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Abstract

Early afterdepolarizations (EADs) are spontaneous depolarizations during the repolarization

phase of an action potential in cardiac myocytes. It is widely known that EADs are promoted

by increasing inward currents and/or decreasing outward currents, a condition called

reduced repolarization reserve. Recent studies based on bifurcation theories show that

EADs are caused by a dual Hopf-homoclinic bifurcation, bringing in further mechanistic

insights into the genesis and dynamics of EADs. In this study, we investigated the EAD

properties, such as the EAD amplitude, the inter-EAD interval, and the latency of the first

EAD, and their major determinants. We first made predictions based on the bifurcation the-

ory and then validated them in physiologically more detailed action potential models. These

properties were investigated by varying one parameter at a time or using parameter sets

randomly drawn from assigned intervals. The theoretical and simulation results were com-

pared with experimental data from the literature. Our major findings are that the EAD ampli-

tude and takeoff potential exhibit a negative linear correlation; the inter-EAD interval is

insensitive to the maximum ionic current conductance but mainly determined by the kinetics

of ICa,L and the dual Hopf-homoclinic bifurcation; and both inter-EAD interval and latency

vary largely from model to model. Most of the model results generally agree with experimen-

tal observations in isolated ventricular myocytes. However, a major discrepancy between

modeling results and experimental observations is that the inter-EAD intervals observed in

experiments are mainly between 200 and 500 ms, irrespective of species, while those of the

mathematical models exhibit a much wider range with some models exhibiting inter-EAD

intervals less than 100 ms. Our simulations show that the cause of this discrepancy is likely

due to the difference in ICa,L recovery properties in different mathematical models, which

needs to be addressed in future action potential model development.

Author summary

Early afterdepolarizations (EADs) are abnormal depolarizations during the plateau phase

of action potential in cardiac myocytes, arising from a dual Hopf-homoclinic bifurcation.
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The same bifurcations are also responsible for certain types of bursting behaviors in other

cell types, such as beta cells and neuronal cells. EADs are known to play important role in

the genesis of lethal arrhythmias and have been widely studied in both experiments and

computer models. However, a detailed comparison between the properties of EADs

observed in experiments and those from mathematical models have not been carried out.

In this study, we performed theoretical analyses and computer simulations of different

ventricular action potential models as well as different species to investigate the properties

of EADs and compared these properties to those observed in experiments. While the EAD

properties in the action potential models capture many of the EAD properties seen in

experiments, the inter-EAD intervals in the computer models differ a lot from model to

model, and some of them show very large discrepancy with those observed in experi-

ments. This discrepancy needs to be addressed in future cardiac action potential model

development.

Introduction

Under diseased conditions or influence of drugs, cardiac myocytes can exhibit early afterdepo-

larizations (EADs) [1–3]. EADs are depolarization events during the repolarizing phase of an

action potential (AP), which are known to be arrhythmogenic [4–7]. Many experimental and

computational studies have been carried out, which have greatly improved our understanding

of the causes and mechanisms of the genesis of EADs. It is well known that EADs can occur in

an AP when inward currents are increased and/or outward currents are reduced, a condition

called reduced repolarization reserve [8]. Under this condition, L-type calcium (Ca2+) current

(ICa,L) can be reactivated to cause depolarizations in the repolarization phase of the AP to man-

ifest as EADs. The importance of ICa,L reactivation for EAD genesis has been widely demon-

strated in experiments [1,9] and computer simulations [10, 11]. Recent studies [12–15] using

bifurcation theories have brought in additional mechanistic insights into the genesis of EADs,

which show that EADs are oscillations originating via a supercritical or subcritical Hopf bifur-

cation and terminating via a homoclinic bifurcation, or via an unstable manifold of a saddle

focus fixed point in the full AP dynamics [14]. In other words, irrespective to the specific ionic

causes, EADs are oscillations caused by a Hopf bifurcation [16, 17] after which the quasi-equi-

librium state becomes unstable and the system oscillates around the unstable equilibrium. As

the slow outward currents grow gradually, the oscillation amplitude increases until a new

bifurcation point—the homoclinic bifurcation at which the oscillation stops. A detailed discus-

sion on the links between the ionic causes and nonlinear dynamics for the genesis of EADs

was presented in our previous review article [18].

Despite the wide experimental and computational studies on the ionic causes and dynam-

ical mechanisms of EAD genesis, less attention has been paid on EAD properties, such as the

EAD latency (the time from the upstroke of the AP to the upstroke of the first EAD), the inter-

EAD interval, and the EAD amplitude. Although it is well-known that reactivation of ICa,L is

required for EAD genesis, since EADs are a collective behavior arising from the interactions of

many ionic currents, it is unclear how these ionic currents affect the EAD properties and what

are the major determinants. For example, since ICa,L plays a critical role in the genesis of

EADs, one would intuitively expect that increasing the maximum conduction of ICa,L might

increase the amplitude of EADs, but as we show in this study that this is not the case. On the

other hand, understanding the EAD properties and their determinants is important for under-

standing the mechanisms of EAD-related arrhythmogenesis. For example, in an early
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experimental study [19], Damiano and Rosen showed that phase-2 EADs cannot propagate as

premature ventricular complexes (PVCs) while phase-3 EADs can propagate as PVCs. This

was also shown in our simulation studies [20–22]. Therefore, understanding what determine

the EAD amplitude and takeoff potential may provide insights into EAD propagation to pro-

duce PVCs. If a PVC is a direct consequence of EAD propagation, then the EAD latency may

provide information for the coupling interval between a sinus beat and the following PVC.

EADs are also thought to be responsible for focal arrhythmias in the heart, and if this is true,

then the oscillation frequency of EADs should be the same as the excitation frequency of ven-

tricular arrhythmias. Furthermore, understanding the EAD properties and their determinants

can also be important for the development of robust mathematical AP models. For example,

we observed a discrepancy in inter-EAD interval between those from some widely used AP

models and the experimental data. Experimental measurements in ventricular myocytes iso-

lated from animal and human hearts almost exclusively show that the inter-EAD intervals are

greater than 200 ms with few exceptions (Table 1). However, many ventricular myocyte AP

models show inter-EAD intervals much shorter than 200 ms [11, 20, 23–27], raising a question

on what ionic current properties have been missed in these models.

The previous computational studies mainly focused on the ionic causes and dynamical

mechanisms of the genesis of EADs, and to our knowledge, no studies have been carried out to

investigate the EAD properties and their determinants. Furthermore, a close comparison of

the EAD properties from mathematical models with those from experimental recordings has

not been done. The objective of this study is to use bifurcation theories and computer simula-

tions to systematically investigate the EAD properties and their major determinants. We first

made theoretical predictions of the EAD properties using the 1991 Luo and Rudy (LR1) model

[28] based on our previous bifurcation theory of EADs [12]. We then carried out computer

simulations using physiologically more detailed ventricular AP models [20, 22, 26, 29–31] to

verify the theoretical predictions. In computer simulations, we also used parameter sets ran-

domly drawn from assigned intervals so that large parameter ranges are explored to ensure

generality of the simulation results. Theoretical and simulation results were compared with

experimental results, and potential caveats of the current AP models were discussed.

