
define Pg to be the unique standard parabolic subgroup such that
O*(Ps, A) = O*(G,A)* U (P.(G,A)” n Spany(S)). There is an in-
clusion preserving bijection between the set of standard parabolic sub-
groups and subsets of A given by S — Ps.

We let Ng be the unipotent radical of the standard parabolic sub-
group Ps. It is a standard result that there exists a connected reductive



subgroup M < Pg so that the natural map M — Pg/Ng is an isomor-
phism. In particular, this gives us a Levi decomposition Ps = M Ng
and the subgroup M is called a Levi subgroup of Pg. The subgroup
M is not unique but any two Levi subgroups of Pg are conjugate by
an element of Ng. However, we have fixed a maximal torus 7" and
there is a unique Levi subgroup Mg containing T". The subgroup Mg
is constructed explicitly as the centralizer Cg(Z), where Z < T is the
connected component of the intersection of the kernels of the roots in
S. We refer to the Levi subgroups Mg that we produce in this way as
standard Levi subgroups.
Define

A= X, (A).
We have the closed rational Weyl chamber
Co={reUy:{(x,a)=0,ae A}.
We define for each standard Levi subgroup,
Apeo={redg:{(z,a)=0,ae S},
and denote the strictly dominant elements of Ay, @ by
Apeo = r ey :(x,a) =0,0€ S, (x,a) > 0, € A\S},

and we have
N =
HﬂM&Q - CQ’
Mg

There is a partial ordering of 2(g given by pu < p' if ¢/ — 1 is a non-
negative rational combination of simple roots.

Definition 1.2.1. We define a cocharacter pair for a group G (relative
to some fized choice of T and B defined over Q,) to be a pair (Mg, i)
such that Mg < G is a standard Levi subgroup and pug € X, (T') satisfies
(g, o) = 0 for each positive absolute root o of T in the Lie algebra of
Mgy, Positivity for absolute roots is determined by the Borel subgroup
B which we have fixed.

We denote the set of cocharacter pairs for G by Cg.

Remark. We caution the reader that the cocharacter pg need not be
an element of X, (A), even though Mg is defined over Q,.

We could define cocharacter pairs more canonically as the set of
equivalence classes of pairs (M, ) such that M is a Levi subgroup of G
defined over Q, and p is a cocharacter of M. Two pairs (M, u), (M', 1)
are equivalent if M, M" are conjugate in Gg, and p, i’ are conjugate in
M@. We choose not to do this as in practice we will often need to work



with the unique dominant cocharacter in a conjugacy class relative to
a fixed based root datum.

Let I' = Gal(Q,/Q,). Since we have assumed T and B are defined
over Q,, I' acts on T, and Bg;. This gives us a natural left action of
I' on X,(T) given explicitly by (v - u)(g) = v(u(y~(g)) for pe X.(T)
and v € I'. We get an analogous left action on X*(7) and one can
easily check that the pairing X*(7T") x X4(T) — Z is I invariant under
these actions.

We have

X (T =
Indeed, a I'-invariant cocharacter u factors through the identity compo-
nent of T, where TT is the subscheme defined by T'(Q,) = T(Q,)".
But the identity component of TT is the torus A. Conversely any
cocharacter of A induces a ['-invariant cocharacter via the natural in-
clusion A — T.
Given p € X, (T), we construct an element u' of g as follows:

MFZ ﬁ Z V(1)

Y¥el/Ty

where I, is the stabilizer of 4 in I'. Then u" € X, (T)g = .

Given a standard Levi subgroup Mg, we let W]{;}q denote the relative
Weyl group of Mg. The group W}\”/?ls is defined to be the subgroup
of the relative Weyl group, W™, that is generated by the reflections

corresponding to simple roots in S.
Definition 1.2.2. We define a map
QMS . X*(T) - Ql@,

given by
1
Onss (1) = e | Z a(u").
Wilke! o
Mg
We are now ready to describe a formalism that will prove useful in
studying the cohomology of certain Rapoport-Zink spaces. Crucial to
everything that follows is a partial ordering on the set Cg of cocharacter
pairs for G.

Definition 1.2.3. We define a partial ordering on Cg which we denote
by the symbol <. Unfortunately, our definition is somewhat indirect: we
first define when (Ms,, ps,) < (Ms,, ps,) for Ms, < Ms, (equivalently
Sy < S1) and S1\Sy contains a single element (in other words, Mg, is



a mazimal proper Levi subgroup of Mg, ). We then extend the relation
to all cocharacter pairs by taking the transitive closure.

Let Mg,, Mg, be standard Levi subgroups of G' such that Mg, < Mg,
and S1\Sz2 is a singleton. For cocharacter pairs (Ms,, us,), (Ms,, pis,) €
Ca, we write (Mg,, pus,) < (Mg,,ps,) if wus, is conjugate to ug, in
Ms,g,; and Oag, (ps,) > Oug, (1s,). We then take the transitive closure
to extend to a partial ordering on Cg.

The following example shows that the above definition depends on
the assumption that S7\S; is a singleton.

Example 1.2.4. Consider G = GL,4 with 7" the diagonal torus and B the
upper triangular matrices. We can pick a basis for X,(T') of cochar-
acters ¢; defined so that €;(g) is the diagonal matrix with 1 in every
position except for the ith, which equals g. Then we can identify an el-
ement of X, (T") with its coordinate vector in this basis. Finally, we use
additional parenthesis to indicate the product structure of the standard
Levi subgroup Mg. Using this notation, the set of cocharacter pairs
that are less than or equal to (GLy, (1%,0%)) is given in the diagram at
the start of Appendix 1.5.1.

In particular, we see that (GL1, (1)(1)(0)(0)) < (GLy, (12,02)) since
we have a chain of cocharacter pairs where each Levi subgroup is max-
imal in the next:

(GL1, (1)(1)(0)(0)) < (GLy x GLy x GLy, (1)(1,0)(0))
< (GL3 x GL1, (12,0)(0)) < (GLyg, (12,0%).

However, it is not the case that (GL},(1)(0)(1)(0)) < (GLy, (12,0%))
even though 0¢p4((1,0,1,0)) > QGL4((1, 1,0,0)) and the cocharacters
are conjugate in G.

Finally, we remark that the fact that all the related cocharacter
pairs in the above example have equal (as opposed to just conjugate)
cocharacters is very much a result of us choosing a fairly small group
G. Even for G = GLj5, this is not the case.

Definition 1.2.5. We define a cocharacter pair (Mg, ps) for G to
be strictly decreasing if O, (1s) € Ay, o We denote by SD < Cq
the strictly decreasing elements of Co and by SD,, (for dominant p €
X, (T)) the strictly decreasing elements (Mg, us) € Ca such that

(Ms, ps) < (G, ).

Remark. The 0y, map can be thought of as associating a tuple of
slopes to a cocharacter pair. Then the strictly decreasing cocharacter
pairs with Levi subgroup Mg are the ones whose slope tuple lies in the



image of the Newton map v : B(G)yy — A, 0- The above statement
is made precise by Proposition 1.2.21.

1.2.2. An Alternate Characterization of the Averaging Map.
The following two subsections consist of a collection of lemmas devel-
oping the theory of the map 03, and the set of strictly decreasing
elements SD of Cg.

In this section, we give an alternate description of the map 6y;,. To
do so, we will need several properties of cocharacters and root data
which we record in the following lemma. For this lemma only, we
consider 7" and G defined over a more general class of fields so that
these results also apply to the complex dual groups 7" and G.

Lemma 1.2.6. Let F > Q be a field and F an algebraic closure. Let G
be a connected quasisplit reductive group defined over F. Suppose that
T < G is a maximal torus defined over F' and that the group scheme
T admits an action defined over F by a finite group A. Let X*(T*)
denote the characters of the subgroup scheme of A-fized points of Tp.
The anti-equivalence of categories between tori and finitely generated
free Abelian groups given by Ty — X*(T') induces an action of A on
X*(T). We then have the following.

(1) There is a unique isomorphism X*(T™) =~ X*(T)x such that

the following diagram commutes.

X*(T) —5 X*(Th)
|
X*(T)a

(2) Let Ms < G be a standard Levi subgroup. Let Wips, Wig
denote the absolute and relative Weyl groups of Mg and let
I = Gal(F/F). Then Wyga acts on X (T)U via its nat-
ural identification with A and T acts on X,(T)"VMsa>s since
for w € Wirgans, and v € ', and p € X, (T)Vmsabs e have
w(y(w) = (v H(w)(w) = v(w). Then the identity map on
X.(T) induces an isomorphism of groups

(X*(T>WMS,abs)F ~ (X*(T)F)WMS,rel

(3) The natural map X.(T)§ — Xu(T)g - Xi(T)ga induces an
isomorphism X,(T)§ = X.(T)a0-

Proof. The functor T'+— X*(T') is an anti-equivalence between the cat-

egories of diagonalizable groups over F' and finitely generated Abelian

groups. The diagram for the universal property for A-invariants is that
of A-coinvariants but with all the arrows reversed. Thus, there must
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exist a unique isomorphism between X*(T*) and X*(T), that makes
the diagram

X*(T) —225 X*(T™)

res
m I

X*(T)a

commute. This proves (1).
In [Kot84a, Lem 1.1.3], Kottwitz proves that the identity map on
X.(T) induces an isomorphism

(Xu(T)")/Whig = (Xu(T)/WiD)"

Thus, to prove (2), we need only show that this isomorphism gives
a bijection of the singleton orbits. This will give an isomorphism of
groups (not just sets) between (X, (T)"Msab)I' and (X, (T))VMs.rel
that is induced from the identity map on X, (7).

Kottwitz’s isomorphism maps the W}(;}g—orbit of e X.(T)' to its
Wips orbit in X, (T). Thus, it suffices to show that if 4 € X, (T)" is
invariant by Wﬁé then it is also invariant by Wﬁ’; If p is invariant by
W]{?S, then the pairing of p with each relative root of Mg is 0. Thus
the image of p lies in the intersection of the kernels of the relative roots
of Mg which is Z(Mg) n A. Therefore, p is invariant under the action
of Wips.

Finally, we note that the proof of Kottwitz uses the fact that the
intersection of the absolute Weyl chamber 63)8 with the image of X, (A)
in X,(T) gives the relative Weyl chamber Cy. Indeed, this follows
easily from the fact that the restriction of the set of absolute simple
roots A*™ relative to our choice of B and T equals the set of relative
simple roots A (see Proposition 1.5.2). An analogous fact is known
for the Weyl chambers in the character group X*(T") (see Proposition
1.5.4) but this seems to be much more subtle.

For (3), we need to construct an inverse to the map

X, (T)g = Xu(T)g — Xu(T)ga.
Take [u] € Xu(T)ga for e Xyi(T)g. Then

% ST A1) € Xu(T)2

is independent of the choice of lift of [u] to X.(T)q and gives an inverse
to the map above. O

11



Let Apr, be the maximal split torus in the center of Mg. Then
Xa(Ang)o = Angs 0-

We now prove a lemma that we will need to use to describe the alternate
characterization of 0.

Lemma 1.2.7. (1) There is a natural isomorphism
X*(Z(Ms)")g = Angq defined via a series of canonical iden-
tifications.

(2) The isomorphism in (1) coincides with the one constructed in

§4.4.3 of [Kot97].

Proof. We prove (1) first. By Lemma 1.2.6, we have the following
isomorphisms.

X IV g = X*(P)guwge r = Xo(T)gwge r
Wabs T F’Wrel
=X (D)™ =XuT)g ™
Xy

lle

(Ams)o = Ang o

. . . F7WI\/I .
We explicate the isomorphism X (T)g ¢ = X.(Awng)g. This follows
from the isomorphism X*(A)Wfr‘% ~ X, (Ap,) which we now describe.

Suppose we have u € X*(A)Wfr&ls, Equivalently, for each relative root
a of Lie(Mg), we have o,(u) = p (where o, is the reflection in the
Weyl group corresponding to «). Since o,(p) = pu — {u, a)d, this is
equivalent to {u,ay = 0 for all relative roots a of Lie(Mg), which in
turn is equivalent to the statement that im(u) < () kera. Finally, this

[0
is equivalent to im(u) < Z(Mg) n A. Since the image of a cocharacter
is connected, we in fact have that pe X, (Ap,).
To finish the argument, we need to construct an isomorphism
X*(Z(Ms)T)g = X*(TVH "),
Note that it is necessary to take the tensor product with Q here as

Z (M\S) and 7" need not be isomorphic.
It suffices to show that

X*(Z(Ms))g = X*(T"H5)q.

The group Z (M 5) is equal to the intersection of the kernels of the roots
of Mg and so X*(Z(Mg)) is identified with X*(T)/R where R i is the

Z-module spanned by the roots of Mg. By Lemma 1.2.6, X*(T MS) ~

12



X*(YA”)WX}E — X*(T)/D where D is the Z module spanned by w(u) — s
S
for every w € Wips and p e X*(T). Since Z(Ms) < wafss'7 we have a
natural surjection

XIS = Xx*(2(Ms)).

By our previous discussion, the kernel of this map is R/D. Thus, to
prove our claim, it suffices to show that R/D is finite. But if « is a

root of Mg, then 0a(a) —a = —2a. Thus 2R < D and so we have the
desired result.
We now show (2). The map in [Kot97, §4.4.3] is defined as follows:

g0 = Xi(T)g = X*(T)g = X*(Z(Ms)")q,

where the final map is restriction of characters. By Lemma 1.2.6 (1),
this last map is the same as the composition

A~ A~ ~11/abs —_
X (T = X (T)gwgpnr = X175 = X*(Z(Ms)")g,
Thus, by applying Lemma 1.2.6 and the proof of Lemma 1.2.7, we get
that the entire map is given by

rel abs
0w wipsw

s = Xi(T)g = X, (T)q = X*(T)@,W;}’;,Fv

~ XH (T = X*(Z(Ms) ).

We observe that this is the inverse of what we wrote down above. [

We are now ready to give our alternate characterization of the map
Onrg -
Proposition 1.2.8. [Alternate Characterization of 0p4] The map 0y
that was introduced in Definition 1.2.2 is equal to the composition

X (T) = X*(T) £ X*(Z(Mg)") - X*(Z(Ms)")g = Anss.0 < Ao,

where the final isomorphism is the one described in Lemma 1.2.7.
Proof. We recall Definition 1.2.2 where 8y, is defined to be the com-

position

rel
Xo(T) = Xu(T)hy — Xu(T)g = < 2o,

where both maps are averages over the relevant group. As we now
show, this is the same as the composition

Wabs Wabs T Fvwi?l
S

Xi(T) = Xo(T)g™ = Xu(T)™" = X,(T)g < Ay,
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where the first two maps are averages and the third is as in Lemma
1.2.6 (2). Indeed for pe X, (7),

|Wrel | Z Z

weWiel yel
Mg

is invariant by WiP* by Lemma 1.2.6 (2) and so equals (keeping in mind
that Wrels Wabs by Corollary 1.5.3)

W] 2 Z Wabs Z 27

wEWabs ~er eWabS ~vel’

IPIINET== P

weWabb ~vell YEL weWwabs
Mg

| Wabs

Now, we consider the following commutative diagram.

Wab Waps.T
X*( ILIb avg X, (T)Q Mg
\ % \ V
Wi
Q WA}; )@,F
(T)gwaper

The commutativity essentially follows from the definition of the av-
eraging maps. The benefit of this is that now we can write 0y, as the
composition of

Xu(T) - X*(T)W;}’; - X*(T)W;};,F = Xu(T)gwars 1

Mg’
Wabb Wabsiw
= X*(T)gr® = XulD)g ™" = X (1) < 21
where we no longer need to base change the first three spaces to Q
because denominators are not introduced in the maps until later.
Using the equality between cocharacters of T" and characters of T,
we rewrite this as

X*(T) = X*(T) - X*<T)W]3C}’; - X*<T)Wabs - X*(T>Q7deb T

Mg?
abs abs Wabs F

~ W waps T re
= X*(D)gr™ = X*(1)g"™ = Xul0)g"™ = Xu(1)™Fis < 21g,
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Now we invoke Lemma 1.2.6 (1) to get that the above composition is
equal to

X, (T) = X*H(T) 25 X (T"0T) - XH(TV5 ) g = X (D) g r
b S7

~ abs ~ abs abs

w Wabs Wabs re
= X (D)gr® = X1 (D) = = Xu(T)g = = X (1) < 24,

The final step is to observe that we have a commutative diagram

XH(TVRETY X (P
X*(Z(Mg)") —— X*(Z(Ms)")q.

Thus, the previous expression equals

N\ res e 7 res % T * T
X(T) = X*(T) 75 XH(T"s 1) X% X*(Z(Ms)") — X*(Z(Ms)")q
% Awast_‘* % ~ * ~ Wabs
~ XH(T"Ms g = X (T)Q,W;}’;,F - X (T)Q,%IS
nd Wabs,l“ W‘"‘bs,l“ re
- XMD)" = Xu(T)g " = X (1) = g,
comparing with Lemma 1.2.7, we can rewrite 0y, as
X (T) = X*(T) 2 X*(Z(Mg)") — X*(Z(Mg)")g = Anre0 < Ag

as desired.
O

We record the following useful corollary of the ideas discussed in the
above argument.

Corollary 1.2.9. Suppose that p, ' € X.(T) are conjugate in Mg, -
Then O (1) = Onis (1)

Proof. By the observation at the start of Proposition 1.2.8, 0, is
equivalently defined as the composition

Wabs Wabs 71—‘ F’Wrel
Xo(T) = X (T)g" = Xu(T)™" = Xu(T)g ™ < Ag.
In particular, ;1 and p’ are mapped to the same element under the first
map in the above composition. U

1.2.3. Strictly Decreasing Cocharacter Pairs. In this section, we
prove a number of properties of strictly decreasing cocharacter pairs
and their relation to the partial order we defined in Definition 1.2.3.
As always, we let o, denote the reflection in the relative Weyl group
corresponding to the relative root a.
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Lemma 1.2.10. If x € ™y is dominant, then

1
y = ’Wrel Z 0‘(1‘)
Ms ! oewygl
is also dominant. If in addition, {x,a) > 0 for some o € A\S, then we
also have {y,a) > 0.

Proof. For the first part of the lemma, we claim that if we can show that
{o(x),cy = 0 for each o € Wil and a € A\S, then we are done. This
follows because if a collection of cocharacters pair non-negatively with
«a, then so will their average. Thus for a € A\S, we get (y,a) = 0. For
a € S, we automatically have (y, ) = 0 since 0 = y — 0,(y) = {y, @)d.

Pick a € A\S. Then the root group of « is contained in the unipotent
radical Ng of Pg. The group Ng is normalized by Mg. In particular,
for any o € Wjg, the root group of ¢~'(a) is contained in Ng and
hence o7 (a) is also a positive root. Thus {(o(z),a) = {(x,c (a)) = 0
as desired.

To prove the second part, we notice since (x,a) > 0, the term in y
corresponding to ¢ = 1 has positive pairing with «. Since all the other

terms have non-negative pairing with «, we must have that {y,a) >
0. 0

Lemma 1.2.11. If x as in the previous lemma is dominant, then

—Wl >, olz) <
o\xr)=x
’ ]{;}g’ o_ewrcl
Mg

Proof. It suffices to show that for any o € W]{ffs, we have o(z) < x.
This is a standard fact ([Bou68, Ch6 1.6.18, p. 158]). O

Corollary 1.2.12. Let (Mg, us) € SD be a strictly decreasing cochar-
acter pair and let (Mg, ug) € Cq and suppose that
(MS,,US) < (MS’a,US’)- Then (MS/,,MS') e SD.

Proof. We need to show that for each 5 € A\S’, that (O, (1s), 3) > 0.
By 1.2.9, O, (ps') = Onr, (ps). Further, we observe that

1) Ousg55) = ] O3 (B ()

el
Mg,

Since 0y, (ps) is dominant by assumption and satisfies (fpr, (p1s), ) >
0, we can apply 1.2.10 to get the desired result. O

The following easy uniqueness result is quite useful.
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Lemma 1.2.13. Let (M317“SI)7 (MSZ’IUSZ)’ (MSéa,uSé) € CG- Suppose
furth@r that (MSNILLSl) < (MS27/’LSQ)7 that (M517N51> < (MS§7NS§) ]f
MSQ = MSé; then <M527/“’LSQ) = (MSéauSé)

Proof. By definition, ps,, fis,, fts; are all conjugate in Mg,. But also,
ps, and pg; are dominant in the absolute root system. Thus they are
equal. O

We now define the notion of a cocharacter pair being strictly de-
creasing relative to a Levi subgroup.

Definition 1.2.14. Let Mg & Mg be standard Levi subgroups of G.
We say (Mg, jus) is strictly decreasing relative to Mg if (Oprg(ps), o) >
0 for a € S'\S.

Remark. Recall that by construction, (fp(ps),ay = 0 for a € S.
Thus, (Mg, us) € SD exactly when it is strictly decreasing relative to
G.

Lemma 1.2.15. Let (Ms,, us,), (Mg, pus;) € Ca be cocharacter pairs
such that (Ms,, jis,) < (Mg, psy). Let Mg, > Mg, be a standard Levi
subgroup of G and suppose (Mg, , jis,) is strictly decreasing relative to
Ms,. Then (Mg, pusr) is strictly decreasing relative to Mg g, .

Proof. We first reduce to the case where Mg, is a maximal Levi sub-
group of Mg (ie. S = S;u {a} for some a € A\S;). To do so,
we recognize that the relation (Ms,,pus,) < (Mg, jis;) definitionally
implies that there is a finite sequence of cocharacter pairs

(Ms,, ps,) = (Mo, pgo) < ... < (Mg, pse) = (Msy, pisy)

where each Mg: is a maximal Levi subgroup of Mgi+1. Thus, if we prove
the lemma in the maximal Levi subgroup case, we can inductively prove
it in the general case.

We now assume that Ms, < Mg is a maximal Levi subgroup so
that S7 = 51 u {a} for some o € A\S;. We need to show that
<9MS,1 (msr), By > 0 for each 8 € S) U 95\S]. First note that any such j3

is an element of S;\S;. By Corollary 1.2.9; since ug, and [s; are con-
jugate in Mg/, we have Oy, (11s,) = O, (1s;). Thus we are reduced
1 1

to showing <9Ms/1 (1s,), By > 0 for 5 € S5\ 5.

Note that since (Msg,, pus, ) is strictly decreasing relative to Mg,, we
have Oy (p1s,) is dominant relative to the root datum of Mg, and
(Oums, (p1s,), ) > 0. Therefore, by Equation (1) and Lemma 1.2.10,
<0MS,1 (us,), B) > 0 as desired. O
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Proposition 1.2.16. Let (Mg, us) € Ca and suppose it is strictly de-
creasing relative to some standard Levi subgroup Mg > Mg. Then
there is a unique (Mg, pus') € Co such that (Mg, ps) < (Mg, psr). We
call (Mg, j1g') the extension of (Mg, us) to M.

In the case where S" = S U {a} for a € A\S, the converse is true.
Specifically, if (Mg, pus) € Cq and there exists (Mg, jus') € Cq satisfying
(Mg, usr) = (Mg, ns) with S" = S u {a}, then (Mg, us) is strictly
decreasing relative to Mg .

Proof. We begin by proving the first statement. Uniqueness follows
from Lemma 1.2.13. For existence, we first reduce to the case where
Mg is a maximal Levi subgroup of Mg. Suppose we have proven
the proposition in this reduced case. We might then try to prove the
general case by iteratively applying the reduced case of the proposition
to a chain of standard Levi subgroups Mg = Mg, < ... € Mg, = Mg
such that each is maximal in the next. Such a chain clearly exists,
but to apply the reduced case of the proposition we need to show
that if we have constructed a cocharacter pair (Ms,, us,) = (Ms, us)
then (Mg, , s, is strictly decreasing relative to Mg/. This follows from
Lemma 1.2.15.

Now, we let ug be the unique conjugate of pg which is dominant
in MSI. If we can show that GMS/(MS’> < QMS(IUS), then (MS/,,uS/)
will satisfy the conditions of the proposition. By Corollary 1.2.9 and
Equation (1),

T 2 ol (us),

S/| O'EW]MS,

Oty (ptsr) = Ontg, (ps) =

so we can reduce to showing that

1
Warcl >, oly) <,
SI

O'EW]WS/

for any y satisfying (y,a) > 0 for a € S"\S and {(y,a) = 0 for a € S.
Any such y is dominant in the root datum of Mg and so by Lemma
1.2.11,

1
Warc] D, oly) <y
SI

O'EWMS/

Further, the above equation cannot be an equality because y has posi-

tive pairing with each root of S"\\S while ;' Y. o(y) has 0 pairing

[War
s UEWMS,

with these roots.
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To prove the converse, suppose that (Mg, pus) < (Mg, jusr) and S’ =
S u{a} for some a € A\S. Then by Corollary 1.2.9

Onis (11s) + 0a(Onrs (1))

Oty (1sr) = O, (1ts) =

2 )
and so
0 — 0q(0 1 3
Onss (11s) — Ony, (ps) = s (115) . Busns)) _ 5 (a5 (1s), @)
Since by assumption Oy, (psr) < Oarg(pts), it follows that
Onss (ps), oy > 0. 0

Remark. Note that the converse of the above proposition is not true in
the general case.

Corollary 1.2.17. Fix a standard Levi subgroup Mg and roots vy, an €
A\S. Suppose we have cocharacter pairs

(MSv MS)7 (MSu{a1}> :U“Su{al})a (MSU{Q]_,CVQ}7 MSu{al,az}) € CG Satisfyéng
(MSMUS) < (MSu{al}a,uSu{al}) < (MSu{al,ag}a,uSu{al,ag})

and that (Mg, s) is strictly decreasing relative to Mg () -
Then the extension of (Mg, pis) to Mg fasy, which we denote

(Msu{ag}, MSU{QQ}), satisfies
(MSHU/S) < (MSU{OQ}?:LLSU{OQ}) < (MSU{OCLOQ}?:LLSU{OQ,OQ})

Proof. By the second statement of Proposition 1.2.16, we have that
(Mg, pug) is strictly decreasing relative to Mgy q,3. Then by Lemma
1.2.15, (Msufas}, Sufas}) 1s strictly decreasing relative to Mgo(ay,as)-
Thus by Proposition 1.2.16, we have

(Mg gasys Bsofast) < (Msofar,ants HSufar,as)) @s desired. O

Proposition 1.2.18. Let S < S; < Sy be subsets of A and suppose
(Ms, ps), (Ms,, pis,) € C with

(Ms, ps) < (Ms,, p1s,)

and (Mg, ps) is strictly decreasing relative to Mg,. Then the unique
extension (Mg, , ps,) of (Mg, us) to Mg, satisfies

(M517 :u51> < (MSm /‘LSQ)'

Proof. Since (Mg, pus) < (Ms,, ps,), there is an increasing chain of
cocharacter pairs

(Ms”us) = (MSOHLLSO> < - S (MSkalu’Sk) = (M5271u52)

such that each standard Levi subgroup is maximal in the next. The con-
tent of this proposition is that we can pick a chain such that (Mg, , us,)
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appears. By Lemma 1.2.15, we can assume that Mg is maximal in Mg, .
Let a be the unique element of S;\S.

Pick a chain of cocharacter pairs (Mg, ug) = (Mgo, pgo) < ... <
(Mgr, pugr) = (Ms,, us,) as above. Chains of cocharacter pairs are
determined by an ordering on the roots in Sp\S = {a, ..., ax}, such that
the S* = Su{ay, ..., a;}. The root a appears in this chain so a = «; for
some i. If i = 1 we are done. Otherwise, we consider (Mgi-2, j1gi—2) <
(Mgi-1, jrgi-1) < (Mgi, pgi). By Lemma 1.2.15, (Mgi-2, pigi-2) is strictly
decreasing relative to Mgi-2 (o) and so by Corollary 1.2.17 (applied so
that (Mgi—z2, pgi-2) takes the place of (Mg, ug) in Corollary 1.2.17), we
get a new chain of cocharacter pairs between (Mg, us) and (Ms,, s,)
where we switch the positions of «, ;1 in the corresponding ordering
of S5\S. By repeating this argument, we can construct a chain where
« = «q, which is what we need. [

The preceding propositions give us the following picture. Given
a cocharacter pair (Mg, pus) we check which simple roots a satisfy
(Onrg(fs), ay > 0. Suppose there are n such simple roots. Then we get
2™ standard Levi subgroups containing Mg corresponding to adding
different subsets of these simple roots. The cocharacter pair (Mg, ps)
has a unique extension to each of the Levi subgroups and the poset lat-
tice of these co-character pairs can be thought of as the graph of an n
dimensional cube in the following way. The vertices of the cube are the
2" cocharacter pairs extending (Mg, pg) that we have just constructed.
For two such pairs (Ms,, us,), (Ms,, tis,), we draw an edge between
the two corresponding vertices if either S; < Sy and [S;\S;| = 1, or
Sy < Sy and |S1\S2] = 1. We can upgrade this graph to a directed
graph by stipulating that an edge between (Mg, , us,) and (Ms,, is,)
is directed from (Msl,/ubsl) to (MSQ,/JJ52> if (MS27 /1/82) < (Mgl,,ugl).

Finally, note that for any two pairs (Mg, , ug, ) and (Ms,, pus,) corre-
sponding to vertices in the above cube, we have (Mg, , uus,) < (Ms,, pis;)
if and only if there is a directed path in the cube travelling from the
vertex of (Mg, , pus,) to that of (Msg,, us,)-

1.2.4. Connection With Isocrystals. We now investigate the rela-
tion between strictly decreasing cocharacter pairs and Kottwitz’s the-
ory of isocrystals with additional structure. See [Kot97] for omitted
details on the theory of isocrystals. e

An isocrystal is a pair (V,®) where V is a finite dimensional Qu
vector space and ¢ : V — V is an additive transformation satisfying

®(av) = o(a)®(v) for a € Qur,v € V and o the arithmetic Frobenius
morphism. As before, let G be a connected quasisplit reductive group
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defined over @QQ, and consider the set of isomorphism classes of exact
®-functors from Rep(G) to Isoc, the category of isocrystals. Such iso-

morphism classes are classified by H'(Wg,, G(@” )) which we denote
B(G) (where W, is the Weil group of Q,).

In §4.2 of [Kot97], Kottwitz constructs the Newton map v : B(G) —
Cg and the Kottwitz map x : B(G) — X*(Z(G)"). An element of
B(G) is uniquely determined by its image under these maps.

We say that the standard Levi subgroup Mg is associated to b € B(G)
if v(b) € Ql;\r/[s,@. Henceforth, we will often denote the standard Levi
subgroup associated to b by M,. Notice that many elements of B(G)
could be associated to the same Levi subgroup. We call b basic if

M, = G. We write
B(G) = | | B(G)us
ScA
such that B(G) s, consists of those b € B(G) associated to Mg. We de-
note by B(Mg)* the maximal subset of B(Mg) such that v(B(Mg)") <
Co. In §5.1 of [Kot97], Kottwitz uses the Kottwitz map for Mg to con-
struct canonical bijections

(2) B(G) = B(Ms)jy, = X*(Z(Ms)")*
where Kottwitz constructs a canonical isomorphism
(3) X*(Z(Ms)")g = Anis0

and X*(Z(Mg)T)* denotes the subset of X*(Z(Ms)F) mapping to
QIJT/IS,Q. In fact, Kottwitz shows that the composition of the above
isomorphisms gives the Newton map

B(G)MS i 2[7\_457@ — 6@

For a further discussion of Equation (3), we refer the reader to Lemma
1.2.7.

We now prove an important lemma that will be used to relate the
set B(G) to the strictly decreasing elements of Cg.

Lemma 1.2.19. Fiz a standard Levi subgroup Mg of G and let
(Ms, uS) e 8SD. Then HMS(MS) € V(B(G)MS)

Proof. We first describe the set v(B(G),). By Equations (2) and (3),
the set v(B(G)y,) is equal to the image of X*(Z(Mg)")* in Ay, o
Thus, to prove this lemma, it suffices to show that ), factors through
the map X*(Z(Mg)') — X*(Z(Ms)')g = Uy, g where the isomor-
phism is as in Equation (3) or Lemma 1.2.7. Then, since (Mg, pg) is
strictly decreasing, the factoring of 6, will map pg to an element of
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X*(Z (M\S)r>+ as desired. That 6, factors in this way follows from
the alternate characterization of 07, given in Proposition 1.2.8. O

Definition 1.2.20. Fiz p€ X.(T'). Then we recall the following defi-
nition of Kottwitz [Kot97, §6.2]:

B(G. ) = (b B(G) : w(b) < Or(u), 5(b) = nl 1}

Now we prove the key result of this section, which permits us to
associate an element of B(G) to each strictly decreasing cocharacter
pair.

Proposition 1.2.21. We have a natural map
T :8D — B(G)

defined as follows. Let (Mg, us) € SD. Then there exists a b € B(G)
so that k(b) = sz and v(b) = Oy (ps). We note that by construc-
tion, b is unique. Then we define T ((Mg, us)) = b. Furthermore, we
show that

T(SD,) < B(G, p).

Proof. We first define b. Note that since (Mg, pg) is strictly decreas-
ing, O (ps) € Ay, o By Proposition 1.2.8, it follows that 18] 7y €

X*(Z(M;)F)+ and so we can define b to be the element of B(G) cor-
responding to pug| Z(3 )T under the isomorphism

B(G)a, = X*(Z(Mg)')* of Equation (2). Recall that the composi-
tion of this isomorphism with Equation (3) induces the Newton map
restricted to B(G)ag. Thus, we have 6y, (ps) = v(b). Equation (4.9.2)
of [Kot97] implies that £(b) = ps]4cr-

It remains to show that if (Mg, us) € SD,, then the element b € B(G)
that we have constructed lies in the set B(G, p). For this, we need to
show that v(b) = Oy (us) < Or(p).

We claim that 07(u) > 0r(us). After all, by ([Bou68, Ch6 1.6.18, p.
158]), we have p > pg. Then the claim follows from Corollary 1.5.5.

Now we claim that 07(jus) is dominant in the relative root system of
M. To prove the claim, we first observe that pg is dominant relative to
the absolute root system of Mg. As above, the Galois group I' preserves
the Weyl chamber corresponding to the positive absolute roots given by
B. Thus, v(us) is dominant for each vy € I'; and so fr(ug) is dominant
relative to the absolute roots of Mg. The intersection of the closed
positive Weyl chamber for the absolute root datum of Mg with g is
the Weyl chamber for relative root datum of Mg (cf. proof of Lemma
1.2.6 (2) ). Thus, 6r(us) is dominant with respect to the relative roots
as desired.
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Finally, we apply Lemma 1.2.11 and Equation (1) to get

Or(ps) = Onrg(pis),
which finishes the proof. U

QUESTION 1.2.1. Can one describe the image
T(SD,) = B(G. p)?

Fix G = GL, with T and B the diagonal maximal torus and upper
triangular Borel subgroup respectively. Suppose p has weights 1 and
0. Then we claim 7(SD,,) = B(G, ). Indeed, pick any b € B(GL,,, j1).
Then without loss of generality, v, = ((a1/b1)*%, ..., (a,/b,)*"") for
some a;,b; € N such that a;/b; is written in reduced form. Then let
M be the standard Levi subgroup isomorphic to GL;5, X ... x GLy 4,
and embedded diagonally. Since b € B(GL,, 1), we must have that

3 wia;  n— D, wia;
i=1 i=1

po= (1 ). Finally, we define ¢/ € X,(T) by ¢/ =
(1m1a Qribi—ziar  qzear (zebe=zrar) - Then we note that p is dominant
in the root system of M so that (M, u') € Cq. Moreover, 0y (1) = vy
so that (M, u') € SD. Then since i’ and p are conjugate in GL,, it
is easy to see that (M, ') < (GL,,u). In conclusion, we have shown
that (M', 1) e SD,, and T ((M', 1)) = b as desired.

On the other hand for different choices of i, we can have 7(SD,,) <
B(G, ). For instance, let G = GLg, let p = (2,0,0), and let b €
B(G, 1) be such that v, = (1,1/2,1/2). Then it is easy to check that
T(SD,) does not contain b.

1.2.5. The Induction and Sum Formulas. We are now ready to
prove our main theorems on cocharacter pairs. We begin by defining
some key subsets of Cq, the set of cocharacter pairs for G. In this
section we fix a dominant g € X,(7T) and b€ B(G, p).

Definition 1.2.22. We define the sets Tap, and Rap, as follows:
Tepu =T '(b) nSD,

and
Repu =

{(MSI7/’L51) € CG : (MSU,USl) < (MSQ7ILLSQ) fOT’ a (M527:u52) € ,rG,b#l}‘

Definition 1.2.23. Let Z{Cg) denote the free Abelian group generated
by the set of cocharacter pairs for G.
We define Mgy, € Z{Cq) by

Mapu= >, (=)0 (Mg, ps)

(Ms,1t5)ERG b1
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such that for Ms, = Ms,, L, s, i defined to be |52\ S|

Remark. We observe that for (Mg, ug) € SD, if T((Mg, us)) = b, then
Mg = My,.

We will show in Theorem 1.3.12 that at least in the case where G is
an unramified restriction of scalars of a general linear group, Mg, is
related to the cohomology of Rapoport-Zink spaces for G. Thus one
expects there to be a combinatorial analogue of the Harris-Viehmann
conjecture (Conjecture 1.3.3). We call this combinatorial analogue the
induction formula. Perhaps the more surprising result is that there is
also an analogue of Shin’s averaging formula (which we call the sum
formula) [Shil2b, Thm 7.5]. We first prove the sum formula.

Theorem 1.2.24 (Sum Formula). The following holds in Z{Cq):
Z Meapu = (G, ).

beB(G,u)

Proof. We need to show that
Z MG,b,,u = (Ga :U’>7

beB(G.p1)

or equivalently

2 Z (_1)LMS,Mb (Mg, ps) = (G, ).

beB(G,u) (Ms,15)ERG b,

We prove this equality by counting how many times a given cocharacter
pair shows up on the left-hand side. The pair (G, p) shows up exactly
once in the left-hand sum as an element of R¢, , for b the unique basic
element of B(G, ). Suppose(Mg, us) € Ce is some other cocharacter
pair. Then define

Y(Ms,us) = {b € B(G, M) : (M& MS) € RGJW}-

We are reduced to showing

(4) M (=1)Emsn =,

beY(Msws)

Our general strategy will be to show that the left-hand side of equation
4 vanishes for each (Mg, us) < (G, ) by inducting on the size of A\S.
However, in the case that (Mg, png) € SD,,, we can prove the vanishing
without an inductive argument. We show this first before discussing
the induction.

Suppose now that (Mg, pus) € SD,,. By Corollary 1.2.12, every pair
(Mg, ns) € Cg satistying (Mg, us) < (Mg, us) < (G, p) is strictly
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decreasing and thus by Proposition 1.2.21, we have T ((Ms/, ug)) €
B(G, ). These are precisely the elements b € B(G, ) so that

(Mg, ps) € Reap,u- By the discussion after Proposition 1.2.18, we can
associate the graph of a cube to the set of (Mg, pug) such that each
cocharacter pair is a vertex. To the vertex associated to (Mg, pis)
we attach the sign (—1)LMS’MIS. We note that adjacent vertices in this
graph will have opposite signs since if (Mg, ug) and (Mgr, pugn) have
adjacent vertices, then the cardinality of S’ and S” differs by 1. Now,
it is a standard fact that if we associate an element of {1, —1} to each
vertex of the graph of an n-dimensional cube for n > 1 so that adjacent
vertices have opposite signs, then the sum of all the signs is 0. This
implies that the left-hand side of Equation (4) vanishes in the strictly
decreasing case.

Now we discuss the inductive argument. The base case will be for
pairs (Mg, us) < (G, ) satisfying |A\S| = 1. The second statement
of Proposition 1.2.16 implies that in this case (Mg, ug) is strictly de-
creasing relative to G, which means that (Mg, us) € SD,. Thus, the
base case is proven by the previous paragraph.

We now discuss the inductive step. Suppose (Mg, ns) < (G, p). If
(Mg, pug) is strictly decreasing, then we are done by the above. Suppose
now that (Mg, ug) is not strictly decreasing. We claim that (Mg, ug)
must be strictly decreasing with respect to at least some standard Levi
subgroup of G that properly contains Mg. After all, since (Mg, ug) <
(G, p), there must exist at least some v € A\S and (Mguqa}, fhsufa}) €
Ce so that (Mg, us) < (Msofay: hsufa})- Then by Proposition 1.2.16,
this implies that (Mg, pg) is strictly decreasing relative to Mgy (qy-

Thus, let Mg be the maximal standard Levi subgroup of G such
that (Mg, pug) is strictly decreasing relative to Mg. We can write ' =
S u{ay,...,an} where o # o for i # j and each o; € A\S. We
denote by X the n-cube of cocharacter pairs above (Mg, ug) as in the
discussion after Proposition 1.2.18.

We claim that
Z (_ 1 ) Lnig,my,

bEY(Ms,us)

- — Z Z (_1>L]VIS/,]Wb'

(Mgr s eX\{(Msas)} DEYiar, g
Given this claim, we see that to finish the proof, it suffices to show
that the right-hand side is identically 0. However, the right-hand side
consists of a sum of a number of terms similar to the left-hand side but
for pairs (Mg, ug) in place of (Mg, ug). Note that each S is strictly
larger than S and thus we are done by induction.
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We now prove the claim. Moving all the terms to one side, we need

only show that
2 >, (=t — o,

(Mgrops)eX bEY(nrg g

Fix b € B(G, ). Then it suffices to show the contribution from b in
the above formula vanishes. Thus, we must show

(5) Z (_1>LMS,,Mb — 0.

(Mshlls/)EX“RG,b,u

We examine the structure of X n Ry, when it is nonempty. If we
can show that the cocharacter pairs in this set form a sub-cube of X
of positive dimension, then we will be done by the standard fact that
if we place alternating signs on the vertices of a cube and add up all
the signs we get 0.

Clearly, any (Mg, 1s') € X N Reap,, must satisty Mg < Mg < M,,.
The subset of X satisfying this latter property forms a sub-cube of X
since its elements are indexed by subsets of Sy\S, where S, is the subset
of A corresponding to M, in the standard way (note that by Lemma
1.2.13, there is at most one element of X N Rgy,, for each standard
Levi Mg/). Moreover, this latter set cannot form a cube of dimension
0 for then we would have Mg = M, and so X N Rap, = {(Ms, ps)}
which would imply that (Mg, pug) is strictly decreasing contrary to as-
sumption.

Thus to finish the proof, we need only show that every (Mg, puis)
such that

(1) MS e MS’ C Mb,

(2) (Mg, pus) < (Mg, psr),

(3) (Mg, ps) is strictly decreasing relative to Mg,

satisfies (Mg, us) < (My, ) for some (My, 1) € Tap,. Since we
assumed that X n Rgyp, # &, then in fact there is an (M, ) €
Tapy with (Mg, png) < (My, ). Then the desired result follows from
Proposition 1.2.18. U

We now turn to the induction formula. Fix a standard Levi subgroup
Mg of GG. Then our choice of maximal torus 7" and Borel subgroup B of
G provides us with natural choices B n Mg and T of a Borel subgroup
and maximal torus of Mg. This allows us to define the set Cyzy of
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cocharacter pairs for Mg. There is a natural inclusion

The image of this inclusion is precisely the set of cocharacter pairs
(Mg, ps') where S” < S. This inclusion preserves the partial ordering
of cocharacter pairs. The strictly decreasing elements of Cp;, map to
the elements of Ci which are strictly decreasing relative to Mg.

Now choose a b € B(G, ) and rational Levi Mg such that M, —
Mg < G. We have a unique 0’ € B(M,)},, corresponding to b under the
isomorphism given by Equation (2). The inclusion M, ¢ Mg induces
a map

B(My) — B(Ms).

Let bg be the image of &’ under this map.

The following definition will be important in relating cocharacter
pairs of a group G to those of a standard Levi. Compare with [RV14,
Equation (8.1)].

Definition 1.2.25. Let Mg be a standard Levi subgroup of G, let p €
X«(T) be a dominant cocharacter and choose b € B(G, ). We take
bs € B(Mg) as constructed in the previous paragraph and define the set

}I]\iﬁbs = {(Ms, ps) € Cug = bs € B(Mg, pis), jus is conjugate to p in
G}.

We first check the following transitivity property of Iﬁ: bs-

Proposition 1.2.26. Fiz (G,pu) € Cq and b € B(G, ). Suppose Mg,
and Mg, are standard Levi subgroups of G' such that M, < Mg, < Msg,.

Then
G,
IMSQ ,bsq

Mg, G,
{(MS27 :U’Sz) € CM52 : (M527 :U’SQ) € IM;;,II)LSS;I fOT a (MSIHLLSI) € "ZM:l,bsl}‘

Proof. We show each set is a subset of the other. Take (Mg, us,) €
I]C\Z; b, Let 115, be the unique dominant cocharacter conjugate to pg,

in Ms,. Then we consider (Msg,, us,) as an element of Cpry and just
need to show that bg, € B(Mg,, iis,) since we already know that bg, €
B(Ms,, j1s,) by assumption. Thus, we need only show that v(bg,) <
9T(MS1) and R(b&) = M51|Z(1\75\1)F‘

We prove the inequality first. By assumption, v(bg,) < 0r(us,) and
by Equations (2) and (3), v(bs,) = v(b) = v(bs,). Since ps, and g,
are conjugate in Mg, and pg, is dominant, it follows from [Bou68, Ch6
1.6.18, p. 158] that ug, < ps,. Then, by Corollary 1.5.5 it follows that
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Or(ps,) < Or(ps,) in the relative root system. Combining all this data,
we get
v(bs,) = v(bs,) < Or(ps,) < Or(ps,),
as desired.
To prove k(bs,) = “51|Z(1\75\1)Fv we note that by Equation (4.9.2) of

[Kot97] and the fact that bg, € B(Mg,, i1s,), we have
R(bsl) = NSQ’Z(]\//[S\l)F-
Then pg, and pg, are conjugate in Mg, so there exists a w e W]?};I SO

that w(uy) = po. This implies that gy and uy are conjugate in ]\7[;1
and in particular equal when restricted to Z(Mg,). This implies the

desired equality.

