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Abstract

Kernel-based nonparametric hazard rate estimation is considered with a special class of infinite-

order kernels that achieves favorable bias and mean square error properties. A fully automatic and 

adaptive implementation of a density and hazard rate estimator is proposed for randomly right 

censored data. Careful selection of the bandwidth in the proposed estimators yields estimates that 

are more efficient in terms of overall mean squared error performance, and in some cases achieves 

a nearly parametric convergence rate. Additionally, rapidly converging bandwidth estimates are 

presented for use in second-order kernels to supplement such kernel-based methods in hazard rate 

estimation. Simulations illustrate the improved accuracy of the proposed estimator against other 

nonparametric estimators of the density and hazard function. A real data application is also 

presented on survival data from 13,166 breast carcinoma patients.

Keywords

Bandwidth estimation; Density estimation; Fourier transform; Hazard function estimation; 
Infinite-order kernels; Nonparametric estimation; Survival analysis

1 Introduction

Hazard rate estimation has been extensively studied in the literature as it en-compasses 

fundamental characteristics of time-to-event data with applications spanning medicine, 

engineering, and economics. The first kernel-based non-parametric estimator of the hazard 

function with non-censored data appeared in [1]. For censored data, density estimation 
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approaches are described in [2] and [3], and an empirical hazard approach is described in 

[4]. Kernel-based estimation of the hazard function under censoring was studied by [5], [6], 

and [7], [8], among others. However, all of these kernel-based approaches capitalized on 

traditional theory of second-order kernels when constructing their kernel-based estimates. 

Through the use of infinite-order kernels, we demonstrate that considerable asymptotic 

improvements are attainable.

The benefit of using infinite-order kernels, also called superkernels, in estimating the 

probability density function under iid data is well known; cf. [9]. More recently, Politis and 

others have investigated a class of infinite-order kernels that are constructed by taking the 

Fourier transform of flat-top functions—functions that are flat in a neighborhood of the 

origin [10–14]. These estimators, under a correctly specified bandwidth, attain mean squared 

error (MSE) properties superior to their second order analogs and also per-form well in 

small sample simulation studies. These same properties translate nicely to the context of 

density estimation under random right censoring, as investigated here. Improved MSE 

convergence rates in nonparametric estimation of the hazard function and derivatives of the 

density follow as corollaries to the density estimation theory.

In the next section, we define the general class of flat-top infinite-order kernels and, through 

Theorem 1, describe how using these kernels can cause the bias of density estimators from 

censored data to become essentially negligible in certain situations. Section 3 completes the 

proposed estimator by providing a bandwidth selection algorithm that automatically adapts 

to the unknown density at hand. A second use of the infinite-order estimators is realized in 

Section 4 by providing rapidly converging bandwidths for use in second-order kernels. In 

Section 5, we give practical suggestions for implementing the proposed estimator and 

provide simulations exhibiting improved performance in estimating the lifetime density and 

hazard function when compared with other nonparametric estimators including the muhaz 

and pehaz estimators of [15, 8] and the presmooth estimator of [16]. In Section 6, the 

proposed hazard function estimator and the previously mentioned estimators are 

simultaneously compared on breast carcinoma survival data involving 13,166 women.

2 Estimation with Inftnite-Order Kernels

We lay out the notation under the context of random right censorship (this can be 

generalized to allow for left truncation; see for example [17]). Let X1
0, … , Xn

0 be iid lifetime 

variables with density f and cdf F, and independently, let U1,…,Un be iid censoring variables 

with density g and cdf G. We observe the data Zi and ∆i where

Zi = min Xi0, Ui and Δi = 1[Xi0 ≤ Ui] ∈ 0, 1

for i = 1, …, n (here 1[ ⋅ ] represents the indicator function). We order the pairs (Zi, ∆i) 

according to the Zi’s and relabel them as (Xi, δi) where Xi = Z(i), the ith order statistics of the 

Z’s, and δi is the indicator variable that accompanies Xi, i.e. the concomitant of Xi. The 

Kaplain-Meier estimator is the nonparametric maximum likelihood estimate of the survival 

function S(t) = 1 − F(t) given by
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S(t) =

1, 0 ≤ t ≤ X1

j = 1

k − 1 n − j
n − j + 1

δj
, Xk − 1 < t ≤ Xk, k = 2, …, n

0, t > Xn

where the height of the jump of S at Xj is

sj =
S(Xj) − S(Xj + 1), j = 1, …, n − 1

S(Xn), j = n .

The kernel estimate of f is constructed through the convolution of F = 1 − S with a smooth 

kernel K, i.e.

f(x) = 1
ℎ −∞

∞
K x − t

ℎ dF(t) = 1
ℎ j = 1

n
sjK

x − Xj
ℎ . (1)

See [2] and [18] for background and properties of this estimator. Many authors require K to 

be of compact support for ease of analysis, but this is unnecessary; see for example [4]. 