Methods

Action potential models

Computer simulations were carried out in single ventricular myocytes. The governing equa-

tion of the transmembrane voltage (V) for the single cell is

Cm
dV
dt
¼ � Iion þ Isti ð1Þ

where Iion is the total ionic current density and Isti the stimulus current density. Cm is the

membrane capacitance which was set as Cm = 1 μF/cm2. We simulated six ventricular AP

models: the 1991 Luo and Rudy (LR1) guinea pig model [28]; the 1994 Luo and Rudy (LRd)

guinea pig model in a modified version [29]; the UCLA (HUCLA) rabbit model with modifica-

tions by Huang et al [22]; the 2004 ten Tusscher et al (TP04) human model [30]; the Grandi

et al (GB) human model [26]; and the O’Hara et al (ORd) human model [31].

Simulation methods

The differential equations were numerically solved using a first-order Euler method and the

Rush and Larson method [32] for the gating variables with a fixed time step Δt = 0.01 ms.

Early afterdepolarizations in ventricular myocytes
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Control parameters and parameter variations

For each model, a set of control parameters was used. The control parameter set is not the

parameter set of the original model but a set we used for the AP to exhibit EADs. The major

changes of parameters from the original models are either by increasing the maximum con-

ductance of both ICa,L (was called slow inward current in the LR1 model, denoted as Isi) and

the slow component of the delayed rectifier potassium current (IKs) or by increasing the maxi-

mum conductance of ICa,L but decreasing IKs or IKr (the rapid component of the delayed recti-

fier potassium current). The former corresponds to a normal myocyte (the original model)

under isoproterenol while the later corresponds to the condition of long QT syndrome with

isoproterenol. The specific changes of each model are detailed in S1 Text and the control APs

exhibiting EADs are shown in Fig A in S1 Text.

To explore the effects of ionic current conductance on EAD properties in a wide parameter

range, we varied the parameters in two ways: 1) We varied one parameter incrementally at a

time but kept other parameters in their control values. The fold change of a specific parameter

Table 1. Experimental EAD properties in isolated ventricular myocytes�.

Reference (Figure) Species Lowest Vtakeoff (mV) Maximum AEAD (mV) TEAD (ms) LEAD (ms)

[33] (Fig 2C) $ Human -20 30 ~ 250 ~ 300

[34] (Fig 10) Human -20 25 300–500 600–1000

[35] (Figs 1A and 2A) Human -25 15 400–600

[36] (Fig 2(b)) Human -15 25 ~700 ~1500

[37] (Fig 6) & Canine -35 35 ~ 270 ~ 250

[38] (Fig 1A) & Canine -30 25 ~ 270 ~ 270

[38] (Fig 2A) & Canine -35 40 130–200 ~ 160

[39] (Fig 3A–3C) Canine -25 25 ~ 300 ~ 300

[40] (Figs 1B, 4A and 5A) Canine -25 30 ~ 250 ~ 300

[41] (Fig 3) Rabbit 40 ~ 300 ~ 300

[42] (Fig 6A) Rabbit -30 30 ~ 300 ~ 200

[43] (Figs 1B and 2A) Rabbit -40 70 ~ 400 400–500

[44] (Figs 1 and 3C–3E) Rabbit -20 20 250–500 650–800

[45] (Figs 1C and 6B) Rabbit 50 300–400 150–200

[46] (Fig 1) Rabbit -10 10 ~ 500 ~ 450

[47] (Fig 4B–4C) Guinea pig 25 ~ 200 ~ 200

[48] (Figs 2–4, 6 and 8) # Guinea pig -40 70 ~ 500 400–600

[49] (Figs 2A and 3B) # Guinea pig -40 55 ~ 200 200–1200

[50] (Fig 5A) Rat -40 50 200–500 200–250

[51] (Fig 6A) Mouse -45 50 ~ 300 ~ 3000

[52] (Fig 6) Mouse -40 50 ~170 ~100

[53] (Fig 4A), type I Mouse -40 45 50–90 ~ 30

[53] (Fig 4B), type II Mouse -55 40 40–90 ~ 30

�We estimated the following EAD properties: lowest takeoff potential, maximum EAD amplitude, inter-EAD interval, and EAD latency, using the AP traces shown in

the figures as indicated in the parenthesis for each reference. We used the coordinates or the scale bars in the original plots to estimate these quantities. Therefore, the

number shown in this table are not accurate measurements but just estimations. Action potentials were recorded under 35 oC to 37 oC except for Ref. [38] in which the

action potentials were recorded under hyperthermia.
$The time scale bar in Fig 2C in Ref. [33] is 300 ms instead of 150 ms per personal communication with Dr. G.-R. Li.
&The recordings in these studies [37, 38] were not from truly isolated ventricular myocytes but from isolated small strips of M-cells.
#EADs were induced by constant inward current injection in these studies.

https://doi.org/10.1371/journal.pcbi.1006382.t001
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p is then defined as

a ¼ p=pc ð2Þ

where pc is the control value of p; and 2) We randomly selected parameter sets, with each

parameter drawn randomly from a uniform distribution in the interval (0.4pc, 1.6pc). The

rationale for choosing such a parameter interval is that this interval can cover the range from

no EAD to many EADs in an AP for most of the parameters in the models simulated in this

study (see the figures in S1 Text).

Defining the EAD properties

We investigated three EAD properties in the AP models—amplitude, inter-EAD interval, and

latency. As illustrated in Fig 1A, the EAD amplitude (AEAD) is defined as the difference

between the takeoff voltage (Vtakeoff) and the peak voltage (Vpeak) of an EAD. The inter-EAD

interval (TEAD) is defined as the time interval between the peaks of two consecutive EADs. The

latency (LEAD) is defined as the time interval between the AP upstroke and the time when the

1st EAD takes off.

Results

Experimentally observed EAD properties

Table 1 summarizes the EAD properties observed experimentally in isolated ventricular myo-

cytes from literature survey [33–53], which includes Vtakeoff, AEAD, TEAD, and LEAD. Based on

this literature survey, we found that the Vtakeoff is always above -50 mV except some of the

mouse [53] and guinea pig [48, 49] experiments. However, the EADs in the guinea pig experi-

ments [48, 49] were induced by injection of a constant inward current, which may behave dif-

ferently from the ones occurring intrinsically. Therefore, the observed EADs in isolated

ventricular myocytes are mainly phase-2 EADs. The maximum amplitude of the phase-2

Fig 1. EAD properties. A. Definitions of AEAD, TEAD, LEAD, Vpeak, and Vtakeoff. B. Vpeak versus Vtakeoff from a short

segment of sheep Purkinje fiber [1], a short segment of canine Purkinje fiber [1], and a human-induced pluripotent

stem cell-derived cardiomyocyte [2]. The dashed straight lines were added as references for the slopes of the negative

linear correlations of the data.

https://doi.org/10.1371/journal.pcbi.1006382.g001
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EADs can be as large as 70 mV. It has also been observed in experiments that Vpeak (thus

AEAD) exhibits a negative linear correlation with Vtakeoff (Fig 1B). As shown in Table 1, TEAD

ranges from 200 ms to 500 ms except some of the mouse experiments [53]. LEAD varies in a

wide range, from 30 ms to 3 seconds.

