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ABSTRACT

A LANGUAGE AND DATA STRUCTURE FOR FACT RETRIEVAL

by
William Louis Ash

Chairman: Edgar H. Sibley

A computer system that results in a useful and quite natural
vehicle in which fact retrieval systems can be constructed quite
easily is presented and analyzed. The system, called TRAMP, consists
of a simulated associative machine providing the storage structure,
and a relational language for that associative storage structure
providing a question-oriented data structure. The TRAMP system is a
computer language with applicability to a class of problems that are
best represented as associations between objects, or by a relational
data structure. In particular, the language contains potent fact
retrieval capabilities in the sense that it automatically deduces
implications of facts resident in its store. '

We use the term '"fact retrieval' here to mean the extraction of
facts from a data store regardless of whether or not the information
explicitly resides in the store. Thus, fact retrieval includes 'docu-
‘ment" retrieval-—simply locating and extracting a data item from memory
(primary or secondary)—but is mainly concerned with strategies for
‘making inferences from data in memory. As a very simple illustration:
if we know that A is greater than B, then from that data item we should
be able to conclude that B is less than A. To more clearly define the
problem it is necessary to place constraints on the deduction. For our
purposes these constraints will have to do with time, space, ease of
application, and general utility in a realistic environment.

The TRAMP language and system is described and motivated. Com-
parison of this system to other fact retrieval approaches is discussed.
The implementation of the system (on an IBM 360/67) is described. Of
perhaps most importance-is the algorithm, along with its proof of
correctness, for processing the relational language, thereby yielding
a very simple manner of handling what has proved to be an elusive
problem, The language is critically evaluated, examples given of how
it works and how it can be used, a general discussion and critique of
the field of fact retrieval, and the user's manual are also included.




. FOREWARD

The following is a guide for reading this dissertation.
Chapter 1, entitled "Introduction,' .is an introduction to the
subject area with which this dissertation is concerned, rather
than an introduction to the disserfation itself. |

Chapter 2 discusses the successes and failures of others
working in the areas of question-answering and fact retrieval.

In so doing,‘a,somewhat terse but complete explication of Robinson's
resolution theorem-proving strategy is given. The terminology thus
introduced appears without further explanation in the later chapte?s.
The reader may want to.refer to pages 22-29 for varioﬁs definitions
of technical terms appearing in the context of theorem-proving and
formal logic.

Chapters 3 and 4 deal with the two sub-languages of the TRAMP
language. Each chapter attempts to motivate the'respective language,
define it, and demonstrate its utility. Chapter 3 explains the actual
implementation of the associative language in some detail, while the
implémentation of the relational language is deferred to chapter 6.

Chapter 5 discusses in both general and specific terms how the
components of the TRAMP language interact to form the final system.
Section 5.1 concerns specific problems of the present implementation

and is perhaps not of general interest.
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Chapter 6 represents the primary theoretical contribution of
this dissertation. Here mathematical graph theory is employed to
represent, solve and prove the correctness of that solution for the
problems posed by the relational language of Chapter 4, This chapter
is actually quite independent of the rest of the dissertation, in
that the results are not restricted to the present work. However,
the results have been motivated by placing the problem in the context
of the TRAMP language, thereby making the reading of chapter 6
difficult without some familiarity with TRAMP (it would be suggested
that sections 3.1, 3.2, and 4.1 be-prerequisite to understanding
chapter 6).

Chapter 7 presents an example of an application of thelTRAMP
language but, more importaﬁtly, the TRAMP language is critically
evaluated and compared to other work. -Perhaps significantly, chapter
7 also includes a critique of the general area of 'question-answering"
and questions some of the results and demonstfations that have arisen

“in that field.
Chapter78 gives a short summary of the Qork that was performed

as well as of this report of that work,
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A LANGUAGE AND DATA STRUCTURE FOR FACT RETRIEVAL

Chapter 1: INTRODUCTION

Since the inception of electronic computing machines, and with
accelerated growth in recent years, scientists have been investigating
the problems of '"mechanical question-answering." The area of research
.termed "queséion-answering" tends to blend together two quite &istinct
fields of study: natural language and fact retrieval. There has been
considerably more interest and active research into the problems of
machine comprehension of natural” language (see Simmons [1] for a biblio-
graphy of same) than into fact retrieval. The language problem is: to
parse mechanically a sentence in a loosely structured natural'ianguage
‘in order to extract its information content; the natural language
queries must be cofrectly parsed to retrieve the relevant information
preyiously extracted and stored. Thus, the natural language problem
as pertains to question-answering can be thought of as the interface

between the question-asker and the question-answerer.