Therefore we only assume K is an even function that integrates to one.

It will be assumed that sufficient conditions are satisfied so that

var f(x) = O 1
nℎ . (2)

This typically requires the lifetime density f to be continuously differentiable at x, and the 

censored distribution to be of compact support. Under these conditions, precise variance 

expressions are provided in [19]. See [20] for simpler derivations of these results for iid data.

Following [21], we now describe a class of infinite-order kernels constructed from the 

Fourier transform of a flat-top function. We start in the Fourier domain with a function κ 
given by

κ(t) = 1, t ≤ c
q( t ), otherwise (3)

where c is any positive constant, and q is any continuous, square-integrable function that is 

bounded in absolute value by one and satisfies q( c ) = 1. Then the infinite-order kernel 

corresponding to κ is the Fourier transform of κ, specifically,

K(x) = 1
2π −∞

∞
κ(t)e−itxdt, (4)

or equivalently,

Berg et al. Page 3

Test (Madr). Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1
ℎK(x/ℎ) = 1

2π −∞

∞
κ(tℎ)e−itxdt . (5)

Let ϕ(t) be the characteristic function corresponding to f(x), i.e. ϕ(t) is the inverse Fourier 

transform of f(x) given by

ϕ(t) = −∞
∞

eitxf(x) dx .

A natural estimator of the characteristic function is

ϕ(t) =
−∞

∞
eitxdF(x) =

j = 1

n
sjeitXj (6)

In the context of non-censored data, ϕ is an unbiased estimator of ϕ, but in the presence of 

censoring, bias is present. We assume the bias of ϕ(x) is O 1
n , which is justified by the 

following lemma.

Lemma 1 Suppose g(x) (the censored density) is compactly supported and contains the 
support of f(x), then

bias(ϕ(x)) = O 1
n . (7)

The assumption in Lemma 1 that the support of the censored distribution contains the 

support of the lifetime distribution can be found in other papers (see e.g. [22]). This 

assumption may be limiting in certain applications, but often it suffices to estimate a 

truncated lifetime distribution.

The bias of f(x) is smaller when f(x) is smoother (has more derivatives), and the smoother 

f(x) is, the faster its characteristic function decays to zero. The following assumptions 

classify the smoothness of f(x) into one of three categories.

• Assumption A(r): There is an r > 0 such that ∫ t > δ t r ϕ(t) dt < ∞ for any δ > 0.

• Assumption B: There are positive constants d and D such that ϕ(t) ≤ De−d t .

• Assumption C: There is a positive constant b such that ϕ(t) = 0 when t ≥ b.

The following theorem provides rates of the bias and MSE under each of the assumptions 

above.

Theorem 1 Suppose f(x) is the kernel estimator as defined in (1) with infinite-order kernel 

given by (4) and assume the variance assumption in (2) and the bias assumption in (7).

i. Suppose assumption A(r) holds. Let h ~ an−β (for any a > 0) with β = (2r + 1)−1, 

then
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sup
x ∈ ℝ

bias f(x) = o n
−r

2r + 1 and MSE f(x) = O n
−2r

2r + 1 .

ii. Suppose assumption B holds. Let h ∼ 1/(a log n) with a > 1/(2d), then

sup
x ∈ ℝ

bias f(x) = O 1
n and MSE f(x) = O logn

n .

iii. Suppose assumption C holds. Let h ≤ 1/b, then

sup
x ∈ ℝ

bias f(x) = O 1
n and MSE f(x) = O 1

n .

This theorem illustrates the mean square error of f(x) is just as good as second-order kernel 

density estimation when f(x) is only twice differentiable (r = 2), but considerable 

improvements are gained when more smoothness of f(x) is present. Even a parametric 

convergence rate is possible when assumption C is satisfied. Parametric convergence rates in 

non-censored data has also demonstrated by others [23–25], such as for data following a 

Vallé-Poussin density given by

f(x) = 1 − cosx
πx2 , x ∈ ℝ

with finitely-supported characteristic function given by

ϕ(t) = (1 − t )I[ − 1, 1](t) .

Corollary 1 The hazard function λ(x) = f(x)/S(x) is naturally estimated by λ(x) = f(x)/S(x), 
and since S is a n-convergent estimator of S, this estimate of the hazard function has the 

same MSE convergence rates as f  in the above theorem. Specifically:

i. Under assumption A(r), MSE(λ(x)) = O n
−2r

2r + 1 ;

ii. Under assumption B, MSE(λ(x)) = O logn
n ;

iii. Under assumption C, MSE(λ(x)) = O 1
n .

Additionally, the pth derivative of f can be estimated by the pth derivative of f(x); i.e. if K(p)

(x) is the pth derivative of K(x), then

f p(x) = 1
ℎp + 1 j = 1

n
sjK(p) x − Xj

ℎ (8)

is an estimate of the pth derivative of f [26]. Similarly, under sufficient conditions on f, the 

variance of this estimator is
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var f p(x) = O 1
n ℎp + 1 . (9)

The previous theorem is now generalized in the following theorem to give asymptotic bias 

and MSE rates of f p(x) with infinite-order kernels.