Determinants of EAD amplitude and takeoff potentials

EAD amplitude in the LR1 model: Theoretical predictions and simulation results. We

first investigated theoretically the relationship between AEAD and Vtakeoff based on bifurcation

theories of EADs. In a previous theoretical study [12], we showed that phase-2 EADs are

caused by a supercritical Hopf bifurcation and terminate at a homoclinic bifurcation in the

fast subsystem of the model as the slow variable grows. Namely, in the LR1 model, the Na+ cur-

rent and Ca2+ current activate and inactivate much faster than the time-dependent K+ current,

forming the fast subsystem with voltage. The slow variable is the X-gating variable of the time-

dependent K+ current. The equilibrium states (black lines in Fig 2A) of the fast subsystem

were obtained by treating X as a parameter, and stability analysis revealed a Hopf bifurcation

(the upper black line, labeled as “Q”, changes from solid to dashed) leading to oscillations. As

X increases, the oscillation amplitude increases, bounded by a bell-shaped envelope plotted as

Fig 2. Bifurcation and EAD amplitude in the LR1 model. A. Bifurcations in the fast subsystem when treating the

slow subsystem (X) as a parameter. Q, S, and R are the three equilibria in the fast subsystem. The green bell-shaped

envelope is the steady state oscillation amplitude (from Vtakeoff to Vpeak) from the Hopf bifurcation point to the

homoclinic bifurcation point. The lowest possible takeoff potential is at the homoclinic bifurcation point, which is

around -41.5 mV. The red trace (arrows indicate the time course) is an AP from the whole system where X is a

variable. Open red circle is the resting state. Note: the bifurcations and simulations shown in this panel and panel B

were done without the presence of INa. B. The steady-state oscillation period from the Hopf bifurcation point to the

homoclinic bifurcation point. C. AEAD versus Vtakeoff. The parameters were randomly drawn from the assigned

intervals as described in Methods. For each parameter set, the amplitudes of all EADs in the AP were included. The

inset shows representative AEAD versus Vtakeoff from individual APs distinguished by colors. D. Same as C but for

shifted Isi kinetics (d1 and f1). The green data points are for d1 and f1 shifted 8 mV toward more negative voltages

and the blue ones are for d1 and f1 shifted 8 mV toward more positive voltages. The inset shows the corresponding

shifts. Panels A and B were replots from Tran et al [12]. The dashed straight lines in C and D are references for slopes.

https://doi.org/10.1371/journal.pcbi.1006382.g002
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the thick green line in Fig 2A. The oscillation period also increases as X increases (Fig 2B).

When X increases to a certain value, the takeoff potential of the oscillation meets the unstable

equilibrium (labeled as “S”) and the oscillation period becomes infinite. When X is greater

than this value, no oscillation exists. For the whole system in which X is a variable (note: in the

bifurcation analysis, X was treated as a parameter not a variable), as X grows slowly, the system

(the red line with arrows indicating time progression) passes slowly through the Hopf bifurca-

tion toward the homoclinic bifurcation with a couple of oscillations before repolarizes to the

resting potential. These oscillations are embraced by the bell-shaped envelope. Defining the

EAD amplitude as

AEAD ¼ Vpeak � Vtakeoff ð3Þ

one can approximate Vpeak by the upper bound of the bell and Vtakeoff by the lower bound of

the bell. If the oscillation is symmetric with respect to the equilibrium point (we call it the

quasi-equilibrium state since it is an equilibrium state in the fast subsystem but not in the

whole system), then Vpeak − VQES = VQES − Vtakeoff with VQES being the voltage of the quasi-

equilibrium state. In general, the oscillation is not symmetric. We assume an asymmetry factor

β and rewrite the Vpeak and Vtakeoff relationship as Vpeak − VQES� (1 + β)(VQES − Vtakeoff).

Substituting Vpeak in Eq 3, we obtain:

AEAD � � ð2þ bÞðVtakeoff � VQESÞ ð4Þ

For a symmetric oscillation (β = 0), Eq 4 predicts a linear relationship between AEAD and

Vtakeoff with a slope -2. If one plots Vpeak against Vtakeoff as done in the plots of experimental

data shown in Fig 1B, then Eq 4 is rewritten as

Vpeak � � ð1þ bÞVtakeoff þ ð2þ bÞVQES ð5Þ

which predicts a slope -1 for an oscillation symmetric with respect to the equilibrium point. The

experimental results shown in Fig 1B correspond to β = 0.3, 1, and 1.3, respectively. A non-zero

β indicates that the oscilaltions manifesting as EADs in the experiments are not symmetric to

the quasi-equilibrium point. Note that Eq 5 is not obtained from a rigorous derivation but just

an empirical observation based on the property of the dual Hopf-homoclinic bifurcation. The

Hopf bifurcation shown in Fig 2A is a supercritical Hopf bifurcation, but previous studies [14,

15] showed that a subcritical Hopf bifurcation could also be responsible for EAD genesis. In the

latter case, Eqs 4 and 5 still hold based on the same reasoning.

We then carried out numerical simulations to investigate the relationship between AEAD

and Vtakeoff in the LR1 model. For EADs from the same AP (the points with the same color in

the inset of Fig 2C are from the same AP), their amplitudes and takeoff potentials approxi-

mately exhibit a linear relationship with slope around -4 (the slope is around -3 if we plot Vpeak

against Vtakeoff as in Fig 1B). We then plotted AEAD against Vtakeoff for all the EADs from the

randomly drawn parameter sets. The data points are much more scattered, in particular when

AEAD is small. The lowest Vtakeoff is around -34 mV with AEAD ~ 55 mV. Based on the bifurca-

tion analysis (Fig 2A), the lowest possible Vtakeoff in the LR1 model is around -41.5 mV, and

the numerical simulation results agree with the prediction of the bifurcation analysis. Since the

EADs are caused by reactivation of ICa,L during the plateau phase, shifting the steady-state acti-

vation curve (d1) and steady-state inactivation curve (f1) simultaneously toward more nega-

tive or positive voltages results in almost the same shift of the AEAD and Vtakeoff relationship

(Fig 2D). The maximum EAD amplitude becomes larger when the steady-state curves are

shifted toward more negative voltages.
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To investigate how AEAD is affected by the maximum conductance and kinetics of different

ionic currents, we varied one parameter at a time while maintaining other parameters at their

control values. Fig 3A shows AEAD versus the fold of the control Gsi (α as defined in Eq 2) for

