
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Systematic Techniques for Finding and Preventing Script Injection Vulnerabilities

Permalink
https://escholarship.org/uc/item/89m7p9xw

Author
Saxena, Prateek

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/89m7p9xw
https://escholarship.org
http://www.cdlib.org/

Systematic Techniques for Finding and Preventing Script Injection
Vulnerabilities

by

Prateek Saxena

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Dawn Song, Chair
Professor David Wagner
Professor Brian Carver

Fall 2012

Systematic Techniques for Finding and Preventing Script Injection
Vulnerabilities

Copyright 2012
by

Prateek Saxena

1

Abstract

Systematic Techniques for Finding and Preventing Script Injection Vulnerabilities

by

Prateek Saxena

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dawn Song, Chair

Computer users trust web applications to protect their financial transactions and online
identities from attacks by cyber criminals. However, web applications today are riddled with
security flaws which can compromise the security of their web sessions. In this thesis, we ad-
dress the problem of automatically finding and preventing script injection vulnerabilities, one
of the most prominent classes of web application vulnerabilities at present. Specifically, this
thesis makes three contributions towards addressing script injection vulnerabilities. First, we
propose two techniques that together automatically uncover script injection vulnerabilities
in client-side JavaScript components of web applications without raising false positives. Sec-
ond, we empirically study the use of sanitization, which is the predominant defense technique
to prevent these attacks today. We expose two new classes of errors in the practical use of
sanitization in shipping web applications and demonstrate weaknesses of emerging defenses
employed in widely used web application frameworks. Third, we propose a type-based ap-
proach to automatically perform correct sanitization for applications authored in emerging
web application frameworks. Finally, we propose a conceptual framework for a sanitization-
free defense against script injection vulnerabilities, which can form a robust second line of
defense.

i

To my parents, Krati and my brother Siddharth.

ii

Contents

Contents ii

List of Figures iv

List of Tables ix

1 Introduction 1
1.1 Contributions . 2
1.2 Statement of Joint Work . 3

2 Background & Overview 4
2.1 Script Injection Vulnerabilities: Definition & Examples 4
2.2 Techniques for Finding Script Injection Vulnerabilities Automatically 10
2.3 Techniques for Preventing Script Injection Vulnerabilities 12

3 Finding Vulnerabilities using Taint-Enhanced Blackbox Fuzzing 14
3.1 Approach and Architectural Overview . 15
3.2 Technical Challenges and Design Points . 16
3.3 Flax: Design and Implementation . 17
3.4 Evaluation . 24
3.5 Related Work . 31
3.6 Conclusion . 32

4 Finding Vulnerabilities using Dynamic Symbolic Execution 33
4.1 Problem Statement and Overview . 35
4.2 End-to-End System Design . 37
4.3 Core Constraint Language . 42
4.4 Core Constraint Solving Approach . 44
4.5 Reducing JavaScript to String Constraints 48
4.6 Experimental Evaluation . 50
4.7 Related Work . 58
4.8 Conclusion . 59

iii

5 Analysis of Existing Defenses 61
5.1 Challenges in Sanitization . 62
5.2 Support for Auto-Sanitization in Existing Web Application Frameworks . . . 67
5.3 Failures of Sanitization in Large-Scale Applications 74
5.4 Conclusion . 81

6 Securing Sanitization-based Defense 85
6.1 Problem Definition . 88
6.2 Our Approach . 93
6.3 The Context Type System . 94
6.4 CSAS Engine . 102
6.5 Operational Semantics . 104
6.6 Implementation & Evaluation . 108
6.7 Related Work . 112
6.8 Conclusion . 113

7 DSI: A Basis For Sanitization-Free Defense 115
7.1 XSS Definition and Examples . 116
7.2 Approach Overview . 119
7.3 Enforcement Mechanisms . 122
7.4 Architecture . 127
7.5 Implementation . 130
7.6 Evaluation . 132
7.7 Comparison with Existing XSS Defenses . 135
7.8 Discussion . 139
7.9 Related Work . 140
7.10 Conclusion . 141

8 Conclusion 142

Bibliography 144

iv

List of Figures

2.1 A snippet of HTML pseudo-code generated by a social networking application
server vulnerable to scripting attack. Untrusted input data, identified by the
$GET[‘...’] variables, to the server is echoed inline in the HTML response and
without any modification or sanitization. 5

2.2 An example of a chat application’s JavaScript code for the main window, which
fetches messages from the backend server at http://example.com/ 7

2.3 An example vulnerable chat application’s JavaScript code for a child message dis-
play window, which takes chat messages from the main window via postMessage.
The vulnerable child message window code processes the received message in four
steps, as shown in the receiveMessage function. First, it parses the principal do-
main of the message sender. Next, it tries to check if the origin’s port and domain
are “http” or “https” and “example.com” respectively. If the checks succeed, the
popup parses the JSON [58] string data into an array object and finally, invokes a
function for displaying received messages. In lines 29-31, the child window sends
confirmation of the message reception to a backend server script. 8

3.1 Approach Overview . 15
3.2 System Architecture for Flax . 18
3.3 Algorithm for Flax . 19
3.4 Simplified operations supported in JASIL intermediate representation 19
3.5 Type system of JASIL intermediate representation 20
3.6 (Left) Sources of untrusted data. (Right) Critical sinks and corresponding ex-

ploits that may result if untrusted data is used without proper validation. 21
3.7 (Left) Acceptor Slice showing validation and parsing operations on event.origin

field in the running example. (Right) Execution of the Acceptor Slice on a can-
didate attack input, namely http://evilexample.com/ 23

3.8 An example of a acceptor slice which uses complex string operations for input
validation, which is not directly expressible to the off-the-shelf string decision
procedures available today. 28

v

3.9 A gadget overwriting attack layered on a client-side script injection vulnerability.
The user clicks on an untrusted link which shows the iGoogle web page with an
overwritten iGoogle gadget. The URL bar continues to point to the iGoogle web
page. 30

4.1 Architecture diagram for Kudzu. The components drawn in the dashed box
perform functions specific to our application of finding client-side script injection.
The remaining components are application-agnostic. Components shaded in light
gray are the core contribution of this chapter. 38

4.2 Abstract grammar of the core constraint language. 43
4.3 Relations between the unbounded versions of several theories of strings. Theories

higher in the graph are strictly more expressive but are also at least as complex
to decide. Kudzu’s core constraint language (shaded) is strictly more expressive
than either the core language of HAMPI [66] or the theory of word equations and
an equal length predicate (the “pure library language” of [17]). 43

4.4 Algorithm for solving the core constraints. 45
4.5 A sample concat graph for a set of concatenation constraints. The relative order-

ing of the strings in the final character array is shown as start and end positions
in parentheses alongside each node. 47

4.6 A set of concat constraints with contradictory ordering requirements. Nodes are
duplicated to resolve the contradiction. 47

4.7 Type system for the full constraint language . 49
4.8 Grammar and types for the full constraint language including operations on

strings, integers, and booleans. 49
4.9 Distribution of string operations in our subject applications. 52
4.10 Kudzu code coverage improvements over the testing period. For each experiment,

the right bar shows the increase in the executed code from the initial run to total
code executed. The left bar shows the increase in the code compiled from initial
run to the total code compiled in the entire test period. 54

4.11 Benefits from symbolic execution alone (dark bars) vs. complete Kudzu (light
bars). For each experiment, the right bar shows the increase in the total executed
code when the event-space exploration is also turned on. The left bar shows the
observed increase in the code compiled when the event-space exploration is turned
on. 55

4.12 The constraint solver’s running time (in seconds) as a function of the size of the
input constraints (in terms of the number of symbolic JavaScript operations) . . 58

5.1 Flow of Data in our Browser Model. Certain contexts such as PCDATA and CDATA

directly refer to parser states in the HTML 5 specification. We refer to the
numbered and underlined edges during our discussion in the text. 63

5.2 A real-world vulnerability in PHPBB3. 67
5.3 Example of Django application with wrong sanitization 70

vi

5.4 Example of Auto-sanitization in Google Ctemplate framework 72
5.5 Sanitizer-to-context mapping for our test applications. 75
5.6 Running example: C# code fragment illustrating the problem of automatic san-

itizer placement. Underlined values are derived from untrusted data and require
sanitization; function calls are shown with thick black arrows C1-C3 and basic
blocks B1-B4 are shown in gray circles. 76

5.7 Two different sanitization approaches are shown: Method 1 is shown above and
method 2 below. 76

5.8 HTML outputs obtained by executing different paths in the running example.
TOENCODE denotes the untrusted string in the output. 78

5.9 Histogram of sanitizer sequences consisting of 2 or more sanitizers empirically ob-
served in analysis, characterizing sanitization practices resulting from manual san-
itizer placement. E,H,U, K,P,S denote sanitizers EcmaScriptStringLiteralEncode,
HtmlEncode, HtmlAttribEncode, UrlKeyValueEncode, UrlPathEncode, and Sim-
pleHtmlEncode respectively. 79

5.10 Characterization of the fraction of the paths that were inconsistently sanitized.
The right-most column indicates paths highlighted as errors by our analysis. . . 83

5.11 Distribution of lengths of paths that could not be proved safe. Each hop in the
path is a string propagation function. The longer the chain, the more removed
are taint sources from taint sinks. 84

5.12 Distribution of the lengths of applied sanitization chains, showing a sizable frac-
tion of the paths have more than one sanitizer applied. 84

6.1 The syntax of a simple templating language. ⊕ represents the standard integer
and bitvector arithmetic operators, � represents the standard boolean operations
and · is string concatenation. The San expression syntactically refers to applying
a sanitizer. 89

6.2 (A) shows a template used as running example. (B) shows the output buffer after
the running example has executed the path including the true branch of the if

statement. 90
6.3 Pseudo-code of how external application code, such as client-side Javascript, can

invoke the compiled templates. 90
6.4 Overview of our CSAS engine. 94
6.5 The final types τ are obtained by augmenting base types of the language α with

type qualifiers Q . 95
6.6 An example template requiring a mixed static-dynamic approach. 96
6.7 Type Rules for Expressions. 97
6.8 Type Rules for Commands. The output buffer (of base type η) is denoted by the

symbol ρ. 98
6.9 The promotibility relation ≤ between type qualifiers 99
6.10 Syntax of Values . 105

vii

6.11 Operational Semantics for an abstract machine that evaluates our simple tem-
plating language. 106

6.12 A set of contexts C used throughout the chapter. 108
6.13 Comparing the runtime overhead for parsing and rendering the output of all the

compiled templates in milliseconds. This data provides comparison between our
approach and alternative existing approaches for server-side Java and client-side
JavaScript code generated from our benchmarks. The percentage in parenthesis
are calculated over the base overhead of no sanitization reported in the second col-
umn. The last line shows the number of sinks auto-protected by each approach—a
measure of security offered by our approach compared to its alternatives. 110

6.14 Distribution of inserted sanitizers: inferred contexts and hence the inserted sani-
tizer counts vary largely, therefore showing that context-insenstive sanitization is
insufficient. 111

7.1 Example showing a snippet of HTML pseudocode generated by a vulnerable social
networking web site server. Untrusted user data is embedded inline, identified by
the $GET[‘...’] variables. 117

7.2 Example attacks for exploiting vulnerabilities in Figure 7.1. 117
7.3 Coalesced parse tree for the vulnerable web page in Figure 7.1 showing super-

imposition of parse trees resulting from all attacks simultaneously. White node
show the valid intended nodes whereas the dark nodes show the untrusted nodes
inserted by the attacker. 119

7.4 Coalesced parse tree (corresponding to parse tree in Figure 7.3) resulting from
DSI enforcement with the terminal confinement policy—untrusted subtrees are
forced into leaf nodes. 121

7.5 Example of minimal serialization using randomized delimiters for lines 3-5 of the
example shown in Figure 7.1. 123

7.6 Rules for computing mark attributes in minimal deserialization. 125
7.7 One possible attack on minimal serialization, if C were not explicitly sent. The

attacker provides delimiters with the suffix 2222 to produce 2 valid parse trees in
the browser. 126

7.8 (a) A sample web forum application running on a vulnerable version of ph-
pBB 2.0.18, victimized by stored XSS attack as it shows with vanilla Konqueror
browser (b) Attack neutralized by our proof-of-concept prototype client-server
DSI enforcement. 130

7.9 Effectiveness of DSI enforcement against both reflected XSS attacks [130] as well
as stored XSS attack vectors [94]. 133

7.10 Percentage of responses completed within a certain timeframe. 1000 requests on
a 10 KB document with (a) 10 concurrent requests and (b) 30 concurrent requests.134

7.11 Increase in CPU overhead averaged over 5 runs for different page sizes for a
DSI-enabled web server using PHPTaint [117]. 134

viii

7.12 Various XSS Mitigation Techniques Capabilities at a glance. Columns 2 - 6
represent security properties, and columns 7-9 represent other practical issues. A
‘X’ denotes that the mechanism demonstrates the property. 137

ix

List of Tables

3.1 Applications for which Flax observed untrusted data flow into critical sinks. The
top 5 subject applications are websites and the rest are iGoogle gadgets. (Upper)
Columns 2-5, and (Lower) Columns 6-9. 25

4.1 Length constraints implied by core string constraints, where LS is the length of
a string S, and � ranges over the operators {<,≤, =,≥, >}. 48

4.2 Our reduction from common JavaScript operations to our full constraint language.
Capitalized variables may be concrete or symbolic, while lowercase variables take
a concrete value. 51

4.3 The top 5 applications are AJAX applications, while the rest are Google/IG gad-
get applications. Column 2 reports the number of distinct new inputs generated,
and column 3 reports the increase in code coverage from the initial run to and
the final run. 53

4.4 Event space Coverage: Column 2 and 3 show the number of events fired in the
first run and in total. The last column shows the total events discovered during
the testing. 57

5.1 Transductions applied by the browser for various accesses to the document. These
summarize transductions when traversing edges connected to the “Document”
block in Figure 5.1. 65

5.2 Details regarding the transducers mentioned in Table 5.1. They all involve various
parsers and serializers present in the browser for HTML and its related sub-
grammars. 65

5.3 Extent of automatic sanitization support in the frameworks we study and the
pointcut (set of points in the control flow) where the automatic sanitization is
applied. 69

5.4 Usage of auto-sanitization in Django applications. The first 2 columns are the
number of sinks in the templates and the percentage of these sinks for which auto-
sanitization has not been disabled. Each remaining column shows the percentage
of sinks that appear in the given context. 71

5.5 Sanitizers provided by languages and/or frameworks. For frameworks, we also
include sanitizers provided by standard packages or modules for the language. . 73

x

5.6 The web applications we study and the contexts for which they sanitize. 74

xi

Acknowledgments

This thesis is a result of ideas that were born out of discussions and collaboration with
many people. Without them this work would not be possible. I am responsible for any
shortcomings that remain in this thesis.

First, I thank my adviser and thesis committee chair Prof. Dawn Song. Her insights and
feedback have directly shaped the technical ideas in this thesis. But, more importantly, her
passion for scientific research is contagious and has had an indelible effect on my personality.
My other committee members, Prof. David Wagner and Prof. Brian Carver, have provided
valuable feedback on the thesis. Thanks to Prof. David Wagner for insightful comments on
papers that are part of this thesis; his words of encouragement and guidance have helped
me throughout my PhD. Thanks to Prof. Brian Carver for suggestions on improving this
manuscript. I am also indebted to Prof. R. Sekar who convinced me to pursue a research
career.

My colleagues made research and fun inseparable. Many thanks to Adam Barth, Stephen
McCamant, Pongsin Poosankam, Chia Yuan Cho, Steve Hanna, Joel Weinberger, Noah M.
Johnson, Kevin Zhijie Chen, Adrienne Felt, Matt Finifter, Devdatta Akhawe, Adrian Mettler
and Juan Caballero for discussions and feedback on this work.

I have learned broadly from my mentors and collaborators David Molnar, Ben Livshits,
Patrice Godefroid, Margus Veanes and various team members during the work done at
Microsoft Research. I enjoyed working with Mike Samuel; his perspectives and effort were
instrumental in making some of our ideas practical at Google. Thanks to Vijay Ganesh and
Adam Kiezun for their help on the HAMPI string solver.

I have never had to look far for sources of constant inspiration and encouragement. My
wife, Krati, walked every step of the way sporting a disarming smile; my journey couldn’t
be easier. I am indebted to my Mom for her unconditional love; my Dad for his undying
spirit and for being an aspiring entrepreneur who I can only hope to emulate; and finally, my
brother Siddharth who is a real-life proof of what tenacity can achieve. Finally, thanks to
my friends (you know who you are) for unforgettable support at times when things seemed
low—you have all made contributions to this work.

1

Chapter 1

Introduction

The web is our primary gateway to many critical services and offers a powerful platform for
emerging applications. As the underlying execution platform for web applications grows in
importance, its security has become a major concern. Web application vulnerabilities have
become pervasive in web applications today, yet techniques for finding and defending against
them are limited. How can we build a secure web application platform for the future? In
this thesis, we answer this research question in part. We tackle the problem of developing
techniques to automatically find and prevent script injection (or scripting) vulnerabilities—a
class of web vulnerabilities permissive in web applications today.

Web languages, such as HTML, have evolved from light-weight mechanisms for static
data markup to full-blown vehicles for supporting dynamic execution of web application
logic. HTML allows inline constructs both to embed untrusted data and to invoke code in
higher-order languages such as JavaScript. Web applications often embed data controlled by
untrusted adversaries inline within the HTML code of the web application. For example, a
blogging application often embeds untrusted user comments inline within the HTML content
of the blog. HTML and other web languages lack principled mechanisms to separate trusted
code from inline data and to further isolate untrusted data (such as user-generated content)
from trusted application data. Script injection vulnerabilities arise when untrusted data
controlled by an adversary is interpreted by the web browser as trusted application (script)
code. This causes an attacker to gain higher privileges than intended by the web application,
typically granting untrusted data the same authority as the web application’s code. Well-
known example categories of such attacks are cross-site scripting (or XSS) [94] and cross-
channel scripting (or XCS) [18] attacks.

Scripting vulnerabilities are highly pervasive and have been recognized as a prominent
category of computer security vulnerabilities. Software errors that result in script injection
attacks are presently rated as the fourth most serious of software errors in the CWE’s Top
25 list for the year 2011 [31]. OWASP’s Top 10 vulnerabilities ranks scripting attacks as
the second most dangerous of web vulnerabilities in 2010 [89]. Web Application Security
Consortium’s XSS vulnerability report shows that over 30% of the web sites analyzed in 2007
were vulnerable to XSS attacks [123]. In addition, there exist publicly available repositories

CHAPTER 1. INTRODUCTION 2

of real-world XSS vulnerabilities, which have 45517 reported XSS vulnerabilities (as of June
10, 2012) with new ones being added constantly [130].

Most prior research on finding scripting vulnerabilities has focused on server-side com-
ponents [8, 132, 16, 62, 85, 75, 107, 121, 72]. In this thesis, we focus on analysis of scripting
vulnerabilities in client-side code written in JavaScript, which has received little attention
prior to our research. In contrast to several concurrent works have investigated static analy-
sis approaches to analyzing JavaScript, our work employs dynamic analysis techniques. Our
aim is to develop techniques which have no false positives and which produce witness exploit
inputs when they uncover a vulnerability.

Several mechanisms have been discussed, both in practice and in research, on preventing
scripting vulnerabilities. In this thesis, we explore two directions towards preventing script
injection vulnerabilities in web applications. First, we investigate the most predominant
prevention technique that developers employ in practice and explain the challenges in getting
it right. We then propose techniques to automate this defense, thereby shifting the burden
of applying correct prevention measures from the developers to the underlying compilation
tools. Second, we investigate alternative architecture for web applications that preserves a
strict separation between untrusted data and application code during the parsing operations
of the browser. This architecture obviates the need for today’s predominant prevention
techniques which are notoriously error-prone.

1.1 Contributions

This thesis makes the following contributions:

Automatic Techniques for Finding Scripting Vulnerabilities. We propose two white-
box analysis techniques for finding scripting vulnerabilities and build the first systems to
apply these techniques to JavaScript applications. Our techniques are based on dynamic
analysis and find vulnerabilities in several real-world applications without raising false posi-
tives. The first of these techniques is called taint-enhanced black-box fuzzing (Chapter 3).
It improves over prior black-box dynamic fuzzing approaches by combining it with a previous
white-box analysis called dynamic taint analysis [86]. Our second technique improves over
white-box-based dynamic testing methods, specifically dynamic symbolic execution [40], by
introducing a more comprehensive symbolic reasoning of strings (Chapter 4).

Analysis of Existing Defenses. In this thesis, we identify implicit assumptions underlying
today’s deployed prevention techniques (Chapter 5). Specifically, we explain the assump-
tions and subtleties underlying sanitization, the predominant defense technique deployed
in practice. Our empirical analysis of large-scale applications uncovers two new classes of
errors in sanitization practices when implemented manually by developers. Furthermore,
we outline several incompleteness in mechanisms implemented by emerging web application
frameworks that try to enforce sanitization defenses automatically.

CHAPTER 1. INTRODUCTION 3

Techniques for Preventing Scripting Vulnerabilities. We propose a type system and
inference engine to address the problem of automatic sanitization (or auto-sanitization),
which eliminates the error-prone practice of manually applying sanitization in web applica-
tions (Chapter 6). Together, with external techniques to identify all untrusted variables [97,
132] and to implement correct sanitizers [51], this work provides a basis to achieve correct
sanitization-based defense in emerging web applications automatically.

We propose a second defense mechanism which eliminates the need for sanitization-based
defense (Chapter 7). In this work, we also develop a sanitization-free architecture for web
applications, relying on a collaboration between the server and the client web browser. We
introduce a fundamental integrity property called document structure integrity and sketch
mechanisms to enforce it during the end-to-end execution of the application. Our work
demonstrates an initial proof-of-concept for implementing these in existing applications with
minimal impact to backwards compatibility.

1.2 Statement of Joint Work

The development of techniques and systems presented in Chapter 3 and Chapter 4 was
led by Prateek Saxena. In addition to Prateek Saxena, contributors to the work presented
in Chapter 3 include Steve Hanna, Pongsin Poosankam and Dawn Song. Contributors in
addition to Prateek Saxena for the work presented in Chapter 4 include Devdatta Akhawe,
Steve Hanna, Feng Mao, Stephen McCamant and Dawn Song.

Analysis of sanitization use large-scale applications presented in Chapter 5 was led by
Prateek Saxena. Contributors in addition to Prateek Saxena to this work include David
Molnar and Ben Livshits. The rest of the work presented in Chapter 5 was joint work
between Prateek Saxena, Joel Weinberger, Devdatta Akhawe, Matthew Finifter, Richard
Shin and Dawn Song.

The development of auto-sanitization technique presented in Chapter 6 was joint work
between Prateek Saxena, Mike Samuel and Dawn Song. Contributors to the sanitization-free
defense technique proposed in Chapter 7 in addition to Prateek Saxena include Yacin Nadji
and Dawn Song.

4

Chapter 2

Background & Overview

Web applications are distributed applications consisting of components that execute either
on a web server or on a user’s client. The code which executes on the server, which we refer to
as server-side code, is usually written in languages such as Java, C/C++, PHP, ASP.NET.
It is responsible for processing the HTTP inputs and operates on data stored in the server-
side database or file-system. In response to a HTTP request, the server-side code sends an
HTTP response which consists of additional client-side code. Client-side code consists of
languages parsed and executed by the browser such as HTML, CSS and JavaScript. Client-
and server-side components communicate with each other over the network, typically over
custom protocols layered on HTTP.

In this thesis, we focus on building techniques to find and prevent script injection vulner-
abilities, one of the most prominent vulnerabilities affecting web applications today. These
vulnerabilities affect both client- and server-side components of web applications. We provide
some examples of these vulnerabilities and define preliminary terminology used throughout
this thesis in Section 2.1.

2.1 Script Injection Vulnerabilities: Definition &

Examples

Scripting vulnerabilities arise when content controlled by an adversary (referred to as un-
trusted data) flows into critical operations of the program (referred to as critical sinks) with-
out sufficient security checks. When untrusted data is parsed or evaluated as trusted code by
the web browser, a scripting attack results. This causes an attacker to gain higher privileges
than intended by the web application, typically granting untrusted data the same privileges
as the web application’s code. Well-known example categories of such code-injection attacks
include cross-site scripting [94] and cross-channel scripting [18] attacks.

The definitions of critical sinks and untrusted data inputs are application-specific. The
intended security policy for certain applications permit data taken from users or third-party
web sites to be evaluated as script code. On the other hand, many other applications do not

CHAPTER 2. BACKGROUND & OVERVIEW 5

1: <body>

2: <div id=’WelcomeMess’> Welcome! </div>

3: <div id=’$GET[‘FriendID-Status’]’ name=’status’> </div>

13: </body>

Figure 2.1: A snippet of HTML pseudo-code generated by a social networking application
server vulnerable to scripting attack. Untrusted input data, identified by the $GET[‘...’]

variables, to the server is echoed inline in the HTML response and without any modification
or sanitization.

intend untrusted data inputs (such as user-generated content) to be executed by the browser
as code. Our techniques assume that such a security specification is externally provided.

Server-side Script Injection Vulnerabilities

Script injection attacks in server-side applications have been investigated in depth by prior
work. We provide an example of a typical scripting attack for exposition.

In this example, all the HTTP data inputs to the web application server are treated
as untrusted data. In this application, the security policy forbids untrusted data to be
executed as scripts or HTML markup when processed by the web browser. A script injection
vulnerability is one that allows injection of untrusted data into a victim web page which is
subsequently interpreted in a malicious way by the browser on behalf of the victim web site.

An Example. We show a hypothetical example of HTML code that a buggy web ap-
plication emits in Figure 2.1. Places where untrusted user data is inlined are denoted by
elements of $GET[‘...’] array (signifying data directly copied from GET/POST request
parameters). In this example, the server expects the value of $GET[‘MainUser’] to contain
the name of the current user logged into the site, and $GET[‘FriendID-Status’] to con-
tain a string with the name of another user and his status message (“online” or “offline”)
separated by a delimiter (“=”). If the untrusted input data is a malicious string, such as ’

onmouseover=javascript:bad(), a script injection attack occurs. In this attack, the mali-
cious value of $GET[‘FriendID-Status’] prematurely closes the id attribute of the <div>

tag on line 3 and injects unintended HTML attributes and/or tags. This particular attack
string closes the string delimited by the single quote character, which allows the attacker
to inject a JavaScript attribute called onmouseover. The value of the injected JavaScript
attribute executes as arbitrary JavaScript code which we depict as a function call bad().
This exploit string is one of many possible vectors that is publicly known—over 200 such
vectors are available online [94]. This attack example belongs to a sub-class of script injection
attacks commonly referred to as a reflected cross-site scripting attack.

CHAPTER 2. BACKGROUND & OVERVIEW 6

Client-side Script Injection Vulnerabilities

Much prior vulnerability research has focused primarily on the server-side components of
web applications. Scripting vulnerabilities can arise in client-side components, such as those
written in JavaScript, as well [68]. We present examples of client-side script injection vulner-
abilities, a subclass of scripting vulnerabilities which result from bugs in the client-side code.
In a client-side script injection vulnerability, critical sinks are operations in the client-side
code where data is used with special privilege, such as in a code evaluation construct.

Client-side script injection vulnerabilities are different from server-side scripting vulner-
abilities in a few ways. For example, one type of client-side script injection vulnerability
involves data that enters the application through the browser’s cross-window communica-
tion abstractions and is processed completely by JavaScript code, without ever being sent
back to the web server. Another type of client-side script injection vulnerability is one where
a web application server sanitizes untrusted data sufficiently before embedding it in its ini-
tial HTML response, but does not sanitize the data sufficiently for its use in the JavaScript
component.

Client-side script injection vulnerabilities are becoming increasingly common due to the
growing complexity of JavaScript applications. Increasing demand for interactive perfor-
mance of rich web 2.0 applications has led to rapid deployment of application logic as client-
side scripts. A significant fraction of the data processing in AJAX applications (such as
Gmail, Google Docs, and Facebook) is done by JavaScript components. JavaScript has sev-
eral dynamic features for code evaluation and is highly permissive in allowing code and data
to be inter-mixed. As a result, attacks resulting from client-side script injection vulnerabili-
ties often result in compromise of the web application’s integrity.

In the security policy of many web applications, any data which is controlled by an
external (or third-party) web origin is treated as untrusted data. Additionally, user data
(such as content of GUI form fields or textarea elements) is treated as untrusted. Untrusted
data could enter the client-side code of a web application in three ways. First, data from
an untrusted web attacker could be reflected in the honest web server’s HTML response
and subsequently read for processing by the client side code. Second, untrusted data from
other web sites could be injected via the cross-window communication interfaces provided
by the web browser. These interfaces include postMessage, URL fragment identifiers, and
window/frame cross-domain properties. Finally, user data fed in through form fields and
text areas is also marked as untrusted.

The first two untrusted sources are concerned with the threat model where the attacker is
a remote entity that has knowledge of a client-side script injection vulnerability in an honest
(but buggy) web application. The attacker’s goal is to remotely exploit a client-side script
injection vulnerability to execute arbitrary code. The attack typically only involves enticing
the user into clicking a link of the attacker’s choice (such as in a reflected XSS attack).

We also consider the “user-as-an-attacker” threat model where the user data is treated
as untrusted. In general, user data should not be interpreted as web application code. For
instance, if user can inject scripts into the application, such a bug can be used in conjunction

CHAPTER 2. BACKGROUND & OVERVIEW 7

1: var chatURL = "http://www.example.com/";

2: chatURL += "chat_child.html";

3: var popup = window.open(chatURL);

4: ...

5: function sendChatData (msg) {

6: var StrData = "{\"username\": \"joe\", \"message\": \"" + msg + "\"}";

7: popup.postMessage(StrData, chatURL);

}

Figure 2.2: An example of a chat application’s JavaScript code for the main window, which
fetches messages from the backend server at http://example.com/

with other vulnerabilities (such as login-CSRF vulnerabilities) in which the victim user is
logged-in as the attacker while the application behavior is under the attacker’s control [12].
In our view, these vulnerabilities can be dangerous as they allow sensitive data exfiltration,
even though the severity of the resulting exploits varies significantly from application to
application.

Running Example. For exposition, we introduce a running example of a hypothetical
AJAX chat application here which we will revisit in Chapter 3. The example application
consists of two windows. The main window, shown in Figure 2.2, asynchronously fetches chat
messages from the backend server. Another window receives these messages from the main
window and displays them, the code for which is shown in Figure 2.3. The communication
between the two windows is layered on postMessage1, which is a string-based message
passing mechanism included in HTML 5. The application code in the display window has
two sources of untrusted data—the data received via postMessage could be sent by any
browser window, and the event.origin property, which is the origin (port, protocol and
domain) of the sender.

We discuss some of the attacks possible from exploiting the errors in this example ap-
plication code next. The script injection attack is discussed first and then we outline three
other related attacks which are less severe but problematic because they cause escalation of
privileges afforded by the remote attacker.

• Script injection. Script injection is possible because JavaScript can dynamically evalu-
ate both HTML and script code using various DOM methods (such as document.write)
as well as JavaScript native constructs (such as eval). This class of attacks is com-
monly referred to as DOM-based XSS [68]. An example of this attack is shown in Figure
2.3 on line 19. In the example, the display child window uses eval to serialize the in-
put string from a JSON format, without validating for its expected structure. Such
attacks are prevalent today because popular data exchange interfaces, such as JSON,
were specifically designed for use with the eval constructs. In Section 3.4, we outline

1In the postMessage interface design, the browser is responsible for attributing each message with the
domain, port, and protocol of the sender principal and making it available as the “origin” string property of
the message event [13, 119]

CHAPTER 2. BACKGROUND & OVERVIEW 8

1:function ParseOriginURL (url) {

2: var re=/(.*?):\/\/(.*?)\.com/;

3: var matches = re.exec(url);

4: return matches;

5:}

6:

7:function ValidateOriginURL (matches)

8:{

9: if(!matches) return false;

10: if(!/https?/.test(matches[1]))

11: return false;

12: var checkDomRegExp = /example/;

13: if(!checkDomRegExp.test (matches[2])) {

14: return false; }

15: return true; // All Checks Ok

16:}

17:// Parse JSON into an array object

18:function ParseData (DataStr) {

19: eval (DataStr);

20:}

21:function receiveMessage(event) {

22: var O = ParseOriginURL(event.origin);

23: if (ValidateOriginURL (O)) {

24: var DataStr = ‘var new_msg =(’ +

25: event.data + ‘);’;

26: ParseData(DataStr);

27: display_message(new_msg);

29: var backserv = new XMLHttpRequest(); ...;

30: backserv.open("GET","http://example.com/srv.php?

call=confirmrcv&msg="+new_msg["message"]);

31: backserv.send();} ... } ...

32: window.addEventListener("message",

receiveMessage,...);

Figure 2.3: An example vulnerable chat application’s JavaScript code for a child message
display window, which takes chat messages from the main window via postMessage. The
vulnerable child message window code processes the received message in four steps, as shown
in the receiveMessage function. First, it parses the principal domain of the message sender.
Next, it tries to check if the origin’s port and domain are “http” or “https” and “exam-
ple.com” respectively. If the checks succeed, the popup parses the JSON [58] string data
into an array object and finally, invokes a function for displaying received messages. In lines
29-31, the child window sends confirmation of the message reception to a backend server
script.

CHAPTER 2. BACKGROUND & OVERVIEW 9

additional phishing attacks in iGoogle gadgets layered on such XSS vulnerabilities, to
illustrate that a wide range of nefarious goals can be achieved once the application
integrity is compromised.

• Origin Mis-attribution. Certain cross-domain communication primitives, such as via
postMessage, are designed to facilitate sender authentication. Applications using
postMessage are responsible for validating the authenticity of the domain sending
the message. The example in Figure 2.3 illustrates such an attack on line 13. The
vulnerability arises because the application checks the domain field of the origin param-
eter insufficiently, though the protocol sub-field is correctly validated. The failed check
allows any domain name containing “example”, including an attacker’s domain hosted
at “evilexample.com”, to send messages. As a result, the vulnerable code naively trusts
the received data even though the data is controlled by an untrusted principal. In the
running example, for instance, an untrusted attacker can send chat messages to victim
users on behalf of benign users.

• HTTP Parameter Polution. Many AJAX applications use untrusted data to con-
struct URL parameters dynamically, which are then used to make HTTP requests
(via XMLHttpRequest) to a backend server. Several of these URL parameters play
the role of application-specific commands in these HTTP requests. For instance, the
chat application in the example sends a confirmation command to a backend script
on lines 29-31. The backend server script may take other application commands (such
as adding friends, creating a chat room, and deleting history) similarly from HTTP
URL parameters. If the HTTP request URL is dynamically constructed by the ap-
plication in JavaScript code (as done on line 30) using untrusted data without vali-
dation, the attacker could inject new application commands by inserting extra URL
parameters. These attacks are called HTTP parameter pollution attacks [7]. Since
the victim user is already authenticated, parameter pollution allows the attacker to
perform unintended actions on behalf of the user. For instance, the attacker could
send hi&call=addfriend&name=evil as the message which could result in adding the
attacker to the buddy list of the victim user.

• Cookie-sink vulnerabilities. Web applications often use cookies to store session data,
user’s history and personal preference settings. These cookies may be updated and
used in the client-side code. If an attacker can control the value written to a cookie,
it may fix the values of the session identifiers (which may result in a session fixation
attack) or corrupt the user’s preferences and history data.

CHAPTER 2. BACKGROUND & OVERVIEW 10

2.2 Techniques for Finding Script Injection

Vulnerabilities Automatically

If we can develop techniques to automatically find script injection vulnerabilities in web
applications, it is possible to eliminate many exploitable vulnerabilities before applications
are used in deployment. Analysis techniques for finding scripting vulnerabilities, especially
in server-side code, have been widely researched [132, 72, 71, 18, 127, 62, 55, 87, 75, 8].
In this thesis, we focus on techniques for finding these vulnerabilities in JavaScript code,
which have received much lesser attention in research prior to our work. Prior techniques
for finding scripting vulnerabilities in web applications largely fall into 3 categories: manual
analysis, static analysis and dynamic analysis. We discuss these ideas below, outline the new
challenges posed by JavaScript and explain how our techniques are different at a high-level.
Our techniques aim to uncover vulnerabilities without raising false positives by constructing
concrete exploit inputs automatically for vulnerabilities found. To achieve this, our tech-
niques explore the program behavior systematically and reason about transformation (such
as validation or sanitization operations) that the application may perform on the untrusted
data.

Differences from Existing Techniques. Fuzzing or black-box testing is a popular light-
weight mechanism for testing applications. However, black-box fuzzing does not scale well
with a large number of inputs and is often inefficient in exploration of the application’s path
space. A more directed approach used in the past in the context of server-side code analysis is
based on dynamic taint-tracking [132]. Dynamic taint analysis is useful for identifying a flow
of data from an untrusted source to a critical operation. However, dynamic taint-tracking
alone alone can not determine if the application sufficiently validates untrusted data before
using it. Consider a canonical example of an application logic that transforms the dangerous
text <script> to an empty string, if it appears in the input. Dynamic taint will only identify
the characters in the output of this operation that were not replaced by the constant empty
string, and only so if the dynamic values on the given execution contain the text string
<script>. Dynamic taint tracking does not capture the full behavior of the sanitization logic
under different inputs. To overcome this limitation in practice, dynamic taint analysis tools
such as PHPTaint [117] use the strategy of pre-identifying certain operations as validation
or sanitization constructs. However, when parsing operations and validation checks are
syntactically indistinguishable from each other in application code, such pre-specification
is not possible and the alternative approximations are difficult. If an analysis tool treats
all string operations on the input as parsing constructs, it will fail to identify validation
checks and will report false positives even for legitimate uses (as shown by our experiments
in Section 4.6). On the other hand, if the analysis treats any use of untrusted data which
has been passed through a parsing/validation construct as safe, it is likely to miss many
bugs. Static analysis is another approach [47, 26, 9, 48, 74]; however static analysis tools do
not directly provide concrete exploit instances and require additional developer analysis to
prune away false positives.

CHAPTER 2. BACKGROUND & OVERVIEW 11

We aim to bridge the shortcomings of these techniques. We aim to develop techniques
that can explore the program’s functionality systematically and generate concrete witness
inputs that demonstrate an exploit. In this regard, symbolic execution techniques have
been used for discovering and diagnosing vulnerabilities in server-side logic [66, 17, 59, 121].
However, web applications pervasively use complicated operations on string and arrays data
types, both of which raise difficulties for decision procedures involved in symbolic execution
techniques. The power and expressiveness of string decision procedures prior to our work
was limited. Practical implementations of string decision procedures prior to our work did
not deal with the generality of JavaScript string constraints involving common operations
(such as String.replace, regular expression match, concatenation and equality) expressed
together over multi-variable, variable-length inputs [66, 17, 59, 50]. Other symbolic anal-
yses have been limited to a subset of input-transformation operations in PHP [8]. These
limitations of prior symbolic execution tools motivate the need for our solutions.

Challenges in JavaScript Code Analysis. The first challenge of holistic application
analysis is in dealing with the complexity of JavaScript. Many JavaScript programs use
code evaluation constructs to dynamically generate code as well as to de-serialize strings
into complex data structures (such as JSON arrays/objects). In addition, the language sup-
ports myriad high-level operations on complex data types. This makes the task of practical
analysis, especially based on static analysis methods, difficult.

In JavaScript application code, we observe that parsing operations are syntactically in-
distinguishable from validation checks. This makes it infeasible for automated syntactic
analyses to reason about the sufficiency of validation checks in isolation from the rest of the
logic. Due to the convenience of their use in the language, developers tend to treat strings
as a universal type for exchanging both code and data values. Consequently, complex string
operations such as regular expression match and replace are pervasively used both for parsing
input and for performing custom validation checks.

Sub-challenges & Our Approach. The problem of finding vulnerabilities in JavaScript-
heavy applications has two orthogonal sub-challenges— (a) automatically exploring the ex-
ecution space of client-side JavaScript code, and, (b) and finding an input that exposes a
vulnerability in some explored program path. We decouple our analysis into two orthogonal
sub-analyses to address these two sub-challenges:

• Single-path Analysis. First, we develop a single-path analysis technique which focuses
on finding an exploit input that traverses a given path in the program. Specifically,
the input to a single-path analysis is an initial benign test case that executes some
path in the program. The analysis aims to find an exploit instance by systematically
searching the equivalence class of inputs that force the program execution down the
same path as the given benign input. We present this technique and our Flax tool
that implements it in Chapter 3.

• Multiple Path Analysis. Second, we develop a system called Kudzu that automatically
explores the execution space of client-side JavaScript code. This technique employed in

CHAPTER 2. BACKGROUND & OVERVIEW 12

Kudzu takes as input an initial test case and synthesizes a larger harness of test cases
that explore the program execution space in more depth. To explore the application’s
behavior, our techniques utilizes dynamic symbolic execution on JavaScript code with
deeper modeling of string operations. In addition, it combines symbolic execution with
automatic GUI exploration to explore the space of input events to the application. We
present details of our technique and Kudzu in Chapter 4.

2.3 Techniques for Preventing Script Injection

Vulnerabilities

Can we build web applications that are free from scripting vulnerabilities? Towards this
goal, a majority of prior work on preventing scripting vulnerabilities has focused on fortify-
ing the predominant defense deployed today called sanitization. Sanitization is the process
of applying encoding or filtering primitives, called sanitization primitives or sanitizers, to
render dangerous constructs in untrusted data inert [8, 129, 110, 125]. There are two well-
established problems known about the practice of manually applying sanitizers which make
it is notoriously prone to manual errors [8, 75, 62]. First, developers often implement saniti-
zation primitives incorrectly [51, 8]. Second, developers often fail to apply any sanitization to
untrusted content before embedding it inline in code that is parsed by the browser. We term
this second problem as that of missing sanitization on application code paths. A significant
body of prior research has focused on developing analysis for detecting program paths with
missing sanitization [75, 62, 72, 132, 16, 85, 75, 121].

In this thesis, we identify new problems with sanitization based defenses. Specifically,
we explain the subtleties of getting sanitization right using an abstract model of the web
browser in Chapter 5. Our model is more precise than those used in previous works and
it explains the issues with sanitization beyond those of just identifying program paths with
missing sanitization. We also empirically analyze large-scale applications and emerging web
application frameworks. We report on how often these subtle errors arise in our studied
applications and application frameworks. In chapter 6, we propose a type based approach
to automatically place sanitizers in application code, which is a principled step towards
preventing the classes of errors we describing from arising. Our technique does not require
any annotations to existing code and is designed to be bolted onto existing web frameworks
such as Google Closure [44].

Prior and concurrent work has also investigated techniques to isolate trusted code from
untrusted data in general, which relate to scripting defenses. These can be divided into three
broad categories: server-side techniques [72, 110, 16], purely browser-based techniques [15,
79, 56] and client-server collaborative defenses [61, 49, 107]. We discuss the conceptual ben-
efits and limitations of browser-only and server-only techniques in Section 7.7 of Chapter 7.
We propose a conceptual framework for achieving a fundamental integrity property (called
document structure integrity) in web applications via browser-server collaboration. This

CHAPTER 2. BACKGROUND & OVERVIEW 13

techniques sidesteps the limitations of client- and server-only defenses. We combine and
extend ideas from prior work on isolating inline untrusted content and confining it with
security policies [61, 107, 105, 73]. We also build a proof-of-concept implementation that
demonstrates the feasibility of such defense in practice.