Theorem 2 Suppose f p(x) is the kernel estimator as defined in (8) where K is an infinite-

order kernel, and assume (7) and (9) hold.

i. Suppose assumption A(r + p) holds. Let h ~ an−β (for any a > 0) with β=(2r + p 

+)−1

sup
x ∈ ℝ

bias f p(x) = o n
−r

2r + p + 1 and MSE f p(x) = O n
−2r

2r + p + 1 .

ii. Suppose assumption B holds. Let ℎ 1/(alogn) with a > 1/(2d), then

sup
x ∈ ℝ

bias f p(x) = O 1
n and MSE f p(x) = O logn

n .

iii. Suppose assumption C holds. Let h ≤ 1/b, then

sup
x ∈ ℝ

bias f p(x) = O 1
n and MSE f p(x) = O 1

n .

In particular, we see that if the underlying density is infinitely smooth (as in the case of 

assumptions B and C), then the same asymptotic MSE rates of f p(x) hold for every p.

The bias properties stated in Theorem 2.1 and Theorem 2.3 are consistent with the properties 

of other kernel-based estimators with infinite-order kernels used in different contexts; see 

e.g. [11, 13].

3 Bandwidth Selection Algorithm

Theorem 1 in the previous section assumes one is handed a bandwidth h that is precisely 

molded to the underlying smoothness of the density of interest f(x). In general, however, one 

does not necessarily know the level of smoothness of the underlying density. This section 

presents a simple algorithm, adapted from [27], that automatically adjusts to the unknown 

smoothness of f(x). This bandwidth estimation procedure is consistent for the optimal 

bandwidth h under assumptions B and C, and under assumption A(r), the bandwidth 

algorithm still adapts to the underlying smoothness but consistency does not hold.

Let ϕ(t) be the estimate of the characteristic function as given in (6). The algorithm, in 

essence, searches for the smallest value t* such that ϕ(t∗) ≈ 0 in which case the bandwidth 

estimate is taken to be ℎ ≈ 1/t∗. The specific details are provided in the following algorithm.
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BANDWIDTH SELECTION ALGORITHM

Let C > 0 be a fixed constant, and εn be a nondecreasing sequence of positive real numbers 

tending to infinity such that εn = o(logn). Let t∗ be the smallest number such that

ϕ(t) < C log10n
n for all t ∈ (t∗, t∗ + εn) (10)

Then let ℎ = c/t∗ where c is the “flat-top radius” given in (3).

Remark 1 The positive constant C and the choice of sequence εn are irrelevant in the 

asymptotic theory, but certainly relevant for finite-sample calculations. The main idea behind 

the algorithm is to determine the smallest t such that ϕ(t) ≈ 0, and in most cases this can be 

visually seen without explicitly providing the quantities C and εn in (10). For a more 

automated procedure, a recommendation to take C = 2 and εn = 5 is suggested in Remark 

2.3 of [27]. The R package iosmooth [28] provides an implementation of the bandwidth 

selection algorithm for iid data.

Remark 2 If q(t) in (3) is very close to one, in a neighborhood of the type [c, c + η], then the 

“flat-top radius” is effectively increased to c + η. In this case, we would let ℎ = (c + η)/t∗ in 

the bandwidth selection algorithm. This is particularly relevant when considering infinitely 

smooth flat-top functions [12].

Theorem 3 Assume the following two assumptions on ϕ(t):

max
s ∈ (0, 1)

ϕ(t + s) − ϕ(t + s) = OP(1/ n) (11)

and

max
s ∈ (0, n)

ϕ(t + s) − ϕ(t + s) = OP
logn

n (12)

uniformly in t.

i. If ϕ(t) A t −d for some positive constants A and d, then

ℎPA logn
n

1
2d;

here APB means A/B 1 in probability.

ii. If ϕ(t) Aξ t  for some ξ ∈ (0, 1) and A > 0, then

ℎP1/(Alogn) .

where A = −1/logξ.
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iii. If ϕ(t) = 0 when t ≥ b, then ℎP1/b.

Remark 3 The two assumptions (11) and (12) are typical assumptions invoked in this type of 

an algorithm (see e.g. [27]), and verification of these assumptions, particularly with censored 

data, can be difficult and is not pursued here.

Remark 4 Note that the polynomial decay assumption of ϕ(t) in part (i) implies assumption 

A(d − 1 − ε) (as considered in Theorem 1) for any ε > 0. The decay assumptions in parts (ii) 

and (iii) correspond to assumptions B and C, respectively, in Theorem 1.