EADs in the AP (note: ICa,L is denoted as Isi in the LR1 model and Gsi is the maximum conduc-

tance). When α is smaller than 0.658, no EAD occurs. When α is between 0.658 and 0.74, one

EAD appears in the AP. As Gsi increases, more EADs appear in the AP. When α is greater than

1.2, there are 10 EADs in the AP. Since Isi is an inward current, one may also anticipate that

increasing Isi would progressively increase the EAD amplitude and APD. However, this is not

the case. For example, increasing α from 0.66 to 0.74, the EAD amplitude decreases quickly

from around 35 mV to around 10 mV and the APD also becomes shorter (see the APs in Fig

3B). As α is slightly above 0.74, a second EAD with a large amplitude (>30 mV) suddenly

appears in the AP and also abruptly increases the APD (see the APs in Fig 3C). Note that the

parameters for the blue and magenta traces differ slightly (a 0.3% difference), and the two

traces are almost identical until at the very end of phase-2 where one repolarizes (exits the

basin of attraction of the limit cycle) and the other depolarizes (retains in the basin of the limit

cycle) to result in an EAD, a typical all-or-none behavior. The amplitude of this EAD decreases

quickly and the APD also decreases as Gsi increases (see the APs in Fig 3D) until another new

EAD appears in the AP. This process repeats as Gsi increases. Therefore, as shown in Fig 3A,

Fig 3. Dependence of EAD amplitude on ionic currents in the LR1 model. A. AEAD versus fold of control Gsi

[labeled as α(Gsi)]. The colored arrows mark the α(Gsi) values for the traces shown in B-D: red, α = 0.658; green, α =

0.7; blue, α = 0.74; magenta, α = 0.7425; and black, α = 0.8. The numbers mark the EAD order in an AP as indicated in

B-D. For example, in B, there is only one EAD in both APs, then the EAD is labeled as the 1st EAD. In C, a new EAD

appears in the magenta AP, and this EAD is labelled the 2nd EAD while the old one is labeled as the 1st EAD. The

number increases as more EADs appear in the AP. B. APs with one EAD as α indicated by the red and green arrows in

A. C. APs in the transition from one EAD to two EADs as α indicated by the blue and magenta arrows in A. D. APs

with two EADs as α indicated by the magenta and black arrows in A. E. AEAD versus fold of control GK. F. AEAD versus

fold of control τd and τf. In these simulations, τd and τf are multiplied by the same α. G. AEAD versus DI. α(Gsi) = 0.95

and other parameters are their control values.

https://doi.org/10.1371/journal.pcbi.1006382.g003
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the number of EADs in an AP increases progressively with Gsi, but the amplitude of a specific

EAD decreases with Gsi until a new EAD (all-or-none) suddenly appears in the AP with a max-

imum amplitude. In other words, the maximum EAD amplitude always occurs when a new

EAD appears in the AP. Before a new EAD occurs, the amplitudes of all EADs in an AP are rel-

atively small (such as the EADs in the black AP in Fig 3D). The overall maximum EAD ampli-

tude does not exhibit an apparent change against Gsi (remained at around 35 mV for α
changed from 0.65 to 1.2).

Increasing the conductance of the time-dependent outward K+ current (IK) decreases the

number of EADs in the AP, but increases the EAD amplitude (Fig 3E), which is the opposite to

the effects of increasing Isi. As GK increases, the amplitude of the last EAD reaches maximum

immediately before its disappearance from the AP. Slowing the activation and inactivation

time constants of Isi reduces the number of EADs in an AP but increases the maximum EAD

amplitude (Fig 3F). The dependence of EAD amplitude on diastolic interval (DI) is similar to

changing a conductance (Fig 3G), i.e., decreasing DI is equivalent to increasing GK.

To more closely link the dual Hopf-homoclinic bifurcation to the behaviors of EAD ampli-

tude shown in Fig 3, we compared the bifurcations of the fast subsystem and the EADs of the

whole system in the same way as in Fig 2A. Since changing the maximum conductance of

ionic currents not only changes the EAD behavior but also changes the bifurcation of the fast

subsystem, to only change the EAD properties but not the bifurcations of the fast subsystem,

we changed the time constant of the X-gating variable, τX. This is because the bifurcation dia-

gram is obtained by treating X as a parameter and thus the bifurcation will remain the same for

any τX. Fig 4A plots AEAD versus the fold change of τX, showing that increasing τX increases the

number of EADs in the AP and gives rise to the same AEAD behavior as changing the maximum

conductance shown in Fig 3. Fig 4B shows three APs with α indicated by the colored arrows in

Fig 4A. At the red arrow (the red AP trace in Fig 4B), there are four EADs in the AP. Increasing

τX slightly (the blue arrow in Fig 4A and the blue AP trace in Fig 4B), a new EAD (the 5th EAD)

with a much larger amplitude appears in the AP. As shown in Fig 4C, the new EAD in the blue

race takes off right before the homoclinic bifurcation while the red trace just passes the homocli-

nic bifurcation point during its 4th EAD. The reason is that X grows slightly slower due to a

slightly larger τX for the blue trace so that the 4th EAD ends just right before the homoclinic

bifurcation, allowing a new EAD to take off. Increasing τX further quickly reduces the EAD

amplitude of the 5th EAD because its takeoff point moves away from the homoclinic bifurcation

point (open arrows in Fig 4D) due to a slower X growth caused by a larger τX.

EAD amplitude in physiologically more detailed models

To further assess the theoretical predictions and simulation results from the LR1 model, we carried

out simulations using physiologically more detailed AP models. Fig 5 shows AEAD versus Vtakeoff

for the five physiologically detailed models we simulated. The negative linear correlation holds

roughly for all AP models while the slopes vary from -2 to -5 (corresponding to slopes ranging

from -1 to -4 in plots of Vpeak versus Vtakeoff). Shifting the steady-state activation and inactivation

curves of ICa,L results in roughly the same shift in the AEAD and Vtakeoff relationship, indicating that

the ICa,L reactivation is responsible for EADs in all the models. The maximum EAD amplitude and

the lowest detectable takeoff potential also vary largely from model to model. The maximum EAD

amplitude (without the shifts in ICa,L kinetics) of the TP04 model is the smallest (<35 mV) while

that of the ORd model is the largest (~ 90 mV) among the five models. The lowest Vtakeoff of the

TP04 model is the highest (~ -20 mV) while that of the HUCLA model is the lowest (~-45 mV)

among the five models. Although the EAD amplitude properties vary largely from model to

model, they generally agree with the experimental data shown in Fig 1B and Table 1.
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We investigated the effects of the maximum conductance of the major ionic currents on

AEAD for all five models, including ICa,L (Fig B in S1 Text), IKs (Fig C in S1 Text), IKr (Fig D in

S1 Text), IK1 (Fig E in S1 Text), INCX (Fig F in S1 Text), INaK (Fig G in S1 Text), INaL (Fig H in

S1 Text), and Ito (Fig I in S1 Text). The effects of the inactivation time constant of ICa,L were

also shown (Fig J in S1 Text). The general observations are the same as those from the LR1

model, i.e., increasing an inward current increases the number of EADs in the AP, decreases

AEAD until a new EAD suddenly appears in the AP at which AEAD becomes maximum.