. . . Msl uu'Sl
To show the converse inclusion, we start with (Mg,, ps,) € ZMs2,bs2

el

for some (Mg, , uug,) € IJ\/I’S“1 bs, and need to show that bg, B(Msg,, i1s,)

and that ug, is conjugate to p in G. But (Mg,, iis,) € I]\]\jj;fs? implies

that bs, € B(Msg,, us,) and also that ug, is conjugate to pug, in Msg,.

Further, (Mg, , ps,) € IJ\G/I’:l,bsl implies that pg, is conjugate to p in G.

Thus, pg, is conjugate to p in G as desired. U
The set Iﬁ: ps Will primarily be useful because it allows us to relate

the set Tgp,, to analogous constructions in Mg. This is encapsulated
in the following proposition.

Proposition 1.2.27. Fix Mg, p and b as in Definition 1.2.25. The
natural inclusion if/ls : Cuy — Cq of Equation (6) induces a bijection

H TMS7bS’/‘LS = 7’67‘,()“11,

G,
(MS 7“5)61-]\ "

Ig,bg
Proof. We first show that
G
ZMS( L[ TM57b57/'LS) - 767va'

G,u
(MSWS)GIMS,Z)S

Since M, c Msg, it follows from the discussion after Equation (6) that

7dG,b,u = Z%g (CMS ) :

Thus, pick an arbitrary element of 7y, of the form il\G45 (My, up) for
(My, 1) € Cpry. The cocharacter pair i%s (My, pp) is strictly decreasing,
and therefore so is (M, pp) € Cag. By Proposition 1.2.16 we can find
(Mg, us) € Cpy such that (My, ) < (Mg, ps). Observe that since
iﬁS(Mb,ub) < (G, ), the cocharacter py, is conjugate to p in G and
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therefore g must be as well by construction. If we can show that
T ((My, 1p)) = bs, then we will be done because by Proposition 1.2.21,
this implies that bg € B(Mg, pus) and so therefore that (Mg, us) €
I]\Gfgbs and (Mb? :Ub) € TMSabS:MS'

By assumption, T (i, (M, ) = b € B(G, ). Recall that the
map 7T is defined so that a strictly decreasing (M, up) € Cg which
satisfies (My, pp) < (G, p) is mapped first to the element ﬂb‘z(f/[\b)F €

X*(Z (]\/4\1))F)+ Then, this element is identified with an element of
B(G) via the isomorphisms of Equation (2):

X*(Z(M)D)* = B(My)i;, = B(G)s,

where the second isomorphism above is induced by the inclusion M, —
G. We have the commutative diagram

B( b —)BMs)

I l

where each map is induced from the inclusion of groups. By defini-
tion, the element ' € B(M,)* maps to b € B(G) and bg € B(Mg)
respectively. Thus, we see that by construction, 7 ((My, 1)) = bs.
Conversely, suppose (M, tty) € Thrg g us for some (Mg, pug) € IAG/[?,bS'
Since V' € B(My)y,, it follows from the definition of bs and Tasgpg.us
that pi|,57)r is an element of X*(Z(M,)")*. This implies that
i (My, j1p) € SD. By Proposition 1.2.16, we have an extension of
i, (My, p1) to G, and since p, and 1 are conjugate in G by assumption,
it follows that this extension is (G, u) so that i (My, ) < (G, p). It
follows from these facts that if/[S(Mb, o) € Tepp-

Finally, we remark that for distinct (Mg, ps), (Ms, ) € IJ\G/[ﬁbS the
sets Targ bsus aNd Targ bg, are indeed disjoint by Lemma 1.2.13. [

As a corollary of this result, we have the induction formula.

Corollary 1.2.28 (Induction Formula). We continue using the nota-
tion of the previous proposition. The natural map

G .
ZMS . CMS —> CG,
mduces a map

Zl%s . Z<CMS> — Z<Cg>,
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which gives an equality

2 ig}s (MMSJ’SMS) = MG,b“u-

G,
(MS’/JS)GIMg’bS

Proof. Tt follows from Proposition 1.2.27 that the map i, . induces a
bijection
H RMs,bs,us = RG,b,u-

G,p
(MS’MS)GIMSJ’S

We remark that for distinct (Mg, us), (Mg, 1) € Iﬁﬁbs we have

Rt psps N RMS,bsyu’S = ¢ by Lemma 1.2.13.
The corollary then follows from the definition of Mg, .. 0

This result can be thought of as an analogue of the Harris-Viehmann
conjecture which we discuss in the next section.

In the cases we are interested in, we will also need a description of
how cocharacter pairs behave with respect to products.

Suppose G = G X ... x G and T =T} x ... x T}, such that T; is a
maximal torus for GG;. Then

and any standard Levi subgroup admits a product decomposition
MS = MSI X ... X Mgk,

such that 7; € Mg, < G;. Then any cocharacter pair (Mg, us) of G
corresponds to a tuple of cocharacter pairs

((MSU,USl), cery (Msk,,usk)) € CGl X ..o X CGk?

in the obvious way. The pair (Mg, uug) € Cq is strictly decreasing if and
only if each pair (Mg,, us,) € Cg, is, and if T ((Mg, pus)) = b€ B(G, p),
then we also have T;((Ms,, ps,)) = b; € B(Gj, p;) where 7; is the map
T defined for the group G;. Thus, b — (b1, ...,by) under the natural
bijection

B(G) = B(Gy) x ... x B(Gy).
We record the following proposition

Proposition 1.2.29. We use the notation of the previous two para-
graphs.
The natural bijection

CG = CG1 X ... X CGk;
induces bijections

,TGJLH = %Lblvﬂl X X 7—Gk7bkvﬂk7
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and
RG,b,,u = RGhbl,m X ... X RGk»bk»l‘«k'
Further, under the natural isomorphism Z{Cq) = Z{Cc,)® ... Z{Cq, )

we have

MGJL/L = MGl,bl,m ®..Q MGkvbkvﬂk’

1.3. COHOMOLOGY OF RAPOPORT-ZINK SPACES AND THE
HARRIS-VIEHMANN CONJECTURE

In this section, we define the Rapoport-Zink spaces we will work
with and show how we can describe their cohomology using the lan-
guage developed in the previous section. We also give a statement of
the Harris-Viehmann conjecture, and explain the necessity of a small
correction to the conjecture. We follow [Far04], [Shil2b], and [RV14].

The theory necessarily involves several choices of signs. This is often
a point of confusion, so we describe our conventions here. We choose
the cocharacter p appearing in the definition of Rapoport-Zink spaces
to have non-negative weights, in agreement with most authors. In this
part, we use the contravariant Dieudonne functor, which means that
our p-divisible groups will have isocrystals in the set B(G, ) (as op-
posed to B(G, —pu) for the covariant theory). This convention agrees
with that of [Far04] and [RV14], but [Shil2b] uses the opposite con-
vention. We use the local Langlands correspondence for GL,,(Q,) as in
[HTO1, pg. 2]. In particular, we normalize the local Artin map so that
uniformizers correspond to geometric Frobenius elements.

1.3.1. Rapoport-Zink Spaces of EL-Type. We fix the following
notation. Suppose G is a reductive group defined over a field k and
€ Xi(G). Then if H is a subgroup of G such that u factors through
the inclusion X, (H) < X,(G), we denote by {y}z the H(k) conjugacy
class of yv and by Ey,,, the field of definition of {u}y (i.e the smallest
extension of k so that each element of Gal(k/Ey,,,) stabilizes {1} ).

Now we define the Rapoport-Zink data we consider.

Definition 1.3.1. An unramified Rapoport-Zink datum of EL type is
a tuple
(F,V,{u}c,b) where

(1) F is a finite unramified extension of Q,,

(2) V is a finite dimensional F' vector space,

(3) G := Respq,(GLp(V)),

(4) p : Gm@ — G@ s a cocharacter inducing a weight decompo-

sition V @ Qur = Vo @ Vi where pu(z) acts by z* on V;,
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(5) be B(G, ).

We fix a Borel subgroup B < G defined over Q,, a Q,-split torus
A < G of maximal rank in G and such that A ¢ B, and a maximal
torus T' < B containing A and defined over Q,. We can choose p in
the above definition so that it is dominant relative to B.

Let X be a p-divisible group defined over IF,, with an action of O and
such that the isocrystal attached to X by the contravariant Dieudonne
functor is isomorphic to (Vp, bo). We consider the moduli functor M,

such that for S a scheme over O@ with p locally nilpotent, M, ,(S) =

{(X,i,p)}/ ~. Where X is a p-divisible group defined over S, i : Op —
Endp(X), and p : X XE§ — X is a quasi-isogeny (S, X are the
reductions modulo p).

By work of Rapoport and Zink [RZ96, Thm 3.25], the above moduli

problem is represented by a formal scheme over (’)@\M which we also

denote by M, ,. We have the generic fiber MZZ which is a rigid analytic
space over @\gr . Further, we get a tower of coverings Mzng of Mgzi for
each compact open subgroup U < G(Q,).

For a fixed prime [ # p, we denote by HJ (MZZ[Z_U X @” ,Q;) the etale
cohomology with compact supports. This is a Q; vector space which
is a smooth representation of J,(Q,) x WE{;»}G’ where J, is the inner
form of the standard Levi subgroup M, associated to b (as constructed
in §3.3 of [Kot97]) and Wi, is the Weil group of El;, (for example
see [RV14, Prop 6.1]).

We use the notation Groth(-) for the Grothendieck group of admis-
sible representations of topological groups. See §1.2 of [HT01] for the
precise definition of these Grothendieck groups.

Let P, be the standard parabolic subgroup with Levi factor M, and
denote the opposite parabolic by P*. We define JS, JaCIGD to be the
normalized and un-normalized Jacquet module functors, and we define
1§ ,Ind$ to be the normalized and un-normalized parabolic induction
functors. Often, if M < P is the standard Levi subgroup of P and we
are taking I§ or I§,, to be a map of Grothendieck groups, we will write
I§, to remind the reader that these maps do not depend on choice of
P, P°? when considered as maps of Grothedieck groups.

In [Man05], Mantovan considers the following construction (see also
[Shil2b]). We define a map

MaIltGl,,“ : GI‘Oth(Jb(Qp)) — Groth(G(Qp) X WE{#}G)’

by
Mantgy, . (p) =
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D, (U™ lim Exth o) (HI(MS ;< Qur, Qi) p)(—dimMye ).
i,j>0 UcG(Qy)
In §6.2 of [Shil2b] and §2.4 of [Shill], Shin considers a map

Red,, : Groth(G(Q,)) — Groth(J,(Q,)).
We follow the construction given in [Shill]'. We define Red, by

T — e(Jb)(LJ o JJG:,’bop(']T) ®5]§3b)7

where
LJ : Groth(My(Q,)) — Groth(J,(Q,)),

is the map defined by Badulescu extending the inverse Jacquet - Lang-
lands correspondence (see [Bad07, Prop 3.2]) and e(J,) is the Kottwitz
sign as defined in [Kot83].

We now describe the main result of [Shil2b]. The cocharacter u of
Gisamap pu: G,g — 11 GL,q, such that the weights in

TeHom(F,Qp)

each GL, factor are 1s or 0s. Thus we let p,, ¢, denote the number of
1 and 0 weights respectively in the factor corresponding to 7.

The following formula is the main theorem in [Shil2b, Thm 7.5].

Theorem 1.3.2 (Shin). We have the following equality for accessible
representations in Groth(G(Q,) x Wg,,, ).

Z Mant, ,(Redy(m)) = [7][r_, © LL(WNWE{M}G Q|- |-/,
beB(G,u)

Loosely speaking, accessible representations in Shin’s paper are char-
acter twists of the local components of global representations that can
be found within the cohomology of Shimura varieties. Shin shows that
all essentially square-integrable representations are accessible.

In this case LL is the semisimplified local Langlands correspondence
(known by the work of [HTO01] for instance). The map r_, is the alge-

braic representation of G x We,., © L@ defined by Kottwitz ([Kot84a,
Lem 2.1.2]). It is characterized by the fact that r_,|4 is the irreducible
representation of extreme weight —pu and if we take a I'-invariant split-
ting of @', then the subgroup WE{#}G of LG acts trivially on the highest

weight vector of r_, associated with this splitting.
'We believe the construction given before Lemma 6.2 of [Shi12b] has a slight typo.
There, Redy is defined by 7 — e(Jp)(LJ o Jacg;p (). As maps of Grothendieck
1 1 1
groups, Jacg;p = JIGDOP ® 0O por = JIGDOP ®4dp7. But this is not equal to Jgop (m) ®6p,,
b b b b
which is the construction given in [Shill] that is compatible with [HTO01].
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Remark. The Tate twist appearing on the right-hand side of the above
formula comes from the dimension formula for Shimura varieties and
is equal to —(pg, 1ty where pg is the half sum of the positive roots in

G.

The above theorem is analogous to the sum formula for cocharac-
ter pairs (Theorem 1.2.24). The induction formula (Corollary 1.2.28)
is related to the Harris-Viehmann conjecture (Conjecture 1.3.3 in this
document). A proof of this conjecture is expected to appear in forth-
coming work of Scholze.

1.3.2. Harris-Viehmann Conjecture. We now state the Harris -
Viehmann conjecture following Rappoport and Viehmann in [RV14].
In this subsection, we return to the notation of §1.2 so that in partic-
ular, G is a connected, quasisplit reductive group defined over Q,.

Choose a dominant minuscule p € X, (T) (where we can consider p
as a cocharacter of G since T < G) and a b € B(G, ) . Associated to b,
we have the standard Levi subgroup M,. Suppose we have a standard
rational Levi subgroup Mg so that M, ¢ Mg < G. We define ¥, bg as
we did before Definition 1.2.25.

In [RV14, Equation (6.2)], the authors associate a cohomological
construction to the triple (G, b, 1) which they denote H*((G, [b], {i}))-
This construction is a map of Grothendieck groups: H*((G, [b], {u})) :
Groth(Jy(Qp)) — Groth(G(Q,) x Wg,,,) and agrees with Mantg ,,, in
the case above. We will denote this construction H*(G, b, 1) since we
deal with dominant cocharacters instead of conjugacy classes. Then
they have the following conjecture.

Conjecture 1.3.3 (Harris-Viehmann). For p € Groth(.J,(Q,)), we have
the equality

H* (G, b, p)[p] =
S (d§ H (Mg, bs, ps)[p]) @ [1]]] - [emsr=wem],

G,
(MS#S)EZM:’(,S

in Groth(G(Q,) x Wg,,, ). The parabolic induction only modifies the
Groth(G(Q,)) parts of these representations.

Remark. We need to explain several things in the above conjecture.
First we explain why the right-hand side is a representation of WE{H}G’
second we check that the conjecture satisfies a transitivity property, and
third we give an example justifying the extra character twist appearing
in our formulation. This twist is not present in the original formulation
of the conjecture.
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We first explain why the right-hand side is a representation of WE{M}G .
We start with a general lemma.

Lemma 1.3.4. Suppose a group A acts on a finite set S. Suppose
further that for each s € V', we attach a vector space Vs and for each
A€ A and s € S we have an isomorphism

i(S, )\) . Vs — V)\(S).

We suppose further thati(s, 1) is the identity map and that i(A1(s), A2)o

i(s,\1) = i(s, \a\1). Then @ Vy is naturally a representation of A.
seS
Let {s1,....,s} = S be a set of one representative from each A-orbit

m S. Then

k
C_DS VS = C—Bl Indé\tab(si)VSm
se 1=

where Ind refers to the induced representation (not parabolic induc-
tion).

Proof. The proof is clear from the definition of induced representation.
O

Moreover, we record the following transitivity property for later use.

Lemma 1.3.5. Suppose that A acts on S as before. Let S1[[...[[ Sk =
S be a partition of S so that A acts on {Si, ..., Sk}. Suppose we have
for each s € S a vector space Vs and isomorphisms i(s,\) as above.
Then by Lemma 1.53.4 we can consider the stab(S;) < A representation
Vs, = @. For each A € A, we get isomorphisms i(S;, \) : Vg, — Vs,

SESZ'

Thus, again by Lemma 1.3.4, we get a A representation @ Vs,. This

representation is isomorphic to the A representation @ Vj lwe get from
applying Lemma 1.5.4 to S. .

Now we discuss the WE{#}G—action in the Harris-Viehmann conjec-
ture. Observe that for p € X,(G), if v € Wk,  stabilizes {¢i}r, then
it also stabilizes {u}¢s so that WE{M}]V[S < Weg,,,-

Now we claim that WE(MG acts on Iﬁs’f b and that the stabilizer
of (Mg, us) under this action is Wey,,,.- To prove the first part of
S

the claim, we pick v € WE{#}G and observe that since Mg and Pg are

defined over Q,, we have v(Mg) = Mg and y(ug) is dominant in Msg.
Thus (Mg, v(us)) € Cuy so we need only check that bg € B(Mg, v(us))
and v(us) ~g p. The first check follows from the fact that

Or(ps) = 0r(v(ps)),
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and
MS|Z(1T4\S)F = 7(#5)‘2(1\’4\3)F-
The second check follows because  stabilizes {u}¢.

To prove the second part of the claim, we note that if pug = v(us)
then v stabilizes {ugs}r,. Conversely, if 7 stabilizes {ps ) then since
it maps dominant elements relative to Mg to dominant elements, we
must have y(ug) = jg.

We observe that we have now shown that WE{N}G acts on the col-
lection of Rapoport-Zink data (Mg, bg, pug) for (Mg, us) € IAGJ’:,,)S. By
[RV14, Proposition 5.3.iv], these actions induce morphisms of the cor-
responding towers of rigid spaces and therefore the spaces
H*(Msg,bs, pus)|p] for p € Groth(J,(Q,)). Thus by Lemma 1.3.4 we get
an action of WE{#}G on the sum of vector spaces

> H* (Mg, bs, ps)[p],

G,
(MS’/‘S)EI]W;bS

and therefore on

Z Inng(H°(Ms,bS,MS)[P])-

G,
(M57NS)€IM§L’1,S

We remark that the character twist by —dimMZfﬁ,U in the definition of
H*(Mg,bg, us) is not an obstacle to defining the Wi, -action as the
dimensions of the spaces associated to (Mg, bs, ps) and (Mg, bg, v(us))
are the same (for v € WE{H}G)' Also we observe that the twist by
[1][| - [¢¢e-rs)=$rc:)] is harmless as it is constant over orbits of W0
This concludes our discussion of the WEMG action.

We now check that the Harris-Viehmann conjecture is transitive.
By this, we mean that if we have standard Levi subgroups Mg, and
Mg, of G such that M, ¢ Mg, ¢ Mg, < G, then first applying the
conjecture to (G, b, u) and the inclusion Mg, — G and then applying
the conjecture to each resulting (Mg, , bs, , its, ) for (Mg, , pis,) € Iﬁs“l b,
and the inclusion Mg, < Mg, should be the same as applying the
conjecture to (G, b, 1) and the inclusion Mg, < G.

We need to check that the character twists match, that

G,
IM52 ,bs4

Mg, , G,
{(M527 MSQ) € CM52 : (M527 :u52> € IM;;,:S? for a (M517/“’L51) € IMi,bsl}‘

and that the WE{H}G actions are the same.
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To check the characters match, it suffices to check that for

(MSMNSl)v (MSQ, ILLSQ) € CG such that (MSQ7/J’SQ) < (MSU :u51) < (Ga :u)a
we have

<pG7 H52> - <pG> :u> = <<pG7 ,u51> - <pGa ,u>) + (<:0Msl ) :u52> - <pM51 ) :u51>)'
This reduces to showing the equality

(7) <PG\MS1 ) MSI> = <PG\MS1 ) M52>>

where parg, 1s the half-sum of the absolute roots of G that are not
roots of Mg,. Since ug, and pg, are conjugate in Mg,, there exists
aw e Wﬁ}’; so that w(py) = po. Then the desired equality follows

from the fact that the pairing (-, -) is W]?}’SSI -invariant and that Wf};
stabilizes the set of positive absolute roots in G but not Mg,. To prove
this second fact, note that Mg, normalizes the unipotent radical Ug, of
Ps, and that the roots of Lie(Ug,) are precisely the positive absolute
roots of GG that are not contained in Mg, .

The second check is precisely Proposition 1.2.26, and the third check
follows from Proposition 1.2.26 and Lemma 1.3.5.

Now we compute an example to illustrate the necessity of the extra

Tate twist in our statement of Conjecture 1.3.3. The following example
is also discussed in [Shil2b, §8.3]

Example 1.3.6. Let ny < ny be coprime positive integers and let G =
GL,,, +n,. Fix T the standard maximal torus of diagonal matrices and B
the Borel subgoup of upper triangular matrices. Let p be the minuscule
cocharacter with weight vector (12,0 %"272) and b € B(G, u) satisfying
vy = ((1/n1)™, (1/n2)™). Let p1, po be supercuspidal representations of
GL,,(Q,), GL,,(Q,) respectively. Define the standard Levi subgroup
M, = GL,, x GLy,, and consider the representation m = If; (p1 & p2).
We will be interested in computing Mantg, ,(Redy()).

The key point is that we can use Shin’s formula (Theorem 1.3.2 in
this document) and known cases of the Harris-Viehmann conjecture
due to Mantovan ([Man08]) to do this computation, even though the
Harris-Viehmann conjecture is not known to be true in the case of M,
since b is not of Hodge-Newton type.

We observe that there are only 3 elements ' € B(G, 1) that satisfy

MantG,b/,H(Redb/ (ﬂ')) # 0.

After all, the fact that pi, ps are supercuspidal and the geometric
lemma of Bernstein-Zelevinski (§2.11 of [BZ77]) forces My to be one of
G,GL,, x GL,,,GL,, x GL,,. In the case where M, = G, we also get
0 since LJ(mw) = 0. Thus, if we write out Shin’s formula for our 7, the
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only elements of B(G, p) whose terms contribute to the left-hand side
are b, by, by where b is as before and by, by are defined by

Vb, = ((2/n1)n1’ Om)v Vby = ((2/n2)n27 Onl)'
Thus, we have M, = M, = GL,, x GL,, and M,, = GL,, x GL,,.
Note that by, by are both of Hodge-Newton type so that we can apply

the results of Mantovan.
We have

Mantg 5, ,(Redy, (7)) = 1\/Iantg,bw(LJ((ngb1 ® Jg;flﬁbl (p1 X p2))).

By the geometric lemma of Bernstein-Zelevinski (§2.11 of [BZ77]) we
have that the above equals

Mantg,bl,m (LJ((M p2) ® 5153171 ))

We recall that dp, = (|- ["? odet) X] (| - [7"* o det) and henceforth use
the notation p(n) to mean (|- | o det) ® p. Thus, we can rewrite the
above formula as

Mant g, (L (p1 (n2/2)) 8 LI (pa(—n1/2))).

Then applying the Harris-Viehmann formula we get that the above
equals

®) i

Ind§;, Mantcy,, 12,0m-2) (LJ(Pl(g))) Mantgr,, (on2) (LJ(P2(T)))~

Since p; and py are supercuspidal, we can compute (by an easy appli-
cation of Shin’s formula for instance) that

Mantq,, (12,0m-2)(LJ (p1(n2/2)))
= [p1(n2/2)][r (12, 9-2) © LL(p1 (n2/2)) @ [ - [*™],
and so Equation (8) becomes equal to
[7][r(-12,0m-2) © LL(p1(n2/2)) ® | - [*™ @ 1(gra) © LL(p2(—11/2))]-
Pulling the twists through the r_, maps, we get
[l 120 B o)) © (LL(p1) @ LL(p2)) ® | - P71,
Repeating this computation for the by term, we get
MantG,bQM(Red@ (7T))

= [7][(r(12,0m2-2) B mom)) © (LL(p2) ® LL(p1)) ® | - [*7"7"2].
We now compare these terms to the righthand side of Shin’s formula.
There the term is

[wllr—p o LL(m) @ | - 7™ 7],
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Now LL(m) = LL(p1) @ LL(p2). Thus, we can restrict r_, to M, < G
(we have been ignoring the Galois part of “G in this example since G
is a split group). Using the theory of weights, we get

T*M’JT/[\

= [7"(—12,()711—2) T’(Onz)] ® [T(—170n1—1) 7”(_170712—1)] &) [T(onl) T(_1270n2—2)],

and so we see that the contributions for b;, b, which we computed above
will cancel terms on the righthand side of Shin’s formula leaving us with

Mantqb# (Redb (7T) )

= [F)[(r (v R o) © (LL(pr) + LL(p2)) @ | - [P 772].

However, if the Harris-Viehmann conjecture without the extra Tate
twist were to hold for b, we would get

Mantg . (Redy (7)) = Mante p,,(LJ (p1(n2/2)) X LJ (pa(—n1/2)))

= [n] [7‘(717071171) T(—1,0n2—1) © (LL(p1) + LL(p3))] - |1—n2]‘

Thus, we see the Tate twists do not agree.

In general, the righthand side of Shin’s formula has a twist of
—{pa, iy where pg is the half sum of the positive roots of G. Sup-
pose now that b € B(G, ) and ¥ € B(M,)* corresponds to b under
Equation (2). Then for any (M, y') € Ifjb*fb,, we would expect the
Galois part of Mantyy, i ,v(p) for p € Groth(J,(Q,)) to come with a
twist of —(p,, 1t’). Then the Galois part of Mante ,(Redy(7)) for

7 € Groth(G(Q,)) would carry an extra twist of —<—d6t(AdN§(M”))|T, "

1
corresponding to twisting JSo, () by & 7, in the definition of Red, . We
b
note that

oo+ (S AL

Thus, we see that the difference between these Tate twists is

) :u,> = <PG: :u,>7

{pa, 1) —Lpas 1)-

which is the twist in Conjecture 1.3.3
Remark. We note that in the Hodge-Newton case studied by Mantovan,
p = 1 (as in the notation of the previous paragraph) so that this extra

twist vanishes, agreeing with Mantovan’s results ([Man08, Corollary 5],
cf. [RV14, Theorem 8.8]).
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We now give an alternate version of the Harris-Viehmann conjecture
that we will use in numerous arguments in this document. Suppose
that G,b, u are as in Theorem 1.3.2. The standard Levi subgroup M,
has a natural product decomposition

Mb=M1X...><Mk
so that under the natural isomorphism
B(Mb) = B(Ml) X B(Mk>7b, - (b/h e b;c)a

each v(b;) has a single slope. Now pick (My, up) € I]\C;’:b,. Then the
local Shimura variety datum (M,, ¥, p,) decomposes into a collection
(M, by, ptp 1), ooy (M, Uy ptp ). In §5.2.(24) of [RV14], the authors show
that the local Shimura variety associated to (M, ¥, up) is the prod-
uct of those associated to (M;, b}, up;). Furthermore using the Kun-
neth formula (as in [Man08, p. 15]), we get that for p; Xl ... Xl py €
Groth(M;(Qp) x ... x M(Q,)),

Mantag, v, (01 B .. B pr) = B Mant, p 4, , (i),
as a representation of M, x WE%}M (the group WE{%)M acts diagonally
b b

through the product VVE{%’I}M1 X oo X WE{%MM]C ).

Thus, we have the following alternate form of the Harris-Viehmann
conjecture for the Rapoport-Zink spaces we consider.

Congecture 1.3.7 (Alternate Form of Harris-Viehmann Conjecture). We
use the notation of the previous paragraphs so that in particular,
(G,b, ) comes from an unramified Rapoport-Zink space of EL-type
as in Definition 1.3.1. Then for any p € Groth(J,(Q,)), we have the
following equality in Groth(G(Q,) x Wg,, ):

Mantgy, . (p) =
D, nd (R Mantag, u ., () @ [1]]] - [P =0em],

G,
(Mb7“b)eIlu:;b/

1.3.3. Proof of Theorem 1.1.3. The combination of the Harris -
Viehmann conjecture and sum formula allows us to relate the coho-
mology of Rapoport-Zink spaces to the cocharacter pairs studied in §2.
To do so, we attach a map of Grothendieck groups to each cocharacter
pair. We return to the notation of §3.1.

Fix a cocharacter pair (G,u) € Cg. Suppose (Mg, us) € Co and
satisfies pg ~g p. We associate (Mg, pus) to a map of representations

[MS”US] : GrOth(G(Qp)) - GrOth(G(Qp) X WE{HS}MS>’

40



given by
m— (Indg, o [us] o (6py @ Jacggp))(w) ®[1][] - [Ponsr—eam],
with
[1s] = Groth(Ms(Q,)) — Groth(Mgs(Q,) x WE{u)MS)’
given by

7 [m][r_us o LL(m) |- |_<PMSJLS>]‘

‘WE{”S}A{S
Remark. We note that the map [Mg, ug] is only defined relative to a
cocharacter pair (G, u).

Remark. We observe an interesting property of the maps [ Mg, ug]. Fix
(G, ) and consider (Mg, p1g) such that g ~g p. Since the normalized
Jacquet module and parabolic induction functors behave better with
respect to the local Langlands correspondence, it makes sense to rewrite
[Mg, ps] in terms of these maps. We get

[Ms, ps] = (I55, ® 52 © us] o (07, ® Jg)) ® [1][] - |4 57].

Note that the twists by the modular character cancel in the admissible

part but do not cancel in the Galois part. Thus, the total Tate twist

of the Galois part is

det(Ast (Ms)) |T
2

{pa, s — L) — <pMsa ps) — < , 1)

= —{pa; ).
This twist does not depend on (Mg, ug) but rather only on (G, pu).
Thus, as we will see in the computations of the next section, it is
possible for large cancellations to occur in computations of Mante . (p)
for various p.

We now prove some lemmas relating to these maps before tackling
the main theorem.

Lemma 1.3.8. Let Mg,, Mg, be standard Levi subgroups of G satisfy-
ing Mg, = Mg,. Consider the natural map

-G .
ZMsl . CMS:[ i CG’,

as defined in Equation (6). Let (Ms,, ps,) € Cug, - Suppose further
that we have fired pairs (Ms,,ps,) € Cus, and (G,p) € Cq so that
s, ~ms, ps, and ps, ~g p. Then for m € Groth(Gg,),

i%sl ([Ms,, ps,|)(m) =
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(Indlc’;s1 o [Ms,, ls,] © (5]351 ® Jacgsop))(w) ®[1][] - |<PG7M51>—<PG7M>],
where we write

iggsl ([Ms,, pis,]) : Groth(G(Q,)) — Groth(G(Q,) x W, ),

to denote the map associated to i%sl ((Ms,, ps,)) in the manner above.

}M52

Proof. We first note that by transitivity of the Jacquet module and
modulus character constructions, we have

G Mg G
Ops, ® Jacpe = (dps,nm @ Jacpa') o (Opy, ® Jacps).
2

Hence, we just need to check that the twists on the Galois parts of
both sides match. By Remark 1.3.3, both twists are by —(pg, ) O

Lemma 1.3.9. Suppose we are in the situation of Proposition 1.2.29 so
that G = G1 % ... x G}, 1s a connected reductive group with standard Levi
subgroup Mg = Mg, x...x Mg, . Fix cocharacter pairs (Mg, us), (G, ) €
Ce with pg ~g p. The bijection Cq = Cq, x ...Cq, takes (Mg, pg) to

((M517/’L51)7 ey (Msk,/,bsk)> and (Gau) to ((Gh,ul)? SES) (Gknuk)) and we
have ps, ~a, pi. Then we define

’Z'C:1[MS~L7/'LS~L] : GrOth(G(Qp)) - GrOth(G(@p) X WE'{”S}MS>

by
T 0. Ty > [ My, psy (1) B B [Msy, s, ] (7).

Then we have the following equality of homomorphisms of Grothendieck
groups:
B [Ms,, pis,] = [Ms, jus]

Proof. We have XI*_,[Ms., uus.] equals
— lelndg;i o [us,] o (51’% ® Jacg;;,?) ®[1][| - |<pci,usifm>]

k
Zl<pG7' HS, _M’L>
i=

= Ind, o [y] © (6p, ® Jacgy) @ [1]]] ]
— Indgs o[u) o (0p, ® Jacggp) ® [1][] - ’<PG7M5—M>]
= [Ms, uis].

U

For some finite subset C' < Cg, such that each (Mg, ug) € C satisfies
s ~a p, we would like to make sense of a sum

>, [Ms,ps).

(MSHU‘S)GC
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This makes sense as a map Groth(G(Q,)) — Groth(G(Q,) x Wg)

where Wg = N . However, for our purposes, we would
(MSHU‘S)EC
like to understand when we can extend the image of this map to a

representation in Groth(G(Q,) x WE{;»}G)'

E{”S}]\ls

Lemma 1.3.10. Fiz a pair (G, ) € Cq. Consider a finite subset C <
Cq such that if (Mg, us) € C then ug ~g p. Furthermore, suppose that
for each v € W, —and element (Ms, pus) € C, we have (Mg, v(ps)) €

C. Then
Z [MSa/'LSL

(MS’/"LS)EC
1S 4 map

Groth(G(Q,)) — Groth(G(Q,) x WE{u}G)

n a natural way.

Proof. Our construction is analogous to that of Lemma 1.3.4. We fix

p € Groth(G(Q,)) and give
Vo= @ [Ms,uslp),

(Ms,pus)eC
the structure of a G(Q,) x WE{M}G representation. Suppose that C' =
Ci11...11C, where each C; is a single W, _-orbit. Then for each ¢,
we give

Vo,= @ [Ms,psl(p),

(Ms,ps)eC;
the structure of a G(Q,) x WEW}G—representation and then define the
G(Qp) x W, -structure on Ve to be the direct sum of the V.

Suppose now that C' contains a single WE{u}G orbit. In this case, we

will show that

@ [Ms. uslp),

(Ms,us)eC

can be given the structure of a Groth(G(Q,) x Wg,,, ) representation
equal to

[Indlcjs (5PS & Jacggp (p))]
X[ro LL(0p, ® Jacggp(meE{ } ®|- |_<pG7MS_M>_<pJMS,MS>]7
na

where 7 is the induced representation (not parabolic induction) given
by
MSXWE{H)G

Ind (r_ps),

Mg x
ST Eug g
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for a fixed choice of (Mg, j15) € C. The isomorphism class of r will not
depend on this choice.

We study the representation r. Fix representatives
Yy Yk € WE{u}G/WE{us}MS so that v; = 1. Then r is defined to

be the sum of k£ copies of r_,  indexed by the 7; and acted on by
WE{#}G in the stand/ar\d way. We check that the ith copy of r_,, is
a representation of Mg X VVE{7 5V ar and isomorphic to r_,,(.e). Let
V; be the underlying vector space of the 7th copy of E T s Then V; is

naturally a representation of MS X %VVE(M s % MS X WE{w-(us)}M
g S

Now suppose v € V] is a weight vector of T < My s of weight 1. Then
we show that (1,v;)v € V; has weight ~;(¢'). After all, for t € T, we
have

(¢, D)1, 5)v) =

)
)rous (37 (1), 1) (v)
= (L)' (0 ()
DO, )v.
In particular, we have shown that V; is irreducible of extreme weight

—i(1s) as an Ms—iegresentation (since r_,, is irreducible of extreme

weight —ug as an Mg-representation). It is a simple check similar to
the above that Wg,_ (hs)a. ACHS trivially on the highest weight space
o S

of V;. This proves that V; is isomorphic to r_,,
In particular, this shows that we can give

@ T —yi(us) © LL(5PS ® Jacggp (p))‘WE{%

(Vg
’yiEWE{#}G/WE{#S}MS

(ns)-

the structure of a WE{M}G representation isomorphic to
G
ro LL(6ps ® Jacpgp(p)ﬂWEmG.

To conclude the proof, we just need to check that the | -| twists on each
[Msg,7:(ps)]-term are the same. This follows because pg and pyr, are
both invariant by WE{H}G‘ 0

We would like to check the following:

Lemma 1.3.11. The sum Mgy, as in Definition 1.2.23 gives a map
[Mep,u] : Groth(G(Q,)) — Groth(G(Q,) x WE{H}G>’
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where

Mepul = Y (=DM [ Mg, pg].

(Ms,15)ERG b1

Proof. By Lemma 1.3.10, it suffices to show that Mg, is invariant
under the natural action of Wg,,, —on Z{Cg). Pick y € Wg, . Since
the action of v on a cocharacter pair fixes the standard Levi subgroup
in the first factor, signs will not be an issue and we will be done if we
can check that Rqp,, is y-invariant. But if (M, ) € Tap, then it
is a simple consequence of the definition of T that so is (Mj,y(up)).
Furthermore if (Mg, pus) < (My, ) then (Mg, y(ps)) < (My,y(1))
by definition of the partial order relation (remarking that 6y (ps) =
Org(v(pes))). This shows that Re ), is y-invariant as desired. O

If we combine the previous lemma with Proposition 1.2.29, and
Lemma 1.3.9 we get

(9) it [Mai ] = [Mayl.

We now prove the key result of this section which provides the con-
nection between Mant and cocharacter pairs.

Theorem 1.3.12. Assume that the Harris-Viehmann conjecture is
true for the general linear groups we consider.

(1) We have the following equality of morphisms Groth*(G(Q,)) —
Groth*(G(Q,) x W)

Mantgy,,, © Redy = [Map,.]-

where Groth?(G(Q,)) is defined to be the span of the essentially
square integrable representations in Groth(G(Q,)).

(2) Now assume further that Theorem 1.5.2 holds for all admissible
representations of Groth(G(Q,)). Then the above equality holds
as morphisms Groth(G(Q,)) — Groth(G(Q,) x Wg,,, ).

Proof. We prove the second statement first. We prove this result by
induction on the rank of X, (7).

If the rank of X,(T) is 1, then B(G, u) is a singleton and so the
result follows from Theorem 1.3.2.

Suppose the result holds for all non-basic b € B(G, p) with
Rk(X,(T)) < r. Then by Theorem 1.3.2 and Theorem 1.2.24, the
result holds for all b € B(G, p) with Rk(X,(T")) <.

Finally, suppose the result holds for all b € B(G, ) with
Rk(X,(T)) < r. Then suppose X.(T) has rank r + 1 and choose
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b € B(G, i) such that b is not basic. We write M, = M;, x ... x M,,.
By the Harris-Viehmann formula,

Mantg ,, 0 Red,
= Z (Indgb o ®f:1Manthi7bwbi o Redy) ® [1][] - |<pG7Hb>_<pG7N>]

= Z (Indgb o ®f:1(Manthi7b/i,ubi o Redy) o (0p, ® Jacg;p))

G,
(Mb’ﬂb)ezjubkfb/

®[1]U . ’<PG7Nb>_<PG’aU>]_

By inductive assumption we get that this equals

D, (IndEo® (Mg, 17,10 (0n@Tacke))@[1][|-| 7o =]

G,
(Mbvlib)EI]\/[;b/

and now by Equation (9)
= Y (Id§ o [Magp ] 0 (0r, ®Jack)) ®[1][|-|Per—rem).

G,
(Mbnub)ez-]\/[:b/

Finally, by Corollary 1.2.28 and Lemma 1.3.8

= [MG‘,b,u]-
We must check that the WE{u}G structure coming from Remark 1.3.2
is compatible with that of Lemma 1.3.10. Pick p € Groth(G(Q,)). By

inductive assumption and Lemma 1.3.8, for each (Mj, 1) € I]\Gj:f o the

E -structures on
{1p} ay,

(Indgb ] Manth’b/’% o Redb’ o (5Pb X Jacg;”))(p) () [1]“ . |<pG»P«b>*<PG:N>]’

and

iﬁb([MMbyblvﬂb])(p)’
are the same. Thus by Lemma 1.3.4, the WEMG—structure on
Mantc,.(Redy(p)) is a direct sum over the W, -orbits of Ij\cj’b’f y of
induced representations of the form

WE »
Indyy, "¢ i, (Mg, 0,]) ().

(ko)

This Wpg,,, -structure matches the one on [Mcgy,,] (coming from
Lemma 1.3.10) by the transitivity of the induced representation con-
struction (see Lemma 1.3.5 for instance).

We now prove the first statement of the theorem. To do so, we need
to show that if we restrict ourselves to the span of the essentially square
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integrable representations Groth?(G(Q,)) = Groth(G(Q,)), then we
can remove the first assumption. In particular, these representations
are accessible, so we have Theorem 1.3.2 unconditionally. In the above
proof we need only observe that the Jacquet module Jac%,, (p) is a sum
of essentially square integrable representations for p € Irr*(G(Q,)).
Thus, to get the result for Groth?(G(Q,)) by induction, our inductive
assumption need only hold for all Groth*(G/(Q,)) for kG’ < rkG. This
shows that under the condition that the Harris-Viehmann conjecture is
true in the cases we consider, the theorem is true for essentially square
integrable representations without any other assumptions. 0

1.4. HARRIS’S GENERALIZATION OF THE KOTTwWITZ CONJECTURE
(PROOF OF THEOREM 1.5)

In this section, we discuss an explicit computation using the above
results. In particular, we prove that Shin’s formula for all admis-
sible representations combined with the Harris-Viehmann conjecture
proves Harris’s conjecture for the general linear groups considered in
63. This conjecture is distinct from the Harris-Viehmann conjecture
and is [Har01, Conj 5.4].

We begin by discussing the Kottwitz conjecture, which appears as
[Shil2b, Cor 7.7] in the cases we consider, and more generally as [RV 14,
Conj 7.3]. Fix G as in section 3 of this document and a cocharacter
pair (G, p) such that g is minuscule. Let b € B(G, 1) be the unique
basic element. Now, consider p a representation of .J,(Q,) such that
JL(p) is a supercuspidal representation of G(Q,). Then

Mantc,,.(Redy(JL(p))) = Mantc,.(p),
but by Theorem 1.3.12, the lefthand side equals
[Mepu](JL(p))-

Now we see that since JL(p) is supercuspidal, each term of the form
[Mg, ps](JL(p)) is 0 when Mg is a proper Levi subgroup of G. Thus,

Mante . (p) = [Map,](JL(p)) = [JL(p)][r—. o LL(p)| - |~Pe].

This result is the Kottwitz conjecture for G. Alternatively, if b €
B(G, i) is not basic, then no cocharacter pairs with G as the Levi
subgroup will appear in Mg, and so

Mantg, . (p) = 0.

Of course, these results are already known by [Shil2b], but we review
them as motivation for Harris’s conjecture.
We begin with the following useful definition.
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Definition 1.4.1. Fiz (G,u) € Co and b € B(G,pn). Let Mg be a
standard Levi subgroup such that Mg < M,. We define the subset
Relfj:’b < Cg as the set

{(Ms, ps) € Ca = I(My, tv) € Tapp, Onr, (1) = Onig(fts), o ~n, s}

The notation jus ~n, [ 15 defined to mean that ps and pu, are conjugate
in M. Note that we do not require (Mg, ps) < (G, ) or (Mg, ps) <

(M, 1)
. . G,
We record the following useful properties of Rel Mg b

Lemma 1.4.2. We use the same notation as in the previous definition.

Then
Gup My,
RelMS’b = | | RelMS’b,.

G,
(Mb 7”’6)61]\/[:17/

Proof. It (Mg, us) € Relj\c’;’:yb, then there is an (M, ip) € TG, such
that Ong, (1p) = Oar(ps) and pg ~pg, . Then by Proposition 1.2.27,
there is a unique (M,, ') € Iﬁ’b’fb, such that (M, ) € T, and so
(Mg, ps) € Rel%:fgf’. The reverse inclusion is analogous. O

Lemma 1.4.3. The set Relfj’g,b is invariant under the action of Wg,,, .

Proof. It (Mg, us) € Relfjgb then we can find (M, ) € Tap, with
Onr, (1n) = Onrs(us) and pip ~pg, pus. By a similar argument to Lemma
1.3.11, we show that for each v € Wg,,, , we have (M,,7(iw)) € Ta p,u

and Oarg (Y(ps)) = O, (7(1w)) and y(pus) ~ns, ¥(p). This finishes the
proof. U

Equipped with the above definition, we can now make the following
restatement and slight generalization of [Har01, Conj 5.4] for the G that
we consider. Our statement is a generalization because we consider
non-basic b and do not assume the representation I, . (p) is irreducible.

Congecture 1.4.4 (Harris). Fix a b€ B(G, u) and a standard Levi sub-
group Mg < M,. Then for p € Groth(Mg(Q,)) a supercuspidal rep-
resentation, the following representations are equal in Groth(G(Q,) x

WE{H}G ): )
Mant g, (e(Jy) LJ (68 p, ® I3 (p)))

and

’ . |—<pc,u>

737, (p)] D  rousoLL(p)

w.
= | E{”S}]\/[S
(MS’#S)ERelMg,b
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Here r_,, is a representation of Mg » Wk,,,,,. but the righthand side
S

naturally acquires the structure of a G(Q,) x Wk, representation

from Lemma 1.4.3 and the proof of Lemma 1.3.10.
In particular, for b basic, this says that

Mantc . (Reds (1§, (p)))

= [131(p)] D o LL()w,,,, | [0

G,
(Ms ,#S)ERelMg,b

We will prove this conjecture assuming that Shin’s formula (Theorem
1.3.2 of this Part) holds for all admissible representations.

We proceed by induction on the rank of 7. The key observation will
be that Harris’s conjecture is compatible with the Harris-Viehmann
conjecture and Shin’s formula. We will first assume that If (p) is
irreducible and later remove this assumption.