Theorem 3 shows that the proposed bandwidth selection algorithm adapts to the underlying 

degree of smoothness of the density, yielding bandwidth estimates that largely match the 

ideal bandwidths in Theorem 1. When there is only polynomial decay of the characteristic 

function, as in part (i) of the above theorem, the bandwidth selection algorithm produces a 

slightly smaller bandwidth than the theoretically optimal bandwidth given in Theorem 1, but 

the discrepancy diminishes with faster decay.

4 Bandwidth Selection for 2nd-Order Kernels

We now propose a bandwidth selection procedure for use with second-order kernels, based 

on using the infinite-order estimators as pilots in the plug-in approach to bandwidth 

selection. Although Theorem 1 demonstrates asymptotic superiority of using infinite-order 

kernels over second order kernels, the choice of bandwidth in estimation may be more 

critical than the choice of kernel. This hybrid approach provides improved (rapidly 

converging) bandwidth estimates for kernel density estimators using 2nd-order kernels.

We begin with expressions for the MSE and the mean integrated square error (MISE) of f(x)
with a symmetric second-order kernel Λ and standard assumptions on f and G. The MISE 

below is slightly generalized to incorporate a nonnegative weight function ω(x) to control 

the influence of error in the tails of the estimated density. The MSE calculations will assume 

the following conditions:

i. f(x), G(x), and ω(x) are twice differentiable with bounded third derivative in a 

neighborhood of x.

ii. ω(x) is compactly supported whose support is contained inside the support of the 

censoring distribution.

iii. Λ is three times continuously differentiable, its first derivative is integrable, and

lim
x ∞

xjΛ(j)(x) = 0 (j = 0, 1, 2, 3) .

MSE and MISE expressions are now presented; further details of the derivations can be 

found in [17, 29].
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MSE(f(x)) = ℎ4 ⋅ f′′(x)
2 cΛ

2

+ 1
n ℎ ⋅ f(x)

1 − G(x)dΛ

+ 1
n ⋅ f(x)2

−∞
x f(r)

1 − G(r)dr − 1
(1 − F(x))(1 − G(x))

+ O(ℎ6) + O ℎ
n + o 1

n ℎ

where

cΛ = −∞
∞

x2Λ(x) dx and dΛ = −∞
∞

Λ2(x) dx

and

MISE(f) = −∞
∞

MSE(f(x))dx .

Minimizing the asymptotically dominant terms in the above expressions with respect to h 
yields pointwise and globally optimal bandwidths, respectively, given by

ℎMSE =
f(x)dΛ

1 − G(x)(f′′(x)cΛ)2
1/5

n−1/5

ℎMISE =
dΛ −∞

∞ f(x)
1 − G(x)ω(x) dx

cΛ
2

−∞
∞ f′′(x)2ω(x) dx

1/5

n−1/5

These optimal bandwidths involve values of the unknown values f(x), f′′(x) and G(x). 

Therefore to estimate the respective bandwidths, we replace these unknown quantities with 

pilot estimates; f(x) and f′′(x) are replaced with the infinite-order kernel estimates f(x) and 

f2(x) respectively, and 1 G(x), the survival function of the censored random variables, is 

estimated using the Kaplan-Meier estimator with ∆i replaced with 1−∆i. The bandwidth used 

in estimating f2(x), and in general for f p(x), is the same as that derived from the bandwidth 

selection algorithm above. If f(x) is sufficiently smooth (for instance when assumption B or 

C holds), then this bandwidth choice is optimal. Let ℎMSE and ℎMISE refer to the plug-in 

estimates corresponding to hMSE and hMISE respectively. These estimators have rapid 

convergence rates due to the ultra-fast convergence of the plug-in infinite-order kernel 

estimators, as detailed in the following theorem.

Theorem 4 Assume the conditions of Theorem 3, and assume conditions strong enough to 

ensure (9) holds for p = 2. Let ℎM be either ℎMSE or ℎMISE with hM being the 

corresponding hMSE or hMISE.

i. If ϕ(t) A t −d for some positive constants A and d > 3, then
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ℎM = ℎM 1 + Op
logn

n

d − 4
2d .

ii. If ϕ(t) Aξ t  for some ξ ∈ (0, 1) and A > 0, then

ℎM = ℎM 1 + Op
logn

n

1
2 .

iii. If ϕ(t) = 0 when t ≥ b, then

ℎM = ℎM 1 + Op
1
n .

Cross-validation is suggested in [18] as a means of minimizing the integrated square error 

(ISE), but the approach of minimizing ISE was shown in [30] to be less optimal than 

minimizing the MISE. In particular, the relative convergence rates (as in the above theorem) 

of the cross-validation approach in [18] are n−1/10, regardless of the degree of smoothness of 

f(x). If one uses the plug-in approach that we have adopted above but with pilots consisting 

of second-order kernels, then the relative convergence rates are at best n−2/5, again, 

regardless of the degree of smoothness of f(x). All of these rates are considerably slower 

than the n−1/2 rate afforded by the proposed procedure under a sufficiently smooth density 

f(x) (i.e. when ϕ(t) has a rapid decay to zero) as Theorem 4 demonstrates.