Increasing an outward current decreases the number of EADs in the AP, and increases AEAD

and AEAD of the last EAD in the AP reaches maximum before it suddenly disappears from the

AP. However, there are some exceptions. For example, increasing the maximum conductance

of Ito can either promote or suppress EADs (Fig I in S1 Text). In both the LRd model and the

ORd model, increasing Ito promotes EADs (more number of EADs in the AP), but suppresses

EADs in the TP04 model and GB model. For the HUCLA model, increasing Ito,s promotes

EADs, while increasing Ito,f first promotes EADs but then suppresses EADs. Since Ito is an out-

ward current, it is generally known that it suppresses EADs [54]. However, recent studies have

demonstrated that Ito can also promote EADs [45, 55]. Whether Ito promotes or suppresses

EADs depends on its magnitude, speed of inactivation, and its pedestal component. Slow inac-

tivation or large pedestal current tends to suppress EADs [55]. Another exception is INCX.

Increasing INCX promotes EADs in all the models except in the TP04 model in which EADs

may also be suppressed by increasing INCX (see Fig F in S1 Text).

Fig 4. Linking the dual Hopf-homoclinic bifurcation to the EAD amplitude behavior. A. AEAD versus fold change

(α) of τX. B. APs correspond to the parameters indicated by the arrows with the same colors. Red: α = 8.24; Blue: α =

8.29; Magenta: α = 8.78. C. Bifurcation in the fast subsystem, the same as in Fig 2A except that INa was present. The

blue and red traces are V versus X for the corresponding blue and red APs in B. Inset is the blowup of the EAD

window. D. Same as C but for the blue and magenta APs in B. Open arrows in the inset mark the takeoff location of the

5th EAD with respect to the homoclinic bifurcation point. Note that both APs exhibit 5 EADs but the ones in the

magenta AP take off at smaller X values.

https://doi.org/10.1371/journal.pcbi.1006382.g004
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Determinants of inter-EAD interval

As shown in Table 1, TEAD in isolated ventricular myocytes is typically from 200 ms to 500 ms.

In this section, we investigate TEAD and its determinants in the AP models. We first used the

LR1 model for theoretical treatments and then used the physiologically more detailed models

to verify the theory.

Inter-EAD interval in the LR1 model: Theoretical predictions and simulation results.

Based on Tran et al [12], EADs arises from a Hopf bifurcation in the fast subsystem of the LR1

model. Here we first calculate the period of oscillation at the Hopf bifurcation point analyti-

cally and then compare the period of oscillation to the inter-EAD interval. The eigenvalue λ of

the Jacobian (Eq 2 in Tran et al [12]) satisfies the following equation:

l
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where τd and τf are the time constant of the d-gate and the f-gate of Isi, respectively; sd and sf are

the slopes of the steady-state activation and inactivation curves, respectively. a ¼ @F
@V ; b ¼

@F
@d, and

c ¼ @F
@f with F being the total ionic current as a function of voltage (V), gating variable d, and gat-

ing variable f (see Tran et al [12] for more details). These quantities are their values at the steady

state. At the Hopf bifurcation point, λ1,2 = ±iω, satisfying (λ − iω)(λ + iω)(λ − λ3) = 0, i.e.,

l
3
� l3l

2
þ o2l � o2l3 ¼ 0 ð7Þ

Fig 5. AEAD versus Vtakeoff in the physiologically more detailed models. A. LRd. B. HUCLA. C. TP04. D. ORd. E. GB.

Parameters were randomly drawn from assigned intervals (as described in Methods). AEAD was measured for all EADs

in an AP. Black dots are AEAD for control steady-state activation and inactivation curves of ICa,L; blue dots are for both

curves being shifted toward negative voltage; and green dots are for both curves being shifted toward more positive

voltages. The voltage shifts are indicated by the open arrows in each panel in the same way as in Fig 2D. Dashed lines

are reference lines for the slopes.

https://doi.org/10.1371/journal.pcbi.1006382.g005
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Comparing the coefficients of the Eqs (6) and (7), one obtains:

o2 ¼
1

tdtf
�

a
td
�

a
tf
�
sdb
td
þ
sf c
tf

ð8Þ

To calculate ω, one needs to define the Hopf bifurcation point. In the LR1 model, the slow

subsystem is the X-gate which is treated as a parameter for the stability analysis of the fast sub-

system. For a given X value, one can easily obtain the steady-state voltage VQES and thus the

steady-state values of all other gating variables. From Eqs (6) and (7), one also has: l3 ¼
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then at the Hopf bifurcation point, h = 0. Moreover, at the vicinity of the Hopf bifurcation

point, λ1,2 = ε ± iω, satisfying (λ − ε − iω)(λ − ε + iω)(λ − λ3) = 0. Following the same analysis

above, one obtains:
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Since ε<0 before the Hopf bifurcation and ε>0 after the Hopf bifurcation, thus h>0 before

the Hopf bifurcation and h<0 after the bifurcation. Therefore, by calculating h using Eq 10

and scanning X from 0 to 1, one can determine the Hopf bifurcation point. After the Hopf

bifurcation point is determined, one can then calculate the oscillation period of the limit cycle

of the fast subsystem at the Hopf bifurcation using Eq 8. Fig 6 shows the oscillation period ver-

sus different parameters using the theoretical approach (open red symbols). The oscillation

period decreases slowly with increasing Gsi (Fig 6A), has almost no change with GK (Fig 6C)

and GK1 (Fig 6D), but increases quickly with slowing the inactivation time constant of Isi (a

2-fold change in τf resulted in roughly a 2-fold change in the oscillation period, Fig 6E).

For comparison, we carried out simulations of the LR1 model using the same parameters.

We plotted all TEAD in an AP as we did for AEAD with the ordering of TEAD in an AP shown in

Fig 6B. Similar to AEAD, when a new EAD suddenly appears in or disappears from the AP, the

appearing or disappearing TEAD is the longest. As shown in Fig 6A, as Gsi increases, an EAD

suddenly appears in the AP (green arrow in Fig 6A and green AP in Fig 6B) which results in a

long TEAD. As Gsi increases further, this TEAD decreases quickly toward the oscillation period

of the limit cycle in the fast subsystem predicted from the theory, and becomes insensitive to

Gsi. This TEAD behavior repeats when a new EAD occurs in the AP as Gsi increases. The fast

decaying phase is a result of the homoclinic bifurcation, in which the oscillation period of the

limit cycle decreases quickly as the system is away from the homoclinic bifurcation point (see

Fig 2B). In other words, when a new EAD first appears in an AP, it is always the one closest to

the homoclinic bifurcation, and thus the AEAD is the largest and TEAD the longest (see Fig 4).