The following proposition shows that Conjecture 1.4.4 is compatible
with the Harris-Viehmann conjecture (Conjecture 1.3.3).

Proposition 1.4.5. Fiz be B(G, p) non-basic and fix a standard Levi
subgroup Mg of G satisfying Mg < M,. Pick p € Groth(Mg(Q,)) and
suppose that Iﬁs (p) is irreducible. Suppose that Conjecture 1.4.4 for p

holds for Mant g, i ., for each (My, 1) € Iﬁ;’fb,. Then Conjecture 1.4.4
holds for Mantg ;.

Proof. We compute

Mantc,,,.(e(Jo) LI (08 p, ® It (p)) =

D1 Ind§ (Mant g, i, (€(J) LT (62 5, ® Iyt (p)))) @ [L]]] - [“e7]
(My,pp)

G,
eZMb’b,

so by assumption this equals

S g (52,5, ® I (0))]

G,
(Mp ’Nb)eIJM:b’

@ rous o LL(Ig(p) -1

My, p
(Ms,us)eRelM’;’b?

|WE{“S}MS
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det(Ady, (M
where S = —(pag,, i) + (pa, py — iy — (CLADLEBIE s — (o, )

(following the discussion in Remark 1.3.3). Now simplifying the above
expression, we get

Y IG | @D rous o LLUS(p) | |
M7 IG”“ / (MS7H'S)
(My,po)eZy ", ERelﬁg”’Z?

|WE{HS}]WS

Thus, we are reduced to showing that

Guu — Mbnu‘b
Relff*, =[]  Reljph.

G,
(Mb “U,b)EIMby:b/

This is just Lemma 1.4.2. U

With Proposition 1.4.5 in hand, it remains to show that if Conjecture
1.4.4 holds for all non-basic b € B(G, ) then it holds for the basic b.
The key to proving this is Theorem 1.3.2.

We begin by making some observations about r_,. Since we assumed
If;.(p) is irreducible, we have LL(If; (p)) = LL(p) and the image
of this representation lies inside “Mg < *G. Thus, the term [r_, o
LL(If;, (p))’WE{H}G] depends only on the restriction T*“‘J\//I\stEMG'

Since p is assumed to be minuscule, we have the following equality of

—_

Mg representations.

(10) T—,u|1\//[§ = @ T—,us|j\/4\5'
(Ms,us)eCasps~ap
We further note that each r_, is a representation of ]\//[; X WE{#S}M .
S

Since {(Mg, us) € Cq : ps ~¢ 4} is invariant under the natural action
of WE{#}G, it follows from the proof of 1.3.10 that the right-hand side of

the above equation can be promoted to a representation of ]\/4; X WE{#}G
so that 10 is an equality of WE{u}G representations.
Now we recall the following subsets of W™ defined in §2.11 of [BZ77].

Definition 1.4.6. Let Mg, Ng be standard Levi subgroups of G. We
define

WMs = {fwe W™ w(Msn B) c B},
WMsyNS — {w c Wrel : w<MS N B) c B,wil(NS N B) = B}

We record the following lemma:
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Lemma 1.4.7. [BZ77, Lem 2.11] Suppose Mg, Ng are standard Levi
subgroups of G and w € WMs:Ns  Then w(Ms)nNg and w™'(Ng)n Mg
are standard Levi subgroups.

Lemma 1.4.8. Suppose Mg is a standard Levi subgroup of G. Then
WMs contains a unique representative of each left coset ofW]{;}q. Equav-
alently, (WMs)=1 contains a unique representative of each right coset

of WigL.

Proof. Suppose w € W, Then B’ = w™!(B) is a Borel subgroup of G
containing the maximal torus 7T'. Since B’ contains exactly one of each
root and its negative, B’ n Mg is a Borel subgroup of Mg. In particular,
since B’ n Mg, B n Mg are both Borel subgroups of Mg containing 7,
there exists a w,, € T/Vrel so that

wm(B M Ms) = B/ N Ms.

Then ww,,(B n Mg) = B n Mg < B, so that ww,, € W*s. Thus the
coset wVV“’1 contains at least one element of WMs,

Suppose Ww,,, ww,, € erel N WMs _In particular,
ww! = (wwy,)(w tw). But_ wuw,, takes all positive roots of Mg to
positive roots of G, and equivalently, negative roots of Mg to negative
roots of G. Thus, if w,'w!, takes any positive root of Mg to a negative
root of Mg, then ww!, cannot be an element of W*s. In particular,

this implies that w,'w/ = 1 which shows uniqueness. U

Lemma 1.4.9. Suppose Mg is a standard Levi subgroup of G and
T e 9167]\/[5 and we W, Then w(x) =z if and only if w € I/VT61

Proof. Recall that by assumption, G is quasi-split over Q, and A is
a split torus of G of maximal rank. Pick g € Ng(A)(Q,) so that g
projects to w € W' = NG(A)(@)/ZG( )(Q,). Then the equation
w(r) = z implies that g € Zg(x)(Q,). The centralizer of a cocharacter
is a Levi subgroup, and since x € QIQM , we have Zg(z) = Mg. In
particular, g € Ny, (A4)(Q,) and so w € Wit

We remark that x is not a cocharacter, but that Za(z) still makes
sense as there is an induced action of G' on X, (A)g. O

We can now prove the following key proposition.

Proposition 1.4.10. Fiz (G, u) € Co and suppose (Mg, us) € Co sat-
isfies g ~g p. Then there exists a unique b € B(G, u) and a unique
we WMs:Mo 5o that (w(Ms),w(us)) € Relgi’&s)ﬁ.

Proof. We first discuss uniqueness. By assumption, ’LU(Ms) is a stan-

dard Levi subgroup. Then w induces an equality erel W;‘?MS
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In particular, W™ acts on X, (T') through Corollary 1.5.3 and it follows
that
w(Os (1)) = Ouw(as) (w(ps)).

Since (w(Mg),w(us)) € Relg&’jws)’b, it follows that 0, (w(ps)) is
dominant in the relative root system. In particular, €, (w(ps))
must be equal to the unique element x in the W™ orbit of 0y (11s)
which is dominant in g. Now z € Q[LS,,Q for a unique Mg. Since
any (M, i) € T, is definitionally strictly decreasing, it follows that
even though we can’t yet conclude the uniqueness of b, we have shown
that any other by must satisfy M,, = M, = Mg.

Now, suppose we had w, w’ € WMs:Mo such that

w(Ons(1s)) = v = w'(Onrg (1))

Then in particular, w'w ™" stabilizes z and so by Lemma 1.4.9, w'w™! €
W]{f}; So w and w’ are in the same right coset W}{j;w However,
WMs:My = (WMe)~1 By Lemma 1.4.8, (W)~1 contains a unique
representative of each right coset of (W*)~! and so there is a unique
w e (WM)=! satisfying w(0y,(1s)) = x. In particular, this implies
that w = w’. Thus, we have shown that w is unique, if it exists. There
is exactly one p' € X,(T') such that ' ~p, w(p) and g’ is dominant
in M,. Then (M, i) € Tgp,, for at most one b € B(G, p1). This shows
uniqueness.

To prove existence, we again define x to be the unique dominant
element in the Wrl-orbit of Oy, (us). Define Mg = Zg(x) and take
the unique w € (W™Ms")~! such that w(fars(parg)) = . We would like
to show that w € WMs:"Ms/,

By definition,

w(Ms) © w(Za(Ous(1s))) = Za(x) = M.

Suppose it is not the case that w(Mg n B) < B. In particular, w maps
a positive root r of Mg to a root w(r) of Mg which is not positive.
In particular, —w(r) is positive and so w™!(—w(r)) = —r is positive
(since w € (WMs')~1). But this is clearly a contradiction. Thus, in fact
w e WMs:Ms,

By Lemma 1.4.7, w(Mg) n Mg = w(Mg) is a standard Levi. It
remains to show that (w(Mg),w(pus)) is a cocharacter pair and an
element of Relg&s)yb. Now if r is a positive root in the absolute

1

root system of w(Mg), then (r,w(us)) = (w™(r),usy = 0 (since
(Mg, pus) is a cocharacter pair and w™!(r) is a positive root of Mg).
Thus, (w(Msg),w(us)) is a cocharacter pair. By construction, x =

Ow(nrs)(w(ps)) = Ong (wps)). Suppose pu' € X, (T) is the unique
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cocharacter conjugate to w(us) in Mg and dominant in Mg . Then by
Corollary 1.2.9, (Mg, ') is strictly decreasing and therefore (Mg, 1) €
T b,y for some b and so (w(Ms), w(ps)) € Relg&’&s)yb. O

Corollary 1.4.11. Fiz a cocharacter pair (G, u) € Co and a standard
Levi subgroup Mg of G. For be B(G, ), define Wy, by {w e WMs:Mo .
w(Mgs) € My}. Then the previous lemma gives a bijection

{(Mg,ps) € Cq : pus ~a p} = H H Relgilfws),b'

beB(G,u) weWy,

Proof. By the construction in the previous proposition, it is clear that
given an (Mg, is) € Cc we get an element of the right-hand side of the
above equation. Conversely, an element (w(Mg), 1') of the right-hand
side comes with a fixed w € W, and so we can recover (Mg, w (1))
on the left-hand side. O

We are now ready to finish the proof of Conjecture 1.4.4. By induc-
tive assumption we assume we’ve shown Conjecture 1.4.4 for G with
maximal torus of rank less than n. Then Proposition 1.4.5 implies that
Conjecture 1.4.4 holds for G with maximal torus of rank n in the case
where b is not basic. It remains to prove the basic case, for which
it suffices to show that Theorem 1.3.2 is compatible with Conjecture
1.4.4. We have

Z Mantc . (Redy (157, (p)))
beB(G,u)

1
) Mantc,.(e(Jp) LJ (07, @ Jgon I3z, (p)))-
beB(G,u)

By the geometric lemma of [BZ77] and noting that W™Ms:Ms defined
with respect to B is equal to the analogous set defined with respect to
B°P we have

TpIii(0) = 35 DI (p),

b
wEW]\/IS,Mb

where M} = Mg nw™' (M), M} = w(Ms) n M,. By the assumption
that p is supercuspidal we must have M§ = Mg and M| = w(Msg). In
this case, we have from the geometric lemma that w(Mg) is a standard
Levi subgroup. Thus we get that the previous expression is equal to

ST Mantaa(e(h) Y LI63 @ I, (w(p))),

beB(G,p) weW,

53



where W), = WMs:Mv i5 the subset of w such that w(Ms) = M,. We
now apply Corollary 1.4.4 by inductive assumption to get

Z 2 IGMS p))]

beB(G, ) weWs,

) w © LL(I5 4, (w(p)))lwe R

{1}y (M g)
(w(Mg),p )ERelw(MS) b

By [BZ77, Thm 2.9], we have that
(Lo (w(p)] = [T, ()],

and since 1§ .(p) is assumed to be irreducible, we have

LL(I§,(p)) = LL(p).

Finally, we note that Wy, | | = and we have an equal-
{fw™ (WD vg

E(“/)w(JVIS)

ity
[r—w o LL(w(p))|w | = [rew-1quey o LL(p)lw

W w(nrg) Blo=t(u}arg

].
Thus the above expression becomes

D S (0)]

beB(G,p) weW,,

@ T,w—l(#/) O LL(p)’WE{ . | . ‘*(pg,,@
w M
(w(Mg),p )eRclw(M Vb s
By Corollary 1.4.11 this equals
G - b
[0l @ rougo LL(O) e, |- e,

(Ms,ps):ps~ah

Finally, we apply the decomposition given by Equation (10) to get
G — . _< ’ >
15O iz, o LE@ i, | 100),

which is the desired result.

Finally, we show that Conjecture 1.4.4 holds even if Ifj (p) is not
irreducible. Our verification that Conjecture 1.4.4 is compatible with
the Harris-Viehmann conjecture did not rely on the irreducibility of
I§.(p). Thus in the case where we do not assume If;_(p) is irreducible,
it would suffice to show that Conjecture 1.4.4 is true in the case where
b is basic. If b is basic, then M, = G so we have

Mantcp,.(e( o) LI (5% p, T2 () = Manteyu(Reds (15, (9))).
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This can now be computed by cocharacter pairs using the results of §3.
If []\(’}S(p) is assumed to be irreducible, then for each cocharacter pair
(Mg, jug) of G, we have

[Ms, 5115, (p)) = (I, o[s)) (0, @ T I ()L | o5 +]

= (1ndf,, o [us D@ 03, @ LRy, (w(p) @ (L[] -[ 7]
weW,

where W, is the subset of w € W™s:Ms' guch that w(Mg) = Mg. Then
the above equals

IMS @ T_py © LL(w(p))] - |~CPcun)

weW,

Thus we see that applying various [Mg/, us:| to I . (p) in the irreducible
case will always yield the same term of Groth(G(Q,)) (namely [I§ (p)])
and so when evaluating Mantg . (Red, (1§, (p)) as a sum of cocharacter
pairs, the different Galois terms must cancel to give Conjecture 1.4.4.
Thus, if we can show that in the reducible case, the Groth(G(Q,)) part
of each [Mg, s ](If.(p)) is fixed and the Galois part is identical to
the irreducible case, then Conjecture 1.4.4 must hold for this case as
well.

The first part of our previous computation did not depend on the
irreducibility of If; (p) so we still have

[Msr, s ] (I3, ()

— (Ind§, o [us (D 63, ® L5, (w(p)) ® [L][] - [eebs—].

wEWP

Suppose now that I (S' y(w(p)) = m@...®&m. Then using that for all
i, we have LL(m;) = LL(w(p)),

s (Lo (w(p))) = By [mil[7_pug © LL(m) @ | - |~ srs]
= @ [m][r_py, © LL(w(p)) @ | - |~ #sr7]

Mg o
= [0y (W(O)[r— g, © LL(w(p)) @ | - [~ 7Msr 5]
Thus, the expression for [Mg, us](I§,(p)) becomes

)
(

[IJ\G45 (p)] (—B T pg © LL(w(p))| - ’*<pc,u>

weWwMs Mgt

as desired.

55



1.5. APPENDICES FOR PART I

1.5.1. Examples. In this section, we give an example to show that
even in the unramified EL-type case, we do not get an expression as
simple as Harris’s conjecture for Mantg, ,,(p) for general p. We gener-
ally use the same notation as in the computation in Example 1.3.6.

Let G = GLy4, suppose u has weights (12,0%), and take b basic. Let T'
be the diagonal maximal torus and B be the Borel subgroup of upper
triangular matrices. Then the set of cocharacter pairs less than or equal
to (G, p) is as follows.

(GLy, (12,02))

(GLs x GLy, (12 (GL2, (12)(0?) (GLy x GLg, (1)(1,02))
(GLQ X GL2 ( 2 GL1 X GL2 X GL] ( GL X GLQ ( )( )(02))

|

(GL1, (1)(1)(0)(0))

Let p € Groth(GL;(Q,)) and consider 7 the unique essentially square
integrable quotient of [gL%(pp(l)p(Z)p(B)). We want to compute
Mantg . (Redy(7)).

We introduce some notation which will allow us to describe the an-
swer to this question. The results of §2 of [Zel80] show that GL4(p X]

p(1) X p(2) X p(3)) has exactly 8 irreducible subquotients. If 7’ is one
such subquotient, then J$., (7') will be a finite sum of representations of
the form p(A(0))XIp(A(1))Kp(A(2)) K p(A(3)) where A is a permutation
of {0, 1,2, 3}. In particular, if {2 denotes the set of all such permutations
of pXIp(1)Xp(2)Xp(3), then each permutation lies in the Jacquet mod-
ule of exactly one irreducible subquotient of I GL4 (pXp(1)Xp(2)Xp(3))
so that the irreducible subquotients correspond to a partition of 2. We
use the following shorthand: we define the notation (0123) to refer to
the representation p(0) Xl p(1) X1 p(2) XI p(3). Following Zelevinsky,
our 8 irreducible subquotients naturally correspond to vertices of a 3-
dimensional cube, and so we denote them by binary strings of length 3.
Then if we denote the subset of € corresponding to some subquotient
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Q([000]) = {(3210)}

Q([100]) = {(2310), (2130), (2103)}

Q([010]) = {(3120), (1320), (1302), (3102), (1032)}
Q([001]) = {(3201), (3021), (0321)}

Q([110]) = {(1203), (1023), (1230)}

Q([101]) = {(2013), (2031), (0213), (0231), (2301)}
Q([011]) = {(3012), (0312), (0132)}

Q([111]) = {(0123)}

In particular, our representation 7 corresponds to [111] under the above
notation. A tedious computation using Theorem 1.3.12 yields the fol-
lowing

Proposition 1.5.1.

Mante o(Redy(r)) = [111][LL(p) (=7) + LL(p) (~6)]

—2

— (O)[LL(p) (=5)] + [011][LL(p) (~5)])
+ [010][LL(p) (—4)]

—2
— [000][LL(p) (=3)]

We finish by remarking that the set of cocharacter pairs less than
or equal to (G, p) has some special properties in the above case that
make the general case more complicated.

For instance, each 7¢y, has at most a single element. However, if
G has a nontrivial action by I', this need not be the case.

In the case we consider, we have a single cocharacter pair for each
Levi subgroup. In general, this need not be the case. For instance, if
G = GLs, u = (13,0?), then (GL3 x GLag, (13)(0?)),

(GL3 x GLy, (12,0)(1,0)) are both less than (G, u).

Further, in the above example, each cocharacter pair (Mg, pg) had
the property that ug was dominant as a cocharacter of G relative to B.
In general this need not be the case. In fact, (GL2, (1)(1)(0)(1)(0)) <
(GLs, (13,0%)).

1.5.2. Relative Root Systems and Weyl Chambers. In this sec-
tion we prove a fact about root systems that is needed in the text (for
instance in the proof of Proposition 1.2.21). We assume that G is a
quasisplit group over a field k£ of characteristic 0 and pick a separable
closure k*P. We fix a split k-torus A of maximal rank in G and choose
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a maximal torus T" and Borel subgroup B both defined over k and such
that A ¢ T < B. Associated to this data, we have an absolute root
datum

(XH(T), @%(G,T), Xu(T), 2:(G, T)),
and a relative root datum
(X*(A),2*(G, A), Xi(A), D.(G, A)).

Our choice of B also gives sets A of absolute simple roots and ;A of
relative simple roots. Note that we also have a natural restriction map
res : X*(T') — X*(A),
and that by definition an absolute root in ®*(G,T) restricts to an

element of ®*(G, A) u {0}.

We record two standard consequences of our assumption that G is
quasisplit.
Proposition 1.5.2. Let G be quasisplit and use the notations as above.
Then,

(1) The centralizer Zg(A) =T,
(2) We have res(A) = A. The key point being that no absolute
simple root restricts to the trivial character.

We have the following easy consequence on the structure of the Weyl
group of the relative root system. Recall that the absolute Weyl group
Wequals

Ne(T) (k) Z(T)(K*),
and the relative Weyl group W™ is Ng(A)(k)/Za(A)(k).
Corollary 1.5.3. We have the following equality: W' = W' where
[' = Gal(k*?/k).

Proof. Tt suffices to show that Zg(A) = Z5(T') and that Ng(A)(k) =
Ng(T)(k). For the first equality, we note that by the quasisplit as-
sumption, Zg(A) =T = Zg(T). For the second equality, we note that
any g € Ng(A)(k) must also normalize the centralizer of A which is

T. Conversely, if g € Ng(T')(k) then g normalizes the unique maximal
k-split sub-torus of T" which is A. O

Define the absolute Weyl chamber aa c X*(T)g by {z € X*(T)g :

(&, z) = 0, € A} and define the relative Weyl chamber k@a c X*(A)g
analogously. The key result of this section is that

res(a’é) = kaa.
Despite its simple statement, the author has been unable to locate a
convenient reference of this fact. For x € X*(T)g and o € A, we need
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to relate (&, z) and <1g(a/), res(x)). If we let o, € W be the reflection
corresponding to the root «, then we have

(11) x — 04(x) = (&, ).

and analogously for res(a). Thus it will suffice to relate o, and yes(q)-

Note that since B is defined over k, we have y(A) = A for every
v € I'. Moreover, for each a € A, we have res(y(a)) = res(a). After
all, I" acts trivially on X*(A)g and the restriction map is I-equivariant.

Now fix o € A and let W, be the subgroup of W generated by the
elements 0., for each v € I'. We claim that if we can find a nontrivial
[-invariant element of 1, then it must equal 0,es(o). To prove this, we
first recall the construction of o, and oes(a) (see [Bor91, pg 230]) for in-
stance). Given a root o € *(G,T') we can define a group G, = Zg(T,,)
where T, = ker(a)? « T. Then Ng (T)(k*?)/Zg, (T)(k*P) embeds
into W and has a unique nontrivial element which is o,. Analogously,
we define Ayeg(a) and Gres(a) = Za(Ares(a))- Then
Ng,(A)(k)/ Za,. ., (A) (k) embeds into W' and has a unique non-
trivial element that is identified with oreg(a).-

Now, by Corollary 1.5.3 we have

NG oy (A) () 26,000y (A) (B) = N0y (T)(K)/ 2,0y (T) (K).

Thus to complete the proof of the claim, we need to show that
(12)
NGQ (T)(ksep)/ZGa (T)(ksep) - NGres(a) (T)<ksep>/ZGres(a) (T)(ksep)

After all, the unique nontrivial I'-invariant element of the group on the
right is 0ye5(a) and the group on the left contains o,. Since we get the
same equation if we replace « everywhere with ~(«), this will imply
that

Wa & N,y (T)(E*P) /26, (T) (K°F).

Now, Equation (12) follows from the fact that
Z6(T) = Zg, ) (T) =T

and
NGa (T) C NG T)

We are now interested in finding a nontrivial I'-invariant element of
the group W, defined above. In fact, W, will be a finite Coxeter group
and the element we seek is the unique element of longest length. We
need to compute this element explicitly, which we now do. We treat
two cases. Suppose first that the elements of the I'-orbit of o, commute

pairwise. Then clearly the product I O+ (a) 18 I'-invariant.
~el'/stab(oq)

res(a) (
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In the second case, suppose that the I'-orbit of o, has precisely two
elements which we denote X and Y. Then we have (XY)¥ = 1 for some
k > 2 which we assume to be minimal. If k is even, then (XY)*? is
invariant and nontrivial and if k is odd, then Y (XY)*~1/2 is invariant
and nontrivial.

We now prove that any I' action on the simple roots A of G is a
combination of these cases. The action of I' on A induces an action on
the associated (not necessarily connected) Dynkin diagram D. Each
v € I" maps connected components of D to connected components and
so there is an induced action of I' on the set of connected components
71'0(D). A

Now fix an a € A and consider the I'-orbit I'aw of a. Suppose D’
is a connected component of D such that D' n ' # . Then via
the classification of connected Dynkin diagrams, we see that ['a n D?
contains either a single node, 2 non-adjacent nodes, 2 adjacent nodes, or
3 nodes where no two are adjacent. In particular, these are all covered
by the cases we considered above, so we can find an element w; of W,
that is invariant by the action of stab(D?) < T'. Then I'a consists of
finitely many disjoint copies of one of the above possibilities and so we
see that [ [ w; is [-invariant and an element of W, and therefore equal

i
t0 Ores(a)- Equipped with this description, we now give a proof of the
main result of this section.

Proposition 1.5.4. We continue to observe the assumptions made
above. In particular, G is a quasisplit group over k. Then the map
res : X*(T) - X*(A) induces an equality

res(aa) = k’aa'

Proof. We first show that res(a’&) c @E Pick x € aa and a € A.
Then we need to show that

{res(a),res(z)) =0

or equivalently, that
1es(Z) — Ores(a) (res(x))

is a non-negative multiple of res(«). Note that res is W'-equivariant
(where W acts as W™ on X*(A)). Thus, it suffices to show that

1es(T — Ores(a)(2))

is a non-negative multiple of res(a). Thus, we need to compute z —
Tres(a) (). We do so using our description of Tres(a)-
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We first consider the case where the I'-orbit of ¢, consists of pairwise
commuting elements. Equivalently, the elements of I'aw are pairwise
orthogonal. Then

Ores(a) = Oayp, © ++- O 0y
for {ay, ..., a,} = Ta. Since x is dominant in the absolute root system,
we have
T — 04,(T) = a;0y
for some a; = 0. Then since «; is orthogonal to «; for ¢ # j, we have
0a;(a;) = aj. Thus,

T — O'res(a)(x) = Z(Um ©...0 0-041'71)(37) - (Ual ©...0 O-ai)<x)
= Z(UOH ©...0 Uaifl)(x - O.ai(x))

- Z(gal 0...004, ,)(ai)

Thus in this case,
1es(T — Ores(a) (7)) = (a1 + ... + ap)res(a)

and a; + ... + a, = 0 as desired.

Now we consider the case where ' = {«, f} and « and § are adja-
cent in D and connected by a single edge. Then 0,(5) = a+8 = oz(a).
In this case, Oesa) = 0p © 04 © 03. By assumption, we have that
T — 04(2) = acv and x — og(x) = bF for a and b non-negative. Thus,

T = Ores(a)(2) = (¢ — 05(x)) + 0p(x — 0a(x)) + (05 0 0a) (¢ — 05(1))
=bf + ala + B) + ba
= (a+b)(a+ P),
which projects to 2(a + b)res(«) and 2(a + b) > 0 as desired.
Finally, we must consider the case where ' equals {1, S, ..., an, Bn}
such that «; and f; are connected by a single edge in D but for ¢ #
J, neither o; nor 3; are connected to either o; or ;. We compute

x — (08, 0 04, 0 0g,)(x) as in the previous paragraph. Then if we let
w; = 0p, © 04, ©0a;, We have

Ores(a) = W1 © .. O Wp.
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Now we can compute T — Oes(a) () as in the commuting case, substi-
tuting w; for o,,. We see in this case that

1es(& — Opes(a) (7)) = 2(a1 + by + ... + ap, + by)res(av).

This concludes the proof that res(ag) c kag.

It remains to show that we actually have equality. We claim it suffices
to show that the fundamental weight dyes(o) is an element of res(aa).
Recall that 0,e5(a) is the element in the Q-span of the relative roots

—_—

defined so that the pairing with res(a) is 1 and the pairing is 0 with
all the other relative simple coroots. To show the claim proves our
result, we note there is a natural isomorphism X*(A)g = X*(Ap)g x
X*(A")g where A is the maximal k-split central torus and A’ is the
identity component of the intersection of A with the derived subgroup
of G. Then @5 corresponds under this identification to the product of

X*(Ap)g with the projection of kaa to X*(A’). Then we have a natural
map X*(Z(G)%)g — X*(Ap)g where Z(G)° is the identity component
of the center of G and X*(Z(G)O)Q c 5&. Thus it suffices to show
that res(ag) surjects onto the projection of kaa to X*(A’). This latter
space is identified with the set of non-negative linear combinations of
the fundamental relative weights, thus proving the claim.

To prove that esq) is an element of res(aa), we make use of an
equivalent description of dyeqq). It is the unique element in the Q-
span of the relative roots so that oyes()(dres(a)) = Ores(a) for res(a)) and
res(3) distinct simple roots and Oyes(8)(Ores(a)) = Ores(a) — res(3) when
res(a) = res(f).

In the case where the elements of ' are mutually orthogonal, we
have by the above characterization of fundamental weights that the
absolute fundamental weight 0, restricts to dyesa). In the case where
' has two elements that are connected in D, then ¢, restricts to
20res(a)- In the final case, d, restricts to 20e5(0). Thus, in all cases, we
can find an element of X*(7T")q that restricts to dyes(a). This completes
the proof. O

We record an important corollary of this proposition.

Corollary 1.5.5. Suppose p, 1’ € X.(T)g and pn > p'. Let u" be the
average of p over its T' orbit. Then p' > p/'V in X.(A)g. We caution
that the first inequality means that p— i’ is a non-negative combination
of absolute simple coroots, while the second means that u* — u'* is a
non-negative combination of relative simple coroots.

Proof. Recall that the action of I' stabilizes A. Thus for each vyel,
we have v(u) > v(¢') and so also pb' > u" in the absolute root
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system. Thus, we are reduced to showing that if z € X, (T )(5 is a
non-negative combination of simple absolute coroots, then it is also a
non-negative combination of simple relative coroots (under the identi-
fication X, (A)g = X.(T)g).

Equivalently, we need to show that if x has non-negative pairing
with every element of Ua, then z has non-negative pairing with every
element of ka’é. This is indeed equivalent because x has non-negative
pairing with each element of aa if and only if it has non-negative
pairing with each fundamental weight ¢, and this is the case if and
only if x is a non-negative combination of simple roots.

Finally, this equivalent statement is an immediate consequence of
the proposition. O
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Part 2. The Scholze-Shin Conjecture for Unramified Unitary
Groups (with Alex Youcis)

2.1. INTRODUCTION AND NOTATION

The goal of this Part is to explore the extent to which the results of
[Sch13b] can be generalized to unitary groups.

More explicitly, in [Sch13b] Scholze is able to to show that the
local Langlands conjecture for GL,(F), where F is a finite exten-
sion of QQ,, can be characterized by explicitly constructed ‘test func-
tions’. Less cryptically, he shows that for every cutoff function h €
CP(GL,(OF),Q) and every element 7 € Wpg, there is an explicitly
defined function f.;, € J€(GL,(F')) with the property that for any
irreducible smooth representation 7, of GL,,(F') that

(13) tr(frn | mp) = tr(h | mp) tr(7 | LL(mp)),

where LL is the local Langlands correspondence for GL,(F) as in
[HT01]. Moreover, Scholze shows that (13) uniquely characterizes the
correspondence LL.

The function f.; was constructed by Scholze in the earlier work
[Sch13a] and can be defined in terms of the cohomology of certain
tubular neighborhoods inside of Rapoport-Zink spaces associated to
GL,(F). Note that, in particular, f,, implicitly depends on the choice
of a dominant cocharacter of GL,, » which, in the above, is the cochar-
acter corresponding to the standard representation.

Scholze’s function theoretic characterization of the local Langlands
conjecture for GL,(F) has many applications, examples of which we
now list. Philosophically it suggests that the deep and somewhat ab-
stract Langlands correspondence can be understood, in some sense,
in terms of explicit functions which one might be able to algorithmi-
cally or combinatorially describe. A function theoretic characterization
of the Langlands correspondence allows for a more concrete study of
the endoscopic case of the Langlands functoriality principle, by study-
ing the transfer of these characterizing functions between endoscopic
groups. Finally, the function theoretic characterization of the local
Langlands conjecture lends itself to be used to study the Langlands
correspondence in more fluid situations (for example to study the local
Langlands correspondence in families as in [JNS17]).

Given the above, especially in any attempt to study functoriality us-
ing these ‘test functions’, one desires to generalize this result of Scholze
to an arbitrary reductive group G over Q,. In [SS13] Scholze and S.W.
Shin study the cohomology groups H*(Sh, F¢) where Sh is the Shimura
variety attached to certain compact unitary similitude groups G (those
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with no endoscopy as in §2.2.5). In particular, they describe the de-
composition of the G(Ay) x Wg, H*(Sh, F¢), where E is the reflex field
for Sh and p is a prime of F lying over a split place p of Q (see loc.
cit. for the definition of split, which is slightly less restrictive than the
usual notion of split), in terms of the local Langlands conjecture of
G(Q,) which is (a product of terms of the form) GL,,(F).

They also formulate generalizations of the formula (13) to groups
G over Q, other than Resp/g,GL, r. In particular, they state the
following;:

Conjecture 1 (Scholze-Shin). Let G' be an unramified group over Q,
with Z,-model G and let p be a dominant cocharacter of G@ with reflex
field E. Let 7 € Wy, and let h € CF(G(Z,y),Q). Let (H,s,n) be an
endoscopic group for G and let h*' be the transfer of h. Then, for
every tempered L-parameter ¢ with associated semi-simple parameter
A we have

(14)  SOL(fH) = tr (7 [ (rwome N wy |- 57") SO, (h).

We refer the reader to [SS13, §7] for a detailed explanation of the
notation but we note that SO, is the stable distribution of ¢ which
associates to a function f e #7(H(Q,)) the quantity

(15) SOL(f) = > retr(f|m),

mpell(p)

where I1(m,) is the L-packet of ¢ and 7, is a natural number associated
to 7 (see [SS13, §6]).

Remark. As remarked before, the function f;; depends on the choice
of p, but we suppress this dependency throughout this article since it
will always be clear from context.

Note that to make sense of Conjecture 1 one must have the analogue
of the functions f; for G as well as the knowledge of the local Lang-
lands conjecture for H. In this conjecture we are concerned with the
case where H = (. In this case, the existence of the functions f,
follows from the results of [Youl9] and the local Langlands conjecture
for H follows from the results of [Mok15].

The desire for the presence of endoscopic groups in Conjecture 1
is related to the fact that to characterize the local Langlands conjec-
ture for groups G different from Resr/q,GLj r, for which non-trivial
L-packets appear, one expects the need to relate any association with
endoscopic transfer, which the necessitates a formula like Equation (14)
for an arbitrary endoscopic group H.
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The result of the methods in this Part is the following (stated as
Theorem 2.4.15):

Theorem 1. The Scholze-Shin conjecture holds with the following as-
sumptions:

(1) G = Respq,U where U is an inner form of Ug/p(n)* and E/Q,
18 unramified.

(2) The parameter 1 is tempered.

(8) The L-packet of 1 contains a square integrable representation.

(4) (H,s,n) is the trivial endoscopic triple, and p is miniscule

Remark. In fact, we prove the above result for all local A-parameters
1 containing a representation m, appearing as a local constituent of a
representation m appearing in the cohomology of the unitary Shimura
varieties we consider and such that 7., is discrete series.

We now describe the contents of this Part, pointing out interesting
results which are incidental to the proof of Theorem 1.

In Section 1, we explore the notion of relevant endoscopy. Informally
speaking, the relevant endoscopy of a global group G is the set of endo-
scopic triples showing up in the stabilization of the trace formula for G.
More rigorously, we define an endosopic triple (H, s, ) to be relevant
if it can be completed to an endoscopic quadruple (H,s,n,vg) (as in
Definition 2.2.4). We show that this notion of relevance is intimately
related to an a priori different notion of relevance for (H,s,n) which
means that it can be upgraded to a quadruple (H, s, Ln, ) where 1
is an A-parameter for H and L7 o ¢# is relevant for G.

Remark. Here our notion of A-parameter is somewhat loose. In Section
1 we develop a method to analyze the above when the A-parameters
of an algebraic group G over a local or global field F' is taken to mean
certain homomorphisms ¢ : £, — “G where L, is some extension
of Wg by a pro-reductive connected algebraic group. In particular, we
shall apply this in the cases when F'is local (in which case these are the
usual notion of A-parameters) and when G is a global unitary group
in which case they are the A-parameters in [Kal+14, §1.3.4].

This then allows one to get a good understanding of the explicit
relationship between a unitary group G having no relevant endoscopy
and certain global parameters ¢ of G (as in [Kal+14]) having trivial
reduced global centralizer group S_¢ Namely, we show the following
(labeled as Proposition 2.2.31 in the main body of the paper):
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Theorem 2. Let G = Resp,qU be a global unitary group and let 1) be
a relevant A-parameter of G such that 1o, is elliptic for some infinite
place o of F. Then, if G has no relevant endoscopy then S, = 1.

As a corollary of this, using the deep work of [Kal+414], we obtain,
using the notation of Theorem 2, the following (labeled as Lemma
2.2.32 in the main body of the paper):

Corollary 1. Let m be an automorphic representation for G which is
discrete at infinity. Then, if G has no relevant endoscopy the following
equality holds

(16) Liise(G(Q\G(A))["] = ® =

mp€lly, (G(Qp)wp)

where 1 is the A-parameter associated to .

For a precise description of notation see the discussion surrounding
Lemma 2.2.32. In words, this lemma says that under suitable condi-
tions on G and 7 the away-from-p isotypic component of
L*(G(Q)\G(A)) associated to 7 consists of precisely representations
with local p-component lying in the packet of ¢, and, moreover, that
these appear with multiplicity one.

In Section 2 of this Part we show a decomposition of the cohomology
of a compact Shimura variety with no endoscopy. More precisely, we
have the following (labeled as Theorem 2.3.2):

Theorem 3. Let G be a reductive group over Q which has no relevant
endoscopy and for which G* is Q-anisotropic. Suppose that Sh is
a Shimura variety associated G with reflex field E,. Then, for any

algebraic Qq-representation € of G and any prime p of E,, there is a
decomposition of virtual Qg-representations of G(Ay) x VVE“p
(17) H*(Sh, Fe) = DR o(ry),
T

where Ty ranges over admissible Qq-representations of G(Ay) such that
there exists an automorphic representation m of G(A) such that;

(1) m; = () (using our identification Q, =~ C)

(2) Ty € s (§).
Moreover, for each wy there exists a cofinite set S(mg) < S™(ms) of

primes p such that for each prime p over E, lying over p and each
TE WEup the following equality holds:
(1) (7| olny)) = alm) trlr | 1y 0 o e B2l Sh

for some integer a(ms) (see Definition 2.3.6).
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Besides the singling out of the notion of relevance of endoscopy this
theorem has minimal original content, essentially being a technical ex-
ercise in showing that the results of [Kot92a] are applicable to the gen-
eral situation with the results of [KSZ] as a replacement for the results
of [Kot92b]. We have included the work here mostly for the conve-
nience of the reader, and to help fix ideas and notation that occur in
Section 3 of this Part.

In Section 3, we combine the results of the last two sections, together
with the work of [Shill] and [Youl9], to deduce Theorem 1.

To begin, we show that one can make explicit improvements to The-
orem 3 in the case that G = Resp/gU for a unitary group U. Namely,
we show the following (see the contents of §2.4.2):

Theorem 4. Let E/Q be a CM field with F its totally real subfield.
Let U be an inner form of Ug/p(n)* and set G := RespiU. As-
sume that G*! is Q-anisotropic and has no relevant endoscopy. Let
Sh be a Shimura variety associated to G.. Then, for any algebraic Q-
representation & and any prime p of E there is a decomposition of

virtual Q[G(Ay) x Wg,, |-modules
(19) H*(Sh, Fe)(x) = @y Ra(my) (rp o LL(m,))

Ty
where 7y ranges over admissible Qq-representations of G(Ay) such that
there exists an automorphic representation © of G(A) such that;
(1) mp = (m); (using our identification Q, =~ C)
(2) 7o € o (§).
and x is some global character and a(wy) is an integer (see Definition
2.3.6).

We also obtain, using Theorem 4 and Corollary 1, the further refine-
ment:

Corollary 2. Let w be be an automorphic representation of G such that
Ty is discrete series. Then, for any prime p of E and any algebraic Q-
representation § we have a decomposition of virtual Q,[G(Q,) x Wg,, |-
modules

(20) H*(Sh, F¢)[n}] = P T, K o(rh @ ).
Tr;ienwp (G(Qp),wp)

We then use the trace formula in [Youl9] together with Theorem 4
and Corollary 2 to deduce Theorem 1. To do this though, one must first
lift local representations at p to global representations of some unitary
group, and some care must be chosen in the conditions necssary to do
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this. We appeal to the results of [Shil2a] which is where the square-
integrability conditions enter into the equation.

Remark. We note that while much of this part is written with the
specific focus on unramified unitary groups, the rough strategy to prove
the Scholze-Shin conjecture seems applicable to a much wider class of
groups. The main impediments to generalizing is the lack of results
like [Kal+14] and [Shill] to apply to non-unitary groups.

Notations and conventions.

2.1.0.1. General.

e Unless stated otherwise p is a prime and ¢ is a prime different
from p.

e We will (sometimes implicitly) fix an isomorphism ¢ : Q, = C.

e Unless stated otherwise all fields are assumed of characteristic
0.

e For a number field F' and a finite place v of ' we shall denote
by F, the completion of F' at v, O, its integer ring, and k, its
residue field.

e For a number field F' we denote by Ar the topological ring of
F-adeles and by Ap s the topological subring of finite F-adeles.
We shall shorten Ag to A and Ag s to Ay.

2.1.0.2. Galois theory.

e For a field F and an algebraic extension F'/F we shall use
Gal(F'/F) to denote the Galois group of F’ over F. We shall
shorten Gal(F/F) to I'p.

e For a local or global field F' we shall denote by Wx the Weil
group of F' (as in [Tat79, §1]) with its implicit continuous map
with dense image Wy — ['p. For every finite Galois extension
F'" of F we shall use this map to canonically, and implicitly,
define an isomorphism Wg/Wpg =~ T'p/T'r and shall thus use
Gal(F'/F) to denote the common group.

e For a non-archimedean local field F' with residue field £ we shall
shall denote by I'r € Wg < I'r the inertia subgroup of F'.

e For a finite field F' we shall denote by Frobg, or just Frob if F
is clear from context, the geometric Frobenius element in I'p.

e For a non-archimedean local field F' with residue field £ we shall

denote by Frobg a lift of Frob; along the canonical surjection
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For a local field F' we shall denote by vg, or just v when F' is
clear from context, the valuation map v : Wr — Z where we
have normalized so that v(Frobg) = 1.

2.1.0.3. Reductive groups.

All reductive groups are assumed connected.

In contexts revolving arbitrary fields F' we shall denote algebraic
groups over F with non-boldfaced letters like G. In the context
where F'is a global field we will often denote a group over F' in
the boldface font (e.g. G). For a place v of F' we shall denote
shorten Gg, to G,. If there is some distinguished place vy of F
of interest to us we shall often use the non-boldfaced notation
G to denote G,.

For an algebraic group G over a field F' we denote by G° the
connected component of G and by my(G) the component group
G/G°.

For an algebraic group G over a field F' we denote by Z(G)
the center of G and by Zg(7) the centralizer of an element
ve G(F).

For an algebraic group G over a field F' and an element v € G(F)
we denote by I, the group Zg(7)°.

For an algebraic group G we denote G/Z(G) by G* and the
derived subgroup by G,

For a reductive group G over a field F' we denote by Ag the
maximal F-split torus in Z(G).

For a reductive group G over a field F' we shall denote by X, (G)
the I'p-set of homomorphisms G,, 7 — Gz and by X*(G) the
['p-module of homomorphisms Gz — G,, 7 Note that if G
is a torus then X,(G%) is also a I'm-module. We denote by
X}(G) the group of homomorphisms G,, p — G and identify it
implicitly with the subgroup X*(G)'r of X*(G).

For a reductive group G over a field F' we denote by {G} the set
of conjugacy classes in G(F'), by {G}s the set of stable conjugacy
classses in G(F'), and by {G}** and {G}3* the analogues with
G(F) replaced by the set G(F)*% of semisimple elements of
G(F). For an element v € G(F') we denote by {7y} (resp. {7}s)
its image in {G} (resp. {G}s).

For a reductive group G over a field F' and two elements ~ and
v in G(F') we use the notation v ~ 4/ to indicate that v and ~/
are conjugate, and the notation v ~¢ 7' to denote that v and
~" are stably conjugate.
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(21)

(22)

(23)

e For a reductive group G over a field F' and a semi-simple element

v € G(F) we denote by S(7) the collection of conjugacy classes
contained in the stable conjugacy class {7}.

For a reductive group G over a local field I’ and a semi-simple
element v € G(F) we denote by a(y) the cardinality of the
kernel of the natural map

H'(F,1,) —» H'(F, Za(7))

which is finite by the assumption that F' is local. Note that if
GY is simply connected then a(y) = 1 and so this term will
often times not factor in to our work (despite its presence in
many references).

For a reductive group G over a field F we denote by G(F)! the
set of elliptic elements of G(F') (see §2.5.1.1 for a discussion of
ellipticity).

If G is an algebraic group over a characteristic 0 local field we
will topologize G(F') in the standard way (e.g. as in [Con12b]).
We shall then denote the connected component of G(F') with
this topology by G(F)°.

If F'is a global field and G a reductive group over F' we shall
topologize G(Ar) and G(Af ) in the standard ways (again see
[Conl2b]) .

For a number field F' and a reductive group G over F we denote
by S(G) the set of finite places v of F' for which G, is unramified
(i.e. which admits a reductive model over Spec(Q,) in the sense
of [Conl4, Definition 3.1.1}).

For a number field F' and a reductive group G over F' we will of-
ten implicitly choose a reductive model G, of G, over Spec(O,)
for all v e S(G).

We shall denote by Ky, the hyperspecial subgroup G,(0,) <
G(F,) for all v € S(G). For finite v ¢ S(G) or infinite v we
shall define K, to be G(F,).

We will implicitly make the identification of topological groups

G(ar) = [[(G(F,), Ko)

v

and the identification

Glars) = [] (G(E), Ko,)

v finite

obtained by (passing to the colimit) in [Con12b, Theorem 3.6].
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(24)

e For a reductive group over a number field F we denote by

G(Ar)! the subgroup of G(Af) defined as follows
G(A)' :={ge G(A): |v(g)] =1 for all v € X*(G)'F}

where A7 is given the usual norm.

For a reductive group G over the number field F' we note that
evidently (by the product rule) that G(F) < G(Ar)! we define
the adelic quotient of G, denoted [G], to be the topological
space G(A)!/G(Q) which is a measure space whenever G(A) is
given a measure.

For F a global field and G a reductive group over F' we denote
by 7(G) the Tamagawa number of G defined to be vol([G])
when G(A) is endowed with the Tamagawa measure (as in
[Weil2, Chapter II]). See [PS92, Theorem 5.6] for a proof that
such a volume is finite.

For G a reductive group over Q and K a compact open sub-
group of G(Ay) we denote by Z(Q)g the group Z(G)(Q) n K
and by Zx the group Z(G)(As) n K.

e Let I’ be a local field and G a reductive group over F. We

denote by e(G) the Kottwitz sign as in [Kot83].