14

Chapter 3

Finding Vulnerabilities using
Taint-Enhanced Blackbox Fuzzing

In this chapter, we propose a single-path analysis technique which aims to generate an exploit
input that traverses a given path in the program. Specifically, the input to a single-path
analysis is an initial benign input that executes some path in the program. The analysis
aims to find an exploit instance by systematically searching the equivalence class of inputs
that forces program execution down the same path as the given benign input. We present
this technique and our Flax tool that implements it in this chapter.

We propose a dynamic analysis approach which we call taint-enhanced blackbox fuzzing
for this problem. Our technique is a hybrid approach that combines the features of dynamic
taint analysis [86, 132, 98, 118, 117] with those of automated random fuzzing [82]. It remedies
the limitations of purely dynamic taint analysis, by using random fuzz testing to generate test
cases that concretely demonstrate the presence of a client-side script injection vulnerability.
This simple mechanism eliminates false alarms that would result from a purely taint-based
tool.

The number of test cases generated by vanilla blackbox fuzzing increases combinatorially
with the size of the input. In our hybrid approach, we use character-level precise dynamic
taint information to prune the input search space significantly. Dynamic taint information
extracts knowledge of the type of critical sink operation involved in the vulnerability, thereby
making the subsequent blackbox fuzzing specialized for each sink type (or in other words,
sink-aware). Taint-enhanced blackbox fuzzing scales because the results of dynamic taint
analysis are used to create independent abstractions of the original application which are
small and take fewer inputs, and can be tested efficiently with sink-aware fuzzing. From our
experiments (Section 3.4), we see that the values to be fuzzed are on an average 55% smaller
than the size of the original input. This reduction is achieved using character-level precise
dynamic taint tracking.

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 15

Figure 3.1: Approach Overview

3.1 Approach and Architectural Overview

Figure 3.1 gives a high-level view of our approach – the boxed, shaded part represents the
primary technical contribution of this chapter. The input to our analysis is an initial benign
input and the target application itself. The technique explores the equivalence class of inputs
that execute the same program path as the initial benign input and finds a flow of untrusted
data into a critical sink without sufficient validation.

Approach. In the first step, we execute the application with the initial input I and perform
character-level dynamic taint analysis. Dynamic taint analysis identifies all uses of untrusted
data in critical sinks1. This analysis identifies two pieces of information about each poten-
tially dangerous data flow: the type of critical sink, and, the fractional part of the input
that influences the data used in the critical sink. Specifically, we extract the range of input
characters IS on which data arguments of a sink operation S are directly dependent. All
statements that operate on data that is directly dependent on IS, including path conditions
involving conditional branches, are extracted into an executable slice of the original appli-
cation which we term as an acceptor slice (denoted as AS). AS is termed so because it is a
stand-alone program that accepts inputs in the equivalence class of I, in the sense that they
execute the same program path as I up to the sink point S. As the second step, we fuzz
each AS to find an input that exploits a bug. Our fuzzing is sink-aware because it uses the
details of the sink node exposed by the taint analysis step. Fuzz testing on AS semantically
simulates fuzzing on the original application program. Using an acceptor slice to link the
two high-level steps has two advantages:

• Program size reduction. AS can be executed as a program on its own, but is significantly
smaller in size than the original application. From our experiments in Section 4.6,
AS is typically smaller than the executed instruction sequence by a factor of 1000.
Thus, fuzzing on a concise acceptor slice instead of the original complex application

1The definition of sinks in given in section 2.1

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 16

is a practical improvement. It avoids application restart, decouples the two high-level
steps, and allows testing of multiple sinks to proceed in parallel.

• Fuzzing search space reduction. Sink-aware fuzzing focuses only on IS for each AS,
rather than the entire input. Additionally, our sink-aware fuzzer has custom rules for
each type of critical sink because each sink results in different kinds of attacks and
requires a different attack vector. As an example, it distinguishes eval sinks (which
allow injection of JavaScript code) from DOM sinks (which allow HTML injection).
Our sink-aware fuzzing employs input mutation strategies that are based on grammars
such as the HTML syntax, JavaScript syntax, or URL syntax grammars.

3.2 Technical Challenges and Design Points

One of our contributions is to design a framework that simplifies JavaScript analysis and
explicitly models reflected flows and path constraints. We explain each of these design points
in detail below.

Modeling Path Constraints. The example defined in Figure 2.3 shows how validation
checks manifest as conditional checks, affecting the choice of execution path in the program.
Saner, an example of previous work that precisely analyzes server-side code, has consid-
ered only input-transformation functions as sanitization operations in its dynamic analysis,
thereby ignoring branch conditions [8]. Our techniques improve on Saner’s by explicitly mod-
elling path constraints, thereby enabling Flax to capture the validation checks as branch
conditions, as shown in the running example in the AS.

Simplifying JavaScript. There are two key problems in designing analyses for JavaScript
code.

• Rich data types and complex operations. JavaScript supports complex data types such
as string and array, with a variety of native operations on them. The ECMA-262
specification defines over 50 operations on string and array data types alone [34].
JavaScript analysis becomes complex because there are several syntactic constructs
that can perform the same semantic operations. As a simple indicative example, there
are several ways to split a string on a given separator (such as by using String.split,
using String.match, and using String.indexOf with String.substring).

In our approach, we canonicalize JavaScript operations and data references into a
simplified intermediate form amenable for analysis, which we call JASIL (JAvascript
Simplified Instruction Language). JASIL has a simpler type system and a smaller set
of instructions which are sufficient to faithfully express the semantics of higher-level
operations relevant to the applications we study. As a result, JASIL serves as a robust
platform for simplified implementation of dynamic taint analysis and other analyses.

• Aliasing. There are numerous ways in which two different syntactic expressions can
refer to the same object at runtime. This arises because of the dynamic features

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 17

of JavaScript, such as reflection, prototype-based inheritance, complex scoping rules,
function overloading, as well as due to numerous exposed interfaces to access DOM
elements. Reasoning about such a diverse set of syntactic variations is difficult. Previ-
ous static analysis techniques applied to this problem area required complex points-to
analyses [47, 26]. In our dynamic analysis, we don’t try to solve this static alias analysis
problem; instead we record the concrete operand accessed during the execution of the
program under the given benign input.

Avoiding alias analysis is an intentional choice in designing Flax. Flax dynamically
translates JavaScript operations to JASIL, and by design each operand (an object,
variable or data element) in JASIL is identified by its allocated storage address. With
appropriate instrumentation of the JavaScript interpreter, we identify element accesses
regardless of the syntactic complexity of the access pattern used in the references. For
instance, details of whether a value lookup is executed by traversing the scope chain
or the prototype chain is not recorded—only the storage memory address of the value
is captured in JASIL.

Dealing with reflected flows. In this chapter, we consider data flows of two kinds: direct
and reflected. A direct flow is one where there is a direct data dependency between a source
operation and a critical sink operation in script code. Dynamic taint analysis identifies such
flows as potentially dangerous. A reflected flow occurs when data is sent by the JavaScript
application to a backend server for processing and the returned results are used in further
computation on the client. Our dynamic taint analysis identifies untrusted data propagation
across a reflected flow using a common-substring based content matching algorithm2 [102].
During a reflected flow, data could be transformed on the server. The exact data transfor-
mation/sanitization on the server is hidden from the client-side analysis. To address this,
we compositionally test the client-side code in two steps. First, we test the client-side code
independently of the server-side code by generating candidate inputs that make simple as-
sumptions about the transformations occurring in reflected flows. Subsequently, it verifies
the assumption by running the candidate attack concretely, and reports a vulnerability if
the concrete test succeeds.

3.3 Flax: Design and Implementation

We describe our algorithm for detecting vulnerabilities and present details about the imple-
mentation of our prototype tool Flax.

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 18

Web Server Browser
JASIL
Trace

Acceptor
Sink-Aware

Random Testing
Candidate
Inputs

Verification

Tainting

Fuzzing

HTTP Request/Response

XMLHttp

Request/Response

1

2

3

4

5

Figure 3.2: System Architecture for Flax

Algorithm

Figure 3.2 shows the architectural overview of our taint-enhanced blackbox fuzzing algorithm.
The pseudocode of the algorithm is described in Figure 3.3. At a high level, it consists of 5
steps:

1. Dynamic trace generation and conversion to JASIL. Run the application concretely in
our instrumented web browser to record an execution trace in JASIL form.

2. Dynamic taint analysis. Perform dynamic taint analysis on the JASIL trace to identify
uses of external data in critical sinks. For each such potentially dangerous data flow
into a sink S, our analysis computes the part of the untrusted input (IS) which flows
into the critical sink.

3. Generate an acceptor slice. For each sink S and the given associated information about
S from the previous step, the analysis extracts an executable slice, AS, as defined in
Section 3.1.

4. Sink-aware random testing. Apply random fuzzing to check if sufficient validation has
been performed along the path to a given sink operation. For a given AS, our fuzzer
generates random inputs according to sink-specific rules and custom attack vectors.

5. Verification of candidate inputs. Randomized testing of AS generates candidate vul-
nerability inputs assuming a model of the transformation operations on the server that

2It is possible to combine client-side taint tracking with taint tracking on the server; however, in the
present work we take a blackbox view of the web server.

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 19

Input: T : Trace
Output: V : AttackString List
type Flow : {

var Sink, Source : Int List,
var TaintedInsList : Int List,
var InputOffset : (Int,Int) List
};

var FlowList : Flow List;
FlowList = CalculateF lows (T);
var Candidates = InputString List;
var V = InputString List;
foreach F in FlowList do
AS = GenAutomaton(F , T);
Candidates = Fuzz (AS
,max length,max iters);
foreach C in Candidates do
CT = ExecuteOnInput(C)
var Result = V erifyAttack(T , CT)
if Result then

V.append([F , CT .input]);
end

end

end
return V;

Figure 3.3: Algorithm for Flax

x : τ ::= v : τ (Assignment, Type Conversion)
x : τ ::= ∗ (v : Ref(τ)) (Dereference)

x : Int ::= v1 : Int op v1 : Int (Arithmetic)
x : Bool ::= v1 : τ op v1 : τ (Relational)
x : Bool ::= v1 : Bool op v1 : Bool (Logical)

x : PC ::= if (testvar : Bool)
then (c : Int) else (c : Int) (Control Flow)

x : String ::= substring(s : String,
startpos : Int, len : Int) (String Ops)

x : String ::= concat(s1 : String, s2 : String) (String Ops)
x : String ::= fromArray(s1 : Ref(τ)) (String Ops)
x : String ::= convert(s1 : String) (String Ops)

x : Char ∗ κ ::= convert(i : Int) (Character Ops)
x : Int ::= convert(i : Char ∗ κ) (Character Ops)

x : τ ::= F (i1 : τ , . . ., in : τ) (Uninterpreted Function Call)

Figure 3.4: Simplified operations supported in JASIL intermediate representation

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 20

τ := η | β[η] | Bool | Null | Undef | PC
η := Int | β
β := Ref(τ) | String(κ) | Char(κ)
κ := UTF8 | UTF7 | . . .

Figure 3.5: Type system of JASIL intermediate representation

may occur in reflected flow. This final step verifies that the assumptions hold, by
testing the attacks concretely on the web application and checking that the attack
succeeds by using a browser-based oracle.

JASIL

To simplify further analysis, we lower the semantics of the JavaScript language to a simplified
intermediate representation which we call JASIL. JASIL is designed to have a simple type
system with a minimal number of operations on the defined data types. A brief summary
of its type system and categories of operations are outlined in Figure 4.7 and Figure 3.4
respectively. JavaScript interpreters already perform some amount of semantic lowering in
converting to internal bytecode. However, the semantics of typical JavaScript bytecode are
not substantially simpler, because most of the complexity is hidden in the implementation
of the rich native operations that the interpreter’s runtime supports.

JASIL has a substantially smaller set of operations, shown in Figure 3.4. In our design,
we have found JASIL to be sufficient to express the operational semantics of a subset of
JavaScript commonly used in real applications. Our design is implemented using WebKit’s
JavaScript interpreter, the core of the Safari web browser, and is faithful to the semantics
of the operations as implemented therein. In our work, we lower all the native string opera-
tions, array operations, integer operations, regular expression based operations, global object
functions, DOM functions, and the operations on native window objects. Lowering to JASIL
simplifies analyses. For instance, consider a String.replace operation in JavaScript. A
replace operation retains some parts of its input string in its output while transforming the
other parts with specified strings. An execution of the replace operation is represented in
JASIL as a series of substring operations on the inputs followed by a final concatenation
of these intermediate substrings. For extracting the start and end indices of these interme-
diate substrings, we have instrumented the implementation of the replace function in the
JavaScript interpreter after it performs the matching operation on the input3. With JASIL,
subsequent dynamic taint analysis is simplified because the tainting engine only needs to
reason about simple operations like substring extraction and concatenation rather than the
semantics of the matching algorithm in replace. An alternative to such simplification is to
model the replace operation as a transducer [8].

3The matching operation may call a regular expression engine; we record the start and end indices after
the regular expression engine runs over the given input.

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 21

Sources

document.URL
document.URLUnencoded
document.location.*
document.referrer.*
window.location.*
event.data
event.origin
textbox.value
forms.value

Critical Flow Sinks Resulting
Exploit

eval(), window.execScript(),
window.setInterval(), Script
window.setTimeout() Injection

document.write(...), document.writeln(...),
document.body.innerHtml, document.cookie
document.forms[0].action, HTML code
document.create(), document.execCommand(), Injection
document.body.*, window.attachEvent(),
document.attachEvent()

document.cookie Session fixation

XMLHttpRequest.open(,url,), HTTP Param
document.forms[*].action, Injection

Figure 3.6: (Left) Sources of untrusted data. (Right) Critical sinks and corresponding
exploits that may result if untrusted data is used without proper validation.

In addition to lowering semantics of complex operations, JASIL explicitly models pro-
cedure call/return semantics, parameter evaluation, parameter passing, and object creation
and destruction. Property look-ups on JavaScript objects and accesses to native objects such
as the DOM or window objects are converted to operations on a functional map in JASIL
(denoted by β[η] in its type system). This canonicalization of references makes further
analysis easier.

In JASIL, each object, variable or data element is identified by its allocated storage ad-
dress, which obviates the need to reason about most forms of aliasing. As one example of how
this simplification allows robust reasoning, consider the case of prototype-based inheritance
in JavaScript. In JavaScript, whenever an object O is created, the object inherits all the
properties of a prototype object corresponding to the constructor function, accessible through
the .prototype property of the function (functions are first-class types in JavaScript and
behave like normal objects). The prototype object of the constructor function could in turn
inherit from other prototype objects depending on how they are created. When a refer-
ence O.f is resolved, the field f is first looked up in the object O. If it is not found, it
is looked up in the prototype object of O and in the subsequent objects of the prototype
chain. Thus, determining which object is referenced by O statically requires a complex alias
analysis. In simplifying to JASIL, we instrumented the interpreter to record the address
identifier for each variable used after the reference resolution process (including the scope
and prototype chain traversals) is completed. Therefore, further analysis does not need any
further reasoning about prototypes or scopes.

To collect a JASIL trace of a web application for analysis we instrumented the browser’s
JavaScript interpreter to translate the bytecode executed at runtime to JASIL. This required
instrumentation of the JavaScript interpreter, bytecode compiler and runtime, resulting in

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 22

a patch of 6032 lines of C++ code to the vanilla WebKit browser. To facilitate recovering
JavaScript source form from the JASIL representation, auxiliary information mapping the
dynamic allocation addresses to native object types is embedded as metadata in the JASIL
trace.

Dynamic taint analysis

Character-level precise modeling of string operation semantics. JavaScript ap-
plications are array- and string- centric; lowering of JavaScript to JASIL is a key factor
in reasoning about complex string operations in our target applications. Dynamic taint
analysis has been used with success in several security applications outside of the realm of
JavaScript applications [132, 87, 86]. For JavaScript, Vogt et al. have previously developed
taint-tracking techniques to detect confidentiality attacks resulting from cross-site scripting
vulnerabilities[118]. In contrast to their work, our techniques model the semantics of string
operations and are character-level precise.

We list the taint sources and sinks used by default in Flax in Figure 3.6. Flax models
only direct data dependencies for this step; additional control dependencies for path condi-
tions are introduced during AS construction. It performs taint-tracking offline on the JASIL
execution trace, which reduces the intrusiveness of the instrumentation by not requiring
transformation of the interpreter’s core semantics to support taint-tracking. Taint propaga-
tion rules are straight-forward—assignment and arithmetic operations taint the destination
operand if one of the input operands is tainted, while preserving character-level precision.
The JASIL string concatenation and substring operations result in a merge and slicing
operation over the ranges of tainted data in the input operands, respectively. The convert

operation, which implements character-to-integer and integer-to-character conversion, typ-
ically results from simplifying JavaScript encode/decode operations (such as decodeURI).
Taint propagation rules for convert are similar: the output is tainted if the input is tainted.
Other native functions that are not explicitly modeled are treated as uninterpreted transfer
functions, acting merely to transfer taint from input parameters to output parameters in a
conservative way. Recall that operations such as regular-expression based match and replace
are already lowered to substrings and concatenations in JASIL by tracing the JavaScript
interpreter’s execution.

Tracking data in reflected flow. During this analysis data may be sent to a backend
server via the XMLHttpRequest object. We approximate taint propagation across such
network data flows by using an exact substring match algorithm, which is a simplified form
of black-box taint inference techniques proposed in the previous literature [106, 102]. We
record all tainted data sent in a reflected flow, and perform a longest common substring
match on the data returned. Any matches that are above a threshold length are marked
as tainted, and the associated taint metadata is propagated to the reflected data. This
technique has proved sufficient for the AJAX applications in our experiments.

Implicit Sinks. Certain source operations do not have explicit sink operations. For in-

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 23

function acceptor (input) {

var path_constraints = true;

var re = /(.*?):\/\/(.*?)\.com/;

var matched = re.exec(input);

if (matched == null) {

path_constraints = path_constraints & false;

}

if (!path_constraints) return false;

var domain = matched[2];

var valid = /example/.test(domain);

path_constraints = path_constraints & valid;

if (!path_constraints) return false;

var port = matched[1];

valid = /https?/.test(port);

path_constraints = path_constraints & valid;

if (!path_constraints) return false;

return true;

}

http://evilexample.com/

exec

testtest

/(.*?):\/\/(.*?)\.com/

http evilexample

http://
evilexample.

com

/https?/ /example/

TrueTrue

Figure 3.7: (Left) Acceptor Slice showing validation and parsing operations on event.origin

field in the running example. (Right) Execution of the Acceptor Slice on a candidate attack
input, namely http://evilexample.com/

stance, in the example of Figure 2.3 the event.origin field has no explicit sink. However,
this field must be sanitized before any use of event.data. We model this case of implicit
dependence between two fields by introducing an implicit sink node for event.origin at
any use of event.data in critical sink operation. This has the effect that for any use of
event.data, the path constraint checks on event.origin are implicitly included in the
acceptor slice.

Acceptor Slice Construction

After dynamic taint analysis identifies a sink point, Flax extracts a dynamic executable slice
from the program, by walking backwards from the critical sink to the source of untrusted
data. In order to fuzz the slice, the JASIL slice is converted back to a stand-alone JavaScript
function. This results in an executable function that retains the operations on IS , and
returns true for many (not all) inputs that execute the same path as the original run. The
slicing operation captures (a) data dependencies, i.e., all operations directly processing IS
and (b) a limited form of control dependencies, i.e., all path constraints, conditions of which
are directly data dependent on IS that affect control-flow decisions. Path constraints are
conditional checks corresponding to each branch point (including indirect function calls)
which force the execution to take the same path as IS. Data values which are not directly
data dependent (marked tainted) in the original execution, are replaced with their concrete

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 24

constant values observed during the program execution.

Acceptor Slice for the Running Example. The instructions operating on the value
of event.origin in the running example that influences the implicit eval sink is shown
in Figure 3.7. It shows the AS for the event.origin field of our example, after certain
optimizations, like dead-code elimination. This program models all the validation checks
performed on that field, until its use in the implicit sink node at eval.

Sink-aware fuzzing

This step in our analysis performs randomized testing on each AS. Note that each critical
sink operation can result in a different kind of vulnerability. Therefore, it is useful to target
each sink node (S) with a set of specialized attack vectors. For instance, an unchecked
flow that writes to the innerHTML property of a DOM element can result in HTML code
injection and our fuzzer attempts to inject an HTML tag into such a sink. For eval sink, our
testing targets the injection of JavaScript code. We incorporate a large corpus of publicly
available attack vectors for XSS [94] in our fuzzing.

While testing for an attack input that causes AS to return true, our fuzzer utilizes the
aforementioned attack vectors and a grammar-aware strategy. Starting with the initial be-
nign input, the fuzzer employs a mutation-based strategy to transform, prepend and appends
language nonterminals. For each choice, the fuzzer first selects terminal characters based on
the knowledge of surrounding text (such as HTML tags, JavaScript nonterminals) and finally
resorts to random characters if the grammar-aware strategy fails to find a vulnerability.

To check if a candidate attack input succeeds we use a browser-based oracle. Each
candidate input is executed in AS and the test oracle determines if the specific attack vector
is evaluated or not. If executed, the attack is verified as being a concrete attack instance.
For instance, in our running example, the event.origin acceptor slice returns true for any
URL principal which is not a subdomain of http://example.com4. Our fuzzer tries string
mutations of the original domain http://example.com and quickly discovers that there are
other domains that circumvent the validation checks.

3.4 Evaluation

Our primary objective is to determine if taint-enhanced blackbox fuzzing is scalable enough
to be used on real-world applications to discover vulnerabilities. As a second objective, we
aim to quantitatively measure the benefits of taint-enhanced blackbox fuzzing over vanilla
taint-tracking and purely random testing. In our experiments, Flax discovers 11 previously
unknown vulnerabilities in real applications and our results show that our design of taint-
enhanced blackbox fuzzing offers significant practical gains over vanilla taint-tracking and

4Recall that the running example acceptor does not have an explicit sink, therefore it only returns true
on success and false otherwise.

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 25

Name # of Taint Sinks Verified Vuln. Size of Total Inputs Size of Acceptor
Plaxo 178 0 119 60

Academia 1 1 334 21
Facebook Chat 44 0 127 127

ParseURI 1 1 78 62
AjaxIM 20 2 28 28

AskAWord 3 1 26 26
Block Notes 1 1 474 96

Birthday Reminder 6 0 632 246
Calorie Watcher 3 0 681 20

Expenses Manager 6 0 1,137 65
MyListy 1 1 578 47
Notes LP 5 0 740 30

Progress Bar 151 0 496 264
Simple Calculator 1 1 27 27

Todo List 1 0 632 40
TVGuide 2 1 586 66

Word Monkey 1 1 26 26
Zip Code Gas 5 1 412 69

Name Trace Size Avg. size # of Tests Vulnerability
(# of insns) of AS to Find 1st Type

Inputs Vulnerability
Plaxo 557,442 36 - -

Academia 156,621 286 16 Origin Mis-attribution
Facebook Chat 6,460,591 1,151 - -

ParseURI 55,179 638 6 Code injection
AjaxIM 223,504 517 93 Code injection , Application

Command Injection

AskAWord 59,480 611 93 Cookie Sink
Block Notes 11,539 766 28 Code injection

Birthday Reminder 2,178,927 664 - -
Calorie Watcher 449,214 733 - -

Expenses Manager 522,788 1,454 - -
MyListy 17,054 1,468 4 Code injection
Notes LP 144,829 3,327 - -

Progress Bar 118,108 475 - -
Simple Calculator 72,475 4 93 Code injection

Todo List 647,849 1,181 - -
TVGuide 24,144,843 188 8,366 Code injection

Word Monkey 237,837 99 93 Code injection
Zip Code Gas 410,951 248 2 Code injection

Table 3.1: Applications for which Flax observed untrusted data flow into critical sinks. The
top 5 subject applications are websites and the rest are iGoogle gadgets. (Upper) Columns
2-5, and (Lower) Columns 6-9.

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 26

fuzzing. We also investigate the security implications of the vulnerabilities by constructing
proof-of-concept exploits and we discuss their varying severity in this section.

Test Subjects

We selected a set of 40 web applications consisting of iGoogle gadgets and other AJAX
applications for our experiments. Of these, Flax observed untrusted data flows into critical
sinks for only 18 of the cases, consisting of 13 iGoogle gadgets and 5 web applications. We
report detailed results for only these 18 applications in Table 3.1. We tested each subject
application manually to explore its functionality, giving benign inputs to seed our automated
testing. For instance, all of the iGoogle gadgets were tested by visiting the benign URL used
by the iGoogle web page to embed the gadget in its page. To explore each application’s
functionality, we manually entered data into text boxes, clicked buttons and hyperlinks,
simulating the behavior of a normal user. These manual test cases served as the initial
benign test inputs for our analysis.

Google gadgets constitute the largest fraction of our study because they are simple ap-
plications which are popular among internet users today. Most gadgets are reported to have
thousands of users with one of the vulnerable gadgets having over 1,350,000 users, as per
the data available from the iGoogle gadget directory on December 17th 2009 [57]. The other
AJAX applications consist of social networking sites, chat applications and utility libraries
which are examples of the trend towards increasing code sharing via third-party libraries.
All tests were performed using our Flax framework running on a Ubuntu 8.04 platform
with a 2.2 GHz, 32-bit Intel dual-core processor and 2 GB of RAM.

Experimental Results

Flax found several distinct taint sinks in the applications, only a small fraction of which are
deemed vulnerable by the tool. Column 2 and 3 of Table 3.1 reports the number of distinct
sinks and number of vulnerabilities found by Flax respectively. The use of character-level
precise taint tracking in Flax prunes a significant fraction of the input in several cases for
further testing. To quantitatively measure this saving we observe the average sizes of the
original input and the reduced input size in the acceptor slices (used for subsequent fuzzing),
which is reported in columns 4 and 5 of Table 3.1 respectively. We measure the reduction in
the acceptor size, which results in substantial practical efficiencies in subsequent black-box
fuzzing. We find that the acceptor slices are small enough to often enable manual analysis
for a human analyst. Columns 6 and 7 report the size of dynamic execution trace and the
average size of the acceptor slices respectively.5 The last two columns in Table 3.1 show the
number of test cases it takes to find the first vulnerability in each application and the kinds
of vulnerability found.

5In our implementation, the acceptor slices are converted back to JavaScript form for further analysis: the
size of acceptor slices increases as a result of this conversion by a factor of 4 at most in our implementation,
as compared to the numbers reported in column 7

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 27

Prevalence of client-side script injection vulnerabilities

Of the 18 applications in which Flax observed a dangerous flow, it found a total of 11
vulnerabilities which we report in the third column of Table 3.1. The vulnerabilities are
evidence of a broad range of attack possibilities, though code injection vulnerabilities were
the highest majority. Flax reported 8 code injection vulnerabilities, 1 origin mis-attribution
vulnerability, 1 cookie-sink vulnerability and 1 application command injection vulnerability.
We confirmed that all vulnerabilities reported were true positives by manually inspecting
the JavaScript code and concretely evaluating them with exploit inputs. The severity of
the vulnerabilities varied by application and source of untrusted input, which we discuss in
section 3.4.

Effectiveness

We quantitatively measure the benefits of taint-enhanced blackbox fuzzing over vanilla taint-
tracking and random fuzzing from our experimental results.

False Positives Comparison. The second column in Table 3.1 shows the number of
distinct flows of untrusted data into critical sink operations observed; only a fraction of
these are true positives. Each of these distinct flows is an instance where a conservative
taint-based tool would report a vulnerability. In contrast, the subsequent step of sink-aware
fuzzing in Flax eliminates the spurious alarms, and a vulnerability is reported (column 3
of Table 3.1) only when a witness input is found. It should be noted that Flax can have
false negatives and could have missed bugs, but completeness is not an objective for Flax.

We manually analyzed the taint sinks reported as safe by Flax and, to the best of our
ability, found them to be true negatives. For instance, we determined that most of the
sinks reported for the Plaxo case were due to code which output the length of the untrusted
input to the DOM, which executed repeatedly each time the user typed a character in the
text box. Many of the true negatives we manually analyzed employed sufficient validation
– for instance, Facebook Chat application correctly validates the origin property of every
postMessage event it received in the execution. Several other applications validate the
structure of the input before using it in a JavaScript eval statement or strip dangerous
characters before using it in HTML code evaluation sinks.

Efficiency of sink-aware fuzzing. Table 3.1 (column 8) shows the number of test cases
Flax generated before it found the vulnerability for the cases it deems unsafe. Part of the
reason for the small number of cases on average, is that our fuzzing leverages knowledge of
the sink operations. Column 4 of the Table 3.1 shows that the size of the original inputs for
most applications is in the range of 100-1000 characters. Slicing on the tainted data prunes
away a significant portion of the input space, as seen from column 5 of Table 3.1. We report
an average reduction of 55% from the original input size to the size of test input used in
acceptor slices.

Further, the average size of an acceptor slice (reported in column 7 of Table 3.1) is
smaller than the original execution trace by approximately 3 orders of magnitude. These

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 28

function acceptor(input) {

//input = ’{"action":"","val":""}’;

must_match = ’{]:],]:]}’;

re1 =/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g;

re2 =/"[^"\\\n\r]*"|true|false|null|

-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g;

re3 = /(?:^|:|,)(?:\s*\[)+/g;

rep1 = input.replace(re1, "@");

rep2 = rep1.replace(re2, "]");

rep3 = rep2.replace(re3,"");

if(rep3 == must_match) { return true; }

return false;

}

Figure 3.8: An example of a acceptor slice which uses complex string operations for input
validation, which is not directly expressible to the off-the-shelf string decision procedures
available today.

reductions in test program size for sink-aware fuzzing allow sink-aware fuzzing to work with
much smaller abstractions of the original application, thereby significantly improving the
efficiency of this step.

Qualitative comparison to other approaches. Figure 3.8 shows one of the several ex-
amples that Flax generates which can not be directly expressed to the languages supported
by off-the-shelf existing string decision procedures [66, 50], which Flax deems as safe. We
believe that even human analysis for such cases is tedious and error-prone.

Security Implication Evaluation and Examples

To gain insight into their severity we further analyzed the vulnerabilities reported by Flax
and created proof-of-concept exploits for a few of them to validate the threat. All vulner-
abilities were disclosed to the developers either through direct communication or through
CERT.

Origin Mis-attribution in Facebook Connect. Flax reported an origin mis-attribution
vulnerability for academia.edu, a popular academic collaboration and document sharing web
site used by several academic universities. Flax reported that the application was vulnerable
due to a missing validation check on the origin property of a received postMessage event.
We manually created a proof-of-concept exploit which demonstrates that any remote attacker
could inject arbitrary script code into the vulnerable web application. On further analysis, we
found that the vulnerability existed in the code for Facebook Connect library, which was used
by academia.edu as well as several other web applications. We disclosed the vulnerability to
Facebook developers on December 15th 2009 and they released a patch for the vulnerability
within 6 hours of the disclosure.

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 29

Script Injection. Flax reported 8 code injection vulnerabilities (DOM-based XSS) in
our target applications, where untrusted values were written to code evaluation constructs
in JavaScript (such as eval, innerHTML). One DOM-based XSS vulnerability was found
on each of the following: 6 distinct iGoogle gadgets, an AJAX chat application (AjaxIM),
and one URL parsing library’s demonstration page. We manually verified that all of these
were true positives and resulted in script execution in the context of the vulnerable domains,
when the untrusted source was set with a malicious value. Four of the code injection vul-
nerabilities were exploitable when remote attackers entice the user into clicking a link of an
attacker’s choice. The affected web applications were also available as iGoogle gadgets and
we discuss a gadget overwriting attack using client-side script injection vulnerabilities below.
The remaining 4 code injection vulnerabilities were self-XSS vulnerabilities as the untrusted
input source was user-input from a form field, a text box, or a text area. As explained in sec-
tion 2.1, these vulnerabilities do not directly empower a remote attacker without additional
social engineering (such as enticing users into copy-and-pasting text). All gadget developers
we were directly able to communicate with positively acknowledged the concern and agreed
to patch the vulnerabilities.
Gadget Overwriting Attacks. In a gadget overwriting attack, a remote attacker compromises
a gadget and replaces it with the content of its choice. We assume the attacker is an entity
which controls a web-site and has the ability to entice the victim user into clicking a malicious
link. We describe a gadget overwriting attack with an example of how it can be used to create
a phishing attack layered on the gadget’s client-side script injection vulnerability. In a gadget
overwriting attack, the victim clicks an untrusted link, just as in a reflected XSS attack, and
sees a page such as the one shown in Figure 3.9 in his browser. The URL bar of the page
points to the legitimate iGoogle web site, but the gadget has been compromised and displays
attacker’s contents: in this example, a phishing login box which tempts the user to give away
his credentials for Google. If the user enters his credentials, they are sent to the attacker
rather than Google or the gadget’s web site. The attack mechanics are as follows. First,
the victim visits the attacker’s link which points to the vulnerable gadget domain (typically
hosted at a subdomain of gmodules.com). The link exploits a code injection client-side script
injection vulnerability in the gadget and the attack payload is executed in the context of the
gadget’s domain. The attacker’s payload then spawns a new window which points to the full
iGoogle web page (http://www.google.com/ig) containing several gadgets including the
vulnerable gadget in separate iframes. Lastly, the attacker’s payload replaces the content
of the vulnerable gadget’s iframe in the new window with contents of its choice. This cross-
window scripting is permitted by browser’s same-origin policy because the attacker’s payload
and the gadget’s iframe principal are the same.

We point out that Google/IG is designed such that each iGoogle gadget runs as a separate
security principal hosted at a subdomain of http://gmodules.com. This mitigation prevents
an attacker who compromises a gadget from having any access to the sensitive data of the
google.com domain. In the past, Barth et al. described a related attack, called a gadget

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 30

Figure 3.9: A gadget overwriting attack layered on a client-side script injection vulnerability.
The user clicks on an untrusted link which shows the iGoogle web page with an overwritten
iGoogle gadget. The URL bar continues to point to the iGoogle web page.

hijacking attack, which allows attackers6 to steal sensitive data by navigating the gadget
frame to a malicious site [13]. Barth et al. proposed new browser frame navigation policies to
prevent these attacks. Gadget overwriting attacks resulting from client-side script injection
vulnerabilities in vulnerable gadgets can also allow attackers to achieve the same attack
objectives as those remedied by the defenses proposed by Barth et al. [13].

Cookie-sink Vulnerabilities. Flax reported a cookie corruption vulnerability in one of
AskAWord iGoogle gadgets which provide the AskAWord.com dictionary and spell checker
service. Flax reported that the cookie data could be corrupted with arbitrary data and
additional cookie attributes could be injected, which is a low severity vulnerability. However,
on further analysis, we found that the gadget used the cookie to store the user’s history of
previous searches which was echoed back on the server’s HTML response without any client-
side or server-side validation. We subsequently informed the developers about the cookie
attribute injection and the reflected XSS vulnerability through the cookie channel, and the
developers patched the vulnerability on the same day.

6A gadget attacker described by Barth et al. requires the privilege that the integrator embeds a gadget
of the attacker choice, which is different from the attacker model in a gadget overwriting attack

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 31

HTTP Parameter Pollution. One vulnerability reported by Flax for AjaxIM chat ap-
plication indicated that such bugs can result in practice. Flax reported that untrusted
data from an input text box could be used to inject application commands. AjaxIM
uses untrusted data to construct a URL that directs application-specific commands to
its backend server using XMLHttpRequest. These commands include adding/deleting chat
rooms, adding/deleting friends and changing the user’s profiles. Flax discovered a vul-
nerability where an unsanitized input from an input-box is used to construct the URL
that sends a GET request command to join a chat room. An attacker can exploit this
vulnerability by injecting new HTTP parameters (key-value pairs) to the URL. A benign
command request URL to join a chat room named ‘friends’ in AjaxIM is of the form
ajaxim.php?call=joinroom&room=friends. We confirmed that by providing a room name
as ‘friends&call=addbuddy&buddy=evil’ results in overriding the value of the call com-
mand from ‘joinroom’ to a command that adds an untrusted user (called “evil”) to the
victim’s friend list.

The severity of this vulnerability is very limited as it does not allow a remote attacker to
exploit the bug without additional social engineering. However, we informed the developers
and they acknowledged the concern agreeing to fix the vulnerability.

3.5 Related Work

Client-side script injection vulnerabilities constitute attack categories that have similar coun-
terparts in server-side application logic — this has driven a majority of the research on web
vulnerabilities to analysis of server-side logic written in languages such as PHP. First, we dis-
cuss the techniques employed in these and compare it our taint-enhanced blackbox fuzzing.
Next, we compare the benefits of our approach with purely taint-based analysis approaches,
and other semi-random testing based approaches. Finally, we discuss the recent frameworks
proposed for analysis of JavaScript applications.

Server-side vulnerabilities. XSS, SQL injection, directory traversal, cross-site request
forgery and command injection have been the most important kind of web vulnerabilities
in the last few years[108]. Techniques including static analyses [62, 54], model checking [75],
mixed static-dynamic analyses [8], as well as decision procedure based automated analyses
[66, 50] have been developed for server-side applications written in PHP and Java. Of these
techniques, only a few works have aimed to precisely analyze custom validation routines.
Balzarotti et al. were the first to identify that the use of custom sanitization could be an
important source of both false positives and negatives for analysis tools in their work on
Saner[8]. The proposed approach used static techniques for reasoning about multiple paths
effectively. However, the sanitization analysis was limited to a subset of string functions and
ignored validation checks that manifest as conditional constraints on the execution path.
Though an area of active research, the more recent string decision procedures do not yet
support the full generality of constraints we practically observed in our JavaScript subject
applications [66, 50, 17].

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 32

Dynamic taint analysis approaches. Vogt et al. have developed taint-analysis tech-
niques for JavaScript to study the problem of confidentiality attacks resulting from XSS
vulnerabilities [118]. In addition to the features provided by their work, our taint-tracking
techniques are character-level precise and accurately model the semantics of string operations
as our application domain requires such precision. Purely dynamic taint-based approaches
have been used for runtime defense against web attacks [132, 87, 117, 110, 49, 84, 107].
However, applying these to discover attacks is difficult because reasoning about validation
checks is important for precision. Certain tools such as PHPTaint [117] approximate this by
implicitly clearing the taint when data is sanitized using a built-in sanitization routine.

JavaScript analysis frameworks. Several works have recently applied static analysis on
JavaScript applications [47, 26]. In contrast, we demonstrate the practical effectiveness of
a complimentary dynamic analysis technique and we explain the benefits of our analyses
over their static counterparts. GateKeeper enforces a different set of policies using static
techniques which may lead to false positives. Recent frameworks for dynamic analyses [134]
have been proposed for source-level instrumentation for JavaScript; however, source-level
transformations are much harder to reason about in practice due to the complexity of the
JavaScript language.

Browser vulnerabilities. Client-side script injection vulnerabilities are related to, but
significantly different from browser vulnerabilities [13, 120, 25, 11]. Research on these vul-
nerabilities has largely focused on better designs of interfaces that could be used securely by
mutually untrusted principals. In this chapter, we showed how web application developers
use these abstractions, such as inter-frame communication interfaces, in an insecure way.

3.6 Conclusion

This chapter presents a new hybrid approach to automatically test JavaScript applications for
the presence of client-side script injection vulnerabilities. We implemented our approach in a
prototype tool called Flax. Flax has discovered several real-world bugs in the wild, which
suggests that such tools are valuable resources for security analysts and developers of rich
web applications today. Results from running Flax provide key insight into the prevalence
of this class of client-side script injection vulnerabilities with empirical examples, and point
out several implicit assumptions and programming errors that JavaScript developers today
make.

33

Chapter 4

Finding Vulnerabilities using
Dynamic Symbolic Execution

In the previous chapter, we propose a technique that analyzes a single-path of execution in
the application to detect a client-side script injection vulnerability. The proposed techniques
assumes that an external test harness is available externally to explore the execution space
of the application. In this chapter, we present techniques and a system for automatically
exploring the execution space of client-side JavaScript code. The technique proposed in the
chapter, though more heavy-weight, automatically generates a test harness from an initial
benign input to automatically explore the execution space of the program. Our focus, as
with the previous chapter, is on JavaScript applications and we demonstrate its effectiveness
in finding client-side script injection vulnerabilities.

JavaScript execution space exploration is challenging for many reasons. In particular,
JavaScript applications accept many kinds of input, and those inputs are structured just
as strings. For instance, a typical application might take user input from form fields, mes-
sages from its server via XMLHttpRequest, and data from code running concurrently in other
browser windows. Each kind of input string has its own format, so developers use a com-
bination of custom routines and third-party libraries to parse and validate the inputs they
receive. To effectively explore a program’s execution space, a tool must be able to supply
values for all of these different kinds of inputs and reason about how they are parsed and
validated.

Approach. In this chapter, we develop a dynamic symbolic-execution based framework
for client-side JavaScript code analysis. We build an automated, stand-alone tool called
Kudzu that, given a URL for a web application, automatically generates high-coverage
test cases to systematically explore its execution space. Automatically reasoning about
the operations we see in real JavaScript applications requires a powerful constraint solver,
especially for the theory of strings. However, the power needed to express the semantics
of JavaScript operations is beyond what existing string constraint solvers [66, 50] offer. As
a central contribution of this work, we overcome this difficulty by proposing a constraint

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 34

language and building a practical solver (called Kaluza) that supports the specification of
boolean, machine integer (bit-vector), and string constraints, including regular expressions,
over multiple variable-length string inputs. This language’s rich support for string operations
is crucial for reasoning about the parsing and validation checks that JavaScript applications
perform.

To show the practicality of our constraint language, we detail a translation from the
most commonly used JavaScript string operations to our constraints. This translation also
harnesses concrete information from dynamic execution traces of the program in a way that
allows the analysis to scale. We analyze the theoretical expressiveness of the theory of
strings supported by our language (including in comparison to existing constraint solvers),
and bound its computational complexity. We then give a sound and complete decision
procedure for the bounded-length version of the constraint language. We develop an end-to-
end system, called Kudzu, that performs symbolic execution with this constraint solver at
its core.

End-to-end system. We identify further challenges in building an end-to-end automated
tool for rich web applications. For instance, because JavaScript code interacts closely with a
user interface, its input space can be divided into two classes, the events space and the value
space. The former includes the state (check boxes, list selections) and sequence of actions of
user-interface elements, while the latter includes the contents of external inputs. These kinds
of input jointly determine the code’s behavior, but they are suited to different exploration
techniques. Kudzu uses GUI exploration to explore the event space, and symbolic execution
to explore the value space.

We evaluate Kudzu’s end-to-end effectiveness by applying it to the collection of 18
JavaScript applications we studied in Section 3.4. The results show that Kudzu is effective
at getting good coverage by discovering new execution paths, and it automatically discovers
2 previously-unknown vulnerabilities, as well as 9 client-side script injection vulnerabilities
that were previously found only with manually-created test-cases running under Flax.