As the takeoff of this EAD is further away from the homoclinic point, the corresponding TEAD

(e.g., from the blue AP to the magenta AP in Fig 4B) quickly approaches to those of the EADs

prior to it, roughly the oscillation period of the limit cycle of the fast subsystem at the Hopf

bifurcation. Therefore, changing Gsi has only a small effect on TEAD except when an EAD
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appears in or disappears from the AP. Changing the maximum conductance of an outward

current exhibits the same behavior (Fig 6C and 6D). However, TEAD increases with the time

constant τf of the Isi inactivation gate more sensitively than with the maximum conductance of

the ionic currents (Fig 6E), which also agrees with the theoretical prediction. This indicates

that besides the dual Hopf-homoclinic bifurcation, Isi inactivation and recovery (although τf

is the inactivation time constant, it also determines the recovery of the channel in the LR1

model) is a major parameter determining TEAD.

Fig 6. Theoretical predictions and simulation results of TEAD using the LR1 model. A. TEAD versus Gsi. The numbers

mark the order of TEAD as defined in B. B. AP traces for Gsi indicated by the two arrows in A with two EADs and one TEAD

in the green AP (α = 0.741) while four EADs and three TEAD in the blue AP (α = 0.9). C. TEAD versus GK. D. TEAD versus

GK1. E. TEAD versus τf. F. Histogram of TEAD obtained from a large number of simulations using randomly selected

parameter sets and all TEAD in an AP. Control τf (α = 1) was used. The total number of TEAD is 13317 in the histogram.

https://doi.org/10.1371/journal.pcbi.1006382.g006

Fig 7. Dependence of TEAD on maximum conductance and kinetics of ionic currents in different models. A. LRd. B. HUCLA. C. TP04. D.

ORd. E. GB. Only the first TEAD (the interval between the first and the second EAD) are plotted. One parameter (indicated by color) was

changed while the others were set at their control values.

https://doi.org/10.1371/journal.pcbi.1006382.g007
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To more systematically explore the dependence of TEAD on ion channel conductance, we

carried out simulations by randomly drawn the maximum conductance of different ionic cur-

rents and measured all TEAD. The data is presented as a histogram in Fig 6F. The distribution

shows that TEAD is mainly between 250 ms and 500 ms (peak ~280 ms), which is the same

range seen in Fig 6A–6D (the range is narrower comparing to Fig 6E since the control τf was

used for all the random parameter sets).

Therefore, based on the theoretical predictions and simulation results of the LR1 model, we

conclude that TEAD is mainly determined by the time constant of ICa,L (Isi in the LR1 model),

which is the oscillation period at the Hopf bifurcation. The change in an ionic current conduc-

tance exhibits small effects on TEAD until it causes an EAD to disappear or appear at which

TEAD is mainly influenced by the homoclinic bifurcation.

Inter-EAD interval in physiologically more detailed models

The simulation results from the physiologically more detailed models show similar characteris-

tics of TEAD dependence on different parameters (Fig 7). Increasing an inward current

decreases TEAD while increasing an outward current (except Ito) increases TEAD. In the LRd

and HUCLA models, increasing Ito conductance decreases TEAD. This is because Ito promotes

EADs in these models. Similar to the LR1 model, the change in TEAD is not very sensitive to a

change in the maximum conductance of an ionic current until it is close to the transition from

two EADs to one EAD (or from one EAD to two EADs) in the AP at which TEAD changes rap-

idly. The predominant TEAD for the 5 models are roughly: LRd—90 ms; HUCLA—85 ms;

TP04–270 ms; ORd—275 ms; and GB—125 ms. As shown in Fig 7, TEAD in the LRd, HUCLA,

and GB models are shorter than 200 ms (between 50 ms to 200 ms), while those in the TP04

and ORd models range from 250 ms to 500 ms. In all the models, τf exhibits a stronger effect

on TEAD than the other parameters we explored.

In Fig 7, we only show the first inter-EAD interval versus a specific parameter. To explore

wider ranges of TEAD in these models, we used random parameter sets (see Methods) and mea-

sured all TEAD in an AP. Fig 8 shows the TEAD distributions for the AP models. The TEAD

ranges are: LRd—from 75 ms to 125 ms (peak ~90 ms); HUCLA—from 50 ms to 150 ms (peak

~85 ms); TP04—from 225 ms to 350 ms (peak ~250 ms); ORd—from 200ms to 500 ms (peak

~250 ms); and GB—from 100 ms to 200 ms (peak ~125 ms). Therefore, the TEAD of the TP04

and ORd model is in the experimentally observed range, while those of the GB, LRd, and

HUCLA models are too short comparing to the experimental recordings. Note that the TEAD

range using the random parameter sets is similar to the range seen in Fig 7 for each model,

indicating that the TEAD range of an AP model is not sensitive to ionic current conductance

but mainly determined by the period variation in the dual Hopf-homoclinic bifurcation.

Based on the theoretical predictions that τf is the main determinant of the inter-EAD inter-

val, we changed τf functions in the LRd and HUCLA models from upward bell-shaped functions

to downward bell-shaped functions (see Fig 8C) to lengthen τf in the plateau phase, we can

effectively shift the TEAD distributions toward the longer periods (red histograms in Fig 8A

and 8B). The inactivation time constants of ICa,L in the plateau voltage for the TP04 model and

the ORd model are much longer, and thus inter-EAD intervals of these two models are also

much longer. The GB model has a much shorter inactivation time constant of ICa,L in the pla-

teau, similar to those of LRd and HUCLA, and thus the inter-EAD interval is also short.

Determinants of EAD latency

As shown in Table 1, LEAD varied in a large range, from less than 100 ms to a couple of sec-

onds. Based on the bifurcation theory of EADs [12, 18], for EADs to occur, besides the
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instability leading to oscillations, the voltage needs to decay into the window voltage range of

ICa,L activation and the LCCs need to be recovered by a certain amount so that there are

enough LCCs available for re-opening.

To reveal how LEAD is determined by the ion channel properties, we started with simula-

tions of the LR1 model (Fig 9A). We varied four parameters: Gsi, GK, GK1, and τf. Increasing

Gsi first decreases LEAD quickly and then increases LEAD slowly (red curve in Fig 9A). The lon-

gest LEAD occurs when the first EAD appears in the AP (green arrow in Fig 9A). When a new

EAD first appears in an AP, its takeoff potential is the lowest which is close to the potential of

Fig 8. Distributions of TEAD in different models. A. LRd. B. HUCLA. D. TP04. E. ORd. F. GB. In these distributions,

the ionic conductance (see SI for the specific ones for each model) were randomly drawn from the assigned intervals.