5 Simulations

Many different choices of “flat-top” functions (3) can be used to construct an infinite-order 

kernel, although highly non-smooth shapes like the rectangle, which gives rise to the sinc 

kernel, should be avoided due to its large and slowly decaying side lobes. The trapezoidal 

window, as suggested in [31], can be viewed as smoothening the rectangular window and 

has more rapidly decaying side lobes. Another possibility is the infinitely smooth trapezoidal 

flat-top shape [12] which has side lobes that decay exponentially fast. The simulations in 

this article invoke a simple trapezoidal shape defined as

κ(t) =

1, t ≤ 1
2

−2 t + 2, 1
2 ≤ t ≤ 1

0, else

(13)

Taking the Fourier transform of this function gives the infinite-order kernel of interest:

K(x) = 2(cos(x/2) − cos(x))
πx2 . (14)
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We demonstrate the performance of using this infinite-order kernel for randomly right 

censored density and harzard function estimation in finite sample simulations. Reproducible 

code for all of the simulations are provided as supplementary materials.

5.1 Normal Kernel vs Infinite-Order Kernel with Normal Data

In this simulation we simply compare the performance of a normal kernel against the 

infinite-order kernel (14) and remove the complicating issue of bandwidth selection. 

Specifically, we determine the MSE performance for each estimator under their respective 

optimal bandwidth. Lifetime and censoring data is simulated independently following a 

standard normal distribution thus yielding a censoring rate of 50% on average. The 

characteristic function of the standard normal distribution is ϕ(t) = exp − t2
2 , which implies 

Assumption B is valid and the infinite-order kernel is asymptotically more efficient. 

Estimates of the normal density at three points (x=0, 1, and 2) are considered along with two 

different sample sizes (n=50 and 500). Results are provided for 999 realizations, which is 

sufficiently large to yield very small confidence intervals of the estimates. The results of the 

simulation study (Table 1) shows improved MSE performance when using an infinite-order 

kernel, particularly with the larger sample size.

5.2 Hazard Function Estimation With χ2 Data

In this simulation we evaluate the performance of kernel density estimation on χν2 data using 

three different degrees of freedom: ν = 7, ν = 11, and ν = 15. The characteristic function for 

the χν2 distribution is (1 − 2it)−ν/2, which implies assumption A(r) holds for r = 2, 4, and 6, 

respectively. We first demonstrate the performance of the adaptive bandwidth selection 

algorithm discussed in Section 3.

5.2.1 Bandwidth Selection Algorithm—The true characteristic function for each of 

the three densities are graphed in Figure 1. The two horizontal lines correspond to the 

thresholds given in Equation (10) for C = 2 and n = 50 and 500 respectively. Following the 

bandwidth selection algorithm, we let t∗ be the value of t corresponding to the point where 

ϕ(t)  crosses the horizontal line, and then we set ℎ = 1/(2t∗).

Figure 2 shows the distribution of bandwidths for estimating the density at x = 10 as 

determined by the bandwidth selection algorithm. This fully automated procedure 

consistently identified the bandwidths in a narrow range, and its adaptive nature is observed 

as it produces increasingly larger band-widths as the smoothness of the underlying density 

increases. It also adapts to the sample size by producing smaller bandwidths with larger 

sample sizes.

5.2.2 Comparison of Hazard Estimators—In many situations, particularly involving 

censored data, the support is known to lie in a half-line, or some compact interval, and 

unaltered versions of kernel density estimators are not consistent near the boundary points. 

However, a number of fixes for this boundary issue are available (see [32, 33] for a survey of 

several methods), and we adopt the simple reflection principle to resolve boundary problems 

in our estimator. Specifically, as described in [34], when the density is known to have its 
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support on [0, ∞), we use the estimator f(x) = f(x) + f( − x) near the boundary (0 ≤ x ≤ h) 

to ensure consistency near the boundary point x = 0; see [35] and [36] for discussions of this 

method with noncensored data.

In Table 2 we compare various estimators of the hazard function on the χ2 data. The 

infinite-order kernel estimator of the hazard function is f(x)/S(x) where f(x) is the usual 

infinite-order density estimator and S(x) is a smoothed Kaplan-Meier estimator (the R 

function ksmooth was applied to S to produce S(x)). The other estimators considered are 

derived from the R packages muhaz and survPresmooth. The muhaz estimator is based on 

the paper [8] with local bandwidth selection (denoted muhaz-l). The presmooth estimator is 

based on the paper [4] and uses the plug-in method for bandwidth selection [37].