In summary, this chapter makes the following main contributions:

• We identify the limitations of previous string constraint languages that make them
insufficient for parsing-heavy JavaScript code, and design a new constraint language
to resolve those limitations. (Section 4.3)

• We design and implement Kaluza, a practical decision procedure for this constraint
language. (Section 4.4)

• We build the first symbolic execution engine for JavaScript, using our constraint solver.
(Sections 4.2 and 4.5)

• Combining symbolic execution of JavaScript with automatic GUI exploration and other
needed components, we build the first end-to-end automated system for exploration of
client-side JavaScript. (Section 4.2)

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 35

• We demonstrate the practical use of our implementation by applying it to automati-
cally discovering 11 client-side script injection vulnerabilities, including two that were
previously unknown. (Section 4.6)

4.1 Problem Statement and Overview

In this section we state the problem we focus on, exploring the execution space of JavaScript
applications; describe one of its applications, finding client-side script injection vulnerabili-
ties; and give an overview of our approach.

Problem statement. We develop techniques to systematically explore the execution space
of JavaScript application code.

JavaScript applications often take many kinds of input. We view the input space of a
JavaScript program as split into two categories: the event space and the value space.

• Event space. Rich web applications typically define tens to hundreds of JavaScript
event handlers, which may execute in any order as a result of user actions such as
clicking buttons or submitting forms. Event handler code may check the state of GUI
elements (such as check-boxes or selection lists). The ordering of events and the state
of the GUI elements together affects the behavior of the application code.

• Value space. The values of inputs supplied to a program also determine its behavior.
JavaScript has numerous interfaces through which input is received:

– User data. Form fields, text areas, and so on.

– URL and cross-window communication abstractions. Web principals hosted in
other windows or frames can communicate with JavaScript code via inter-frame
communication abstractions such as URL fragment identifiers and HTML 5’s
proposed postMessage, or via URL parameters.

– HTTP channels. Client-side JavaScript code can exchange data with its originat-
ing web server using XMLHttpRequest, HTTP cookies, or additional HTTP GET

or POST requests.

This chapter primarily focuses on techniques to systematically explore the value space
using symbolic execution of JavaScript, with the goal of generating inputs that exercise new
program paths. However, automatically exploring the event space is also required to achieve
good coverage. To demonstrate the efficacy of our techniques in an end-to-end system,
we combine symbolic execution of JavaScript for the value space with a GUI exploration
technique for the event space. This full system is able to automatically explore the combined
input space of client-side web application code.

Application: finding client-side script injection vulnerabilities. Exploring a pro-
gram’s execution space has a number of applications in the security of client-side web appli-

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 36

cations. In this chapter, we focus specifically on one security application, finding client-side
script injection vulnerabilities.

As with Flax, we treat all URLs and cross-window communication abstractions as un-
trusted sources, as such inputs may be controlled by an untrusted web principal. In addition,
we also treat user data as an untrusted source because we aim to find cases where user data
may be interpreted as code. The severity of attacks from user-data on client-side is often
less severe than a remote XSS attack, but developers tend to fix these and Kudzu takes
a conservative approach of reporting them. HTTP channels such as XMLHttpRequest are
currently restricted to communicating with a web server from the same domain as the client
application, so we do not treat them as untrusted sources. Developers may wish to treat
HTTP channels as untrusted in the future when determining susceptibility to cross-channel
scripting attacks [18], or when enhanced abstractions (such as the proposed cross-origin
XMLHttpRequest [119]) allow cross-domain HTTP communication directly from JavaScript.

To effectively find XSS vulnerabilities, we require two capabilities: (a) generating directed
test cases that explore the execution space of the program, and (b) checking, on a given
execution path, whether the program validates all untrusted data sufficiently before using it
in a critical sink. Custom validation checks and parsing routines are the norm rather than
the exception in JavaScript applications, so our tool must check the behavior of validation
rather than simply confirming that it is performed.

In previous work, we developed a tool called Flax which employs taint-guided fuzzing
for finding client-side script injection attacks [100]. However, Flax relies on an external,
manually developed test harness to explore the path space. Kudzu, in contrast, automat-
ically generates a test suite that explores the execution space systematically. Kudzu also
uses symbolic reasoning (with its constraint solver) to check if the validation logic employed
by the application is sufficient to block malicious inputs — this is a one-step mechanism for
directed exploit generation as opposed to multiple rounds of undirected fuzzing employed
in Flax. Static analysis techniques have also been employed for JavaScript [47] to reason
about multiple paths, but can suffer from false positives and do not produce test inputs
or attack instances. Symbolic analyses and model-checking have been used for server-side
code [75, 8]; however, the complexity of path conditions we observe requires more expressive
symbolic reasoning than supported by tools for server-side code.

Approach Overview. The value space and event space of a web application are two
different components of its input space: code reachable by exploring one part of the input
space may not be reachable by exploring the other component alone. For instance, exploring
the GUI event space results in discovering new views of the web application, but this does
not directly affect the coverage that can be achieved by systematically exploring all the paths
in the code implementing each view. Conversely, maximizing path coverage is unlikely to
discover functionality of the application that only happens when the user explores a different
application view. Therefore, Kudzu employs different techniques to explore each part of the
input space independently.

Value space exploration. To systematically explore different execution paths, we develop

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 37

a component that performs dynamic symbolic execution of JavaScript code, and a new
constraint solver that offers the desired expressiveness for automatic symbolic reasoning.

In dynamic symbolic execution, certain inputs are treated as symbolic variables. Dynamic
symbolic execution differs from normal execution in that while many variable have their
usual (concrete) values, like 5 for an integer variable, the values of other variables which
depend on symbolic inputs are represented by symbolic formulas over the symbolic inputs,
like input1 + 5. Whenever any of the operands of a JavaScript operation is symbolic, the
operation is simulated by creating a formula for the result of the operation in terms of the
formulas for the operands. When a symbolic value propagates to the condition of a branch,
Kudzu can use its constraint solver to search for an input to the program that would cause
the branch to make the opposite choice.

Event space exploration. As a component of Kudzu we develop a GUI explorer that
searches the space of all event sequences using a random exploration strategy. Kudzu’s
GUI explorer component randomly selects an ordering among the user events registered by
the web page, and automatically fires these events using an instrumented version of the web
browser. Kudzu also has an input-feedback component that can replay the sequence of GUI
events explored in any given run, along with feeding new values generated by the constraint
solver to the application’s data inputs.

Testing for client-side script injection vulnerabilities. For each input explored, Kudzu
determines whether there is a flow of data from an untrusted data source to a critical sink.
If it finds one, it seeks to determine whether the program sanitizes and/or validates the
input correctly to prevent attackers from injecting dangerous elements into the critical sink.
Specifically, it attempts to prove that the validation is insufficient by constructing an attack
input. As we will describe in more detail in Section 4.2, it combines the results of symbolic
execution with a specification for attacks to create a constraint solver query. If the constraint
solver finds a solution to the query, it represents an attack that can reach the critical sink
and exploit a client-side script injection vulnerability.

4.2 End-to-End System Design

This section describes the various components that work together to make a complete
Kudzu-based vulnerability-discovery system work. The full explanation of the constraint
solver is in Sections 4.3 through 4.5. For reference, the relationships between the components
are summarized in Figure 6.4.

System Components

First, we discuss the core components that would be used in any application of Kudzu: the
GUI explorer that generates input events to explore the event space, the dynamic symbolic
interpreter that performs symbolic execution of JavaScript, the path constraint extractor
that builds queries based on the results of symbolic execution, the constraint solver that

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 38

Figure 4.1: Architecture diagram for Kudzu. The components drawn in the dashed box
perform functions specific to our application of finding client-side script injection. The
remaining components are application-agnostic. Components shaded in light gray are the
core contribution of this chapter.

finds satisfying assignments to those queries, and the input feedback component that uses
the results from the constraint solver as new program inputs.

The GUI explorer. The first step in automating JavaScript application analysis is explor-
ing the event space of user interactions. Each event corresponds to a user interaction such as
clicking a check-box or a button, setting focus on a field, adding data to data fields, clicking
a link, and so on. Kudzu currently explores the space of all sequences of events using a
random exploration strategy. One of the challenges is to comprehensively detect all events
that could result in JavaScript code execution. To address this, Kudzu instruments the
browser functions that process HTML elements on the current web page to record when an
event handler is created or destroyed. Kudzu’s GUI explorer component randomly selects
an ordering among the user events registered by the web page and executes them. 1 The ran-
dom seed can be controlled to replay the same ordering of events. While invoking handlers,
the GUI component also generates (benign) random test strings to fill text fields. (Later,
symbolic execution will generate new input values for these fields to explore the input space
further.) Links that navigate the page away from the application’s domain are cancelled,
thereby constraining the testing to a single application domain at a time. Investigating al-
ternative strategies to prioritize the execution of events is a promising direction for further
improvement.

Dynamic symbolic interpreter. Kudzu performs dynamic symbolic execution by first
recording an execution of the program with concrete inputs, and then symbolically interpret-
ing the recorded execution in a dynamic symbolic interpreter. For recording an execution

1Invoking an event handler may invalidate another handler (for instance, when the page navigates as a
result). In that case, the invalidated handlers are ignored and if new handlers are created by the event that
causes invalidation, these events are explored subsequently.

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 39

trace, Kudzu employs an existing instrumentation component [100] implemented in the
web browser’s JavaScript interpreter. For each JavaScript bytecode instruction executed,
it records the semantics of the operation, its operands and operand values in a simplified
intermediate language called JASIL[100]. The set of JavaScript operations captured includes
all operations on integers, booleans, strings, arrays, as well as control-flow decisions, ob-
ject types, and calls to browser-native methods. For the second step, dynamic symbolic
execution, we have developed from scratch a symbolic interpreter for the recorded JASIL
instructions.

Symbolic inputs for Kudzu are configurable to match the needs of an application. For
instance, in the application we consider, detecting client-side script injection, all URL data,
data received over cross-window communication abstractions, and user data fields are marked
symbolic. Symbolic inputs may be strings, integers, or booleans. Symbolic execution pro-
ceeds on the JASIL instructions in the order they are recorded in the execution trace. At any
point during dynamic symbolic execution, a given operand is either symbolic or concrete. If
the operand is symbolic, it is associated with a symbolic value; otherwise, its value is purely
concrete and is stored in the dynamic execution trace. When interpreting a JASIL operation
in the dynamic symbolic interpreter, the operation is symbolically executed if one or more
of its input operands is symbolic. Otherwise the operation of the symbolic interpreter on
concrete values would be exactly the same as the real JavaScript interpreter, so we simply
reuse the concrete results already stored in the execution trace.

The symbolic value of an operand is a formula that represents its computation from the
symbolic inputs. For instance, for the JASIL assignment operation y := x, if x is symbolic
(say, with the value input1 +5), then symbolic execution of the operation copies this value to
y, giving y the same symbolic value. For an arithmetic operation, say y := x1 + x2 where
x1 is symbolic (say with value input2 + 3) and x2 is not (say with the concrete value 7), the
symbolic value for y is the formula representing the sum (input2+10). Operations over strings
and booleans are treated in the same way, generating formulas that involve string operations
like match and boolean operations like and. At this point, string operations are treated
simply as uninterpreted functions. During the symbolic execution, whenever the symbolic
interpreter encounters an operation outside the supported formula grammar, it forces the
destination operand to be concrete. For instance, if the operation is x = parseFloat(s) for
a symbolic string s, x and s can be replaced with their concrete values from the trace (say,
4.3 and ‘‘ 4.3’’). This allows symbolic computation to continue for other values in the
execution.

Path constraint extractor. The execution trace records each control-flow branch (e.g.,
if statement) encountered during execution, along with the concrete value (true or false)
representing whether the branch was taken. During symbolic execution, the corresponding
branch condition is recorded by the path constraint extractor if it is symbolic. As execution
continues, the formula formed by conjoining the symbolic branch conditions (negating the
conditions of branches that were not taken) is called the path constraint. If an input value
satisfies the path constraint, then the program execution on that input will follow the same

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 40

execution path.
To explore a different execution path, Kudzu selects a branch on the execution path

and builds a modified path constraint that is the same up to that branch, but that has the
negation of that branch condition (later conditions from the original branch are omitted).
An input that satisfies this condition will execute along the same path up to the selected
branch, and then explore the opposite alternative. There are several strategies for picking
the order in which branch conditions can be negated—Kudzu currently uses a generational
search strategy [41].

Constraint solver. Most symbolic execution tools in the past have relied on an existing
constraint solver. However, Kudzu generates a rich set of constraints over string, integer and
boolean variables for which existing off-the-shelf solvers are not powerful enough. Therefore,
we have built a new solver, Kaluza, for our constraints (we present the algorithm and design
details in Section 4.4). In designing this component, we examined the symbolic constraints
Kudzu generates in practice. From the string constraints arising in these, we distilled a
set of primitive operations required in a core constraint language. (This core language is
detailed in Section 4.3, while the solver’s full interface is given in Section 4.5.) We justify our
intuition that solving the core constraints is sufficient to model JavaScript string operations
in Section 4.5, where we show a practical translation of JavaScript string operations into our
constraint language.

Input feedback. Solving the path constraint formula using the solver creates a new input
that explores a new program path. These newly generated inputs must be fed back to
the JavaScript program: for instance simulated user inputs must go in their text fields,
and GUI events should be replayed in the same sequence as on the original run. The
input feedback component is responsible for this task. As a particular HTML element
(e.g a text field) in a document is likely allocated a different memory address on every
execution, the input feedback component uses XPath [128] and DOM identifiers to uniquely
identify HTML elements across executions and feed appropriate values into them. If an
input comes from an attribute for a DOM object, the input feedback component sets that
attribute when the object is created. If the input comes via a property of an event that is
generated by the browser when handling cross-window communication, such as the origin

and data properties of a postMessage event, the component updates that property when
the JavaScript engine accesses it. Kudzu instruments the web browser to determine the
context of accesses, to distinguish between accesses coming from the JavaScript engine and
accesses coming from the browser core or instrumentation code.

Application-specific components

Next, we discuss three components that are specialized for the task of finding client-side
script injection vulnerabilities: a sink-source identification component that determines which
critical sinks might receive untrusted input, a vulnerability condition extractor that captures
domain knowledge about client-side script injection attacks, and the attack verification com-

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 41

ponent that checks whether inputs generated by the tool in fact represent exploits.

Sink-source identification. To identify if external inputs are used in critical sink oper-
ations such as eval or document.write, we perform a dynamic data flow analysis on the
execution trace. As outlined earlier, we treat all URL data, data received over cross-window
communication abstractions (such as postMessage), and data filled into user data fields as
potentially untrusted. The data flow analysis is similar to a dynamic taint analysis. Any
execution trace that reveals a flow of data to a critical sink is subject to further symbolic
analysis for exploit generation. We use an existing framework, Flax, for this instrumenta-
tion and taint-tracking [100] in a manner that is faithful to the implementation of JavaScript
in the WebKit interpreter.

Vulnerability condition extractor. An input represents an attack against a program if it
passes the program’s validation checks, but nonetheless implements the attacker’s goals (i.e.,
causes a client-side script injection attack) when it reaches a critical sink. The vulnerability
condition extractor collects from the symbolic interpreter a formula representing the (possibly
transformed) value used at a critical sink, and combines it with the path constraint to
create a formula describing the program’s validation of the input.2. To determine whether
this value constitutes an attack, the vulnerability condition extractor applies a sink-specific
vulnerability condition specification, which is a (regular) grammar encoding a set of strings
that would constitute an attack against a particular sink. This specification is conjoined
with the formula representing the transformed input to create a formula representing values
that are still dangerous after the transformation.

For instance, in the case of the eval sink, the vulnerability specification asserts that a
valid attack should be zero or more statements each terminated by a ‘;’, followed by the
payload. Such grammars can be constructed by using publicly available attack patterns [94].
The tool’s attack grammars are currently simple and can be extended easily for comprehen-
siveness and to incorporate new attacks.

To search only for realistic attacks, the specification also incorporates domain knowledge
about the possible values of certain inputs. For instance, when a string variable corresponds
to the web URL for the application, we assert that the string starts with the same domain
as the application.

Attack verification. Kudzu automatically tests the exploit instance by feeding the input
back to the application, and checking if the attack payload (such as a script with an alert
message) is executed. If this verification fails, Kudzu does not report an alarm.

2Sanitization for critical client-side sink operations may happen on the server side (when data is sent
back via XMLHttpRequest.) Our implementation handles this by recognizing such transformations using
approximate tainting techniques [100] for data transmitted over XMLHttpRequest

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 42

4.3 Core Constraint Language

In order to support a rich language of input constraints with a simple solving back end, we
have designed an intermediate form we call the core constraint language. This language is
rich enough to express constraints from JavaScript programs, but simple enough to make
solving the constraints efficient. In this section we define the constraint language, analyze its
expressiveness and the theoretical complexity of deciding it, and compare its expressiveness
to the core languages of previous solvers.

Language Definition

The abstract syntax for our core constraint language is shown in Figure 4.2. A formula in
the language is an arbitrary boolean combination of constraints. Variables which represent
strings may appear in five types of constraints. The first three constraint types indicate that
a string is a member of the language defined by a regular expression, that two strings are
equal, or one string is equal to the concatenation of two other strings. The two remaining
constraints relate the length of one string to a constant natural number, or to the length
of another string, by any of the usual equality or ordering operations. Regular expressions
are formed from characters or the empty string (denoted by ε) via the usual operations of
concatenation (represented by juxtaposition), alternation (|), and repetition zero or more
times (Kleene star *).

The constraints all have their usual meanings. Any number of variables may be intro-
duced, and Characters are drawn from an arbitrary non-empty alphabet, but Numbers must
be non-negative integers. For present purposes, strings may be of unbounded length, though
we will introduce upper bounds on their lengths later.

Expressiveness and Complexity

Though the core constraint language is intentionally small, it is not minimal: some types of
constraints are included for the convenience of translating to and from the core language,
but do not fundamentally increase its expressiveness. String equality, comparisons between
lengths and constants, and inequality comparisons between lengths can be expressed using
concatenation, regular expressions, and equality between string lengths respectively; the
details are omitted for space.

Each of the remaining constraint types (regular expression membership, concatenation,
and length) makes its own contribution to the expressiveness of the core constraints. Our
conference paper gives examples of the sets of strings that each constraint type can uniquely
define [99]. The core constraint language is expressive enough that the complexity of deciding
it is not known precisely; it is at least PSPACE-hard. These relationships are summarized
in Figure 4.3. The complexity of our core constraint language falls to NP-complete when the
lengths of string variables are bounded, as they are in our implementation. Further details
are in the appendix.

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 43

Formula ::= ¬Formula
| Formula ∧ Formula
| Constraint

Constraint ::= Var ∈ RegExp
| Var = Var
| Var = Var ◦ Var
| length(Var) Rel Number
| length(Var) Rel length(Var)

RegExp ::= Character
| ε
| RegExp RegExp
| RegExp|RegExp
| RexExp*

Rel ::= < | ≤ | = | ≥ | >

Figure 4.2: Abstract grammar of the core constraint language.

Figure 4.3: Relations between the unbounded versions of several theories of strings. Theories
higher in the graph are strictly more expressive but are also at least as complex to decide.
Kudzu’s core constraint language (shaded) is strictly more expressive than either the core
language of HAMPI [66] or the theory of word equations and an equal length predicate (the
“pure library language” of [17]).

Expressiveness Comparison

Our system’s core constraint language is more expressive than the constraints used in similar
previous systems, and this expressiveness is key in allowing it to handle a more complex class
of applications.

Bjørner et al. [17] present a “pure library language” that, like our core constraint lan-

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 44

guage, includes word equations and the ability to assert that two strings have the same
length, so like our language its decidability is open. However, their language does not in-
clude regular expressions. Regular expressions may be less common in the .NET applications
Bjørner et al. study, but they are used ubiquitously in JavaScript, so regular expression sup-
port is mandatory in our domain. Similarly the work of Caballero et al. [11, 22] deals with
programs compiled from C-family languages, whose string operations are much more limited.

The DPRLE tool [50] focuses on a class of constraints that combine concatenation and
regular expression matching, but in a more limited way than our tool supports. DPRLE
addresses a different problem domain, since it gives solutions for constraints over languages
(potentially infinite sets of strings) rather than single strings, but this makes the task sig-
nificantly more difficult. We were unable to express the constraints from our application in
DPRLE’s input format or any straightforward extension of it. For instance, there is no way
to express the constraint that two language expressions should be equal, not surprising since
such constraints in general are undecidable [24].

HAMPI [66] provides support for regular expression constraints (and in fact we build
on its implementation for this feature), but its support for other constraints is limited,
particularly by the fact that it supports only a single string variable. The variable can
be concatenated with constant strings, but these string expressions cannot be compared
with each other, only with regular expressions, so HAMPI lacks the full generality of word
equations. For instance, HAMPI constraints cannot define the set {uv#u#v : u, v ∈ {0, 1}∗}.

It is worth reemphasizing that these limitations are not just theoretical: they make these
previous systems unsuitable for our applications. One of the most common operations in the
programs we examine is to parse a single input string (such as a URL) into separate input
variables using split or repeated regular expression matching. Representing the semantics
of such an operation requires relating the contents of one string variable to those of another,
something that neither DPRLE nor HAMPI supports.

4.4 Core Constraint Solving Approach

We have implemented a decision procedure called Kaluza for the core set of constraints,
which is available online [63]. In this section, we explain our algorithm for solving the core
set of constraints. We introduce a bounded version of the constraints where we assume a
user-supplied upper bound k on the length of the variables. This allows us to employ a
SAT-based solution strategy without reducing the practical expressiveness of the language.

The algorithm satisfies three important properties, whose informal proof appears in the
appendix.

1. Soundness. Whenever the algorithm terminates with an assignment of values to string
variables, the solution is consistent with the input constraints.

2. Bound-k completeness. If there exists a solution for the string variables where all strings
have length k or less, then our algorithm finds one such solution.

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 45

Input: C : constraint list
Output: (IsSat : bool,Solutions : string list)
G← BuildConcatGraph(C);
(C ′,StrOrderMap)← DecideOrder(G);
C ← C ∪ C ′;
FailLenDB : length assignment list← ∅;
while true do

(X, lengths)← SolveLengths(C,FailLenDB);
if (X = UNSAT) then

print ‘‘ Unsatisfiable’’;
halt(false,∅);

end
Final : bitvector constraints;
Final← CreateBVConstraints(StrOrderMap, C, lengths);
(Result,BVSolutions)← BVSolver(Final);
if (Result = SAT) then

print ‘‘ Satisfiable’’;
printSolutions(BVSolutions, lengths,StrOrderMap);
halt(true,BVsToStrings(BVSolutions));

end
else

FailLenDB← FailLenDB ∪ lengths;
end

end

Figure 4.4: Algorithm for solving the core constraints.

3. Termination. The algorithm requires only a finite number of steps (a function of the
bound) for any input.

The solver translates constraints on the contents of strings into bit-vector constraints
that can be solved with a SAT-based SMT solver. For this purpose, the solver translates
each input string into a sequence of n-bit integers (n = 8 in the current implementation).
Each string variable S also has an associated integer variable LS representing its length. A
single string is converted to a bit-vector by concatenating the binary representations of each
character. Then, the bit-vectors representing each string are themselves concatenated into a
single long bit-vector. (The order in which the strings are concatenated into the long vector
reflects the concatenation constraints, as detailed in step 1 below.) The solver passes the
constraints over this bit vector to a SMT (satisfiability modulo theories) decision procedure
for the theory of bit vectors, STP [39] in our implementation. Informally, it is convenient
to refer to the combined bit vector as if it were an array indexed by character offsets, but
we do not use STP’s theory of arrays, and character offsets are multiplied by n to give bit
offsets before producing the final constraints.

Our algorithm is shown in Figure 4.4. At a high level, it has three steps. First, it
translates string concatenation constraints into a layout of variables (with overlap) in the

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 46

final character array mentioned above. Second, it extracts integer constraints on the lengths
of strings and finds a satisfying length assignment using the SMT solver. Finally, given a
position and length for each string, the solver translates the constraints on the contents of
each string into bit-vector constraints and checks if they are satisfiable.

In general, because of the interaction of length constraints and regular expressions, the
length assignment chosen in step 2 might not correspond to satisfiable contents constraints,
even when a different length assignment would. So if step 3 fails to find a satisfying assign-
ment, the algorithm returns to step 2 to generate a new length assignment (distinct from
any tried previously). Steps 2 and 3 repeat until the solver finds a satisfying assignment, or
it has tried all possible length assignments (up to the length bound k).

Step 1: Translating concatenation constraints.. The intuition behind Kudzu’s han-
dling of concatenation constraints is that for a constraint S1 = S2 ◦ S3, it would be sufficient
to ensure that S2 comes immediately before S3 in the final character array, and to lay out
S1 as overlapping with S2 and S3 (so that S1 begins at the same character as S2 and ends
at the same character as S3). This overlapping layout also has the advantage of reducing
the total length of bit-vectors required. Each concatenation constraint suggests an ordering
relation among the string variables, but it might not be possible to satisfy all such ordering
constraints simultaneously.

To systematically choose an ordering, the solver builds a graph of concatenation con-
straints (a concat graph for short). The graph has a node for each string variable, and for
each constraint S1 = S2 ◦ S3, S2 and S3 are the left and right children (respectively) of S1.
An example of such a graph is shown in Figure 4.5. Without loss of generality, we can
assume that the graph is acyclic: if there is a cycle from S1 to S2 to S3 . . . back to S1, then
S1= S2 ◦ S3 ◦ · · · ◦ S1 (or some other order), so all the variables other than S1 must be the
empty string, and can be removed from the constraints. (In our applications the constraints
will in any case be acyclic by construction.) Given this graph, the algorithm then chooses
the relative ordering of the strings in the character array by assigning start and end positions
to each node with a post-order traversal of the graph. (In Figure 4.5, these positions are
shown in parentheses next to each node.)

For the layout generated by the algorithm to be correct, the concat graph must be a DAG
in which each internal node has exactly two children, and those children are adjacent in the
layout. (This implies that the graph is planar.) The graph may not have these properties at
construction; for instance, Figure 4.6 gives a set of example constraints with contradictory
ordering requirements: S2 cannot be simultaneously to the left and to the right of S3. The
algorithm resolves such requirements by duplicating a subtree of the graph (for instance as
shown in the right half of Figure 4.6). To maintain the correct semantics, the algorithm adds
string equality constraints to ensure that any duplicated strings have the same contents as
the originals. The algorithm performs duplications to ensure that the graph satisfies the
correctness invariant, but our current algorithm does not attempt to perform the minimal
number of copies (for instance, in Figure 4.6 it would suffice to copy either only S2 or only
S3), which in our experience has not hurt the solver’s performance.

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 47

S1

S2 S3

S4 S5

S6

S7

L

L L

R

R R(1,1)

(2,2) (3,3) (4,4)

(3,4)(2,3)

(1,3)

S1 = S2 . S3

S3 = S4 . S5

S6 = S5 . S7

INPUT CONCAT CONSTRAINTS

Figure 4.5: A sample concat graph for a set of concatenation constraints. The relative
ordering of the strings in the final character array is shown as start and end positions in
parentheses alongside each node.

S1

S2 S3

S4

L LR R

S1

S2 S3

S4

L LR R

S3_COPY S2_COPY

COPY CREATION

(1,1) (2,2) (3,3) (4,4)

(3,4)(1,2)

S2 = S2_COPY

S3 = S3_COPY

NEW CONSTRAINTS

DUE TO COPY CREATION

S1 = S2 . S3

S4 = S3 . S2

INPUT CONCAT CONSTRAINTS

Figure 4.6: A set of concat constraints with contradictory ordering requirements. Nodes are
duplicated to resolve the contradiction.

Step 2: Finding a satisfiable length assignment. Each string variable S has an asso-
ciated length variable LS. Each core string constraint implies a corresponding constraint on
the lengths of the strings, as detailed in Table 4.1. For the regular expression containment
constraint (S1 ∈ R), the set of possible lengths is an ultimately periodic set: whether a length
is possible depends only on its remainder when divided by a fixed period, except for a finite
set of exceptions. (Yu et al. use the equivalent concept of a semi-linear set in a conservative
automaton-based approach [135].) The details of computing this set are covered in the liter-
ature [77]; we note that such sets can be conveniently represented with our SMT solver since
it supports a modulus operation. At each iteration of step 2, the solver conjoins the length
constraints corresponding to all of the original string constraints, along with a constraint to
rule out each length assignment that had previously been tried, and passes this formula to
the SMT solver. If it returns a satisfying assignment, it represents a new length assignment
to try; if the constraint is unsatisfiable, then so were the original string constraints.

It is not necessary for correctness that the length abstraction performed by the solver
be precise, but determining precise length bounds improves performance by avoiding wasted
iterations. In the complete system, the integer constraints over lengths are solved together

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 48

Core Constraint Implication on lengths

S1 = S2 ◦ S3 LS1 = LS2 + LS3

S1 ∈ R LS1 ∈ LengthSet(R)
S1 = S2 LS1 = LS2

length(S1) � i LS1 � i
length(S1) � length(S2) LS1 � LS2

Table 4.1: Length constraints implied by core string constraints, where LS is the length of a
string S, and � ranges over the operators {<,≤, =,≥, >}.

with integer constraints arising directly from the original program, discussed in Section 4.5.
In our experience it is important for good performance to solve these two sets of integer
constraints together. The two sets of constraints may be interrelated, and solving them
together prevents the solver from wasting time exploring solutions that satisfy one set but
not the other.

Step 3: Encoding as bitvectors. Given the array layout and lengths computed in steps 1
and 2, the remaining constraints over the contents of strings can be expressed as constraints
over fixed-size bit-vectors. String equality translates directly into bit-vector equality. For
the encoding of regular expression constraints, we reuse part of the implementation of the
HAMPI tool [66]. At a high-level, the translation first unrolls uses of the Kleene star * in
a regular expression into a finite number of repetitions (never more than the string length).
Next, where the regular expression has concatenation, HAMPI determines all possible com-
binations of lengths that sum to the total length, and instantiates each as a conjunction of
constraints. Along with the alternations that appeared in the original regular expression,
each of these conjunctions also represents an alternative way in which the regular expression
could match the string. To complete the translation, the choice between all of these alterna-
tives is represented with a disjunction. (See [66] for a more detailed explanation and some
optimizations.)

HAMPI supports only a single, fixed-length input, so we invoke it repeatedly to translate
each constraint between a regular expression and a string into an STP formula. We then
combine each of these translations with our translations of other string contents constraints
(e.g., string equality), and conjoin all of these constraints so that they apply to the same
single long character array. It is this single combined formula that we pass to the SMT solver
(STP) to find a satisfying assignment.

4.5 Reducing JavaScript to String Constraints

In this section we describe our tool’s translation from JavaScript to the language of our
constraint solver, focusing on the treatment of string operations. We start by giving the
full constraint language the solver supports, then describe our general approach to modeling
string operations, our use of concrete values from the dynamic trace, and the process of

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 49

τ ::= string | int | bool
ConstRegex ::= Regex | CapturedBrack(R, i)

| BetweenCapBrack(R, i, j)

Figure 4.7: Type system for the full constraint
language

S1 : string = (S2 : string) ◦ (S3 : string) ◦ · · ·
I1 : int = length(S : string)

S1 : string ∈ R : ConstRegex
S1 : string /∈ R : ConstRegex

I1 : int = (I2 : int) {+,−, ·, /} (I3 : int)
B1 : bool = (A1 : τ) {=, 6=} (A2 : τ)
B1 : bool = (I1 : int) {<,≤,≥, >} (I2 : int)
B1 : bool = ¬(B2 : bool)
B1 : bool = (B2 : bool) {∧,∨} (B3 : bool)

S1 : string = toString(I1 : int)

Figure 4.8: Grammar and types for the full
constraint language including operations on
strings, integers, and booleans.

translating real regular expressions into textbook-style ones.

Full constraint language. The core constraint language presented in Section 4.3 captures
the essence of our solving approach, but it excludes several features for simplicity, most
notably integer constraints. The full constraint language supported by our solver supports
values of string, integer, and boolean types, and its grammar is given in Figure 4.8, along with
its type system in Figure 4.7. The additional constraints are solved at step 2 of the string
solution procedure, together with the integer constraints on the lengths of strings. To match
common JavaScript implementations (which reserve a bit as a type tag), we model integers
as 31-bit signed bit-vectors in our SMT solver, which supports all the integer operations that
JavaScript does. The solver replaces each toString constraint with the appropriate string
once a value for its argument is selected: for instance, if i is given the value 12, toString(i)
is replaced with ‘‘ 12’’.

JavaScript string operations. JavaScript has a large library of string operations, and we
do not aim to support every operation, or the full generality of their behavior. Beyond the
engineering challenge of building such a complete translation, having very complex symbolic
translations for common operators would likely cause the system to bog down, and the gen-
erality would usually be wasted. Instead, our choice has been to model the string operations
that occur commonly in web applications, and the core aspects of their behavior. For other
operations and behavior aspects our tool uses values from the original execution trace (de-
scribed further below), so that they are accurate with respect to the original execution even
if the tool cannot reason symbolically about how they might change on modified executions.
The detailed translation from several common operators (a subset of those supported by our
implementation) to our constraint language is shown in Table 4.2.

Using dynamic information. One of the benefits of dynamic symbolic execution is that it
provides the flexibility to choose between symbolic values (which introduce generality) and
concrete values (which are less general, but guaranteed to be precise) to control the scope
of the search process. Our tool’s handling of string constraints takes advantage of concrete

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 50

values from the dynamic traces in several ways. An example is string replace, which is
often used in sanitization to transform unsafe characters into safe ones. Our translation uses
a concrete value for the number of occurrences of the searched-for pattern: if a pattern was
replaced six times in the original run, the tool will search for other inputs in which the pattern
occurs six times. This sacrifices some generality (for instance, if a certain attack is only
possible when the string appears seven times). However, we believe this is a beneficial trade-
off since it allows our tool to analyze and find bugs in many uses of replace. For comparison,
most previous string constraint solvers do not support replace at all, and adding a replace

that applied to any number of occurrences of a string (even limited to single-character strings)
would make our core constraint language undecidable in the unbounded case [21].

Regular expressions in practice. The “regular expressions” supported by languages like
JavaScript have many more features than the typical definition given in a computability
textbook (or Figure 4.2). Figure 3.8 shows an example (adapted from a real web site) of one
of many regular expressions Kudzu must deal with. Kudzu handles a majority of the syntax
for regular expressions in JavaScript, which includes support for (possibly negated) character
classes, escaped sequences, repetition operators ({n}/?/*/+/) and sub-match extraction using
capturing parentheses. Kudzu keeps track of the nesting of capturing parentheses, so that it
can express the relation between the input string and the parts of it that match the captured
groups (as shown in Table 4.2). Kudzu does not currently support back-references (they
are strictly more expressive than true regular expressions), though if we see a need in the
future, many uses of back-references could be translated using (non-regular) concatenation
constraints.

4.6 Experimental Evaluation

We have built a full-implementation of Kudzu using the WebKit browser, with 650, 7430
and 2200 lines of code in the path constraint extraction component, constraint solver, and
GUI explorer component, respectively. The system is written in a mixture of C++, Ruby,
and OCaml languages.

We evaluate Kudzu with three objectives. One objective is to determine whether Kudzu
is practically effective in exploring the execution space of real-world applications and uncov-
ering new code. The second objective is to determine the effectiveness of Kudzu as a
stand-alone vulnerability discovery tool — whether Kudzu can automatically find client-
side script injection vulnerabilities and prune away false reports. Finally, we measure the
efficiency of the constraint solver. Our evaluation results are promising, showing that Kudzu
is a powerful system that finds previously unknown vulnerabilities in real-world applications
fully automatically.

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 51

JavaScript operation Reduction to our constraint language

S1 : string = charAt(S : string (((LS = length(S)) ∧ (I ≥ 0) ∧ (I < LS)
, I : int) ∧(S = T1 ◦ T2 ◦ T3) ∧ (T2 = S1)

∧(I = length(T1) + 1))
∨(((I ≥ LS) ∨ (I < 0)) ∧ (S1 = ‘‘ ’’)))

I1 : int = charcodeAt(S : string (((LS = length(S)) ∧ (I ≥ 0) ∧ (I < LS) ∧ (S = T1 ◦ T2 ◦ T3) ∧ (T2 = S1)
, I : int) ∧(I = length(T1) + 1) ∧ (S1 = toString(I1)))

∨(((I ≥ LS) ∨ (I < 0)) ∧ (S1 = toString(I1)) ∧ (S1 = ‘‘ NaN’’)))
S : string = concat(S1 : string, S2 :
string, . . . , Sk : string)

(S = S1 ◦ S2 ◦ · · · ◦ Sk)

I : int = indexOf(S : string, s :
string,

(((I ≥ 0) ∧ ((startpos < length(S)) ∧ (startpos ≥ 0)) ∧ (S = S1 ◦ S2)

startpos : int) ∧(startpos = length(S1)) ∧ (S2 = T1 ◦ s ◦ T3) ∧ (I = length(T1))
∧(T1 /∈ Regex(.*s.*)))
∨((I < 0) ∧ ((startpos < length(S)) ∧ (startpos ≥ 0)) ∧ (S /∈ Regex(.*s.*)))
∨(¬((startpos < length(S))∧ (startpos ≥ 0))∧ (S1 = toString(I1))∧ (S1 = ‘‘ NaN’’)))

I : int = lastIndexOf(S : string, s :
string, startpos : int)

(((I ≥ 0) ∧ ((startpos < length(S)) ∧ (startpos ≥ 0)) ∧ (S = S1 ◦ S2) ∧ (startpos =
length(S1))
∧(S2 = T1 ◦ s ◦ T3) ∧ (I = length(T1)) ∧ (T3 /∈ Regex(.*s.*)))
∨((I < 0) ∧ ((startpos < length(S)) ∧ (startpos ≥ 0)) ∧ (S /∈ Regex(.*s.*)))
∨(¬((startpos < length(S))∧ (startpos ≥ 0))∧ (S1 = toString(I1))∧ (S1 = ‘‘ NaN’’)))

[S1, S2, . . . , Sk] : string list =
match(S : string, r : ConstRegex)

(((k > 0) ∧ (S ∈ r) ∧ ((S1 ∈ CapturedBrack(r, 1)) ∨ (S1 = ‘‘ ’’))

∧(S = T0 ◦ S1 ◦ T1 ◦ · · · ◦ Sk ◦ Tk) ∧ (
∧k
i=0 Ti ∈ BetweenCapBrack(r, i, i+ 1)))

(non-greedy) ∧ · · · ∧ ((Sk ∈ CapturedBrack(r, k)) ∨ (Sk = ‘‘ ’’)))
∨((k ≤ 0) ∧ (S /∈ Regex(.*r.*))))

[S1, S2, . . . , Sn] : string list =
match(S : string, r :
ConstRegex, n : int)

(((S = T1 ◦M1 ◦ T2 ◦M2 ◦ · · · ◦ Tn ◦Mn ◦ Tn+1) ∧ (T1, T2, . . . , Tn+1 /∈ Regex(.*r.*))

(greedy match) ∧(M1,M2, . . . ,Mn ∈ Regex(r)))
n is the concrete number of occur-
rences of strings matching r.
S1 : string = replace(S : string, r :
ConstRegex, s : string, n : int)

((S = T1 ◦M1 ◦ T2 ◦M2 ◦ · · · ◦ Tn ◦Mn ◦ Tn+1) ∧ (T1, T2, . . . , Tn+1 /∈ Regex(.*r.*))

∧(M1,M2, . . . ,Mn ∈ Regex(r)))) ∧ (S1 = T1 ◦ s ◦ T2 ◦ s ◦ · · · ◦ Tn+1)
n is the concrete number of occur-
rences of strings matching r in S.
[S1, S2, . . . , Sk] : string list =
split(S : string, s : string, n : int)

(((S = S1 ◦ s ◦ S2 ◦ s ◦ · · · ◦ Sn ◦ s ◦ Sn+1) ∧ (S1, S2, . . . , Sn+1 /∈ Regex(.*s.*))))

n is the concrete number of occur-
rences of strings matching r.
I1 : int = search(S : string, r :
ConstRegex)

(((I1 < 0) ∧ (S /∈ .*r.*))

∨((I1 ≥ 0)∧(S = T1◦T2◦T3)∧(I1 = length(T1))∧(T2 ∈ Regex(r))∧(T1, T3 /∈ (.*r.*))))
S1 : string = substring(S :
string, start : int, end : int)

((start ≥ 0)∧(end < length(S))∧(end ≥ start)∧(S = T1◦S1◦T2)∧(start = length(T1))

∧(I1 = end− start) ∧ (I1 = length(S1))
∨((start ≥ 0) ∧ (end ≥ length(S)) ∧ (end ≥ start) ∧ (S = T1 ◦ S1 ◦ T2) ∧ (start =
length(T1))
∧(LS = length(S)) ∧ (I1 = LS − start) ∧ (I1 = length(S1))
∨((start < 0)∧ (end < length(S))∧ (end ≥ start)∧ (S = T1 ◦S1 ◦T2)∧ (0 = length(T1))
∧(I1 = end− start) ∧ (I1 = length(S1))
∨((start < 0)∧ (end ≥ length(S))∧ (end ≥ start)∧ (S = T1 ◦S1 ◦T2)∧ (0 = length(T1))
∧(LS = length(S))(LS = length(S1))

B1 : bool = match(S, r) ((B1) ∧ (S ∈ Regex(r)) ∨ (¬(B1) ∧ (S /∈ Regex(r))))
I : int = parseInt(S) (S = toString(I)) ∧ ((S = ‘‘ NaN’’) ∨ (S = Regex([0-9]+)))

Table 4.2: Our reduction from common JavaScript operations to our full constraint language.
Capitalized variables may be concrete or symbolic, while lowercase variables take a concrete
value.

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 52

 Substr /

Substring /

CharAt /

CharCodeAt

5%

IndexOf /

LastIndexOf

/ Strlen

78%

Replace /

EncodeURI /

DecodeURI

8%

Match / Test

/ Split

1%
Concat

8%

Figure 4.9: Distribution of string operations in our subject applications.

Experiment Setup

We select 18 subject applications consisting of popular iGoogle gadgets and AJAX applica-
tions, as these were studied by our previous tool Flax [100]. Flax assumes availability of
an external (manually developed) test suite to seed its testing; in contrast, Kudzu automat-
ically generates a much more comprehensive test suite and finds the points of vulnerability
without requiring any external test harness a priori. Further, in our experiments Kudzu
discovers 2 new vulnerabilities within a few hours of testing which were missed by the Flax
because of its lack of coverage. In addition, as we show later in this section, many of the
generated constraints are highly complex and not suitable for manual inspection or fuzzing,
whereas Kudzu either asserts the safety of the validation checks or finds exploits for vul-
nerabilities in one iteration as opposed to many rounds of random testing.