Once this interface exists, or assuming that it did, we have

the following diagram (Fig 1.):
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Fieure 1: A MopeL oF QUEST ION-PANSWERING

‘In this.model, the natural language processor is the interface between
the user and the fact fetriever. The ''sentence generator' in the
diagram is a relatively simple device that generates English sentences,
i.e. translates from the internal form to something intelligible to the
user. The "parser" has the (as yet unsolved) problem of translatiﬁg
from an informal, ambiguous, natural language to some canonical form
intelligible to'thé fact retriever. The fact retriever itself, then,
deals with a highly structured, formal language, Its task is to retrieve
facts, expressed or implied, from themmemory of the system.

We shall be concerned with the above model for user interaction
with a question-answering system, but we wish to point out certain
reservations about the model. The sharp dichotomy made above between
the "Natural Language Processor' and the "Fact Retriever' is quite

artificial. This author strongly feels that, in fact, ultimately there




is no distinction, The two processes are not only highly inter-
dependent, but at root, the same basic (artificial intelligence)
problems will have to be solved for either process to be realis-
~tically effective., For example, it is widely recognized that
effective processing of natural language requires an "efficient!.
mechanism for making logical inferences. This roughly is just the
"Logic" box in Fig. 1. Perhaps more significant is the point of
view (held by this author and corroborated by many discussions with
colleagues) that when we aro able to successfully construct a mean-
ingful processor for a natural language, we will, in fact, have
transcended the need for an explicit formal fact retriever.

Reiterating, it is our opinion that the same basic mechanisms
are required for construction of either of the large (dotted-line)
boxes in the diagram of Fig. 1, and that the distinction made is an
artificial one. Nometheless, given the present state of the art,
the model proposed in that diagram is a useful one and a reasonable
way to approach the area of question-answering. Later, we will further
decompose the "Fact Retriever'" box into syntaetic and semantie com-
ponents, again motivated by the conviction that the decomposition,
thouéh perhaps not quite realistic, provides a "handle" on the problem
and is a useful approach. (See Green [2] for a somewhat extreme example
of this position.)

Before proceeding, the terminology that we shall be using in the
sequel requires more precise definition, as it is, unfortunately,.not

too uncommon in the computer sciences for many persons to use the same




words and terms to refer to different things. We shall, following
Cooper [3], distinguish between: ‘i) question-answering; ii) infor-
mation retrieval—or document retrieval; and iii) fact retrieval.

By a Question-answefer we shall mean a complete system (such
as all of Fig. 1) to which a user poses an English, or English-like,
question and from which he receives a response. We shall use the
term fact retrieval to refer to a system (e.g. the right-hand dotted
box in Fig. 1) which is capable of retrieving facts from a memory oT
data base, régardless of whether or not the fact is explicifly present,
or only a consequence of what is explicitly present, Information or
document retrieval is a term we shall use to refer to the retrieval of
data items explicitly present in the data base (using methods such as
binary search, hash coding, etc. Again refér to Fig. 1).

One other piece of terminology that we shall be usiné is being
-popﬁiarized by the Data Base Task Group of the CODASYL committee but
is still unfamiliar to many people. This is the distinction between a
data structure and a storage structure. We will use the term storage
structure to mean the actual representation of information on the phy-
sical medium, be it tape, disc, drum, magnetic core, or whatever, and
the physical structure of that representation; e.g. linked list. The
term data structure will refer to the logical rather than physical rep-
‘resentation of data (when the structures are simple the two may coincide}.
The data structure is the logical structure into which the programmer org-
anizes his data to accomodate and facilitate his way of thinking about his

problem. As pertains to TRAMP, the language described in this report,




the storage structure is associative, while the data structure is
relational. Another example of the distinction is in SIMSCRIPT II [4],

where a multi-dimensional array as a data structure is mapped onto a

fairly sophisticated storage structure consisting of vectors of pointers

to vectors.