For the parameters in (10) of the bandwidth selection algorithm, we set C = 2. In these 

simulations, ϕ(t)  is still decreasing when it hits the bound in (10), so in order to simplify 

and easily automate the bandwidth selection procedure for these simulations, we simply 

fixed εn = 0. Also, since presmooth would fail in some simulations when estimating x = 10, 

we focused the simulations on estimating x = 7. Finally, to provide comparison across a 

wide range of sample sizes and censoring rates, we consider three different sample sizes – 

n=50, 250, and 500 – and three different censorship rates – 25%, 50%, and 75%. Censorship 

of 50% is obtained by setting the censoring distribution equal to the lifetime distribution. 

Censorship of 25% is obtained by simple translation of the lifetime distribution to the right 

to achieve the desired censorship rate. Similarly, censorship of 75% is obtained by 

translating the censored distribution to the right to achieve the desired censorship rate. 

Simulations are conducted over 999 realizations and the standard errors are negligible.

Indeed we see the mean square error generally improves with sample size and worsens with 

increased censoring. The infinite-order kernel approach is generally expected to perform 

better with higher degrees of freedom of the chi-square distribution, which is observed with 

these results. In this simulation none of the three automated hazard density estimators 

dominates the others in terms of mean square error performance: infinite tended to perform 

best under low censorship and high degrees of freedom, muhaz tended to perform best under 

larger sample sizes, and presmooth tended to perform best under high censorship.

6 Breast carcinoma survival data

Breast carcinoma survival data, originally analyzed in [38], involves 13,166 breast 

carcinoma patients identified through the Utah Cancer Registry. In the original study a 

piecewise hazard function and a kernel-based method was used to estimate the hazard 

functions of the individuals across different strata based on age and whether carcinoma was 

localized or not. This dataset is re-analyzed with the proposed hazard function estimator 

along with the muhaz and pehaz estimators of [15, 8].

Figure 3 shows a graph of ϕ(t)  along with the same threshold as used in the simulations. We 

can observe ϕ(t) smoothly decays toward zero in this real dataset. This allows one to easily 

determine a reasonable range for the bandwidths to accompany the kernel density estimator.
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Figures 4 and 5 present the results of the different hazard function estimators on the breast 

cancer dataset. It is consistently depicted among all of the estimators that as the severity of 

the disease increases, so does the hazard rate. There is little difference in the estimated 

hazard rates for the different age groups. The muhaz and infinite-order kernel estimator with 

adaptive bandwidth choice perform similarly on this dataset.

7 Conclusions

The proposed infinite-order estimator, when used with its tailored bandwidth selection 

algorithm, produces a nearly n-convergent nonparametric estimator when the underlying 

density is sufficiently smooth, which corresponds to a rapidly decaying characteristic 

function. Even in the least ideal situation of a slow decay of the characteristic function to 

zero (i.e., when the density is not very smooth), the estimator maintains the same 

performance as traditional kernel density estimators of censored data. The same kernel was 

used throughout all of the simulations, so no parameter estimation was involved in choosing 

the kernel, and the accompanying bandwidth selection algorithm requires very little 

computation to implement. Additionally, the proposed estimator is robust to sample size 

since no parameter estimation is involved and it can succeed in estimating the hazard 

function and density in small sample sizes where competing estimators may fail to produce 

an estimate. Finally, the proposed estimator demonstrated reliable performance on the 

simulated data as well as on a actual datasets.
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A: Technical Proofs

A.1 PROOF OF LEMMA 1.

Theorem 2.1 in [39] provides the following result: if θ(t) is a continuous nonnegative 

measurable function with E[θ(X1)] < ∞, then

0 ≤
−∞

∞
θ(t) dF(t) − E −∞

∞
θ(t) dF(t) ≤ −∞

∞
P(Z1 ≤ t)nθ(t)dF(t) .

By linearity of the integral and since θ(t) = θ+(t) − θ−(t) where θ+(t) = max(θ(t), 0) and θ−(t) 
= max(−θ(t), 0), we have the following result for general θ(t)

−∞
∞

θ(t) dF(t) − E −∞
∞

θ(t) dF(t) ≤ −∞
∞

P(Z1 ≤ t)n(θ+(t) + θ−(t))dF(t) .

In particular, for θ(t) = eitx = cos(tx) + isin(tx), it follows that
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bias ϕ(x) =
−∞

∞
θ(t) dF(t) − E −∞

∞
θ(t) dF(t)

≤
−∞

∞
cos(tx) dF(t) − E −∞

∞
cos(tx) dF(t)

+
−∞

∞
sin(tx) dF(t) − E −∞

∞
sin(tx) dF(t)

≤ 2 −∞
∞

P(Z1 ≤ t)ndF(t) .

≤ 2max
−∞

∞
F(t)n dF(t), −∞

∞
G(t)ndF(t)

Note that

−∞
∞

F(t)n dF(t) = F(t)n + 1
n + 1 −∞

∞
= O 1

n

From the assumptions of the lemma, we have f(x)/g(x) ≤ M for some M > 0, which gives

−∞
∞

G(t)n dF(t) = t:f(t) ≠ 0 G(t)nf(t)dt

= t:f(t) ≠ 0 G(t)nf(t)
g(t) g(t)dt

≤ M t:f(t) ≠ 0 G(t)ndG(t)

= M G(t)n + 1
n + 1 −∞

∞

= O 1
n

This establishes the bias of ϕ(t) is O(1/n) under the assumptions of Lemma 1.