To test each subject application, we seed the system with the URL of the application. For
the gadgets, the URLs are the same as those used by iGoogle page to embed the gadget. We
configure Kudzu to give a pre-prepared username and login password for applications that
required authentication. We report the results for running each application under Kudzu,
capping the testing time to a maximum of 6 hours for each application. All tests ran on a
Ubuntu 9.10 Linux workstation with 2.2 GHz Intel dual-core processors and 2 GB of RAM.

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 53

Application # of new Initial / Final Bug
inputs Code Coverage found

Academia 20 30.27 / 76.47% X
AJAXIm 15 49.58 / 77.67% X

FaceBook Chat 54 26.85 / 76.84% -
ParseUri 13 53.90 / 86.10% X

Plaxo 31 5.72 / 76.43% X

AskAWord 10 29.30 / 67.95 % X
Birthday Reminder 27 59.47 / 73.94% -

Block Notes 457 65.06 / 71.50 % X
Calorie Watcher 16 64.54 / 73.53% -

Expenses Manager 133 61.09 / 76.56% -
Listy 19 65.31 / 79.73% X

NotesLP 25 46.62 / 76.67% -
Progress Bar 12 63.60 / 75.09% -

Simple Calculator 1 46.96 / 80.52% X
Todo List 15 72.51 / 86.41% X
TVGuide 6 30.39 / 75.13% X

Word Monkey 20 14.84 / 75.36% X
Zip Code Gas 11 59.05 / 74.28% -

Average 49 46.95 / 76.68% 11

Table 4.3: The top 5 applications are AJAX applications, while the rest are Google/IG
gadget applications. Column 2 reports the number of distinct new inputs generated, and
column 3 reports the increase in code coverage from the initial run to and the final run.

Results

Table 4.3 presents the final results of testing the subject applications. The summary of our
evaluation highlights three features of Kudzu: (a) it automatically discovers new program
paths in real applications, significantly enhancing code coverage; (b) it finds 2 client-side
script injection in the wild and several in applications that were known to contain vulner-
abilities; and (c) Kudzu significantly prunes away false positives, successfully discarding
cases that do employ sufficient validation checks.

Characteristics of string operations in our applications. Constraints arising from
our applications have an average of 63 JavaScript string operations, while the remaining are
boolean, logical and arithmetic constraints. Figure 4.9 groups the observed string operations
by similarity. The largest fraction are operations like indexOf that take string inputs and
return an integer, which motivate the need for a solver that reasons about integers and
strings simultaneously. A significant fraction of the operations, including subtring, split
and replace, implicitly give rise to new strings from the original one, thereby giving rise to
constraints involving multiple string variables. Of the match, split and replace operations,
31% are regular expression based. Over 33% of the regular expressions have one or more
capturing parentheses. Capturing parentheses in regular expression based match operations

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 54

0

1

2

3

4

5

6
x 10

4

as
k−

a−
w
or

d

bi
rth

da
y

bl
oc

k−
no

te
s

ca
lo
rie

−w
at

ch
er

lis
ty

ex
pe

ns
e−

m
an

ag
e

no
te

s−
la
b

pr
og

re
ss

−b
ar

ca
lc
ul
at

or

to
do

−l
is
t

tv
−g

ui
de

w
or

d−
m

on
ke

y

zi
pc

od
e−

ga
s

ac
ad

em
ia

aj
ax

im

fa
ce

bo
ok

−c
ha

t

pa
rs

eU
ri

pl
ax

o

N
u
m

b
e
r

o
f
in

s
tr

u
c
ti
o
n
s ExecutedCompiled

Figure 4.10: Kudzu code coverage improvements over the testing period. For each experi-
ment, the right bar shows the increase in the executed code from the initial run to total code
executed. The left bar shows the increase in the code compiled from initial run to the total
code compiled in the entire test period.

lead to constraints involving multiple string variables, similar to operations such as split.
These characteristics show that a significant fraction of the string constraints arising in

our target applications require a solver that can reason about multiple string variables. We
empirically see examples of complex regular expressions as well as concatenation operations,
which stresses the need for our solver that handles both word equations and regular expres-
sion constraints. Prior to this work, off-the-shelf solvers did not support word equations and
regular expressions simultaneously.

Vulnerability Discovery. Kudzu is able to find client-side script injection vulnerabilities
in 11 of the applications tested. 2 of these were not known prior to these experiments and
were missed by Flax. One of them is on a social-networking application (http://plaxo.com)
that was missed by our Flax tool because the vulnerability exists on a page linked several
clicks away from the initial post-authentication page. The vulnerable code is executed only
as part of a feature in which a user sets focus on a text box and uses it to update his or
her profile. This is one of the many different ways to update the profile that the application
provides. Kudzu found that only one of these ways resulted in a client-side script injection
vulnerability, while the rest were safe. In this particular functionality, the application fails
to properly validate a string from a postMessage event before using it in an eval operation.
The application implicitly expects to receive this message from a window hosted at a sub-

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 55

0

1

2

3

4

5

6
x 10

4

as
k−

a−
w
or

d

bi
rth

da
y

bl
oc

k−
no

te
s

ca
lo
rie

−w
at

ch
er

lis
ty

ex
pe

ns
e−

m
an

ag
e

no
te

s−
la
b

pr
og

re
ss

−b
ar

ca
lc
ul
at

or

to
do

−l
is
t

tv
−g

ui
de

w
or

d−
m

on
ke

y

zi
pc

od
e−

ga
s

ac
ad

em
ia

aj
ax

im

fa
ce

bo
ok

−c
ha

t

pa
rs

eU
ri

pl
ax

o

N
u
m

b
e
r

o
f
in

s
tr

u
c
ti
o
n
s ExecutedCompiled

Figure 4.11: Benefits from symbolic execution alone (dark bars) vs. complete Kudzu (light
bars). For each experiment, the right bar shows the increase in the total executed code when
the event-space exploration is also turned on. The left bar shows the observed increase in
the code compiled when the event-space exploration is turned on.

domain of facebook.com; however, Kudzu automatically determines that any web principal
could inject any data string matching the format FB_msg:.*{.*}. This subsequently results
in code injection because the vulnerable application fails to validate the origin of the sender
and the structure of JSON string before its use in eval.

The second new vulnerability was found in a Google/IG gadget called Todo List. Similar
to the previous case, the vulnerability becomes reachable only when a specific value is selected
from a dropdown box. This interaction is among many that the gadget provides and we
believe that Kudzu’s automatic exploration is the key to discovering this use case. In several
other cases, such as AjaxIM, the vulnerable code is executed only after several events are
executed after initial sign-in page—Kudzu automatically reaches them during its exploration.

Kudzu did not find vulnerabilities in only one case that Flax reported a bug. This is be-
cause the vulnerability was patched in the time period between our experimental evaluation
of Flax and Kudzu.

Code and Event-space Coverage. Table 4.3 shows the code coverage by executing the
initial URL, and the final coverage after the test period. Measuring code coverage in a
dynamically compiled language is challenging because all the application code is not known
prior to the experiments. In our experiments, we measured the total code compiled during

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 56

our experiments and the total code executed.3

Table 4.3 shows an average improvement of over 29% in code coverage. The coverage
varies significantly depending on the application. Figure 4.10 provides more detail. On
several large applications, such as Facebook Chat, AjaxIM, and Plaxo, Kudzu discovers a
lot of new code during testing. Kudzu is able to concretely execute several code paths, as
shown by the increase in the right-side bars in Figure 4.10. On the other less complex gadget
applications, most of the relevant code is observed during compilation in the initial run itself,
leaving a relatively smaller amount of new code for Kudzu to discover. We also manually
analyzed the source code of these applications and found that a large fraction of their code
branches were not dependent on data we treat as untrusted.

To measure the benefits of symbolic execution alone, we repeated the experiments with
the event-space exploration turned off during the test period and report the comparison
to full-featured Kudzu in Figure 4.11. We consistently observe that symbolic execution
alone discovers and executes a significant fraction of the application by itself. The event-
exploration combined with symbolic execution does perform strictly better than symbolic
execution in all but 3 cases. In a majority of the cases, turning on the event-space exploration
significantly complements symbolic execution, especially for the AJAX applications which
have a significant GUI component. In the 3 cases where improvements are not significant,
we found that the event exploration generally either led to off-site navigations or the code
executed could be explored by symbolic execution alone. For example, in the parseUri case,
same code is executed by text-box input as well as by clicking a button on the GUI.

Table 4.4 shows the increase in number of events executed by Kudzu from the initial run
to the total at the end of test period. These events include all keyboard and mouse events
which result in execution of event handlers, navigation, form submissions and so on. We find
that new events are dynamically generated during one particular execution as well as when
new code is discovered. As a result, Kudzu gradually discovers new events and was able to
execute approximately 50% of the events it observes during the period of testing.

Effectiveness. Kudzu automatically generates a test suite of 49 new distinct inputs on
average for an application in the test period (shown in column 2 of table 4.3).

In the exploitable cases we observed, Kudzu was able to show the existence of a vulnera-
bility with an attack string once it reached the point of vulnerability. That is, its constraint
solver correctly determines the sufficiency or insufficiency of validation checks in a single
query without manual intervention or undirected iteration. This eliminates false positives
significantly in practice. For instance, Kudzu found that the Facebook web application has
several uses of postMessage data in eval constructs, but all uses were correctly preceded by
checks that assert that the origin of the message is a domain ending in .facebook.com. In
contrast, the vulnerability in Plaxo fails to check this and Kudzu identifies the vulnerability

3One unit of code in our experiments is a JavaScript bytecode compiled by the interpreter. To avoid
counting the same bytecode across several runs, we adopted a conservative counting scheme. We assigned a
unique identifier to each bytecode based on the source file name, source line number, line offset and a hash
of the code block (typically one function body) compiled.

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 57

Application # of initial # of total Total events
events fired events fired discovered

Academia 20 78 310
AJAXIm 72 481 988

FaceBook Chat 15 989 1354
ParseUri 5 16 17

Plaxo 88 381 688

AskAWord 2 8 11
Birthday Reminder 12 20 20

Block Notes 7 85 319
Calorie Watcher 14 18 22

Expenses Manager 10 107 1473
Listy 15 470 638

NotesLP 10 592 1034
Progress Bar 8 24 36

Simple Calculator 17 34 67
Todo List 8 26 61
TVGuide 17 946 1517

Word Monkey 3 10 22
Zip Code Gas 12 12 12

Average 18.61 238.72 477.17

Table 4.4: Event space Coverage: Column 2 and 3 show the number of events fired in the
first run and in total. The last column shows the total events discovered during the testing.

the first time it reaches that point. Some of the validation checks Kudzu deals with are
quite complex — Figure 3.8 shows an example which is simplified from a real application.
These examples are illustrative of the need for automated reasoning tools, because checking
the sufficiency of such validation checks would be onerous by hand and impractical by ran-
dom fuzzing. Lastly, we point out that like most other vulnerability discovery tools, Kudzu
can have false negatives because it may fail to cover code, or because of overly strict attack
grammars.

Constraint Solver Evaluation. Figure 4.12 shows the running times for solving queries of
various input constraint sizes. Each constraint is either a JavaScript string, arithmetic, logi-
cal, or boolean operation. The sizes of the equations varied from 1 to up to 250 constraints.
The solver decides satisfiability of the constraints typically under a second for satisfiable
cases. As expected, to assert unsatisfiability, the solver often takes time varying from nearly
a second to 50 seconds. The variation is large because in many cases the solver asserts unsat-
isfiable by asserting the unsatisfiability of length constraints, which is inexpensive because
the step of bit-vector encoding is avoided. In other cases, the unsatisfiability results only
when the solver determines the unsatisfiability of bit-vector solutions.

Our solver requires only an upper bound on the lengths of input variables, and is able to
infer satisfiable lengths of variables internally. In these experiments, we increase the upper
bound of the input variables from 10 to 100 characters in steps of 20 each. If the solver asserts

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 58

0 50 100 150 200 250

0.05

0.5

5

50

Solve Time (SAT cases) Solve Time(UNSAT cases)

Figure 4.12: The constraint solver’s running time (in seconds) as a function of the size of
the input constraints (in terms of the number of symbolic JavaScript operations)

unsatisfiability up to the length bound of 100, the constraints are deemed unsatisfiable.

4.7 Related Work

Kudzu is the first application of dynamic symbolic execution to client-side JavaScript. Here,
we discuss some related projects that have applied similar techniques to server-side web
applications, or have used different techniques to search for JavaScript bugs. Finally, we
summarize why we needed to build a new string constraint solver.

Server-side analysis. JavaScript application code is similar in some ways to server-side
code (especially PHP); for instance, both tend to make heavy use of string operations.
Several previous tools have demonstrated the use of symbolic execution for finding SQL
injection and reflected or stored cross-site scripting attacks to code written in PHP and
Java [122, 65, 5]. However, JavaScript code usually parses its own input, so JavaScript
symbolic execution requires more expressive constraints, specifically to relate different strings
that were previously part of a single string. Additional challenges unique to JavaScript arise

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 59

because JavaScript programs take many different kinds of input, some of which come via
user interface events.

Like Kudzu, the Saner [8] tool for PHP aims to check whether sanitization routines are
sufficient, not just that they are present. However their techniques are quite different: they
select paths and model transformations statically, then perform testing to verify some vulner-
abilities. Their definition of sanitization covers only string transformations, not validation
checks involving branches, which occur frequently in our applications.

Analysis frameworks for JavaScript. Several works have recently applied static analysis
to detect bugs in JavaScript applications (e.g., [47, 26]). Static analysis is complementary
to symbolic execution: if a static analysis is sound, an absence of bug reports implies the
absence of bugs, but static analysis warnings may not be enough to let a developer reproduce
a failure, and in fact may be false positives.

Flax uses taint-enhanced blackbox fuzzing to detect if the JavaScript application em-
ploys sufficient validation or not [100]; like Kudzu, it searches for inputs to trigger a failure.
However, Flax requires an external test suite to be able to reach the vulnerable code,
whereas Kudzu generates a high-coverage test suite automatically. Also, Flax performs
only black-box fuzz testing to find vulnerabilities, while Kudzu’s use of a constraint solver
allows it to reason about possible vulnerabilities based on the analyzed code.

Crawljax is a recently developed tool for event-space exploration of AJAX applica-
tions [78]. Specifically, Crawljax builds a static representation of a Web 2.0 application
by clicking elements on the page and building a state graph from the resulting transitions.
Kudzu’s value space exploration complements such GUI exploration techniques and enables
a more complete analysis of the application using combined symbolic execution and GUI
exploration.

String constraint solvers. String constraint solvers have recently seen significant develop-
ment, and practical tools are beginning to become available, but as detailed in Section 4.3,
no previous solvers would be sufficient for JavaScript, since they lack support for regular
expressions [17, 11, 22], string equality [50], or multiple variables [66], which are needed in
combination to reason about JavaScript input parsing. In concurrent work, Veanes et al. give
an approach based on automata and quantified axioms to reduce regular expressions to the
Z3 decision procedure [116]. Combined with [17], this would provide similar expressiveness
to Kudzu.

4.8 Conclusion

With the rapid growth of AJAX applications, JavaScript code is becoming increasingly com-
plex. In this regard, security vulnerabilities and analysis of JavaScript code is an important
area of research. In this chapter, we presented the design of the first complete symbolic-
execution based system for exploring the execution space of JavaScript programs. In making
the system practical we addressed challenges ranging from designing a more expressive lan-

CHAPTER 4. FINDING VULNERABILITIES USING DYNAMIC SYMBOLIC
EXECUTION 60

guage for string constraints to implementing exploration and replay of GUI events. We
have implemented our ideas in a tool called Kudzu. Given a URL for a web application,
Kudzu automatically generates a high-coverage test suite. We have applied Kudzu to find
client-side script injection vulnerabilities and Kudzu finds 11 vulnerabilities (2 previously
unknown) in live applications without producing false positives.

61

Chapter 5

Analysis of Existing Defenses

In this thesis so far, we have discussed techniques for finding scripting vulnerabilities in web
applications. In this chapter, we study existing techniques that developers use to prevent
these vulnerabilities from manifesting in the first place.

A central reason for the wide-spread prevalence of scripting attacks is the ad-hoc nature of
output generation from web applications today. Web applications emit code intermixed with
data in an unstructured way. Web application output is essentially text strings which can be
emitted from the server-side code (in Java or PHP) or from client-side code in JavaScript.
When a portion of the application output controlled by the attacker is parsed by the browser
as a script, a script injection attack results.

Sanitization Defenses & Known Problems. The predominant first-line of defense
against scripting vulnerabilities is sanitization—the process of applying encoding or filtering
primitives, called sanitization primitives or sanitizers, to render dangerous constructs in un-
trusted inputs inert [8, 129, 110, 125]. There are two well-established problems known about
the practice of manually applying sanitizers which make it is notoriously prone to manual
errors [8, 97, 99, 100, 75, 62]. First, developers often implement sanitization primitives in-
correctly [51, 8]. Second, developers often fail to apply any sanitization to untrusted content
before embedded it inline in code that is parsed by the browser. We call this problem of
missing sanitization. A significant body of prior research has focused on developing analysis
for detecting program paths with missing sanitization.

In this chapter, we study why sanitization is challenging and determine how it is used
in existing large-scale applications. In addition, we study the prominent defense techniques
available to web developers in emerging web application frameworks. We find two new
problems with how sanitization is used in large commercial applications, which go beyond
the problems of missing sanitization or incorrect implementation of sanitizers. We also
empirically measure the support for correct sanitization available to developers from 14
popular web frameworks. We begin by introducing the challenges in using a sanitization-
based defense techniques correctly in the next section.

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 62

5.1 Challenges in Sanitization

Sanitization is deviously complex; it involves understanding how the web browser parses and
interprets web content in non-trivial detail. Though immensely important, this issue has not
been adequately explained in prior research. For instance, prior research does not detail the
security ramifications of the complex interactions between the sub-languages implemented
in the browser or the subtle variations in different interfaces for accessing or evaluating data
via JavaScript’s DOM API. This has important implications on the security of sanitization,
as we show through multiple examples in this chapter. For instance, we show examples of
how sanitization performed on the server-side can be effectively “undone” by the browser’s
parsing of content into the DOM, which may introduce scripting vulnerabilities in client-side
JavaScript code.

We formulate the sanitization defense using a comprehensive model of the browser’s pars-
ing behavior in this section. We discuss the challenges and subtleties scripting sanitization
must address here.

Sanitization Defined

Web applications mix control data (code) and content in their output which is consumed by
the web browser. When data controlled by the attacker is interpreted by the web browser as
if it was code written by the web developer, a scripting attack results. A canonical example
of a scripting attack is as follows. Consider a blogging web application that emits untrusted
content, such as anonymous comments, on the web page. If the developer is not careful, an
attacker can input text such as <script>...<script>, which may be output verbatim in the
server’s output HTML page. When a user visits this blog page, her web browser will execute
the attacker controlled text as script code.

Sanitization requires removal of such dangerous tags from the untrusted data. Unfortu-
nately, not all cases are as simple as this <script> tag example. In the rest of this section,
we identify browser features that make preventing script injection attacks much more com-
plicated.

The Browser Model. We present a comprehensive model of the web browser’s parsing
behavior. While the intricacies of browser parsing behavior have been discussed before [136],
a formal model has not been built to fully explore its complexity. We show this model
in Figure 5.1. Abstractly, the browser can be viewed as a collection of HTML-related sub-
grammars and a collection of transducers. Sub-grammars correspond to parsers for languages
such as URI schemes, CSS, HTML, and JavaScript (the rounded rectangles in Figure 5.1).
Transducers transform or change the representation of the text, such as in HTML-entity
encoding/decoding, URI-encoding, JavaScript Unicode encoding and so on (the unshaded
rectangles in Figure 5.1). The web application’s output, i.e., HTML page, is input into
the browser via the network; it can be directly fed into the HTML parser after some pre-
processing or it can be fed into JavaScript’s HTML evaluation constructs. The browser
parses these input fragments in stages—when a fragment is recognized as a term in another

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 63

HTML parser

HTML page

Document

JavaScript parser

CSS parser

URI parser

1. PCDATA

CDATA

JavaScript
runtime

<style>

2. <script>

4. URI attributes

JS expressions
url()

HTML entity decoder

5. javascript: URIs

inline styles
3. event handlers

Network

Content type dispatch

Character set encoder/decoder

text/html

da
ta
:

UR
Is

text/javascript text/css

JavaScript code

6. innerHTML/document.write

CSS stylesheet

HTML
entity

decoder

7. DOM APIs

Figure 5.1: Flow of Data in our Browser Model. Certain contexts such as PCDATA and CDATA

directly refer to parser states in the HTML 5 specification. We refer to the numbered and
underlined edges during our discussion in the text.

sub-grammar, it is shipped to the corresponding sub-grammar for reparsing and evaluation
(e.g., edge 2). For example, while the top-level HTML grammar identifies an anchor (<a>) tag
in the HTML document, the contents of the href attribute are sent to the URI parser (edge
4). The URI parser handles a javascript: URI by sending its contents to the JavaScript
parser (edge 3), while other URIs are sent to their respective parsers.

Subtleties and Challenges in Sanitization

The model shows that the interaction between sub-components is complex; burdening de-
velopers with fully understanding their subtleties is impractical. We now describe a number
of such challenges that correct sanitization-based defense needs to address.

Challenge 1: Context Sensitivity. Sanitization for XSS defense requires knowledge of
where untrusted input appears structurally and semantically in the web application. For
example, simple HTML-entity encoding is a sufficient sanitization procedure to neutralize
scripting attacks when is placed inside the body of an HTML tag, or, in the PCDATA (edge
1) parsing context, as defined by HTML5 [119]. However, when data is placed in a resource
URI, such as the src or href attribute of a tag, HTML-encoding is insufficient to block
attacks such as via a javascript: URI (edge 4 and 5). We term the intuitive notion of
where untrusted data appears as its context. Sanitization requirements vary by contexts.

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 64

Frameworks providing sanitization primitives need to be mindful of such differences from
context to context. The list of these differences is large [94].

Challenge 2: Sanitizing nested contexts. We can see in the model that a string in a
web application’s output can be parsed by multiple sub-parsers in the browser. We say that
such a string is placed in nested contexts. That is, its interpretation in the browser will cause
the browser to traverse more than one edge shown in Figure 5.1.

Sanitizing for nested contexts adds its own complexity. Consider an untrusted string
embedded inside a script block, such as <script> var x = ‘ UNTRUSTED DATA ’...</script>.
In this example, when the underlined data is read by the browser, it is simultaneously placed
in two contexts. It is placed in a JavaScript string literal context by the JavaScript parser
(edge 2) due to the single quotes. But, before that, it is inside a <script> HTML tag (or
RCDATA context according to the HTML 5 specification) that is parsed by the HTML parser.
Two distinct attack vectors can be used here: the attacker could use a single quote to break
out of the JavaScript string context, or inject </script> to break out of the script tag. In
fact, sanitizers commonly fail to account for the latter because they do not recognize the
presence of nested contexts.

Challenge 3: Browser Transductions. If dealing with multiple contexts is not arduous
enough, our model highlights the implicit transductions that browsers perform when handing
data from one sub-parser to another. These are represented by edges from rounded rectangles
to unshaded rectangles in Figure 5.1. Such transductions and browser-side modifications can,
surprisingly, undo sanitization applied on the server.

Consider a blog page in which comments are hidden by default and displayed only after
a user clicks a button. The code uses an onclick JavaScript event handler:

<div class=‘comment-box’onclick=‘displayComment(" UNTRUSTED ",this)’>

... hidden comment ... </div>

The underlined untrusted comment is in two nested contexts: the HTML attribute and
single-quoted JavaScript string contexts. Apart from preventing the data from escaping
out of the two contexts separately (Challenge 2), the sanitization must worry about an
additional problem. The HTML 5 standard mandates that the browser HTML-entity decode
an attribute value (edge 3) before sending it to a sub-grammar. As a result, the attacker
can use additional attack characters even if the sanitization performs HTML-entity encoding
to prevent attacks. The characters " will get converted to " before being sent to the
JavaScript parser. This will allow the untrusted comment to break out of the string context
in the JavaScript parser. We term such implicit conversions as browser transductions.

Table 5.1 details browser transductions that are automatically performed upon reading
or writing to the DOM. The DOM property denotes the various aspects of an element
accessible through the DOM APIs, while the access method describes the specific part of the
API through which a developer may edit or examine these attributes. Excepting “specified
in markup”, the methods are all fields or functions of DOM elements.

Table 5.2 describes the specifics of the transducers employed by the browser. Except
for “HTML entity decoding”, the transductions all occur in the parsing and serialization

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 65

DOM property Access method Transductions on
reading

Transductions on
writing

data-* attribute get/setAttribute
None None

.dataset None None
specified in
markup

N/A HTML entity de-
coding

src, href attributes get/setAttribute
None None

.src, .href URI normalization None
specified in
markup

N/A HTML entity de-
coding

id, alt, title, type, lang,
class get/setAttribute

None None

dir attributes .[attribute name] None None
specified in
markup

N/A HTML entity de-
coding

style attribute get/setAttribute
None None

.style.* CSS serialization CSS parsing
specified in
markup

N/A HTML entity de-
coding

HTML contained by node .innerHTML HTML serialization HTML parsing
Text contained by node .innerText,

.textContent
None None

HTML contained by node,
including the node itself

.outerHTML HTML serialization HTML parsing

Text contained by node,
surrounded by markup for
node

.outerText None None

Table 5.1: Transductions applied by the browser for various accesses to the document. These
summarize transductions when traversing edges connected to the “Document” block in Fig-
ure 5.1.

Type Description Illustration

HTML entity decoding Replacement of character entity refer-
ences with the actual characters they rep-
resent.

& → &

HTML parsing Tokenization and DOM construction fol-
lowing the HTML parsing rules, including
entity decoding as appropriate.

<p>></p>→ HTML ele-
ment P with body >

HTML serialization Creating a string representation of an
HTML node and its children.

HTML element P with body
> → <p>></p>

URI normalization Resolving the URI to an absolute one,
given the context in which it appears.

/article title →
http://www.example.com/
article%20title

CSS parsing Parsing CSS declarations, including char-
acter escape decoding as appropriate.

color: \72\65\64 →
color: red

CSS serialization Creating a canonical string representation
of a CSS style declaration.

“ color:#f00” → “ color:
rgb(255, 0, 0); ”

Table 5.2: Details regarding the transducers mentioned in Table 5.1. They all involve various
parsers and serializers present in the browser for HTML and its related sub-grammars.

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 66

processes triggered by reading and writing these properties as strings. When writing to a
property, the browser parses the string to create an internal AST representation. When
reading from a property, the browser recovers a string representation from the AST.

Textual values are HTML entity decoded when written from the HTML parser to the
DOM via edge 1 in Figure 5.1. Thus, when a program reads a value via JavaScript, the
value is entity decoded. In some cases, the program must re-apply the sanitization to this
decoded value or risk having the server’s sanitization be undone.

One set of DOM read access APIs creates a serialized string of the AST representation of
an element, as described in Table 5.2. The other API methods simply read the text values of
the string versions (without serializing the ASTs to a string) and perform no canonicalization
of the values.

The transductions vary significantly for the DOM write access API as well, as detailed in
Table 5.1. Some writes cause input strings to be parsed into an internal AST representation,
or apply simple replacements on certain character sequences (such as URI percent-decoding),
while others store the input as is.

In addition, the parsers in Figure 5.1 apply their own transductions internally on certain
pieces of their input. The CSS and JavaScript parsers unescape certain character sequences
within string literals (such as Unicode escapes), and the URI parser applies some of its own
as well (undoing percent-encoding).

Challenge 4: Dynamic Code Evaluation. In principle, the chain of edges traversed by
the browser while parsing a text can be arbitrarily long because the browser can dynamically
evaluate code. Untrusted content can keep cycling through HTML and JavaScript contexts.
For example, consider the following JavaScript code fragment:

function foo(untrusted) {

document.write("<input onclick=’foo(" + untrusted + ")’ >");

}

Since untrusted text is repeatedly pumped through the JavaScript string and HTML
contexts (edges 3 and 6 of Figure 5.1), statically determining the context traversal chain
on the server is infeasible. In principle, purely server-side sanitization is not sufficient for
context determination because of dynamic code evaluation. Client-side sanitization is needed
in these cases to fully mitigate potential attacks. Failure to properly sanitize such dynamic
evaluation leads to the general class of attacks called DOM-based scripting or client-side
code injection attacks [113].

Another key observation is that browser transductions along the edges of Figure 5.1 vary
from one edge to another, as detailed earlier. This mismatch can cause scripting vulnera-
bilities. To illustrate this, we present a real-world example in Figure 5.2 from one of the
applications we evaluated, phpBB3, showing how these subtleties may be misunderstood by
developers.

In the server-side code, which is not shown here, the application sanitizes the title

attribute of an HTML element by HTML-entity encoding it. If the attacker enters a string

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 67

text = element.getAttribute(’title’);

// ... elided ...

desc = create_element(’span’, ’bottom’);

desc.innerHTML = text;

tooltip.appendChild(desc);

Figure 5.2: A real-world vulnerability in PHPBB3.

like <script>, the encoding converts it to <script>. The client-side code subsequently
reads this attribute via the getAttribute DOM API in JavaScript code (shown above) and
inserts it back into the DOM via the innerHTML method. The vulnerability is that the browser
automatically decodes HTML entities (through edge 1 in Figure 5.1) while constructing the
DOM. This effectively undoes the server’s sanitization in this example. The getAttribute

DOM API reads the decoded string (e.g., <script>) from the DOM (edge 7). Writing <script>

via innerHTML (edge 6) results in XSS.
This bug is subtle. Had the developer used innerText instead of innerHTML to write the

data, or used innerHTML to read the data, the code would not be vulnerable. The reason is
that the two DOM APIs discussed here read different serializations of the parsed page, as
explained earlier in this section.

Challenge 5: Character-set Issues. Successfully sanitizing a string at the server side
implicitly requires that the sanitizer and the browser employ the same character set while
working with the string. A common source of scripting vulnerabilities is a mismatch in
the charset assumed by the sanitizer and the charset used by the browser. For example,
the ASCII string +ADw- does not have any suspicious characters. But when interpreted by
the browser as UTF-7 character-set, it maps to the dangerous < character: this mismatch
between the server-side sanitization and browser character set selection has led to multiple
scripting vulnerabilities [115].

Challenge 6: MIME-based XSS, Universal XSS, and Mashup Confinement. Browser
quirks, especially in interpreting content or MIME types [11], contribute their own share of
XSS vulnerabilities. Similarly, bugs in browser implementations, such as capability leaks [35]
and parsing inconsistencies [10], or in browser extensions [14] are important components of
the XSS landscape. However, these do not pertain to sanitization defenses in web frame-
works. Therefore, we consider them to be out-of-scope for this study.

5.2 Support for Auto-Sanitization in Existing Web

Application Frameworks

Though defense techniques for scripting attacks have enjoyed intense focus [16, 93, 110, 67,
118, 6, 132, 71, 127, 62, 55, 87, 75, 8, 15], research has paid little attention to a promising
sets of tools—web application frameworks—which are gaining wide adoption [46, 27, 30,

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 68

103, 95, 32, 137, 133, 60, 112, 109]. Many of these frameworks claim that their sanitization
abstractions can be used to make web applications secure against scripting attacks [111, 133].
Though possible in principle, this section investigates the extent to which it is presently true,
clarifies the assumptions that frameworks make, and outlines the fundamental challenges that
frameworks need to address.

Most legacy web applications implement their sanitization defense manually, which is
prone to errors. Web frameworks offer a platform to automate sanitization in web appli-
cations, freeing developers from existing ad-hoc and error-prone manual analysis. As web
applications increasingly rely on web frameworks, we aim to understand the assumptions
web frameworks build on and the security of their underlying sanitization mechanisms.

A web framework can address scripting attacks using sanitization if it correctly addresses
all the subtleties. Whether existing frameworks achieve this goal is an important question
and a subject of this chapter. A systematic study of today’s web frameworks should evaluate
their security and assumptions along the following dimensions to quantify their benefits:

• Context Expressiveness and Sanitizer Correctness. As we detailed in Challenge
1, sanitization requirements change based on the context of the untrusted data. We
investigate the set of contexts in which untrusted data is used by applications, and
whether web frameworks support those contexts. In the absence of such support, a
developer will have to revert to manually writing sanitization functions. The challenges
outlined in Section 5.1 make manually developing correct sanitizers a non-starter. In-
stead, we ask, do web frameworks provide correct sanitizers for different contexts that
applications commonly use in practice?

• Auto-sanitization and Context-Sensitivity. Providing sanitizers is only a small
part of the overall solution necessary to defend against scripting attacks attacks. Ap-
plying sanitizers in code automatically, which we term auto-sanitization, shifts the
burden of ensuring safety against scripting attacks from developers to frameworks.
The benefit of this is self-evident: performing correct sanitization in framework code
spares each and every developer from having to implement correct sanitization himself,
and from having to remember to perform that sanitization everywhere necessary. Fur-
thermore, correct auto-sanitization needs to be context-sensitive—context-insensitive
auto-sanitization can lead to a false sense of security. Do web frameworks offer auto-
sanitization, and if so, is it context-sensitive?

In this section, we empirically analyze web frameworks and the sanitization abstractions
they provide along the outlined dimensions. We compare application requirements to each
abstraction provided by frameworks, showing that there is a mismatch in the abstractions
provided by frameworks and the requirements of applications.

We begin by analyzing the “auto-sanitization” feature—a security primitive in which
web frameworks sanitize untrusted data automatically—in Section 5.2. We identify the
extent to which it is available, the pitfalls of its implementation, and whether developers can

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 69

Language Framework, Plugin, or Feature Automatically
Sanitizes in
HTML Con-
text

Performs
Context-
Aware Sani-
tization

Pointcut

PHP CodeIgniter • Request Reception
VB, C#, C++, F# ASP.NET Request Validation [80] • Request Reception
Ruby xss terminate Rails plugin [131] • Database Insertion
Python Django • Template Processing
Java GWT SafeHtml • • Template Processing
C++ Ctemplate • • Template Processing
Language-neutral ClearSilver • • Template Processing

Table 5.3: Extent of automatic sanitization support in the frameworks we study and the
pointcut (set of points in the control flow) where the automatic sanitization is applied.

blindly trust this mechanism if they migrate/develop applications on existing auto-sanitizing
frameworks.

Frameworks may not provide auto-sanitization, but instead may provide sanitizers which
developers can manually invoke. Arguably, the sanitizers implemented by frameworks would
be more robust than the ones implemented by the application developer. We evaluate the
breadth of contexts for which each framework provides sanitizers, or the context expres-
siveness of each framework, later in this section. We also compare it to the requirements
of the applications we study today to check if this expressiveness is enough for real-world
applications.

Methodology and Analysis Subjects. We examine 14 popular web application frame-
works in commercial use for different programming languages and 8 popular PHP web ap-
plications ranging from 19 KLOC to 532 KLOC in size. We used a mixture of manual and
automated exploration to identify sanitizers in the web application running on an instru-
mented PHP interpreter. We then executed the application again along paths that use these
sanitization functions and parse the outputs using a HTML 5-compliant browser to deter-
mine the contexts for which they sanitize. We focus here solely on the results of our empirical
analysis. A technical report provides the full details of the techniques employed [126].

Auto-Sanitization: Features and Pitfalls

Auto-sanitization is a feature that shifts the burden of ensuring safety against scripting
from the developer to the framework. In a framework that includes auto-sanitization, the
application developer is responsible for indicating which variables will require sanitization.
When the page is output, the web application framework can then apply the correct sanitizer
to these variables. Our findings, summarized in Table 5.3, are as follows:

• Of the 14 frameworks evaluated, only 7 support some form of auto-sanitization.

• 4 out of the 7 auto-sanitization framework apply a “one-size-fits-all” strategy to saniti-
zation. That is, they apply the same sanitizer to all flows of untrusted data irrespective

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 70

of the context into which the data flows. We call this context-insensitive sanitization,
which is fundamentally unsafe, as explained later.

• We measure the fraction of application output sinks actually protected by context-
insensitive auto-sanitization mechanism in 10 applications built on Django, a popular
web framework. Table 5.4 presents our findings. The mechanism fails to correctly
protect between 14.8% and 33.6% of an application’s output sinks.

• Only 3 frameworks perform context-sensitive sanitization.

No auto-sanitization. Only half of the studied frameworks provide any auto-sanitization
support. This implies that developers must deal with the challenges of selecting where to
apply built-in or custom sanitizers in code when using such frameworks. This manual process
is prone to errors, as evidenced in the following real-world example from a Django application
called GRAMPS.

{% if header.sortable %}

{% endif %}

Figure 5.3: Example of Django application with wrong sanitization

The developer sanitizes a data variable placed in the href attribute but uses the HTML-
entity encoder (escape) to sanitize the data variable header.url. This is an instance of
Challenge 2 outlined in Section 5.1. In particular, this sanitizer fails to prevent scripting
attack vectors such as javascript: URIs.

Insecurity of Context-insensitive auto-sanitization. Another interesting fact about
the above example is that even if the developer relied on Django’s default auto-sanitization,
the code would be vulnerable to scripting attacks. Django employs context-insensitive auto-
sanitization, i.e., it applies the same sanitizer (escape) irrespective of the output context.
The sanitization primitive escape performs an HTML-entity encode and is thus safe for use
in HTML tag context but unsafe for other contexts. In the above example, applying escape,
automatically or otherwise, fails to protect against scripting attacks. Auto-sanitization sup-
port in Rails [131], .NET (request validition [80]) and CodeIgniter is context-insenstive and
has similar problems.

Context-insensitive auto-sanitization provides a false sense of security. On the other
hand, relying on developers to pick a sanitizer consistent with the context is error-prone,
and one scripting hole is sufficient to subvert the web application’s integrity. Thus, because
it covers some limited cases, context-insensitive auto-sanitization is better protection than
no auto-sanitization.

We measure the percentage of output sinks protected by context-insensitive auto-sanitization
in 10 Django-based applications that we randomly selected for further investigation [33]. We

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 71

Web Application No.
Sinks

%
Auto-
sanitized
Sinks

%
Sinks
not
sani-
tized
(marked
safe)

%
Sinks
man-
ually
sani-
tized

%
Sinks
in
HTML
Con-
text

%
Sinks
in
URI
Attr.
(excl.
scheme)

%
Sinks
in
URI
Attr.
(incl.
scheme)

%
Sinks
in JS
Attr.
Con-
text

%
Sinks
in JS
Num-
ber or
String
Con-
text

%
Sinks
in
Style
Attr.
Con-
text

GRAMPS
Genealogy
Manage-
ment

286 77.9 0.0 22.0 66.4 3.4 30.0 0.0 0.0 0.0

HicroKee’s
Blog

92 83.6 7.6 8.6 83.6 6.5 7.6 1.0 0.0 1.0

FabioSouto.eu 55 90.9 9.0 0.0 67.2 7.2 23.6 0.0 1.8 0.0
Phillip
Jones’
Eportfolio

94 92.5 7.4 0.0 73.4 11.7 12.7 0.0 2.1 0.0

EAG cms 19 94.7 5.2 0.0 84.2 0.0 5.2 0.0 0.0 10.5
Boycott
Toolkit

347 96.2 3.4 0.2 71.7 1.1 25.3 0.0 1.7 0.0

Damned
Lies

359 96.6 3.3 0.0 74.6 0.5 17.8 0.0 0.2 6.6

oebfare 149 97.3 2.6 0.0 85.2 6.0 8.0 0.0 0.0 0.6
Malaysia
Crime

235 98.7 1.2 0.0 77.8 0.0 1.7 0.0 20.4 0.0

Philippe
Marichal’s
web site

13 100.0 0.0 0.0 84.6 0.0 15.3 0.0 0.0 0.0

Table 5.4: Usage of auto-sanitization in Django applications. The first 2 columns are the
number of sinks in the templates and the percentage of these sinks for which auto-sanitization
has not been disabled. Each remaining column shows the percentage of sinks that appear in
the given context.

statically correlated the automatically applied sanitizer to the context of the data; the results
are in Table 5.4. The mechanism protects between 66.4% and 85.2% of the output sinks, but
conversely permits scripting vectors in 14.8% to 33.6% of the contexts, subject to whether
attackers control the sanitized data or not. We did not determine the exploitability of these
incorrectly auto-sanitized cases, but we observed that in most of these cases, developers
resorted to custom manual sanitization.

Context-Sensitive Sanitization. Context-sensitive auto-sanitization addresses the above
issues. Three web frameworks, namely GWT, Google Clearsilver, and Google Ctemplate,
provide this capability. In these frameworks, the auto-sanitization engine performs runtime
parsing, keeping track of the context before emitting untrusted data. The correct sani-
tizer is then automatically applied to untrusted data based on the tracked context. These
frameworks rely on developers to identify untrusted data. The typical strategy is to have
developers write code in templates, which separate the HTML content from the (untrusted)
data variables. For example, consider the following simple template supported by the Google

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 72

Ctemplate framework shown in Figure 5.4.

{{%AUTOESCAPE context="HTML"}}

<html><body><script> function showName() {

document.getElementById("sp1").textContent = "Name: {{NAME}}";} </script>

Click to display name.

Homepage: {{PAGENAME}} </body></html>

Figure 5.4: Example of Auto-sanitization in Google Ctemplate framework

Variables that require sanitization are surrounded by {{ and }}; the rest of the text is
HTML content to be output. When the template executes, the engine parses the output and
determines that (for instance) {{NAME}} is in a JavaScript string context and automatically
applies the sanitizer for the JavaScript string context, namely :javascript_escape. For other
variables, the same mechanism applies the appropriate sanitizers. For instance, the variable
{{URI}} is sanitized with the :url_escape_with_arg=html sanitizer.

Context Expressiveness

Having analyzed the auto-sanitization support in web frameworks for static HTML evalua-
tion as well as dynamic evaluation via JavaScript, we turn to the support for manual sani-
tization. Frameworks may not provide auto-sanitization but instead may provide sanitizers
which developers can call. This improves security by freeing the developer from (re)writing
complex, error-prone sanitization code. In this section, we evaluate the breadth of contexts
for which each framework provides sanitizers, or the context expressiveness of each frame-
work. For example, a framework that provides built-in sanitizers for more than one context,
say in URI attributes, CSS keywords, JavaScript string contexts, is more expressive than
one that provides a sanitizer only for HTML tag context.

Expressiveness of Framework Sanitization Contexts. Table 5.5 presents the expres-
siveness of web frameworks we study and Table 5.6 presents the expressiveness required by
our subject web applications. The key insights are:

• We observe that 9 out of the 14 frameworks do not support contexts other than the
HTML context (e.g., as the content body of a tag or inside a non-URI attribute) and
the URI attribute context. The most common sanitizers for these are HTML entity
encoding and URI encoding, respectively.