C. τf versus V in the original LRd (black) and the modified one (red). The same τf was used in the HUCLA model as in

the LRd model.

https://doi.org/10.1371/journal.pcbi.1006382.g008

Fig 9. Dependence of EAD latency on ionic current conductance in different AP models. A. LR1. B. LRd. C.

HUCLA. D. TP04. E. ORd. F. GB. One parameter (indicated by color) was changed while the others were set as their

control values.

https://doi.org/10.1371/journal.pcbi.1006382.g009
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the homoclinic bifurcation point (see Fig 2A), and it takes a longer time for the EAD depolari-

zation to occur (the same reason that the TEAD is the longest and AEAD is the largest when a

new EAD appears). As Gsi increases, the takeoff potential is higher and thus LEAD shortens.

However, increasing Gsi also slows the decay of voltage into the window range of LCC reactiva-

tion, and thus lengthens LEAD. Increasing GK does the opposite (blue curve in Fig 9A) for the

same reasons mentioned for Gsi. Changing GK1 has no effect since IK1 is almost negligible in

early phase-2 of the AP. τf has a big effect on LEAD, which can vary LEAD in a much wider

range than the conductance. τf affects LEAD by two ways: 1) slowing τf causes a slower inactiva-

tion of Isi which delays the voltage decay to the window range; 2) slowing τf delays recovery of

LCCs, which then delays the depolarization of the first EAD.

Similar behaviors occur in all other models (Fig 9B–9F): changing a conductance usually

has a small effect on LEAD until it causes the only EAD in the AP to disappear, at which LEAD

changes steeply; and the inactivation time constant of ICa,L is the most sensitive parameter for

LEAD. The LEAD varies largely from model to model. In Fig 10, we show LEAD distributions

from random parameter sets for all models, and the LEAD ranges are: LR1—from 600 ms to

1000 ms (peak ~750 ms); LRd—from 240 ms to 550 ms (peak ~300 ms); HUCLA—from 135 ms

to 180 ms (peak ~150 ms); TP04—from 640 ms to 720 ms (peak~650 ms); ORd—from 360 ms

to 600 ms (peak ~400 ms); GB—from 240 ms to 500 ms (peak~280 ms).

Discussion

In this study, we used theoretical analyses and computer simulations to investigate EAD prop-

erties and their major determinants in AP models of ventricular myocytes. Our major observa-

tions and conclusions are summarized and discussed below.

EAD takeoff potential and amplitude

In all the models we simulated, the EAD takeoff potentials are usually above -40 mV (see the 0

mV shift cases in Fig 5), which is in agreement with experimental data from isolated

Fig 10. Distributions of TEAD in different models. A. LR1. B. LRd. C. HUCLA. D. TP04. E. ORd. F. GB. In these

distributions, the ionic conductance (see SI for the specific ones for each model) were randomly drawn from the

assigned intervals.

https://doi.org/10.1371/journal.pcbi.1006382.g010
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ventricular myocytes (Table 1). A negative linear correlation between EAD amplitude and

takeoff potential, which has been shown in experimental recordings [1, 2, 9], can be implied

from the dual Hopf-homoclinic bifurcation and is shown in simulations of all models. The

slopes of the negative linear correlations, the lowest takeoff potentials, and the maximum EAD

amplitudes vary substantially from model to model. The ORd model exhibits the largest maxi-

mum EAD amplitude and the steepest slope of the linear correlation between EAD amplitude

and takeoff potential.

Although EADs are promoted by increasing inward currents or decreasing outward currents,

once EADs occur in an AP, increasing the maximum conductance of an inward current or

decreasing that of an outward current does not increase the amplitudes of the EADs. Increasing

the maximum conductance of an inward current causes more EADs in the AP, and the maximum

EAD amplitude occurs when a new EAD appears in the AP. The amplitude of this new EAD then

decreases as the conductance increases. Increasing the maximum conductance of an outward cur-

rent decreases the number of EADs in the AP but increases the EAD amplitude. The maximum

EAD amplitude occurs before an EAD disappears from the AP. Based on the bifurcation analysis

[12–15], the EAD amplitude grows as the system evolves from the Hopf bifurcation point to the

homoclinic bifurcation point (Fig 2A and Fig 4). This behavior should hold for both supercritical

[12, 15] and subcritical [14, 15] Hopf bifurcation. At the homoclinic bifurcation point, the takeoff

potential is the lowest and the EAD amplitude becomes the maximum. Therefore, the amplitude

of the last EAD in an AP depends on how far away the takeoff potential is from the homoclinic

bifurcation point. Born of a new EAD or death of an existing EAD always occurs when the EAD

takes off near the homoclinic bifurcation point.

Note that in our simulations of assessing EAD amplitude and takeoff potential, we used

random parameter sets to explore a wide range of parameters for each model. In these simula-

tions, only phase-2 EADs in the ventricular myocyte models were observed. A recent simula-

tion study [15] using the ORd model and the Kurata et al model [56] also showed that only

phase-2 EADs could be observed. This indicates that varying maximum ionic current conduc-

tance may not produce phase-3 EADs. This agrees with the experimental data that EADs

observed in isolated ventricular myocytes are mainly phase-2 EADs (Table 1), while phase-3

EADs are rarely observed in isolated cells, except under Ca2+ overload [57] or by external cur-

rent injection [49]. On the other hand, phase-3 EADs are observed in Purkinje fibers [19] and

cardiac tissue [58–60]. Previous computer simulations showed that phase-3 EADs could occur

in single cells with a strong InsCa under elevated intracellular Ca2+ concentration [20, 21, 61] or

in tissue with repolarization heterogeneity induced dynamical instabilities [22, 58]. Therefore,

phase-3 EADs can be caused either by strong Ca2+ overload in isolated myocytes or by repolar-

ization heterogeneities in tissue with reduced repolarization reserve, while phase-2 EADs are

mainly due to reduced repolarization reserve and reactivation of ICa,L [9, 10, 18, 62, 63].

Since phase-2 EADs cannot propagate into PVCs in tissue [19–22], this raises question on

how are EADs linked to arrhythmias under LQTS and many other diseased conditions where

Ca2+ may not be overloaded. In recent studies [22, 64], we demonstrated how phase-2 EADs

and tissue-scale dynamical instabilities interact to result in PVCs and arrhythmias under

LQTS, linking mechanistically phase-2 EADs to arrhythmogenesis.

Inter-EAD interval

Based on the bifurcation analysis, the inter-EAD interval is governed by the period of the limit

cycle oscillation between the Hopf bifurcation and the homoclinic bifurcation. Similar to

AEAD, the inter-EAD interval increases as the system evolves from the Hopf bifurcation point

to the homoclinic bifurcation point. This behavior has been demonstrated in experimental
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recordings previously [65]. Our theoretical analysis and simulation of the AP models showed that

the inter-EAD intervals (except the last one in an AP), which are mainly determined by the period

of the limit cycle oscillation at the Hopf bifurcation, is insensitive to the change of maximum

ionic current conductance but more sensitive to the recovery of LCCs (Figs 7 and 8, and Eq 7).