A.2 PROOF OF THEOREM 1.

Proof In order to evaluate the bias of f(x), we reformulate f(x) in terms of ϕ(x) as follows

f(x) = 1
ℎ j = 1

n
sjK

x − Xj
ℎ

= 1
ℎ j = 1

n
sj

ℎ
2π −∞

∞
κ(tℎ)e−it(x − Xj)dt

= 1
2π −∞

∞

j = 1

n
sjeitXj κ(tℎ)e−itxdt

= 1
2π −∞

∞
ϕ(t)κ(tℎ)e−itxdt .

(15)

From the representation in (15), the expectation of f(x) is
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E[f(x)] = 1
2π −∞

∞
E[ϕ(t)]κ(tℎ)e−itxdt

= 1
2π −∞

∞
ϕ(t)κ(tℎ)e−itxdt + O 1

n .

Since ϕ(t) is the inverse Fourier transform of f(x), f(x) is therefore the Fourier transform of 

ϕ(t); i.e.

f(x) = 1
2π −∞

∞
ϕ(t)e−itxdt . (16)

Therefore the bias of f(x) is

bias(f(x)) = E[f(x)] − f(x) = 1
2π −∞

∞
(κ(tℎ) − 1)ϕ(t)e−itxdt + O 1

n .

But since κ(th) = 1 for |t| ≤ 1/h, we have

bias(f(x)) = 1
2π t > 1/ℎ(κ(tℎ) − 1)ϕ(t)e−itxdt + O 1

n .

Since κ(t) ≤ 1 for all t, κ(tℎ) − 1 ≤ 2 for all h and t. We can then bound the bias by

bias(f(x)) ≤ 2
2π t > 1/ℎ ϕ(t) dt + O 1

n .

Under the assumption ∫ t r ϕ(t) dt < ∞ in (i), we have

t > 1/ℎ ϕ(t) dt =
t > 1/ℎ

t r ϕ(t)
t r dt

= ≤ ℎr
t > 1/ℎ t r ϕ(t) dt

= o(ℎr) .

If the bias is o(ℎr) + O 1
n  and the variance is O 1

nℎ , then we wish to choose h such that 

ℎ2r 1
nℎ  which occurs if h ∼ an−β with β = (2r + 1)−1. With this choice of h, we have

sup
x ∈ ℝ

bias f(x) = o n
−r

2r + 1 and MSE f(x) = O n
−r

2r + 1 .

This proves part (i).

Under the assumption ϕ(t) ≤ De−d t  for some positive constants d and D, we have
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t > 1/ℎ ϕ(t) dt ≤ D t > 1/ℎe−d t dt

= D
ed/ℎ t > 1/ℎed(1/ℎ − t )dt

= O e−d/ℎ

So the bias is O e−d/ℎ + O 1
n , and by letting ℎ 1/(alogn) gives a squared-bias of

O e
−2d

ℎ + O 1
n2 = O e−2da logn + O 1

n2 = O n−2da + O 1
n2

and a variance of

O 1
nℎ = O alogn

n .

Therefore if a > 1/(2d), then

sup
x ∈ ℝ

bias f(x) = O 1
n and MSE f(x) = O logn

n

This proves part (ii).

Under the assumption ϕ(t) = 0 when |t| ≥ b, we have

t > 1/ℎ ϕ(t) dt = 0

when h ≤ 1/b. So by letting h ≤ 1/b, we have

sup
x ∈ ℝ

bias f(x) = O 1
n and MSE f(x) = O 1

n

which completes the proof of the theorem.

A 2 PROOF OF THEOREM 2.

Proof By taking the pth derivative on both sides of the identity (5), we have

1
ℎp + 1K(p) x

ℎ = 1
2π −∞

∞
( − it)pκ(tℎ)e−itxdt .

By taking the pth derivative on both sides of the identity (16), we have

f(p)(x) = 1
2π −∞

∞
( − it)pϕ(t)κ(tℎ)e−itxdt .
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Following the steps in (15), we have

f p(x) = 1
2π −∞

∞
ϕ(t)κ(tℎ)e−itxdt .

and we can now compute the bias of f p(x) to be

bias(f p(x)) = 1
2π −∞

∞
( − it)p(κ(tℎ) − 1)ϕ(t)e−itxdt + O 1

n .

Proceeding as in the proof of Theorem 1, this bias is bounded as

bias(f p(x)) ≤ 2
2π t > 1/ℎ t p ϕ(t) dt + O 1

n .