2.1.0.4. Harmonic analysis.

(25)

e Let F' be a number field and G a reductive group over F. Let

C' be an algebraically closed field and let 7y be an irreducible
admissible C-representation of G(Ap ). Then, we shall denote
by

/
Tr = ® Tfw

the Flath decomposition with respect to the set {Kj,} as in
[Fla79]. We then denote by S™(7y) the set of v € S(G) such
that 7, is K, unramified (i.e. for which Wﬁg’” # 0) and call a
place v in S™(7y) unramified. Again, we will make it clear when
things fundamentally change with different choices of K ,.

If v e S%(my) let us denote by ¢, the associated unramified
local Langlands parameter Wg, — G, as in [Bor79, Chapter
11].

Let F' be a non-archimedean local field and let G be a reduc-
tive group over F. For a characteristic 0 field C' We denote by
He(G(F)), or just (G(F)) when C is clear the Hecke alge-
bra as in [Car+79, §1.3] where we have implicitly (often times
clear from context) fixed a Q-valued Haar measure dg on G(F).
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(26)

(28)

(29)

(30)

For a compact open subgroup K of G(F') we shall denote by
Ho(G(F), K), or just #(G(F), K) when C is clear from con-
text, as in loc. cit.

Let F be a local field and G a reductive group over F'. Let us
suppose that ¢ € .#¢(G(F)) and that v € G(F') is semi-simple.
Then, we define the orbital integral of ¢, denoted O, (¢), to be
the quantity

0,(¢) = J d(gvg ") dg
L(F)\G(F)

We define the stable orbital integral of ¢, denoted SO,(¢), to
be the quantity

S50,(¢) = Z e(1y)a(y") O, ()
Y sty
Let F be a global field and let G be a reductive group over
F. Let ¢ be an element of ¢ (G(Afr)) and v € G(Ar) semi-
simple (i.e. that each of its local factors is semi-simple). We
then define the orbital integral of ¢, denoted O,(¢), to be the
quantity

O, (¢) = f o(gvg~") dg
I,(Ar)\G(AF)

Assume now that v € G(F'). We define the stable orbital integral
of ¢, denoted SO, (¢), to be the quantity

Z e(L,,)0,,(9)

Here i ranges over the set
ker(F.I(Ar)) — H'(F, G(Ar))

The element 7; € G(Ap) is the one associated to i by applying
[Kot86b, §4.1] place by place. Note, in particular, that for all
places v of F' the v*'-component of ~; is stably conjugate to 7.
Suppose that G is a reductive group over Q and &¢ is an alge-
braic representation of G¢. Let Il (&) be the set of isomor-
phism classes of all irreducible G(R)-representations having the
same central and infinitesimal character as the contragredient
representation and let TIJ ({¢) be the subset of discrete series
representations in IT,(&c). If € is an algebraic Q,-representation
of G we use our identification of Q, and C to obtain a corre-
sponding C-representation {c and we set I1,,(§) := Il (éc) and

I15,(§) = 115, (&)
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e Let G be a reductive group over Q. Let 7 be a C-representation
(or Qg-representation using our identification of Q, and C). We
set m(m) to be the multiplicity of m in L2_ (G(Q)\G(A)).

disc

2.1.0.5. Algebraic geometry.

e For a variety X over a field k and a lisse Q-sheaf F on X with
char(k) # ¢ we then denote by H*(X, F) the virtual Q,-space

2dim(X)

(31) D (F1)H (X, Fp).

1=0

2.1.0.6. Shimura varieties.

e We shall denote Shimura data as (G, X)) as in [Mil04, Definition
5.5].

e We shall assume that all of our Shimura data are of abelian
type.

e We shall assume only that our Shimura data satisfy axioms
SV1, SV2, and SV3 as in [Mil04], but will often assume that
our Shimura data also satisfies axiom of SV5.

o If (G,X) is a Shimura datum, we shall denote its associated
reflex field (as in [Mil04, Definition 12.2]) by E(G, X) or, when
(G, X) is clear from context, just E.

e For every neat (as on [Mil04, Page 34]) compact open subgroup
K of G(Ay) we denote by Shx(G, X), or Shx when (G, X)
is clear from context, the canonical model (in the sense of
[Mil04, Definition 12.8]) of the complex variety Shx (G, X)c (as
in [Mil04, Definition 5.14]) over its reflex field E.

e We denote by Sh the E-scheme limShy as K runs over the
K
neat compact open subgroups of G(Ay). Note that this exists

by [Stacks, Tag 01YX] since the transition maps for the system
{Shg} have finite (and thus affine) transition maps.

e Let ¢ be a prime and let ¢ be an algebraic Q-representation
of G (i.e. an algebraic representation § : Gg; — GLg (V) for

some Q-space V) such that for the induced map
G(Ag) P2 G(Q) — G(Q) —~ CLg (V)

has the property that Z(Q)x < ker¢ for all sufficiently small
compact open subgroups K < G(Ay).
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2.2. RELEVANT GLOBAL ENDOSCOPY

2.2.1. Introduction. In this section, we discuss the notion of relevant
global endoscopy. Loosely, for a group G defined over a number field
F, we say that an elliptic endoscopic datum (H, s,n) is relevant if it
appears in the stable trace formula for the group G. We then prove
some applications of our discussion which will be necessary for our main
results.

2.2.2. Definitions and statements. We assume for convenience in
this entire part that G4 is simply connected. We begin by recalling
the definition of endoscopic datum as in [Shil0, §2.1].

Definition 2.2.1. An endoscopic datum for a reductive group G over
a field F' consists of a triple (H, s,n) where H is a quasisplit reductive
group, n : H— G is an embedding and s € H such that

o We have an equality n(H) = Zg(s)°,

o The @-conjugacy class of n 1s fized by I'p,
The image of s in Z(H)/Z(G) lies in (Z(H)/Z(G))'F,
The image of s € H'(F, Z(G)) is trivial if F is local and locally
trivial if F s global.

An endoscopic datum is defined to be elliptic if (Z([/-\[)F)O c Z(@’)

We record now our definition of isomorphism between endoscopic
data:

Definition 2.2.2. An isomorphism between endoscopic data
(Hy,s1,m) and (Ha, s9,m2) s an isomorphism « : Hy — Hy such that

A~ A~

there exists g € G such that a(s1) = s mod Z(G) and the following
diagram commutes:

H1 L @
(32) "“l llnug)
H, "5 G,

We denote the set of isomorphism classes of endoscopic data for
G by E(G) and we denote the set of isomorphism classes of elliptic
endoscopic data by EN(G).

Note that the map & is I'p-invariant and only well-defined up to a

~T
choice of splittings (see [Kot84b, §1.8]) and hence up to H; "_conjugacy
but that the above diagram makes sense for any choice of @ in this class.
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Note also that we will often confuse H for n(ﬁ[ ) and so, in particular,
will often confuse s and 7(s).

Now, since we assume G is simply connected, for each endoscopic
datum (H,s,n), there exists a lift of n to an L-map n: 'H — LG
(see [Lan79, Prop 1]). The following lemma will be useful to us.

Lemma 2.2.3. Suppose that (Hy, s1,m) and (Ha, se,12) are endoscopic
data and fiz lifts “n; and ny of N1 and 1y respectively. Suppose furthez’
that o : Hy — Hy gives an isomorphism of endoscopic data and g € G
is as in 2.2.2. Then for each choice of @, there exists a lift ‘o of a
such that the following diagram commutes:

L,,71
Ly, "M, L
(33) Lal llnt(g)
L
Ly, ™, Lq,

Moreover, the }/f\l—conjugacy class of Yo does not depend on the choice
of & org.

Proof. We want to define “a to equal In, ' o Int(g) o Fn;. For this to
make sense, we need to show that the image of Int(g)o “n; is contained
in the image of ;. ~

Now there exists for each w € Wr and i € {1, 2}, elements g(w); € G

—~

so that n;(1,w) = (g(w);,w). We observe that for any h; € H;, we
have

(34) (g(w)i(w - 1) (hi), w) = Fni(1,w) Fni(w™ (hi), 1)
(35) = "ni(hi, w)

(36) = "ni(hi, 1) P (1, w)

(37) = (ni(hi)g(w)i, w),

so that

(38) It (g(w); ") (ni(he)) = (w - n:) ().

Now, it suffices to check that for each (1,w) € LH, there exists an
(ha,w) € ¥Hy such that

(39) (99(w)iw(g™"), w) = (n2(h2)g(w)2, w).
Hence we need to check that gg(w)w(g ') g(w);* € 772(}/]\2). It suffices

to show that this element lies in Zé(T]Q(_/H\g)) since for any maximal

torus 71" of I-/I\Q, we have 75(T") is a maximal torus of G and so

(40) Zg(ne(Ha)) < Zg(na(T)) = m(T) < 1 (Hy).
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Now pick hy € ]/'{\2 We observe that using equation (38), we have

(g™ ))((w 12)(h2))
( 1(hz));q))

H

as desired.
Now we show the second statement of the lemma. As above, we

~T
have that the map @ is unique up to H; F—conjugacy. For a fixed
choice of @ if we have pick two different ¢, ¢’ € G such that the reg-

uisite diagram commutes, then Int(g~'g’) fixes 7]1(]/-[\1) pointwise and

L

so g g € nl(Z(}/I\l)). Hence any two “« will differ at most up to

conjugacy by an element of Hj. U

We are now ready to define the notion of relevant endoscopy. We
begin with some definitions following [Shil0, §2.3].

The first definition is that of the set of so-called endoscopic quadru-
ples for the group G:

Definition 2.2.4. For F' a local or global field define EQr(G) to be
the set of equivalence classes of tuples (H, s,n,vg) such that (H, s,n) is
an endoscopic triple and vy € H(F') transfers to G(F) and is (G, H)-
reqular and semisimple. The tuples (H,s,n,vy) and (H',s',n',vy) are
equivalent if there exists an isomorphism o : H — H inducing an
isomorphism of endoscopic data and such that a(vy) is stably conjugate
to yi. We define the subset EQP(G) < EQp(G) to consist of those
equivalence classes such that (H, s,n) is elliptic.

We now define a set of pairs associated to G consisting, essentially, of
a semi-simple element v of G(F') and an element of its Kottwitz group
R(I,/F) (see 2.5.1.5 for a recollection of the Kottwitz group). More
precisely:

Definition 2.2.5. For F' a local or global field define SSr(G) to be
the set of equivalence classes of pairs (v, k) such that v € G(F) is
semisimple and k € R(I,/F). Two pairs (v, k) and (v, k") are equiva-
lent if v and ~' are stably conjugate in G and k and k' are equal under
the canonical isomorphism R(I,/F) = R(1,/F). We define the subset
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SSNMG) = SSr(G) to be the equivalence classes of pairs where 7y is
elliptic.

Now we have the following key bijection due to Kottwitz:

Proposition 2.2.6. The natural map

(47) EQp(G) — SSk(G),
given by
(48) (H, s,m,7u) = (v,n(s)),

(where 7y is some transfer of vy to G(F') ) is well-defined and a bijection.
Moreover this map restricts to give a bijection

(49) EQNG) — SSHN(G).
Proof. See [Shil0, Lemma 2.8] as well as [Kot86b, Lemma 9.7]. O
We are now ready to define the notion of relevant endoscopy.

Definition 2.2.7. Let F' be a number field and G a reductive group
over F'. We have a natural projection map

(50) EQr(G) — £(G).
which restricts to a map
(51) £Q7(G) — &N(G).

We define the subsets RE(G) < £(G) and REM(G) < £YG) to be the
images of the first and second maps respectively. We say that the set
RE(G) is the set of relevant global endoscopy of G and that RE(G)
1s the set of relevant elliptic global endoscopy.

We now state the representation-theoretic analogue of 2.2.6, part of a
general web of analogies between representation theory and conjugacy
classes. Such constructions appear for instance in works of Kottwitz
(see the proof of [Kot84b, Prop 11.3.2]) and Shelstad ([She83, §4.2]).
We choose to provide the details in this work.

For the remainder of this subsection, let us fix F' to be a local or
global field and G a reductive group over F.

We shall use the notion of A-parameters which we now recall. To
do this we will be using the notion of the Langlands group Lg as in
the introduction of [Art02]. When F' is a local field such a group is
Wpg x SLa(C) but when F' is a number field the existence of such a
Langlands group (for which we use Langlands original pro-algebraic
formalism) is conjectural. We shall then only use its basic properties
assumed for such a group as in loc. cit.
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We shall denote by K the kernel of the projection map Lr — Wg
which is a connected pro-algebraic group over C (which we often tacitly
identify with its C-points).

We begin with the definition of an L-parameter since this will make
the definition of an A-parameter easier to parse:

Definition 2.2.8. Let Lr be the Langlands group. Then, an L - pa-
rameter for G is a continuous map ¢ : Lr — “G such that the following
conditions hold:

(1) The restriction of the map ¢k has image in G c LG and is

algebraic as a map K — G.
(2) The diagram

(52) ,CF ¢—) LG

N

Wk

18 commutative.

(3) For all w € L the element ¢p(w) € LG is semisimple or, in
other words, that under any representation “G — GL,(C) (in
the sense of [Bor79, §2.6]) the image of ¢p(w) is semi-simple.

Two L parameters ¢y and ¢o for G are said to be equivalent if there
erists g € G such that

(53) w = g~ da(w)gdr (w) ™!

is a (locally) trivial 1 cocycle of Lr taking values in Z(@)

In the case that F' is local, we say that the L-parameter ¢ is relevant
if whenever ¢(Lr) = P for P a parabolic subgroup of G (in the sense
of [Bor79, §3]), then P is conjugate in G to “P for some parabolic
subgroup P < G. In the case that F' s global, we say that ¢ is relevant
if for each place v of I, we have ¢, := 1|z, is relevant.

We then move on to the slight variant of L-parameters known as
A-parameters:

Definition 2.2.9. Let Lr be the Langlands group. Then, an A - pa-
rameter for G is a continuous map v : Lr x SLy(C) — G such that
the following conditions hold:

(1) The restriction ., is an L-parameter.

(2) The restriction Vs, (c) takes image in G and the resulting map
of complex Lie groups is holomorphic.
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(8) The diagram

(54) L x SLy(C) —2= LG

.

Wr
18 commutative.
(4) The image of v(Lr) in LG is bounded (i.e. relatively compact).
Two A parameters 1 and o for G are said to be equivalent if there
ezists g € G such that

(55) w = g~ (W) gihr (w) ™!

is a (locally) trivial 1 cocycle of Ly x SLy(C) taking values in Z(G).

In the case that F' is local, we say that the A-parameter 1 is relevant
if whenever ¥(Lp x SLy(C)) = P for P = LG a parabolic subgroup,
then P is conjugate in *G to L'P for some parabolic subgroup P < G.
In the case that F' 1is global, we say that 1 is relevant if for each place
v of F, we have 1, 1= |z, xsL,(c) is relevant.

We also need the notion of when, for (H,s,n) an endoscopic triple

for G, two A-parameters ¥ and ¢¥ of H are Z(G)-equivalent. This
definition is as follows:

Definition 2.2.10. Let (H,s,n) and endoscopic group of G. Then,
two A-parameters i1 and & of H are said to be Z(G)-equivalent if
there exists an element h € H such that the map

(56) w = B! (w)hay! (w)
is a (locally) trivial 1-cocycle of Lp x SLy(C) valued in Z(CA?)
We need the following definitions as in [Kot84b, §10].

Definition 2.2.11. Let G be a reductive group over F andAlet Y be an
A parameter for G. Then we define Cy, to be the set of g € G such that

g commutes with the image of . We also define Sy as the set of g € G
such that

(57) w = g~ (w)g(w)
is a (locally) trivial 1-cocycle of Lr x SLy(C) valued in Z(G). Note
that evidently Z(G) < Sy and we define Sy, to be Sy/Z(G).

We define an A-parameter ¢ to be elliptic if i) factors through no
proper Levi subgroup of G and we have the following lemma of Kot-
twitz
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Lemma 2.2.12. The following are equivalent.
(1) The parameter 1 is elliptic,
(2) Cy = Z(G),
(3) S5 < Z(G).
Proof. See [Kot84b, Lemma 10.3.1]. O

We now move towards stating our desired bijection. We begin first
by defining the set on one side of the bijection. Roughly, this consists
of A-parameters for endoscopic groups for G. More precisely:

Definition 2.2.13. Define the set EPp(G) to be equivalences classes
of quadruples (H,s, 'n, ) where Iy : YH — LG is an L-map,
(H,s, I'n|z) is an endoscopic datum, and ™ is an A-parameter of
H such that *n o™ is relevant.

Two quadruples (Hy, s1, Pny, ) and (Ha, 52, Ene,H) are equiva-
lent if there is an isomorphism « : Hy — Hy of endoscopic data such
that Lo o is Z(G)-equivalent to v&. By 2.2.3, note that the choice
of Lo is unique up to I/f\l—conjugacy and that the notion of Z(@) equiv-
alence does not depend on this choice.

We define EPS(G) < EPR(G) to be the subset consisting of those
tuples such that (H,s,n) is an elliptic endoscopic datum and *n o
18 elliptic.

We then have the following definition of the other set in our desired
bijection:

Definition 2.2.14. Define the set SPr(G) of equivalence classes of
pairs (1,5) such that 1 is a relevant Arthur parameter of G ands € Sy.
Two pairs (11,51) and (19, 52) are equivalent if 11 and 1y are equivalent

by some g € G such that Int(g)(51) and 5o are conjugate in Sy, .

We define SP(G) < SPr(G) to consist of those pairs such that v
15 elliptic.

We can now finally state our desired bijection:
Proposition 2.2.15. The map
(58) [H, s, “n, 0] — [ o™ n(s)]

s
gwes a well-defined bijection EPr(G) — SPr(G). Moreover, this map
restricts to a bijection

(59) EPH(G) — SPH(G).
We now consider the case where F' is a global field and G is a reduc-

tive group over F'. We have another construction analogous to that of
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RE(G) and RE(G). Namely we define REP(G) to be the image of
the projection

(60) EPr(G) — £(G),
and REP(G) to be the image of the projection
(61) EPMG) — £(G).

This suggests the following
Question 2.2.16. Is it true that

(62) REP(G) = RE(G),
and
(63) REPNG) = REMN(G)?

An important remark to make is that the previous discussion as well
as the statement of 2.2.15 for global F' are contingent on the defini-
tion of the global Langlands group Lr. In fact, our proof of 2.2.15
uses this group in a somewhat nAontriVial way, as we need to use v
to construct a Galois action on H. We instead we prove the follow-
ing result, which can be seen as evidence of the conjectured inclusion
REPN(G) = REM(G). This result carries no hidden conjectures on
the Langlands correspondence. In particular, we will use it in the proof
of our main result on the Scholze-Shin conjecture.

Theorem 2.2.17. Suppose that F is a totally real number field. Sup-
pose that we have a triple (H, s, ¥n) such that (H, s,n) is an endoscopic
group for G and n is an extension of n to YH. In particular, for each
place v of F we get an endoscopic datum (H,, s, n,) of G,. Suppose
further that for each place v, we have an A-parameter Y2 of H, such
that Ln, o Y& is relevant. We assume further that at each real place
Vo, (Hy,,s,n) is elliptic and that H,_ has an elliptic mazimal torus.

Then in fact (H,s,n) € RE(G).

Remark 2.2.18. The restriction that F' is totally real is not really a
strong condition since it is almost implied by the later assumptions.
In particular, to have that Hy, has an elliptic maximal torus for all
infinite places v, implies, unless H is itself a torus, that F' is totally
real.

2.2.3. Proof of 2.2.15. We now give the proof of the key bijection
2.2.15. Before we begin the proof in earnest, it will be helpful to es-
tablish two useful general lemmata.

The first is the following:

82



Lemma 2.2.19. Let X be a complex reductive group. Let s € X(C)
be semisimple and setY := Zx(s)°. Then, the map Nx(Y) — Out(Y)
giwen on C-points by sending x € Nx(Y')(C) to Int(z);y has finite im-
age.

Proof. Let us note that Zx(Z(Y"))® is contained in the kernel of the map
Nx(Y) — Out(Y). Indeed, it suffices to show that Zx(Z(Y))° < Y.
We first observe that s € Z(Y'). Evidently s € Z(Zx(s)) < Zx(s) so
the only non-trivial statement is that s is actually in Zx(s)° = Y. But,
note that since s is semisimple, we have s € T'(C) for T a maximal torus
of X. Hence s e T(C) c Y and so s € Y and thus s € Z(Y'). Therefore,
Zx(Z(Y)) € Zx(s) and thus Zx(Z(Y))° < Zx(s)° =Y.

To finish the proof, it suffices to show that Nx(Y)/Zx(Z(Y))° is
finite. But, since Zx(Z(Y))° is finite index in Zx(Z(Y)) it suffices
to show that Nx(Y)/Zx(Z(Y)) is finite. Note though that Nx(Y) <
Nx(Z(Y)) since Z(Y) is a characteristic subgroup of Y. Thus, we get
an inclusion

(64) Nx(Y)/2x(Z2(Y)) — Nx(Z2(Y))/Zx(Z(Y))

and thus it suffices to show this latter group is finite. Of course, this is
equivalent to showing that Nx(Z(Y))° and Zx(Z(Y'))° coincide. Since
Z(Y') is multiplicative (since Y is reductive by [Hum95, §2.2]) this claim
follows from [Hum?75, Corollary, §16.3]. O

The second lemma is the following;:

Lemma 2.2.20. Let F' be a field of characteristic 0. Let X be reductive
group over F and let S be a splitting of X. Then, given a finite Ga-
lois extension F'/F and a homomorphism & : Gal(F'/F) — Out(X),
there exists a unique quasi-split group H over F' such that there is an
isomorphism H = X equivariant (up to inner automorphisms).

Proof. Let ¥ be the based root datum associated to the triple (X, B, T')
and let (X', B’,T") be the dual triple with associated root datum W".
Let X{) be the unique split model of X’ over F'. Note then that we have
natural isomorphisms of (constant) group (schemes)

(65) Out((Xg)g) = Out(X') =~ Aut(¥") =~ Aut(¥) =~ Out(X)
Note then associated to ¢ is a homomorphism ¢ : Gal(F'/F) —
Out((X{)z). Then, by Proposition 2.5.68 we get a unique associated

quasi-split inner form H of X{. Moreover, it’s clear from construction
that the natural map I'r — Out(Hy) coincides with £V. It is then not

hard to see that we have a natural isomorphism H = X as desired. O

We now return to the proof of Proposition 2.2.15:
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Proof. (Proposition 2.2.15) We first define a map EPr(G) — SPr(G).
Pick a representative (H,s, In,¢) of [H,s, In,¢"]| € EPr(G). We
then get a parameter 1 of G given by 1 o In.

Now, by definition of endoscopic triple we have that w — s~ w(s)
is a (locally) trivial 1-cocycle of Wy with values in Z(G) and this

induces a (locally) trivial 1-cocycle of Lp x SLo(C) via the projection
L x SLy(C) — Wg. But then we have for all w € L x SLy(C)

(66) s~ (w)sy™ (w) ™ = sTw(s)

so that n(s) € Sy. Conversely, pick an equivalence class [¢,35] €
SPr(G) and pick a representative (¢,5). Let s € Sy be a lift of 5.

Define H := Zz(s)? and define n to be the natural embedding H— Q.

Now, for any g € im(¢0) = LG, the map Int(g) : G — G stabilizes H
and hence gives a continuous homomorphism

(67) U : Ly x SLy(C) — Out(H).

given by sending an element (w, ) € Lr to the image of Int(¢/(w, )5

under the map Aut(H) — Out(H). To see the continuity note that the
map Lr x SLy(C) — LG is definitionally continuous. The map G —
Aut(“G) is also clearly continuous. The map Aut(“G) — Out(H) is
continuous as one can clearly reduce to the split case in which case it
reduces to checking the continuity of the map Aut(G) — Out(H) but
this is clear since this map of groups can be promoted to a functor of
the associated group schemes. We claim that v has finite image. To see
this note that it suffices to show that the image of Nrg(H) — Out(H)
has finite image. Note though that there is a finite extension F/F such
that G is split so that £(Gg) is merely G x . Since “(Gp) is finite
index in G it’s not hard to see that we can reduce to the case when
G is split. The claim then immediately follows from Lemma 2.2.19.
Now note that any continuous finite quotient of Lp is of the form
Gal(F'/F) for some finite extension F’/F. Indeed, evidently SLy(C)
has no non-trivial finite continuous quotients. Thus, it suffices to prove
the claim for Lr. Now, if K denotes the kernel of Lr — Wy then K
is a connected pro-reductive complex group. Thus, K also has no
non-trivial finite continuous quotients. Thus, we’ve reduced the claim
to Wpr for which the claim is obvious. Thus, we have associated to
(s,%) a homomorphism v : Gal(F'/F) — Out(H) which, by Lemma
2.2.20, allows us to find a quasi-split group H over F’ whose dual group
is naturally isomorphic to H equivariant for the I'r actions on both
sides.
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We now claim that that (H,s,n) is an endoscopic datum for G. It
remains to check that the conjugacy class of 7 is I'p-invariant and that
the image of s € H'(F, Z(G)) is (locally) trivial. For the first check,
we pick w € I'r and need to show that the constructed action of w on
H differs from the action of w on G by an inner automorphism of G.
In other words we need to show that for all 0 € I'r that there exists
some g, € G such that
(68) ggomno 011{1 = Int(g,) o
This is true by construction. For the second property, we note that the
image of s in H'(F), Z(CA?)) is definitionally given by w — s 1w(s) for
w e T'p. Since T'y acts on H, and thus Z(G) < H, through Gal(F'/F)
we see that this cocycle is induced from a cocycle in
HY(Gal(F'/F), Z(G)). Now we observe that for any lift w' € Lp x
SLy(C) of w, we have

(69) sTHp(w)sy(w) T = s w(s).
Since s € Sy, this gives the desired result.

By our assumption that G9° is simply connected, we can extend 7
toamap 'n: PH — YG. Then we need to check that the parameter v
factors through 7. We shall follow techniques discussed in unpublished
notes of Kottwitz. Let us begin by defining the subgroup H of “G as
the set of elements x € “G such that there exists an element y € *H
such that the equality

(70) Int(z) o by = 5o nt(y),

holds. Note that H depends only on 7 | 7 and, in particular, only on
the endoscopic triple (H, s,n). We then have the following observation
of Kottwitz:

Lemma 2.2.21. The set H is a subgroup of YG which is a split exten-
sion of Wg by H.

Proof. The proof is due to unpublished work of Kottwitz.

There exists a finite extension K /F such that the action of I'r on H
and G factors through I'x. Now pick o € Gal(K/F) and w € W such
that w projects to o € Gal(K/F). Then (1,w) € “H acts on H by o.

~

By definition, there exists a g, € G such that Int(g,) on = o - 1. Then

(71) no (1,w) = Int(o(gs), w)) o,
which implies H surjects onto Wp.

Now the kernel of H — Wy consists of x € G such that there exists
y € H and Int(z) on = noInt(y). Clearly n(ﬁ]) is contained in this
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set. Conversely, we have that Int(z7'n(y)) acts trivially on H. In
particular, z7'n(y) must centralize a maximal torus Ty of n(H). Then
Ty is maximal in G as well so z7'n(y) € Ty < n(H). Hence z € n(H).

We now prove that the extension

(72) 1o n(H) > H—>Wp—1

is split. We proceed as follows. Let T < B be maximal torus and Borel
of H and let T be the subgroup of H of elements preserving the pair
(n(f), n(é)) Then 7 is an extension of Wr by n(f)

Then [Lan79, Lemma 4] says that if there exists a field K that is a
finite Galois extension of F' such that the action of Wr on T factors
through Gal(K/F'), then T is split. Since this is the case, T is split so
we can take a splitting ¢ : Wr — T. Then this is also a splitting of H.

O

We then observe that for any 7, we have “n(LH) < H. In par-

ticular, In gives a map of extensions of Wy by n(H) and hence is an
isomorphism onto H.

Thus, to show that ¢ factors through 7, we need only show that
im(¢)) < H. We need to show that for each x € im(¢)), there exists
y € H such that the projections of x and y to Wy agree and

(73) Int(z) o p = noInt(y),

on H. First pick w € Ly x SLy(C) and consider ¢ (w). Then we check
that there exists an element y € ©H such that Int(¢)(w))on = nolnt(y).
But indeed this follows immediately from the fact that the L-action of
the projection w € Wr on H < LH differs from that of Int(y(w))
by an element of Inn(ﬁ[ ). We then define a parameter 1 such that
L77 o wH _ 1/}

We now show the map we have constructed is well-defined. First,
one can also easily show that choosing a different lift of 5 gives an
isomorphic endoscopic datum. Next, suppose that (i1, 37) is equivalent

to (19, 53) by some g € G satisfying w — g (w)g ' (w); ' is a (locally)
trivial cocycle of Lr valued in Z (é) Then by assumption gs;g~! is
conjugate by some s € Sy, to 53 and so the groups f]l and PAIQ are
conjugate in G by sg. Moreover, it is easy to check that the map
Int(sg) : H, — H, will preserve the actions of I'z up to an inner
automorphism of ﬁZ and hence descends to an isomorphism « : Hy —
H, defined over F. The map « then gives an isomorphism of the
endoscopic data (Hy, sy, m1) and (Hy, s9,12) and “Int(sg) o is Z(G)-
equivalent to & . This shows the map is well-defined.
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To conclude the proof, we must show that the maps EPp(G) —
SPr(G) and SPr(G) — EPr(G) that we have constructed are inverses
of each other. It is clear that the composition SPr(G) — EPr(G) —
SPr(G) is the identity. Indeed, the first map sends [, 1] to an element
of EPr(G) of the form [H, s, 'n, "] where s is a lift of 5 to Sy and
Ly o = 4h. The second map then takes [H, s, Ln, "] to [n(s), no
»H]. But, by definition @ = 5 and n oy = 4 from where the
conclusion follows.

We now show that the composition EPr(G) — SPr(G) — EPr(G)
is the identity. Take a representative (H, s, In, ) of [H, s, Ly, "] e
EPr(G). Then we want to show that this is equivalent to the tuple
(H',s', L/, ™) that we get from applying the composition EPx(G) —
SPr(G) — EPr(G) to (H,s, ¥n,y™). Note that, up to equivalence,
we can assume that s’ = s and so we have a map of complex Lie groups
n ton: 0— .

We claim this map is equivariant for each w € I'r up to conjugation
by some h € H. There exists some finite extension E/F such that the
actions of I'r on both groups factor through Gal(E/F') hence we need
only prove the claim for w € Gal(E/F). Pick a lift w’ € Lp x SLy(C)
of w, the action of w on each group differs by an inner automorphism
from the action of conjugation by 1 (w’) or ¥ (w') respectively. So
then we have (up to conjugation which we denote by ~) for h e H:

(74)  (w- ('~ om)(h) = wln' ™ n(w™" (h))

(75) ~ Int(™ () (' n(Int (™ (w') "))
(76) = (' oInt(y(w")) o Int(¢p(w') ") o ) (R)
(77) = (n on)(h).

This proves the claim and implies that the isomorphism descends to
an isomorphism « : H — H defined over F. This satisfies a(s) = s

A~

mod Z(G) and hence gives the desired isomorphism of endoscopic data.
Moreover, it is clear that we have an equivalence

(H, s, b, "), (H', ', By, ™).
We now check that the bijection restricts to give a bijection

(78) EPNG) — SPG).

We need to check that if [¢,5] € SPr(G)!, then the tuple
(H, s, In, 9™ we construct from (1, 5) satisfies that (H, s,n) is elliptic.
But we have n((Z(H)'r)%) < n(Cou) = Cf Z(G) as desired. Note
that the last equality holds by [Kot84b, lemma 10.3.1]. O
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2.2.4. Proof of 2.2.17. We now prove our main result on relevancy of
global endoscopy. We need to construct a (G, H)-regular v € H(F)
such that g transfers to some elliptic v € G(F'). To do so, we first
need the following proposition.

Proposition 2.2.22 ([Kot90, pg 188]). G be a group over a totally
number field F. Let (H,s,n) be an endoscopic datum of G such that
(H,, s,n) is elliptic for all infinite places v of F. Let yg € H(F)
be a (G, H)-regular semisimple element such that yg transfers to an
element of G(F,) for each place v of F and vy is elliptic as an element
of H(F,) for all infinite places v of F'. Then in fact, yu transfers to a
semisimple v € G(F).

Let us note that it suffices to consider the case when F' = Q. Indeed,
set G’ := Resp/gG and set (H',s’,%’) to be so that H' = Resy/oH, the
element s’ := (s,...,s) « H = H™ (where m := [F:Q]), and 7/ is the
map H -G given by

(79) /(b hm) o= (n(ha), . n(ha), - (b))

Then, if we let v be equal to v as an element of H'(Q) = H(F) we
get the desired result.
Before we begin the proof in earnest, we record here a general fact:

Lemma 2.2.23. Let X be a reductive group over a field F. Then,
there is a short exact sequence of I' p-modules

(30) 1> K — Z(X)° - Z(X)° > 1
where K is some finite I'p-module. If F is a local field, this in turn
induces a natural isogeny of abelian groups

(81) (Z(R)°)'F — (Z(X)*)"r

Proof. Let us begin by noting that we have a short exact sequence of
connected reductive F-groups

(82) 1-Z(X) ->X->0Q—1

where ) := X/Z(X)° is semisimple. We then get a short exact se-
quence of I' m-modules

(83) 1 2(Q) — Z(X) - Z(X)" — 1

A~

Note that since @ is semisimple, Z(Q) is finite (e.g. [Kot84b, (1.8.4)])
from where the first part of the proposition follows.
Let us now consider the associated long exact sequence of I' p--modules

(84) 1 Z(Q)" — (Z(R))'F - (Z(X)")'r — H\(F, Z(Q))
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We are thAen done by observing that since F' is a local field that
HY(F, Z(Q)) is finite. O

Proof. (Proposition 2.2.22) By assumption there exists a v € G(A) such
that yg transfers to v. Let ¢ : G* — G be a quasisplit inner twist of
G. By [Kot82, Theorem 4.1}, vg transfers to some v* € G*(Q).

Now, as in [Kot86b, §6], the elements v*,v determine an element
obs(v) € &(L,+/Q)” such that v is conjugate in G(A) to an element of
G(Q) if and only if obs(y) is trivial.

Lemma 2.2.24. The element v* € G(R) is R-elliptic.

Proof. Since g is (G, H)-regular and elliptic in H(R), it follows that
v* is elliptic in G*(R). Indeed, recall first that since H is an endoscopic
group of G that Z(G) < Z(H) as Q-groups (e.g. see the second to last
paragraph of [Shil0, Page 5]). Note then that since vg is (G, H)-
regular that I, and /,+ are inner forms (e.g. see [Kot86b, §3]). Thus,

(85) Z(G)<c Z(H) < Z(1,) = Z(1*)
holds and thus
(86) Z(Gr) <€ Z(Hg) € Z(I,r) = Z(1+ r)

holds by base change.

To show that v* is elliptic we need to show that Z(I,xr)°/Z(Gg)°
is R-anisotropic. By assumption we have that Z(I,r)°/Z(Hg)° is R-
anisotropic. Since (H, s,n) is R-elliptic we have that Z(Hg)? = Z(Gg)$
(e.g. see the second to last paragraph of [Shil0, Page 5]), which implies
the desired consequence. U

Lemma 2.2.25. The containment (Z(I/W\*)FOO)O < Z(G) holds.
Proof. Begin by noting that

(87) Z(L)'= = Z(Tz)™
Now, by assumption we have that 17" := Z(I,«g)° is an elliptic torus

in Gg. Then, by lemma 2.5.37 implies that (7/Z(G)) ™ is finite (note
that Z(G) = Z (é%) so we ignore the difference). Thus, a foritiori,
we know that 77 /Z(G)'™ is finite. In particular, since (Z(G)"=)° is
finite index in Z(G)Fw, we have that (Z(é‘:)rm)O is finite index in 77

Now, note that we're trying to show that ((Z(I/T;’\]R)FOO)O c Z(G)
so it suffices to show that (Z(I,+2)™)° = (Z(G)'=)°. Note that ev-
idently (Z(G)=)° is contained in (Z(I«z)'*)°, and since the latter
is connected it suffices to show that the former is finite index in the
latter.
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Now, we know that (Z(é)rf‘o)o is finite index in 77=. Note though
that by Lemma 2.2.23 we have an isogeny of abelian groups

(88) (Z(m@o)roo — ((Z([V*,R)O)A)FOO = frw

which is equivariant for the inclusions of (Z (G‘)FO")O on both sides. In
particular, since (Z(G)'=)° is finite index in 777 it’s also finite index
in (Z(Lpnm)")"™.

Note then that we have the exact sequence of I'.,-modules

—_—

(89) L= Z(Ing)" = Z(Ie ) = mo(Z (I 8)) = 1
which gives us the exact sequence
(90) 1= (Z(Lep)")"" = Z(Le )" = mo(Z(Lep)"™

which shows that, since mo(Z (L« z)) is finite, that (Z(I,«g)°)™ is finite
index in Z(m{)rm. Since (Z(CA?)F”)O is finite index in (Z(mg)o)rw
it follows that it’s also finite index in Z (m@r ©. It follows that
(Z(@)FOO)O must be finite index in (Z(@)Fw)o from where the con-
clusion follows. O

—~

Now, the action of I on Z(I,«) factors through some finite quotient
'k let o be the nontrivial element of I'g. This gives a conjugacy class
{o} < I'k. Then by Cebotarev Density, we can find some finite place v
of @ such that the conjugacy class of Frob, equals {c}. In particular,
for such a v, we have

(91) (Z(Lp)')* < Z(La)™ = Z(G).

Now, recall that the set of G(Q,) conjugacy classes in the stable con-
jugacy class of v* is in bijection with ker[H*(Q,, Lx) — H'(Q,, G)].
Then by the Kottwitz isomorphism we have the bijection
(92)
ker[H'(Qy, I,+) — H'(Q,, G)] = ker[mo(Z(1,+)™)P — mo(Z(G)'™)"].

—~

Now, &(I,x/Q,) equals the image of Z(I,+) under the map

—~

(93) Z(L)5 — [Z(1%)/Z(G)]™.

v

Since the kernel of this map is Z(G)'™ and we have shown that in our
case

(94) (Z(L)")° = Z(G),
it follows that in fact, the map
(95) Z(Lpe)s — [2(I,+)/ Z(G)]™
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factors through my(Z (I/,Y\*)Fv) and hence, we have an exact sequence

(96) 10(Z(G)™) — mo(Z(I#)™ — &(L+/Q,) — 1.
Dualizing gives

97)  R(Lx/Q,)P = ker[mo(Z(L+)™)P — mo(Z(G)™)],

and so in conclusion, we have a bijection

(98) ker[H'(Qy, I,+) — H'(Q,, G)] = &(L,+/Q,)".
By definition, we have a surjection
(99) R(Lx)Q,)P — A(L/Q).

Finally, we observe that £(/,+/Q,) = R(1,/Q,) so that we in fact have
a surjection

(100) ker[H'(Q,, I,) — H'(Q,, G)] = &(L,+/Q)".

In particular, it follows that we can modify 7 at the place v by some sta-
ble conjugate such that obs(y) vanishes. This then implies the desired
result. U

We now return to the proof of 2.2.17. By 2.2.22, we just need to find
a semisimple (G, H)-regular vy € H(F') that transfers to each G(F},)
and is elliptic at each real place.

We now reduce the question of transferring yg to that of transferring
a torus 17" of H. More precisely, we record the following lemma

Lemma 2.2.26. Let (H,s,n) be an endoscopic group for G such that
H and G are defined over a local field F'. Suppose T = H is a mazximal
torus defined over F and that T transfers to G in the sense of [Shil0)]
after remark 2.6. Then for any semisimple v € T(F), we have that
transfers to G(F') in the sense of [Shil0, §2.5].

Proof. This is clear from definition. 0

Hence, to prove 2.2.17, it suffices to find a maximal torus T < H
defined over F' that transfers to G since the (G, H)-regular elements
are dense in T. By 2.5.12, there exists a T defined over F' and such
that for each place v of F' that G, is not quasisplit, we have T, is
elliptic. In the quasisplit cases, it is clear that T, transfers. Hence it
suffices to show that if (H,,s, In,, ¥, T,) is such that (H,,s,n,) is
an endoscopic datum, ¥ is an A-parameter of H, such that fno
is a relevant parameter of G,, and T, is an elliptic maximal torus of
H, defined over F},, then T, tran/sfers to Gy,. .

Now consider the torus n,((Z(H,)'#)°) = G,. Then the centralizer
of this torus in *G,, surjects onto W, since it contains “n(*H,). In
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particular, we have that Zrqg, (ny((Z(ﬁ,)FFv)o)) is a Levi subgroup of
LG, by [Bor79, Lemma 3.5]. To simplify notation, we denote this
subgroup M. By assumption, since clearly “n, factors through M,
we have that M is relevant. Hence M in conjugate by an element of
G, to a subgroup “M < LG, such that M < G, is a standard Levi
subgroup. Since we are only concerned with the endoscopic datum
(H,, s,m,) up to isomorphism, we can replace it with any isomorphic
datum (H,, s,n,0Int(g)). In particular, we can and do assume without
loss of generality that M = M.

We claim that (H,, s,7,) is an elliptic endoscopic datum for M. We
first check that (H,, s,n,) is an endoscopic datum for M. To see that
the conjugacy class of 1, is ['p, -invariant, we note that fn(*H,) = M.
Since W, and I'g, act through some finite quotient Gal(K/F,) on H,
and é\v, it suffices to show that the conjugacy class of 7 is invariant
under the action of some arbitrary o € Gal(K/F,). Let w € W, be a
lift of o. Then En(1,w) = (m,w) € YM and we have

(101) 0'77:0@:077001:{%

(102) — Int((1,w)) oo Int((1,w™"))
(103) = Int((1,w)(w(m 1), w ")) on
(104) = Int(m ") o,

as desired. The only remaining check to show that (H,,s,n,) is an
endoscopic datum is that the image of s in H*(F,, Z (]\//T )EF) s trivial,
but this follows immediately from the functoriality of these cohomology
groups. Finally, to prove that the d/a\tum is elliptic, we observe that by
assumption, n,((Z(H,) '*)°) < Z(M).

Now, we transfer T, to M* and observe that since the endoscopic
datum is elliptic, T, must be elliptic in M*. In particular, it follows
that T, transfers to M and therefore G,. This completes the proof.

2.2.5. No relevant global endoscopy. Our goal in this subsection
is to discuss the case where a group G possesses no relevant endoscopic
groups other than the trivial one.

Namely, let us make the following definition:

Definition 2.2.27. Let G be a reductive group over a number field F.
We say that G has no relevant global endoscopy if RE(G) consists (up
to equivalence) only of the trivial endoscopic triple (G, e,id). We say
that G has no relevant global elliptic endoscopy if RE?(G) consists
(up to equivalence) only of the trivial endoscopic triple (G, e,id).
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We make the following useful observation:

Lemma 2.2.28. Let G be a reductive group over a number field F.
Then, G has no relevant global endoscopy if and only if for all semi-
simple v € G(F) we have that R(1,/F) = 0. Similarly, G has no
relevant global elliptic endoscopy if for all semi-simple and elliptic v €
G(F') we have that R(1,/F) = 0.

Proof. Suppose first that G has no relevant global endoscopy. Pick
(7,k) € SSp(G). Note then that by Proposition 2.2.6, we get an
element (H,s,n,va) € £Qr(G) associated to (,x). By assumption,
we then know that (H,s,n) ~ (G,e,id) and so in particular, n(s) €
Z (é’), which implies & is trivial.

Conversely, suppose that K(I,/F) is trivial for all semi-simple v €
G(F). Let (H,s,n) be an element of RE(G). Choose some semi-
simple yg € H(F) such that (H,s,n,vg) is an element of £Qr(G).
Note that by Proposition 2.2.6 we get associated to this quadruple a
pair (v, k) € SSr(G). By our assumption we have that k = 0. Pick a
transfer v* of v to G*(F). Then (G*,e,id, ) is an element of EQr(G)
which maps to (v,0) under Proposition 2.2.6. Thus, we deduce that
(H,s,n,7u1) ~ (G*, ¢,id, ) as desired.

The elliptic version is similar. U

We will be mostly interested in reductive groups G such that G*¢ is
F-anisotropic and which satisfy the Hasse principle (i.e. that
ker'(F,G) = 0), in which case the condition of no relevant global
(elliptic) endoscopy takes the following particularly simple form:

Proposition 2.2.29. Let F' be a number field and G be a reductive
group over F. Assume further that G is F-anistropic and satisfies
the Hasse principle. Then, the following are equivalent:
(1) G has no relevant global endoscopy.
(2) G has no relevant global elliptic endoscopy.
(3) For all mazimal F-tori T < G one has that the containment
Z(G)' =TT is actually an equality.

Proof. Let us begin by observing that 1. and 2. are equivalent simply
because every semi-simple element of G(F') is elliptic. Thus, it suffices
to prove the equivalence of 1. and 3.

Note tha}\t since G satisfies the Hasse principle, we have that
ker'(I', Z(G)) vanishes (e.g. see [Kot84b, Remark 4.4]). Thus, it’s
fairly easy to see that for any semi-simple v in G(F') we have that

(105) K(L,/F) = Z(L)"/Z(G)"
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and thus the implication of 3. implies 1. follows immediately from
Lemma 2.5.36. The implication that 1. implies 3. would follow quite
simply if every maximal torus 7" in G were of the form I, for some
semi-simple v € G(F'). But, this follows immediately from Theorem
2.5.20.