The present report is concerned with an approach to the problem
of fact retrieval. Referring to the dichotomy in Fig. 1, the fact
retriever works with a highly structured, canonical representation of
both information aﬁd user queries. The fact retriever has the task of
effectively and.efficiently retrieving and deducing information from
the explicit data in its storage medium. What is involved in the pro-
céss of mechanically retrieving facts? First of all, we must have a
base information retrieval system that is fast and efficient. We can

expect that any mechanical retrieval system, to be worth implementing

~'on ‘a computer, must necessarily contain a very large amount of infor-

—mation [5]. This -information must be appropriately and efficiently

-compressed S0 as to minimize utilization of the hardware storage device
(t&pically a disc or drum for a realistically large system), and perhaps

- more importantly stored in such a way as to minimize retrieval search

time and cost. In the proposed system, named TRAMP, a software sim-
ulation of an associative memory is the primary strategy for efficient
storage and retrieval of data items. .
~—~Superimposed on top of the TRAMP associative substructure is a
language for performing various logical operatiqﬁ on data, and more

importantly, a language for describing how the-data can be expanded to




include its implications; 1i.e. a language for describing rules by
which valid deductions can be made and information inferred that is
not explicitly resident in the store. As a somewhat trivial, but
nonetheless reélistic example, consider a retrieval system that con-
tains the data item: BOB IS JANE'S HUSBAND. From this data item
we would certainly expect the system to implieitly 'know" that

JANE IS BOB'S WIFE. (In general more interesting and fruitful
relations will arise in practice, but for illustrative purposes

we will restrict ourselveg almost entirely to familial relations

at the expense of appearing trite.) We would also like the system
to "know'" various other things that are implied by the statement
Irelaﬁing BOB and JANE. For example we would not think the system
very bright if knowing that JANE IS BOB'S WIFE, it could not answer:
"WHO IS JANE MARRIED TO?'" or '"IS BOB A BACHELOR?"

Thus, the fact retrieval system must be capable of making direct
logical inferences such that if it 'knows" that A.D B and it also .
"knows" A, then.it must be able to apply modus ponens to infer B. It
must be able to perform, as well, the deduction that would lead it from
BOB IS JANE'S HUSBAND to JANE IS MARRIED TO BOB-. We can think of this
as a-different type of capability, even though it can certainly be
phrased and deduced in the propositional calculus. Thét is every data
item will "imply" many other data items which are simply rewordings

of the original, For example:




_JANE IS BOB}S WIFE

BOB AND JANE ARE MARRIED
JANE IS-BGB’S SPOUSE

BOB IS JANE'S HUSBAND o "<< BOB IS JANE'S SPQUSE

BOB IS MARRIED TO JANE
JANE IS MARRIED TO BOB

etc.,

N

But more realistically, ‘we would like some other mechanism (e.g. some

type of thesaurus look-up) to transform the information into a standard
or canonical form so that the '"inference mechanism' need not be over-
burdened. This remains a very real problem but we would like to rele-
gate it to some other study and, in particular, assume that the "parser"
is capable of determining the meaning and intent of a statement and

such difficulties as presented b& synonyms, word order, phrasing, etc.,
‘are not the concern of the fact retrieval mechanism,

The situation for fhe fact retriever then, is that a ''question"
is posed to it. Depending on the orientation of the particular system
this might take one of the forms: a) Who is John's father? or b) Who
is the father of John? or <¢) Does there éxist someone such that he is
the father of John (and if so, who is that someone)? and so on. The
system then goes into its memory seeking the fact explicitly, .or, not
finding it, seeking relevant data items that can hopefully be used to

deduce the answer., 1If, in this search, the data item THE FATHER OF JOHN

IS DAVID 1is found, then the system replies "DAVID'; if the data item




JOHN HAS NO PARENTS (along with suitable "axioms" for interpreting
this item relative to the particular question) is found, then the.
system replies negatively. The interesting sifuation arises in the
maybe case. Assuming that the system had the ability to fully analyze
ana interpret familial reiations, and it found in its store:

DOROTHY IS JOHN'S GRANDMOTHER

ARNOLD IS DOROTHY'S SON
and no other relevant information, then the true situation might be
reflected in the reply:
"THERE IS NOT §UFFICIENT INFORMATION TO ANSWER. HOWEVER, ARNOLD
. IS EITHER JOHN'S FATHER OR HIS UNCLE."
Most question-answerers respond with one of three answer conditions
(most early systems had only these three answers!): Yes, No, Maybe.
The "maybe'" condition is normally ignored in the sense that no attempt
is made to analyze or interpret the facts that have been retrieved in
the process of trying to retrieve the desired facg. That is, when the
desired fact is not deduced, all that was accumulated along the way
(lemmas in the ;heorém prqving framework) are discarded. What is really
wanted here is one or more possible answers with associated plausibility
indi;es. Note that this is quite different from simply assigning
probabilities to answers as derived from probabilistic rules of inference
such as:
WITH PROBABILITY ?3, THE SON: OF THE GRANDMOTHER IS THE FATHER

WITH PROBABILITY .99, THE SPOUSE OF THE PARENT IS A PARENT, etc.




The prob%ems of fact retrieval, viewed abstractly out of the
question-answering context, can be thought of as an attempt at dafa
reduction insofar as we are eliminating redundancies, For example
it is clearly redundant to have both JOHN IS THE HUSBAND OF MARY
and MARY IS THE WIFE OF JOHN.* If.we carry this argument to its
logical conclusion we could represent all of the infinitely many
theorems of the propositional calculus by storing only the three
axioms:

(A= (B> A))
((A>(B>0)>(A>B) > (A>0)
((~B > ~A) > ({~B > A) > B))
.and providing a meéhanism for applying modus ponens and generating proofs.
In fact, Green [2] proceeds in just such a formal manner, representing all
77 data as senteﬁces of the predicate calculus (first-order logic) and all
-—retrieval requests as conjectured theorems to be proved. The data base is
 considered to be a set of axioms to which a proof procedure (resolution [6])
_...is applied.
The problem, as stated thus far, is not well defined until we
stipulate the constraints under which the deductive system is to operéte.
For example Green has completely solved the "unconstrained problem,™ i.e.
in theory he can infer any and all data implied (syntactically) by other
L data. However, when we place a few reasonable constraints (such as time
.. ..and space} on the solution, his system loses a great deal of its theoretical

power. Green's work is further discussed in Chapter 2.

*The storage space explosion is naturally much more severe in the case
of transitive relations.
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We can think of the constraints (normally time and space—or
some index of effort expended in making an inference) as determining
some inference mechanism such as a formal theorem prover [2] or a
relational structure [7,8], or anything else. This mechanism then,
will effectively partition (not uniquely!) the total data base into:
one set of data items that will be explicit (i.e. reside as data items
or "documents' in the memory) and all the rest of the data items which
this mechanism can infer from those explicit. In practice we rarely
have a partition since the two sets are not disjoint. In that case we
call the overlap redundancy. In terms of axiom systems, such as that
given above for the propositional calculus, we can formally define
redundancy to be the mon-independence of the axioms (as a function of
the rules of inference). The pros and cons of redundant data are dis-
cussed in the sequel. The problem of specifying this partition is an
interesting one in its own right [9].

1t must be stressed that the TRAMP Zanéuage deécribed in this
report is not itself a question-answerer, or even a fact :etriever.

It is a language. But it is a language designéd with fact retrieval
foremost in‘mind, and it is a language containing as built-in features
many of the ;equirements of a question-answering system. It will
therefore by argued in the sequel that the TRAMP language 1s in many
ways ideal for writing question-answering systems. We will set most
of our discussion in the framework of a question-answering system,
accordingly. This is because such systems are mdst concerned with

the problems of inferring information from given facts (documents}.
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Of course all information retrieval can be thought of as.question-

answering, anyway. Our concern is with general fact retrieval methods

but we will often talk of question-answerers since that area readily

yields illustrative examples.