Under assumption A(r + p), we have

t > 1/ℎ t p ϕ(t) dt =
t > 1/ℎ

t r + pϕ(t)
t r dt

≤ ℎr
t > 1/ℎ t r + p ϕ(t) dt

= O ℎr .

If the bias is o(ℎr) + O 1
n  and the variance is O 1

nℎp + 1 , then we wish to choose h such that 

ℎ2r 1
nℎp + 1  which occurs if h ∼ an−β with β = (2r + p + 1)−1. With this choice of h, we have

sup
x ∈ ℝ

bias f p(x) = o −r
n2r + p + 1 and MSE f p(x) = O −2r

n2r + p + 1 .

Under assumption B,

t > 1/ℎ t p ϕ(t) dt ≤ D t > 1/ℎ t pe−d t dt

= D
ed/ℎ t > 1/ℎ t ped(1/ℎ − t )dt

= O e−d/ℎ .

Under assumption C,

t > 1/ℎ t p ϕ(t) dt = 0

When ℎ ≤ 1/b. Finally, the bias and MSE results for parts (ii) and (iii) now follow along the 

same lines as Theorem 1.
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A.3 PROOF OF THEOREM 3.

Proof The proof follows the proof of Theorem 3 in [10] with little modification.

A.4 PROOF OF THEOREM 4.

Proof Parts (ii) and (iii) follow from Theorems 1 and 2 and the δ-method. The convergence 

of ℎM in part (i) is dictated by the slowly converging f′′(x). However, the convergence rate 

of ℎM is unhampered by the convergence rate of ℎ; for instance, if h is replaced with the 

random quantity h(1 + op(1)) (refer to the proof of Lemma 2 in [40]) then Theorem 1 is still 

valid. If ϕ(t) A t −d, then by Theorem 3,

ℎPA logn
n

1
2d

From Theorem 2, part (i), if

−∞

∞
t r + 2 ϕ(t) < ∞, (17)

then the bias of f′′(x) is o(hr). In order for (17) to be satisfied, r must be less than d − 3, so 

we let r = |d − 4|. Therefore the bias of f′′(x) (which dominates the MSE of f′′(x)) is

o logn
n

d − 4
2d ,

and coupled with the δ-method, part (i) of Theorem 4 is now proved.
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Fig. 1. 
The true characteristic function for each of the three χ2 densities with horizontal lines 

corresponding to the threshold in (10).
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Fig. 2. 
The distribution of bandwidths from the bandwidth selection algorithm for estimating the 

density at x = 10 when n=50 (left) and n=500 (right).

Berg et al. Page 22

Test (Madr). Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
ϕ(t)  for the breast cancer dataset (age<46, local) along with the threshold used to determine 

the bandwidth.
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Fig. 4. 
The result of the three different hazard function estimators for localized breast cancer 

survival data for four different age ranges.
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Fig. 5. 
The result of the three different hazard function estimators for non-local (regional) breast 

cancer survival data for four different age ranges.
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Table 1

Comparison of the infinite-order kernel to the normal kernel with their respective optimal bandwidths.

x = 0 x = 1 x = 2

n = 50
MSEinftnite* 3.96.40 1.98.70 1.78.50

MSEnormal* 5.90.50 3.93.90 1.33.90

x = 0 x = 1 x = 2

n = 500
MSEinftnite* .54.30 .28.50 .47.40

MSEnormal* 1.14.30 .60.50 .61.50

*
MSE values are multiplied by 103 for easier comparison and subscripted values correspond to the optimal bandwidth.
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Table 2

Mean square error performance of the proposed method (infinite) to two other hazard estimators over a range 

of censorship rates, sample sizes, and lifetime distributions.

% cens n χd
2

infinite muhaz presmooth

25%

50

7 df 8.86 3.62 2.36

11 df 0.24 0.18 0.09

15 df 0.37 0.98 0.39

250

7 df 0.16 0.17 0.37

11 df 0.08 0.04 0.05

15 df 0.02 0.09 0.04

500

7 df 0.02 0.06 0.10

11 df 0.01 0.03 0.02

15 df 0.01 0.04 0.03

50%

50

7 df 11.95 15.70 8.71

11 df 0.69 0.58 0.81

15 df 0.10 0.21 0.20

250

7 df 1.52 1.41 1.57

11 df 0.14 0.11 0.14

15 df 0.03 0.06 0.09

500

7 df 0.85 0.73 0.91

11 df 0.09 0.06 0.08

15 df 0.02 0.05 0.07

75%

50

7 df 10.81 14.47 14.59

11 df 7.68 6.75 6.17

15 df 0.68 0.66 0.49

250

7 df 13.59 13.08 9.66

11 df 7.71 6.31 7.18

15 df 0.76 0.69 0.37

500

7 df 9.32 10.35 8.02

11 df 7.86 6.71 7.17

15 df 0.84 0.62 0.83

The above MSE values are multiplied by 103 for easier comparison, and within each row the smallest MSE value is bolded.
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