O

2.2.6. An application to the representation theory of unitary
groups. In this subsection, we derive some results on the representa-
tion theory of global unitary groups with no relevant global endoscopy.
In particular, we show that the relevant elliptic A-parameters of such
groups satisfy S_w = 1. While one could prove this in enough cases us-
ing special assumptions to prove our main result, we prefer the present,
more systematic, approach.

Let F/Q be a total real extension of number fields and E/F be
a quadratic imaginary extension. Let n be an odd natural number
and (Ug/p(n),w) be an inner twist of Ug/p(n)* having no relevant en-
doscopy. Such a group exists by 2.4.2.

In the course of our proof, we need to appeal to the bijection 2.2.15
in the global case. To avoid making assumptions about the global
Langlands group Lg, we work with “automorphic A-parameters” in
the sense of [Kal+14, §1.3.4]. This notion is originally due to Arthur
[Art13]. We note that an automorphic parameter yields at each place
v of F, a localization 1, which is an A-parameter of U, [Kal+14,
§1.3.5]. Moreover, one can make sense of the groups Cy and Sy for
such parameters [Kal+14, §1.3.4]. In particular, we note that the words
elliptic and relevant make sense for automorphic parameters. Thus, a
first step is to prove a version of 2.2.15 for automorphic parameters.

Proposition 2.2.30. Let E/F be a quadratic extension of number
fields. Let U be an inner form of Ug/p(N)*. Let us make the following
notational definitions
o Set AEPr(U) to be the set of all quadruples (H,s,tn,v*) where
(H,s,Ln) is an extended endoscopic datum of U And ¢ =
(™, 0¢) e W(H, ') (as in [Kal+14, §1.3.6)).
o Set ASPr(U) to be the set of all pairs (5,1) where
=" ¢) e ¥(U,ny,) and 5 € Sy.
We then have a bijection AEPp(U) - ASPr(U) given by

(106) [H, s, ", "] — [Fno e, n(s)],

Moreover, this bijection is compatible via localization with the local
version of 2.2.15 using the localization map in [Kal+1/, §1.8.5].
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Proof. The bijection is constructed analogously to the proof of 2.2.15.
We first define the inverse map. Given [3,v] € ASPr(U) we need to
construct an element of AEPr(U), In particular, £, is an extension of
Wg by a pro-reductive group just as Lp was. Since this was the key
property of Lr that we used, we can construct the datum (H, s, n)
using a lift of 5 and ¢ : £, — U as in the proof of 2.2.15. Then
we can conclude as before that z/; factors through the image of Ly and
hence gives rise to a parameter 1 such that n, o Fnoyt = )™ as desired.
As in 2.2.15 we conclude that this map is the desired inverse.

Now we prove compatibility with the local version of 2.2.15. We
need to show that if v is a place of F', then the bijection in 2.2.15 iden-
tifies [H,, sy, “ny, ¥%] with [5,4,]. This follows from the commutative
diagram after Proposition 1.3.3 in [Kal+14]. O

2.2.6.1. The Triviality of S_w In this subsection, we prove that relevant
elliptic parameters of the group U := Ug/p(n) satisfy Sy = 1.

Proposition 2.2.31. Let ¢ be a relevant elliptic automorphic A - pa-
rameter of U such that for some infinite place vy, of F', we have by,
is elliptic. Then we have Sy, = 1.

Proof. Suppose for contradiction that S_w has a nontrivial element 5
and pick a lift s € Sy.

AThen for each place v of F', we see that identifying U < LU with
U, ¢ 'U,, we get that s € Sy, so that (¢,,5,) € SPg,(G,) and
hence by 2.2.15 we get an endoscopic datum (H,, s,,1,) of G,. Under
our identifications, f[\v c G, and 7, is the inclusigg map. Moreover
ny(sy) = s. In particular, we have for all v that n,(H,) = Zg(s)°.

By 2.2.30, we get a datum [H, s, n,¢*] € AEPR(U). In particular,
we have a global endoscopic datum (H, s, ) that localizes at each place
v to (Hy, Sy,my). Now, v, ramifies over E since E/F is imaginary
and hence U, is an inner form of Ug, /p,_(n). Since we assumed
y,, s elliptic, it follows from 2.2.15 that (H,,, Su,,, M., ) is an elliptic
endoscopic datum.

We now pick a lift “n of 1 and note that for each place v, we get a map
Lp,. Now, we recall that the choice of the lift L7, in the construction
of the map SPr(G,) — EPr(G,) is arbitrary and picking a different
lift does not change (H,, s,7,). In particular, we could have picked at
each place v, the lift In, of 7, that we got from localizing ‘n. Note
however that doing so does change the parameters 1.

In particular, we now have, without loss of generality, a tuple
(H, s, In) and for each v € F, a parameter 1™ of H, such that 5, o
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YHv is relevant. Furthermore, since 1., was assumed to be elliptic,
(Hy, s,m,) is elliptic. Furthermore, H is a product of unitary groups
and so has an elliptic maximal torus. In particular, we are now in
the situation to apply 2.2.17. We get that there exists a semisimple
v € H(F') such that (H,s,n,va) € RE(U). Now by 2.2.6 we get an
element (7, k) € SS3(G). Since s is nontrivial in Sy, it follows that
is nontrivial. This contradicts that for U, all 8(1,/F) are trivial. O

2.2.6.2. Isotypic Components. Now, let G = Resp/oU and choose x,,, =
for U as in [Kal+14, Thm. 1.7.1]. Then it follows from that theorem
that we have a decomposition

107 BLUF\UG) - @ @
PeWa (U* )y, ) melly (U,w,ey)

Now we fix a representation 7 of G(Ag) that is discrete at oo. Since
G(Ag) = U(Ap), we can equivalently consider 7 to be a representation
of U(Ar). We call this representation 7’ so as to avoid confusion. Now,
at any place p of Q, we have

(108) m, = X)),
vlp

Then the Satake parameters of v’ determine a unique parameter ),
of U such that 7’ € Il ,(U,§). Since 7’ is discrete at each infinite
place, it follows that 1, has trivial Arthur SLs-factor and hence is
generic. Hence by the comment after equation [Kal+14, (1.2.4)], we
have that each element of II, ,(U,w) is irreducible. Moreover each
element of the packet appears with multiplicity 1 by the global multi-
plicity formula.

Now by 2.2.31, it follows that II, ,(U,w,€y_,) = Il (U,w) or, in
other words, the condition involving €, _, is vacuous. In particular, if
we let 7w'” denote the factor of 7r that is the complement of ® 7, then

vlp
we have

(109) Lix(UFNUA))["1 =) D =

v|p W@EHwﬂ_z) (Uyp,w)
We can define a parameter ¢, of the group G. Since G, = HU”’
[2

it follows that

(110) P T = X) P .

Tyl (G(Qp) ) olp whelly_, (Uyw)

In particular, we record the following result.
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Lemma 2.2.32. We have the following decomposition.

(111) Liiee(GQ\G(A))[7"] = S Tp-

Yrp€lly, (G(Qp) w)

2.3. THE /¢-AD1ICc COHOMOLOGY OF COMPACT SHIMURA VARIETIES
wITH NO ENDOSCOPY

2.3.1. Introduction. We state in this section a result on the decompo-
sition of the cohomology of certain compact Shimura varieties Sh(G, X)
in the case when (G, X)) has no relevant global endoscopy (in the sense
of §2.2.5). The results here are largely a technical generalization of the
results in [Kot92a] using the newly proven results of [KSZ] checking,
in all cases, that the methods of [Kot92a] work in this more general
setting under the umbrella assumption of no endoscopy.

This decomposition will be key to understanding the Scholze-Shin
conjecture at a given bad place in terms of the already established
Scholze—Shin conjecture at a good place which, at least in the case
of the trivial endoscopic triple, is just a rephrasing of the results of
[Kot84a].

2.3.2. Statement of the decomposition result. Let us now state
the decomposition result of interest to us. To do this, we begin by
detailing the necessary setup.

We start with a Shimura datum (G, X)) which we assume to be of
abelian type. We assume further that our group satisfies Axiom SV5
of [Mil04]. By [Mil04, Theorem 5.26] (and the succeeding discussion)
this is equivalent to assuming that (Ag)r = Ag,. We assume further
that G/Z(G) is Q-anisotropic. Note that this implies that if T is
a maximal torus in G then Ty is an elliptic maximal torus in Gg.
Thus, in particular, we see that G(R) has discrete series (see [Kna0l,
Theorem 12.20]). We also assume that G is simply connected.

Most importantly, we assume that the group G has no relevant global
endoscopy (in the sense of §2.2.5). This is the key assumption which
makes the proof of Theorem 2.3.1 below possible.

Let us fix a prime ¢ and let € be an algebraic Q-representation of G
(i.e. an algebraic representation § : Gg; — GLg, (V) for some Qg-space
V') which induces a representation

G(Af) 2% G(Q) — G(Qr) — GLg(V)

which we also denote &.

Let us also note that from the conjugacy class X one obtains a
conjugacy class of cocharacters p of G¢ as on [Mil04, Page 111] which
(as in loc. cit.) induces a unique conjugacy class of cocharacters, also
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denoted p, over Q. Moreover, by definition, the reflex field E(G, X)
is precisely the reflex field of p as in §2.5.1.4. We denote this field
by E,. Then, by the contents of §2.5.1.4 we obtain a representation
Ty G x Wg, — GL(V(w)).

Finally, fix an isomorphism ¢ : Q; = C which we implicitly use
throughout the sequel. In particular, via ¢, we get an algebraic repre-
sentation & over C.

With these assumptions, and in the notation as above the following

holds:

Theorem 2.3.1. There is a decomposition of virtual Q,[G(Ay)x Wg,]-
representations

(112) H*(Sh, F¢) = @7 R o(np),

Tf

where m; ranges over admissible Qq-representations of G(Ay) such that
there exists an automorphic representation m of G(A) such that;

(1) mp = (m); (using our identification Q, =~ C)

(2) T € I16(€).
Moreover, for each wy there exists a cofinite set S(mg) < S™(7¢) of
primes p such that for each prime p over E, lying over p and each
TE WEup the following equality holds:

(113) tr(r | o(my)) = a(mg) tr(r | r_p 0 (pﬂp)pév(f)[Eup:Qp] dimSh

for some integer a(my) (see Definition 2.3.6).

As stated in the introduction, the proof of this result (closely imitat-
ing [Kot92a]) is broken up in to three main steps. These, very roughly,
go as follows:

e Step 1: Construct a function f which projects the cohomology
H*(Sh, F¢) on to its ms-isotypic component so that,
by construction, the quantity tr(f x 7 | H*(Sh, F¢))
agrees with left-hand side of (113).

e Step 2: Use results of Kisin-Shin-Zhu in [KKSZ] to express the
quantity tr(f x 7 | H*(Sh, F¢)) in terms of sums of
orbital integrals.

e Step 3: Pseudo-stabilize the result to obtain the right-hand
side of (113).

The rest of Part I will be dedicated to carefully carrying out this
proof step-by-step.
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2.3.3. The function f. In this subsection we construct a smooth func-
tion f: G(A) — C alluded to in Step 1 above. This function f, which
will admit a factorization f = fof®, is deceptively notated since it
really depends on the following data:

e An admissible Q-representation 7; of G(Ay).
e A compact open subgroup K of G(Ay) such that 7; has a non-
zero K-invariant vector.

e The set 119 (€).

The function f will be constructed in a highly non-explicit way. This
is relevant since the entrance of the cofinite set S(m;) < S"(mf) in
Theorem 2.3.1 enters in to the picture via f. Namely hidden in Step
2 of the outline above is the assumption that at p one can decompose
fas [ = fPlg,,. Thus, the inexplicitness of f is part and parcel with
the inexplicitness of the cofinite set S(my).

2.3.3.1. The construction of fo, and basic properties. Let us begin by
recalling the basic setup of the theory of pseudo-coefficients in the
context that we need them. Let us fix x to be a smooth character
Ag(R)Y — C*. We then define the following set:

Definition 2.3.2. The set 7 (G(R), x) is the set of all smooth func-
tions f : G(R) — C such that

(1) flag) = x(a)f(g) for all a e Ag(R)".
(2) The function fx~' : G(R)/Ac(R)" — C is compactly sup-
ported.

Let us now consider the set I1,(y) of irreducible admissible repre-
sentations of G(R) with central character y and let T1% () denote the
subset of Il (x) consisting of those elements which are discrete series
for G(R). Let us note that for a fixed 7% € 112 (x) we make the fol-
lowing definition:

Definition 2.3.3. A pseudo-coefficient for 75, is an element frpo €
A (G(R),x 1) such that for all tempered my € T (x) we have that

0

1 it 7y =y,

(114) (i, | 7o) = {

0 if otherwise

Let us be clear about what the above trace means. Namely, for 7,
in ITo(x) we set tr(fro | 7) to be the trace of the operator

(115) - f Fro (9)70(9)(v) dg
G(R)/Ag(R)°
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which is well-defined since the product of fro and 7y transform by
the identity under Ag(R)? and since Jro is compactly supported on
G(R)/Ac(R)".

The existence of such pseudo-coefficients can be deduced from the
research announcement [CD85], with a full proof found in the references
of said paper.

Let us now fix an element 73, € 19 (¢) which, in particular, is an
element of T1, (Xgl). Let us denote by fro € 7(G(R), x») the pseudo-
coefficient of 7% in the sense discussed above.

We record the following equality:

Proposition 2.3.4. For any v, € G(R) semisimple, the following
equality holds:
(116)

tr(§(ve))vol(Ag(R)?/1n(R)) e(ln) if 70 € G(R)™
0 if otherwise

where g := (—1)3mSh £

ter inner form of I, .

o and Iy is the unique anisotropic modulo cen-

Remark 2.3.5. Note that the existence of I, follows from Lemma 2.5.11.
Indeed, since we are assuming that G(R) has an elliptic maximal torus
we know from Corollary 2.5.9 that for v,, € G(R)°! we have that 7, €
T'(R) for some maximal elliptic torus 7" of Gg. Note then that 7' < I
and thus I, has an elliptic maximal torus, which shows that Lemma
2.5.11 applies.

Let us note that in the above formula the quantity SO, (g) is sensi-
cal (in the sense that the integrals defining this stable orbital integral
converge) since fro is compactly supported on G(R)/Ag(R)* and so,
in particular, compactly supported on I, (R)\G(R) since Ag(R)* <

Proposition 2.3.4. We follow [Kot92a, §3.1]. Let us first assume that
Vs 18 strongly regular. Note that then that since v, is elliptic strongly
regular, we have that I, = I,,. Now we have:

(117)

O (f) = VOI(A(;,(R)O\I%O(R))*l@ﬁgo('y;cl) if 7, elliptic
IR Y if vy not elliptic
where 0,9 is the function associated to the Harisha-Chandra character
of 7% by Harish-Chandra’s theorem (for a proof of this formula see

[Art93, Theorem 5.1]). Suppose now that v, is strongly regular elliptic.
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Then, by Proposition 2.5.21 we deduce that
(118)
SO, (9):= D>, Oylg)
[vb0]~s [ oo
= Z Owye (9)
’wEWC/WR

= ), (=1)"Mol(AG(R)N\ L, (R)) 'O (w - "))
weWe /W

Note that in the first line the lack of the terms a(v.,) is due to our
assumption that G is simply connected, and the lack of the Kottwitz
sign is because I, , by assumption, is a torus which has trivial Kottwitz
sign (since it is quasi-split).

Let us write 7% := (¢, By) as in [Kot90, Page 185]. Then, this last
term is equal, by the Harish-Chandra character formula, to
(119)

im I oo(]R> — — _
Z (_1)d ShVOl(W) ' Z Xw' By (w ) 7001>AW’-BO (w ’ 7@1)
weWe,/ W G w'eWp

But, this is visibly equal to
(120)

S DN T Y o (0w (1)

weWe /Wy w'eWg

which is equal to
(121)

im I oc(R) — — _
Z Z (_1)d ShVOl(AL(R)O) 1X”LU"(U)'BO)(’yool)Aw"(w'Bo)(’yoog
w'eWg wEW(C/WR

which, by concatenation, is equal to
(122) (=1)"™S" 3" vol(Ag(R)M\ Ly, (R)) ™ Xurn (2" ) Aur 5y (V)
’LU//EWC

But, by the Weyl character formula this is equal to
(123) vol(Ag(R)"\Iy, (R)) ™" tr&(7ec)

as desired.

For the case for general elliptic v, € G(R) (not necessarily strongly
regular) we proceed as follows. Note that by Corollary 2.5.10 7 is
contained in some elliptic maximal torus of Gg. The result then follows
from the above description and [She83, Lemma 2.9.3].
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Note that the Kottwitz sign e(/) enters due to the difference in sign
conventions between this article and that of Shelstad (see [She83, Page
2.12)). O

With the above, we are now well-positioned to define f., and observe
its basic properties. Namely, let us define f,, as follows:

-1 dim Sh
(1) fa

124 S Sl
(124) B Tmer A,

Note that this sum is sensical since 11 (£) is a finite set.

Note then that by the definition of pseudo-coefficients we have that
for any 7y, an irreducible tempered representation of G(R) in I1,(¢),
the following equality holds:

(_1)dim$h

(125) tr(fo | m0) =1 [H%(E)]
0 if otherwise

if 7, € 1% (€)

with this trace having the same meaning as the discussion succeeding
Definition 2.3.3.

The last thing we record is that there is a certain well-defined inte-
ger a(my) associated to any admissible irreducible representation 7y of
G(Ay). Namely, let us make the following definition.

Definition 2.3.6. Let notation be as above. We then define a(my) as
follows:

(126) amp) = Y] mlr@ma) tilfe | 7o)
Ton€lly (€)

Let us begin by observing the following:

Lemma 2.3.7. The equality
(127) a(mp) = Y, mlmp @me) tr((—1) " frg | 7o)
ﬂgoenoo(f)

holds for any 72 € 119, (€).

Proof. Let K be any compact open subgroup of G(A;) such that
Wff # 0. Let us then note that the C-space V' of automorphic represen-
tations such that w,, € I1,(§) is an admissible G(Af)-representation
by Harish-Chandra’s theorem (e.g. see [BJ79, Theorem 1.7]). Let us
choose any function h as in Proposition 2.3.12 where normalize so that
tr(h | mf) = 1. Note then that our desired equality is equivalent to

(128) Zm tr(hfe | 7) = Zm —1)dmShg, | )
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where 7 travels over automorphic G(A)-representations with central
character agreeing with that of £¥. But, by Proposition 2.5.59 this is
equivalent to the claim that
(129)

T(G) Y, SO,(hfe)=7(G) Y, SO, ((-1)""f)

{1}se{Gls= {1}se{Gles

But, note that the left-hand side of this equality is equal, by definition
of fo, to

(130)  ISE©IT(G) Y, YISO (A(-1) )
{1}se{Glss T
Note though that by Proposition 2.5.59 we have that

(131) SO, (h(=1)"3N fr ) = SO, (A(=1)"™" fro )
(because both sides are equal to the expression given in Proposition
2.5.59) from where the conclusion follows. U

The following proposition will be useful shortly:
Proposition 2.3.8. The complex number a(my) is an element of Z.

Proof. 1t suffices to show that if f;o is a pseudo-coefficient for an ele-
ment 73, € 19, (§) then tr(fro | 7s) € Z for every € I1,(£). Suppose
that m,, has the same central character as 7. We know that 7., as
an element of the Grothendieck group of representatlons of G(R), is
a Z-linear combination of standard representations (e.g. see [ABV12,
Lemma 1.20]. We then use the fact (see [CD90, Corollaire Page 213])
that the trace of a pseudocoefficient for 7% is 0 on all standard repre-
sentations except 7.

U
Finally, we record the following alternative description of the integer
a(ﬂ'f):
Proposition 2.3.9. We have an equality
(132) a(my) = Z m (7 @ Too) N lep(m0 @ &)

Trooel_lgC

where N = |[I1%] - |10(G(R)/Z(G)(R))| and ep(mx ® &c) is the Euler-
Poincare characteristic of H*(g, Ko, Teo ® &c)-

Proof. See [Kot92a, Lemma 3.2] and [Kot92a, Lemma 4.2]. The only
assertion thatr used in the proof that requires justifcation is the fact
that K /Z(G)(R) is connected in our situation. But, this follows from
the observation that if K/, is a maximal compact subgroup of G4°(R)
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(which is connected by [PS92, Theorem 7.6] given our assumption that
G is simply connected) then K/ surjects on to K,/Z(G)(R). O

Corollary 2.3.10. Let K be a compact open subgroup of G(Ay) such
that wf # 0. Then, H*(Shg, Fo)[x] # 0 if and only if a(ry) # 0.

Proof. This follows from [BR94, frm-e.3] as well as [BC+83]. Again,
note that by our assumption that G2 is Q-anisotropic, we know that
Shy (G, X)¥ is proper for all neat M < G(Af) (by [Pau04, Lemma
3.1.5]) and so L2-cohomology agrees with singular cohomology, and
thus has a comparison with étale cohomology by Artin’s comparison
theorem. O

Finally, we record the following result of Vogan-Zuckerman. Namely:

Proposition 2.3.11 ([VZ84]). Suppose that £ is reqular. Then, we
have the equality a(m;) = (—1)3™5hm (1, @ 72).

2.3.3.2. The construction of f*. To construct f* we first start with
the following basic observation:

Proposition 2.3.12. Let K < G(Ay) be compact open and let V' be
an admissible semisimple Q,[G (Af)]-representation. Then, there exists
some P e 7(G(Ay), K) such that the action of P on'V is the projector
of V onto VE[(7®)E].

Proof. This follows immediately from the general version of the Ja-
cobson Density Theorem (e.g. as in [Lor07, F20]). Namely, if we
decompose

(133) VE =@V

where V; are the simple components of 5 (G(Ay), K) then by loc. cit.
we can find some element P € J€(G(Ay), K) such that the image of
P in Endg; (V) is the projector of V¥ onto V*[(7*)*]. Noting then
that since P € J#(G(Ay), K) we have that P = Pej and noting that
ex projects V onto VX, the conclusion follows. O

We can then construct the function f* by taking P to be any element

of #(G(Ay), K) from the previous proposition where we take
2 dim(Sh)
(134) Vi= (P H'(ShF)
i=1

To do this, it suffices to show that V' is semisimple and admissible. For
the first property note that since Sh — Shg is a pro-finite Galois cover,
the Leray spectral sequence implies that

(135) VE = H'(Sh, Fe)¥ = H'(Shg, Fe)
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the latter term of which is finite-dimensional by standard algebraic
geometry. For the second property we use the following well-known
result:

Theorem 2.3.13. For alli = 0 The admissible Q,[G(A)] - represen-
tation H'(Sh, F¢) is semisimple.

Proof. Tt suffices to show, by Artin’s comparison theorem, that for any
embedding of £ into C that the Q/[G(Ay)]|-representation

(136) h_r,anlmg(S ??,(C: fa,r}()
K

is semisimple. This follows at once from [BR94, §2.3] as well as

[BC+83]. Note that since G* is Q-anisotropic that Shi¢' ¢ is compact
for all K (see [Pau04, Lemma 3.1.5]), and thus the L-cohomology of
Sh¥ ¢ agrees with singular cohomology. O

Let us note that for any f* defined as above we can renormalize
such that for 7 any admissible Q,[G(Ay)]-representation for which

the space H(Shg, F¢)[(m})"] is non-zero then

1 if ’ﬂ'f%ﬂ';c

0 if otherwise

(137) t(f” | 7)) = {

In the sequel we fix such a function f®. It is worth noting that we
cannot specify the trace of f* on representations whose K-invariants
do not appear in H(Shg, F¢). It is also noting that f* is not unique.
This non-unicity will be a non-issue for us, and so we have chosen to
not notate the non-unicity of f.

2.3.4. A geometric trace formula in the case of good reduction.
We recall here the statement of the relevant version of the main formula
from [KSZ] necessary to prove Theorem 2.3.1. We keep the assumptions
from §2.3.2 although the only pivotal assumption for the version of the
results of [KSZ] that we use is the assumption that G is simply
connected.

Let us fix the notation as in §2.3.2. We also fix the following extra
notation. Let us fix a prime p € S(G). Fix a finite place p of E, lying
over p. Since E,, /Q, is unramified (by Corollary 2.5.30) we know that
Eu, = Qp for some r > 1. Fix K? < G(AI}) to be a neat compact
open subgroup and set K := KPK .

Before we proceed let us make the following observation:

Lemma 2.3.14. For K? < G(AY) sufficiently small the group Z(Q)x
is trivial.

105



Proof. Let us note that since we are assuming that (Ag)r = Ag, that
for all sufficiently small compact open subgroups K; of G(A) we have
that Z(Q)g, is trivial (e.g. see [Mil04, Remark 5.27]). Note then
that by possibly shrinking K7, we may assume that K; = K7 K, with
K, € Ko, Since K, Ko, is of finite index, Z(Q)gr,,, is finite.
Now, since Z(Q) embeds diagonally into G(Af), we can shrink K7 to
some K? such that Z(Q)grr, , is trivial as desired. O

Given this lemma we assume, in all future discussion, that K is small
enough so that Z(Q)k is the trivial group.

We continue, as in [KSZ, §5.5], to fix the following extra
data/notation:

e Fix 7 > 1 and set n :=rj.

o Let t = (70, (70)esp,0) be a (equivalence class of) degree n
(punctual) Kottwitz triple(s) as in [KSZ, Definition 2.7.1] or
[Kot90, Page 165].

e For such a Kottwitz triple t = (70, (7¢),9) set Io(t) := I, and
for each place v of Q set I,(t) to be the inner form of (Iy(t)), as
in [KSZ, §4.7.18] (see also [Kot90, Page 169] and [Kot90, Page
171)).

e Let us denote by I(t) the unique inner form of I, such that
I(t), = I,(t) for all v (e.g. see [KKSZ, Proposition 4.7.19] and
[Kot90, Page 171]).

e Let a(t) € A(1p/Q)P as in [Kot90, §2] and [KSZ, p. 4.7.13].

e Set R := Resg,./q,Gg,, and let § be the automorphism of R
corresponding to the Frobenius element of Gal(Q,»/Q,). Let
Rswg be as [KSZ, Definition 1.5.1]. Namely, for a Q,-algebra A
we set

(138) Rsxo(A) = {g € G(A®q, Qp) : gdor(g) ™" = 6}

o Let us a fix a Haar measures dg” on G(A%) arbitrarily and a
Haar measure dg, on R(Q,) where we require that the mass of
R(Z,) is 1.

e Also choose Haar measures on I, = I(Q,) and I(A%). Note that
we have an isomorphism [, = Rs. and for all £ # p we also have
isomorphisms I, =~ Zg(v,). Having fixed such isomorphism we
can transfer these Haar measures to Haar measures on Rs,9(Q))
and I, (A%}).

o Let p: GmEup — GEup be any element of Ly

e Let us denote by ¢,, denote 1rz,).(»)-1R(z,)-
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o We define the twisted orbital integral

j 6960 (9))dy.
R556(Qp)\R(Qp)

e Define ¢(t) := vol(Z(Q)Zx\I(Ay)).
e Set cy(t) = | ker(ker' (Q, Iy) — ker' (Q, G))|.
e Set c(t) 1= c1(t)ca(t).
We then state the main result of [KSZ] specialized to our current
situation:

Theorem 2.3.15 ([KSZ, Theorem 5.5.2]). For sufficiently small K?,
we have the following. Let fP € (G(A%}), KP). Normalize the action

of fPdg? on H*(Shg, Fe) such that volgm (K?) '1gpdg? = 1. Then the
quantity

(139) TOs(pn) =

(140) tr(®7 x 1g,, fPdg” | H*(Shg, Fe))
s equal to
(141) D eO5(f)TOs(n) tr&(v0)
t=(70,7,9)
a(707'776):1

Proof. In the following we merely justify the simplifications to [KSZ,
Theorem 5.5.2] made in the above.

First let us note that since G* is Q-anisotropic that Shy is proper
(e.g. [Pau04, Lemma 3.1.5] noting that G being Q-anisotropic is equiv-
alent to G(Q) containing no unipotent elements by [BT72, §8]). This
obviously allows us to replace compactly supported cohomology by
normal étale cohomology.

This observation also allows us to take 7 = 1 (or m = 1 in the no-
tation of [KSZ]). Indeed, the proof of [KSZ, Theorem 5.5.2] uses the
Fujiwara-Varshavsky trace formula which requires that j is sufficiently
large. But, in [Var07, Theorem 2.3.2, c¢)| a bound is given on permis-
sible j that, in particular, implies that j need only be at least 1 if the
integral canonical model Shy is proper and the Hecke correspondence
is étale. The latter is clear (e.g. see [Kisl0, Theorem 2.3.8]). The
former follows in the Hodge type case by work of Madapusi-Pera (e.g.
see [Perl2; Corollary 4.1.7]) and follows in the abelian type case by
reduction to geometric connected components and using the fact that
such components admit finite surjections from components of Hodge
type Shimura varieties.

Next note that having shrunk KP sufficiently small we have, by
Lemma 2.3.14, that Z(Q)g is trivial. This allows us to ignore the
stipulations about £ present in [KSZ, §5.5] as well as replace the set
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(G(Q) N G(R)™\Z(Q)k (i.e. Bz(Q)xren(G) in the notation of [KSZ,
§5.5]) with G(Q) n G(R)*" (i.e. Yg.y in the notation of [KSZ, §5.5]).
This is what allows us to combine the double sum in [KSZ, Theorem
5.5.2] into a single sum of Kottwitz triples.

The absence of the terms tg () and 7g(70) is explained by the as-
sumption that G is simply connected. This assumption also explains
the lack of connected components on our R-groups. Indeed, note that
Rsxp is connected since it’s an inner form of Zg(y)q, by [KSZ, Lemma
1.5.3].

The last thing to note is the usage of degree n classical (or punc-
tual in the language of [KSZ]) Kottwitz triples instead of p"-admissible
cohomological Kottwitz triples as is written in [KSZ, Theorem 5.5.2].
The reason that this is permissible is that the natural map from such
p"-cohomological Kottwitz triples to degree n classical Kottwitz triples
is a bijection (e.g. see [KSZ, p. 4.7.12]) and the fact that the term
O(v0,a®,[b]) (as in loc. cit.) associated to a p™admissible cohomo-
logical Kottwitz triple (o, a?, [b]) is defined in terms of the associated
degree n Kottwitz triple. A similar statement holds for the Kottwitz
invariant «a(t). O

2.3.5. Proof of Theorem 2.3.1. We are now prepared to combine
the material from the last two subsections, together with the contents
of 2.5.2, to prove our desired claim.

We first prove the following, analogizing the results in [Kot92a, §5]:

Theorem 2.3.16. For all j = 1 and all f = fPlk, , fo where fP is an
element of %(G(AI}), KP?) and fy is as in §2.3.3 the following equality
holds
(142)

(@ x (fPlo,) | H*(Shi, Fe)) = 7(G) D SOL(f7 fufr)

{r}se{G}3>

Here we denote by 7x(G) the number

(143) 7k(G) 1= vol(G(Q)\G(A)/Zx Ac(R)’)

which is sensical since G(Q)\G(A)/ZxAg(R)® has finite volume as it
is a quotient of [G]. Also, f, denotes the unramified base change of
¢n along Go, — Resg,./0,Gq,. (see the proof of Theorem 2.3.16 for
details of the definition).

Before we begin, it’s useful to note the following lemma:

Lemma 2.3.17. For any classical degree n Kottwitz triple t = (79,7, 0)
we have that

(144) c(t) = 7k (G)vol(Ag(R)"\ /o (R)) !
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Here 1 is as in Lemma 2.5.4.
Proof. This is [KSZ, p. 6.1.1]. O

Proof. (Proof of Theorem 2.3.16) Let us begin by noting that by The-
orem 2.3.15 in conjunction with Lemma 2.3.17

(145) (07 x (flxq,) | H*(Shi, Fe))

is equal to

(146) x(G) )] vol(Aa(R)\L,(R)) ™ O4(f)TOs(6) tr & (o)
t=(70,7,9)
a(70,7,0)=1

Note though that since a(7,7,d) is a character of K(7o, G, F’), which
is trivial by our assumption that G has no relevant global endoscopy,
we can rewrite this as

(147)  7x(G) ), vol(Aa(R)N\I,(R))™ O, (f*)TOs(6y) tr&(10)
t=(70,7,9)

Also, note that since a(t) = a(v,7,d) = 1 we know by [KSZ, Propo-
sition 4.7.19] that there exists some reductive group I(t) over Q such
that we have isomorphisms I(t), = I,(t) for all v # p, 0, I(t), = Rsx,
and I(t),, = I, where I is the inner form of (I,,)r from Proposition
2.5.59. So then we know that

(148) e(lo) [ e(weln) = e(l) =1
V#P,0
Thus, we may rewrite this sum as

(149) 7%(G) > vol(Ag(R)"/I4(R))™

t=(70,7,9)

. H e(7)O0(fP)e(15)TOs(¢n)e(Lx) tr (o)

VF#P,00
Now, by Proposition 2.3.4 we know that

(150) tr(§(%)) = vol(Aa(R)™ /L (R))e(L) SOs(fo)

So that our sum becomes(noting that the two copies of e(/,) cancel):

(151)  7%(G Z [T e ?)e(15)TOs(¢n)SOxo (fin)
=(70,7,6) v#p,

Let us denote by b the base change morphism
(152) %(G(Qpn)vgp(zp")) — H(G(Qy), Kop)
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as in the introduction [Kot86a]. One then knows that, by [Lab90, prop
3] (see also [Clo90, thm 1.1]), that

(153) S eO)T0s(n) = SO, ()
e

Thus, we see that we can rewrite our sum as

(154) G) >, [ e(m)Os(f7)S05(£2)S0x(f0)

(70,7) v#P,0

But, by the definition of a stable orbital integral on A%, we see that we
can rewrite this as

(155)
G) Y S04, ()05 (£2)SOs (f) = 7 (G ZSOW 1 fufio)

o

Now, note that while v, a priori only runs over the elements of G(Q)
which are elliptic in G(R), note that by Proposition 2.3.4 we have that
SO, (fx) is zero for v not elliptic in G(R). Thus, we can actually
equate this sum to

(156) k(G) Do SO (f* futn)
Y0e{G}5s
from where the conclusion follows. O

We are now in a position to apply Proposition 2.5.59 to the above to
obtain (keeping the notation of Theorem 2.3.16) an equality between
tr(®7 x (fPlg,,)) | H*(Shk, Fe)) and

%(G)/T(G) ). m(m)tx(f | 7)
melly (G)

(157) =vol(Zi/Z(@)k)™" Y, mlm)tr(f | )

mell, (G)

—vol(Zx)™" Y. m(m)tr(f | m),

well, (G)

where f := fPf,fo and the last equality follows from the assumption
that K is small enough that Z(Q)g is trivial. Here we are denoted by
X the restriction to Ag(R)° the of the central character of £%. Note
that, by construction, f, transforms under the center by the central
character of &c so, in particular, we see that f € Z(G(A), x1).

Let us now begin the proof of the result in earnest. Let us note that
since Shi (G, X) is proper for all neat compact open subgroups K of
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G(A/) we know from the proper base change theorem that an inclusion
@Q — C gives rise to an isomorphism

(158) H*(Sh, F¢) = H*(Shc, F¢)

Moreover, by Artin’s comparison theorem we obtain a natural isomor-
phism Q,-spaces

(159) H*(Sh¢, Fe) = Hg,\o (ShE, Fg")
where we we imprecisely denoting by Hg,, (She", F£") the space
(160) limy HZ,,, (Shx (G, X)&, Fel)

K

which is in the Grothendieck group of ( Qy-spaces.
Note that by Theorem 2.3.13 this Q;[G(Af)]-module is semisimple.
Thus, by definition, there exists a decomposition

(161) H*(Sh', F¢") = @ 7y © o (),

s
where 7 ranges over irreducible admissible G(A f)-representations con-
tained in H*(Shg’, F¢") and o(my) is a virtual Qq-space.

Let us note that since the G(Ay)-action on the tower Sh is defined
E,-rationally that the action of G(Ay) and I'gy, commute. For this
reason, we see that the induced action of I'g,, on H*(Shg”, F¢*) induced
from the above isomorphisms has the property that it preserves o(7y),
and thus we see that o(;) is a virtual Q,-representation (recalling our
identification of Q; and C) of Wg,,.

Thus, in conclusion, pulling this decomposition back along the above
isomorphisms we obtain a decomposition

(162) H*(Sh, F¢) = P rpRo(my)

s
where 7 travels over admissible Q-representations of G(A ) contained
in H*(Sh, F¢) and o(my) is a virtual Q-representation of I'g,,.

Remark 2.3.18. Note that, a priori, the virtual Q-representation o(my)
of I'g depends on the above chosen ambient identifications/data. But,
as our description in Theorem 2.3.1 shows, the traces of a dense set of
elements of I' are independent of these choices, and thus so is o(7y).

We now fix for once and for all an admissible Q, representation W?
of G(Ay) satisfying the conditions of Theorem 2.3.1. In particular, we
assume there exists an automorphic Q,-representation 7 of G(A) such
that 7 is isomorphic to W?cﬂoo where 7, € I, (€).
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We now fix a compact open subgroup of G(Ay) satisfying the fol-
lowing properties.

e We assume that K is a neat subgroup,
e that Z(Q)K = 1,

e and that 7f is nonempty.

We now fix f* as in section 2.3.3.2. Finally, we need to determine
the cofinite set S(7}) = S(G) of theorem 2.3.1. We define S(7}) so
that for each p € S(79),

(1) the group Gg, is unramified,

(2) we have a factorization K = K?Ky, where K? = G(A%) and
Ky, = G(Q,) is a hyperspecial subgroup,

(3) we can factor f* = fPlk,, where f? e J(G(A})).

We briefly explain why the factorization in the third item can be made
for all but finitely many p. We can write

(163) foo = ZCi]lKaiK’

i

where ¢; € C,a; € G(Af). Now, for all but finitely many places, we
have for all i, (a;), € K,. Hence if S is the finite set of primes where
this does not happen, we can write

(164) £ = Q) eilkgansis) - Lis,

7

which gives the desired factorization.

Now fix p € S(W?) and a prime p of E, lying over p. Now fix a
7 € Wg,, . We aim to describe tr(7 | o(my)) as in theorem 2.3.1. Note
that since H*(Sh, F¢) is unramified at p (by smooth proper base change
given the existence of smooth proper models by combinging [Kis10] and
[Per12]) we may as well assume that 7 = ®7 for some j where we denote
by ® the geometric Frobenius element of WE%.
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On the first hand, let us observe that we have the equality
tr(®7 x f* | H*(Sh, Fe)) = tr(®7 x f* | H*(Shg(G, X), Fe.x)
= Z tr(® x f* | Wfd(wf))

Ty, TE#0

= D, u(f | xf) (@ | o(ny)
Ty, T #£0

= tr (P’ | 0(77?))

where the last equality follows from the definition of f*.

On the other hand, by Equation (157), we have
(166)

(@7 % (fPli,,)) | H(Shic, Fe)) = vol(Zx) ™ Y, m(m) te(f | ),

well, (G)

(165)

where f = fPf, fx.
Now by 2.3.6, we can rewrite the right hand side of the above equa-
tion as

(167) vol(Zi)™ > almp)r(f7fa | 7p),
meelly  (G)

where I, (G) denotes the set of admissible G(A f)-representations 7
such that there exists a m,, an admissible G(R)-representation such
that 7y ® 7y is an element of I1, (G).

At this point, we note that for any 7, we have the equality

(168) tr(f*fn | 7p) = te(f* [ mf) tr(fu | (7))
(169) = ([Pl | 7p) tr(fu | (71)p),

where the last step follows because tr(1g,, | (7¢),) equals 1 or 0 based
on whether 7507 is nonempty or empty and in the latter case, we
would also have tr(f, | (7f),) = 0.

Now, by [Kot84a, Theorem 2.1.3], we have
(170)  tr(fn | (mp)p) = vol(Zk) tr(7 | r_p 0 sD(W)p%j[Eu,,:@p] dimSh_

Finally, putting all the pieces together and recalling that fPlg, = f~
which projects to the (W?)K—isotypic part of H*(Shx (G, X), Fe), we
get

(171) (D7 x f* | H*(Shg(G, X), Fe))
is equal to
(172) a(mp)tr(r|ro, 0 ¢(ﬂf)p)p%j[Eup:Qp] dim Sh
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Combining this with Equation (165) proves Theorem 2.3.1.

2.4. THE UNRAMIFIED SCHOLZE-SHIN CONJECTURE: THE TRIVIAL
EnpoOscoric TRIPLE

2.4.1. Unramified unitary groups and their representations. In
this subsection, we construct the various groups and representations
that we use in the proof of our main result.

2.4.1.1. Local and global unitary groups. To begin, we fix a prime p
of Q and a finite unramified extension F'/Q,. We fix an isomorphism
lp (QTD — C. Let E/F be the unique unramified extension of degree
2 and define Ug/p(n)* to be the unique up to isomorphism quasisplit
unitary group of rank n over F' for the extension F/F as in 2.5.78.
Define G' to be the group Resp g, Ug/rp(n)*. Note that G is unramified
since E/Q, is unramified. Note that G@ is isomorphic to a product
of GL,, factors. We fix a nontrivial minuscule cocharacter  of G@ by
fixing a minuscule cocharacter p; of each factor the form

z

(173) wi(z) = 1 ;

1

where the number of z factors and 1 factors in the above expression
are a; and b; respectively. We assume that for at least one 7, we have
a; ¢ {07 n}

Note that such a p is minuscule but that not all minuscule p are of
this form. Since £ is unramified over Q,, it is Galois and hence the
reflex field of p is a subfield of F which we denote E,,.

We now note the following:

Lemma 2.4.1. There exists an extension of number fields E/F satis-
fying the following properties:
(1) Eq = E and F, = F for some primes q of E and p of F such
that q " F = p.
(2) F is totally real.
(3) E is a quadratic imaginary extension of F.

(4) F # Q.

Proof. The construction of F follows from [Art13, Lemma 6.2.1] by
taking any ro > 1. Indeed, the construction of loc. cit. produces F
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satisfying the desired conditions of 1. and 2. and the existence of more
than one real place on F implies condition 3.

We argue about the existence of E similarly. Indeed, the only as-
sumption for which the arguments of loc. cit. don’t apply directly to is
the assumption that E/F is imaginary. But, this follows immediately
from the method of loc. cit. since for an embedding of F? < R? the
monic polynomials with imaginary roots is open since it corresponds
to (b, c) € R? such that b? — 4c < 0. O

We now define U* to be the group Ug/r(n)* and G* to be Resg/oU™.
The previously defined ¢, induces an isomorphism GQ G¢. Note

that G is a direct factor of G, and hence again by ¢,, we get that Gc
is a direct factor of Gg. Deﬁne a minuscule cocharacter g of G* so
that p restricts to p on the G factor and is trivial elsewhere.

We would now like to record the existence of a certain unitary group
over a global field.

Proposition 2.4.2. There exists an inner form U of U* and hence
an inner form G := Resg,qU of G* such that:

(1) The group G* is F-anisotropic.

(2) The group G has no relevant global endoscopy.

(3) The group G is a direct factor of Gg, .

(4) Let {v} denote the infinite places of F. Given any set {(py, qv)}
of pairs of non-negative integers such that p, + q, = n we have
that U, = U(py, ).

Proof. We shall use the terminology as in Lemma 2.5.88. In particular,
we shall construct U by constructing U, € InnForm(U?) for all places
v of F. Begin by setting U, := U(p,, ¢,) for each v | co as in condition
4. of the proposition. Let us also set U,, := Uj  where vy = p is the
prime from Lemma 2.4.1. Choose some finite place v of F' different
than vy and set Uy, := Di. Let us set

(174) €= €(Uy) + € (Uyy) + € (Uyy)

0
v|oo
This is an element of Z/27Z. If € = 0 let us set U, := U’ for all vt o
such that v ¢ {vg,v(}. If € # 0 then necessarily n is even. In this case
choose some finite split (relative to £) place vy and set U,y := D7, and

then set U, := U} for v { o such that v ¢ {vy, v}, vj}. By construction
we have that 2 €,(U,) = 0 and thus by Lemma 2.5.88 there exists a

unique U € InnForm(U*) such that Ug, = U,,.
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Note that
(175) Gq, = | [Resp, /g, U
Ip

and thus by construction we see that Gg, contains as a factor
Resr,, /g, Uy. But, by construction, U, =~ U g/r(n)* and F,) =~ F and
thus condition 3. is automatically satisfied. Also, evidently condition
4. is satisfied. Thus, it remains to show that conditions 1. and 2. are
satisfied

Now, note that since U is an element of InnForm(Ug/r(n*)) we know
by Lemma 2.5.79 that U = U(A, ») where A is some central simple E-
algebra. Combining Lemma 2.5.82 and Lemma 2.5.90 it suffices to show
that A must be a division algebra. To do this, note that by Lemma
2.5.76 one has an isomorphism Ug =~ A*. By 1. of Lemma 2.5.82 it
suffices to show that U(F) contains no non-trivial unipotent elements.
But, U(E) < Uy(Ey). Note though that we have an isomorphism
(Uw) B, = (D%)? and since (D7)? is anisotropic modulo center we see
that this contains no non-trivial unipotent elements as desired. 0

We now fix global groups U and G satisfying the statement of 2.4.2
where we fix the set {(p,,q,)} so that p, = a, and ¢, = b, where we
recall that {(a,,b,)} comes from the definition of p. We get a conjugacy
class of cocharacters of G associated to . We denote the reflex field
of this conjugacy class by E,. In the present case, E and F are not
assumed to be Galois. Hence it need not be true that F < E,,. All we
can say is that E,, is a subfield of the Galois closure, ¢(E) of E. Since
we have fixed the isomorphism ¢, : @p — C, we get a cocharacter of
G, which we also call p. On the one hand, the reflex field of this p
is given by the completion of E,, at the place p over p corresponding
to tp. On the other hand, by construction, Gg, = G' x G’ and hence
p = (u, 1) where pu is fixed before and p’ is trivial. Hence the reflex
field of p in Ggq, is E,. Thus, we have shown that if p is the place of
E, determined by ¢, then E, = FE,.