In the next three chapters we shall be discussing various

approaches and limitations to fact retrieval and in so doing the

constraints of operation will come out. We can state for now that

the dimensions that should go into any index of expended retrieval

effort must includé:

1)
2)
3)
4)

5)

execution time

memory requirements (main § secondary; permanent § scratch)

‘representation of data

ease of use

flexibility of structure / ease of modification

Chapter 2 presents an evaluation of the various approaches that

have been tried thus far. Chapters 3 and 4 deal with the TRAMP approach

and its constraints. The later chapters attempt to tie things together

I3

discussing implementational details of TRAMP and evaluating its successes

and failures, and fitting the TRAMP language into the fact retrieval and

question-answering model which we have constructed.




Chapter 2: BACKGROUND

Although there has been a great deal of interest in the gereral
area of "question-answering" {(cf, Simmons [1,10]), there has been
relatively little concentration on the abstract notion of fact retrieval
as defined by the dichotomy in the introduction. "Part of the neglect
may ... be due to the well-founded suspicion that the problems of
mechanized Fact Retrieval are deep and involved" [3]. However there
have been several notable endeavors in this area [2,3,5,8] and we will
now survey what has been attempted, how it has succeeded, and whaf
shortcomings remain.

Information retrieval was perhaps first dichotomized (into
document- and fact-retrieval) and the term "fact retrieval' first
used in the sense that we are using it by Cooper [3]. In this early
work, Cooper brought to light the questions with which we shall be
concerned, introduced the terminology (which he credits to P. Baxendale
of IBM), and established some goals and constraints for fact retrieval.
Though his work did not result in a working fact retrieval system of
note; or even present a formidable attack on the issues, the problems
were well formulated and delineated and hence the work was a significant
contribution,

Cooper's aims seemed modest in that he was only interested in
being able to answer 'yes-no" questions, It is -somewhat surprising

that question-answering systems were so oriented until relatively
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recently. Nevertheless, if one has a good grasp on the nature of
the problems involved in fact retrieval, one readily sees that
restriction to "yes-no' questions in no way simplifies the problem;
rather it is a useful abstraction. In particular, Cooper relegated
the ability to answer other than ”yés-no” questions to the document
retrieval system and allowed the fact retrieval system to concentrate
on the problems of effective inference. As indicated in Fig. 1, todayA
we tend to think of the document retriever as being an important part
of the fact .retrieval system and have sufficiently good document
retrieval techniques that this is not an encuﬁberancg.

Though Cooper strongly distinguished between retrieving facts
.and documents, he did not decompose the quéstionmanswerer as we have.
Indeed, his thought was given by:

"Proposition 1: A Fact Retrieval system must normally accept

most of its information to be stored, and also its queries,

in the form of natural language sentences (e.g. English)

rather than in some artificial language selected for the

purpose.' [3]
He proposes a highly restricted subset of ﬁnglish (generated by an
"immediate constituent" grammar) for his language. While there is not
enough information available to confidently evaluate his chosen subset,
it appears to be one of those "English-like' languages that is very
easy to read, but very difficult to write (since thg restrictions pose
no problem to the reader but are a serious nuisance to the falsely

- confident writer who is misled by the seeming lack of formality).

Cooper's basic approach to retrieving facts is essentially a

theorem—-proving approach. His '"Fact Retrieval Algorithm" is the fdllowing:

[
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(1) Search for a subset of the set of stored sentences such that
the query sentence is a logical consequence of the subset.
If found, SUCCESS EXIT, else go to (2).

(2) Search for a subset of the set of stored sentences such that
the subset is logically inconsistent with the query sentence.
If found, FAILURE EXIT, else go to (3).

(3) Exit—unable to answer.

His approach to theorem proving was perhaps i1ll-defined (resolution [6]
had not yet been discovered) and was important only in that he proposed
"a theorem prover' to realize his algorithm. To this end he did form-
ulate a ”1ogical lénguage" in set-theoretic notation employing Aristo-
telian logic.