• 4 web frameworks, ClearSilver, Ctemplate, Django, and Smarty, provide appropriate
sanitization functions for emitting untrusted data into a JavaScript string. Only 1
framework, Ctemplate, provides a sanitizer for emitting data into JavaScript outside of
the string literal context. However, the sanitizer is a restrictive whitelist, allowing only

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 73

Language Framework HTML
tag
con-
tent
or
non-
URI
at-
tribute

URI
At-
tribute
(ex-
cluding
scheme)

URI
At-
tribute
(in-
clud-
ing
scheme)

JS
String

JS
Num-
ber or
Boolean

Style
At-
tribute
or Tag

Perl
Mason [1, 112] • •
Template Toolkit [109] • •
Jifty [60] • •

PHP

CakePHP [23] • •
Smarty Template Engine [103] • • •
Yii [133, 53] • •
Zend Framework [137] • •
CodeIgniter [28, 29] • •

VB, C#, C++, F# ASP.NET [52] • •
Ruby Rails [95] • •
Python Django [32] • • • •
Java GWT SafeHtml [46] • • •
C++ Ctemplate [30] • • • • • •
Language-neutral ClearSilver [27] • • • • •

Table 5.5: Sanitizers provided by languages and/or frameworks. For frameworks, we also
include sanitizers provided by standard packages or modules for the language.

numeric or boolean literals. No framework we studied allows untrusted JavaScript code
to be emitted into JavaScript contexts. Supporting this requires a client-side isolation
mechanism such as ADsafe [3] or Google’s Caja [45].

• 4 web frameworks, namely Django, GWT, Ctemplate, and Clearsilver, provide sani-
tizers for URI attributes in which a complete URI (i.e., including the URI protocol
scheme) can be emitted. These sanitizers reject URIs that use the javascript: scheme
and accept only a whitelist of schemes, such as http:.

• Of the frameworks we studied, we found only one that provides an interface for cus-
tomizing the sanitizer for a given context. Yii uses HTML Purifier [53], which allows
the developer to specify a custom list of allowed tags. For example, a developer may
specify a policy that allows only tags. The other frameworks (even the context-
sensitive auto-sanitizing ones) have sanitizers that are not customizable. That is,
untrusted content within a particular context is always sanitized the same way.

The set of contexts for which a framework provides sanitizers gives a sense of how the
framework expects web applications to behave. Specifically, frameworks assume applications
will not emit sanitized content into multiple contexts. More than half of the frameworks we
examined do not expect web applications to insert content with arbitrary schemes into URI
contexts, and only one of the frameworks supports use of untrusted content in JavaScript

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 74

Application Description LOC HTML
Con-
text

URI
Attr.
(excl.
scheme)

URI
Attr.
(incl.
scheme)

JS
Attr.
Con-
text

JS
Num-
ber
or
String
Con-
text

No.
of
Sani-
tizers

No.
of
Sinks

RoundCube IMAP Email Client 19,038 • • • • • 30 75
Drupal Content Management 20,995 • • • • • 32 2557
Joomla Content Management 75,785 • • • • 22 538
WordPress Blogging App. 89,504 • • • • 95 2572
MediaWiki Wiki Hosting 125,608 • • • • • 118 352
PHPBB3 Bulletin Board Software 146,991 • • • • • 19 265
OpenEMR Medical Records Mgmt. 150,384 • • • 18 727
Moodle E-Learning Software 532,359 • • • • • 43 6282

Table 5.6: The web applications we study and the contexts for which they sanitize.

Number or Boolean contexts. Below, we challenge these assumptions by quantifying the set of
contexts for which applications need sanitizers.

Expressiveness of Contexts in Web Applications. We examined our 8 subject PHP
applications, ranging from 19 to 532 KLOC, to understand what expressiveness they require
and whether they could, theoretically, migrate to the existing frameworks. We systematically
measure and enumerate the contexts into which these applications emit untrusted data.
Table 5.6 shows the result of this evaluation. We observe that nearly all of the applications
insert untrusted content into all of the outlined contexts. Contrast this with Table 5.5, where
most frameworks support a much more limited set of contexts with built-in sanitizers.

5.3 Failures of Sanitization in Large-Scale

Applications

In this section, we present our analysis of 7 large-scale, Microsoft .NET-based shipping web
applications. These applications have a total of over 400,000 lines of code. We performed
our security testing on a set of 53 large web pages derived from these 7 applications. Each
page contains 350–900 DOM nodes. We have found two new class of sanitization errors we
commonly observe in our empirical analysis: context-mismatched sanitization and inconsis-
tent multiple sanitization, both of which demonstrate that placement of sanitizers in legacy
code is a significant challenge even if the sanitizers themselves are securely constructed. As
mentioned previously, these errors are not the traditional known problems of missing sani-
tization or those of incorrectly implemented sanitizers; each individual sanitizer in our test
application is correct to the best of our knowledge. We explain these errors below and give
an overview of our empirical findings. We exclude the implementation and design of a tool
called ScriptGard which we developed to perform this analysis—details of this tool are
available in our conference paper [97].

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 75

HTML Sink Context Correct sanitizer that suffices

HTML Tag Context HTMLEncode, SimpleTextFormatting

Double Quoted Attribute HTMLAttribEncode

Single Quoted Attribute HTMLAttribEncode

URL Path attribute URLPathEncode

URL Key-Value Pair URLKeyValueEncode

In Script String EcmaScriptStringEncode

CDATA HTMLEncode

Style Alpha− numerics

Figure 5.5: Sanitizer-to-context mapping for our test applications.

Scripting attacks are highly context-dependent—a string such as expression: alert(a)

is innocuous when placed inside a HTML tag context, but can result in JavaScript execution
when embedded in a CSS attribute value context. In fact, the set of contexts in which un-
trusted data is commonly embedded by today’s web applications is well-known. Sanitizers
that secure data against scripting attacks in each of these contexts are publicly available [129,
42]. We find that security experts have already implemented functionally correct sanitizers
and specified the contexts that each sanitizer corresponds to for our target application. We
extract this security specification by discussing with the security experts and the mapping of
sanitizers to their intended contexts of use are shown in Figure 5.5. We refer to this mapping
in the rest of this chapter.

Inconsistent Multiple Sanitization

We illustrate the new classes of errors with an example. Figure 5.6 shows a fragment of
ASP.NET code written in C# which illustrates the difficulty of sanitizer placement. This
running example is inspired by code from the large code base we empirically analyzed.
Consider the function DynamicLink.RenderControl shown in the running example, which
places an untrusted string inside a double-quoted href attribute which in turn is placed
inside a JavaScript string. This code fragment places the untrusted string into two nested
contexts—when the browser parses the untrusted string, it will first parse it in the JavaScript
string literal and then subsequently parse it as a URI attribute (as explained in Section 5.1).

In Figure 5.5 we show a sanitizer specification that maps functions to contexts. In
particular, two sanitizer functions, EcmaScriptStringEncode and HtmlAttribEncode, are
applied for the JavaScript string context and the HTML attribute context, respectively.
However, developers must understand this order of parsing in the browser to apply them in
the correct order. They must choose between the two ways of composing the two sanitizers
shown in Figure 5.7.

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 76

void AnchorLink.SetAttribRender (String userlink)
{ …

if(…) {

link.AttribMap[“href”] = “javascript: onNav(” + userlink + “);”

} else

{

link.AttribMap[“href”] = userlink;

} … TagControl.RenderControl (writer, link); }

String DynamicLink.RenderControl()

void TagControl.RenderControl (HtmlTextWriter writer, Control tag)
{

AnchorLink stc;

if (dyn) { stc = new DynamicLink();

stc.prefixHTML = “<script type=\”text/javascript\” >”;

stc.suffixHTML = “</script>”;

stc.Content = tag.RenderControl();

} else { stc = new AnchorLink();

stc.prefixHTML = stc.suffixHTML = “”;

stc.Content = tag.RenderControl();

} writer.Write(stc.ToHTML());

String AnchorLink.RenderControl ()
{

return “<a href=\“” +

this.AttribMap[“href”]+ “\”>”;

}

{

return “document.write(„<a href=\”” +

this.AttribMap [“href”]

+ “\”> ‟); ” ;

}

B1

B2

B3

B4

C1

C2 C3

Figure 5.6: Running example: C# code fragment illustrating the problem of automatic sani-
tizer placement. Underlined values are derived from untrusted data and require sanitization;
function calls are shown with thick black arrows C1-C3 and basic blocks B1-B4 are shown
in gray circles.

It turns out that the first sequence of sanitizer composition is inconsistent with the
nested contexts, while the other order is safe or consistent. We observe that the stan-
dard recommended implementation for these sanitizers [129] do not commute. For in-
stance, EcmaScriptStringEncode simply transforms all characters that can break out of
JavaScript string literals (like the " character) to Unicode encoding (\u0022 for "), and,
HtmlAttribEncode HTML-entity encodes characters (" for "). This is the standard
recommended behavior these sanitizers [129] with respect to respective contexts they secure.

document.write(‘<a href=" + HtmlAttribEncode(EcmaScriptStringEncode(this.AttribMap["href"]))

document.write(‘<a href=" + EcmaScriptStringEncode(HtmlAttribEncode(this.AttribMap["href"]))

Figure 5.7: Two different sanitization approaches are shown: Method 1 is shown above and
method 2 below.

The attack on the wrong composition is subtle. The key observation is that applying
EcmaScriptStringEncode first encodes the attacker-supplied " character as a Unicode repre-
sentation \u0022. This Unicode representation is not subsequently transformed by the second

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 77

HtmlAttribEncode sanitization, because \u0022 is a completely innocous string in the URI
attribute value context.

However, when the web browser parses the transformed string first (in the JavaScript
string literal context), it performs a Unicode decode of the dangerous character \u0022 back
to ". When the browser subsequently interprets this in the href URI attribute context the
attacker’s dangerous " prematurely closes the URI attribute value and can inject JavaScript
event handlers like onclick=... to execute malicious code. It is easy to confirm that the other
composition of correct sanitizers is definitely safe.

Context-Mismatched Sanitization

Even if sanitizers are designed to be commutative, developers may apply a sanitizer that does
not match the context altogether; we call such an error as a context-mismatched sanitization
inconsistency. Context-mismatched sanitization is not uncommon in real applications. To
intuitively understand why, consider the sanitization requirements of the running example
again.

Notice that the running example has 4 control-flow paths corresponding to execution
through the basic-blocks (B1,B3), (B1,B4), (B2,B3) and (B2,B4) respectively. Each execu-
tion path places the untrusted userlink input string in 4 different contexts (see Figure 5.8).
Determining the browser context is a path-sensitive property, and the developer may have to
inspect the global control/data flow to understand in which contexts is a data variable used.
This task can be error-prone because the code logic for web output may be spread across
several classes, and the control-flow graph may not be explicit (especially in languages with
inheritance). We show how two most prevalent sanitization strategies fail to work on this
example.

Failure of output sanitization. Consider the case in which the application developer
decides to delay all sanitization to the output sinks, i.e., to the writer.Write call in
TagControl.RenderControl. There are two problems with doing so, which the developer
is burdened to identify manually to get the sanitization right. First, the execution paths
through basic-block B3 embed the untrusted data in a <SCRIPT> block context, where paths
through basic-block B4 place it in a HTML tag context. As a result, any sanitizer picked
cannot be consistent for both such paths. Second, even if the first concern did not exist, sani-
tizing the stc.Content variable at the output point is not correct. The stc.Content is composed
of trusted substrings as well as untrusted data — if the entire string is sanitized, the sani-
tizer could change programmer-supplied constant strings in a way that breaks the intended
structure of the output HTML. For example, if the basic-block B1 executes, the untrusted
data would be embedded in a JavaScript number context(javascript: OnNav() explicitly by
the programmer. If we applied HtmlAttribEncode to the stc.Content the javascript: would
be eliminated breaking the application’s intended behavior.

Failure of input sanitization. Moving sanitization checks to earlier points in the code,
say at the input interfaces, is not a panacea either. The readers can verify that moving all

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 78

HTML output Nesting of contexts

<script type="text/javascript"> JavaScript String Literal,
document.write(‘ Html URI Attribute,
<a href="javascript: onNav(JavaScript Number

TOENCODE)";>);

</script>

<a href="javascript: onNav(Html URI Attribute,
TOENCODE);"> JavaScript Number

 Html URI Attribute

<script type="text/javascript"> JavaScript String Literal,
document.write(‘ <a href=" Html URI Attribute

TOENCODE"> ’);

</script>

Figure 5.8: HTML outputs obtained by executing different paths in the running example.
TOENCODE denotes the untrusted string in the output.

sanitization to a code locations earlier in the dataflow graph continues to suffer from path-
sensitivity issues. Sanitizing in basic-blocks B1 and B2 is not sufficient, because additional
contexts are introduced when blocks B3 and B4 are executed. Sanitization locations midway
in the dataflow chain, such the concatenation in function AnchorLink.SetAttribRender, are
also problematic because depending on whether basic-block B1 executes or B2 executes, the
this.AttribMap["href"] variable may have trusted content or not.

In the next section, we empirically analyze the extent to which these inconsistency errors
arise in practical real-world code we study. We point out that state-of-the-art static anal-
ysis tools which scale to hundred-thousand LOC applications, presently are fairly limited.
Most existing tools detect data-flow paths with sanitizers missing altogether. This class
of errors is detected by several static or dynamic analysis tools (such as CAT.NET [81] or
Fortify [37]). Our study finds errors where sanitization is present but is inconsistent. Our
evaluation studies a large legacy application of over 400,000 lines of server-side C# code.
We accessed 53 distinct web pages by manually executing this application using our testing
infrastructure [97]. Our analysis statically instrumented 23,244 functions.

Figure 5.5 shows the mapping between contexts and sanitization functions for our ap-
plication. In particular, it permits only quoted attributes which have well-defined rules for
sanitization [129]. Furthermore, it always sets the page encoding to UTF-8, eliminating the
possibility of character-set encoding attacks [101]. We arrived at the result in Figure 5.5 after
several interactions with the application’s security engineers.

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 79

1

1

2

2

3

3

6

7

10

12

12

12

12

12

12

16

20

20

21

21

31

34

53

54

75

76

253

292

335

491

559

657

1,059

0 200 400 600 800 1,000 1,200

PK

PS

HPH

KKPE

HP

KPHH

PKH

KK

KPP+

EPP+

HPP+

KPEH+

KPEP+

PEHH

PEP+

KHH

EHH

HHH

HE

PHH

KPEH

KH

PEH

KP

EE

KEH

EH

KE

KPH

HH

KPE

PE

PH

Figure 5.9: Histogram of sanitizer sequences consisting of 2 or more sanitizers empirically
observed in analysis, characterizing sanitization practices resulting from manual sanitizer
placement. E,H,U, K,P,S denote sanitizers EcmaScriptStringLiteralEncode, HtmlEncode,
HtmlAttribEncode, UrlKeyValueEncode, UrlPathEncode, and SimpleHtmlEncode respec-
tively.

Analysis Results

We report the number of context-mismatched and inconsistent multiple sanitization cases
we find in our evaluation.

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 80

Context-mismatched sanitization. Figure 5.10 shows that our testing exercised 25,209
paths on which sanitization was applied1. Of these, 1,558 paths (or 6.1%) were improperly
sanitized. Of these improperly sanitized paths, 1,207 (4.7% of the total analyzed paths)
contained data that could not be proven safe by our testing infrastructure; as a result, we
mark them as context inconsistency errors and revert to additional mechanisms to nullify
these errors at runtime [97]. The difference between last and second last column in Figure 5.10
is the paths that sanitize constant strings or provably trusted data.

We used Red Gate’s .NET Reflector tool, combined with other decompilation tools, to
further investigate the executions which our testing tool reported as improperly sanitized.
Our subsequent investigation reveals that errors result because it is difficult to manually an-
alyze the calling context in which a particular portion of code may be invoked. In particular,
the source and the sink may be separated by several intervening functions. Since our testing
infrastructure instruments all string operations, we can count how far sources and sinks are
removed from each other. In Figure 5.11, we graph the distribution of these lengths for a
randomly selected sample of untrusted paths. This shows that a significant fraction of the
chains are long and over 200 of them exceed 5 steps.

Our data on the length of def-use chains is consistent with those reported in previous
static analysis based work [71]. As explained earlier in this Section, the sharing of dataflow
paths can result in further ambiguity in distinguishing context at the HTML output point in
the server, as well as, in distinguishing trusted data from untrusted data. In our investigation
we observed the following cases:

• A single sanitizer was applied in a context that did not match. Typically, the sanitizer
applied was in a different function from the one that constructed the HTML template.
This suggests that developers may not fully understand how the context — a global
property — impacts the choice of sanitizer, which is a local property. This is not
surprising, given the complexity of choices in Figure 5.5.

• A sanitizer was applied to trusted data (on 1.4% of the paths in our experiment).
We still report these cases because they point to developer confusion. On further
investigation, we determined this was because sinks corresponding to these executions
were shared by several dataflow paths. Each such sink node could output potentially
untrusted data on some executions, while outputting purely trusted data on others.

• More than one sanitizer was applied, but the applied sanitizers were not correct for
the browser parsing context of the data2.

Inconsistent Multiple Sanitization. We found 3,245 paths with more than one sani-
tizer. Of these, 285 (or 8%) of the paths with multiple sanitization were inconsistent with
the context. The inconsistent paths fell into two categories: first, we found 273 instances

1Each path here refers to a dataflow path, which starts at a program point where an untrusted input
enters the application and ends in a critical operation which writes HTML to the output stream

2Errors where the combination was correct but the ordering was inconsistent with the nested context
are reported separately as inconsistent multiple sanitization errors.

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 81

with the (EcmaScriptStringLiteralEncode)(HtmlEncode)+ pattern applied. As we saw in
Section 5.3, these sanitizers do not commute, and this specific order is inconsistent. Second,
we found 12 instances of the (EcmaScriptStringLiteralEncode)(UrlPathEncode)+ pat-
tern. This pattern is inconsistent because it does not properly handle sanitization of URL
parameters. If an adversary controls the data sanitized, it may be able to inject additional
parameters.

We found an additional 498 instances of multiple sanitization that were superfluous. That
is, sanitizer A was applied before sanitizer B, rendering sanitizer B superfluous. While not
a security bug, this multiple sanitization could break the intended functionality of the ap-
plications. For example, repeated use of UrlKeyValueEncode could lead to multiple percent
encoding causing broken URLs. Repeated use of HtmlEncode could lead to multiple HTML
entity-encoding causing incorrect rendering of output HTML.

We also observed that nesting of parsing contexts is common. For example a URL may
be nested within an HTML attribute. Figure 5.3 shows the histogram of sanitizer sequence
lengths observed. The inferred context for a majority of these sinks demanded the use
of multiple sanitizers. Figure 5.9 shows the use of multiple sanitizers in the application
is widespread, with sanitizer sequences such as UrlPathEncode HtmlEncode being most
popular. In our application, these sanitizers are not commutative, i.e. they produce different
outputs if composed in different orders, which means that paths with different orderings
produce different behavior.

Because our testing uses a dynamic technique [97], all paths found can be reproduced
with test cases exhibiting the context-inconsistent sanitization. We investigated a small
fraction of these test cases in more depth. We found that while the sanitization is in fact
inconsistent, injecting strings in these contexts did not lead to privilege escalation attacks.
In part this is because our testing methodology (positive tainting [97]) is conservative: if we
cannot prove a string is safe, we flag the path. In other cases, adversary’s authority and the
policy of the test application made it impossible to exploit the inconsistency.

5.4 Conclusion

We conclude that context-consistent sanitization is error-prone when done manually by de-
velopers. Expressive languages, such as those of the .NET platform, permit the use of string
operations to construct HTML output as strings with trusted code intermixed with untrusted
data. Plus, these rich programming languages allow developers to write complex dataflow
and control flow logic. This results in some features of current programming environments,
summarised as:

• String outputs. String outputs contain trusted constant code fragments mixed with
untrusted data.

• Nested contexts. Untrusted data is often embedded in nested contexts.

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 82

• Intersecting data-flow paths. Data variables are used in conflicting or mismatched
contexts along two or more intersecting data-flow paths.

• Custom output controls. Frameworks such as .NET encourage reusing output
rendering code by providing built-in “controls”, which are classes that render untrusted
inputs in HTML codes. Large applications extensively define custom controls, perhaps
because they find the built-in controls insufficient. The running example is typical of
such real-world applications — it defines its own custom controls, DynamicLink, to
render user-specified links via JavaScript.

A large fraction of web application frameworks leave the task of sanitization to devel-
opers. Some web frameworks take on the onus of placing sanitizers in application code;
however, many of these do not pay attention to a key property of context-sensitive sanitiza-
tion. Instead, they apply the same sanitizer to all untrusted data outputs which can provide
a false sense of security. A small fraction of recent web frameworks support context-sensitive
auto-sanitization; however, their security properties and performance characteristics are not
evaluated in prior research.

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 83

Inconsistently sanitized

Web Sanitized

Page Paths Total Highlight

Home 396 14 9

A1 P1 565 28 22
A1 P2 336 16 11
A1 P3 992 26 21
A1 P4 297 44 35
A1 P5 482 22 17
A1 P6 436 23 18
A1 P7 403 19 13
A1 P8 255 22 18
A1 P9 214 16 12
A1 P10 1,623 18 14

A2 P1 315 16 12
A2 P2 736 53 47
A2 P3 261 21 16
A2 P4 197 16 12
A2 P5 182 22 18
A2 P6 237 22 18
A2 P7 632 20 16
A2 P8 450 23 19
A2 P9 802 26 22

A3 P1 589 25 21
A3 P2 2,268 18 14
A3 P3 389 16 12
A3 P4 477 103 15
A3 P5 323 24 20
A3 P6 292 51 45
A3 P7 219 16 12
A3 P8 691 25 21
A3 P9 173 16 12

A4 P1 301 24 20
A4 P2 231 30 25
A4 P3 271 28 22
A4 P4 436 38 32
A4 P5 956 36 24
A4 P6 193 24 18
A4 P7 230 36 32
A4 P8 310 24 20
A4 P9 200 24 18
A4 P10 208 24 20

A4 P11 498 34 29
A4 P12 579 34 29
A4 P13 295 25 20
A4 P14 591 104 91

A5 P1 604 61 55
A5 P2 376 25 21
A5 P3 376 25 21
A5 P4 401 26 21
A5 P5 565 31 26
A5 P6 493 34 29
A5 P7 521 34 29
A5 P8 427 24 20
A5 P9 413 24 20
A5 P10 502 28 23

Total 25,209 1,558 1,207

Figure 5.10: Characterization of the fraction of the paths that were inconsistently sanitized.
The right-most column indicates paths highlighted as errors by our analysis.

CHAPTER 5. ANALYSIS OF EXISTING DEFENSES 84

0

50

100

150

200

250

300

350

1 2 3 4 5 6

Figure 5.11: Distribution of lengths of paths that could not be proved safe. Each hop in
the path is a string propagation function. The longer the chain, the more removed are taint
sources from taint sinks.

16,949

2,948

1,093

104

length=1

length=2

length=3

length>3

Figure 5.12: Distribution of the lengths of applied sanitization chains, showing a sizable
fraction of the paths have more than one sanitizer applied.

85

Chapter 6

Securing Sanitization-based Defense

In the previous chapter, we outline some of the challenges with employing a sanitization-
based defense to scripting attacks. Our observation is that many web application frameworks
and real-world applications employ incorrect placement of sanitizers in the application code.
In this chapter, we investigate a systematic technique to automatically place sanitizers in
web application code. We propose a technique that can be utilized by web templating
frameworks, though the general idea can be extended to other programming languages too.
We begin by introducing web templating frameworks and give an overview of our techniques
and its assumptions.

Web Templating Frameworks. To streamline the output generation from application
code, numerous web templating frameworks have recently emerged and are gaining wide-
spread adoption [46, 27, 29, 30, 44, 103, 95, 32, 137, 133, 60, 112, 109]. Web templating
frameworks allow developers to specify their application’s output generation logic in code
units or modules called templates. Templates take untrusted inputs which may be controlled
by the attacker and emit web application outputs, such as HTML or CSS code, as strings.
String outputs from templates are composed of static or constant strings written by devel-
opers, which are explicitly trusted, and untrusted inputs which must be sanitized. These
templates can be compiled into a target language, such as JavaScript or Java/PHP, as code
functions that take untrusted data as template arguments and emit the application’s out-
put as strings. Templates are written in a different language, called a templating language,
the semantics of which are much simpler as compared to that of the target language. No-
tably, complex constructs such as JavaScript’s eval and document.write are not included
in the templating language. Code external to templates is responsible for invoking compiled
templates to obtain the string outputs and evaluating/rendering them in the browser.

Vision. Ideally, we would like to create web applications that are secure by construction.
In fact, web templating frameworks offer an ideal opportunity to relieve the developers
from the burden of manual sanitization by auto-sanitizing—inserting sanitization primitives
automatically during the compilation of templates to server-side or client-side code. Despite
this ideal opportunity, research so far has not broached the topic of building auto-sanitization

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 86

defenses in today’s commercial templating frameworks.

Challenges. In this work, we first identify the following practical challenges in building
reliable and usable auto-sanitization in today’s web templating frameworks:

• Context-sensitivity. XSS sanitization primitives vary significantly based on the context
in which the data sanitized is being rendered. For instance, applying the default HTML
escaping sanitizer is recommended for untrusted values placed inside HTML tag content
context [129]; however, for URL attribute context (such as src or href) this sanitizer
is insufficient because the javascript URI protocol (possibly masked) can be used
to inject malicious code. We say, therefore, that each sanitization primitive matches
a context in which it provides safety. Many developers fail to consistently apply the
sanitizers matching the context, as highlighted in Chapter 5.

• Complexity of language constructs. Templating languages today permit a variety of
complex constructs: support for string data-type operations, control flow constructs
(if-else, loops) and calls to splice the output of one template into another. Un-
trusted input variables may, in such languages, be used in one context along one
execution path and a different context along another path. With such rich language
features, determining the context for each use of untrusted input variables becomes a
path-sensitive, global data-flow analysis task. Automatically applying correct saniti-
zation on all paths in templating code becomes challenging.

• Backwards compatibility with existing code. Developers may have already applied san-
itizers in existing template code at arbitrary places; an auto-sanitization mechanism
should not undo existing sanitization unless it is unsafe. For practical adoption, auto-
sanitization techniques should only supplement missing sanitizers or fix incorrectly
applied ones, without placing unnecessary restrictions on where to sanitize data.

• Performance Overhead. Auto-sanitized templates should have a minimal performance
overhead. Previous techniques propose parsing template outputs with a high-fidelity
HTML parser at runtime to determine the context [16]. However, the overhead of this
mechanism may be high and undesirable for many practical applications.

Context-sensitive Auto-sanitization Problem. We observe that a set of contexts in
which applications commonly embed untrusted data is known [125]. And, we assume that
for each such context, a matching sanitizer is externally provided. Extensive recent effort
has focused on developing a library of safe or correctly-implemented sanitization primi-
tives [66, 99, 129, 69, 53, 51]. We propose to develop an automatic system that, given a
template and a library of sanitizers, automatically sanitizes each untrusted input with a
sanitizer that matches the context in which it is rendered. By auto-sanitizing templates
in this context-sensitive way, in addition to enforcing the security properties we outline in
Section 6.1, templating systems can ensure that scripting attacks never result from using
template outputs in intended contexts.

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 87

Our Approach & Contributions.
In this chapter, we address the outlined challenges with a principled approach:

• Type Qualifier Based Approach. We propose a type-based approach to automatically
ensure context-sensitive sanitization in templates. We introduce context type quali-
fiers, a kind of type qualifier that represents the context in which untrusted data can
be safely embedded. Based on these qualifiers, which refine the base type system of
the templating language, we define a new type system. Type safety in our type sys-
tem guarantees that well-typed templates have all untrusted inputs context-sensitively
sanitized.

• Type Inference during Compilation. To transform existing developer-written templates
into well-typed templates, we develop a Context-Sensitive Auto-Sanitiza- tion (CSAS)
engine which runs during the compilation stage of a web templating framework. The
CSAS engine performs two high-level operations. First, it performs a static type in-
ference to infer context type qualifiers for all variables in templates. Second, based on
the inferred context types, the CSAS engine automatically inserts sanitization routines
into the generated server-side or client-side code. To the best of our knowledge, our
approach is the first principled approach using type qualifiers and type inference for
context-sensitive auto-sanitization in templates.

• Real-world Deployability. To show that our design is practical, we implement our type
system in Google Closure Templates, a commercially used open-source templating
framework that is used in large applications such as GMail, Google Plus and Google
Docs. Our implementation shows that our approach requires less than 4000 lines of code
to be built into an existing commercial web framework. Further, in our experiments
we find that retrofitting our type system to existing Google Closure templates used in
commercial applications requires no changes or annotations to existing code.

• Improved Security. Our approach eliminates the critical drawbacks of existing ap-
proaches to auto-sanitization in today’s templating frameworks. Though all the major
web frameworks today support customizable sanitization primitives, a majority of them
today do not automatically apply them in templates, leaving this error-prone exercise
to developers. Most others automatically sanitize all untrusted variables with the same
sanitizer in a context-insensitive manner, a fundamentally unsafe design that provides
a false sense of security [125]. Google AutoEscape, the only context-sensitive abstrac-
tion we are aware of, does not handle the richness of language features we address. We
refer readers to Section 6.7 for a detailed comparison.

• Fast, Precise and Mostly Static Approach. We evaluate our type inference system
on 1035 existing real-world Closure templates. Our approach offers practical perfor-
mance overhead of 3 − 9.6% on CPU intensive benchmarks. In contrast, the alter-
native runtime parsing approach incurs 78% - 510% overhead on the same bench-
marks. Our approach performs all parsing and context type inference statically and so

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 88

achieves significantly better performance. Our approach does not sacrifice any preci-
sion in context-determination as compared to the runtime parsing approach— it defers
context-sensitive sanitization to runtime for a small fraction of output operations in
which pure static typing is too imprecise. Hence, our type system is mostly static, yet
precise.

Scope. In this chapter, we limit our study to a small class of web applications written
in Google Closure templating framework. We believe the property we define here, namely
context-sensitive sanitization, is necessary to achieve safety in sanitization-based defenses
but may not be sufficient for all scenarios. For example, web application often vary the
sanitization based on the role or authority of the user which controls the sanitized input,
application-specific trust policies and so on. We consider these to be out-of-scope of present
work. Extending ideas presented in this work to handle such real-world features is a promis-
ing direction for future work.

6.1 Problem Definition

The task of auto-sanitization is challenging because state-of-the-art templating frameworks
don’t restrict templates to be straight-line code. In fact, most templating frameworks to-
day permit control-flow constructs and string data operations to allow application logic to
conditionally alter the template output at runtime. To illustrate the issues, we describe a
simple templating language that captures the essence of the output-generating logic of web
applications. We motivate our approach by showing the various challenges that arise in a
running example written in our templating language.

A Simple Templating Language

Our simple templating language is expressive enough to model Google Closure Templates
and several other frameworks. We use this templating language to formalize and describe
our type-based approach in later sections. It is worth noting that the simple templating
language we present here is only an illustrative example—our type-based approach is more
general and can be applied to other templating languages as well.

The syntax for the language is presented in Figure 6.1. The templating language has
two kinds of data types in its base type system: the primitive (string, bool, int) types
and a special type (denoted as η) for output buffers, which are objects to which templates
write their outputs. Figure 6.2(A) shows a running example in our templating language.
For simplicity, we assume in our language that there is only a single, global output buffer to
which all templates append their output, similar to the default model in PHP.

Command Semantics. The primary command in the language is the print command
which appends the value of its only operand as a string to the output buffer. The running

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 89

Base Types α ::= β | η | β1 → β2 → . . . βk → unit

β ::= bool | int | string | unit
Commands S ::= print (e : β)

| (v : β) := (e : β)
| callTemplate f (e1, . . . ,ek)
| c1 ; S1

| if(e : bool) then S1 else S2 fi
| while(e : bool) S1

| return;
Expressions e ::= (e1 : int) ⊕ (e2 : int)

| (e1 : bool) � (e2 : bool)
| (e1 : string) · (e2 : string)
| const (i : β)
| v : β
| San (f, e : β)

v ::= Identifier

Figure 6.1: The syntax of a simple templating language. ⊕ represents the standard integer
and bitvector arithmetic operators, � represents the standard boolean operations and · is
string concatenation. The San expression syntactically refers to applying a sanitizer.

example has several print commands. Note that the syntax ensures that the output buffer
(η-typed object) can not be reassigned, or tampered with in the rest of the command syntax.

Templates are akin to functions: they can call or invoke other templates via the callTemplate
command. This command allows a template to invoke another template during its execu-
tion, thereby splicing the callee’s outputs into its own. Parameter passing follows standard
pass-by-value semantics.

The templating language allows control-flow commands such as for and if-then-else

to allow dynamic construction of template outputs. It supports the usual boolean and integer
operations as well as string concatenation. We exclude more complex string manipulation
operations like string substitution and interpolation functions from the simple language; with
simple extensions, their semantics can be modeled as string concatenations [99].

Restricting Command Semantics. The semantics of the templating language is much
simpler than that of a general-purpose language that templates may be compiled to. Notably,
for instance, the templating language does not have any dynamic evaluation commands such
as JavaScript’s eval or document.write. Therefore, final code evaluation in DOM eval-
uation constructs or serialization to the HTTP response stream is performed by external
application code. For instance, Figure 6.3 below shows a JavaScript application code written
outside the templating language which invokes the function compiled from the running ex-
ample template. It renders the returned result string dynamically using a document.write.
Therefore, the template code analysis does not need to model the complex semantics of

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 90

template contactRender($imgLink, $name)

{

print (“<img src=\“”);

if ($name != “”) then

x := “/” . $name. “/img?f=”. $imgLink;

else x:= $imgLink;

fi

print ($x);

print “\”/>” . $name. “
”; return;

} (A)

$name $imgLink $name

PCDATA
Context

URI START
Context

URI PATH
Context

URI QUERY
Context

PCDATA
Context

(B)

Figure 6.2: (A) shows a template used as running example. (B) shows the output buffer after
the running example has executed the path including the true branch of the if statement.

document.write. 1

<script>

var o = new soy.StringBuilder();

contactRender({O: o, imglink: $_GET(‘extlink’),

name: [$_GET(‘name’)] }));

document.write(o);

</script>

Figure 6.3: Pseudo-code of how external application code, such as client-side Javascript, can
invoke the compiled templates.

Problem Definition & Security Properties

In this chapter, we focus on the following problem: given a templating language such as the
one in Section 6.1, and a set of correct sanitization routines for different contexts, the goal is

1The semantics of document.write varies based on whether the document object is open or closed.

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 91

to automatically apply the correct sanitization primitives during compilation to all uses of
untrusted inputs in constructing template outputs, while satisfying the following properties.

Property NOS: No Over-Sanitization. The templating language allows string expressions
to be emitted at print operations. String expressions may be constructed by concatenation
of constant/static strings and untrusted input variables; only the latter should be sanitized
or else we risk breaking the intended structure of the template output. For instance in our
running example, the auto-sanitization engine should not place a sanitizer at the statement
print ($x), because the expression x consists of a constant string as well as untrusted input
value. Sanitizing at this print statement may strip out the / or ? characters rendering the
link unusable and breaking the intended structure of the page.

Property CSAN: Context-Sensitive Sanitization. Each untrusted input variable should
be sanitized with a sanitizer matching the context in which it is rendered in. However,
this is challenging because untrusted inputs may be used in two different contexts along
two different paths. In our running example, the $imgLink variable is used both in a URI
context as well as a HTTP parameter context, both of which have different sanitization
requirements. Similarly, untrusted inputs can be rendered in two different contexts even
along the same path, as seen for the variable $name in Figure 6.2 (B). We term such use of
inputs in multiple contexts as a static context ambiguity, which arise because of path-sensitive
nature of the template output construction logic and because of multiple uses of template
variables. Section 6.3 describes further scenarios where context ambiguity may arise.

Property CR: Context Restriction. Template developers should be forbidden from mis-
takenly using untrusted values in contexts other than ones for which matching sanitizers
are available. Certain contexts are known to be hard to sanitize, such as in an unquoted
JavaScript string literal placed directly in a JavaScript eval [94], and thus should be forbid-
den.

Determining Final Output Start/End Context. For each template, we infer the con-
texts in which the template’s output can be safely rendered. However, since the final output
is used external to the template code, providing a guarantee that external code uses the
output in an intended context is beyond the scope of our problem. For example, it is unsafe
for external code to render the output of the running example in a JavaScript eval, but such
properties must be externally checked.

Motivation for Our Approach

If a templating language has no control-flow or callTemplate constructs and no constructs
to create string expressions, all templates would be straight-line code with prints of con-
stant strings or untrusted variables. Auto-sanitizing such templates is a straight-forward
3-step process— (a) parse the template statically using a high-fidelity parser (like HTMLPu-
rify [53]), (b) determine the context at each print of untrusted inputs and (c) apply the
matching sanitizer to it. Unfortunately, real templating languages are often richer like our
templating language and more sophisticated techniques are needed.

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 92

One possible extension of the approach for straight-line code is to defer the step of parsing
and determining contexts to runtime execution [16]. We call this approach a context-sensitive
runtime parsing (or CSRP) approach, where a parser parses all output from the compiled
template, determines the context of each print of untrusted input and sanitizes it at runtime.
This approach has additional performance overhead due to cost of parsing all application
output at runtime, as previously shown [16] and as we evaluate in Section 6.6. If string
operations are supported in the language, the performance penalty may be exacerbated
because of the need for tracking untrusted values during execution.

Instead, we propose a new “mostly static” approach which off-loads expensive parsing
steps to a static type analysis phase. Contexts for most uses of untrusted data can be
statically determined and their sanitizers can be selected during compile-time; only a small
fraction need the more expensive CSRP-like sanitizer selection in our approach—hence our
approach is “mostly static”.

Assumptions. Our type-based approach relies on a set of assumptions which we summarize
below:

1. Canonical Parser. To reliably determine the contexts in which untrusted inputs are
rendered, constant/static strings in templates must parse according to a canonical
grammar which reliably parses in the same way across major browsers. This restric-
tion is necessary to ensure that our context determination is consistent with its actual
parsing in the client’s browser, which is challenging because browser parsing behaviors
vary in idiosyncratic ways. In our approach, templates not complying with our canon-
ical grammar do not typecheck as per our type rules defined in section 6.3. Google
AutoEscape based frameworks such as GWT and CTemplate already tackle the prac-
tical issue of developing such a canonical grammar [46, 30, 27]; our engine leverages
this existing code base.

2. Sanitizer Correctness. As mentioned previously, we assume that a set of contexts in
which applications commonly render untrusted inputs is known and their matching
sanitizers are externally available. Creating sanitizers that work across major browser
versions is an orthogonal challenge being actively researched [51, 53].

3. End-to-End Security. As explained earlier, if the external code renders the template
outputs in an unintended context or tampers with the template’s output before emit-
ting it to the browser, the end-to-end security is not guaranteed. Ensuring correctness
of external code that uses template outputs is beyond the scope of the problem we
focus here—lint tools, static analysis and code conformance testing can help enforce
this discipline externally.

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 93

6.2 Our Approach

In our type-based approach, we enforce the aforementioned security properties by attaching
or qualifying variables and expressions in templates with a new kind of qualifier which we
call the context type qualifier. Type qualifiers are a formal mechanism to extend the basic
type safety of langauge to enforce additional properties [38]. Context type qualifiers play
different roles for the various expressions they qualify. For an untrusted input variable, the
context type qualifier captures the contexts in which the variable can be safely rendered. An
untrusted input becomes safe for rendering in a certain context only after it is sanitized by
a sanitizer matching that context. Unsanitized inputs have the UNSAFE qualifier attached,
and are not safe to be a part of any expression that is used in a print statement. For
constant/static string expressions, context type qualifiers capture the result of parsing the
expression, that is, the start context in which the expression will validly parse and the context
that will result after parsing the expression. When the template code constructs an output
string expression by concatenating a constant string and an untrusted input, a type rule
over context qualifiers of the two strings ensures that the untrusted input is only rendered
in contexts for which it is sanitized.

This rule only enforces the CSAN property in the concatenation operation. Several addi-
tional rules are needed to enforce all the outlined security properties to cover all operations
in our templating language. We describe the full type system with formal type rules over
context type qualifiers in section 6.3. The type safety of the type system implies that the
security properties outlined in Section 6.1 are enforced.

CSAS Engine. The input to our auto-sanitization engine is an existing template which may
be completely devoid of sanitizers. We call these templates untyped or vanilla templates. The
task of our auto-sanitization engine is two-fold: (a) to convert untyped or vanilla templates
into an internal representation (or IR) complying with our type rules (called the well-typed
IR), and (b) to compile the well-typed IR to the target language code with sanitization. We
develop a CSAS engine in the compiler of a templating framework to handle these tasks.
Figure 6.4 shows the CSAS architecture. It has two high-level steps: (A) Type Qualifier
Inference, and (B) Compilation of CSAS templates.

The qualifier inference step transforms the vanilla template into a well-typed IR and au-
tomatically infers the type qualifiers for all program expressions in the IR. The inferred type
qualifiers exactly determine where and which sanitizers are required for untrusted inputs.
The well-typed IR must conform to the type rules that we define in Section 6.3. The step
(B) compiles the well-typed IR and inserts sanitization primitives and additional instrumen-
tation in the final compiled code. The detailed design of the CSAS engine is presented in
Section 6.4.

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 94

Type Inference
Convert to IR

&

Add Type
Promotions

Generate
Type

Constraints

Solve
Type

Constraints

Untyped
IR

Well-Typed
IR

Untyped
Template

Compilation
Insert

Sanitizers
At

Type
Promotions

Compile
Compiled

Code

A

B

Figure 6.4: Overview of our CSAS engine.

6.3 The Context Type System

In this section, we formally describe our type qualifier mechanism that refines the base type
system of the language defined in Section 6.1. We define the associated type rules to which
well-typed IR code must conform after the type inference step.

Key Design Points

The CSAS engine must track the parsing context induced by the application’s output at each
program point. Each string expression, when parsed by the browser, causes the browser to
transition from one context to another. We term this transition induced on the browser by
parsing strings as a context transition, denoted by the notation c1 ↪→ c2.

Notion of Context Type Qualifiers. Qualifiers play different roles for different kinds of
expressions.

For constant/static strings, the context type qualifier captures the context transition
it induces when parsed by our canonical grammar. For example, the constant string <a

href=" is qualified with a STATICPCDATA↪→URI START context type qualifier indicating that it
parses validly as per our canonical grammar (HTML 5), causing the browser to transition
from PCDATA context (start of tag) to the URI START context. Unsanitized input variables
are by default qualified UNSAFE. The type system qualifies them with a STATICc↪→c′ context
qualifier, where c and c′ are contexts, only after the variable is sanitized with a sanitizer
matching the context c. The sanitizer ensures that the untrusted input safely renders in
context c—we define this correctness property of the sanitizer more precisely in Section 6.3.
Variables qualified UNSAFE are not permitted to be used in string expressions that are emitted

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 95

Types τ ::= Q1 β | Q2 η
Base Types α ::= β | η | β1 → β2 → . . . unit

β ::= bool | int | string | unit
Type Q ::= Q1 | Q2 | ~Q1 → [Q2 → Q2]
Qualifiers Q1 ::= UNSAFE

| STATICc1↪→c2 c1, c2 ∈ C
| DYNSC SC ∈ 2C×C

Q2 ::= CTXSTATc c ∈ C
| CTXDYNS S ∈ 2C

Contexts C ::= PCDATA | RCDATA | . . .