2.4.1.2. Shimura data for unitary groups. In this subsection we will
write down the general conditions necessary to have a Shimura datum
of the form (G, X) where G = Resp/gU and where F is some number
field, E is a quadratic extension, and U is an inner form of Ug,p(n)* for
some n. We will then, in particular, verify that we can find a Shimura
datum of abelian type (G, X) where G is as in §2.4.1.1. See [RSZ17,
§3] for an alternative discussion of the following.

Let us begin by saying that U (or G) is of non-compact type if for
some infinite place v of F we have that Uy, is not R-anisotropic. In
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other words, G is of compact type if G(R) is compact, and being of
non-compact type just means that it is not of compact type. We then
have the following claim:

Lemma 2.4.3. Suppose that E is a CM field and G is of non-compact
type. Then, there is a Shimura datum (G, X) of abelian type.

Proof. So, let us assume that U. Let
(176) h:S—Ge=]]Upia)

(where we have a priori fixed this latter isomorphism) be defined in
terms of its projections h; defined as follows. If p; = 0 or ¢; = 0 we
define h; to be trivial. Otherwise, define h; as follows:

IS IR

[T RN

(177) hi(2) =

1

z
where there are p; entries of — and ¢; entries of 1. Set X to be the

G(R)-conjugacy class of h. Wez claim that (G, X) is a Shimura datum
of abelian type.

The fact that (G, X) is a Shimura datum is elementary and left to
the reader (the assumption that U is of non-compact type being used
in Axiom SV3 of [Mil04]). To see that it’s of abelian type, we must
find an associated Hodge type datum. Let GU denote the associated
unitary similitude group associated to U and set H := Resp/,GU.
We then define H? to be the fiber product H X Resg/qGm 1 Gy, wWhere
the map H — Resp/gG,,r is the similitude character and the map
Gm,o — Resg/gG, r is the usual inclusion. We define a morphism

(178) B S — (H)g
as follows. Begin by noting that
(179) (HY)z =

{(gl) € H GU(pi,q:))) = c(gi) = c(g;) for all 4,5 and ¢(g;) € RX}
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Let us fix one such isomorphism. We then define A’, via this fixed
isomorphism, by its projections h} to each GU(p;, g;) by

z

(180) B(2) =

I\

z

where there are p; copies of z, and ¢; copies of Z. One can then check
that (HY /') defines a PEL type Shimura datum (e.g. see [Mil04,
Chapter 8]).

Note now that (H®)" is naturally isomorphic to ResgoU9" which
is, likewise, equal to G, Let (H®)!" — G9° be the identity map.
It’s not hard to see then that this induces an isomorphism of Shimura
datum between ((H?)2d, (h’)2d) and (G4, h2d). Thus, (G, X) is of
abelian type. O

We now observe that G as in §2.4.1.1 is of non-compact type since
p and hence p is non-trivial. We can define a Shimura datum (G, X)
as in the previous lemma. In particular, we note that by construction,
the conjugacy class of cocharacters of G¢ associated to X contains p
as an element.

2.4.1.3. Local and global representations. We now fix a square inte-
grable irreducible admissible representation =) € C[G(Q,)]. We also
fix a Shimura datum (G, X) as in the last subsection, as well as an al-
gebraic Q-representation ¢ of G with regular highest weight. We have
by assumption Gg, = G x G'. Fix a square integrable representation
m, of G'(Q,) so that 7Tg ™, is a square-integrable representation of

G(Qy).

We need the following proposition

Proposition 2.4.4. There exists a representation m of G(A) such that
7y appears H*(Sh(G, X), F¢) and such that m, = 7T2 T,

Proof. This is an easy consequence of [Shil2a, Theorem 5.7]. We set S
to be the places of Q where G is ramified plus the place p. Then we fix a
square integrable representation g of G(Qg) such that (7s), = 7)X,,.

We let U be the fPl-regular set equal to the orbit O of the unramified
unitary characters of G(Qg) acting on g as in [Shil2a, Example 5.6].

We note that at p, we have that any 7% € U satisfies (ms)p = ) K ),
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since G(Q,) has no split torus in its center. We then apply Theorem
5.7 of Shin’s paper to get the desired result. Note in particular, that
7y appears in H*(Sh(G, X), F¢) since it is {-cohomological at 0. [

We now fix a global 7 satisfying the properties of the above theorem.
Note that since we have assumed £ has regular highest weight, it follows
from the remark after Theorem 1 of [Kot92a] that = is discrete and
hence elliptic at infinity.

2.4.2. Construction of the global Galois representation. We
continue with the notation fixed as in 2.4.1. In this subsection only, we
use the Galois form of L-groups. We do so because we work primarily
with Galois representations instead of A-parameters.

2.4.2.1. Unitary Shimura varieties. We first define a morphism of L-
groups

(181) A: "G — "Resg/gGL,.

As a group, Res;@\Gan is isomorphic to

(182) [ ] GL.(C) | % Tq.

To/Te
We fix a subset X < I'g/I'g such that the map
(183) I'o/TE — I'g/I'F,
induces a bijection
(184) X 5 To/T.
We define X+ :=T'q/Tg\X. We now construct A by
(185) (g1, -oos s W) = (91, ooy G I (97 )TN o I (91 ) T w),

where the left hand side is an element of

(186) (][] GLa(C)) xTg = *G,

Ig/Tr

and the right hand side is an element of

(187) (] [GLA(C) x [ [GLA(C)) » Ty = “Resg/gGLy (C).
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2.4.2.2. The identification of o(my). We continue with notation as in
2.4.1. In particular, (G, X) is an abelian type Shimura datum, ¢ is
an irreducible algebraic representation of G¢, and 7 is an irreducible
automorphic representation of G(A) that is £&-cohomological at co. By
2.5.63, we get an irreducible discrete automorphic representation BC(7)
of GL,(Ag) that is conjugate self-dual with infinitesimal character ({®
£)¥. Note that since & is regular, that (£ ® £)V is slightly regular so
that we can apply [Shill, Theorem 1.2].

We now apply [Shill, Theorem 1.2] to get a representation o(BC(7))
of T'g with coefficients in Q. In this subsection, we identify an explicit
relationship of the Galois representation o(7y), as in Theorem 2.3.1,
and the representation o(BC(7)) of GL,(Q), as in [Shill, Theorem
1.2).

Now consider the representation

(188) o :=1o(BC(n)) : I'g — GL,(C).

We identify GL,,(C) with GL,g < “GL,g and consider the equiva-
lence class [o] up to conjugacy by an element of Cm Thus, we have
[0] € HY(Tg, G/Ln\E) Now, by a variant of Shapiro’s lemma, [Bor79,
Lemma 4.5], we get a class of H'(Tg, ResJQELnE). Pick a representa-
tive p of this class. Then again by [Bor79, Lemma 4.5], we have that
the projection of p to the factor corresponding to the trivial coset of
['g is a representative of [o].

We need a few lemmas.

Lemma 2.4.5. Let E/F be an unramified extension of p-adic local
fields. Let H be an unramified reductive group over E. Fir a hy-
perspecial subgroup K = H(Og) < H(E) and let ™ be an irreducible
admissible representation of H(E) unramified with respect to K. Then
since H(E) = (Resg/pH)(F), we can also naturally consider m to be
an unramified representation of (Resg/pH)(F) with respect to
(Reso, /0. H)(OF). We denote this representation by 7'.

Now, let ¢, = LLg(7) and Z1, be the equivalence class of param-
eters of ResgypH coming from <, by Shapiro’s lemma. Then I1p, =
LLp(7").

Proof. (Sketch) Let us note that since H is unramified it has an un-
ramified maximal torus. Indeed, let H be a reductive model for H
over Og. Note that the variety of maximal tori X is smooth over Og
(e.g. see [Conl4, Theorem 3.2.6]) we can use Hensel’s lemma to lift a
maximal torus of Hj, (where k is the residue field) to a maximal torus
of H whose generic fiber is an unramified torus of H. Note then that
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by the argument in [BR94, §1.12] we can then reduce the argument to
that of tori. This is then a well-known result (e.g. see [Lan+97]). O

We now return to the notation before the previous lemma.

Lemma 2.4.6. For each place p of Q such that ResgoGL,, E and
BC(m) are unramified at p, we have plry = LLg,(BC(),).

Proof. We consider the following diagram

H'(E,GL,,E) —— [ [ H'(E,,GL,,E,)

plp
(189) I I

HY(Q, ResE@—Cﬁim E) — H HY(Q,, ResEp®n, E,),
plp

where the vertical arrows are Shapiro isomorphisms, the top horizontal
arrow is a product of restriction maps to each I'g,, and the bottom
horizontal map is the composition of the restriction to I'g, and the
isomorphism

(190)  H'(Qp, (ResggGLy, E)g,) = [ [ H'(Qp, Resg, g, GLn, Ey).
plp

We claim that this diagram commutes. Indeed the vertical maps are
just projections onto the identity coset factors and the horizontal maps
are products of restrictions.

But now, we have from [Shill, Thm 1.2] that o|g, = LLg, (BC(7),).
Then by commutativity of the above diagram and the previous lemma
we get the desired result. U

We now take the dominant cocharacter p of G¢ = H (GL»)c
To/Tr
associated to the Shimura datum (G, X) and write it as a product of
cocharacters (g, , ..., b, ) where 7 ranges over I'g/I'r. We then define
the cocharacter (—p,0) of

(191) (Resg/oGLn)c = ([ [ GLa(C) x | [ GLA(C))
X Xt
so that the character is —pu = (—p,,... — p, ) on the copies of GL,

indexed by X and 0 on the copies of GL,, indexed by X*. We denote
the reflex field of (p,0) by E(, ). Then using ¢,, we consider (u,0)
as a cocharacter of (Resg/gGLy)g, and observe that the localization of
E(.0) at the place p equals £, ) and moreover we have the following
observation:
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Lemma 2.4.7. We have an equality of fields (E,), = (Equ0))p-

Proof. Let us note that it suffices to show that the reflex fields of the
local cocharacters Ky, and (,u@, 0) agree. To do this let us note that
we have a natural embedding of Q-groups

(192) G — RESE/QGLME
Upon base changing this to Q we obtain a Galois invariant embedding

(193) Gg = (Resp/qGLyp)g = [ [GL,g x [ [GL,g
X XL

with notation as above. In particular, we see that we get a natural
I'g,-equivariant embedding

(194) Gg = | [6Lg <[ [GL.g
X XL

Note that this map sends pg - to (u@, Inpg,d 1), Tt is fairly evident
then that the reflex fields of pg- and (pg;, Jvpg;J ~') are equal. In-
deed, only non-trivial factors of p correspond to elements of X coming
from Resg, 0,UE,/F,, and E,,/Q, is Galois and so the only relevant part
of the Galois action on the right hand side of Equation (194) act by the
transposition interchanging X and X+ and then by the natural action
of Gal(F,/Qp). Finally, one sees that (ug,,0) and (pg;, JN;J,@JA_,I)

have the same reflex field since J NM@JJQI is never conjugate to p by
our assumption that p is non-trivial. The conclusion follows. 0

Let E* be the compositum of E,, and E, o). We have Ej = E,. We
then get a representation

(195) T(—p,0) - L(RGSE/QGLn) , — GLN(C),

‘FE(MO

as described in the notation at the beginning of this Part. We record
the following lemma.

Lemma 2.4.8. Take \ : “G — LResg/qGL, as in (181). Then we
have have an equality restricted to G x I'gx.

(196) T(—p0) OA = T'_p.

Proof. This follows more or less immediately from the definition of
A O

We then have the following proposition:
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Proposition 2.4.9. Let g be an element of S(my) and q any place of
E* lying over q. Then, we have an equality

(197)  tr (@4 | 70y © Pl ) = (P | 700 L, (o) Iy )

Before giving the proof of the above proposition, we record the fol-
lowing corollary, which is the key result of the section.

Corollary 2.4.10. For each q € S(my) and each place q of E* lying
over q, we have the following equality

dim Sh

2 ) = tr(®glo(my)).

(198)  a(ms) tr(Pq| (r(—p0) © Plrgy ) ® |-

In particular, it follows that we have the following equality in the
Grothendieck group of Wgx-representations

(199) a(mp)[(r-poyop) ®|-

and hence by [Shill, Thm 1.2/, for any (not just unramified) prime q
of Q and each place q of E* over q, and for T € Wgy,

dim Sh

> | =o(myp),

dim Sh

) = te(rlo(my)).

(200)  almp) (7l () © e, ) B

q

In particular, we will want to apply this corollary to the chosen prime
p and the place p of E* coming from ¢),.

Proof. (Proposition 2.4.9) By 2.4.6 and since ®, € I'g,, we have
(201) (@ | Py © plryy) = (B | 70 © Lo, (BC(T) ey )
Now, by 2.5.63, the above equals

(202) 61(®q | 7(—pu0) © Lo, (BCq(mg))Irgy ).

By the compatibility of local base change with the unramified local
Langlands correspondence [Minll, Thm 4.1], we then have

(203)

tr(Pq | r(—p0)© LLQq(BCq(WQD‘FE?) = tr(®q | r(—poy 0 AoLLg, (ﬂq)\pE?).

Finally, by 2.4.8, we get
(204) tr(®y | 7(-p0) © A0 Ll (Tp)lrg, ) = t(Pp | r—p © LLay (Tp) Iy )

O
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2.4.3. Traces at places of bad reduction and pseudo - stabiliza-

tion. In this subsection we record an analogue of the trace formula

as in §2.3.4, as well as the pseudo-stabilization of that formula as in

§2.3.5. In particular, we keep the notation and assumptions the same

as in §2.3.4 throughout this subsection with one exception. Namely,

we fix a compact open subgroup K, < Ky, and then set K := K?K,,.
The first main result is the following:

Theorem 2.4.11 ([Youl9, Theorem 4.4.1]). Let h € H#H(G(Z,), K))
and let T € Wg,. Then, there exists a a function ¢, € H5(G((Ey);))
(independent of the choice of £) such that for any f? € H5,(G (A?), KP)
the following equality holds

(205)

tr(r x fPh | H*(She, Fe)) = > c()05(f")TOs(¢rn) tr & (70)
t=(70,7,9)
a(y0,7,6)=1

The proof of the above, or rather the simplifications to the formula
made in [Youl9, Theorem 4.4.1], are the same as in the proof of The-
orem 2.3.15.

Let us now fix a function f? € J(G(A%}), K?) with the property
fPlg, is a projector from H*(Sh, F¢) on to H*(Shy, Fe)[(m;)""] and
let f, be as in §2.3.3.1. Let us also set f,, € #(G(Q,)) to be a
transfer of ¢, (which exists by the results of [Wal08g]).

We then have the following claim:

Proposition 2.4.12. The following equality holds:

(206)  tr(7 x fPh | H*(Sh, Fe)) = mi(G) > SOL(f"frnfn)
{7}se{Gl}ss

Proof. The proof of this result is exactly the same as in the proof of

Theorem 2.3.16. The only substantive change is that the proof of the

analogue of (153) is now by the twisted fundamental lemma (as in
[Wal08g]). O

We then deduce that
(207) tr(r x fPh | H*(She, Fe)) = > m(m) tr(f? frnfoo)
well, (G)

Note then that we can rewrite the right-hand side of this equation

( 8)
Soalmp)te(fP fen | 7p) = D) almy) r(fPl, | 7p) te(frn | )

ﬂ' ™

f
Enyx(G) eryX(G)
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Note though that by construction a(my)tr(fP1g,) will vanish unless
(7¢)® has non-trivial isotypic component in H*(Shy, F¢) and the away-
from-p component of 7 agrees with that of 7r3 - Let us call this set

S.

From this, we see that our sum reduces to

(209) 2, almp) te(fron | 75)

WfES
Note though that we have the following reuslt:

Lemma 2.4.13. The set S is precisely 11, (G(Q,),&,) where 1, is the
A-parameter associated to .

Proof. Let us denote by S the set of G(Q,)-components of the irre-
ducible factors of L3 (G(Q)\G(A))[x*]. By Matushima’s formula it
is clear that S < S’. Moreover, by Lemma 2.2.32 we know that S’ is
precisely II;, (G(Q,),w). Thus, it suffices to show that S = 5’
Equivalently, by Corollary 2.3.10, for every m, € S’ we need to show
that a(m, ® W?) # 0. But, since ¢ is regular we see by Theorem 2.3.11
that a(m, ® 7}) # 0 if and only if m(m, ® 77) # 0. This is precisely the
claim that S = 5. O

From the above, we deduce the following;:
Proposition 2.4.14.

(210)  tr(r x fPh | H*(Sh, Fe)) = a(ny) > tr(frp | 7p)
mp€lly, (G(Qp),&p)

2.4.4. The Scholze-Shin conjecture in certain unramified cases.
In this subsection we prove the main result of this Part . Let £/F and
G be as in §2.4.1.1 and 7TS a square integrable representation of G(Q,)
and 7r2 m, an irreducible square integrable representation of G(Q,)
as in §2.4.1.3. Let 1, and ¢}, be the Arthur parameters associated to
7T2 and 7, respectively as in [Kal+14, Theorem 1.6.1]. In particular,
71'3 m, has Arthur parameter ¢, ®1);,. Since 7Tg and m, are tempered,
¥ and 1, are also bounded Langlands parameters. Let (G, X) be as
in §2.4.1.2 and let g and p be as in §2.4.1.1.

We now prove the following which is a special case of the Scholze-
Shin conjecture [SS13, Conj 7.1].

Theorem 2.4.15. Pick any natural number j > 1 and 7 € FrobjIE# c
Wg,. Pick h e 5 (G(Zy)). Then

(211)

dim Sh
D I m) = rootylw,, ®1175) Y (k] m).
WPEHwP(G) 71'p€H¢p(G)
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Proof. This follows from combining the results of the previous sections.
We choose 7 as in 2.4.1.3 and f? € 7(G(Af)) as in 2.4.11 such that

f? projects to the mP isotypic piece of H*(Sh,F¢)). Fix any h® €
H(G(Zy) x G'(Zy)). Note that 7 € E, = Ei as discussed in the
paragraph before 2.4.8.

On the one hand, by 2.4.14, we have
(212) tr(r x fPRS | H*(Sh, Fe)) = a(mp) Y tr(fSa | m).

eIy @y, (Gap)
On the other hand, by 2.3.1, we have
(213)  tr(7 x fPRS | H*(Sh, F¢)) = tr(r x fPhC | @ﬂ'f Xo(my)),

Tf

and hence by definition of f? as well as the argument in 2.4.12 using
2.2.32,

(214) tr(rx fPhS | H*(Sh, Fe)) = te(rxh® | P  mXo(my)).

TI'pEpr@w;) (G)

Now, using 2.4.10, the above equals

(215) a(my) tr(r | (rp 0w )®1757) 3T u(hC | m).

€Ly @yt (Gap)

Finally, by 2.4.6, compatibility of the local Langlands correspondence
and local base change ([Mok15, Theorem 3.2.1 (a)]), and 2.4.8, we have
that

T(=0) © P Wee = T(=pn0) © VBO(m), Wiy
Tem0) © A© (U @Y )y
=7 0 (p @ V)l

lle

(216)

Hence the righthand side of the previous equality becomes

(217) A
Y utl ).

a(mp) tr(7|(r—p o (Vp @ ¥p) I ) ® -
wpepreB%(G@p)

Finally, combining the the two equations for tr(r x fPhS | H*(Sh, F¢))
gives that

(218) Y (el m)

TI'pEpreaw;) (GQp)
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is equal to

(219) tx(r | (ruo (@Y lwyy)®1-1"57) 3 w(h® ).

wpepr@% (GQP)

We now need to translate this equation to one for G instead of Gg,.
Since our choice of h® was arbitrary, we pick it so that A& = h x A/
where /' has trace 1 on a single representation in the packet Iy (G')
and trace 0 on the others. We can do this since local A-packets are
finite (e.g. see [HG, Proposition 8.5.2]). Since p is trivial on G', we
have that f., = h'. Indeed, the triviality of ;' implies that the space
D (G, [V'], 1) (where ' is the projetion to p) asin [Youl9] is the trivial
G'(Z,)-torsor for any [V'] as in loc. cit. In particular, this implies that
H*(2,(G,[V], 1), Q) is nothing more than C*(G'(Z,)). Since the
action of 7 is through right multiplication by b’ it’s clear that the trace
of 7 x h on Z,,(G', [V'], '), which is by definition f, ,/(0'), is just A'(V).
Moreover, we have that

(220) thh’ = ffh X fTG,f,u = frp x .
as there is a natural splitting of the space
(221) Do(G x G [(b,V)]n) = Do(G, [b], 1) x Dao(G'[V], 1)

which is equivariant for the action of G(Z,) x G'(Z,).
Then, using that Iy gy (Gg,) = Hy, (G) x [y (G'), we get

(222) Y, (g Im) =

WpEpr (G)

dim Sh
(m | (rpo (@Y we) ®1-172 ) Y, tr(h | m).
F mpelly, (G)
Now we denote by p/, the cocharacter of G/— such that under ¢,, (u, it')

maps to p. By construction p’ is trivial and hence r, is the trivial
representation. In particular, we get
(223)

tr(7 | 1o o (@) = tr(7 | (1_ 0ty @ (r_w o)) = tr(7 | 7_,00,).
Making this substitution gives

(224> dim Sh nSh

Dte(f | mp) = tr(r | (ruoty)lw, ®)- ) >, te(h|m,)
mp€lly, (G) mp€lly, (G)
as desired. O
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2.5. APPENDICES FOR PART II

2.5.1. Appendix 1: Some lemmas about reductive groups. The
goal of this appendix is to collect some loosely related facts about
reductive groups, especially with a focus on reductive groups over R.

2.5.1.1. Elliptic elements and tori. In this subsection we clarify the
relationship between several notions of ellipticity for elements of a re-
ductive group.

So, let us fix a field F' of characteristic 0 and let G be a reductive
group over F'. We begin with the following definition which is unam-
biguous:

Definition 2.5.1. A torus T' in G containing Z(G)° is said to be el-
liptic if the torus T/Z(G)° is F-anisotropic.

It is often times the case that a torus 7' contains not only Z(G)° but
Z(@G) (e.g. maximal tori). In this case, one might wonder whether one
obtains a fundamentally different definition by requiring that 7'/Z(G)
is F-anisotropic. As the following lemma shows, by applying it to the
obvious isogeny T/Z(G)° — T/Z(G), the answer is no. For this reason,
we will often times not careful between discussions of the F-anitropicity
of T/Z(G) for T/Z(G)° for a torus T containing Z(G)° (again, mostly
in the case when 7T is a maximal torus):

Lemma 2.5.2. Let T and T, be isogenous tori over F'. Then, T} is
F-anisotropic if and only if Ty is.

Proof. Let f : Ty — T be an isogeny. Note then that we get an
inclusion X*(73) «— X*(7)) with finite cokernel. We and thus an
inclusion X*(T3)" — X*(Ty)" with finite cokernel. Since X*(T})" is
free we see that X*(T)' is trivial if and only if X*(T) is trivial as
desired. U

The definition of what it means for a semisimple element v in G(F)
to be ‘elliptic’ is a little less clear. Namely, we have the following:

Definition 2.5.3. A semisimple element v in G(F) is elliptic if
Z(Za())° is an elliptic torus. We will say that such an element 7 is
strongly elliptic if v is contained in T(F') for some elliptic mazimal
torus T of G.

Note that evidently strongly elliptic implies elliptic. Indeed, if T' is
an elliptic maximal torus such that « € T'(F) then T is a maximal torus
in Zg(vy) and thus € Z(G)°Z(Zs(7y))° is a subtorus of T. Since T is
elliptic this implies that Z(Zg(7))° is elliptic.
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Of course, it can’t be true in general that elliptic implies strongly
elliptic since there are reductive groups which contain no elliptic max-
imal tori but which contain elliptic elements.

FEzample 2.5.4. For any perfect field F' the maximal tori in GL,, 7 are of

k k
the form H Resg,/r Gy, where E;/F are field extensions and Z:[EZ :
i=1 i=1
F] = n. Moreover, one can check that amongst these the elliptic
maximal tori are those of the form Resg/rG,, p where [E : F| = n.
Thus, we see that GL,, r has an elliptic maximal torus if and only if F’
admits an extension of degree n.
In particular, we see that GL, r admits an elliptic maximal torus if
and only if n = 2. That said, GL, r has elliptic elements for all n > 1.
Indeed, for any group G the identity element G(F') is elliptic.

That said, in most of the cases of interest to us the definitions coin-
cide. For instance, we have the following observation:

Proposition 2.5.5. Let F' be a p-adic local field. Then, a semisimple
element v in G(F) is elliptic if and only if it’s strongly elliptic.

Lemma 2.5.6. Let F' be a p-adic local field and let H be a reductive
group over F'. Then, H contains an elliptic mazimal torus.

Proof. By [PS92, Theorem 6.21] we know that H/Z(H) contains a
maximal anisotropic torus 7'. Evidently the preimage of T" under the
projection map H — H/Z(H) produces the desired elliptic maximal
torus. 0

Proof. (Proposition 2.5.5) As we’ve already observed, it suffices to show
that if v € G(F) is elliptic, then it’s strongly elliptic. That said, note
that H := I, contains an elliptic maximal torus 7" which is evidently
a maximal torus of G since H contains a maximal torus of G and thus
has the same rank as G. By definition, this implies that T/Z(H) is
F-anistropic. That said note that by our assumption the split rank of
Z(H) and the split rank of Z(G) coincides. Thus, 7'/Z(H) having split
rank 0 implies that 7'/Z(G) has split rank 0. Since « is contained in
T'(F') the claim follows. O

We would like to extend this result to all characteristic 0 local fields
and so, in particular, extend this result to R (note that the only elliptic
torus in a group G over C is Z(G)°). But, as we observed in Example
2.5.4 such a result fails for trivial reasons over R for general groups.
That said, one can ask whether the notion of elliptic and strongly
elliptic do agree for semisimple elements in G(R) where G is a reductive
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group over R that does contain an elliptic maximal torus. The answer
is yes.
To see this, we begin with the following well-known result:

Lemma 2.5.7. Let G be a reductive group over R. Then, for every
compact subgroup K contained in G(R) there exists an R-anisotropic
group H and a closed embedding H — G such that H(R) = K.

Proof. This is [Ser93, §5 Proposition 2. O
One consequence of this is the following:

Lemma 2.5.8. Let G be a reductive group over R. Then, all mazimal
anisotropic tori in G are conjugate. Moreover, all maximal elliptic tori
in G are conjugate.

Proof. Let us begin by showing that the former statement implies the
latter. Namely, let 77 and T, be two maximal elliptic tori in G. Note
then that by standard theory we have a decomposition 7; = T°T¢
where 77 is the maximal split subtorus of 7; and 77 is the maximal
anisotropic subtorus. Moreover, we have that T} n T} is finite. Note
that by our ellipticity assumptions we have that 77 = (Z(G)°)* for
i=1,2.

Let us note that 77 are maximal aniostropic tori in GG, as we now
show. By symmetry we need only consider the case when i = 1. Now,
suppose that 7" is an anisotropic torus of G strictly containing 77.
Then, evidently TZ(G)° is an elliptic torus of G strictly containing T3
which contradicts assumptions.

So, assuming that all anisotropic tori in G' are conjugate there exists
some g € G(R) such that ¢gTg~! = T¥. Note then evidently that since

conjugation by g fixes Z(G) pointwise that
(225) 9Tt = g(TYZ(G)*)g™ = T3 Z(G)* = T»

as desired.

Suppose now that 77 and T, are maximal anisotropic tori in GG. Note
then that 77(R) and T3(R) are compact subgroups of G' and thus con-
tained in maximal compact subgroups K; and K, of G(R). Now, it
is well-known (e.g. see [Conl4, Theorem D.2.8]) that K; and K, are
conjugate by an element of G(R). Thus without loss of generality we
may assume the equality K := K; = K5. Moreover, by Lemma 2.5.7
we know that K = H(R) for H some R-anisotropic subgroup of G.

We claim that both 77(R) and 73(R) are maximal tori in K in the
sense of the theory of compact Lie groups (i.e. that they are maximal
connected compact abelian subgroups). Indeed, suppose not. Then
there exists a connected compact abelian subgroup S € K = H(R)
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properly containing 73 (R). But, by [Conl4, Theorem D.2.4] this im-
plies that there exists some connected R-anisotropic group S*& < H
such that S*8(R) = S. Note then that by the Zariski denseness of
R-points (e.g. see [Mil17, Theorem 17.9.3]) we have that S& properly
contains T}. But, since S is dense in S*# we see that S*# is necessarily
abelian. Thus, S?# is an anisotropic torus in H properly containing
Ti. This contradicts that 7} is a maximal anisotropic torus in G. By
symmetry the claim also applies for 75.

Thus, since 71 (R) and T5(R) are maximal tori in K in the sense of the
theory of compact Lie groups we know from the theory of such groups
that 77 (R) and T5(R) are conjugate by an element of K. Then, again
by density of T} (R) in 77, we deduce that T} is conjugate to Tp. More
rigorously let g € K = H(R) conjugate T7(R) to T»(R). Note then that
conjugation map by ¢ sends T;(R) into T € G from which density of
T1(R) in T implies that conjugation by g takes T} into To. This implies
that dim 7} < dim75. By symmetry we deduce that dim 7, < dim 73.
Then, since ¢gTi g~ < Ty and gTyg~' and Ty are both connected and
smooth we deduce that ¢7¢g~!' = T5 as desired. O

Two important corollaries of this result are the following:

Corollary 2.5.9. Let G Be a reductive group over R and suppose that
G has an elliptic maximal torus. Then, every maximal elliptic torus in
G 1s an elliptic mazimal torus.

Corollary 2.5.10. Let G be a reductive group over R and suppose that
G has an elliptic mazimal torus Ty. Then, every elliptic element v in
G(R) is strongly elliptic.

Proof. Note that, by definition, v is contained in an elliptic torus 7T} of
G (namely 77 = Z(Zg(7))°). Note then that T} is contained in some
maximal elliptic torus 1" of G. But, by the previous corollary T is a
maximal torus in G. The conclusion follows. O

We finally record the following well-known results concerning the
existence of elliptic maximal tori in groups over R. Namely, while
it is classical that every reductive group G over R admits a unique
anisotropic form. That said, the existence of an anisotropic modulo
center inner form is not guaranteed and is related to the existence of
an elliptic maximal torus. Namely:

Lemma 2.5.11. Let G be a connected reductive group over R. Then, G
admits an elliptic mazimal torus if and only if G admits an anisotropic
modulo center inner form.
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2.5.1.2. Local-to-global construction of elliptic maximal tori. In this
subsection we would like to verify that if G is a reductive group over
a number field F' we can construct maximal tori in G which become
elliptic over some some finite set of places S of I’ as long as there are
no tautological obstructions (i.e. that G has no elliptic maximal tori
at one of the places in S). More rigorously:

Proposition 2.5.12. Let F' be a number field and let G be a connected
reductive group over F. Suppose that S is a finite set of places of F
such that for allv € S the group G, contains an elliptic mazimal torus.
Then, there exists a mazimal torus T in G such that Tg, is an elliptic
mazximal torus in Gg, for allve S.

To prove this it will be helpful to set up some notation and recall
some classical results concerning the moduli of maximal tori in G. For
now, let F' be any field of characteristic 0 and let G be a connected
reductive group over F. To begin, let us define X to be the functor
associating to an F-algebra R the set X (R) of maximal tori in G (e.g.
in the sense of [Conl4, Definition 3.2.1]). Then, we have the following
result:

Lemma 2.5.13. The functor X is represented by a smooth, irreducible,
and quasi-affine F-scheme (also denoted X ). Moreover, for any mazi-
mal torus Ty in G there is a canonical isomorphism G/Ng(Ty) — X.

Proof. See [Conl4, Theorem 3.2.6] for the first statement minus the
smoothness and irreducibility and the second statement. Note that
the conditions that the maximal tori in G are self-centralizing follows
immediately from the reductive hypotheses on G. The smoothness and
irreducibility of X then follow a fortiori from the second statement
given the smoothness and irreducibility of G. U

We shall need the following structural result of Chevalley concerning
X:

Theorem 2.5.14 (Chevalley). The scheme X is F-rational.

Now, for any field F’ containing F' let us denote by X¢(F”) the subset
of X'(F') consisting of F’-elliptic maximal tori in Gg. Be careful that,
despite the notation, X¢(F") is evidently not functorial in F”.

We then have the following observation:

Lemma 2.5.15. Suppose that F' is a characteristic 0 local field. Then,
X¢(F) is an open (possibly empty) subset of X(F) where the latter is
endowed with the usual topology F-topology.
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Proof. Let us denote by T the universal maximal torus over X. For a
point z € X (F') we denote by T, the corresponding torus of G since split
rank is an isogeny invariant (e.g. see Lemma 2.5.2). It then suffices to
show that the isogeny class of T, is locally constant in x. To do this we
proceed as follows. Let us note that X is rational and smooth, so that T
gives rise (by [Conl4, Corollary B.3.6]) to a continuous representation
m(X,To) — GL,(Z) (where n is the rank of T).

Note that this representation must factor through a finite quotient @)
of m(X,Zg). Note that for x € X (F') the torus T, clearly corresponds
to the composition I'r — (X, Zg) — GL,(Z) which we denote p,.
Note, in particular that for any = € X (F') we have that p, has image
bounded by |@Q| and so I'r factors through a quotient of size |@Q|. Since
F has only finitely many extensions of size |Q)] we see that there must
be some finite extension F”/F such that p, factors through Gal(F’/F)
for all x € X(F).

Let us denote, for each x € X (F), the composition of p, with the
embedding GL,(Z) — GL,(Q) by pQ%. Then, by the Brauer-Nesbitt
theorem we know that p@ =~ p2 if and only if X, = Xp,/(g) for all
g € Gal(F'/F) where we have used yr to denote the characteristic
polynomial for 7. But, since the coefficients of p, are roots of unity,
we know that x,.(5) = X,.(¢) if and only if they agree modulo N for N
sufficiently large. In other words, we see that if T,[N] = T,/[/N] then
T, and T,  are isogenous.

Let us then pick a point x € X (F) and consider the finite étale cover
Isom(T|[n], T,,[N]) of X. Note then that since the point zq € X (F)
has a lift to a point of Isom(T[n], T,,[N])(F) then by standard theory
(e.g. see [Pool7, Theorem 3.5.73.(i)]) there exists a neighboorhod U
of o in X(F) such that Isom(T[N], T,,[N])(F) — X(F) admits a
section. By the above, this implies that T, is isogenous to T, for all
x € U, and so the conclusion follows. O

Using the above results we can now prove Proposition 2.5.12:

Proof. (Proposition 2.5.12) Let us denote by Fs the usual F-algebra

1_[ F,. Note then that we have a natural diagonal embedding X (F') —

veS
X (Fs). Moreover, since X is F-rational, smooth, and irreducible we

know that the image of X (F') in X (Fys) is dense (e.g. see [PS92, Propo-
sition 7.3]). Now, by assumption we have that X¢(F),) is non-empty
for all v € S and thus combining this with Lemma 2.5.15 we see that
1_[ X¢(F,) is a non-empty open subset of X (Fs). Since X (F') is a dense

veES
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subset of X (Fs) we thus deduce that X (F') and HX(Fv) must have

veS
a point in common. The conclusion follows. 0

2.5.1.3. Stable conjugacy for strongly reqular elements over R. The
goal of this subsection is to clarify the nature of stable conjugacy for
strongly regular elements in G(R) where G is a reductive group over
R.

Before we begin, let us fix some notation that will be used below (as
well as the main body of the paper).

Definition 2.5.16. Let T be a maximal torus in G. For any Leui
subgroup M of G containing T we denote by W (M, T) the Weyl group
scheme Ny (T)/T. We will denote by We(M,T) the group

(226) We(M,T) := No(T)(C)/T(C) = W(M,T)(C)
We denote by Wr(M,T') the group
(227) Wr(M,T) := Ne(T)(R)/T(R) € W(M,T)(R)

where this last containment can be strict in general. When M = G we
use the shortenings We and Wyx of the above notation.

Remark 2.5.17. For the sake of notational comparison, let us note that
if T' is an elliptic maximal torus then W is often written (for example in
Harish-Chandra’s parametrization of discrete series) as W, and called
the compact Weyl group. The reason is that in this case Wx is equal to
W (K, T(R)) for any maximal compact subgroups of G(R) containing
T(R). The reason of course, is that Ng(T)(R), containing T(R) as a
finite index subgroup, is itself compact and so contained in a maximal
compact subgroup of G(R).

We also recall the following well-known definitions:

Definition 2.5.18. Let G be a reductive group over a field F'. A sem-
simimple element v in G(F') is regular if I, is a (necessarily mazimal)
torus of G. We say that 7y is strongly regular if Zg(7) is a (necessarily
mazximal) torus of G.

Recall that if G4 is simply connected then these two notions coin-
cide. Indeed, in the case by the following well-known result of Stein-
berg:

Theorem 2.5.19 (Steinberg). Let G be a reductive group over a field
F and assume that G is simply connected. Then, for any semisimple
v € G(F) we have that Zg(vy) is connected.
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Proof. To show that Z;(7y) is connected it suffices to show that Zg(v)#
is connected, and so it suffices to assume that F' is algebraically closed.
Note that we have a short exact sequence of groups

(228) 0—G* -G -G -0

Note that since G is reductive we have that G = G4 Z(G) and so Z(G)
surjects onto G®P. Since Zg(y) 2 Z(G) we deduce that Zg(y) surjects
onto G*. Thus, the sequence (228) gives rise to the sequence

(229) 0— G~ Za(y) = Za(y) - G™ -0

Thus, since G* is connected since G is, it suffices to show that G n
Zg(7y) is connected. Note that since G = G Z5(7) that there exists
some z € Z(G)(F) such that vz € G (F). Clearly Zg(v) = Zg(vz)
and so it suffices to assume that v € G4*(F). Note then that G n
Za(y) = Zgaer(y). Thus, it finally suffices to assume that G' = G9. In
this setting one can find a proof in [Ste06, §5] or [Hum95, §2.11] [

It will also be helpful to record the following basic observation:

Theorem 2.5.20 (Steinberg). Let G be a reductive group over a field
F. Then, the set U of reqular elements of G is an open subset of F.
In particular, U(F') is dense in G.

Proof. The fact that U is open follows from [Ste65, p. 1.3]. Note then
that since G is unirational (e.g. see [Mill7, Theroem 17.93]) the same
is true for U. Thus, U(F') is Zariski dense in U. But, since U is open in
G and G is irreducible (e.g. by [Mill7, Summary 1.36]) we know that
U is dense in G so that U(F') is dense in G as desired. O

We now state our target proposition:

Proposition 2.5.21. Let G be a reductive group over R and let T be
a maximal torus in R. Let S be a mazximal split subtorus of T and set
M := Z5(S). Let v € T(R) be strongly reqular. Then:

(2300 {y}e= |J A{wynw'}= U {wyw™}
weWe(M,T) weWe (M, T) /Wy (M,T)
An immediate corollary, the case of most interest to us, is the fol-

lowing;:

Corollary 2.5.22. Let G be a reductive group over R and suppose that
T 1s a mazimal elliptic torus then

(231) = JAwrw™y = || {wyw™

weWe weWe/Wr
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Proof. This follows immediately from the proposition since one can
take S to be a maximal split subtorus of Z(G) so that M = G. O

Fzample 2.5.23. Let G = SLyg. Then, the classic example of two non-

conjugate but stably conjugate elements of SLy(R) is v = <(1) _01>

-1 0
maximal torus

(232) T = {(Z _ab) ra’ + b = 1} C SLyr

Moreover, note that |W¢| = 2 with the non-trivial class represented by

and 7 = ( 0 1) . Note though that v € T'(R) where T is the elliptic

w = (6 —Oz) Moreover, it’s not hard to check that

(233) Int(w) : T — T

is given by

(234) Int(w) : (Z _ab) - (—ab 2)

Thus, the above corollary shows that

@ (] ?f)}j{(z DA )
and thus
(236) {1} =1 o iy}

explaining the above example.

Let us begin by clarifying how {w~vyw™'} makes sense for
w € Ny (T)(C) as an element of {G}. This is settled by the following:

Lemma 2.5.24 ([She79, Theorem 2.1]). Let notation be as in the be-
ginning previous proposition. Then, the group

(237) {g € G(C) : Int(g) : Tc — G is defined over R}
is equal to the group G(R)Ny (T)(C).

In particular, for any v € T(R) and g € Ny (T)(C) we have that the
map Int(g) : Te — T is defined over R, and thus gyg~! is an element
of T(R). Thus, {gyg~'} is a well-defined element of {G}.
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Remark 2.5.25. Note that, a priori, the conjugacy class {gyg~'} may
depend on the choice of v in {7}. Thus, the notation w - {7} doesn’t
a priori make sense for w e We (M, T). In fact, the well-definedness of
w - {7} (the independence of choice representative in {7} in T'(R)) is
equivalent to the normality of Wr(M,T') in W¢(M,T') which needn’t
necessarily hold. That said, the right-hand side of (230) doesn’t depend
on a choice of ~.

To begin to prove Proposition 2.5.21 we begin with the following
observation:

Lemma 2.5.26. Suppose that v € T(R) is strongly reqular. Suppose
that v € G(R) is stably conjugate to . Then, 7' is strongly regular
and the tori T' := Zg(v') and T are stably conjugate (i.e there is a
g € G(C) such that Int(g) : Tc — T{- and the map is defined over R).

Proof. The fact that + is strongly regular is clear since Zg(7') and
Za(y) are forms of each other, and thus Zs(7') is a torus. Now, by
assumption, there is g € G(C) such that gyg~! = +'. In particular, for
o € Gal(C/R),
a(g)yo(g)™ = olgrg™)

=a(v')

= ’}//

=979~

(238)

Hence, o(g)'g = t, € T(C).

Now, we need to show Int(g) : T"— T" is defined over R. In partic-
ular, we need to show that ¢ o Int(g) o 0~" = Int(g). But we have for
all t e T(C),

(0 olnt(g) oo ')(t) = a(go ' (t)g ™)

(239) = gt 'ttig!
=gty
= Int(g)(t)
from where the result follows since 7" and T are separated. l

The last preliminary result we need is the following:

Theorem 2.5.27 ([She79, Cor 2.3]). Let G be a reductive group over
R and let T and T' be mazimal tori in G. Then, if T and T" are stably
conjugate, then they are conjugate.
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We now prove the main proposition as follows:

Proof. (Proposition 2.5.21) Evidently

(240) 2 U fwyw

weWe (M,T)

Conversely, suppose that 7/ € G(R) is stably conjugate to 7. Since 7 is
strongly regular we know from Lemma 2.5.26 that T" and 17" := Zg(v')
are stably conjugate. Thus, by Lemma 2.5.27 we know that 7" and
T’ are conjugate. Thus, we may assume without loss of generality
(without changing the conjugacy class) that v € T(R). Let g € G(C)
be such that gyg~' = +/. Since v is strongly regular this implies, by
Lemma 2.5.26, that Int(g) maps Tz — T and, in fact, is defined over
R. By Lemma 2.5.24 this implies that g € G(R)Ny,(T)(C). But, since
conjugation by G(R) evidently doesn’t effect conjugacy classes, we may
assume that g € Ny (T)(C). The first part of (230) follows.

Suppose now that w;yw; ' is conjugate to woyw,'. Then, there
exists some g € G(R) such that

(241) wyywy | = guwiywy g

so that g € Ng(T)(R) and w; 'gw; fixes 7. Since v is strongly regular
this implies that wy'gw; € T(R) which means that w;'gw,; is the
trivial element of W. This says that ws = gw; as elements of We.
Since g € Ng(T)(R) we see that g € Wg and the second equality of
(230) follows. O

2.5.1.4. Reflex fields and a construction of Kottwitz. In this appendix
we record, for the ease of the reader, the following extension of a classicl
construction of Kottwitz (see [Kot84a, Lemma 2.1.2]) to the setting of
not necessarily quasi-split groups.

Let us fix a field F' and G a reductive group over F'. Let p be a
conjugacy class of cocharacters over F. Recall that I'z acts on the set
of conjugacy class of cocharacters of G and we define the reflex field
of p, denoted by E(p) (or just £ when p is clear from context), to be
the fixed field.

Let G* denote the quasi-split inner form of G over F'. Choose an
inner twisting f : Gy — G% and let us specify that o — g, is the
G?(F)-valued cocycle such that for all ¢ € I'p we have that

foog_o fto agé = Inn(g,)
F

We then have the following observation:
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Lemma 2.5.28. The reflex field of the G*(F) - conjugacy class of
cocharacters

f(w):={fop:pep}
is E(p).