The TEAD range of an AP model is determined by the oscillation period between the Hopf bifurca-

tion and the homoclinic bifurcation. However, the inter-EAD interval from different models

exhibits different ranges, differing several folds. On the other hand, the inter-EAD intervals

observed in isolated ventricular myocyte experiments mostly are in the range from 200 ms to 500

ms, irrespective of species (Table 1). In the AP models simulated in this study, the inter-EAD

intervals of LR1, TP04, and ORd are in the same range as observed experimentally, but other

models exhibit much faster inter-EAD intervals, indicating that caveats may exist in these models.

Our simulation indicates that the major caveat may lie in the formulation of ICa,L, in particular the

recovery time of ICa,L during the plateau phase (see more detailed discussion below).

EAD latency

EAD latency is determined by many factors. In term of biophysics, since EADs are caused by

reactivation of LCCs, the voltage needs to decay into the window range for reactivation of

LCCs, which depends on the speed of activation of the outward currents (namely, IKs, IKr, and

Ito) and inactivation of the inward currents (namely ICa,L). Then there are enough LCCs recov-

ered for re-opening, which depends on how fast the LCCs recovers. In more general term of

nonlinear dynamics as indicated by the bifurcation theory, the voltage and other variables

need to enter the basin or the vicinity of the basin of attraction of the limit cycle. This requires

not only the voltage but also the other state variables to reach their proper values. For example,

in the LR1 model, the X-gating variable needs to grow to a certain value to engage the Hopf

bifurcation as shown in Fig 2A. If X grows too slowly, the system may stay at the quasi-equilib-

rium state for a long time with no oscillations until reaching the Hopf bifurcation point, such

as the cases shown in Song et al [51]. Note that transient oscillations around a stable focus can

occur before the Hopf bifurcation, and thus EADs can occur before the Hopf bifurcation (see

Fig 2A, Fig 4C and 4D in this study, and Figs 2 and 4 in the study by Kügler [14]). Therefore,

the EAD latency can be very variable, explaining the experimental observation that EAD

latency varies in a wide range, from less than 100 ms to several seconds (Table 1).

Implications to mathematical modeling of cardiac APs

It is obvious that understanding the EAD properties and nonlinear dynamics is of great impor-

tance for understanding arrhythmogenesis in cardiac diseases [66], but it also provides impor-

tant information for cardiac AP modeling. Previous AP modeling has mainly considered AP

morphology, APD, as well as APD restitution, but not the EAD properties. For example, the

inter-EAD intervals of the guinea pig ventricular myocyte models [11, 23, 24] are much shorter

than what have been observed in isolated guinea pig ventricular myocytes (Table 1). This is

also true for the rabbit ventricular myocyte models. As shown in Fig 8A and 8B, we can effec-

tively increase the inter-EAD interval by increasing the inactivation time constant τf of ICa,L.

However, for both the guinea pig model [67] and the rabbit model [68], the original inactiva-

tion time constants were based on experimental measurements. Since in the Hodgkin-Huxley

formulation of ICa,L, the f-gate is a voltage-dependent inactivation gate, but it also governs the

recovery of ICa,L. Therefore, one would conclude that experimentally-based τf might be a cor-

rect constant but the recovery properties of ICa,L in these models are incorrect, which gives rise

to the discrepancy in inter-EAD intervals between mathematical models and experimental

measurements. On the other hand, τf is large in the LR1, TP04, and ORd models, which gives
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rise to the right recovery times to result in inter-EAD intervals in the ranges as observed in

experiments. That also does not mean that ICa,L models are completely correct in these AP

models since we know that the one for the LR1 model gives rise to a too slow inactivation of

ICa,L. Therefore, the EAD properties provide additional important information for AP model-

ing, which need to be considered in future AP model development.

Limitations

A major limitation is reliable experimental data curation. First, most of the values in Table 1

were estimated from the published figures, which is difficult to be accurate and unbiased. Sec-

ond, experimental data of EADs recorded from isolated ventricular is not abundant. More-

over, to calculate TEAD, we have to select APs with two or more EADs, which further limited

our data sources. Third, most of the experimental plots do not have coordinates but indicated

by scale bars. Sometimes, these scale bars may not be correctly labeled due to different reasons.

For example, we confirmed with Dr. Li that the time scale bar in Fig 2C of Ref. [33] is 300 ms

instead of 150 ms. In computer simulations, we only explored the maximum conductance of

the ion currents and the voltage-dependent inactivation time constant of ICa,L, but it is obvious

any parameter that affects repolarization will have an effect on EAD genesis and EAD proper-

ties. For example, the time constants of ion channel activation and inactivation, the Ca2

+-dependent inaction of ICa,L [69], the intracellular Ca2+ transient, mitochondrial metabolism

and Ca2+ cycling [61, 70], as well as spatial distribution of the ion channels will impact the

EAD behaviors, which need to be investigated in future studies. Another limitation of the sim-

ulations is that our conclusions may depend on the setting of control parameter and the

assigned intervals for random parameters. However, as we show in this study, despite certain

distinct difference between models, such as the inter-EAD interval, the general conclusions are

not model dependent, and thus, not likely to be affected by the choice of control parameter

sets and the assigned intervals. We only investigated the effects of voltage-dependent inactiva-

tion of ICa,L on EAD properties. It is shown that Ca2+-dependent inactivation also play impor-

tant roles in EAD genesis [69], one would anticipate that the Ca2+-dependent inactivation

might have a large effect on EAD properties. However, the Ca2+-dependent inactivation is

modeled very differently in different models, we do not have a unique way to alter a parameter

to study the effects in the models. For example, in most models, Ca2+-dependent inactivation

was modeled by an instantaneous function of Ca2+, and thus it is not clear how to change the

time constant of Ca2+-dependent inactivation in these models. One major caveat of the current

study is that in the models we simulated, the EADs are caused by reactivation of ICa,L, however,

experimental studies showed EADs can also be caused by spontaneous Ca2+ release [57, 71,

72]. In a recent modeling study by Wilson et al [73], the authors showed that spontaneous Ca2

+ oscillation can lead to EADs. We performed the same analyses of this model as we did for

other models and showed the results in Fig K in S1 Text. The EAD behaviors and their depen-

dence on the ionic conductances are similar to other models, but the model indeed exhibits

some differences from the other models. For example, TEAD exhibits a much wider range

(from 100 ms to 1200 ms) than those of other models and the TEAD histogram shows charac-

teristic distributions indicating that there are two mechanisms of EADs involved. However,

further investigation is needed to pinpoint the underlying mechanisms of EADs in this model

and compare model results with experimental data in future studies.

Supporting information

S1 Text. The online supporting information includes: 1) The control parameters of each AP

model and their changes from the original model to promote EADs; 2) The formualation of
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INaL; and 3) The supplemental results shown as supplemental figures, from Fig A to Fig K.
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