Figure 6.5: The final types τ are obtained by augmenting base types of the language α with
type qualifiers Q

to the output buffer.
When data is emitted to the output buffer, the analysis engine must track which context

the output buffer is in. The global output buffer (base type η) is also qualified with a
different set of context type qualifiers, which indicate the context it is in at any given point
in the program. For instance, the output buffer which is in a URI START context, say just
after <a href=" is written to it, is annotated with a CTXSTATURI START context qualifier. The
context-sensitivity property is enforced by matching the context type qualifiers of the output
buffer and the string expression being written at each print command. For example, when
an untrusted variable is emitted to a CTXSTATc qualified buffer, it must have the STATICc↪→c′

qualifier attached, ensuring that it has been sanitized (or made safe) for rendering in context
c.

We formally define the qualifiers in Figure 6.5. As explained, the type system defines
two separate sets of type qualifiers: Q1 and Q2. Type qualifiers Q2 annotate the output
buffer, which is an object of base type η, whereas the set Q1 exclusively qualifies other typed
expressions. Type qualifiers of the form ~Q1 → [Q2 → Q2] are inferred for each template
function, which capture the expected qualifier types for the arguments and the template’s
effect on the output buffer, as explained in further detail in Section 6.3.

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 96

template StatAmb($imgLink, $name)

{

if ($name == “”) then print (“<img src=\“”);

else print (“<div>”); fi

print ($imgLink);

if ($name == “”) then print (“\” />”);

else print (“</div>”); fi; return;

}

Figure 6.6: An example template requiring a mixed static-dynamic approach.

Handling Context ambiguity with Flow-Sensitivity. Untrusted inputs may be used
in different contexts along different or even the same program paths. This leads to context
ambiguity, as explained in Section 6.1. A standard flow-insensitive type inference algorithm
would infer that such an untrusted input has no single precise context qualifier because of
its ambiguous usage in multiple different contexts. To handle such context ambiguity, we
design our type system to be flow-sensitive— a flow-sensitive type system permits program
variables to have varying type qualifiers at different program locations [38].

Mixed Static-Dynamic Typing. Flow-sensitive typing does address static ambiguity to
a large extent, but not all of the cases we observe in practice. Consider a template such as
the one in Figure 6.6. In one branch the program writes <div> and in the other it writes
<img src=" to the global output buffer. The context that output buffer is in at the join
point is statically ambiguous, and consequently, statically selecting sanitizers on subsequent
print statements in the template is not possible. Similar examples of static ambiguity have
been shown to arise in large legacy applications [97].

Our approach avoids throwing type errors for such static ambiguous types by using
the following approach: we further divide the type qualifiers into statically-qualified and
dynamically-qualified sets. Qualifiers Q2 for the output buffer are either static qualifiers
(CTXSTATC) or dynamic (CTXDYNS). At a given program location, if the output buffer is
unambiguously determined to be in a single context c, a static qualifier is attached to it. In
contrast, when the embedding context of the buffer is statically ambiguous (or imprecise), as
in the example of Figure 6.6, it is over-approximated by a set of contexts S and is qualified
with the dynamic qualifer CTXDYNS. CTXDYNS signifies that the buffer is in one of the contexts
determined by the set S. Sanitizers can be statically selected for statically-qualified objects
since their contexts are precisely known. For dynamically-qualified buffers, the context-
sensitive runtime parsing (or CSRP) approach is employed—data written to such buffers is
parsed and sanitized at runtime.

Qualifiers Q1 for other program expressions are similarly partitioned into static or dy-
namic sets—for instance, a string expression used in a print statement with a dynamically-
qualified output buffer is also dynamically-qualified in our type system using the DYNS quali-
fier. The set S is a static over-approximation of the set of context transitions that the string
expression can induce. Sanitizer selection can be done statically for statically-qualified (such

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 97

v ∈ V
{v 7→ Q} ∈ Γ

Γ ` v : Q
t-var

αi 6= string c ∈ C
Γ ` const(i : αi) : STATICc↪→c

t-const

IsParseV alid(s, c1, c2)

Γ ` const(s : string) : STATICc1↪→c2
t-conststr

Γ ` e1 : STATICc↪→c Γ ` e2 : STATICc↪→c c ∈ C
Γ ` (e1 : bool)� (e2 : bool) : STATICc↪→c

t-bool

Γ ` e1 : STATICc↪→c Γ ` e2 : STATICc↪→c c ∈ C
Γ ` (e1 : int)⊕ (e2 : int) : STATICc↪→c

t-int

Γ ` e1 : STATICc1↪→c2 Γ ` e2 : STATICc2↪→c3
Γ ` (e1 : string) · (e2 : string) : STATICc1↪→c3

t-strcat-stat
Γ ` e : UNSAFE

SanMap(c1 ↪→ c2, f) c1, c2 ∈ C
Γ ` San(f, e) : STATICc1↪→c2

t-san

IsParseV alid(s, c1, c2)

Γ ` const(s : string) : DYN{c1↪→c2}
t-cstrdyn

Γ ` e1 : DYNS1
Γ ` e2 : DYNS2

Γ ` (e1 : string) · (e2 : string) : DYNS1./S2

t-strcat-dyn

Figure 6.7: Type Rules for Expressions.

as STATICc1↪→c2) expressions and these sanitizers can be placed during compilation. For
dynamically-qualified expressions, however, since the context of the output buffer is known
only at runtime, the sanitizer selection is performed by the CSRP approach. Specifically,
the CSAS engine inserts additional instrumentation for dynamically-qualified string expres-
sions to keep the untrusted substrings in the expression separate from constant substrings.
At runtime, when such an expression is being used in a print, it is parsed at runtime as
per the dynamically-determined start context and the necessary sanitization primitives are
applied to the untrusted substrings. In our evaluation, less than 1% of the expressions were
dynamically-qualified; a large majority of the cases do not incur the cost of runtime parsing,
enabling our type system to be “mostly static”.

Handling Context Ambiguity for Templates. Static context ambiguity may manifest
for template start and end contexts as well. A template may be invoked in multiple starting
contexts or may be expected to return in multiple ending contexts. In such cases, our CSAS
engine resolves the ambiguity purely statically, by cloning templates. For templates that
may start or end in more than one context, the CSAS engine generates multiple versions of
the template during compilation, each specializing to handle a specific pair of start and end
contexts.

Inferring Placement of Sanitizers. Our engine can insert sanitizers into code in which
developers have manually applied some sanitizers (chosen from the sanitization library), with-
out undoing existing sanitization if it is correct. Our type rules require additional sanitizers
to only be inserted at print statements and at type promotion operations. Type promo-

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 98

Γ ` e : Q v ∈ V
Γ ` v := e =⇒ Γ[v 7→ Q]

t-assign
Γ ` e : Q Q ≤ Q′

Γ ` v1 := (Q′)e =⇒ Γ[v1 7→ Q′]
t-prom

Γ0 ` c1 : Γ1 Γ1 ` S : Γ2

Γ0 ` c1;S =⇒ Γ2
t-seq

Γ ` e : STATICc1↪→c2 Γ ` ρ : CTXSTATc1
Γ ` print(e) =⇒ Γ[ρ 7→ CTXSTATc2]

t-print-static-1

Γ ` e : DYNS1

Γ ` ρ : CTXDYNS2
|CDom(S1, C) ∩ S2| 6= 0

Γ ` print(e) =⇒ Γ[ρ 7→ CTXDYNCRange(S1,S2)]
t-print-dyn-2

Γ ` f : (Q1, Q2 . . . Qk)→ [Qρ → Qρ′] Γ ` ρ : Qρ Qρ = CTXSTATcρ

Qρ′ = CTXSTATcρ′ cρ, cρ′ ∈ C
∧

i∈{1...k}
(Γ ` ei : Qi)

∧
i∈{1...k}

((Qi ≤ STATICci↪→ci′) ∧ (ci ∈ C) ∧ (ci′ ∈ C))

Γ ` callTemplatef(e1, e2, . . . , ek) =⇒ Γ[ρ 7→ CTXSTATcρ′]
t-call

Γ ` ρ : CTXSTATc c ∈ C {` 7→ f} ∈ LF
Γ ` f : (Q1, Q2 . . . Qk)→ [Qρ → Qρ′]

Qρ′ = CTXSTATc

Γ ` ` : return; =⇒ Γ
t-ret-stat

Γ ` ρ : Q c ∈ C Q = CTXDYNS
|S| = 1 c ∈ S {` 7→ f} ∈ LF

Γ ` f : (Q1, Q2 . . . Qk)→ [Qρ → Qρ′]
Qρ′ = CTXSTATc

Γ ` ` : return; =⇒ Γ[ρ 7→ CTXSTATc]
t-ret-dyn

Γ0 ` S1 : Γ Γ0 ` S2 : Γ

Γ0 ` if(e)thenS1elseS2 =⇒ Γ
t-ifelse

Γ ` S =⇒ Γ

Γ ` while(e)S =⇒ Γ
t-while

Figure 6.8: Type Rules for Commands. The output buffer (of base type η) is denoted by
the symbol ρ.

tion operations identify points where expressions need to be converted from UNSAFE-qualified
types to statically- or dynamically-qualified types. These type promotion commands have
the form v := (Q)e, where Q is a qualified type which are introduced by the CSAS engine
when converting templates into the IR. Note that this design separates the type inference
task from the type safety rules — type promotions may be added anywhere in the IR by
the type qualifier inference algorithm, as long as the resulting IR conforms to the type rules
after inference.

Static Type Rules

In this section, we define a set of type rules which impose static restrictions S0 - S4 to acheive
the 3 properties (CR, CSAN and NOV) described in Section 6.1.

The type system is subdivided into two main kinds of typing judgements, one for typing
language expressions (Figure 6.7) and one for typing language commands (Figure 6.8). In
our type rules, Γ denotes the type environment that maps program variables, the output
buffer (denoted by the symbol ρ) and template name symbols to qualifiers Q.

In a flow-sensitive type system like ours, type qualifier for variables change from one
program location to another. Therefore, typing judgements for the language commands
(Figure 6.8) capture the effects of command execution on type environments and have the

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 99

form Γ ` c =⇒ Γ′. This judgement states that the command c is well-typed under the type
environment Γ and its execution changes the type environment Γ to Γ′. The expression typing
judgement Γ ` e : Q is standard: it states that at the given program location, the expression
e has a type qualifier Q under the environment Γ. All expressions that are neither statically-
qualified nor dynamically-qualified, map to UNSAFE in Γ. The set of declared variables V and
a map LF from statement labels to their enclosing functions are assumed to be pre-computed
and available externally.

Defining Sanitizer Correctness. The soundness of our type system relies on the cor-
rectness of externally provided sanitizers. To define sanitizer correctness more precisely, we
reuse the notion of valid syntactic forms, formalized by Su et. al. [107]. A sanitizer f is
correct for a context transition cs ↪→ ce, if all strings sanitized with f are guaranteed to
parse validly starting in context cs yielding an end context ce according to our canonical
grammar, and if the sentential forms generated during such a parse are valid syntactic forms
as per the application’s intended security policy [107]. In other words, sanitized strings can
span different contexts, but all the intermediate contexts induceded during parsing untrusted
strings should be syntactically confined to non-terminals allowed by the application’s policy.
We assume that a relation SanMap, mapping each possible context-transition to a matching
sanitizer, is available externally.

S0: No Implicit Type Casts. Our type system separates UNSAFE-qualified, statically-
qualified and dynamic-qualified types. It does not permit implicit type conversions between
them. Type qualifier conversions are only permitted through explicit type promotion oper-
ations, according to a promotibility relation ≤ defined in Figure 6.9.

q ≤ q
c ∈ S S ∈ 2C

CTXSTATc ≤ CTXDYNS

c1, c2 ∈ C
UNSAFE ≤ STATICc1↪→c2

S ∈ 2C×C

UNSAFE ≤ DYNS

Figure 6.9: The promotibility relation ≤ between type qualifiers

Our promotibility relation is different from the standard subtyping relation (�)—for
example, the following subsumption rule applies in standard subtyping, but our promotibility
relation does not adhere to it:

Γ ` e : Qs Qs � Qt

Γ ` e : Qt

t-sub

The static type qualifier-based restrictions S1 and S3 defined below together satisfy the no
over-sanitization (NOS) property. Similarly, S2 ensures the context restriction (CR) property.
The S3 and S4 together satisfy the context-sensitivity (CSAN) property while maintaining
strict separation between dynamically-qualified and statically-qualified expressions.

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 100

S1: No Sanitization for Constants. The rules T-CONST, T-CONSTSTR and T-CSTRDYN

show that constant string values acquire the type qualifier without any sanitization. These
values are program constants, so they are implicitly trusted.

S2: Canonical Parsing. The qualifier parameters (denoting the context-transitions) for
trusted constant strings are inferred by parsing them according to the canonical grammar.
We assume the availability of such a canonical grammar (assumption 1 in Section 6.1),
embodied in a predicate IsParseV alid defined below.

Definition 1 IsParseV alid is a predicate of type string × C × C → bool, such that
IsParseV alid(s, c1, c2) evaluates to true if and only if the data string s parses validly as
per the assumed canonical grammar starting in context c1 yielding a final context c2.

S3: Safe String Expression Creation. The rules for concatenation do not permit
strings qualified as UNSAFE to be used in concatenations, forcing the type inference engine to
type promote (and hence sanitize) operands before they can be used in concatenation oper-
tions. The T-STRCAT-STAT rule ensures that only statically safe strings can be concatenated
whereas the T-STRCAT-DYN rule constructs dynamically qualified strings. The latter rule
conservatively over-approximates the result’s dynamic set of context-transitions that could
occur at runtime. For over-approximating sets, we define an inner-join S1 ./ S2 as the set of
all context transitions c1 ↪→ c2 such that c1 ↪→ c3 ∈ S1 and c3 ↪→ c2 ∈ S2.

S4: Context-Sensitive Output. The rules for print commands ensure that the emitted
string expression can not be UNSAFE-qualified. Further, the type rule T-PRINT-STATIC-1

ensures that the context type qualifier of the emitted string matches the context of the
output buffer, when both of them are statically-qualified.

Only dynamically-qualified strings can be emitted to dynamically qualified output buffers—
a strict separation between dynamic and static type qualified expressions is maintained. The
T-PRINT-DYN-2 type rule capture this case. This requires a runtime parsing, as described
in section 6.3, to determine the precise context. The static type rules compute the resulting
context for the output buffer by an over-approximate set, considering the context-transition
sets of two dynamically-qualified input operands. To compute the resulting context set, we
define 2 operations over a context-transition set S for a dynamically qualified type DYNS:

CDom(S,E) = {Ci|Ci ↪→ Ce ∈ S,Ce ∈ E}

CRange(S,B) = {Ci|Cs ↪→ Ci ∈ S,Cs ∈ B}

Control flow Commands. Type rules T-IFELSE and T-WHILE for control flow operations
are standard, ensuring that the type environment Γ resulting at join points is consistent.
Whenever static context ambiguity arises at a join point, the types of the incoming values
must be promoted to dynamically-qualified type to conform to the type rules. Our type
inference step (as Section 6.4 explains) introduces these type promotions at join points in

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 101

the untyped IR, so that after type inference completes, the well-typed IR adheres to the
T-IFELSE and T-WHILE rules.

Calls and Returns. In our language, templates do not return values but take in param-
eters passed by value. In addition, templates have side-effects on the global output buffer.
For a template f , Γ maps f by name to a type (Q1, Q2, . . . Qk) → [Qρ → Qρ′], where
(Q1, Q2, . . . Qk) denotes the expected types of its arguments and Qρ → Qρ′ denotes the
side-effect of f on the global output buffer ρ. The T-CALL rule imposes several restrictions.

First, it enforces that each formal parameter either has a statically-qualified type or is
promotible to one (by relation ≤). Second, it ensures that the types of actual parameters
and the corresponding formal parameters match. Finally, it enforces that each (possibly
cloned) template starts and ends in statically precise contexts, by ensuring that Qρ and Qρ′

are statically-qualified. The output buffer (ρ) can become dynamically qualified within a
template’s body, as shown in example of Figure 6.6, but the context of ρ should be precisely
known at the return statement. In the example of Figure 6.6, the context of ρ is ambiguous at
the join-point of the first if-else block. However, we point out that at the return statement the
dynamically qualified set of contexts becomes a singleton, that is, the end context is precisely
known. The T-RET-DYN rule applies in such cases and soundly converts the qualifier for ρ
back to a statically-qualified type.

For templates that do not start and end in precise contexts, our CSAS engine creates
multiple clones of the template, as explained in Section 6.4, to force conformance to the type
rules.

Sanitization

Handling manually placed sanitizers. The T-SAN rule converts the type of the expres-
sion e in the sanitization expression San(f, e) from UNSAFE to a statically-qualified type
STATICc1↪→c2 , only if f is a correct sanitizer for the context transition c1 ↪→ c2 according to
the externally specified SanMap relation.

Auto-sanitization Only at Type Promotions. Other than T-SAN, the T-PROM type
rule is the only way an UNSAFE-qualified string can become statically-qualified. The CSAS
engine inserts statically selected sanitizers during compilation only at the type promotion
command that promote UNSAFE-qualified to statically-qualified strings. For such a command
v := (STATICc1↪→c2)e, the CSAS engine’s compilation step automatically inserts the sanitizer
which matches the start context c1 and will ensure that parsing v will safely end in context
c2 .

Type Promotion from UNSAFE to Dynamic. For dynamically qualified strings, the CSAS
engine needs to perform runtime parsing and sanitization. To enable this for dynamically-
qualified strings, our instrumentation uses an auxiliary data structure, which we call the
CSRP-expression, which keeps constant substrings separate from the untrusted components.
For conceptual simplicity, our CSRP-expression data structure is simply a string in which
untrusted substrings are delimited by special characters LM. These special delimiters are not

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 102

part of the string alphabet of the base templating language.
The T-PROM rule permits promotions from UNSAFE-qualified strings to dynamically-qualified

expressions. The CSAS engine inserts instrumentation during compilation to insert the spe-
cial characters LM around the untrusted data and to initialize this CSRP-expression with it.
The concatenation operation over regular strings naturally extends to CSRP-expressions.

Runtime Parsing and Sanitization. At program points where the output buffer is
dynamically-qualified, the CSAS engine adds instrumentation to track its dynamic context
as a metadata field. The metadata field is updated at each print. When a CSRP-expression
is written to the output buffer at runtime, the CSRP-expression is parsed starting in the
dynamically-tracked context of the output buffer. This parsing procedure internally deter-
mines the start and end context of each untrusted substring delimited by LM, and selects
sanitizers for them context-sensitively.

We detail the operational semantics for the language and sketch the soundness proof for
our type system in Secion 6.5.

6.4 CSAS Engine

We present the design and implementation of the CSAS engine in this section. The CSAS
engine performs two main steps of inferring context type qualifiers and then compiling well-
typed IR to JavaScript or server-side Java code with sanitization logic.

Type Qualifier Inference & Compilation

The goal of the type inference step is to convert untyped or vanilla templates to well-typed
IR. In the the qualifier inference step, the CSAS engine first converts template code to an
internal SSA representation (untyped IR). The qualifier inference sub-engine is also supposed
to add additional type promotions for untrusted inputs, where sanitization primitives will
eventually be placed. However, the qualifier inference sub-engine does not apriori know
where all sanitizations will be needed. To solve this issue, it inserts a set of candidate
type promotions, only some of which will be compiled into sanitizers. These candidate type
promotions include type qualifier variables, i.e., variables whose values are context types and
are to be determined by the type inference. They have the form v′ := (Q)e where Q is a
type qualifier variable, and its exact value is a context type to be determined by the type
qualifier inference sub-engine. Next, the type qualifier inference step solves for these qualifier
variables by generating type constraints and solving them.

Once constraint solving succeeds, the concrete context type for each qualifier variable
is known. These context types can be substituted into the candidate type promotions; the
resulting IR is well-typed and is guaranteed to conform to our type rules. In the final
compilation step, only some of the candidate type promotions are turned into sanitizer calls.
Specifically, type promotions in well-typed IR that essentially cast from a qualified-type to
itself, are redundant and don’t require any sanitization, whereas those which cast UNSAFE-

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 103

qualified variables into other qualified values are compiled into sanitizers as described in
section 6.3.

Inserting Type Promotions with Qualifer Variables

Candidate type promotions are introduced at the following points while converting templates
to the untyped IR:

• Each print (e) statement is turned into a print (v′) statement in the IR by creating
a fresh internal program variable v′. The CSAS engine also inserts a type promotion
(and assignment) statement v′ := (Q) e preceeding the print statement, creating a
qualifier variable Q.

• Each v = φ(v1, v2) statement is turned into equivalent type promotions v := (Q1) v1

and v := (Q2) v2 in the respective branches before the join point, by creating new
qualifier variables Q1 and Q2 .

• Parameter marshalling from actual parameter “a” to formal parameter “v” is made
explicit via a candidate promotion operation v := (Q) a, by creating new qualifier
variable Q.

• A similar type promotion is inserted before the concatenation of a constant string
expression with another string expression.

Constraint Solving for Qualifier Variables

The goal of this step is to infer context type qualifiers for qualifier variables. We analyze
each template’s IR starting with templates that are used by external code— we call these
public templates. We generate a version of compiled code for each start and end context in
which a template can be invoked, so we try to analyze each public template for each choice
of a start and end context. Given a template T , start context cs and end context ce, the
generic type inference procedure called TempAnalyze(T, cs, ce) is described below.

TempAnalyze(T, cs, ce) either succeeds having found a satisfying assignment of qualifier
variables to context type qualifiers, or it fails if no such assignment is found. It operates
over a call-graph of the templates in depth-first fashion starting with T , memoizing the
start and end contexts for each template it analyzes in the process. When analyzing the
body of a template in IR form, it associates a typemap L mapping local variables to type
qualifiers at each program location. At the start of the inference for T , all local variables are
qualified as UNSAFE in L. The analysis proceeds from the entry to the exit of the template
body statement by statement, updating the context qualifier of each program variable. The
context of the output buffer is also updated with the analysis of each statement.

Type rules defined in Figure 6.8 can be viewed as inference rules as well: for each state-
ment or command in the conclusion of a rule, the premises are type constraints to be satisfied.
Similar constraints are implied by type rules for expressions. Our type inference generates

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 104

and solves these type constraints during the statement by statement analysis using a custom
constraint solving procedure.

Several of our type rules are non-deterministic. As an example, the rules T-CONSTSTR and
T-CSTRDYN have identical premises and are non-deterministic because the language syntax
alone is insufficient to separate statically and dynamically qualified types. Our constraint
solving procedure resolves such non-determinism by backtracking to find a satisfying solution
to the constraints. Our inference prefers the most precise (or static) qualifiers over less precise
(dynamic) qualifiers as solutions for all qualifier variables during its backtracking-based con-
straint solving procedure. For instance, consider the non-determinism inherent in the premise
involving IsParseV alid used in the T-CONSTSTR and T-CSTRDYN rules. IsParseV alid is a
one-to-many relation and a constant string may parse validly in many start contexts. Our
constraint solving procedure non-deterministically picks one such possible context transition
initially, trying to satisfy all instances of the T-CONSTSTR rule before that of the T-CSTRDYN

rule and refines its choice until it finds a context transition under which the static string
parses validly. If no instance of the T-CONSTSTR rule matches, the engine tries to satisfy the
T-CSTRDYN rule. Similar, backtracking is also needed when analyzing starting and ending
contexts of templates when called via the callTemplate operation.

Resolving Context Ambiguity by Cloning

The static typing T-CALL rule for callTemplate has stringent pre-conditions: it permits a
unique start and end context for each template. A templates can be invoked in multiple
different start (or end) contexts—our inference handles such cases while keeping the consis-
tency with the type rules by cloning templates. We memoize start and end contexts inferred
for each template during the inference analysis. If during constraint generation and solving,
we find that a template T is being invoked in start and end contexts different from the
ones inferred for T previously during the inference, we create a clone T ′. The cloned tem-
plate has the same body but expects to begin and end in a different start and end context.
Cloned templates are also compiled to separate functions and the calls are directed to the
appropriate functions based on the start and end contexts.

6.5 Operational Semantics

We have discussed the static type rules in Section 6.3. In this section, we describe the various
runtime parsing checks that our CSAS engine inserts at various operations to achieve type
safety. We do this by first presenting a big-step operational semantics for an abstract machine
that evaluates our simple templating language. We sketch the proof for the soundness of our
type system based on the operational semantics.

The evaluation rules are shown in Fig 6.5. Commands operate on a memory M mapping
program variables to values. Each premise in an evaluation rule has the form M ` e ⇓ v
which means that the expression e evaluates to a final value v under the state of the memory

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 105

M . Command evaluation judgements have the form M ` c ⇓ M ′ which states that under
the memory M evaluation of the command c results in a memory M ′. We omit the rules for
template calls and returns here which follow standard call-by-value semantics for brevity.

Values. The values produced during the evaluation of the language are mainly of two
kinds: (a) Vβ values for the data elements of base type β and (b) Vη for objects of base type
η. Runtime errors are captured by a third, explicit CFail value. The syntax of values is
described in Figure 6.10.

V alue ::= Vβ|Vη|CFail

Vβ ::= 〈V al, CTran〉| / Expr . |V al
Ctran ::= C ↪→ C
V al ::= b|i|s
Expr ::= V al|Expr · Expr|LV alM

Vη ::= ‖s, EmbCtx‖
EmbCtx ::= C

Figure 6.10: Syntax of Values

The universe of string, int or bool base typed values is denoted by the letters s,i, and b
letters respectively in the syntax above and the standard concatenation operation is denoted
by “·”. The Vβ values are of three kinds:

1. Untrusted or unsanitized values are raw untrusted string, integer or boolean values.

2. Other values which are auto-sanitized statically or correspond to program constants are
tuples of the form 〈v, Ctran〉 where Ctran is a metadata field. The Ctran metadata
field indicates that the value v safely induces a context transition Ctran .

3. The remaining values are a special data-structure /Expr., called the CSRP-expression,
which is used for dynamically sanitized values. The data structure stores concatenation
expressions, conceptually separating the untrusted peices from trusted peices. In our
syntax, we separate untrusted substrings of string expressions by delimiting them with
special delimiters, L and M, which are assumed to be outside the string alphabet of the
base language.

The global output buffer has a value of the form ‖s, EmbCtx‖, where s is the string
buffer consisting of the application’s output. The EmbCtx metadata field is the context as
a result of parsing s according to our canonical grammar.

Type Safety. Note that the operational semantics ensure the 3 security properties outlined
in section 6.1. The CR is explicit in the representation of output buffer values—parsing the

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 106

c ∈ C
M ` const(n) ⇓ 〈n, c ↪→ c〉

e-cint
c ∈ C

M ` const(b) ⇓ 〈b, c ↪→ c〉
e-cbool

IsParseV alid(s, c1, c2)

M ` const(s) ⇓ 〈s, c1 ↪→ c2〉
e-const

M ` const(s) ⇓ /s.
e-string-dyn

M ` e1 ⇓ 〈b1, c ↪→ c〉
M ` e2 ⇓ 〈b2, c ↪→ c〉

M ` e1 � e2 ⇓ 〈b1 � b2, c ↪→ c〉
e-bl

M ` e1 ⇓ 〈n1, c ↪→ c〉
M ` e2 ⇓ 〈n2, c ↪→ c〉

M ` e1 ⊕ e2 ⇓ 〈n1 ⊕ n2, c ↪→ c〉
e-int

M ` e1 ⇓ 〈s1, c1 ↪→ c2〉
M ` e2 ⇓ 〈s2, c3 ↪→ c4〉 c2 = c3

M ` e1 · e2 ⇓ 〈s1 · s2, c1 ↪→ c4〉
e-cat-stat

M ` e1 ⇓ /s1. M ` e2 ⇓ /s2.
M ` e1 · e2 ⇓ /s1 · s2.

e-cat-dyn

M ` e ⇓ s SanMap(c1 ↪→ c2, f) s′ = f(s) c1, c2 ∈ C
M ` San(f, e) ⇓ 〈s′, c1 ↪→ c2〉

e-san

M ` e ⇓ s SanMap(c1 ↪→ c2, f) s′ = f(s) c1, c2 ∈ C
M ` v := (STATICc1↪→c2)e ⇓M [v 7→ 〈s′, c1 ↪→ c2〉]

e-prom-st

M ` e ⇓ s
M ` v := (DYNS)e ⇓M [v 7→ /LsM.〉]

e-prom-dyn

M ` e ⇓ 〈s, c1 ↪→ c2〉
M ` v := (STATICc1↪→c2)e ⇓M

e-cast-1
M ` e ⇓ /s.

M ` v = (DYNS)e ⇓M
e-cast-2

M ` e ⇓ 〈s, c1 ↪→ c2〉
M ` ρ ⇓ ‖s′, c‖ c = c1

M ` print(e) ⇓M [ρ 7→ ‖s′ · s, c2‖]
e-prn-stat

M ` e ⇓ /s. M ` ρ ⇓ ‖s′, c‖
(s′′, c2) = CSRP (c, /s.)

M ` print(e) ⇓M [ρ 7→ ‖s′ · s′′, c2‖]
e-prn-dyn

M ` e ⇓ true M ` S1 ⇓M ′

M ` if(e)thenS1elseS2 ⇓M ′ e-if
M ` e ⇓ false
M ` S2 ⇓M ′

M ` if(e)thenS1elseS2 ⇓M ′e-el

M ` e ⇓ true M ` S; while(e)S ⇓M ′

M ` while(e)S ⇓M ′ e-whltrue
M ` e ⇓ false

M ` while(e)S ⇓M
e-whlfalse

M ` e ⇓ x
M ` v := e ⇓M [v 7→ x]

e-assign
M ` c ⇓M ′ M ′ ` S ⇓M ′′

M ` c;S ⇓M ′′ e-seq

Figure 6.11: Operational Semantics for an abstract machine that evaluates our simple tem-
plating language.

output buffer at any point results in a permitted context defined in C. Property NOS is
similarly ensured in the E-CONST rule, which evaluate to values of the form 〈v, Ctran〉. Such

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 107

values are never sanitized.
Property CSAN is immidiate for E-PRN-STAT evaluation rule which ensures that the output

buffer’s context matches the start context in the Ctran field of the written string expression.
For the evaluation rule E-PRN-DYN, the soundness relies on the procedure CSRP shown
boxed which takes a CSRP-expression and a start context to parse the expression in. This
procedure parses the string expression embedded in the CSRP-expression, while sanitizing
all and only the untrusted substrings delimited by LM context-sensitively. If it succeeds it
returns a tuple containing the sanitized string expression and the end context.

In order to formalize and sketch the proof of the soundness of our type system, we first
define a relation R mapping types to the set of valid values they correspond to. At any given
point in the program, if the type of a variable or object is Q under the typing environment
Γ, then its value must correspond to the typing constraints. The relation R is defined as
follows, assuming U is the universe of strings, integer and boolean values:

Definition 2 (Relation R)

R(UNSAFE) = {v|v ∈ U}
R(STATICc1↪→c2) = {〈v, c1 ↪→ c2〉|v ∈ U , IsParseV alid(v, c1, c2)}
R(DYNS) = {/v . |v ∈ U}
R(CTXSTATc) = {‖s, c‖|c ∈ C}
R(CTXDYNS) = {‖s, c‖|c ∈ C, c ∈ S}

At any program location, we define a notion of a well-typed memory M as follows:

Definition 3 (Well-Typedness) A memory is well-typed with respect to a typing environ-
ment Γ, denoted by M |= Γ, iff

∀x ∈ Dom(M),M [x] ∈ R(Γ[x])

We define the two standard progress and preservation theorems that establish soundness
our type system below. Progress states that if the memory if well-typed, then the abstract
machine defined in the operational semantics does not get “stuck”— that is, there is at least
one evaluation rule that can be applied to the well-typed terms. Preservation states that
at any evaluation step if all the subterms (used in the premises) are well-typed then the
deduced term is also well-typed.

The machine may get stuck for several reasons. It may be due to the runtime boxed
checks failing. This is intended semantics of the language and such behavior is safe. The
machine may also get stuck because no evaluation rule may apply, or in other words, the
memory state is such that the semantics do not define how to evaluate further. To distinguish
these two cases, we define a value called CFail, which the boxed procedure CSRP evaluates
to when it fails. Other stuck states may result from reaching an inconsistent memory states
for which no evaluation rule applies. We point out the abstract operational semantics we
describe here are non-deterministic. Therefore, only when all non-deterministic evaluations
of an instance of the procedure CSRP fail, does the boxed check fail and the print statement
evaluate to the CFail runtime error.

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 108

Theorem 1 (Progress and Preservation for Expressions). If Γ ` e : T and M |= Γ, then
either M ` e ⇓ CFail or M ` e ⇓ v and v ∈ R(T).

Proof: By induction on the derivation of Γ ` e : T .

Theorem 2 (Progress and Preservation for Commands). If M |= Γ and Γ ` c =⇒ Γ′, then
either M ` c ⇓ CFail or M ` c ⇓M ′ where M ′ |= Γ′.

Proof: By induction on the derivation of Γ ` c =⇒ Γ′. The definition of relation R serves
as the standard inversion lemma.

6.6 Implementation & Evaluation

We have implemented our CSAS engine design into a state-of-the-art, commercially used
open-source templating framework called Google Closure Templates [44]. Closure Templates
are used extensively in large web applications including Gmail, Google Docs and other Google
properties. Our auto-sanitized Closure Templates can be compiled both into JavaScript as
well as server-side Java code, enabling building reusable output generation elements.

Contexts

HTML PCDATA
HTML RCDATA

HTML TAGNAME
HTML ATTRIBNAME

QUOTED HTMLATTRIB
UNQUOTED HTMLATTRIB

JS STRING
JS REGEX

CSS ID, CLASS, PROPNAME, KEYWDVAL, QUANT
CSS STRING, CSS QUOTED URL, CSS UNQUOTED URL

URL START, URL QUERY, URL GENERAL

Figure 6.12: A set of contexts C used throughout the chapter.

Our implementation is in 3045 lines of Java code, excluding comments and blank lines,
and it augments the existing compiler in the Closure Templates with our CSAS engine. All
the contexts defined in Figure 6.12 are supported in the implementation with 20 distinct
sanitizers.

Subject Benchmarks. For real-world evaluation, we gathered all Closure templates ac-
cessible to us. Our benchmarks consist of 1035 distinct Closure templates from Google’s
commercially deployed applications. The templates were authored by developers prior to

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 109

our CSAS engine implementation. Therefore, we believe that these examples represent un-
biased samples of existing code written in templating languages.

The total amount of code in the templates (excluding file prologues and comments outside
the templates) is 21, 098 LOC. Our benchmarks make heavy use of control flow constructs
such as callTemplate calls. Our benchmark’s template call-graph is densely connected. It
consists of 1035 nodes, 2997 call edges and 32 connected components of size ranging from
2 - 12 templates, one large component with 633 templates and 262 disconnected templates
(that make no external calls or get called). Overall, these templates have a total of 1224
print statements which write untrusted data expressions. The total number of untrusted
input variables in the code base is 600, ranging from 0− 13 for different templates.

Evaluation Goals. The goal of our evaluation is to measure how easily our principled type-
based approach retrofits to an existing code base. In addition, we compare the security and
performance of our “mostly static”, context-sensitive approach to the following alternative
approaches:

• No Auto-Sanitization. This is the predominant strategy in today’s web frameworks.

• Context-insensitive sanitization. Most remaining web frameworks supplement each
output print command with the same sanitizer.

• Context-sensitive runtime parsing sanitization. As explained earlier, previous systems
have proposed determining the contexts by runtime parsing [16]. We compare the
performance of our approach against this approach.

Compatibility & Precision

Our benchmark code was developed prior to our type system. We aim to evaluate the
extent to which our approach can retrofit security to existing code templates. To perform
this experiment, we disabled all sanitization checks in the benchmarks that may have been
previously applied and enabled our auto-sanitization on all of the 1035 templates. We
counted the fraction of templates that were transformed to well-typed compiled code. Our
analysis is implemented in Java and takes 1.3 seconds for all the 1035 benchmarks on a
platform with 2 GB of RAM and an Intel 2.6 MHz dual-core processor running Linux 2.6.31.

Our static type inference approach avoids imprecision by cloning templates that are called
in more than one context. In our analysis, 11 templates required cloning which resulted in
increasing the output print statements (or sinks) from 1224 initially to 1348 after cloning.

Our main result is that all 1348 output sinks in the 1035 templates were auto-sanitized.
No change or annotations to the vanilla templates were required. We test the outputs of the
compiled templates by running them under multiple inputs. The output of the templates
under our testing was unimpacted and remained completely compatible with that of the
vanilla template code.

Our vanilla templates, being commercially deployed, have existing sanitizers manually
applied by developers and are well-audited for security by Google. To confirm our compat-

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 110

No Context-
Saniti- Context- Sensitive Our
zation Insensitive Runtime Approach

Parsing
Chrome 9.0 227 234 (3.0%) 406 (78.8%) 234 (3.0%)
FF 3.6 395 433 (9.6%) 2074 (425%) 433 (9.6%)
Safari 5.0 190 195 (2.5%) 550 (189%) 196 (3.1%)

Server:Java 431 431 (0.0%) 2972 (510%) 431 (0.0%)

of Sinks 0/ 1348 982 / 1348 1348 / 1348 1348 / 1348
Auto-Prot. (0%) (72%) (100%) (100%)

Figure 6.13: Comparing the runtime overhead for parsing and rendering the output of all the
compiled templates in milliseconds. This data provides comparison between our approach
and alternative existing approaches for server-side Java and client-side JavaScript code gen-
erated from our benchmarks. The percentage in parenthesis are calculated over the base
overhead of no sanitization reported in the second column. The last line shows the number
of sinks auto-protected by each approach—a measure of security offered by our approach
compared to its alternatives.

ibility and correctness, we compared the sanitizers applied by our CSAS engine to those
pre-applied in the vanilla versions of the benchmarked code manually by developers. Out
of the 1348 print statements emitting untrusted expressions, the sanitization primitives on
untrusted inputs exactly match the pre-applied sanitizers in all but 21 cases. In these 21
cases, our CSAS engine applies a more accurate (escapeHtmlAttribute) sanitizer versus the
more restrictive sanitizer applied previously (escapeHTML) by the developer. Both sanitiz-
ers defeat scripting attacks; the pre-existing sanitizer was rendering certain characters inert
that weren’t dangerous for the context. This evaluation strengthens our confidence that our
approach does not impact/alter the compatibility of the HTML output, and that our CSAS
engine implementation applies sanitization correctly.

Our type qualifier inference on this benchmark statically-qualified expressions written to
all but 9 out of the 1348 sinks. That is, for over 99% of the output sinks, our approach can
statically determine a single, precise context.

In these 9 cases, the set of ambiguous contexts is small and a single sanitizer that sanitizes
the untrusted input for all contexts in this set can be applied. In our present implementation,
we have special-cased for such cases by applying a static sanitizer, which is safe but may be
over-restrictive. We have recently implemented the CSRP scheme using an auxiliary data
structure, as described in Section 6.3, in jQuery templates for JavaScript [92]; we expect
porting this implementation to the Google Closure compiler to be a straight-forward task in
the future.

Security

To measure the security offered by our approach as compared to the context-insensitive
sanitization approach, we count the number of sinks that would be auto-sanitized correctly

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 111

602
380

231
39
33
27

15
10
7
3
1

0 100 200 300 400 500 600 700

escapeHtml
escapeHtmlAttribute

filterNormalizeURI, escapeHtml
escapeJsValue
filterCSSValue

escapeJsString
escapeUri

escapeHtmlRcdata
escapeHtmlAttributeNospace

filterHtmlIdent
filternormalizeURI

Figure 6.14: Distribution of inserted sanitizers: inferred contexts and hence the inserted
sanitizer counts vary largely, therefore showing that context-insenstive sanitization is insuf-
ficient.

in our 1035 templates. We assume that a context-insensitive sanitization would apply the
HTML-entity encoding sanitizer to all sinks, which is the approach adopted in popular
frameworks such as Django [32]. Picking another sanitizer would only give worse results for
the context-insensitive scheme— we show that the most widely inserted sanitizer in auto-
sanitization on our benchmarks is escapeHtml, the HTML-entity encoding sanitizer.

The last row in Figure 6.13 shows the number of sinks auto-protected by existing ap-
proaches. Context-insensitive sanitization protects 72% of the total output prints adequately;
the auto-sanitization is insufficient for the remaining 28% output print opertions. Clearly,
context-insensitive sanitization offers better protection than no sanitization strategy. On the
other hand, context-sensitive sanitization has full protection whether the context-inference
is performed dynamically or as in our static type inference approach. Figure 6.14 shows that
the inferred sanitizers varied significantly based on context across the 1348 output points,
showing the inadequacy of context-insensitive sanitization.

Performance

We measure and compare the runtime overhead incurred by our context-sensitive auto-
sanitization to other approaches and present the results in Figure 6.13. Google Closure
Templates can be compiled both to JavaScript as well as Java. We measure the runtime
overhead for both cases and report the rendering time for each case in milliseconds. For com-
piled JavaScript functions, we record the time across 10 trial runs in 3 major web browsers.
For compiled Java functions, we record the time across 10 trial runs under the same inputs.

The baseline “no auto-sanitization” approach overhead is obtained by compiling vanilla
templates with no developer’s manual sanitizers applied. For our approach, we enable our

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 112

CSAS auto-sanitization implementation. To compare the overhead of context-insensitive
auto-sanitization, we simply augment all output points with the escapeHtml sanitizer during
compilation. A direct comparison to Google AutoEscape, the only context-sensitive sani-
tization approach in templating systems we know of, was not possible because it does not
handle rich language features like if-else and loops which create context ambiguities and are
pervasive in our benchmarks; a detailed explanation is provided in Section 6.7. To emulate
the purely context-sensitive runtime parsing (CSRP) approach, we implemented this tech-
nique for our templating langauge. For Java, we directly used an off-the-shelf parser without
modifications from the open-source Google AutoEscape implementation in GWT [43]. For
JavaScript, since no similar parser was available, we created a parser implementation mir-
roring the Java-based parser. We believe our implementation was close to the GWT’s public
implementation for Java, since the overhead is in the same ballpark range.

Results. For JavaScript as the compilation target, the time taken for parsing and rendering
the output of all the compiled template output (total 782.584 KB) in 3 major web browsers,
averaged over 10 runs, is shown in Figure 6.13. The costs lie between 78% and 4.24x for the
pure CSRP approach and our approach incurs between 3−9.6% overhead over no sanitization.
The primary reason for the difference between our approach and CSRP approach is that the
latter requires a parsing of all constant string and context determination of untrusted data at
runtime— a large saving in our static type inference approach. Our overhead in JavaScript
is due to the application of the sanitizer, which is why our sanitization has nearly the same
overhead as the context-insensitive sanitization approach.

For Java, the pure CSRP approach has a 510% overhead, whereas our approach and
context-insensitive approach incur no statistically discernable overhead. In summary, our
approach achieves the benefits of context-sensitive sanitization at the overhead comparable
to a large fraction of other widely used frameworks.