Proof. To see this it suffices to show that for any ¢ in I'r we have that
o-(fop)is conjugate to fopu since, by symmetry, the reverse direction
will also follow. To see this we merely note that for any o € I" we have
that .
o-(fop) :UG%OJCOMOUGWF

= Inn(g,") o foog opoag

— Tn(g;") o f o Tn(hy) o )

= Inn(g; "' f(ho)) o fon
where we have used the fact that p is I'p-stable to obtain the element
he- O

It’s also clear that if we choose another inner twisting (G*, f') of G
that f'(pu) = f(p) since for all 4 in g we have that fop is conjugate to
f" o by definition. Thus, we see that this conjugacy class of cochar-
acters of G% depends only on G* and not on the inner twist (G, f).
Thus, we denote this conjugacy class p*. By the above we have that

*

E(p) = E(u*). Also note that for any p we have that (—p)* = —p*.
Let us now choose a rational Borel-torus pair (B, T') of G* over F. To

pu* we associate a @—representation Ty of G* x Wi,x) where Wi«

acts on G* via the pair (B, T). To do this note that since G* is quasi-
split we have that p is actually defined over E(u) (see [Kot84a, Lemma
1.1.3]). Let p be the unique B-dominant representative of p* defined
over E(u*). Let V(i) be the irreducible Q-representation with highest
weight 1 and then define

—~

Tux 0 G* X Wiusy — GL(V (1))

to be such that its restriction to G* is the usual action and such that

the action of Wpg,+) on the weight space V,, & V(u) is trivial. The

existence of such a representation is precisely [Kot84a, Lemma 2.1.2].
Note though that there is an isomorphism

(242) G* 5 Wus) = G x Wi

unique up to inner automorphism. Thus, associated to r,« is a repre-
sentation

—~

(243) @ p WE(”) = G % WE(“*) — GL(V(M))
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unique up to isomorphism which we denote r,,. Of course, up to isomor-
phism, this representation doesn’t depend on the choice of (B, T) and,
in particular, depends only on g not the choice of an element p € p.
Thus, we will often times write 7, as a representation G x Wg(,) —
GL(V ().

We now record some results in the case of F' being a global field. To
begin we note thatfor any place v of F' and any choice of embedding
I < F, one gets an induced conjugacy class pu,, of cocharacters of Gz
The following claim is then simple:

Lemma 2.5.29. There is an equality of fields E(u)., = E(p,).
In particular, we see the following:

Corollary 2.5.30. Let v be an element of S™(G). Then, E(u),/F,
is unramified.

Proof. Note that by Lemma 2.5.29 it suffices to show that E(u,)/F), is
unramified. But, since G, splits over F;'" we evidently have an inclusion
E(w,) € F from where the claim follows. U

The following lemma is equally as simple as Lemma 2.5.29:

Lemma 2.5.31. There is an equality (up to isomorphism) of represen-
tations

(244) T ‘éwa(mw =T,

2.5.1.5. The Kottwitz group. We record in this section, for the conve-
nience of the reader, the basic definitions and properties we would like
to use concerning the Kottwitz group associated to a local or global
field F.

To make sense of the definition of this group, it is useful to first recall
the following basic lemma:

Lemma 2.5.32. Let F be a field of characteristic 0 and let G be a
connected reductive group over F'. Let H be any connected reductive
subgroup of G of the same rank. The choice of a mazimal torus T in

H induces a natural T p-equivariant inclusion Z(G) < Z(H), and this
embedding is, in fact, independent of T'.

Remark 2.5.33. See [Bor79, §2] for a recollection of dual groups and
their associated Galois actions.

Proof. (Lemma 2.5.32) Let us first consider the case when H is a max-
imal torus defined over I, in which case we will take T" to be equal to
H. Then, essentially by definition of the dual group, there exists an
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embedding H < G of complex algebraic groups identifying the image
of H with a maximal torus of G. In particular, we see that the image
of H contains Z(CA?) Let us denote by Z’ the preimage of Z(CAJ) in
H. We then claim that the isomorphism of complex algebraic groups
7' — Z(@) is actually T-equivariant.

To see this, note that induced map of root datum from the morphism
H <> G can be identified with the natural inclusion

(245)  (X.(H),0,X*(H),0) — (X.(H),®"(G), X*(H), ®(G))

which is patently [-equivariant. Thus, we see that for all ~v € I the
action of v on H and the action of ~ on the image of H in G differ
by inner automorphisms of G. In particular, it follovvs that the map
Z' — G is T-equivariant, and thus is the map 2" — Z (G) as claimed.

The desired T'-equivariant embedding Z (G) — 7 (H ) = H can thus
be taken to be the inverse of the induced I'-equivariant isomorphism
7' = 7(G) discussed above.

Suppose now that H is an arbitrary reductive subgroup of G of the
same rank. Let us fix a maximal torus 7" of H. From the initial case
when H was assumed to be a torus, we see that we obtain separate I'-
equivariant embeddings Z(G) < T and Z(H) — T. But, since Z (@)
is clearly contained in Z (I:f ) as complex algebraic subgroups of T we
thus obtain a I'-equivariant embedding Z (G) — Z (H ) as desired.

Finally, observe that changing the maximal torus 7" to 1" doesn’t
affect the embedding Z (@) — 7 (ﬁ[ ) since T and T are conjugate in H
and this conjugation doesn’t alter the embedding Z(G) — Z(H). O

Suppose now that F'is a number field and G is a reductive group
over F. Assume further that H is a reductive subgroup of G of the
same rank. Clearly then for all places v of F' we have that H, is
a reductive subgroup of G, of the same rank. Thus, from Lemma
2.5.32 we obtain a I'p-equivariant inclusion Z(G) — Z(H) and I'p,-
equivariant inclusions Z (C/}\v) — 7 (H ) for all places v of F. Given
our particular embeddings of F' — F, we obtain a diagram

(246) Z(G,) — Z(H,)
2{ l??
Z(G) —— Z(H)
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where the vertical maps are isomorphisms of complex Lie groups equi-
variant for the I', action where Z(G) is endowed with the T', action
inherited from the inclusion I';, < I" induced by our choice of embedding
FF,. A i

From the maps Z(G) — Z(H) of I-modules obtain a short exact
sequence of I'-modules

(247) 0 Z(G) > Z(H) > Z(H)/Z(G) — 0

Moreover, for each place v of F' we obtain from the map Z(G,) —
Z(H,) of T'r,-modules we obtain a short exact sequences of 'z, -modules

(248) 0— Z(G,) > Z(H,) - Z(H,)/2(G,) - 0

with similar compatibilities as in (246).
We further denote by

(249) inv: Z(H)/Z(G) - H(T, Z(G))
and
(250) inv, : Z(H,)/Z(G,) - H'(T,, Z(G,))

the connecting homomorphisms associated to (247) and (248) respec-
tively. Under the aforementioned I',-equivariant local-global identifi-
cations it’s easy to see that inv, can be identified with with the com-

position of inv and the localization map H'(T', Z(G)) — H'(T,, Z(G).
With this setup, we can define the Kottwitz group as follows:

Definition 2.5.34. Let F' be a number field and let G be a reductive
group over F. Let H be a reductive subgroup of G of the same rank.
Define the Kottwitz group K(G, H, F) as follows:

(251) A(G,H,F) := {a e (Z(H)/Z(G))' : inv(a) e ker' (T, Z(é))}
If v € G(F) is semisimple, we denote by R(1,/F') the group R(G, L, F).

It will be helpful later to note that our definition of K(G,H, F)
differs from the definition given in [Kot84b] and [Kot90] where, instead,
Kottwitz uses the group mo(R(G, H, F')) where K(G, H, F) is given the
Hausdorff topology inheirted from the complex Lie group Z (ﬁ)

The definition we have chosen to use is more in line with the later
work of Kottwitz and other authors (e.g. see [Shil0]). That said, since
we would like to make use of the material in [Kot84b] and [Kot86b]
we would like to verify that our two definitions agree when G is
F-anisotropic.

Namely, we have the following:
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Lemma 2.5.35. Let F' be a number field and G a reductive group
over F' such that G* is F-anisotropic. If H is a connected reductive
subgroup of G of the same rank, then R(G,H, F) is finite and, in
particular, is equal to mo(R(G, H, F)).

To prove this, it will be helpful to make the following basic observa-
tion:

Lemma 2.5.36. Let ' be a number field and G a reductive group over
F. Let H be a reductive subgroup of G of the same rank. Let T be a
mazximal torus of H. Then, there is a natural inclusion

(252) A(G,H, F) — &(G,T, F)

Proof. Let us merely observe that, by the proof of Lemma 2.5.32, we
have a I'-equivariant inclusions

(253) Z(G) — Z(H) — T

which gives rise to a commutative diagram

0—— Z(G)F — Z(A)' — (2(H)/2(G))" — H'(T", 2(G))

o ] | l

~

0—— Z(G)F " (T/2(G))F —— H'(T, Z(G))

from where it’s clear that we get the desired inclusion R(G,H, F) —
A(G,T, F). 0

From Lemma 2.5.36 the proof of Lemma 2.5.35 follows immediately
from the following:

Lemma 2.5.37. Let F' be a number field and G a reductive group over
F. Let T be a torus in G containing Z(G) which is elliptic. Then

(T/Z(G))T is finite.

Proof. Let us begin by Sh(lwing that for any torus S over F' there is
a natural identification of S and D(C) where D is the diagonalizable
C-group with character lattice X, (S)r,. (the I'p-coinvariants of X, (S)).

Now, we write G5 to denote the simply connected cover of G2,
Then denote by T the projection of T to G*! and T*¢ the pre-image
of T2 under the surjection G — G, Then T* = T/Z(G) and the
projection T — T2 is an isogeny so that we have a I'p-equivariant
isomorphism

(254) X, (T = X, (T%)q.
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Taking coinvariants and applying the previous paragraph as well as
basic theory of actions of finite groups on Q-spaces, we get

(255) X*(T* ")g = Xu(T)r ®Q = X,(T*)r, @ Q = X, (T™)Lr.

Now, X*(Tad)(g’” = 0 since T is anisotropic. Then, a diagonalizable
group D is finite if and only if X*(D)g is trivial which implies that
—~ T —~T A A~ A~

Tsc " is finite. But T © = (T*)'r = (T/Z(G))'* so this is the
desired result. O

2.5.1.6. Preservation of properties under Weil restriction. In this ap-
pendix we merely collect the verification that several properties of al-
gebraic groups used in this note are preserved under Weil restriction:

Lemma 2.5.38. Let F/F' be a finite extension. Let H be a reduc-
tive gorup over a field F' such that H* is F'-anisotropic. Then,
(ResppH)™ is F-anisotropic.

Proof. The claim is trivial given Lemma 2.5.83 since we have the equal-
ity (RespH)(F) = H(F'). O

Lemma 2.5.39. Let F'/F be an extension of number fields. Let H be
a reductive group over F' which satisfies the Hasse principle. Then,
Resr pH satisfies the Hasse principle.

Proof. Begin by noting that we have the following commutative dia-
gram

(256) HY(F'\H) —— | [ H'(F},, H)

w

I

(2) |
H1<F, RESF//FH> — Hv H1<Fm ResF’/FH)
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The isomorphism in arrow (1) is just Shapiro’s lemma. To see the
isomorphism in arrow (2) we proceed as follows:

Hl(Fv, ReSF//FH) = Hélt(Fv, (ReSF//FH)Fv)
= Hé}t(Fva ResFé/FvHFé)

= Hélt Fv;HReSF{U/FvHF{U

wlv

wlv

(3) | [ H&(F, He,)
wlv
=] [#'(F, 1)
wlv
where, obviously, the isomorphism labeled (3) is just Shapiro’s lemma.
The commutativity of this diagram, and the fact that the vertical
maps are isomorphisms, gives an isomorphism
(258) ker' (F', H) = ker' (F, Resp//rH)
from where the conclusion follows. 0

Lemma 2.5.40. Let F'/F be an extension of number fields. Let H
be a reductive F'-group such that H® is F'-anisotropic, H satisfies
the Hasse principle, and H has no relevant global endoscopy. Then,
Resp pH has no relevant global endoscopy.

Proof. By Proposition 2.2.29 it suffices to show that for all maximal
F'-tori T” < Resp/pH' that the equality

— ~T
(259) Z(Resp pH)'F = T2 "
holds. Note though that T" = Resp//pT for some maximal torus T in
H (e.g. see [CGP15, Proposition A.5.15 (2)]). Note now though that
since

(260) T ~ T

with I'p acting through its quotient Gal(F’/F') which acts by permu-
tation of the factors, that

—~TI A~
(261) T " =Tw
and similarly
(262) Z(ResppH)'F = Z(H)'#
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from where the equality follows from Lemma 2.2.29 and the fact that
H has no relevant global endoscopy. U

Lemma 2.5.41. Let F'/F be an extension of fields. Let H be a areduc-
tive group over a field F' with H" simply connected. Then, Resp/p H
has simply connected derived subgroup.

Proof. Begin by noting that (Resg/pH)" = Resp/r HY". Note though
that we can check derived subgroup over algebraic closure. But

(263) (ReSF//FHder)f ~ (H%er>[F’;F]
Since we're in characteristic zero, the fundamental group splits across
direct products and so

(264) ﬂ_;ft ((H%er)[Fl:F],T> ~ ’/Tft((H%er),f)[Fl:F] -0

as desired. O

2.5.1.7. Some lemmas about transfer. In this subsection we establish
several results concerning transferability of conjugacy classes. We begin
with the following observation:

Lemma 2.5.42. Let F' be a field of characteristic 0 and let G be a
quasi-split group over F'. Let ¢ : G — GIF be an inner twist. Let T
be a torus of G which transfers to G' (in the sense of [Kall6, §5.2])

then for any v € T(F') the conjugacy class of 7y transfers to a conjugacy
class in G'(F) (in the sense of [Shil0, §2.3]).

Proof. By definition there exists some g € G(F) such that the map
Y oInt(g)ir. : TF — G% is defined over F'. Let T" be the image of
T under the descent of ¢ o Int(g);r. to F. Note then that taking
Ty := T and T := T as in [Shil0, §2.3] we have that § can be taken
to be Int(1)(g))o1p. Then, by definition, v transfers to a conjugacy class

in G'(F) if and only if 6(g) € T"(F') has an element of its associated
G(F')-conjugacy class defined over F. But, evidently we can take the
image of v under the descent of ¢ o Int(g)r. to F. The conclusion

follows. t
One thing that follows immediately from this is the following:

Corollary 2.5.43. Let F' be a p-adic local field let G be a quasi-split
group over F. Let ¢ : Gz — G/f be an inner twist. Let T be an
elliptic mazximal torus of G. Then, any element v € T(F') transfers to
a conjugacy class in G'(F).

Proof. This follows immediately by combining Lemma 2.5.42 and
[Kot86b, §10] (see also [Kall6, Lemma 3.2.1] O
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2.5.2. Appendix 2: The trace formula in the anisotropic case
and its pseudo-stabilization. In this appendix we record, mostly for
the convenience of the reader and to set notation, the Arthur-Selberg
trace formula in the compact case or, said differently, for a reductive
group G over Q such that G* is Q-anisotropic (which is a blanket
assumption throughout this assumption assuming throughout this sec-
tion unless stated otherwise). We will often times assume that G is
simply connected to simplify the discussion, but this is rarely strictly
necessary.

We then write out the pseudo-stabilization of this trace formula un-
der the assumption that G has no relevant global elliptic endoscopy
(in the sense of §2.2.5).

2.5.2.1. The trace formula in the compact case. In this subsection we
recall the Arthur-Selberg trace formula in the case when G* is Q-
anisotropic. For the beginning part of this section, one can put no
restrictions on G other than it being reductive.

We begin with the following lemma that will be continually useful
in the following:

Lemma 2.5.44. Let G be a reductive group over Q. Then, the group
G(A) is an internal direct product of Ag(R)® and G(A)*. In particular
the natural map

(265) [G] - G(Q)\G(A)/Ac(R)"
is an 1somorphism of topological measure spaces.

Before we begin the proof, Let us note that we will often times
shorten the notation for an element G(Q)x in [G] to the notation [z].

Proof. (Lemma 2.5.44) Since Ag(R)? and G(A)! are normal we need
to show that the equality Ag(R)°G(A)! = G(A) holds and Ag(R)° n
G(A)! is trivial. This latter fact is clear. The former follows easily
from the decomposition G = G Z(G) which shows that the natural
map X*(G) — X*(Ag) is injective with finite cokernel. The second
claim readily follows. U

Because of this lemma we will conflate [G] with G(Q)\G(A)/Ag(R)°
and, in particular, call this latter topological measure space (with the
measure induced from the Haar measure on G(A)) the adelic quotient.

Let us now set up some of the necessary notation. Namely, let us
fix a smooth character x : Ag(R)™ — C and let us make the following
definition:
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Definition 2.5.45. We denote by L2(G(Q)\G(A)) the space of func-
tions ¢ : G(Q)\G(A) — C such that ¢(ax) = x(a)p(x) for all a €
Ag(R)Y and such that ¢px~' is square-integrable on [G].

Note that combining the fact that G(Q) n Ag(R)? is trivial with
Lemma 2.5.44 we see that every element @ € G(Q)\G(A) can be
written in the form a = G(Q)axr with a € Ag(R)°? and z € G(A)?
and, moreover, a and G(Q)x are unique. In particular, the function
(ox V) (a) := x 1 (a)p(G(Q)z) makes sense as a function
G(Q)\G(A) — C. Moreover, it’s clear that since ¢y~ ' is Ag(R)? in-
variant it descends to a function [G] — C which we also denote ¢y 1.

Let us now set the following notation:

Definition 2.5.46. We denote by 7 (G(A),x™ ') the set of C-linear
combinations of functions f = fof* : G(A) — C where:

(1) f*: G(Ay) — C is locally constant and compactly supported.

(2) fo : G(R) — C is smooth, satisfies f(ax) = x(a)~ f(z) for
all a € Ag(R)°, and for which fx is compactly supported as a
function on G(R)/Ag(R)°.

If fe A (G(A),x™!) note that we get a compactly supported func-
tion fx : G(A)! — C defined by (fx)(az) := f(x) where a € Ag(R)°
and z € G(A)! (again using Lemma 2.5.44).

We now make a definition of the operators R, (f) and R(fx) for an
element f € 7(G(A),x!). Namely:

Definition 2.5.47. The right convolution operator R, (f) on
L2(G(Q)\G(A)) is defined by taking ¢ € L2(G(Q)\G(A)) to

206 R(NEOG@Q) = | (9)6(G(Q)rg) dy
G(A)/Ac(R)?
which is well-defined since f and ¢ transform by inverse characters and
f is compactly supported on G(A)/Ag(R)*.
We also define the operator R(fx™') on L*([G]) as

27 RO = | (il dy

We then have the following elementary observation:
Lemma 2.5.48. We have a natural isomorphism of C-spaces
(268) LUG(Q\G(A)) = L([G]) : ¢ —> ox "

which is equivariant for the natural G(A)'-action on both sides and
such that

(269) Ry (f)(¢) = R(fx)(ox )
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Proof. We can define an inverse of the above map by pulling back a
function ¢ € L*(G(Q)\G(A)/Ag(R)") along the quotient map

(270) G(Q)\G(A) — G(Q)\G(A)/Ac(R)",

and twisting by x.
Now, we have

@71)  R(/)(6)(GQ)) = f £(9)6(G(Q)zg)dg
G(A)/Ag(R)O

(272) - f (10)(9)(6x ) (29)dg
G(A)!

(273) = R(fx)(ox ) (z).

from where the lemma follows. O

From this point on we assume that G* is Q-anisotropic and G is
simply connected. This has the benefit of implying that I, = Zg(7)
for all v € G(Q) and thus a(y) = 1 for all semi-simple v € G(Q).

Let us now appeal to the following result which justifies our termi-
nology of calling the situation when G is Q-anisotropic the ‘compact
case’:

Theorem 2.5.49 (Borel, Harish-Chandra). Let H be a reductive group
over Q. Then, the space [H]| is compact if and only if H* is Q-
anisotropic.

Proof. The desired result is contained in [Conl2a, §A.5]. Note, in par-
ticular, that since H was assumed reductive that [Conl2a, Lemma
A.5.2] shows that conditions a) and b) are equivalent to H2? being
Q-anisotropic. O

Note then that we have the following well-known result:

Theorem 2.5.50. For any function f € 3(G(A),x 1) the operator
R(fx) on L*([G]) is trace class. Moreover, there is a decomposition

(274) L*([G]) = G—) m(r' )’

Tell(G(A))

where TI(G(A)') denotes the set of irreducible unitary G(A)* - subrep-
resentations and m(n') is some integer (possibly zero).

Proof. This is a classical, and well-known result that follows from easy
function analysis since [G] is compact. For example, see [Whi, §3]. O

From this we deduce the following:
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Corollary 2.5.51. The operator R, (f) on the space L2(G(Q)\G(A))
18 trace class and there is a decomposition

(275) LN(GQ\GA)= P m(mr

TeTL(G(A))
where I1, (G(A)) denotes the set of irreducible unitary G(A) - represen-
tations acting by the character x on Ag(R)* and m(7) is some integer
(possibly zero).

Proof. The fact that R,(f) is trace class follows from the map con-
structed in 2.5.48. The decomposition follows from this map as well
as the fact that Ag(R)" is central in G(A), hence extending G(A)!
representations to G(A) via a character of Ag(R)® does not affect the
decomposition into irreducible representations. O

We would now like to state the Arthur-Selberg trace formula in this
context. Before we do this, it’s useful to note the following trivial
finiteness result.

Lemma 2.5.52. Let H be a reductive group over a global field F' and
let C < H(Ar) a compact subset. Then H(F) n C is finite.

Proof. This is essentially trivial. It suffices to show that H(F) n C is
discrete and compact. The group H(F') € H(AF) is discrete, therefore
so is H(F) n C. But, H(F) is also closed in H(Ag) (as any discrete
subgroup of a Hausdorff group is closed) and thus H(F') n C, being a
closed subset of C, is also compact. The conclusion follows. U

From this we deduce the following:

Corollary 2.5.53. Let H be a reductive group over a global field F.
Suppose that C < H(A) is such that its projection to H(A)/Ag(R) is
compact. Then, C' meets finitely many H(F')-conjugacy classes.

Proof. Note that since H(F)-conjugacy classes are separated by the
natural map H(F) — H2(F) it suffices to show that the projection of
C along the projection H(A) — H*!(A) intersects only finitely many
H*(F) conjugacy classes. But, note that C' has compact image in
H*{(A), since the map H(A) — H*d(A) factors through the map
H(A) - H(A)/Ax(R)°, and thus the claim follows easily from the

previous lemma. 0

Let us now assume that f € #(G(A),x!). We then define, as in
the notation at the beginning of this article, the notion of an orbital
integral:
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Definition 2.5.54. Let v € G(Q) be given. Then, the orbital integral
of f relative to v is the following:

(276) 0,(f) = f g~ g) dg

1y (AN\G(A)

This integral converges because of our assumption that f lies in the
set #(G(A),x™!) (and, in particular, has compact support modulo
Ag(R)Y).

Let us also note that [I,] is compact since 1., being a closed subgroup
of G, also satisfies 1,/Z(1,) is Q-anisotropic. Thus, v, := vol([/,]),
which is equal (by definition) to 7(I,), is finite. Note that both O,(f)
and vol([/,]) only depend on the conjugacy class {7} in G(Q).

Definition 2.5.55. For (m,V) € I, (G(A)) and f € 2 (G(A),x 1),
we define the trace tr(f|m) to be the trace of the operator w(f) on V
given by

(277) m(f) =v— f(g)m(g)vdg.
G(A)/Ac(R)0

Let us note that any element of II, (G(A)) is admissible (as follows
from Harish-Chandra’s finiteness results as in [BJ79, THeorem 1.7]),
and thus this trace is a well-defined complex number.

Before we finally state the trace formula, we record the following fact
implicitly used in the sequel:

Lemma 2.5.56. Let H be a reductive group over Q. Suppose that v is
an elliptic element of H(Q). Then L,(A)' = I,(A) n H(A)'.

Proof. First note that we really do need the assumption that v is elliptic
as the example in [AEKO05, §4, pg20] indicates.

To prove the lemma, we first show that X§(H)q = X§(1,)q. Indeed,
we have isogenies

(278) Z(H) — H™, Z(I,) - I?*

and hence isomorphisms

(279) Xo(Z(H))o = Xg(H)o,  Xg(Z(L))e = Xg(L)e
Additionally, since 7 is elliptic, we have

(280) Xo(Z(1y)) = Xg(2(H))

Putting these isomorphisms together, gives the desired equality.
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Now, we then have

(281) L(A)" = {he L(A): [x(h)] = 1Vx € X5(I,)e}

(282) = {he L,(A): [x(h)] = 1Vx € Xg(H)o}
(283) =I,(A)n H(A)!
as desired. 0

We then have the following:

Theorem 2.5.57. Assume that G* is Q-anisotropic. Then, for any
function f e #(G(A), x™') we have an equality

(284) 2 w0y () = te(B(f)

{vte{Gles

Let us note that by Corollary 2.5.53 the sum on the left-hand side
of (284) is a finite sum, and thus is convergent. The right-hand side of
(284) is convergent since R, (f) is trace class by Corollary 2.5.51.

Proof. (Theorem 2.5.57) This follows from the discussion in [AEK05,
§1.1]. Namely, from the discussion therein, since [G] is compact we get
an equality of tr(R(fy)) with

285 vol( 1. I(A)} “yg)d
) 3 el @) Ji ey (PO 290

But, from Lemma 2.5.48 we know that tr(R,(f)) = tr(R(fx)). More-
over, it’s easy to see that (285) agrees with the left hand side of (284)
for fyx in place of f with the only subtle point being the contents of
Lemma 2.5.56. The conclusion follows. U

Finally, we use Corollary 2.5.51 to deduce:

Corollary 2.5.58. Assume that G* is Q-anisotropic. Then, for any
feA(G(A),x 1) we have an equality

(286) dov0y(f) = > m(m)te(f | )

{rte{G}e= melly (G)
where 11, (G) and m(m) are as in Corollary 2.5.51.

2.5.2.2. Pseudo-stabilization. Our goal is now to rewrite
Corollary 2.5.58 in terms of stable orbital integrals. Namely, we aim
to prove the following:

152



Proposition 2.5.59. Suppose that G is Q anisotropic and G has
no relevant global elliptic endoscopy (in the sense of §2.2.5). Let f €
H(G(A),x™Y). Then,
(287) T(G) Y, SO = ), mx)t(f|n)
{vIe{G}s= mell (G)

where m(m) is as in Corollary 2.5.58.

To prove this, we will manipulate the left hand side of (286) into the
left hand side of (287). We will mainly be following the material in
[Kot86b, §6].

To start, let us first write
(288) Z Uwov(f) = Z Z vaw(f)
{vte{G}e= {r}e{G}z*> {v}eS(0)
We now have the following
Lemma 2.5.60 ([Kot84b]). Let H and H' reductive groups over Q

which are inner forms. Then, T(H) = 7(H').

Proof. By [Kot84b, (5.1.1)], (since 7(Hg.) = 1 by the resolution of the
Tamagawa conjecture by Kottwitz in [Kot88]) we have

(289) 7(H) = [ro(Z(H)"| - | ker'(F, Z(H))| ™",
Since we have a ['-equivariant isomorphism H >~ f\I’, this formula im-
mediately implies the desired result. 0

Hence, we see that v, = v, for all {7} € S(yp). Thus, the above
becomes

(290) Z v,0,(f) = Z Uyo Z 0,(f)

{r}e{G}e {r}e{Glzs {r}eS(10)
To continue, we recall the following lemma of Kottwitz (see §2.5.1.5 for
notation concerning the Kottwitz group):

Lemma 2.5.61 (Kottwitz). Let H be a reductive group over a number
field F. Let o € H(F) be a given semi-simple element. Then, for a
given semi-simple element (vy,) = v € H(A) such that for all places v,
we have v, ~s Yo, one has that v ~ «' for some v € H(F) if and only
if the equality holds

(291) ZObS(*)/(),’yU) |§(I’Y/F)): 0

where both sides are considered as elements of R(I,/F). Moreover, if
there exist such a ' then the number of such " (up to H(F)-conjugacy)
is the quantity |R(L,/F)|r(H)v, '

Yo
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Proof. For the first claim see [Kot86b, Theorem 6.6]. For the second
claim see the discussion succeeding Equation (9.6.3) on page 394 and
the discussion preceding (9.6.5) on page 395 noting, again, that the
resolution of the Tamagawa conjecture by Kottwitz in [Kot88] shows
that 71 (M) = 7(M) for any reductive group M over Q. O

In particular, we see that since G*¢ is Q-anisotropic and G has no
relevant global endoscopy we see that the following holds:

Corollary 2.5.62. Let vy € G(F) be a given semi-simple element.
Then, for a given semi-simple (7,) = v € G(A) such that for all places
v, we have vy, ~s Yo, one has that vy ~ ' for some~' € G(F'). Moreover,
the number of such v (up to G(F)-conjugacy) is 7(G)v'.
From this we see that we can rewrite (290) as follows:

(292) Z v,0,(f) = 7(G) Z Z O,(f)

{v}e{G}=s {10}e{G}5s ~v€Sa(v0)

where Sy (70) are the G(A)-conjugacy classes which are stably G(A)-
conjugate to {7}. Proposition 2.5.59 then follows considering the term
on the right hand side is almost the definition of the term on the left
hand side of (287). In particular, we see that in this case, e(y) = 1
because at each place v, we have v, ~ +/ for some 7' € G(F'), so that
e(v) = e(I,) = 1 from which the claimed equality holds.

2.5.3. Appendix 3: Base change for unitary groups. We record
here the version of base change necessary for our purposes. We are
essentially following the results in [Lab09].

For this appendix we fix a CM number field E and let F be its
maximal real subfield. We assume that F 2> Q. Let us also fix an
integer n > 1 and let U be an inner form of Ug/p(n)*. We then set
G := Resp/gU and H := Resg/gGL, g. We fix a cofinite set Synram of
primes p of Q over which G is unramified, and for each p € Syuram We
fix a hyperspecial subgroup Ky, < G(Q,).

Next, let us fix an automorphic representation 7 of U(Ap) = G(A).
We then denote denote by Syam(7) the union of the complement of
Sunram and the finitely many p € Synram for which , is ramified relative
to Ko’p.

For every prime p ¢ Syam(7) let us note that we have an unramified
base change map

(293)
Irreducible and smooth Irreducible and smooth
BC, : Ky ,-unramified — K, — unramified
representations of G(Q,) representations of H(Q,)
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(where K, is the unique hyperspecial subgroup of H(Q,)) as in [Min11,
§2.7] (see also [Minll, §4.1]).
With this setup, we then have the following result:

Theorem 2.5.63 ([Lab09, Corollaire 5.3]). Fiz £ to be a regular alge-
braic representation of Ge. Then, there exists a map

Irreducible discrete Irreducible discrete
BC - automorphic representations R automorphic
' of Ug/r(V)(Ap) such that representations
T 18 E-cohomological of GL,(Ag)

such that for all primes p ¢ Spam(7) we have that
e BC(m), = BC,(m,).
e BC(m)Y =~ BC(m) o ¢ (where ¢ is the conjugation operator cor-

responding to the non-trivial element of Gal(E/F")).
o The infinitesimal character of BC(m)q is (E®E)Y.

2.5.4. Appendix 4: Unitary groups. In this appendix we recall the
basic theory of unitary groups, their local-to-global construction, and
when such groups have no relevant endoscopy as in §2.2.5.

2.5.4.1. Decomposition of the forms of a split group. Before we begin
discussing unitary groups in earnest, it will be helpful to first recall the
decomposition of the forms of a split group G into classes corresponding
to inner and outer forms.

To begin, let F' be any field, assumed perfect for convenience, and let
G be a reductive group over F. Recall then the following well-known
definition:

Definition 2.5.64. A form or twist of G is an algebraic group H over
F such that Hy s isomorphic to G. An isomorphism of forms is
merely an isomorphism of algebraic groups over F.

Let us denote by Form(G) the set of (isomorphism classes of) forms
of G. The set Form(G) is a pointed set with identity element the
isomorphism class of G itself.

We recall the cohomological characterization of the pointed set
Form(G). The group functor sending an F-algebra R to the group
Aut(GR) of R-automorphisms of Gg is representable by a separated
and smooth group scheme denoted Aut(G) (e.g. see [Conl4, Theorem
7.1.9]). Note then that associated to this group scheme Aut(G) there
are two pointed sets. The étale cohomology set HJ, (Spec(F'), Aut(G))
(cf [Mil80, Page 122]) and the Galois cohomology set H'(F, Aut(G)).
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We have a natural map of pointed sets
(294) Form(G) — H{,(Spec(F), Aut(G))
and a natural map
(295) Form(G) — H'(F, Aut(Q))

defined as follows. The first map takes a twist H of G to the Aut(G)-
torsor Isom(H,G) (where, here, we have used the identification given
by [Mil80, Proposition 4.6]). The second map is defined as follows. Let
H be an element of Form(G) and let f : Gz — Hy be an isomorphism.
Then, the association

(296) Lo ip(o) = f ooy ofoag!

defines a map ¢y : I'r — Z'(F, Aut(G)). Differing choices of f or H
(within the same F-isomorphism class) define cohomologous elements
of Z1(F, Aut(G)) and thus we get a well-defined map as in (295).

We then have the following well-known proposition:

Proposition 2.5.65. There is a commuting triangle of isomorphisms
of pointed sets

(297) Form(G) ——— H},(Spec(F), Aut(QG))

| —

HY(F, Aut(Q))

where the two arrows emanating from Form(G) are (294) and (295),
and the remaining arrow is the one from [Stacks, Tag03QQ).

Proof. The proof of the bijectivity of the maps (294) and (295) follows
easily from the fact that affine morphisms satisfy effective descent (e.g.
see [Serl3, §1.3, Chapter I1I]). The commutivity of the diagram is easy
and left to the reader. 0

We would like to refine the set of forms of G by decomposing it into
its constituents corresponding to whether a form is so-called inner.
Namely, we make the following well-known definition:

Definition 2.5.66. An inner twist of a group G is a pair (H,&) where
H s an algebraic group over F' and & : G — Hy is an isomorphism
such that vg(o) is an inner automorphism of G (i.e. conjugation by
some element of G(F)) for every o € T'p. Two inner twists (H, &) and
(H',&") are equivalent if there exists an isomorphism ¢ : H — H' such

that ¢ 0 & = Int(h') o & for some W € H(F).
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The equivalence classes of inner twists of G' form a pointed set de-
noted InnTwist(G).

We can also classify inner twists of G cohomologically. To do this,
begin by noting that we have a natural map of algebraic groups G4 —
Aut(G). Indeed, it suffices to give a map G — Aut(G) which annihi-
lates Z((G). This map, on R-points, takes an R-point g € G(R) to the
the obvious associated inner automorphism of G which is an element
of Aut(Ggr) = Aut(G)(R). From this we obtain a maps of pointed sets

(298) Hy,(Spec(F), G*') — Hy (Spec(F), Aut(G))
and

(299) HY(F,G*) — H'(F,Aut(Q@))
Notice that we also have a natural map

(300) InnTwist(G) — Form(G)

given by sending (H,¢) to H.
Note that we also have a map of pointed sets

(301) InnTwist(G) — H'(F,G*)

given by associating to (H, &) the element ¢ € Z'(F, G*1). Again, one
can check that changing (H, &) within its equivalence class corresponds
to a cohomologous cocycle and thus we get a well-defined map as in
(301).

We then have the following (also well-known) proposition:

Proposition 2.5.67. The following diagram of maps of pointed sets is
commutative with the horizontal arrows being isomorphisms

(302) InnTwist(G) —— HY(F,G*!) ———— H}. (Spec(F), G*)

J | J

Form(G) —— H(F, Aut(G)) —— H/},(Spec(F), Aut(G))
where all maps are defined as before this proposition.

Now, the map InnTwist(G) — Form(G) needn’t be injective, and we
denote by InnForm(G) its image and call such forms (in the image)
inner forms of G. Evidently InnForm(G) can be a proper subset of
Form(G). But, while not every form of G is an inner form, there is a
partition of the forms of GG in to groupings of the inner forms of certain
special forms of G. We now elaborate on this point. While it is not
strictly necessary, we assume from this point out that G is split. To
this end, we also fix a pair (B, T') consisting of a Borel subgroup B and
a split maximal subtorus T of B. We denote the triple (G, B,T') by P.
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Begin by recalling that a reductive group H over F' is quasi-split if
it possesses an F-rational Borel subgroup (i.e. a subgroup B of H such
that By is a maximal smooth connected solvable subgroup of Hy).
We denote the set of (isomorphism classes of ) quasi-split forms of G by
QS(G) and thus, by definition, we have an inclusion QS(G) < Form(G).
These quasi-split forms of G are the previously alluded to ‘special forms’
for which every form of G will be an inner form of.

Before we state the decomposition of Form(G) in terms of these
quasi-split forms, we explain how to cohomologically classify the sub-
set QS(G) of Form(G). To begin, note that the inclusion of G* into
Aut(G) has normal image and thus we can form the quotient group
scheme which we denote Out(G). This group scheme is constant, and
is finite whenever Z(G) has rank at most 1 (e.g. see [Conl4, Proposi-
tion 7.1.9]). Note that by definition we have the defining short exact
sequence

(303) 1 — G™ — Aut(G) — Out(G) — 1

which gives rise to the diagram

(304)

Out(G)(F) —— H'(F, G*) —— H'(F, Aut(G)) — H'(F, Out(G))

| J

InnTwist(G) Form(G)

where the verital maps are bijections and the horizontal maps form an
exact sequence of pointed sets. Moreover, we have an idenficiation

(305) H'(F, Out(G)) = Homeons. (I'p, Out(G)(F))/ ~

where ~ denotes conjugation by Out(G)(F). One also has a natural
identification of Out(G)(F) with the group of automorphisms of the
based root datum associated to (G, B,T) (e.g. see [Conl4, §1.5] as
well as [Conl4, Theorem 7.1.9]).

Let us denote by Aut(P) the subpresheaf of Aut(G) consisting of
those automorphisms preserving P (i.e. preserving B and T'). Note
then that we get a natural map

(306) HY(F, Aut(P)) — H'(F, Aut(G))

coming from this inclusion.
We then have the following cohomological classification of QS(G):

Proposition 2.5.68. The natural map
(307) HY(F, Aut(P)) — H'(F, Aut(Q))
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is injective with image QS(G). Moreover, the natural map

(308) QS(G) — H'(F,0ut(Q))
15 a biyjection. Thus, we have natural bijections
(309) H'(F,Aut(P)) = QS(G) = H'(F,Out(Q))

Proof. Let us begin by showing that the image of the map in (307)
is precisely QS(G). To do this, let ¢ is a cocycle of Aut(G)(F) with
corresponding form H. Suppose now that ¢ lies in the image of

H'(F, Aut(P). Then, ¢ also gives rise (by restriction) to a cocycle in
H'(F, Aut(B)) and thus, by definition, B descends to a form B’ of B
over F'. Since we obtained the cocycle of H'(F, Aut(B)) by restriction
of a cocycle in H'(F, Aut(G)) we see that we have an embedding B’ —
H. It’s not hard then to see that the image of this B’ is a Borel
subgroup of H, and thus H is quasi-split.

Suppose now that H € QS(G) and fix a pair (B’,7") of an F-rational
Borel subgroup of H and a maximal torus 7" contained in B’. Se-
lect an isomorphism f : Gz — Hz. Note that by standard algebraic
group theory the pair (f~'(B%), f~'(T%)) must be conjugate to the
pair (B, T%) by some element g € G(F). Note that H corresponds to
the cocycle ¢y in H'(F, Aut(G)). Note then that ¢; is cohomologous to
the cocycle ' : 0 — gip(o)o(g)~!. But, note that «/ (by construction)
lands in the image of H'(F, Aut(P)) as desired.

If we can show that the map H'(F, Aut(P)) — H'(F,Out(G)) is an
isomorphism then, since the diagram

(310) H'(F, Aut(P)) — QS(G)

|

HY(F, Out(G))

commutes the injectivity of H'(F, Aut(P)) and the bijectivity of the
map QS(G) — H'(F,Out(G)) will follow. Thus, we focus on this.

Let us note that the map Aut(P) — Out(G) is split (by any pin-
ning of the triple (G, B,T)) and thus so is the map H'(F, Aut(P)) —
H'(F,Out(G)). This shows that the map
H'(F,Aut(P)) — H'(F,Out(G)) is surjective. To show the map is
injective note that we have a short exact sequence of group schemes

(311) 1->T/Z(G) - Aut(P) - Out(G) — 1

and thus (by the twisting trick of [Ser13, I, §5.7]) it sufifices to show that
for all Out(G)(F)-valued cocycles a one has that H'(F, (T/Z(G)),) =
0. But, since T is split and the action of a on X*(T/Z(G)) is by
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permutation of roots, we see that (7/Z(G)), is an induced torus, and
thus the vanishing follows from Shapiro’s lemma and Hilbert’s theorem
90. O

As a final observation, we give a decomposition of Form(G) into inner
forms of the quasi-split forms of G. Namely, we have the following:

Proposition 2.5.69. There is a decomposition

(312) Form(G) = |_| InnForm(H,)
HoEQS(G)

Proof. Let us note that we have the exact sequence

(313) 1 — G™ — Aut(G) — Out(G) — 1
which gives rise to the exact sequence

(314) HY(F,G™) - H'(F,Aut(G)) & HY(F, Out(Q))
Then, clearly, we have a decomposition

(315) H'(FAw(G)= || »')

acH (F,Aut(Q)

But, by the contents of [Serl3, I, §5.5] we know that p~'(a) is iden-
tified of a quotient of H'(F,G2). But, it’s not hard to see that if a
corresponds to H € QS(G) by Proposition 2.5.68 then G2 = H*d and
the conclusion follows. U

The above decomposition gives us a map Form(G) — QS(G). For
an element H of Form(G) we denote by H*, an element of QS(G), the
image of H under this map. For a split group G over F' we call an
element H of Form(G) an outer form if H* # G. Equivalently, H is an
outer form if its image in H'(F, Out(G)) is non-trivial.

The last useful lemma we record is the following, which is easy (it
follows from the proof of Proposition 2.5.69) and is left to the reader:

Lemma 2.5.70. Let H be an element of Form(G) and Hy an element
of QS(G). Then, H* = Hy if and only if cl(H) = cl(H,).

2.5.4.2. Unitary groups: basic definitions and properties. We now spe-
cialize and elaborate the discussion from the previous subsection in the
case when G = GL, p. In particular, we recall the theory of unitary
groups over F' by which we mean forms of GL,, r. For simplicity we
assume that F' has characteristic 0.

To begin, let us fix the pair (B,T) in the case of GL, r to be the
standard Borel B,, of upper triangular matrices, and the standard torus
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T, of diagonal matrices. It is then not hard to check that the auto-
morphisms of the associated based root datum are isomorphic to Z/27Z.
From this we deduce that we have natural bijections

H'(F,Out(GL,, r)) = Homeon. (T'r, Z/27)

(316) .
~ {étale algebras of degree 2 over F'}

which are identifications we freely make. Here an étale algebra of degree
2 over F' means either F' x F. the split étale algebra, or a degree 2
extension E over F.

Before we continue, it will be helpful to clarify some notation con-

cerning central simple algebras (or their generalizations Azumaya al-
gebras) and their involutions. We begin by recalling the following def-
inition.
Definition 2.5.71. Let R be a (commutative unital) ring. Then an
Azumaya algebra over R is a (possibly non-commutative) unital R-
algebra A such that there exists some faithfully flat (commutative uni-
tal) R-algebra R’ such that Agr is isomorphic to Mat,(R') as an R'-
algebra.

We will only be interested in dealing with Azumaya algebras over
degree 2 étale algebras over F', in which case such objects take a par-
ticularly simple form.

Namely, we have the following easy lemma:

Lemma 2.5.72. Let R be a (commutative unital) ring.

(1) If R — S is a ring map, and A is an Azumaya algebra over R,
then Ag is an Azumaya algebra over S.

(2) If R is a field, then an R-algebra A is an Azumaya algebra if
and only if it’s a central simple R-algebra.

(3) If R = F x F, where F is a field, then an R-algebra A is an
Azumaya algebra if and only if A = Ay x Ay where Ay and A,
are central simple F-algebras.

Azumaya algebras can support involutions of particular interest to
us, ones of the so-called second kind. We record here the rigourous
definition:

Definition 2.5.73. Let F' be a field of characteristic 0 and E a degree
2 étale algebra over F and let us write o for the non-trivial element of
Gal(E/F). If A is an Azumaya algebra over E, then an involution of
the second kind is a morphism A — A, denoted x — x*, satisfying the
following properties:

(1) (x4 y)* =z* +y* forall x,y € A.
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(2) (zy)* = y*z* for all z,y € A.
(3) x* = o(x) for allx € E.

We shall often write (A, =) for a pair of an Azumaya algebra and an
involusion of the second kind. To such a pair (A, =) we can associate a
unitary group:

Definition 2.5.74. Let F' be a field of characteristic 0 and E a 2-
dimensional étale algebra over F. Then, for a pair (A,*) of an an
Azumaya algebra A over E and = is an involution of the second kind we
define the unitary group of (A, *), denoted U(A, %), to be the algebraic
F-group whose R-points are given by

(317) U(A,#)(R) :={x € Ag : xzz* =1}
Let us now make the following elementary observation

Lemma 2.5.75. Let F' be a field of characteristic 0 and E = F x F.
Then, up to isomorphism, the only Azumaya algebras over E with an
involution of the second kind are those of the form (A x A°P s« i)
where A is a central simple F'-algebra and

(318) *switch (IL’, y) = (y,f)
Moreover,
(319) U(A x A *gyiten) = A

as algebraic groups over F'.

Proof. The first claim is [Knu+98, Proposition 2.14]. The second claim
is then clear. O

From this, we immediately deduce the following:

Lemma 2.5.76. Let F be a field of characteristic O and let E be a
degree 2 extension of F. Let (A, ) be a central simple E-algebra and
let U(A, =) be its associated unitary group. Then, U(A,*)g = A*.