Cooper thus proposed a theorem proving attack on fact retrieval.
Unfortﬁnately, at that time he did not have available a poﬁent appreach..
to theorem proving, and hence his fact retrieval system bogged down. A
few years after Cooper the resolution and unification theorems [6] were
‘discovered and proved yielding the resolution strategy the mosf accept-
able and feasible proof procedure today. With resolution Green [2] was
able to implement Cooper's 'Fact Retrieval Algorithm." We will return
to Green and the resolution principle Shﬁrtly and examine the result of

this implementation.

At the RAND Corp. Levien and Maron have been working for some time
on the problem of fact retrieva; as it is manifested in the céntext of
'*library automation [5,11-13]. Although they have approached the computer
'ﬁ.to begin implementation of their ideas, it is thié author's impression

~‘that the significance of their work has been, as with Cooper, in setting




forth goals and constraints, and the formulation of a design philosophy.
From personal communications with persons acquainted with their project,
we understand that implementation is under way. Yet from the published
material one discerns only that they have given the problem a good deal
of thought and come up with a way to approach it. The approach that
they formulate, by specifying a fact retrieval language, is a language
which in fact closely resembles the TRAMP relational language. Howevef
the TRAMP language is currently operational and a prototype version of
it was usable as far back as the summer of 1967, whereas Levien and
Maron éive little hint (in the literature at least) of how they intend
to cope with the problems posed by their language.

Their contribution is quite significant however, since, like
Cooper, they have given the désign philosophy much thought and greatly
helped to clarify the problem, its goals and constraints. They have
gone beyond Cooper in that their fact retrieval language is a concrete
proposal well within reach and one which is well fhought out and

justified.

A system that externally appears to be similar to TRAMP (but
interﬁally béars no resemblance whatever) was proposed in a dissertétion
by Elliott [8]., His syétem, célled GRAIS (implemented on the CDC 1604
using the SLIP language) stored information as binary relations repre-
sented as edges of a graph, Inference was performed by providing nine
properties that could be associated with each relation. These prﬁperties,

~ e.g. transitive, irreflexive, etc., specified ways in which paths through
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the graph representation of the data could be traced to retrieve impli-
cit information: As stated above, GRAIS and TRAMP appear to be similar
approachs on the surface (we shall, in fact, later be using quite the
same terminology to describe TRAMP, i.e, relations thought of as. a
gréph or network [14}), however their realizations were quite different.
Furthermore TRAMP has gone beyond GRAIS to the extent of having incor-
porated virtually all of the extensions which Elliott proposed for GRAIS
in the "future.'" Again, it must be kept in mind that unlike any of the
systems rev;ewed here, TRAMP is a language and hence a vehicle for fact
retrieval, rather than a fact retrieval system,
In formulating his problem, Elliott suggested seven criteria for

a question-answerer:
| 1) Comprehensible input-output format

2) Storage efficiency

3) Inference capability

4) Generality of subject matter

5) .Processing time independent of size of data base

6) Revision facility

7} Ability éo note incﬁnsistencies in data base,
As we shall see, items (2)-(6) are built-in features of the TRAMP lang-
uage, ﬁhile items (1) and (7) are easily programmed in the language.

Let us examine these criteria in detail. The first, comprehensible

format, is just Cooper's Proposition 1. The TRAMP language is imbedded
in_TRAC [15] which is a very elegant 'text-processing'' language, greatly

facilitating the achievement of this first criterion by any fact retrieval
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system written in TRAMP. Elliott provides as his solution the language
of relations., While the language of relations is concise, rich, and
perhaps elegant, it is subject to strong criticism when we claim that
it is comprehensible: indeed, "comprehensible' is at best an inappro-
priate adjective. When we discuss Green, shortly, we shall point out
some problems with the use of the predicate calculus. Relational
languages are markedly similar to the predicate calculus and certainly
suffer from the same problems which we shall point out below. For the
moment it will suffice to say that these problems are concerned with
syntactic rigidity énd the fact that it is the very conciseness and
richness that yields a language that is perhaps tco powerful (in that
it is difficult to control and easily gets out of hand to express
things that were not intended). We say this because of familiarity
with criticism of Green as well as our own experience with the TRAMP
- relational language. It should of course be pointed out that TRAMP
. itself is one of those languages that is "impéssible to read" {though
quite easy to write), But the complex and unnatural constructions that
render it unreadable are normally generated-infernally so as to not
significantly hamper the programmer and be almost completely'transparent
to the user-of any system programmed in TRAMP.