We point out that Closure templates capture the HTML output logic with minimal
subsidiary application logic — therefore our benchmarks are heavy in string concatenations
and writes to output buffers. As a result, our benchmarks are highly CPU intensive and the
runtime costs evaluated here may be amortized in full-blown applications by other latencies
(computation of other logic, database accesses, network and file-system operations). For an
estimate, XSS-GUARD reports an overhead up to 42% for the CSRP approach [16]. We
believe our benchmarks are apt for precisely measuring performance costs of the HTML
output logic alone. Further performance optimizations can be achieved for our approach as
done in GWT by orthogonal optimizations like caching which mask disk load latencies.

6.7 Related Work

Google AutoEscape, the only other context-sensitive sanitization approach in templating
frameworks we are aware of, does not handle the rich language constructs we support— it
does not handle conditionals constructs, loops or call operations [42]. It provides safety in
straight-line template code for which straight-line parsing and context-determination suffice.

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 113

To improve performace, it caches templates and the sanitization requirements for untrusted
inputs. Templates can then be included in Java code [43] and C code [42]. As we out-
line in this chapter, with rich constructs, path-sensitivity becomes a challenging issue and
sanitization requirements for untrusted inputs vary from one execution path to the other.
AutoEscape’s caching optimization does not directly extend to code where sanitization re-
quirements vary depending on executed paths. Our approach, instead, solves the challenges
arising from complex language features representative of richer templating systems like Clo-
sure Templates.

Context-inference and subsequent context-sensitive placement for .NET legacy applica-
tions is proposed in our recent work [97]. The approach proposed therein, though sound, is a
per-path analysis and relies on achieving path coverage by dynamic testing. In contrast, the
type-based approach in this work achieves full coverage since it is based on static type infer-
ence. The performance improvements in our recent dynamic approach relies heavily on the
intuition that on most execution paths, developers have manually applied context-sensitive
sanitization correctly. The type-based approach in this work can apply sanitization correctly
in code completely lacking previous developer-supplied sanitization. A potential drawback
of our static approach is that theoretically it may reject benign templates since it reasons
about all paths, even those which may be potentially infeasible. In our present evaluation
we have not seen such cases.

Analysis techniques for finding scripting vulnerabilities has been widely researched [99,
100, 9, 48, 132, 72, 71, 18, 127, 62, 55, 87, 75, 8]. Defense architectures have targeted three
broad categories: server-side techniques [72, 110, 16, 97, 132], purely browser-based tech-
niques [15, 79] and client-server collaborative defenses [61, 84, 49, 105]. Unlike browser-
based and client-server defenses, purely server-side approaches are applicable to the server
code without requiring modifications to web browsers. Our techniques are an example of
this fact.

Among server-side approaches, strong typing has been proposed as a XSS defense mech-
anism in the work by Robertson et. al [93]. Our approach significantly contrasts theirs in
that it does not require any annotations or changes to the existing code, does not rely on
strong typing primitives in the base language such as monads and is a mixed static-dynamic
type system for existing web templating frameworks and for retrofitting to existing code.

6.8 Conclusion

We present a new auto-sanitization defense to secure web application code from scripting
attacks (such as XSS) by construction. We introduce context type qualifiers, a key new
abstraction, and develop a type system which is directly applicable to today’s commercial
templating languages. We have implemented the defense in Google Closure Templates, a
state-of-the-art templating system that powers GMail and Google Docs. We find that our
mostly static system has low performance overheads, is precise and requires no additional an-
notations or developer effort. We hope that our abstractions and techniques can be extended

CHAPTER 6. SECURING SANITIZATION-BASED DEFENSE 114

to other complex languages and frameworks in the future towards the goal of eliminating
scripting attacks in emerging web applications.

115

Chapter 7

DSI: A Basis For Sanitization-Free
Defense

In the previous chapter, we tackle the problem of auto-sanitization to prevent scripting
attacks. However, the underlying issue for scripting attacks is the lack of principled mecha-
nisms in HTML and other web languages to separate trusted code and data from untrusted
data embedded inline. As an artifact of this existing design, web developers pervasively use
fragile sanitization mechanisms, which have been notoriously hard to get right in the past.
In this chapter, we propose a fundamental integrity property, which we term as document
structure integrity, which can serve as a conceptual basis for defense without requiring any
sanitization in web applications. We begin by stating four requirements that a clean-slate
solution to scripting attacks should have.

Defense Requirements. Based on these empirical observations of Chapter 5 and Chap-
ter 6, we formulate the following four requirements for a technique to prevent script injection
attacks.

1. The defense should not rely on server-side sanitization of untrusted data; instead it
should form a second level of defense to safeguard against holes that result from error-
prone sanitization mechanism.

2. The defense should confine untrusted data in a manner consistent with the browser
implementation and user configuration.

3. The defense must address attacks that target server-side as well as client-side languages.

4. The defense should proactively protect against attacks without relying on detection
of common symptoms of malicious activity such as cross-domain sensitive information
theft.

Our Approach. In this chapter, we develop an sanitization-free approach. Our approach
can be implemented transparently in the web server and the browser requiring minimal

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 116

web developer intervention and it provides a second line of defense for preventing scripting
attacks. In our approach, script injection vulnerability is viewed as a privilege escalation vul-
nerability, as opposed to an input sanitization problem. Sanitization and filtering/escaping
of untrusted content aims to block or modify the content to prevent it from being interpreted
as code. Our approach does not analyze the values of the untrusted data; instead, it restricts
the interpretation of untrusted content to certain lexical and syntactic operations. The web
developer specifies a restrictive policy for untrusted content, and the web browser enforces
the specified policy.

To realize this system we propose a new scheme, which uses markup primitives for the
server to securely demarcate inline user-generated data in the web document, and is designed
to offer robustness in the face of an adaptive adversary. This allows the web browser to
verifiably isolate untrusted data while initially parsing the web page. Subsequently, untrusted
data is tracked and isolated as it is processed by higher-order languages such as JavaScript.
This ensures the integrity of the document parse tree — we term this property as document
structure integrity (or DSI). DSI is similar to PreparedStatements [36] which provide query
integrity in SQL. DSI is enforced using a fundamental mechanism, which we call parser-level
isolation (or PLI), that isolates inline untrusted data and forms the basis for uniform runtime
enforcement of server-specified syntactic confinement policies.

We discuss the deployment of this scheme in a client-server architecture that can be
implemented with a minimum impact to backwards compatibility in modern browsers. Our
proposed architecture employs server-side taint tracking proposed by previous research to
minimize changes to the web application code. We implemented a proof-of-concept that
embodies our approach and evaluated it on a dataset of 5,328 web sites with known scripting
vulnerabilities and 500 other popular web sites. Our preliminary evaluation demonstrates
that parser-level isolation with a single default policy is sufficient to nullify over 98% of the
attacks we studied. Our evaluation also suggests that our techniques can be implemented
with very low false positives, in contrast to false positives that are likely to arise due to
fixation of policy in purely client-side defenses.

Our work builds on several works which have identified the need for policy-based con-
finement and isolation of untrusted data [61, 73, 20]. A detailed analytical comparison with
previous works is provided in Sections 7.7 and Section 7.9. In comparison to existing scripting
defenses, DSI enforcement offers a more comprehensive defense against attacks that extend
beyond script injection and sensitive information stealing, and safeguards against both static
as well as dynamic integrity threats.

7.1 XSS Definition and Examples

A script injection (or XSS) vulnerability is one that allows injection of untrusted data into
a victim web page which is subsequently interpreted in a malicious way by the browser on
behalf of the victim web site. This untrusted data could be interpreted as any form of
code that is not intended by the server’s policy, including scripts and HTML markup. We

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 117

1: <body>

2: <div id=’WelcomeMess’> Welcome! </div>

3: <div id=’$GET[‘FriendID-Status’]’ name=’status’> </div>

4: <script>

5: if($GET[‘MainUser’]) {

6: document.getElementById(’WelcomeMess’).innerHTML =

7: "Welcome" + "$GET[‘MainUser’]";

8: }

9: var divname = document.getElementsByName("status")[0].id;

10: var Name = divname.split("=")[0]; var Status = divname.split("=")[1];

11: eval("divname.innerHTML = \"" + Name + " is " + Status + "\"");

12: </script>

13: </body>

Figure 7.1: Example showing a snippet of HTML pseudocode generated by a vulnerable
social networking web site server. Untrusted user data is embedded inline, identified by the
$GET[‘...’] variables.

Untrusted variable Attack
(Attack Number) String

$GET[‘FriendID-Status’] ’ onmouseover=javascript:document.location="http://a.com"

(Attack 1)
$GET[‘MainUser’] </script><script>alert(document.cookie);</script>

(Attack 2)
$GET[‘FriendID-Status’] Attacker=Online"; alert(document.cookie);+"

(Attack 3)
$GET[‘MainUser’] <iframe src=http://attacker.com></iframe>

(Attack 4)

Figure 7.2: Example attacks for exploiting vulnerabilities in Figure 7.1.

treat only user-generated input as untrusted and use the terms “untrusted data” and “user-
generated data” interchangeably in this chapter. We also refer to content as being either
passive, i.e, consisting of elements derived by language terminals (such as string literals and
integers)– or active, i.e, code that is interpreted (such as HTML and JavaScript).

An Example. To outline the challenges of preventing exploits for XSS vulnerabilities,
we show a toy example of a social networking site in Figure 7.1. The pseudo HTML code
is shown here and places where untrusted user data is inlined are denoted by elements of
$GET[‘...’] array (signifying data directly copied from GET/POST request parameters).
In this example, the server expects the value of $GET[‘MainUser’] to contain the name
of the current user logged into the site, and $GET[‘FriendID-Status’] to contain a string
with the name of another user and his status message (“online” or “offline”) separated by a
delimiter (“=”). Assuming no sanitization is applied, this code has at least 4 places where

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 118

vulnerabilities arise, which we illustrate with possible exploits1 summarized in Figure 7.2.

• Attack 1: String split & Attribute injection. In this attack, the untrusted variable
$GET[‘FriendID-Status’] could prematurely break out of the id attribute of the
<div> tag on line 3, and inject unintended attributes and/or tags. In this particular
instance, the attack string shown in Figure 7.2 closes the string delimited by the single
quote character, which allows the attacker to inject the onmouseover JavaScript event.
The event causes the page to redirect to http://a.com potentially fooling the user into
trusting the attacker’s website.

A similar attack is possible at line 7, wherein the attacker breaks out of the JavaScript
string literal using an end-of-string delimiter (") character in the value for the variable
$GET[‘MainUser’].

• Attack 2: Node splitting. Even if this server sanitizes $GET[‘MainUser’] on line 7 to
disallow JavaScript end-of-string delimiters, another attack is possible. The attacker
could inject a string to split the enclosing <script> environment, and then inject a
new script tag, as shown by the second attack string in Figure 7.2.

• Attack 3: Dynamic code injection. A more subtle attack is one that targets the integrity
of the eval query on line 11. Notice that JavaScript variable Name and Status are
derived from parsing the untrusted id of the div element on line 3. Even if the server
sanitizes the variable $GET [‘FriendID-Status’] value for use in the div element
context on line 3 by removing the ’ delimiter, the attacker could still inject code in the
dynamically generated javascript eval statement. The vulnerability on line 10 parses
the id attribute value of each div element into separate user name and status variables,
which performs no sanitization for variable named Status. The attacker can use an
attack string value as shown as the third string in Figure 7.2 to execute the arbitrary
JavaScript code at line 11.

• Attack 4: Dynamic active HTML update. The attacker could inject active elements
inside the <div> with id WelcomeMess at line 6-7, by using the fourth attack string
in Figure 7.2 as the value for $GET[‘MainUser’]. This attack updates the web page
DOM 2 tree dynamically on the client side after the web page has been parsed and the
script code has been executed.

Motivation for our approach. We observe that all of the attacks outlined in Figure 7.2
require breaking the intended structure of the parse tree on the browser. The resulting parse
trees from all attacks are shown superimposed in Figure 7.3. It is worth noting that attacks
1 and 2 break the structure of the web page during its initial parsing by the HTML and

1The sample attacks are illustrative of attacks seen in the past, and are not guaranteed to work on all
browsers.

2DOM is the parse tree for the HTML code of the web page

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 119

html

'Welcome!'

bodydiv

onmouseover

script

alert
(document.cookie);

script
div

iframe

Attack 4

Attack 1

Attack 2

www.attacker.com

src

id

'WelcomeMess'

id

div

javascript:document.location=
"http://a.com"

=

divname.innerHTML
"Attacker is
Online";

"alert
(document.cookie);"

Attack 3

=

Figure 7.3: Coalesced parse tree for the vulnerable web page in Figure 7.1 showing superim-
position of parse trees resulting from all attacks simultaneously. White node show the valid
intended nodes whereas the dark nodes show the untrusted nodes inserted by the attacker.

JavaScript parsers, whereas attack 3 and 4 alter the document structure during dynamic
client-side operations.

If the browser could robustly isolate untrusted data on the web page, then it can quar-
antine untrusted data with respect to an intended policy. In this example, the server wishes
to coerce untrusted nodes to leaf nodes in the parse tree, by treating them as string literals.
This disallows injection of any language non-terminal (possible active HTML/JavaScript
content) in the web page.

7.2 Approach Overview

Web pages are parsed by various language parsers that are part of the web browser into
internal parse trees. Under a benign query, the web server produces a web page that when
parsed, results in a parse tree with a certain structure. This parse tree represents the
structure that the web server aims to allow in the web document, and hence we term it as
the document structure. In our approach, we ensure that the browser can identify and isolate
nodes derived from user-generated data, in the parse tree during parsing. In principle, we
whitelist the intended document structure and prevent the untrusted nodes from changing
this structure in unintended ways. We call the property of ensuring intended document
structure as enforcing document structure integrity or DSI.

We clearly separate the notion of a confinement policy from the parser-level isolation

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 120

mechanism. As in our running example, web sites often wish to restrict untrusted data to
leaf nodes in the document structure, as this is an effective way to stop an attacker from
injecting active content. We refer to this confinement policy as terminal confinement, i.e.,
confinement of untrusted data to leaves in the document structure, or equivalently, to strings
derived from terminals in the grammar representing valid web pages. Figure 7.4 is the parse
tree obtained by DSI enforcement for our running example.

The server may wish to instruct the browser to enforce other higher-level semantic poli-
cies, such as specifying a restricted sandbox, but this is possible only if the underlying
language or application execution framework provides primitives that prevent an attacker
from breaking out of the confinement region. For instance, the new proposal of sandbox at-
tributes for iframe tags (introduced in HTML 5 [119]) defines semantic confinement policies
for untrusted data from another domain. However, it relies on the iframe abstraction to
provide the isolation. Similar to iframes, DSI forms the basis for higher level policy specifi-
cation on web page regions that contain inline untrusted data. Our isolation primitives have
no dependence on escaping/quoting or input sanitization for their internal working, thus
making our mechanism a strong second line of defense for input validation checks already
being used in web application code.

Key challenges in ensuring DSI in web applications. The high-level concept of ter-
minal confinement has been proposed to defend against attacks such as SQL injection [107],
but HTML differs from SQL in two significant ways. First, HTML can embed code writ-
ten in various higher-order languages which share the same inline data. For instance, there
are both generic (such as JavaScript URI) and browser-specific ways to invoke functions
in VBScript, XUL, JavaScript, CSS and so on. To account for this difficulty, we treat the
document structure as that implied by the superimposition of the parse trees obtained from
code written in all languages (including HTML, JavaScript) used in a web page.

A second distinguishing challenge in securing web applications, specially AJAX driven ap-
plications, is that the document parse trees can be dynamically generated and updated on the
client side. In real web pages, code in client-side scripting languages parses web content asyn-
chronously, which results in repeated invocations of different language parsers. To address
dynamic parsing, we treat the document structure as having two different components—a
static component and a dynamic one. A web page must have a static document structure, i.e.,
the document structure implied by the parse tree obtained from the initial web page markup
received by the browser. Similarly, a web page also has a dynamic document structure, i.e.,
the structure implied by the set of parse trees created by different parsers dynamically. To
illustrate the distinction, we point out that attacks 1 and 2 in our running example violate
static DSI, whereas attacks 3 and 4 violate dynamic DSI.

Goals. Parser-level isolation is a set of mechanisms to ensure robust isolation of untrusted
data in the document structure throughout the lifetime of the web application. Using PLI
we outline three goals that enforce DSI for a web page with respect to a server-specified
policy, say P . First, we aim to enforce static DSI with respect to P , from the point the web
page is generated by the server to the point at which it is parsed into its initial parse trees

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 121

html

"<iframe
src='www.attacker.com'>

</iframe>

bodydiv script

div

Attack 4 Attack 1

Attack 2

id

'WelcomeMess'
id

'onmouseover=javascript:document.location=
"http://a.com"

"</script><script>alert
(document.cookie);</script>"

=

divname.innerHTML

"Attacker is Online"; alert
(document.cookie);"

Attack 3

Figure 7.4: Coalesced parse tree (corresponding to parse tree in Figure 7.3) resulting from
DSI enforcement with the terminal confinement policy—untrusted subtrees are forced into
leaf nodes.

in the browser. As a result, the browser separates untrusted data from trusted data in its
initial parse tree robustly. Second, we aim to enforce dynamic DSI with respect to P in the
browser, across all subsequent parsing operations. Third, we require that the attacker can
not evade PLI by embedding untrusted content that results in escalated interpretation of
untrusted data. These three goals enforce DSI based on uniform parser-level isolation.

Outline of Mechanisms. We view the operation of encoding the web page in HTML,
merely as serialization (or marshaling3) of the content and the static document structure on
the server side, and browser-side parsing of HTML as the deserialization step. We outline 4
steps that implement PLI and ensure the document structure is reconstructed by the browser
from the point that the web server generates the web page.

There are two steps that the server implements.

• Step 1—Separation of trusted and user-generated data. As a first step, web servers
need to identify untrusted data at their output interface, and should distinguish it
from trusted application code. We make this assumption to begin with, and discuss
some ways to achieve this step through automatic methods in Section 7.4. We believe
that this is not an unrealistic assumption—previous work on automatic dynamic taint
tracking [132, 87] has shown that tracking untrusted user-generated data at the output
interface is possible; in fact, many popular server-side scripting language interpreters
(such as PHP) now have built-in support for this. Our goal in subsequent steps is to

3akin to serialization in other programming languages and RPC mechanisms

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 122

supplement integrity preserving primitives to ensure that the server-specified policy is
correctly enforced in the client browser, instead of the sanitization at the server output
interface for reasons outlined in the introduction of this chapter.

• Step 2—Serialization: Enhancement of static structure with markup. The key to ro-
bust serialization is to prevent embedded untrusted data from subverting the mech-
anism that distinguishes trusted code from inline untrusted data in the browser. To
prevent such attacks, we propose the idea of markup randomization, i.e., addition
of non-deterministic changes to the markup. This idea is similar to instruction set
randomization [64] proposed for preventing traditional vulnerabilities.

There are two steps that the browser implements.

• Step 3—Deserialization: Browser-side reconstruction of static document structure. The
web browser parses the web page into its initial parse tree, coercing the parse tree to
preserve the intended structure. Thus, it can robustly identify untrusted data in the
document structure at the end of the deserialization step.

• Step 4—Browser-side dynamic PLI. This step is needed to ensure DSI when web pages
are dynamically updated. In essence, once untrusted data is identified in the browser
at previous step, we initialize it as quarantined and track quarantined data in the
browser dynamically. Language parsers for HTML and other higher-order languages
like JavaScript are modified to disallow quarantined data from being used during pars-
ing in a way that violates the policy. This step removes the burden of having the
client-side code explicitly check integrity of the dynamic document structure, as it em-
beds a reference monitor in the language parsers themselves. Thus, no changes need
to be made to existing client-side code for DSI-compliance.

7.3 Enforcement Mechanisms

We describe the high level ideas of the mechanisms in this section. Concrete details for
implementing these are described in Section 7.4.

Serialization

Web pages are augmented with additional markup at the server’s end, in such a way that the
browser can separate trusted structural entities from untrusted data in the static document
structure. We call this step serialization, and it is ideally performed at the output interface
of the web server.

Adaptive Attacks. One naive way to perform serialization is to selectively demarcate or
annotate untrusted data in the web page with special markup. The key concern is that an
adaptive attacker can include additional markup to evade the isolation. For instance, let us

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 123

...

3 : <div id="J5367$GET[‘FriendId-Status’]
K5367">
4 : <script>

5 : if (J3246 $GET[‘MainUser’] K3246) {
...

Figure 7.5: Example of minimal serialization using randomized delimiters for lines 3-5 of the
example shown in Figure 7.1.

say that we embed the untrusted data in a contained region with a special tag that disallows
script execution that looks like:

<div class="noexecute">

possibly-malicious content

</div>

This scheme is proposed in BEEP [61]. As the authors of BEEP pointed out, this naive
scheme is weak because an adaptive attacker can prematurely close the <div> environment by
including a </div> in a node splitting attack. The authors of BEEP suggest an alternative
mechanism that encodes user data as a JavaScript string, and uses server-side quoting of
string data to prevent it from escaping the JavaScript string context. They suggest the
following scheme:

<div class="noexecute" id="n5"></div>

<script>

document.getElementById("n5").innerHTML =

"quoted possibly-malicious content";

</script>

We point out that it can be tricky to prevent the malicious content from breaking out of
even the simple static JavaScript string context. It is not sufficient to quote the JavaScript
end-of-string delimiters (") – an attack string such as </script><iframe>...</iframe>

perpetrates a node splitting attack closing the script environment altogether, without explic-
itly breaking out the string context. Sanitization of HTML special characters <,> might
solve this instance of the problem, but a developer may not employ such a restrictive mech-
anism if the server’s policy allows some form of HTML markup in untrusted data (such as
<p> or tags in user content).

Our goal is to separate the isolation mechanism from the policy. The above outlined
attack reiterates that content server-side quoting or validation may vary depending upon
the web application’s policy and is an error-prone process; keeping the isolation mechanism
independent of input validation is an important design goal. We propose the following
serialization schemes as an alternative.

Minimal Serialization. In this form of serialization, only the regions of the static web
page that contain untrusted data are surrounded by special delimiters. Delimiters are added

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 124

around inlined untrusted data independent of the context where the data is embedded. For
our running example shown in the Figure 7.1, the serialization step places these delimiters
around all occurrences of the $GET array variables. If the markup elements used as delimiters
are statically fixed, an adaptive attacker could break out of the confinement region by em-
bedding the ending special delimiter in its attack string as discussed above. We propose an
alternative mechanism called markup randomization (which builds upon our earlier proposal
[104]) to defeat such adaptive attacks.

The idea is to generate randomized markup values for special delimiters each time the
web page is served, so that the attacker can not deterministically guess the confining context
tag it should use to break out. Abstractly, the server appends a integer suffix c, c ∈ C to
a matching pair J K of delimiters enclosing an occurrence of untrusted data, to generate
Jc Kc while serializing. The set C is randomly generated for each web page served. C is
sent in a confidential, tamper-proof communication to the browser along with the web page.
Clearly, if we use a pseudo-random number generator with a seed Cs to generate C, it is
sufficient to send {Cs, n}, where n is the number of elements in C obtained by repeated
invocations of the pseudo-random number generator. In Figure 7.5 , we show the special
delimiters added to the lines 3-5 of our running example in Figure 7.1. One recent instance
of a minimal serialization scheme is the tag matching scheme proposed in the informal jail
tag[20], which is analyzed in depth by Louw et. al. [73].

Full Serialization. An alternative to minimal serialization is to mark all trusted structural
entities explicitly, which we call full serialization. For markup randomization, the server
appends a random suffix c, c ∈ C, to each trusted element (including HTML tags, attributes,
values of attributes, strings) and so on.

Though a preferable mechanism from a security standpoint, we need a scheme that can
mark trusted elements independent of the context of occurrence with a very fine granularity
of specification. For instance, we need mechanism to selectively mark the id attribute of the
div element of line 3 in the running example (shown in Figure 7.1) as trusted (to be able
to detect attribute injection attacks), without marking the attribute value as trusted. Only
then can we selectively treat the value part as untrusted which can be essential to detect
dynamic code injection attacks, such as attack 3 in Figure 7.2.

Independently and concurrent with our work, Gundy et. al. have described a new ran-
domization based full serialization scheme, called Noncespaces [49] that uses XML names-
paces. However, XML namespaces does not have the required granularity of specification
that is described above, and hence we have not experimented with this scheme. It is possible,
however, to apply the full serialization scheme described therein as part of our architecture
as well, sacrificing some of the dynamic integrity protection that is only possible with a finer-
grained specification. We do not discuss full serialization further, and interested readers are
referred to Noncespace [49] for details.

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 125

V −→ JcNKc {N.mark = Untrusted;}
X −→ Y1Y2 {if (X.mark == Untrusted)

then (Y1.mark = X.mark;
Y2.mark = X.mark;)
else (Y1.mark = Trusted; }
Y2.mark = Trusted;)

Figure 7.6: Rules for computing mark attributes in minimal deserialization.

Deserialization

When the browser receives the serialized web page, it first parses it into the initial static
document structure. The document parse tree obtained from deserialization can verifiably
identify the untrusted nodes.

Minimal deserialization. Conceptually, to perform deserialization the browser parses as
normal, except that it does special processing for randomized delimiters Jc, Kc. It ensures
that the token corresponding to Jc matches the token corresponding to Kc, iff their suffixes
are the same random value c and c ∈ C. It also marks the nodes in the parse tree that are
delimited by special delimiters as untrusted.

Algorithm to mark untrusted nodes. Minimal deserialization is a syntax-directed trans-
lation scheme, which computes an inherited attribute, mark, associated with each node in the
parse tree, denoting whether the node is Trusted or Untrusted. For the sake of conceptual
explanation, let us assume that we can represent valid web pages that the browser accepts
by a context-free grammar G 4.Let G = {V,Σ, S, P} , where V denotes non-terminals, Σ
denotes terminals including special delimiters, S is the start symbol, and P is a set of pro-
ductions. Assuming that C is the set of valid randomized suffix values, the serialized web
page s obeys the following rules:

(a) All untrusted data is confined to a subtree rooted at some non-terminal N , such that
a production, V −→ JcNKc, is in P .

(b) Productions of the form V −→ Jc1NKc2 , c1 6= c2 are not allowed in P.
(c) ∀c ∈ C, all productions of the form V −→ JcNKc are valid in P.
The rules to compute the inherited attribute mark are defined in Figure 7.6, with mark

attribute for S initialized to Trusted.

Fail-Safe. Appending random suffixes does not lead to robust design by itself. Sending the
set C of random values used in randomizing the additional markups adds robustness against
attacker spoofing delimiters.

To see why, suppose C was not explicitly sent in our design. Consider the scenario where
an adaptive attacker tries to confuse the parser by generating two valid parse trees. In
Figure 7.7 the attacker embeds delimiter J2222 in $GET[‘FriendId-Status’] and a matching
delimiter K2222 in $GET[‘MainUser’]. There could be two valid parse trees—one that matches

4practical implementations may not strictly parse context-free grammars

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 126

...

3 : <div id="J5367.. J2222...
K5367">
4 : <script>

5 : if (J3246 .. K2222... K3246) {
...

Figure 7.7: One possible attack on minimal serialization, if C were not explicitly sent. The
attacker provides delimiters with the suffix 2222 to produce 2 valid parse trees in the browser.

delimiters with suffix 5367 and 3246, and another that matches the delimiters with suffix
2222. Although, the browser could allow the former to be selected as valid as delimiter with
5367 is seen first earlier in the parsing, this is a fragile design because it relies on the server’s
ability to inject the constraining tag first and requires sequential parsing of the web page. In
practice, we can even expect the delimiter placement may be imperfect or missing in cases.
For instance in Figure 7.7, if the special delimiters with suffix 5367 were missing, then even if
the server had sanitized $GET[‘FriendId-Status’] perfectly against string splitting attack
(attack 1 in Section 7.1), the attacker possesses an avenue to inject a spurious delimiter tag
J2222. All subsequent tags placed by the server would be discarded in an attempt to match the
attacker provided delimiter. The attacker’s ability to inject isolation markup is a weakness
in the mechanism which does not explicitly send C. The informal <jail> proposal may
be susceptible to such attacks as well [20]. Our explicit communication of C alleviates this
concern.

Browser-side dynamic PLI

Once data is marked untrusted, we initialize it as quarantined. With each character we
associate a quarantine bit, signifying whether it is quarantined or not. We dynamically track
quarantined metadata in the browser. Whenever the base type of the data is converted
from the data type in one language to a data type in another, we preserve the quarantine
bit through the type transformation. For instance, when the JavaScript code reads a string
from the browser DOM into a JavaScript string, the appropriate quarantine bit is preserved.
Similarly, when a JavaScript string is written back to a DOM property, the corresponding
HTML lexical entities preserve the dynamic quarantine bit.

Quarantine bits are updated to reflect data dependences between higher-order language
variables, i.e. for arithmetic and data operations (including string manipulation), the des-
tination variable is marked quarantined, iff any source operand is marked quarantined. We
do not track control dependence code as we do not consider this a significant avenue of
attack in benign application. We do summarize quarantine bit updates for certain func-
tions which result in data assignment operations but may internally use table lookups or
control dependence in the interpreter implementation to perform assignments. For instance,
the JavaScript String.fromCharCode function requires special processing, since it may use
conditional switch statement or a table-lookup to convert the parameter bytes to a string

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 127

elements. In this way, all invocations of the parsers track quarantined data and preserve this
across data structures representing various parse trees.

Example. For instance, consider the attack 3 in our example. It constructs a parse tree
for the eval statement as shown in Figure 7.3. The initial string representing the terminal id
on line 3 is marked quarantined by the deserialization step. With our dynamic quarantine bit
tracking, the JavaScript internal representation of the div’s id and variables divname, Name
and Status are marked quarantined. According to the terminal confinement policy, during
parsing our mechanism detects that the variable Status contains a delimiter non-terminal
“;”. It coerces the lexeme “ ;” to be treated a terminal character rather than interpreting
it as a separator non-terminal, thus nullifying the attack.

7.4 Architecture

In this section, we discuss the details of a client/server architecture that embodies our
approach. We first outline the goals we aim to achieve in our architecture and then outline
how we realize the different steps proposed in Section 7.3.

Architecture Goals

We propose a client-server architecture to realize DSI. We outline the following goals for web
sites employing DSI enforcement, which are most important to make our approach amenable
for adoption in practice.

1. Render in non-compliant5 browsers, with minimal impact. At least the trusted part
of the document should render as original in non-compliant browsers. Most user-
generated data is benign, so even inlined untrusted data should render with minimal
impact in non-compliant browsers.

2. Low false positives. DSI-compliant browsers should raise very few or no false positives.
A client-server architecture, such as ours, reduces the likelihood of false positives that
arise from a purely-client side implementation of DSI (see Section 7.6).

3. Require minimal web application developer effort. Automated tools should be employed
to retrofit DSI mechanisms to current web sites, without requiring a huge developer
involvement.

Client-Server Co-operation Architecture

Identification of Untrusted data. Manual code refactoring is possible for several web
sites. Several web mashup components, such as Google Maps, separate the template code of

5Web browsers that are not DSI-compliant are referred to as non-compliant

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 128

the web application from the untrusted data already, but rely on sanitization to prevent DSI
attacks. Our explicit mechanisms would make this distinction easier to specify and enforce.

Automatic transformation to enhance the markup generated by the server is also feasi-
ble for several commercial web sites. Several server side dynamic and static taint-tracking
mechanisms [132, 70, 117] have been developed in the past. Languages such as PHP, that
are most popularly used, have been augmented to dynamically track untrusted data with
moderate performance overheads, both using automatic source code transformation [132]
as well as manual source code upgrades for PHPTaint [117]. Automatic mechanisms that
provide taint information could be directly used to selectively place delimiters at the server
output.

We have experimented with PHPTaint [117], an implementation of taint-tracking in the
PHP 5.2.5 engine, to automatically augment the minimal serialization primitives for all
tainted data seen in the output of the web server. We enable dynamic taint tracking of
GET/POST request parameters and database pulls. We disable taint declassification of
data when sanitized by PHP sanitization functions (since we wish to treat even sanitized
data as potentially malicious). All output tainted data are augmented with surrounding
delimiters for minimal serialization. Our modifications shows that automatic serialization is
possible using off-the-shelf tools.

For more complex web sites that use a multi-component architecture, cross-component
dynamic taint analysis may be needed. This is an active area of research and automatic
support for minimal serialization at the server side would readily benefit from advances in
this area. Recent techniques proposed for program analysis to identify taint-style vulnera-
bilities [75, 62] could help identify taint sink points in larger web application, where manual
identification is hard. Similarly, Nanda et al. have recently shown cross-component dynamic
taint tracking for the LAMP architecture is possible [85].

Communicating valid suffixes. In our design it is sufficient to communicate {Cs, n} in
a secure way, where Cs is the random number generator seed to use and n is the number
of invocations to generate the set C of valid delimiter suffixes. Our scheme communicates
these as two special HTML tag attributes, (seed and suffixsetlength), as part of the
HTML head tag of the web page. We assume that the server and the browser use the
same implementation of the psuedo-random number generator. Once read by the browser,
it generates this set for the entire lifetime of the page and does not recompute it even if the
attacker corrupts the value of the special attributes dynamically. We have verified that this
scheme is backwards compatible with HTML handling in current browsers, i.e, these special
attributes are completely ignored for rendering in current browsers6.

Choice of serialization alphabet for encoding delimiters. We discuss two schemes for
encoding delimiters.

• We propose use of byte values from the Unicode Character Database [114] which are

6“current browsers” refers to: Safari, Firefox 2/3, Internet Explorer 6/7/8, Google Chrome, Opera 9.6
and Konqueror 3.5.9 in this chapter.

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 129

rendered as whitespace on the major browsers independent of the selected character
set used for web page decoding. Our rationale for using whitespace characters is its
uniformity across all common character sets, and the fact that this does not hinder
parsing of HTML or script in most relevant contexts (including between tags, between
attributes and values and strings). In certain exceptional contexts where these may
hinder semantics of parsing, these errors would show up in pre-deployment testing and
can easily be fixed. There are 20 such character values which can be used to encode start
and end delimiter symbols. All of these characters render as whitespace on cuurent
browsers. To encode the delimiters’ random suffixes we could use the remaining 18
(2 are used for delimiters themselves) as symbols. Thus, each symbol can encode 18
possible values, so a suffix `− symbols long, should be sufficient to yield an entropy of
`× (lg(18)) or (`× 4.16) bits.

It should be clear that a compliant browser can easily distinguish pages served from a
non-compliant web server vs. a randomization compliant web server—it looks at the
seed attribute in the <head> element of the web page. When a compliant browser views
a non-compliant page, it simply treats the delimiter encoding bytes as whitespace as
per current semantics, as this is a non-compliant web page. When a compliant browser
renders a compliant web page, it treats any found delimiter characters as valid iff they
have valid suffixes, or else it discards the sequence of characters as whitespace (these
may occur by chance in the original web page, or may be attacker’s spoofing attempts).
Having initialized the enclosed characters as untrusted in its internal representation, it
strips these whitespace characters away. Thus, the scheme is secure whether the page
is DSI-compliant or not.

• Another approach is to use special delimiter tags, <qtag>, by introducing an attribute
check=suffix, as well. Qtags have a lesser impact on readability of code than the
above scheme. Qtags have the same encoding mechanism as <jail> tags proposed
informally [20]. We verified that it renders safely in today’s popular browsers in most
contexts, but is unsuitable to be used in certain contexts such as within strings. An-
other issue with this scheme is that XHTML does not allow attributes in end tags, and
so they don’t render well in XHTML pages on non-compliant browsers, and may be
difficult to set accepted as a standard.

Policy Specification. Our policies confine untrusted data only. Currently, we support
per-page policies that are enforced for the entire web page, rather than varying region-based
policies. By default, we enforce the terminal confinement policy which is a default fail-close
policy. In most cases, this policy is sufficient for several web sites to defend against reflected
XSS attacks. A more flexible policy that is useful is to allow certain HTML syntactic
constructs in inline untrusted data, such as restricted set of HTML markup in user blog
posts. We support a whitelist of syntactic HTML elements as part of a configurable policy.

We allow configurable specification of whitelisted HTML construct names through a
allowuser tag attribute for the HTML <meta> tag. It can have a comma-separated list of

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 130

Figure 7.8: (a) A sample web forum application running on a vulnerable version of phpBB
2.0.18, victimized by stored XSS attack as it shows with vanilla Konqueror browser (b)
Attack neutralized by our proof-of-concept prototype client-server DSI enforcement.

allowed tags. For instance, the following specification would allow untrusted nodes corre-
sponding to the paragraph, boldface, line break elements, the attribute id (in all elements)
and the anchor element with optional href attribute (only with anchor element) in parse tree
to not be flagged as an exploit. The markup <meta allowuser=’p,b,br,@id,a@href’> ren-
ders properly in non-compliant browsers since unknown markup is discarded in the popular
browsers.

For security, untrusted data is disallowed to define allowuser tag without exception.
Policy development and standardization of default policies are important problems which
involve a detail study of common elements that are safe to allow on most web sites. However,
we consider this beyond the scope of this chapter, but deem worthy of future work.

7.5 Implementation

We discuss details of our prototype implementation of a PLI enabled web browser and a
PLI enabled web server first. Next, we demonstrate an example forum application that was
deployed on this framework requiring no changes to application code. Finally, we outline the
implementation of a web proxy server used for evaluation in section 7.6.

DSI compliant browser. We have implemented a proof-of-concept PLI enabled web
browser by modifying Konqueror 3.5.9. Before each HTML parsing operation, the HTML
parsing engine identifies special delimiter tags. This step is performed before any character
decoding is performed, and our choice of unicode alphabet for delimiters ensures that we deal
with all character set encodings. The modified browser simulates a pushdown automaton

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 131

during parsing to keep track of delimiter symbols for matching. Delimited characters are
initialized as quarantined, which is represented by enhancing the type declaration for the
character class in Konqueror with a quarantine bit. Parse tree nodes that are derived from
quarantined characters are marked quarantined as well. Before any quarantined internal
node is updated to the document’s parse tree, the parser invokes the policy checker which
ensures that the parse tree update is permitted by the policy. Any internal nodes that are
not permitted by the policy are collapsed with their subtree to be treated as a leaf node and
rendered as a string literal.

We modified the JavaScript interpreter in Konqueror 3.5.9 to facilitate automatic quaran-
tine bit tracking and prevented tainted access through the JavaScript-DOM interface. The
modifications required were a substantial implementation effort compared to the HTML
parser modifications. Internal object representations were enhanced to store the quarantine
bits and handlers for each JavaScript operation had to be altered to propagate the quaran-
tine bits. The implemented policy checks ensure that quarantined data is only interpreted
as a terminal in the JavaScript language.

DSI compliant server. We employed PHPTaint [117] which is an existing implementa-
tion dynamic taint tracking in the PHP interpreter. It enables taint variables in PHP and
can be configured to indicate which sources of data are marked tainted in the server. We
made minor modifications to PHPTaint to integrate in our framework. By default when
untrusted data is processed by a built-in sanitization routine, PHPTaint endorses the data
as safe and declassifies(or clears) the taint; we changed this behavior to not declassify taint
in such situations even though the data is sanitized. Whenever data is echoed to the out-
put we interpose in PHPTaint and surround tainted data with special delimiter tags with
randomized values at runtime. For serialization, we used the unicode characters U+2029 as
a start-delimiter. Immediately following the start-delimiter are ` randomly chosen unicode
whitespace characters, the key, from the remaining 18 unicode characters. We have chosen
` = 10, though this is easily configurable in our implementation. Following the key is the
end-delimiter U+2028 to signify the key has been fully read.

Example application. Figure 7.8(a) shows a vulnerable web forum application, phpBB
version 2.0.18, running on a vanilla Apache 1.3.41 web server with PHP 5.2.5 when viewed
with a vanilla Konqueror 3.5.9 with no DSI enforcement. The attacker posts a post containing
a script tag which results in a cookie alert. To prevent such attacks, we deployed the phpBB
forum application on our DSI-compliant web server next. We required no changes to the
web application code to deploy it on our prototype DSI-compliant web server. Figure 7.8(b)
shows how the attack is nullified by our client-server DSI enforcement prototype which
employs PHPTaint to automatically mark forum data (derived from the database) as tainted,
enhances it with minimal serialization which enables a DSI-compliant version of Konqueror
3.5.9 to nullify the attack.

Client-side Proxy Server. For evaluation of the 5,328 real-world web sites, we could not
use our prototype taint-enabled PHP based server because we do not have access to server
code of the vulnerable web sites. To overcome this practical limitation, we implemented a

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 132

client-side proxy server that approximately mimics the server-side operations.
When the browser visits a vulnerable web site, the proxy web server records all GET/-

POST data sent by the browser, and maintains state about the HTTP request parameters
sent. The proxy essentially performs content based tainting across data sent to the real server
and the received response, to approximate what the server would do in the full deployment
of the client-server architecture.

The web server proxy performs a lexical string match between the sent parameter data
and the data it receives in the HTTP response. For all data in the HTTP response that
matches, the proxy performs minimal serialization (approximating the operations of a DSI-
compliant server) i.e, it lexically adds randomized delimiters to demarcate matched data in
the response page as untrusted, before forwarding it to the PLI enabled browser.

7.6 Evaluation

To evaluate the effectiveness and overhead of PLI and PLI enabled browsers we conducted
experiments with two configurations. The first configuration consists of running our pro-
totype PLI enabled browser and a server running PHPTaint with the phpBB application.
This configuration was used to evaluate effectiveness against stored XSS attacks. The second
configuration ran our PLI enabled web browser directing all HTTP requests to the proxy
web server described in section 7.6. The second configuration was used to study real-world
reflected attacks, since we did not have access to the vulnerable web server code.

Experimental Setup

Our experiments were performed on two systems—one ran a Mac OS X 10.4.11 on a 2.0 GHz
Intel processor with 2GB of memory, and the other runs Gentoo GNU/Linux 2.6.17.6 on a 3.4
GHz Intel Xeon processor with 2 GB of memory. The first machine ran an Apache 1.3.41 web
server with PHP 5.2.5 engine and MySQL back-end, while the second ran the DSI compliant
Konqueror. The two machines were connected by a 100 Mbps switch. We configured our
prototype PLI enabled browser and server to apply the default policy of terminal confinement
to all web requests unless the server overrides with another whitelisting based policy.

Attack Detection

We measure the effectiveness of our prototype implementation against reflected XSS and
stored XSS attacks.

Reflected XSS. We evaluated the effectiveness against all real-world web sites with known
vulnerabilities, archived at the XSSed [130] web site as of 25th July 2008, which resulted in
successful attacks using Konqueror 3.5.9. In this category, there were 5,328 web sites which
constituted our final test dataset. Our DSI-enforcement using the proxy web server and DSI
compliant browser nullified 98.4% of these attacks as shown in Figure 7.9. Upon further

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 133

Attack Category # Attacks # Prevented

Reflected XSS 5,328 5,243 (98.4%)
Stored XSS 25 25 (100%)

Figure 7.9: Effectiveness of DSI enforcement against both reflected XSS attacks [130] as well
as stored XSS attack vectors [94].

analysis of the false negatives in this experiment, we discovered that 46 of the remaining
cases were missed because the real web server modified the attack input before embedding it
on the web page—our web server proxy failed to recognize this server-side modification as it
performs a simple string matching between data sent by the browser and the received HTTP
response. We believe that in a full deployment these would be captured by server-side taint
tracking. We could not determine the cause of missing the remaining 39, as the sent input
was not discernible in the HTTP response web page. Overall, this shows that the policy of
terminal confinement, if supported in web servers as the default, is sufficient to prevent a
large majority of reflected XSS attacks.