Proof. Tt’s not hard to see that

where Ag is now an Azumaya algebra over E ®r F = E x E. By the
previous lemma we know that

(321) (AEv *E') = (A/ X Ala *switch)

for some central simple E-algebra A’. Since A naturally embeds into
Ag it’s not hard to see that A’ = A and thus U(A, *)p = A* from the
previous lemma. O
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The last definition we require before returning to our analysis of the
forms of GL,, r is the follwing:

Definition 2.5.77. Let F' be a field of characteristic 0 and E a 2-
dimensional étale algebra over F. A Hermitian space relative to E/F
is a pair (V,{(—,—)) consisting of a free E-module V together a non-
degenerate F-linear pairing

(322) (=, —>:VxV->EFE

such that {(—, —) is E-linear in the first entry and satisfies

(323) W, w) = o({w,v))
where o is the non-trivial element of Gal(E/F').

For a Hermitian space (V,{—,—)) we define U(V,{—,—)) to be the
algebraic F'-group so that on F-algebras R we have the following:

(324) UV (= =))R) =
{9 € GLa(Va) : (g, guw) = (v, w) for all v,w € Vi)
Now, combining (316) with Proposition 2.5.68 we see that we have
a bijection
(325) QS(GL,) = {étale algebras of degree 2 over F'}
For an étale algebra I over F' of degree 2 let us denote by Ug/p(n)*
the element of QS(GL,) corresponding to E. We then have the fol-

lowing description of U, /F(n) which is well-known, and whose proof is
elementary and left to the reader:

Lemma 2.5.78. Let E be an etale algebra of degree 2 over F. If K
is split then Ugyp(n)* = GL,. If E is a degree 2 extension of I then
there is an isomorphism

(326) Ug/r(n)* = U(E",{—, =)o)

where

(327) (x,y)o =T JIny

where
0 0 0 1
0 0 -1 0
0 1 0 O

(328) Iy = 0 0
0 0 O

(—1)N_1 0 0 O
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Thus, combining this lemma with Proposition 2.5.69 we deduce that

(329) Form(GL,, r) = |_| InnForm(Ug,/p(n)*)

and, in particular, the outer forms of GL,, are precisely the inner forms
of some Ug/p(n)* where E is a degree 2 extension of F.

The last thing we would like to do is explicate the structure of the
pointed set InnForm(Ug/rp(n)*). Namely, we would like to claim the
following;:

Lemma 2.5.79. The elements of InnForm(Ug/r(n)*) are precisely
U(A, =) where A is an Azumaya algebra over E of F-dimension 2n?
over F'.

Proof. Let us first note that the fact that every form of GL, p is of
the form U(A, =) for some Azumaya algebra over a degree 2 etale
algebra over F' is classical (e.g. see [PS92, §2.3.4]). The fact that
InnForm(GL,, r) is just A* for a central simple algebra over F' is also
well-known (see loc. cit.).

Let us now deal with the non-split case. Let us note that by Lemma
2.5.70 that an element H = U(A, =) of Form(GL,, r) is in
InnForm(Ug,p(n)*) if and only if cl(H) = cl(Ug/p(n)*) = E. More-
over, by functoriality we know that cl(Hg) = cl(H)g and since E is
the unique non-trivial element of H'(F,Z/2Z) with trivial image in
HY(E,Z/2Z). Thus, we see that H is in InnForm(Ug/r(n)*) if and
only if cl(Hg) is trivial. But, this is equivalent to saying that Hg
is in InnForm(GL,, r) which, by the previous paragraph, shows that
Hg =~ A* for some central simple algebra A over E. Note then that
this implies that Z(H)g is split. But, if A is an Azumaya algebra
over ' then one can easily show compute that Z(H) is the unique
1-dimensional torus over F split over E'. Thus, F = E’ as desired. [

We end this section with the well-known classification of unitary
groups over local fields. We begin with the classification over R:

Lemma 2.5.80. There is a natural decomposition
(330) Form(GL, &) = InnForm(GL, &) u InnForm(Uc/r(n)*)

Moreover, we have that

{GL, r} if nodd

331 InnForm(GL, ) =
(331) nnForm(GLa.z) {{GLn,R,GL;(H)} it meven

where H s the Hamiltonian quaternions and

(332) InnForm(Ug/r(n)*) = {U(p,q) :0<p<g<mnandp+q=n}
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where U(p, q) = U(R",{(—, =) .q) where
(333)
(@1 m0), (Y1 Yn Do) = T1YL T Tl —Tp1Ypr1 =~ Tnln

Proof. The claim concerning the inner forms of GL,, g follows immedi-
ately from the observation that H'(R,PGL,) injects in to Br(R)[2n]
and since Br(R) = Z/27Z the claim follows quite easily.

The second claim follows from a computation of H'(R, (Ug/r(n)*)
Let us note that U(n) := U(0,n) is an inner form of Ug/r(n), since it’s
not an inner form of GL, g, and thus it suffices to compute
HY(R,U(n)™). Note though that by [Borl4, Theorem 9] this is equal
to
H'(R,T)/Wr(R) where T is a fundamental torus (i.e. a maximal torus
of minimal split rank) in U (n)2d. But, U(n)* is R-anisotropic so we can
take 7' to be any maximal torus, namely 7" = U(1)"/Z(U(n)) (where
U(1) is the unique non-split torus over R). But, as can be easily cal-
culated H'(R,U(1)) = Z/2Z and thus H'(R,T) = ((Z/2Z)"/(Z/2Z))
where Z/27 is embedded diagonally in (Z/27)". But, as can be easily
checked (and as holds for any elliptic maximal torus in an R-group),
the group scheme Wy is constant. Thus, Wy (R) = Wy (C) = S,. It’s
easy to check that the S, action on H'(R,T) is the obvious one and
thus

ad)‘

330y YR, U(n)™) = ((Z/22)"/(Z/2L))/Sh
> {(p,g) eN*:0<p<qandp+q=n}

It’s then easy to check that U(p, ¢), which is an inner form of (Ug/r(n)*

is sent to (p, q) under the natural map

InnForm (U (n)2d) — HY(R,U(n)*!) from where the conclusion follows.
U

We now state the analogous classification of unitary groups over p-

adic local fields:

Lemma 2.5.81. Let F' be a p-adic local field. There is a natural de-
composition

(335) Form(GL,, r) = InnForm(GL,, r) u |_| InnForm(Ug/p(n)*)
B

where E travels over the degree 2 extensions of F' (of which there are
only finitely many). Moreover,

(336) InnForm(GL,, p){GLx(D:) : (i,j) =1 and jk = n}
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where D is the division algebra over F' of invariant 3 and
J
{e} if nodd

337 InnForm(Ugr(n)") =
( ) nn orm( E/F(n>> {Z/QZ if neven

Proof. The first claim follows quite easily from the fact (see [Mil, Chap-
ter IV,84]) that the inner forms of GL,, p are of the form A* where A
is a central simple F-algebra of dimension n? and that such division
algebras are all of the form Mat,,(D:) where D is the division algebra

of invariant % (in the sense loc. cit.).

The second claim follows, again, by explicitly computing the pointed
set HY(F,(Ug/r(n)*)™). Let us set H := (Ugp(n)*)*. We use
[Kot86b, Theorem 1.2] to equate this to the computation of

WO(Z(}AI)FF). But, Z(}AI) ~ 7Z/nZ and it’s not hard to check that
['r acts through its quotient Gal(E/F') and the non-trivial element
of Gal(E/F) acts by multiplication by —1. The conclusion easily fol-
lows. U

2.5.4.3. Anisotropicity and unitary groups. In this subsection we list
some natural conditions that guarantee anisotropicity (modulo center)
of unitary groups as well as the existence of elliptic maximal tori.

We start with the following:

Lemma 2.5.82. Let E be a degree 2 étale algebra over F' and set G*
to be Ug -(n). Let us set then set G := U(A, ) to be an inner form of

G* Then:
(1) If E~ F x F then G satisfies that G* is F-anisotropic if and
only if G = D* where D* 1is an F'-central division algebra over

F.

(2) If E is a degree 2 extension of F, then G satisfies that G is
F-ansiotropic if G = U(D, =) where D is an E-central division
algebra.

Before we prove this, it’s useful to first recall the following:

Lemma 2.5.83. Let F' be a field of characteristic 0 and let G be a
connected reductive group over F. Then, G* is F-anisotropic if and
only if G(F') contais no non-trivial unipotent elements.

Proof. This follows from the contents of [BT72, §8]. O

Lemma 2.5.82. Suppose first that £ ~ F x F and that G* is F-
anisotropic. Then, we know from (or rather via the proof of) Lemma
2.5.79 that G = A* for some F-central simple algebra A. Note then
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that by the Artin-Wedderburn theorem that A* =~ GL,,(D) for some
(necessarily unique) F-central division algebra D. If m > 1 then
G(F) = GL,,(D) contains GL,,(F) which implies that G(F') contains
a unipotent element which contradicts Lemma 2.5.83. Thus m = 1 and
thus G = D* as desired.

Conversely, if G = D* then to show that G?! is anisotropic it suffices,
by Lemma 2.5.83, to show that G(F) = D* contains no non-trivial
unipotent elements. But, note that the natural left action of D* on
itself gives an embedding ¢ : G < GLg(D) and so it suffices to show
that the map D* < GLg(D) on F-points has no unipotent elements
in the image. But, if © € D* were unipotent then that would mean
that (¢(u) — I)™ = 0 for some n > 1. Note though that ¢ arises from
an algebra embedding ¢ : D < Endg(D) which allows us to rewrite
this equation as ¢ ((u — 1)™) = 0. Since ¢ is injective this implies that
(u—1)" = 0 and since D is a division algebra this implies that u = 1
as desired.

Suppose now that F is a degree 2 extension of ' and let G = U(D, )
where D is an E-central division algebra. By Lemma 2.5.83 it suffices to
show that U(D, *)(F) contais no non-trivial unipotent elements. Note
though that, by definition, U(D, ) is contained in Resg/rD*. So,

(338) U(D,#)(F) < Resg/pD* = D*
The same argument as in the last paragraph then shows that no non-
trivial unipotent elements exist. 0

Remark 2.5.84. One cannot change (2) in Lemma 2.5.82 to an if and
only if. Indeed, note that over R, for example, U(n) := U(0,n) is
anisotropic but is of the form U(Mat, (R), ).

We now would like to explain when unitary groups over a local field
F' contain elliptic maximal tori. If F' is a p-adic local field this is a
non-question by Lemma 2.5.6. Suppose now that F' = R we then have
the following;:

Lemma 2.5.85. Let n > 1 be an integer. Then, a form G of GL,r
has an elliptic maximal torus if:

(1) If n =2 and G arbitrary.

(2) If n > 2 and G is an outer form of GL, .

Proof. By the classification in 2.5.80 and [Kall6, Lemma 3.2.1] it suf-
fices to analyze for which n do GL, g and U(n) = U(0,n) have elliptic
maximal tori. In the former case since the elliptic maximal tori in
GL,, r, for any field F, are of the form Resg//rG,, g where I’ "is a de-
gree n extension of F” it’s clear that elliptic maximal tori exist if and
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only if n = 2. For the latter case since U(n) is always R-anisotropic the
answer is clearly that elliptic maximal tori exist for all n. The deisred
conclusion follows. O

2.5.4.4. Local-to-global definitions of unitary groups. We now explain
the methodology for the construction of global unitary groups from
local ones. In other words, we discuss the question of whether or not
there is a (unique) unitary group over a number field F' whose base
change to F, (for all places v of F) is some pre-perscribed unitary

group.

So, let us fix F' to be a global field (assumed to be a number field
for convenience). From the last section we know that to give a form of
GL,, r is the same as to give a class in H'(F, Aut(GL, r)). Note then
that for every place v of F' we have the usual localization map

(339) HY(F,Aut(GL, r)) — H'(F,, Aut(GL, r))
We can then assemble these maps to give a map

(340) loc : H'(F, Aut(GLy, ) — | [ H'(F, Aut(GL, r))

To begin, we have the following well-known lemma:
Lemma 2.5.86. The localizaton map (339) is injective.
Proof. Note that the sequence (303) for GL,, g
(341) 1 - PGL,r — Aut(GL, r) —» Z/2Z — 1

splits. Thus, it suffices to prove that the maps

(342) H'(F,PGL,r) — | [ H'(F,,PGL,r)
and
(343) H'(F,z/2Z) — | | H'(F,, Z/21)

are injective.
To see that the map in (342) is injective, note that via the sequence

(344) 1 — Gy, — GL, — PGL, y — 1
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we get a commutative diagram

(345) H'(F,PGL,r) — | | H'(F,,PGLyr)
HZ(Fv Gm) — HH2(FvaGm)
where all vertical maps are injective (using Hilbert’s theorem 90 to-

gether with the theory of twists as in [Ser13, Part I, §5.7]). Thus it
suffices to show that the map

(346) H*(F,Gy,) — | | H*(F.,Gy)

is injective. But, there are is an obvious commutative diagram

(347) Br(F) ———— [ [Br(F,)

| !

H*(F,G,,) — | | H*(F.,Gy)

where the vertical maps are isomorphisms. Thus, it suffices to show
that

(348) Br(F) — | [ Br(F,)

is injective. This follows form the fundamental exact sequence of class
field theory (e.g. take the limit of the map in [Mil, Chapter VII, Corol-

lary 4.3]).
The fact that the map
(349) H'(F,z/22) — | | H(F., Z/22Z)

is injective follows from basic algebraic number theory. Namely, Kum-
mer theory implies that this is equivalent to the injectivity of the map

(350) KX J(K7) — | [ KX/
which is simple to see (e.g. see [Mil, Chapter VII, Theorem 1.1]). O

As a corollary of the above we obtain the following:
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Corollary 2.5.87. For any degree 2 étale algebra E over F the natural
map

(351) locg : InnForm(Ug/p(n)*) — HInnForm(UEv/Fv(n)*)
15 injective.

Here we are abusing notation by denoting F®r F, by F,. Of course,
since F is a degree 2 étale algebra over F', F, is a degree 2 étale algebra
over F,.

We would now like to describe the explicit image of locg. In other
words, we’d like to discuss when a collection of inner forms of Ug, /p, (n)*
for all places v of F'is the simultaneous base change of some inner form
of UE/F (n)*

To do this it will be helpful to construct a map

(352) €, : InnForm(Ug, /r, (n)) — Z/2Z

This map is given as follows (where we are using Lemma 2.5.80 and
Lemma 2.5.81 without mention):

(1) Assume that E, is a degree 2 extension of F,. Then:
(a) if F, is a p-adic local field then the map

(353) €, : InnForm(Ug, /, (n)) — Z/2Z

is the unique injective homomorphism.
(b) if F}, = R then the map

(354) €, : InnForm(Uz, /, (n)) — Z/2Z

is defined as follows:
1 if nodd
V%J mod 2 if n even

(355) &(U(p,q) = {
(c¢) Assume that E, =~ F, x F,. Then:
(i) if F), is a p-adic local field then
(356) €, - InnForm(Ug, /. (n)) — Z/27Z

is the quotient map by 2(Z/nZ) after making the
identification InnForm(Uz, 1. (n)) = Z/nZ as above.
(ii) if F, = R then

(357) InnForm (U, i, (n)) — Z/2Z

is the unique injective homomorphism
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Of course, we have neglected to say what happens when F, =~ C in all
cases, but here there are no non-trivial inner forms and so ¢, is just the
trivial map.

We can now explicitly state which collections of local unitary groups
come from a global unitary group:

Proposition 2.5.88. Let F' be a number field and let E be a degree 2
étale algebra over F'. Then, the image of the injective map

(358) InnForm(Ug,p(n)*) — H InnForm(Ug, /p, (n)*)

is the set of all tuples (U,), in HInnForm(Ugv/Fv(n)) such that the

following two conditions hold:

(1) U, = Ug, /5, (n)* for almost all v.
(2) The equality

(359) S, (U) = 0

v

holds as an element of Z/27.
Proof. This is contained in the contents of [Clo91, §2]. O

Remark 2.5.89. Note that ¢, is trivial for all v when n is odd, and so
we see that in this case the only obstruction to a tuple (U,), of inner
forms of Uf, /. (n) being the simultaneous base change of some inner
form of Ug, (n) is that U, = U, . (n) for almost all v.

2.5.4.5. Unitary groups with no relevant global endoscopy. We now dis-
cuss sufficient conditions for a unitary group U over a number field F,
such that U is F-anisotropic, to have no relevant global endoscopy
as in §2.2.5.

We begin by observing the following:

Lemma 2.5.90. Let F' be a global field and let E be a quadratic ex-
tension of E. Let U be an element of InnForm(U% -(n)). Then, if

U =~ U(D, *) for D an E-central division algebra then U has no rele-
vant elliptic endoscopy.

Proof. We would like to apply Proposition 2.2.29. To do this we need to
show that U?! is F-anisotropic and that U satisfies the Hasse principle.
The former condition is Lemma 2.5.82. The latter is contained in [PS92,
§6.7].

Now, let T" be a maximal torus in U. Then, we need to show that the
containment Z(U) € T'F is an equality or, equivalently, that TTF <
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A~

Z(U). Note though that evidently
~ ~ ~T
(360) T'rcTre =Ty ©

Note though that, by assumption, Tg is a maximal torus of Ugp =~
D*. But, all maximal tori of D* are induced, say they are equal to
Resyr /G, where M is a degree n extension of £. It is then clear to

—~T ~
see that T ~ < Z(U) as desired. O
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Part 3. An Approach to the Characterization of the Local
Langlands Correspondence (with Alex Youcis)

3.1. INTRODUCTION

The local Langlands conjecture for a reductive group G over a p-adic
field F' has held a central role in the study of number theory since its
initial development by R. Langlands. While the precise formulation
of these conjectures for the group G = GL, p is classical (e.g. see
[HT01] and [Hen00]), such statements for general G, and especially for
G which are not quasi-split, have only gradually been made precise
over recent years (e.g. see [Kall6b] and the references therein). Such
statements often list desiderata that the local Langlands conjecture
for G is expected to satisfy but generally make no claim that these
properties uniquely characterize the correspondence.

In the case of G = GL,, r such characterizations classically employ
the theory of L-functions and e-factors. For other classical groups G,
Arthur realized that one can often use the theory of standard and
twisted endoscopy to relate the local Langlands conjecture for G' and
the local Langlands conjecture for GL,, ¢, thus reducing the character-
ization problem for G to the case of GL,, . This was carried out for
quasi-split symplectic and orthogonal groups in [Art13] and for quasi-
split unitary groups in [Mok15]. The non quasi-split unitary case was
tackled in [Kal+14].

In [Sch13b], Scholze gave an alternate characterization of the local
Langlands conjecture for GL,, . This characterization involves an ex-
plicit equation (called the Scholze—-Shin equation(s) in the article below)
which relates the local Langlands conjecture to certain geometrically
defined functions f;; which are of geometric provenance. This char-
acterization, unlike that appealing to the theory of L-functions and
e-factors, has the property that it is amenable to study for a general
group G. Namely, the functions f; as in [Sch13b] can be defined for
a much wider class of groups than just GL, r (e.g. see [Sch13a] and
[Youl9]) and thus one can ask whether analogues of Scholze’s charac-
terization of the local Langlands conjecture for GL,, r exist for other
groups G.

The goal of this Part can then be stated as giving an affirmative an-
swer to this question for supercuspidal L-parameters (conjecturally the
class of parameters whose packets consist entirely of supercuspidal rep-
resentations). We show that a conjectural Langlands correspondence
satisfying a certain list of desiderata including the Scholze-Shin equa-
tions is uniquely characterized by these conditions. Our method, as
currently stated, cannot hope to handle all groups G but only groups
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satisfying a certain ‘niceness’ condition. For example, both unitary and
odd special orthogonal groups are ‘nice’ whereas symplectic and even
special orthogonal groups are not in general ‘nice’.

3.2. NOTATION

Let F be a p-adic local field. Fix an algebraic closure F and let
F" be the maximal unramified extension of F in F. Let L be the
completion of F" and fix an algebraic closure L.

Let G be a connected reductive group over F'. We denote by G(F)
the regular semisimple elements in G(F') and by G(F)! the subset of
elliptic regular semisimple elements. We denote by D, or D¢, the
discriminant map on G(F). If 7,7 € G(F) are stably conjugate we
denote this by v ~ 7.

Let G be the connected Langlands dual group of G and let “G be
the Weil group version of the L-group of G as defined in [Kot84b, §1].
We denote the set of irreducible smooth representations of G(F') by
Irr(G(F)) and by Irr*(G(F)) the subset of supercuspidal representa-
tions. For a finite group C' the notation Irr(C') means all irreducible
C-valued representations of C.

A supercuspidal Langlands parameter is an L-parameter (see [Bor79,
§8.2]) ¥ : Wp — LG such that the image of v is not contained in a
proper Levi subgroup of “G. We say that supercuspidal parameters
1 and v’ are equivalent if they are conjugate in Q and denote this by
Y ~ 9. Let Cy be the centralizer of ¢»(Wr) in G. Then by [Kot84Db,
§10.3.1], ¢ is supercuspidal if and only if the identity component C,
of Cy is contained in Z(@)FF. We define the group Cy, := C’w/Z(@)FF
which is finite by our assumptions on 4. For the sake of comparison,
in [Kall6b, Conj. F|, Kaletha defines Si = Cy/(Cy N [Glaer)°. For ¢
a supercuspidal parameter, we have

(361) 5=y
Indeed,
(362) (Cy N [Glaer)” = (C} 0 [Glaer)” © (Z(G)'" A [Glaer)” = {11,

from where the equality follows.

Define Z'(Wp,G(L)) to be the set of continuous cocycles of W
valued in G(L) and let B(GQ) := H'(Wpr,G(L)) be the corresponding
cohomology group. Let  : B(G) — X*(Z(G)'F) be the Kottwitz map
as in [Kot97].

An elliptic endoscopic datum of G (cf. [Kot84b, pp. 7.3-7.4]) is
a triple (H,s,n) of a quasisplit reductive group H, an element s €

reg

174



Z ([;T )I'F and a homomorphism 7 : H— G. We require that 7 gives an
isomorphism

(363) i H — Zgn(s)),

that the A@—conjugacy Aclass of 7 is stable under the action of I'r, and
that (Z(H)'r)° < Z(G).

An extended elliptic endoscopic datum of G is a triple (H, s, n) such
that In: 'H — LG and (H, s, 7 7) gives an elliptic endoscopic datum
of G.

An eatended elliptic hyperendoscopic datum is a sequence of tu-
ples of data (Hy,sy,%ny), ..., (Hg, sk, In,.) such that (Hy, sy, %n;) is an
extended elliptic endoscopic datum of G, and for ¢ > 1, the tuple
(H;,s4,1n;) is an extended elliptic endoscopic datum of H; ;. An el-
liptic hyperendoscopic group of G is a quasisplit connected reductive
group Hj, appearing in an extended elliptic hyperendoscopic datum for
G as above.

3.3. STATEMENT OF THE MAIN RESULT

Throughout the rest of the paper we assume that our groups G satisfy
the following assumption:

(Ext)  For each elliptic hyperendoscopic group H of G and each elliptic
endoscopic datum (H',s,n’) of H, one can extend (H', s, 1)
to an extended elliptic endoscopic datum (H’, s, Ln/) such that
Ly tH —tH.

For a discussion on the severity of this assumption see §3.6.2.

We now state the main result. Let us fix G* to be a quasi-split
reductive group over F. We define a supercuspidal local Langlands
correspondence for a group G* to be an assignment

Equivalence classes of Subsets of
(364)  IIy : { Supercuspidal L-parameters p — - ,
Irr**(H(F))
for H

for every elliptic hyperendoscopic group H of G* satisfying the follow-
ing properties:

(Dis) Ify(¢v) nTy(Y') # & then ¢ ~ .

(Bij)  For each Whittaker datum wy of H, a bijection

(365) by - W (1) — Irr(Cy).
This bijection ¢y, gives rise to a pairing
(366) (= =y + Mu () x Cy — C,
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defined as follows:

(367) (T, S$)nogy i=t1(8 | Ly (7).
(St) For all supercuspidal L-parameters 1) of H, the distribution
(368) SOy = > (m, 1),
WEHH(’(ZJ)

is stable and does not depend on the choice of toy.

(ECI) For all extended elliptic endoscopic data (H’,s,tn) for H and
all h e Z(H(F)), suppose ¢! is a supercuspidal L-parameter
of H that factors through “n by some parameter )¥'. Then
such a ¥ must be supercuspidal and we assume it satisfies
the endoscopic character identity:

(369) SOy (W) = ©3 (h),

where we define h*'’ to be a transfer of h to H' (e.g. see [Kall6b,
§1.3]) and we define

(370) = Y, (780

melly (PH)

the s-twisted character of 1.

Suppose now that zg, € Z'(Wpg,G(L)) projecting to an element of
B(G)pas- Let G be the inner form of G* corresponding to the projection
of ziso to Z1(Wp, Aut(G)(F)). We then define a supercuspidal local
Langlands correspondence for the extended pure inner twist (G, ziso) (cf.
[Kall6b, §2.5]) to be a supercuspidal local Langlands correspondence
for G* as well as a correspondence

(371) T [ Supercuspidal L-parameters R Subsets of
(Gyziso) : fOI' G II‘I‘SC(G<F)) ’
satisfying
(Bij’) For each Whittaker datum w¢ of G, a bijection
(372) LmG : HG(77Z)> - Irr(cllh XZ{SO)7

where Irr(Cy, x»,.,) denotes the set of equivalence classes of ir-
reducible algebraic representations of C, with central character

on Z (CAJ)FF equal to X, = k(Ziso). This gives rise to a pairing
(373) (=g Co X 151(Cr ) — €.

defined as
(374) (T, g 1= tr(8 | tg (T)).
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(ECT’) For all supercuspidal parameters ¢ of G and all extended elliptic
endoscopic data (H,s,In) of G such that 1 factors as ¢ =
Epot | there is an equality

(375) s (BT = 86y (h),

where h € 7 (G(F')) and SO, is independent of choice of Whit-
taker datum in (Bij’).

For a supercuspidal local Langlands correspondence II for (G, ziso)
we say that a subset of Irr(H (F)) of the form I1,(H) is a supercuspidal
L-packet for T1;. We furthermore say that an element 7 of Irr(H (F))
is IIz-accessible if 7 is in a supercuspidal L-packet for 1.

A priori, the above axioms (Dis), (Bij)-(Bij’),(St), and (ECI)-
(ECT’) are not enough to uniquely specify a supercuspidal local Lang-
lands correspondence II for G* even under the specification of the set
of Il-accessible representations. The goal of our main theorem is to
explain a sufficient extra condition which does uniquely specify a su-
percuspidal local Langlands correspondence.

In the statement of this condition we need to assume an extra prop-
erty of G. Namely, we say that G* is good if for every elliptic hyper-
endoscopic group H of G* we have:

(Mu) There exists a set S of dominant cocharacters of Hz with the
following propery. Let ¢ ¢l be any pair of supercuspidal
parameters of H such that for all dominant cocharacters p €
SH | we have an equivalence 7_, o ff ~r_, ol Then yff ~
vy

Here r_, is the representation of “H as defined in [Kot84a, (2.1.1)].We
say that G is good if G* is. We call a set ST as in assumption (Mu)
sufficient. See §3.6.1 for a discussion of the severity of this assumption.

To this end, let us define a Scholze-Shin datum {f}, } for G to consist
of the following data for each elliptic hyperendoscopic group H of G:

e A compact open subgroup K% < H(F),

e A sufficient set S¥ of dominant cocharacters of Hg,

e For each p € S¥ of with reflex field E,,, each 7 € WE,, and each
he s (K"), a function f¥, € #(H(F)).

Let us say that a supercuspidal local Langlands correspondence for G

satisfies the Scholze—Shin equations relative to the Scholze-Shin datum
{f£,} if the following holds:

(SS) For all elliptic hyperendoscopic groups H, all h € (K1), all
e ST and all parameters ¥ of H one has that

(376) SOyu () = te(r | (r— 0 ¥")(xu)) SOy (),
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where y, := |- |7#* and p is the half-sum of the positive roots
of H (for a representation V' and character x we denote by V()
the character twist of V' by x).

We then have the following result:

Theorem 3.3.1. Let G be a good group and suppose II* fori = 1,2 are
supercuspidal local Langlands correspondences for (G, ziso) such that

(1) For every elliptic hyperendoscopic group H of G the set of I1};-
accessible representations is contained in the set of 1% - acces-
sible representations.

(2) There exists a Scholze-Shin datum {f¥,} such that II' satisfies
(SS) relative to {ff,} fori=1,2.

Then TI' = T1? and for every (H, z), either equal to (H,1) where H is
an elliptic hyperendoscopic group of G or equal to (G, ziso), and choice
of Whittaker datum vog, the bijections v, fori = 1,2 agree.

3.4. ATOMIC STABILITY OF L-PACKETS

Before we begin the proof of Theorem 3.3.1 in earnest, we first discuss
the following extra assumption one might make on a supercuspidal local
Langlands correspondence II for the group G which, for this section,
we assume is quasi-split. Namely, let us say that II possesses atomic
stability if the following condition holds:

(AS) If S = {m,...,m} is a finite subset of IT-accessible elements of
Irr**(G(F)) and {ay,...,ax} is a set of complex numbers such

k
that © := Z a;m; is a stable distribution, then there is a parti-
i=1
tion
(377) S =1y (G) b - ully, (G)
such that
(378) 0 = > b;50,,
j=1

(i.e. that a; is constant on Il (G)).
We then have the following result:

Proposition 3.4.1. Let II be supercuspidal local Langlands correspon-
dence for a group G. Then, 11 automatically possesses atomic stability.

Proposition 3.4.1 will follow from the following a priori weaker propo-
sition. To state it we make the following definitions. For supercuspidal
L-parameters 91, ..., 1, we denote by D(¢1,...,1,) the C-span of the
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distributions O, for m € g (1) U -+ U llg(¢,) and let S(¢y, ..., 1Py,)
be the subspace of stable distributions in D(tq, ..., 1y,).

Proposition 3.4.2. For any finite set of supercuspidal L-parameters
{1, ..., ¢} one has that {SOy,,...,50y,} is a basis for

S, ... ).

Let us note that this proposition actually implies Proposition 3.4.1.
Indeed, since each 7; € S is accessible we know that we can enlarge S
to be a union Il,, (G) u - - - w1l (G) of L-packets. Proposition 3.4.1 is
then clear since every stable distribution in the span of S is contained
n S(Ipl, Ce ,wn)

Before we proceed with the proof of Proposition 3.4.2 we establish
some further notation and basic observations. For an 7w element of
Irr*(G(F')) we denote by f the locally constant C-valued function on
G(F)™#& given by the Harish-Chandra regularity theorem. We then
obtain a linear map

(379) R: D(Irr*(G(F))) — C*(G(F)™", C)

given by linearly extending the association ©r ~— fr |g@ren. Here
D(Irr*(G(F))) is the C-span of the distributions on H(G(F')) of the
form ©, for 7 € Irr®(G(F)). We also have averaging maps

(380) Avg : C*(G(F)™,C) — C*(G(F)™, C)
given by
(381) Ave(N) 1= - D17)

where 7/ runs over representatives of the conjugacy classes of G(F')
stably equal to the conjugacy class of v and n, is the number of such
classes (which is finite since F is a p-adic field).

We then have the following well-known lemma concerning R:

Lemma 3.4.3 ([Kaz86, Theorem C]). The linear map R is injective.

In addition, we have the following observation concerning the inter-
action between R and Avg, which follows from the well-known fact
that © is stable implies that R(©) is stable:

Lemma 3.4.4. Let © € D(Irt*(G(F'))) be stable as a distribution.
Then, Avg(R(0©)) = R(O).

We may now proceed to the proof of Proposition 3.4.2:
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Proof. (Proposition 3.4.2) By assumption (Bij), the set of virtual char-
acters SO}, , as s runs through representatives for the conjugacy classes
in Cy and i runs through {1,...,n}, is a basis of D(¢y,...,,). It suf-
fices to show this in the case when n = 1 in which case it is clear.
Indeed, writing just ¢ instead of 1)1, we see that it suffices to note that
the matrix ((m,s)), where 7 runs through the elements of II,(G), is
unitary, and thus invertible, by the orthogonality of characters.

We next show that for any supercuspidal L-parameter v and any
non-trivial s in Cy we have that Avg(R(S©:)) = 0. Indeed, we begin
by observing that by [HS12, Lemma 6.20] we have that
(382)

1

Avg(R(SO)M) =—>, >, Alm)

n
Ty yreX (V) ~st

Dy (vu)

Dalr) SOyu (Vr)

where here ' travels over the set of conjugacy classes of G(F') stably
equal to the conjugacy class of v and, as in loc. cit., X(v') is the set
of conjugacy classes in H(F') that transfer to v, and A(yg,7’) is the
usual transfer factor, and D denotes the discriminant function.

Let us note that we can rewrite this sum as

N ) <§Ezs vy [2280)
T YHEX (7)) ~st

because X (7')/ ~g is independent of the choice of 7.

Note that Dg(v') = Dg(y) for all 4" stably conjugate to « (since
D¢ (7') is defined in terms of the characteristic polynomial of Ad(v))
and thus we can further rewrite this as

B89y — Y (ZAM,>%MW)

" reX()/~a
and so it suffices to show that this inner sum Z A(vg,v') is zero.

,Y/

) SOy (va)-

DH 'YH

For v ~4 v, we have

(385) Avm, ) = v (y,7'), )A (v, ),

where inv(y,7') € &(L,/F)P (as in [Shil0, §2.2]). Since v is elliptic,
7' — inv(vy,7') gives a bijection between F-conjugacy classes in the
stable conjugacy class of v and £(I,/F)P. Hence

(386) ZA (v, ) = Al ) Y, x(s).

XER(1,)P
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In particular, it suffices to show that s gives a nontrivial element of
R(L,/F). Since (H,s,n) is a nontrivial elliptic endoscopic datum and
7 is elliptic, this follows from [Shil0, Lemma 2.8].

Now, since the set {SOy,,..., 50y, } is independent (by assumption
(Dis)) it suffices to show that this set generates S(¢y,...,¢,). But,
this is now clear since if © € S(¢1,...,1,) then we know by Lemma
3.4.4 that Avg(R(0)) = R(©). On the other hand, writing

(387) o= Zn] > 4,563,

i=1 s

we see from the above discussion, as well as combining assumption (St)
with Lemma 3.4.4, that

(388) Avg(R i R(Sa;c©y,) = R (i aieS@¢i>

i=1
(identifying SOy, with SOF, where e is the identity conjugacy class in
Cy). The claim then follows from Lemma 3.4.3. O

3.5. PROOF OF MAIN RESULT

Let us begin by explaining that it suffices to assume G is quasi-split.
Indeed, note that the assumptions of Theorem 3.3.1 are also satisfied
for (G, zs) equal to (G*, 1) and so, in particular, if we have proven the
theorem in the case of (G*,1) then we know that IIj. = IIZ.. Now,
let 1) be any supercuspidal L-parameter for G. By assumption (ECI’)
we have that

(389) SO} (h) = SO) o (h9) = SO7 44 (h7") = SO (h)

for all h € (G(F)) and where the superscripts correspond to those
of IT*. By independence of characters, this implies that H%G,Z1so)(¢) =
I ...y (¥). Tt remains to show that t,, = ¢, . Since each 1, (7) is
algebraic, it suffices to show that for all € Tl{, . (v) = I, \(¥)
one has that (m,s),, = (m,s)  forall s e Cy. By independence of
characters, it suffices to show that @11/;5 = @12/;5 for all s € Cy. By the
standard bijection (H,s,In, ) < (¢,s) (cf. [BM20, Prop. 2.10])
and the (Ext) assumption, each such s comes from an extended elliptic
endoscopic datum (H, s, n). Hence by (ECI’) we have reduced to the
quasi-split setting. We now work in the situation when (G, zg,) =
(G*,1).

Let us begin with the following lemma:
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Lemma 3.5.1. Suppose that H is an elliptic hyperendoscopic group
of G and suppose that 11k (v)) is a singleton set {m}. Then, in fact,

{m} =T ().

Proof. Since {7} is a superscuspidal packet for IT};, we have by assump-
tion (St) that ©, is stable. By the assumption of the theorem, 7 is
[1%-accessible and since IT% satisfies (AS) (by the contents of §4), we
have {7} = I1%(¢/") for some supercuspidal L-parameter ¢/’ of H. Then,
by the assumption of the theorem we have that

(390) tr(7 | (rp o) (X)) tr(h | m) = tr(f7, [ 7)

= tr(7 | (r—p 0 ¥')(xu)) tr(h | )
In particular, choosing h € 2 (K*H) such that tr(h | ) # 0 and letting
7 vary we deduce that

(391) tr(7 | (rp o) (X)) = tr(7 | (r—p 0 ¥') (X))

for all 7 € Wg. This implies, since ¢ is supercuspidal so that r_, o ¢
and r_, o ¢’ are semi-simple, that r_, oy ~ r_, o4’ for all p e SH.
By our assumption that S is sufficient, we deduce that ¢ ~ ¢'. In
particular, {7} = II7(H) as desired. O

Lemma 3.5.2. Let H be an elliptic hyperendoscopic group for G. Let
1 be a supercuspidal parameter for H and suppose C¢ # {1}. If pis an
irreducible representation of C¢H then there exists a nontrivial s € Cw
such that the trace character x, of p satisfies tr(s | p) # 0.

Proof. Suppose p vanishes on all nontrivial 5. Then we have

1 1 1
(392) 1 ={xXpXp) = Xp(5)? = ==x,(1)* = == dim(p)?,
S on ’; A T

so that |Cy| = dim(p)?. But every irreducible representation p’ of Cy, is
isomorphic to an irreducible factor appearing with multiplicity dim(p’)
in the regular representation of Cy,, which has dimension |Cy|. Hence p
must be the unique irreducible representation of Cy, which implies that
p is isomorphic to the trivial representation, and hence that \C_w| =1
contrary to assumption. ]

We now explain the proof of Theorem 3.3.1 in general:

Proof. (of Theorem 3.3.1) We prove this by inducting on the number
of roots k for elliptic hyperendoscopic groups H of G. If £ = 0 then H
is a torus. Since every distribution on H is stable, one deduces from
assumption (Dis) and assumption (St) that 1L (1)) is a singleton and
thus we are done by Lemma 3.5.1. Suppose now that the result is
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true for elliptic hyperendoscopic groups of G with at most k roots.
Let H be an elliptic hyperendoscopic group of G with k + 1 roots
and let ) be a supercuspidal parameter of H. We wish to show that
L () = T3 (). If TIL(3) is a singleton, then we are done again by
Lemma 3.5.1. Otherwise, we show that I1} () < I1%(¢), which by
(Bij) will imply that 1k () = 1% (). By Lemma 3.5.2, we can find a
non-trivial 5 € Cy, and a lift s € Cy such that (m, s) # 0. By definition
of Cy, we have that s ¢ Z(G). Now, it suffices to show that @qlf = @fb’s
since then by indpendence of characters, we deduce that 7 € 11%(¢)) as
desired.

To show that @qlp’s = @fb’s for all non-trivial s € C’_¢ we proceed as
follows. We obtain, by combining our assumption (Ext) and Propo-
sition 2.2.15 from (v, s), an extended elliptic endoscopic quadruple
(H',s,tn, ™) with " supercuspidal so that ¢» = 5o, One
then has from Assumption (ECI) that
(393) 0, =6, < 56, = 567,
Moreover, since s is non-central, we know that H' has a smaller number
of roots than H and thus S @; =29 @i .+ by induction. The conclusion

that IT' = I1? follows.
Let us now show that for any supercuspidal L-parameter 1) one has
that L}UH = LiH for all elliptic hyperendoscopic groups H of G and

Whittaker data g of H. It suffices to show that (m, s)y, = (m, s)n
for all 7 € TI,,(H) = II7 (H). By independence of characters, it suffices
to show that @i}’s = @z’s for all s € Cy. Since s € O, there exists,
associated to the pair (¢, s), a quadruple (H', s, “n, ") as in Proposi-
tion 2.2.15 (again using also assumption (Ext)) where H' is an elliptic
endoscopic group of H and ¢’ is a parameter such that 1) = Lno '
By assumption (ECI) it suffices to show that S@;H/ = S@iH,, but

this follows from the previous part of the argument since we know that
I, (') = 112, (). The theorem follows. O

3.6. EXAMPLES AND DISCUSSION OF ASSUMPTIONS

In this section we discuss examples of groups and correspondences
satisfying the assumptions (Mu), (Ext), and (SS). We also comment
on some possible rephrasings and generalizations of this work.

3.6.1. Examples satisfying (Mu). In this subsection we explain that
several classes of classical groups satisfy assumption (Mu). In partic-
ular, we have the following:
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Proposition 3.6.1 (|[GGP12, Theorem 8.1}). Let G be such that G*
is one of the following: a general linear group, a unitary group, or an
odd special orthogonal group. Then G satisfies assumption (Mu).

We record the following trivial observation:

Lemma 3.6.2. Suppose that G1,...,G,, are groups satisfying assump-
tion (Mu), then Gy x --- x Gy, satisfies assumption (Mu).

We can then quickly explain the proof of Proposition 3.6.1:

Proof. By [GGP12, Theorem 8.1], we can recover ¢ from r_, o1 in
the case of GL,,, U(n), SOsg,+1 where r_, corresponds to the standard
representation. However, to prove (Mu), one must also prove a result
about recovering ¢ from r_, o % not only for G* but for all elliptic
hyperendoscopic groups H of G*. We analyze this for each case.

e There are no nontrivial elliptic hyperendoscopic groups for GL,,
and so there is no difficulty in this case.

e The elliptic hyperendoscopic groups of unitary groups are prod-
ucts of unitary groups so we are done by Lemma 3.6.2.

e The elliptic hyperendoscopic groups of odd special orthogonal
groups are products of odd special orthogonal groups so we are
again done by 3.6.2.

O

3.6.2. Examples satisfying (Ext). The authors are not aware of any
example for G a group over F' where this property does not hold. If
G and all its hyperendoscopic groups have simply connected derived
subgroup, then (Ext) follows from [Lan79, Prop. 1]. In particular,
unitary groups satisfy (Ext).

All elliptic endoscopic data (H,s,n) for G a symplectic or special
orthogonal group can also be extended to a datum (H, s, *n) ([Kall6b,
pg.5]). Since the elliptic endoscopic groups of symplectic and special
orthogonal groups are products of groups of this type ([Wall0, §1.8]),
it follows that symplectic and special orthogonal groups also satisfy
(Ext).

One could likely remove the assumption (Ext) altogether at the cost
of having to consider z-extensions of endoscopic groups (see [[KS99]) and
perhaps slightly modify the statement of Theorem 3.3.1 to account for
these extra groups.

3.6.3. Examples of Scholze—Shin datum. In this subsection we ex-
plain the origin of the Scholze-Shin datum and equations, explain the
extent to which such datum and equations are thought to exist, and
discuss known examples and expected examples.
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In [Sch13a], Scholze constructs functions f£, for certain unramified
groups G and for certain cocharacters p which together form a datum
(G, ) that one might call of ‘PEL type’. In the second named author’s
thesis [Youl9] these functions and their basic properties were extended
to a larger class of pairs (G, ) which the author calls ‘abelian type’. It
seems plausible that functions f/;, (and thus Scholze-Shin datum) can
be constructed in essentially full generality using the ideas of [Sch13a]
and [Youl9] but using the moduli spaces of shtukas constructed by
Scholze et al.

In [SS13], Scholze and Shin, in the course of studying the cohomology
of compact unitary similitude Shimura varieties, posit that for the class
of groups G showing up in the pair [Sch13a] that the local Langlands
conjecture should satisfy the Scholze-Shin equations for the Scholze—
Shin datum constructed in ibid.—we refer to such conjectures as the
Scholze—Shin conjectures. In fact, Scholze and Shin describe endoscopic
versions of the Scholze-Shin equations and thus arrive at endoscopic
versions of the Scholze—Shin conjectures. They show that their conjec-
tures hold in the case of groups of the form GL, (F') (cf. [Sch13b]) and
the Harris—Taylor version of the local Langlands conjectures.

Using the functions ff , constructed by the second named author
in his thesis [Youl9] one can construct Scholze—Shin data for a wider
class of groups including the groups G = U(n)% na where E/Q, is an
unramified extension of Q,. In Part 2, we showed that the Scholze—
Shin conjectures hold true for such unitary groups (at least in the
trivial endoscopic case which is all that is needed in this Part) using
the version of the local Langlands conjectures constructed by Mok in
[Mok15] and for non-quasisplit unitary groups in [Kal+14].

3.6.4. Discussion of Extended Pure Inner Twists. In this paper
we have considered only G that arise as extended pure inner twists of
G* (e.g. see [Kall6b]). In general, the map

(394) B(G")pas — Inn(G*),

where Inn(G*) := im[H(F,G*,(F)) — H(F,Aut(G*)(F)] denotes
the set of inner twists of G*, need not be surjective. However, when G*
has connected center, this map will be surjective (see [Kall6b, pg.20]).
In general, one can likely consider all inner twists by adapting the

arguments of this paper to the language of rigid inner twists as in
[Kall6a] (cf. [Kall6b]).

3.6.5. The characterization in the unitary case. Combining the
discussion of §5.1-8§5.3 and the results from Part 2 we see in particular
the following;:
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Theorem 3.6.3. Let E/Q, be an unramified extension and F' the qua-
dratic subextension of E. Let G be an extended pure inner form twist
of the quasi-split unitary group Ug/p(n)* associated to E/F. Then, the
local Langlands correspondence for G as in [Mok15] and [Kal+14] sat-
isfies the Scholze—Shin conjecture and thus is characterized by Theorem

3.5.1.
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