Stored XSS. We setup a vulnerable version of the phpBB web blog application (version
2.0.18) on our DSI enabled web server, and injected 30 benign text and HTML based posts,
and all of the stored attack vectors taken from XSS cheat sheet [94] that worked in Konqueror
3.5.9. Of the 92 attack vectors outlined therein, only 25 worked in a vanilla Konqueror 3.5.9
browser. We configured the policy to allow only <p>, and <a> HTML tags and href

attributes. No modifications were made to the phpBB application code. Our prototype
nullified all 25 XSS attacks.

Performance

We estimate the performance overheads of a DSI-compliant web browser and web server.

Browser Performance. To measure the browser performance overhead, we compared
the page load times of our modified version of Konqueror 3.5.9 and the vanilla version of
Konqueror 3.5.9. We evaluated against the test benchmark internally used at Mozilla for
browser performance testing, consisting of over 350 web pages of popular web pages with
common features including HTML, JavaScript, CSS, and images[83]. No data on this web
pages was marked untrusted. We measured a performance overhead of 1.8% averaged over
5 runs of the benchmark.

We also measured the performance of loading all the pages from the XSSed dataset
consisting of 5,328, with untrusted data marked with serialization delimiters. We observed
a similar overhead of 1.85% when processing web pages with tainted data.

Web page (or code) size increase often translates to increased corporate bandwidth con-
sumption, and is important to characterize in a cost analysis. For the XSSed dataset, our
instrumentation with delimiters of length ` = 10 increased the page size by less than 1.1%
on average for all the web pages with marked untrusted data.

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 134

Figure 7.10: Percentage of responses completed within a certain timeframe. 1000 requests
on a 10 KB document with (a) 10 concurrent requests and (b) 30 concurrent requests.

Figure 7.11: Increase in CPU overhead averaged over 5 runs for different page sizes for a
DSI-enabled web server using PHPTaint [117].

Server Performance. We measured the CPU overhead for the phpBB application run-
ning on a DSI compliant web server with PHPTaint enabled. This was done with ab

(ApacheBench), a tool provided with Apache to measure performance [2]. It is configured
to generate dynamic forum web pages of sizes varying from 10 KB to 40 KB. In our exper-
iment, 64,000 requests were issued to the server with 16 concurrent requests. As shown in
Figure 7.11, we observed average CPU overheads of 1.2%, 2.9% and 3.1% for pages of 10 KB,
20 KB, and 40 KB in size respectively. This is consistent with the performance overheads
reported by the authors of PHPTaint [117]. Figure 7.10 shows a comparison between the
vanilla web server and a DSI-compliant web server (both running phpBB) in terms of the
percentage of HTTP requests completed within a certain response time frame. For 10 con-
current requests, the two servers perform very similarly, whereas for 30 concurrent requests
the server with PHPTaint shows some degradation for completing more than 95% of the

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 135

requests.

False Positives

We observed a lower false positive rate in our stored XSS attacks experiment than in the
reflected XSS experiment. In the stored experiment, we did not observe any false positives.
In the reflected XSS experiment, we observed false positives when we deliberately provided
inputs that matched existing page content. For the latter experiment, we manually browsed
the Global Top 500 websites listed on Alexa [4] browsing with deliberate intent to raise
false positives. For each website, we visited an average of 3 second-level pages by creating
accounts, logging in with malicious inputs, performing searches for dangerous keywords, as
well as clicking on links on the web pages to simulate normal user activity.

With our default policy, as expected, we were able to induce false positives on 5 of the
web pages. For instance, a search query for the string “<title>” on Slashdot7 caused benign
data on the returned page to be marked quarantined. We confirmed that these arise because
our client-side proxy server marks trusted code as untrusted which subsequently raises alarms
when interpreted as code by the browser. In principle, we expect that full implementation
with a taint-aware server side component would eliminate these false positives inherent in
the client-side proxy server approximation.

We also report that even with the client-side proxy server approximation, we did not
raise false positives in certain cases where the IE 8 Beta XSS filter did. For instance, we do
not raise false positives when searching for the string “javascript:” on Google search engine.
This is because our DSI enforcement is parser context aware—though all occurrences of
“javascript:” are marked untrusted in the HTTP response page, our browser did not raise
an alert as untrusted data was not interpreted as code.

7.7 Comparison with Existing XSS Defenses

We outline the criteria for analytically comparing different XSS defenses first, and then dis-
cuss each of the existing defenses next providing a summary of the comparison in Figure 7.12.

Comparison Criteria. To concretely summarize the strengths and weaknesses of various
XSS defense techniques, we present a defender-centric taxonomy of adaptive attacks to char-
acterize the ability of current defenses against current attacks as well as attacks in the future
that try to evade the defenses. Adaptive attackers can potentially target at least the avenues
outlined below.

• Browser inconsistency. Inconsistency in assumptions made by the server and client
lead to various attacks as outlined earlier.

7http://slashdot.org

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 136

• Lexical Polymorphism. To evade lexical sanitization, attackers may find variants in
lexical entities.

• Keyword Polymorphism. To evade keyword filters, attackers may find different syn-
tactic constructs to bypass these. For instance, in the Samy worm [96], to inject a
restricted keyword innerHTML, the attacker used a semantically equivalent construct
“ eval (‘inner’+‘HTML’)”.

• Multiple Injection Vectors. Attacker can inject non-script based elements.

• Breaking static structural integrity. To specifically evade confinement based schemes,
attacker can break out of the static confinement regions on the web page.

• Breaking dynamic structural integrity. Attacks may target breaking the structure of
the dynamically executing client-side code, as discussed in Section 7.1.

Defense against each of the above adaptive attack categories serves a point of comparing
existing defenses. In addition to these, we analytically compare the potential effectiveness
of techniques to defend against stored XSS attacks. We also characterize whether a defense
mechanism enables flexible server-side specification of policies or not. This is important
because fixation of policies often results in false positives, especially for content-rich untrusted
data, which can be a serious impediment to the eventual deployability of an approach.

Figure 7.12 shows the comparative capabilities of existing defense techniques at a glance
on the basis of criteria outlined earlier in this section. We describe current XSS defenses and
discuss some of their weaknesses.

Purely server-side defenses

Input Validation and sanitization. Popular server side languages such as PHP provide
standard sanitization functions, such as htmlspecialchars. However, the code logic to
check validity is often concentrated at the input interface of the server, and also distributed
based on the context where untrusted data gets embedded. This mechanism serves as a first
line of defense in practice, but is not robust as it places excessive burden on the web developer
for its correctness. The prevalence of XSS attacks today shows that these mechanisms fail
to safeguard against both static and dynamic DSI attacks.

Browser-independent Policy Checking at Output. Taint-tracking [132, 85, 87, 90] on
the server-side aims to centralize sanitization checks at the output interface with the use
of taint metadata. Since the context of where untrusted data are being embedded can be
arbitrary, the policy checking becomes complicated especially when dealing with attacks that
affect dynamic DSI. The primary reason is the lack of semantics of client side behavior in
the policy checking engine at the interface. Another problem with this approach is that the
policy checks are not specific to the browser that the client uses and can be susceptible to
browser-server inconsistency bugs.

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 137

Techniques BI P MV S DSI D DSI ST FP

Purely Server-side

Input Validation & Sanitization X X X
Server Output browser-independent policies X X X X X
(using taint-tracking)
Server Output Validation browser-based policies X X X X X X
(XSS-GUARD [16])

Purely Browser Side

Sensitive Information Flow Tracking X X X X X
Global Script Disabling X X X X X
Personal Firewalls with URL Blocking X X X
GET/POST Request content based URL blocking X X X X

Browser-Server Cooperation Based

Script Content Whitelisting (BEEP) X X X X X
Region Confinement Script Disabling (BEEP) X X X X X
PLI with Server-specified policy enforcement X X X X X X X
BI Not susceptible to browser-server inconsistency bugs
P Designed to easily defeats lexical and keyword

polymorphism based attacks
MV Designed for comprehensiveness against multiple vectors and

attack goals (Flash objects as scripting vectors,
iframes insertion for phishing, click fraud).

S DSI Designed to easily defeat evasion attacks that break
static DSI (attacks such as 1,2 in Section 7.1).

D DSI Designed to easily defeat evasion attacks that break
dynamic DSI (attacks such as 3,4 in Section 7.1).

ST Can potentially deal with stored XSS attacks.
FP Allows flexible server configurable policies (important

to eliminate false positives for content-rich untrusted data)

Figure 7.12: Various XSS Mitigation Techniques Capabilities at a glance. Columns 2 - 6
represent security properties, and columns 7-9 represent other practical issues. A ‘X’ denotes
that the mechanism demonstrates the property.

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 138

Browser-based Policy Checking at Output. To mitigate the lack of client-side language
semantics at the server output interface, XSS-GUARD [16] employs a complete browser
implementation on the server output. In principle, this enables XSS-GUARD to deal with
both static and dynamic DSI attacks, at the expense of significant performance overheads.
However, this scheme conceptually still suffers from browser inconsistency bugs as a different
target browser may be used by the client than the one checked against. Our technique enables
the primary benefits of XSS-GUARD without high performance overheads and making the
policy enforcement consistent with the client browser.

Purely client-side defenses

Sensitive information flow tracking. Vogt et. al. propose sensitive information flow
tracking [118] in the browser to identify spurious cross-domain sensitive information transfer
as a XSS attack. This approach is symptom targeted and limited in its goal, and hence
does not lend easily to other attack targets outlined in the introduction. It also requires
moderately high false positives in normal usage. This stems from the lack of specification of
the intended policy by the web server.

Script Injection Blocking. Several techniques are focused on stopping script injection
attacks. For instance, the Firefox NoScript extension block scripts globally on web sites
the user does not explicitly state as trusted. Many web sites do not render well with this
extension turned on, and this requires user intervention. Once allowed, all scripts (including
those from attacks) can run in the browser.

Personal Firewalls with URL blocking. Noxes [67] is a client-side rule based proxy to
disallow users visiting potentially unsafe URL using heuristics. First, such solutions are not
designed to distinguish trusted data generated by the server from user-generated data. As
a result, they can have high false negatives (Noxes treats static links in the page as safe)
and have false positives [67] due to lack of server-side configuration of policy to be enforced.
Second, they are largely targeted towards sensitive information stealing attacks.

GET/POST Request content based URL blocking. Several proposals aim to augment
the web browser (or a local proxy) to block URLs that contain GET/POST data with known
attack characters or patterns. The most recent is an implementation of this is the XSS
filter in Internet Explorer (IE) 8 Beta [56]. First, from our limited experiments with the
current implementation, this approach does not seem to detect XSS attacks based on the
parsing context. This raises numerous false positives, one instance of which we describe in
Section 7.6. Second, their design does not allow configurable server specified policies, which
may disallow content-rich untrusted data. In general, fixed policies on the client-side with no
server-side specification either raise false positives or tend to be too specific to certain attack
vectors (thus resulting in false negatives). Finally, our preliminary investigation reveals
that they currently do not defend against integrity attacks, as they allow certain non-script
based attack vectors (such as forms) to be injected in the web page. We believe this is
an interesting avenue and a detailed study of the IE 8 mechanism would be worthwhile to

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 139

understand capabilities of such defenses completely.

Client-server cooperative defenses

This paradigm for XSS defense has emerged to deal with the inefficiencies of purely client and
server based mechanisms. Jim et al. have recently proposed two approaches in BEEP [61]—
whitelisting legitimate scripts and defining regions that should not contain any scripting
code.

Whitelisting of legitimate scripts. First, BEEP targets only script-injection based vec-
tors and hence is not designed to comprehensively defend against other XSS vectors. Second,
BEEP’s mechanism does not thwart attacks (such as attack 4 in Figure 7.2) violating dy-
namic DSI that target unsafe usage of data by client-side code. Their mechanism checks
the integrity and authenticity of the script code before it executes, but does not directly
extend to attacks that deal with the safety of data usage. Our technique enforces a dynamic
parser-level confinement to ensure that data is not interpreted as code in client-side scripting
code. Follow-on proposals such as Content-Security Policy (CSP) do address some of these
shortcomings [105]; we refer the readers to work by Weinberger et. al. for challenges in
implementation of CSP in real web sites [124].

Region-based Script Disabling. BEEP outlined a technique to define regions of the
web page that can not contain script code, which allows finer-grained region-based script
disabling than those possible by already supported browser mechanisms [88]. First, their
isolation mechanism uses JavaScript string quoting to prevent static DSI attacks against
itself. As discussed in Section 7.3, this mechanism can be somewhat tricky to enforce for
content-rich untrusted data which allows HTML entities in untrusted data. Second, this
mechanism does not deal with dynamic DSI attacks by itself, because region based script
blocking can not be applied to script code regions.

7.8 Discussion

DSI enforcement using a client-server architecture offers a strong basis for XSS defense
in principle. However, we discuss some practical concerns for a full deployment of this
scheme. First, our approach requires both client and server participation in implementing our
enhancements. Though we can minimize the developer effort for such changes, our technique
requires both web servers and clients to collectively upgrade to enable any protection.

Second, a DSI-compliant browser requires quarantine bit tracking across operations of
several languages. If implemented for JavaScript, this would prevent attacks vectors using
JavaScript, but not against attacks that using other languages. Uniform cross-component
quarantine bit tracking is possible in practice, but it would require vendors of multiple pop-
ular third party web plugins (Flash, Flex, Silverlight, and so on) to cooperate and enhance
their language interpreters or parsers. Automatic techniques to facilitate such propaga-
tion and cross-component dynamic quarantine bit propagation at the binary level for DSI

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 140

enforcement are interesting research directions for future work that may help address this
concern.

Third, it is important to account for end-user usability. Our techniques aim to minimize
the impact of rendering DSI compliant web pages on existing web browsers for ease of tran-
sition to DSI compliance; however, investigation of schemes that integrate DSI seamlessly
while ensuring static DSI are important. Louw et. al. identify the need for isolation of un-
trusted content in static HTML markup [73]; they present a detailed comparison of prevalent
isolation mechanisms in HTML. In our work, we outline techniques that address static as
well as dynamic isolation of untrusted data and discuss how these mechanisms can be used
in conjunction with other techniques to robustly thwart XSS attacks. We hope that our
analysis of the primitives from an adaptive attacker’s perspective. Our exposition of XSS as
a static-dynamic integrity violation provide additional insight for development of newer lan-
guage primitives for isolation. Finally, we recognise that false positives are another concern
for usability. We did not encounter false positives in our preliminary evaluation and testing,
but we believe that this is not sufficient to rule out its possibility in a full deployment of this
scheme.

7.9 Related Work

XSS defense techniques can be largely classified into detection techniques and prevention
techniques. The latter has been directly discussed in Section 7.7; in this section, we discuss
detection techniques and other work that relates to ours.

XSS detection techniques focus on identifying holes in web application code that could
result in vulnerabilities. Most of the vulnerability detection techniques have focused on
server-side application code. We classify them based on the nature of the analysis, below.

• Static and Quasi-static techniques. Static analysis [54, 62, 76] and model checking
techniques [75] aim to identify cases where the web application code fails to sanitize
the input before output. Most static analysis tools are equipped with the policy that
once data is passed through a custom sanity check, such as htmpspecialchars PHP
function, then the input is safe. Balzarotti et al. [8] show that often XSS attacks
are possible even if the developer performs certain sanitization on input data due to
deficiencies in sanitization routines. They also describe a combined static and dynamic
analysis to find such security bugs.

• Server-side dynamic detection techniques have been proposed to deal with the dis-
tributed nature of the server side checks. Taint-tracking [132, 16, 87, 90] on the server-
side aims to centralize sanitization checks at the output interface with the use of taint
metadata. These have relied on the assumption that server side processing is consistent
with client side rendering, which is a significant design difference. These can be used
as prevention techniques as well. Our work extends the foundation of taint-tracking
to client-side tracking to eliminate difficulties of server-browser inconsistencies and to

CHAPTER 7. DSI: A BASIS FOR SANITIZATION-FREE DEFENSE 141

safeguard client-side code as well. Some of the practical challenges that we share with
previous work on taint-tracking are related to tracking taint correctly through multiple
components of the web server platform efficiently. Cross-component taint tracking [85]
and efficient designs of taint-tracking [98, 91, 70] for server-side mitigation are an active
area of research which our architecture would readily benefit from.

Several other works have targeted fortification of web browser’s same-origin policy en-
forcement mechanisms to isolate entities from different domains. Browser-side taint tracking
is also used to fortify domain isolation [25], as well as tightening the sharing mechanisms
such as iframe communication[13] and navigation. These address a class of XSS attacks that
arise out of purely browser-side bugs or weak enforcement policies in isolating web content
across different web page, whereas in this chapter, we have analyzed the class of reflected and
stored XSS attacks only. MashupOS[120] discussed isolation and communication primitives
for web applications to specify trust associated with external code available from untrusted
source. Our work introduces primitives for isolation and confinement of inline untrusted
data that is embedded in the web page.

Finally, the idea of parser-level isolation is a pervasively used mechanism. Prepared
statements [36] in SQL are built on this principle, and Su et al. demonstrated a parser-
level defense technique against SQL injection attacks[107]. As we show, for today’s web
applications the problem is significantly different than dealing with SQL, as untrusted data
is processed dynamically both on the client browser and in the web server. The approach
of using randomization techniques has been proposed for SQL injection attacks [19], control
hijacking in binary code [64], and even in informal proposals for confinement in HTML
using <jail> tag [20, 73]. Our work offers a comprehensive framework that improves on
the security properties of <jail> element for static DSI (as explained in Section 7.3), and
provides dynamic integrity as well.

7.10 Conclusion

We propose a defense approach that models XSS as a privilege escalation vulnerability, as
opposed to a sanitization problem. It employs parser-level isolation for confinement of user-
generated data through out the lifetime of the web application. We showed this scheme is
practically possible in an architecture that is backwards compatible with current browsers.
Our empirical evaluation over 5,328 real-world vulnerable web sites shows that our default
policy thwarts over 98% of the attacks, and we explained how flexible server-side policies
could be used in conjunction, to provide robust XSS defense with no false positives.

142

Chapter 8

Conclusion

In this thesis, we address the problem of automatically finding and preventing script injection
vulnerabilities. Script injection vulnerabilities are a prominent class of web application flaws
which are pervasive on today’s web. These vulnerabilities affect both client- and server-
side components of web applications. In this thesis, we make three contributions towards
addressing this threat.

First, we propose two techniques for automatically finding these vulnerabilities in client-
side JavaScript code. We develop techniques and systems to simplify dynamic analyses
on JavaScript. The first technique is a single-path analysis of the application code, which
combines dynamic taint tracking with fuzzing. It aims to find witness inputs that concretely
demonstrate the presence of bug. In the second technique, we utilize dynamic symbolic
execution with deeper reasoning of strings. This technique automatically generates a set of
test cases that explores multiple paths in the application. In addition, it can reason about
the application logic along any given path using a string decision procedure and find concrete
exploit instances. We demonstrate that these techniques improve over prior work on testing
for JavaScript flaws significantly and have found several real-world vulnerabilities. We hope
that these techniques can further be utilized in testing other kinds of security flaws as well.

Second, we empirically study the use of sanitization, which is the predominant defense
technique to prevent these attacks today. We uncover two new classes of errors in the
practical use of sanitization in shipping web applications. We also find that emerging web
application frameworks often do not provide any support for automatic sanitization. In
some of web application frameworks that try to auto-sanitize, an unsafe strategy of context-
insensitive sanitization is used.

As a third contribution, we propose a type-based approach to automatically perform
correct sanitization for applications authored in emerging web application frameworks. We
demonstrate the necessary security properties that an auto-sanitization must possess and
build a proof-of-concept that can be used in an existing web templating framework. Finally,
we also propose a sanitization-free defense for preventing script injection vulnerabilities as
a second line of defense. The defense strategy aims to preserve a fundamental property of
the application, which we call as document structure integrity. We discuss the feasibility of

CHAPTER 8. CONCLUSION 143

deploying this mechanism with minimal impact to backwards compatibility under specific
assumptions outlined in Chapter 7.

144

Bibliography

[1] Gisle Aas. “CPAN: URI::Escape”. http://search.cpan.org/~gaas/URI-1.56/
URI/Escape.pm.

[2] ab. “Apache HTTP server benchmarking tool”. http://httpd.apache.org/docs/
2.0/programs/ab.html.

[3] AdSafe : Making JavaScript Safe for Advertising. http://www.adsafe.org/.

[4] alexa.com. “Alexa Top 500 Sites”. http://www.alexa.com/site/ds/top_sites?
ts_mode=global&lang=none. 2008.

[5] Shay Artzi et al. “Finding bugs in dynamic web applications”. In: International Sym-
posium on Software Testing and Analysis. 2008.

[6] E. Athanasopoulos et al. “xJS: practical XSS prevention for web application devel-
opment”. In: Proceedings of the 2010 USENIX conference on Web application devel-
opment. 2010.

[7] M. Balduzzi et al. “Automated discovery of parameter pollution vulnerabilities in web
applications”. In: Proceedings of the 18th Network and Distributed System Security
Symposium. 2011.

[8] D. Balzarotti et al. “Saner: Composing Static and Dynamic Analysis to Validate San-
itization in Web Applications”. In: Proceedings of the IEEE Symposium on Security
and Privacy. Oakland, CA 2008.

[9] Sruthi Bandhakavi et al. VEX: Vetting Browser Extensions For Security Vulnerabili-
ties. 2010.

[10] David Baron. Mozilla’s Quirks Mode. url: https://developer.mozilla.org/en/
mozilla’s_quirks_mode.

[11] Adam Barth, Juan Caballero, and Dawn Song. “Secure Content Sniffing for Web
Browsers or How to Stop Papers from Reviewing Themselves”. In: Proceedings of the
30th IEEE Symposium on Security and Privacy. Oakland, CA 2009.

[12] Adam Barth, Collin Jackson, and John C. Mitchell. “Robust Defenses for Cross-Site
Request Forgery”. In: CCS. 2008.

BIBLIOGRAPHY 145

[13] Adam Barth, Collin Jackson, and John C. Mitchell. “Securing Frame Communication
in Browsers”. In: Proceedings of the 17th USENIX Security Symposium (USENIX
Security 2008). 2008.

[14] Adam Barth et al. Protecting Browsers from Extension Vulnerabilities. 2009.

[15] Daniel Bates, Adam Barth, and Collin Jackson. “Regular expressions considered
harmful in client-side XSS filters”. In: Proceedings of the 19th international conference
on World wide web. WWW ’10. 2010.

[16] Prithvi Bisht and V. N. Venkatakrishnan. “XSS-GUARD: Precise Dynamic Preven-
tion of Cross-Site Scripting Attacks”. In: Detection of Intrusions and Malware, and
Vulnerability Assessment. 2008.

[17] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. “Path Feasibility Analysis
for String-Manipulating Programs”. In: Proceedings of the 15th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems. 2009.

[18] Hristo Bojinov, Elie Bursztein, and Dan Boneh. “XCS: Cross Channel Scripting and
its Impact on Web Applications”. In: CCS. 2009.

[19] Stephen W. Boyd and Angelos D. Keromytis. “Sqlrand: Preventing Sql Injection At-
tacks”. In: Proceedings of the 2nd Applied Cryptography and Network Security (ACNS)
Conference. 2004, pp. 292–302.

[20] CTO Mozilla Corp. Brendan Eich. JavaScript: Mobility & Ubiquity. Presentation.
http://kathrin.dagstuhl.de/files/Materials/07/07091/07091.EichBrendan.

Slides.pdf.

[21] J. Richard Büchi and Steven Senger. “Definability in the Existential Theory of Con-
catenation and Undecidable Extensions of this Theory”. In: Mathematical Logic Quar-
terly 34.4 (1988), pp. 337–342.

[22] Juan Caballero et al. Extracting Models of Security-Sensitive Operations using String-
Enhanced White-Box Exploration on Binaries. Tech. rep. UCB/EECS-2009-36. EECS
Department, University of California, Berkeley, 2009.

[23] “CakePHP: Sanitize Class Info”. http://api.cakephp.org/class/sanitize.

[24] Ashok Chandra et al. “Equations between regular terms and an application to process
logic”. In: Proceedings of the 13th annual ACM Symposium on Theory of Computing
(STOC). 1981, pp. 384–390.

[25] Shuo Chen, David Ross, and Yi-Min Wang. “An analysis of browser domain-isolation
bugs and a light-weight transparent defense mechanism”. In: Proceedings of the 14th
ACM conference on Computer and communications security. New York, NY, USA:
ACM, 2007, pp. 2–11. isbn: 978-1-59593-703-2. doi: \url{http://doi.acm.org/
10.1145/1315245.1315248}.

[26] Ravi Chugh et al. “Staged information flow for JavaScript”. In: PLDI. 2009.

BIBLIOGRAPHY 146

[27] “ClearSilver: Template Filters”. http : / / www . clearsilver . net / docs / man _

filters.hdf.

[28] “CodeIgniter User Guide Version 1.7.2: Input Class”. http://codeigniter.com/
user_guide/libraries/input.html.

[29] “CodeIgniter/system/libraries/Security.php”. https://bitbucket.org/ellislab/
codeigniter/src/8af0fb079f90/system/libraries/Security.php.

[30] “Ctemplate: Guide to Using Auto Escape”. http : / / google -

ctemplate.googlecode.com/svn/trunk/doc/auto_escape.html.

[31] CWE. “2011 CWE/SANS Top 25 Most Dangerous Software Errors”. http://cwe.
mitre.org/top25/. 2011.

[32] “django: Built-in template tags and filters”. http://docs.djangoproject.com/en/
dev/ref/templates/builtins.

[33] “Django Sites : Websites powered by Django”. http://www.djangosites.org/.

[34] “ECMAScript Language Specification, 3rd Edition”. http : / / www . ecma -

international.org/publications/standards/Ecma-262.htm.

[35] Matthew Finifter, Joel Weinberger, and Adam Barth. “Preventing Capability Leaks
in Secure JavaScript Subsets”. In: Proc. of Network and Distributed System Security
Symposium, 2010. 2010.

[36] Harrison Fisk. “Prepared Statements”. http://dev.mysql.com/tech-resources/
articles/4.1/prepared-statements.html. 2004.

[37] Fortify, Inc. Fortify SCA. http://www.fortifysoftware.com/products/sca/. 2006.

[38] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. “Flow-sensitive type qualifiers”.
In: Proceedings of the ACM SIGPLAN 2002 Conference on Programming language
design and implementation. PLDI ’02. 2002.

[39] Vijay Ganesh and David L. Dill. “A Decision Procedure for Bit-Vectors and Ar-
rays”. In: Computer Aided Verification, 19th International Conference (CAV). 2007,
pp. 519–531.

[40] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: directed automated
random testing”. In: PLDI. 2005.

[41] Patrice Godefroid, Michael Y. Levin, and David Molnar. “Automated Whitebox Fuzz
Testing”. In: Network and Distributed System Security. 2008.

[42] “Google AutoEscape Implementation for Ctemplate (C code)”. http://google-

ctemplate.googlecode.com/svn/trunk/doc/auto_escape.html.

[43] “Google AutoEscape Implementation for GWT (Java code)”. http://code.google.
com/p/google-web-toolkit/source/browse/tools/lib/streamhtmlparser/

streamhtmlparser-jsilver-r10/streamhtmlparser-jsilver-r10-1.5.jar.

BIBLIOGRAPHY 147

[44] “Google Closure Templates”. http://code.google.com/closure/templates/.

[45] Google Inc. “Issues: google-caja: A source-to-source translator for securing Javascript-
based web content”. http://code.google.com/p/google-caja/issues/list?q=
label:Security.

[46] “Google Web Toolkit: Developer’s Guide – SafeHtml”. http://code.google.com/
webtoolkit/doc/latest/DevGuideSecuritySafeHtml.html.

[47] Salvatore Guarnieri and Benjamin Livshits. “Gatekeeper: Mostly Static Enforcement
of Security and Reliability Policies for JavaScript Code”. In: Usenix Security. 2009.

[48] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. “Using static analysis for Ajax
intrusion detection”. In: Proceedings of the 18th international conference on World
wide web. WWW ’09.

[49] Matthew Van Gundy and Hao Chen. “Noncespaces: using randomization to enforce
information flow tracking and thwart cross-site scripting attacks”. In: 16th Annual
Network & Distributed System Security Symposium (2009).

[50] Pieter Hooimeijer and Westley Weimer. “A decision procedure for subset constraints
over regular languages”. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). 2009, pp. 188–198.

[51] Pieter Hooimeijer et al. “Fast and Precise Sanitizer Analysis With BEK”. In: Pro-
ceedings of the Usenix Security Symposium. 2011.

[52] “How To: Prevent Cross-Site Scripting in ASP.NET”. http : //

msdn.microsoft.com/en-us/library/ff649310.aspx.

[53] “HTML Purifier : Standards-Compliant HTML Filtering”. http://htmlpurifier.
org/.

[54] Y Huang et al. “Securing Web Application Code by Static Analysis and Runtime
Protection”. In: DSN (2004).

[55] Yao-Wen Huang et al. “Securing web application code by static analysis and runtime
protection”. In: Proceedings of the 13th international conference on World Wide Web.
WWW ’04.

[56] IE 8 Blog: Security Vulnerability Research & Defense. “IE 8 XSS Filter Architecture
and Implementation”. http://blogs.technet.com/swi/archive/2008/08/18/ie-
8-xss-filter-architecture-implementation.aspx. 2008.

[57] “iGoogle Gadget Directory”. http://www.google.com/ig/.

[58] “Introducing JSON”. http://www.json.org/.

[59] Susmit Jha, Sanjit A. Seshia, and Rhishikesh Limaye. “On the Computational Com-
plexity of Satisfiability Solving for String Theories”. In: CoRR abs/0903.2825 (2009).

[60] “JiftyManual”. http://jifty.org/view/JiftyManual.

BIBLIOGRAPHY 148

[61] T Jim, N Swamy, and M Hicks. “BEEP: Browser-enforced embedded policies”. In:
16th International World World Web Conference (2007).

[62] Nenad Jovanovic, Christopher Krügel, and Engin Kirda. “Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities (Short Paper)”. In: IEEE Symposium
on Security and Privacy. 2006.

[63] Kaluza. “Kaluza web page”. http://webblaze.cs.berkeley.edu/2010/kaluza/.
2010.

[64] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. “Countering code-
injection attacks with instruction-set randomization”. In: Proceedings of the 10th
ACM conference on Computer and communications security. 2003.

[65] Adam Kieżun et al. “Automatic creation of SQL injection and cross-site scripting
attacks”. In: 30th International Conference on Software Engineering (ICSE). 2009.

[66] Adam Kieżun et al. “HAMPI: A solver for string constraints”. In: International Sym-
posium on Software Testing and Analysis. 2009.

[67] Engin Kirda et al. “Noxes: a client-side solution for mitigating cross-site scripting
attacks”. In: Proceedings of the ACM symposium on Applied computing. 2006.

[68] Amit Klein. DOM Based Cross Site Scripting or XSS of the Third Kind. Tech. rep.
Web Application Security Consortium, 2005.

[69] “kses - PHP HTML/XHTML filter”. http://sourceforge.net/projects/kses/.

[70] Lap Chung Lam and Tzicker Chiueh. “A General Dynamic Information Flow Tracking
Framework for Security Applications”. In: Proceedings of the 22nd Annual Computer
Security Applications Conference on Annual Computer Security Applications Confer-
ence. 2006.

[71] Benjamin Livshits and Monica S. Lam. “Finding Security Errors in Java Programs
with Static Analysis”. In: Proceedings of the Usenix Security Symposium. 2005.

[72] Benjamin Livshits, Michael Martin, and Monica S. Lam. SecuriFly: Runtime Protec-
tion and Recovery from Web Application Vulnerabilities. Tech. rep. Stanford Univer-
sity, 2006.

[73] Mike Ter Louw, Prithvi Bisht, and VN Venkatakrishnan. “Analysis of Hypertext
Isolation Techniques for XSS Prevention”. In: Workshop on Web 2.0 Security and
Privacy (W2SP) (2008).

[74] Sergio Maffeis, John C. Mitchell, and Ankur Taly. “Object Capabilities and Isolation
of Untrusted Web Applications”. In: Proceedings of the 2010 IEEE Symposium on
Security and Privacy. SP ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 125–140. isbn: 978-0-7695-4035-1. doi: http://dx.doi.org/10.1109/SP.2010.
16. url: http://dx.doi.org/10.1109/SP.2010.16.

BIBLIOGRAPHY 149

[75] Michael Martin and Monica S. Lam. “Automatic Generation of XSS and SQL Injec-
tion Attacks with Goal-Directed Model Checking”. In: 17th USENIX Security Sym-
posium. 2008.

[76] Michael C. Martin, V. Benjamin Livshits, and Monica S. Lam. “Finding application
errors and security flaws using PQL: a program query language”. In: Object-Oriented
Programming, Systems, Languages, and Applications. 2005.

[77] Armando B. Matos. “Periodic sets of integers”. In: Theoretical Computer Science
127.2 (May 1994), pp. 287–312.

[78] Ali Mesbah, Engin Bozdag, and Arie van Deursen. “Crawling Ajax by Inferring User
Interface State Changes”. In: Proceedings of the International Conference on Web
Engineering. 2008.

[79] Leo Meyerovich and Benjamin Livshits. “ConScript: Specifying and Enforcing Fine-
Grained Security Policies for JavaScript in the Browser”. In: IEEE Symposium on
Security and Privacy. 2010.

[80] “Microsoft ASP.NET: Request Validation – Preventing Script Attacks”. http://www.
asp.net/LEARN/whitepapers/request-validation.

[81] Microsoft Corporation. Microsoft Code Analysis Tool .NET. http://www.microsoft.
com/downloads/en/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24

cc9f9d&displaylang=en, 2009.

[82] Barton P. Miller, Louis Fredriksen, and Bryan So. “An empirical study of the relia-
bility of UNIX utilities”. In: Communications of the ACM. 1990.

[83] Mozilla Foundation. “Tp2 Pageloader Framecycle Test”. http://mxr.mozilla.org/
mozilla/source/tools/performance/pageload/.

[84] Yacin Nadji, Prateek Saxena, and Dawn Song. “Document Structure Integrity: A
Robust Basis for Cross-site Scripting Defense”. In: NDSS. 2009.

[85] Susanta Nanda, Lap-Chung Lam, and Tzicker Chiueh. “Dynamic multi-process infor-
mation flow tracking for web application security”. In: Proceedings of the 8th ACM/I-
FIP/USENIX international conference on Middleware. 2007.

[86] James Newsome and Dawn Song. “Dynamic Taint Analysis for Automatic Detec-
tion, Analysis, and Signature Generation of Exploits on Commodity Software”. In:
Proceedings of the 12th Annual Network and Distributed System Security Symposium
(NDSS). 2005.

[87] A Nguyen-Tuong et al. “Automatically hardening web applications using precise taint-
ing”. In: 20th IFIP International Information Security Conference (2005).

[88] NoScript. “NoScript”. http://noscript.net/. 2008.

[89] OWASP. OWASP Top 10 - 2010, The Ten Most Critical Web Application Security
Risks. Presentation. https://www.owasp.org/index.php/Category:OWASP_Top_
Ten_Project.

BIBLIOGRAPHY 150

[90] Tadeusz Pietraszek and Chris Vanden Berghe. “Defending Against Injection Attacks
Through Context-Sensitive String Evaluation”. In: RAID. 2004.

[91] Feng Qin et al. “LIFT: A Low-Overhead Practical Information Flow Tracking Sys-
tem for Detecting Security Attacks”. In: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture. 2006.

[92] “Quasis Demo - JavaScript Shell 1.4”. http://js-quasis-libraries-and-repl.
googlecode.com/svn/trunk/index.html.

[93] W. Robertson and G. Vigna. “Static Enforcement of Web Application Integrity
Through Strong Typing”. In: Proceedings of the USENIX Security Symposium. Mon-
treal, Canada 2009.

[94] RSnake. XSS Cheat Sheet for filter evasion. http://ha.ckers.org/xss.html.

[95] “Ruby on Rails Security Guide”. http://guides.rubyonrails.org/security.

html.

[96] Samy. “I’m Popular”. Description of the MySpace worm by the author, including a
technical explanation. 2005.

[97] Prateek Saxena, David Molnar, and Benjamin Livshits. “SCRIPTGARD: Automatic
Context-Sensitive Sanitization for Large-Scale Legacy Web Applications”. In: Pro-
ceedings of the ACM Computer and communications security(CCS). 2011.

[98] Prateek Saxena, R Sekar, and Varun Puranik. “Efficient fine-grained binary instru-
mentationwith applications to taint-tracking”. In: Proceedings of the sixth annual
IEEE/ACM international symposium on Code generation and optimization. 2008.

[99] Prateek Saxena et al. A Symbolic Execution Framework for JavaScript. Tech. rep.
UCB/EECS-2010-26. EECS Department, University of California, Berkeley, 2010.

[100] Prateek Saxena et al. “FLAX: Systematic Discovery of Client-side Validation Vulner-
abilities in Rich Web Applications”. In: 17th Annual Network & Distributed System
Security Symposium, (NDSS). 2010.

[101] SecuriTeam. “Google.com UTF-7 XSS Vulnerabilities”. http://www.securiteam.
com/securitynews/6Z00L0AEUE.html. 2008.

[102] R. Sekar. “An Efficient Black-box Technique for Defeating Web Application Attacks”.
In: NDSS. 2009.

[103] “Smarty Template Engine: escape”. http : / / www . smarty . net / manual / en /

language.modifier.escape.php.

[104] Dawn Song. “RISE: Randomization Techniques for Software Security”. In: Presen-
tation at Software Security Summer Institute, http: // www. cs. berkeley. edu/

~ dawnsong/ papers/ rise. pdf . June 2003.

[105] Brandon Sterne and Adam Barth. Content Security Policy: W3C Editor’s Draft.
https://dvcs.w3.org/hg/content- security- policy/raw- file/tip/csp-

specification.dev.html. 2012.

BIBLIOGRAPHY 151

[106] Elizabeth Stinson and John C. Mitchell. “Characterizing Bots’ Remote Control Be-
havior”. In: Botnet Detection. 2008.

[107] Zhendong Su and Gary Wassermann. “The essence of command injection attacks in
web applications”. In: 2006.

[108] Symantec Corp. Symantec Internet Security Threat Report. Tech. rep. Symantec
Corp., 2008. url: \url{http://eval.symantec.com/mktginfo/enterprise/

white _ papers / b - whitepaper _ exec _ summary _ internet _ security _ threat _

report_xiii_04-2008.en-us.pdf}.

[109] “Template::Manual::Filters”. http : / / template - toolkit . org / docs / manual /

Filters.html.

[110] Ter Louw, Mike and V.N. Venkatakrishnan. “BluePrint: Robust Prevention of Cross-
site Scripting Attacks for Existing Browsers”. In: Proceedings of the IEEE Symposium
on Security and Privacy. 2009.

[111] “The Django Book: Security”. http://www.djangobook.com/en/2.0/chapter20/.

[112] “The Mason Book: Escaping Substitutions”. http://www.masonbook.com/book/
chapter-2.mhtml.

[113] TwitPwn. “DOM Based XSS in Twitterfall”. In: (2009). url: http://www.twitpwn.
com/2009/07/motb-08-dom-based-xss-in-twitterfall.htm.

[114] Unicode, Inc. “Unicode Character Database”. http : / / unicode . org / Public /

UNIDATA/PropList.txt. 2008.

[115] “UTF-7 XSS Cheat Sheet”. http://openmya.hacker.jp/hasegawa/security/

utf7cs.html.

[116] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. “Rex: Symbolic Regular Ex-
pression Explorer”. In: International Conference on Software Testing, Verification
and Validation. 2010.

[117] Wietse Venema. “Taint support for PHP”. ftp://ftp.porcupine.org/pub/php/
php-5.2.3-taint-20071103.README.html. 2007.

[118] P. Vogt et al. “Cross-Site Scripting Prevention with Dynamic Data Tainting and Static
Analysis”. In: Proceeding of the Network and Distributed System Security Symposium
(NDSS). San Diego, CA 2007.

[119] W3C. “HTML5 Specification”. http://www.w3.org/TR/html5/.

[120] Helen J. Wang et al. “Protection and communication abstractions for web browsers
in MashupOS”. In: SOSP. 2007.

[121] Gary Wassermann et al. “Dynamic test input generation for web applications”. In:
ISSTA ’08: Proceedings of the 2008 international symposium on Software testing and
analysis. 2008.

BIBLIOGRAPHY 152

[122] Gary Wassermann et al. “Dynamic test input generation for web applications”. In:
Proceedings of the International symposium on Software testing and analysis. 2008.

[123] Web Application Security Consortium. “Web Application Security Statistics Project
2007”. http://www.webappsec.org/projects/statistics/wasc_wass_2007.pdf.

[124] Joel Weinberger, Adam Barth, and Dawn Song. Towards Client-side HTML Security
Policies.

[125] Joel Weinberger et al. “A Systematic Analysis of XSS Sanitization in Web Application
Frameworks”. In: Proceedings of the European Symposium on Research in Computer
Security. 2011.

[126] Joel Weinberger et al. An Empirical Analysis of XSS Sanitization in Web Applica-
tion Frameworks. Tech. rep. UCB/EECS-2011-11. EECS Department, University of
California, Berkeley, 2011.

[127] Yichen Xie and Alex Aiken. “Static Detection of Security Vulnerabilities in Scripting
Languages”. In: Proceedings of the Usenix Security Symposium. 2006.

[128] XML Path Language 2.0. http://www.w3.org/TR/xpath20/.

[129] “XSS Prevention Cheat Sheet”. http://www.owasp.org/index.php/XSS_(Cross_
Site_Scripting)_Prevention_Cheat_Sheet.

[130] XSSed.com. “Famous XSS Exploits”. http://xssed.com/archive/special=1. 2008.

[131] “xssterminate”. http://code.google.com/p/xssterminate/.

[132] Wei Xu, Sandeep Bhatkar, and R Sekar. “Taint-Enhanced Policy Enforcement: A
Practical Approach to Defeat a Wide Range of Attacks”. In: USENIX Security Sym-
posium (2006).

[133] “Yii Framework: Security”. http://www.yiiframework.com/doc/guide/1.1/en/
topics.security.

[134] Dachuan Yu et al. “JavaScript instrumentation for browser security”. In: SIGPLAN
Not. 42.1 (2007), pp. 237–249. issn: 0362-1340. doi: http://doi.acm.org/10.1145/
1190215.1190252.

[135] Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. “Symbolic String Verification: Combin-
ing String Analysis and Size Analysis”. In: Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). 2009, pp. 322–336.

[136] M. Zalewski. “Browser security handbook”. In: Google Code (2010). http://code.
google.com/p/browsersec/wiki/Part1.

[137] “Zend Framework: Zend Filter”. http://framework.zend.com/manual/en/zend.
filter.set.html.