The second criterion, storage efficiency, is somewhat vague in
that it is quite open to interpretation. The question could be effec-
tive}y argued either pro or con for both GRAIS and TRAMP. However, it

will be conceded at the outset that the associative storage scheme used




-18-

by TRAMP is not very efficient, Rather that scheme was intended to
maximize retrieval efficiency and, in fact, was specifically designed
to answer criterion (5). But this criterion of efficiency is really
too vague to dwell on. Do we speak of efficiency of time or space?
What of the trade-off? Is it efficiently stored so that it may be
efficiently retrieved? The associative storage mechanism is quite
efficient with respect to time, yet 1is relatively Qasteful of storage.
GRAIS used the SLIP language [16] for its storage and data structures
which could not have been extremely fast; - and the doubly linked
lists hardly represent efficient storage utilization.

The third criterion, inference capability, we view as being the
central problem area, hence redundant. Criteria (4) and (6) seem also
to be redundant since one has no system without having met them. Item

TTTTT(4) is met by TRAMP implicitly, since it is a language and therefore not

-—-———capable-of being dependent on subgect matter. The language certainly

---has facilities (see Appendix) for revision and deletion, thereby meeting
item (6).

The £ifth criferion,'processing time, was the original problem
which the TRAMP associative storage structure was designed t6 meet. We
know of no software retrieval scheme which solves this problem as well.
Software associativity involves a minor amount of overhead used in its

~~pealization. - But this overhead is incurred at virtually the exact same
expense regardless of how much data is being searched, i.e. how many
data items are stored in the medium in which the desired data iteﬁ is

held.
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The last criterion, which concerns inconsistencies. in the data
base, is something that is not applicable to TRAMP because it is ;
language. This can certainly be programmed into a system using the
TRAMP language, however. As regards a fact retrieval system, this
criterion may very well be superfludus. If we accept the very general
algorithm put forth by Cooper, we see that whether or not an explicit
theorem proof procedure is employed, wﬁat we are actually doing is
‘attempting to draw logical conclusions from antecedents and, therefore,
in fact we are proving thgorems however informally. Formally we know
that if our axioms (antecedents) are inconsistent, any formula logically
follows from them and thus can be proven as a thebrem. Viewed in .this
light, we see that it is superfluous to require that the data items of

a fact retrieval system be consistent. Since TRAMP is a language that
has found applicability in a wide range of areas not even remotely
connected with fact retrieval, it was deemed prudent that such features
as consistency be left to the programmer rather th;n_incorporated into
the language itself.

Elliott's primary approach to (what we have.called) the central
problem, i.e. the inference mechanism, is his graph representation and
mathématical properties assigned to the edges.of the graph. He provides
a language for assigning properties to relations (edges) and a relational
1anguag¢ for "combining' new relations from previougly defined relations,
e.g. COMBINE Father with Mother to define Parent. His relational language

has several shortcomings which he points out, such as lack of recursiveness
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and various restrictions on the. COMBINE operator. Virtually all of
these restrictions on the relational language have been overcome in
the TRAMP language (described in Chapter 4).

In summary, Elliott's dissertation was an early, strong approach
to a fact retrieval system, which, aside from superficial similarities,
is aligned with TRAMP in that the central strategy was to formulate the
proper data structure as contrasted with the strategy of Green which

was a pure syntactic formalism.

Probably-the most significant results in question-answering to
date are those of Green [2]. He has taken a purely formal theorem-
proving approach to the problem. The information (data base that is
being interrogated) is treated as a set of axioms and the question to
be answered is posed as a conjecture to be proved as a theorem. A
.modification of Robinson's resolutian proof procedure [6] is employed,
yielding constructive proofs whenever the sentence is a theorem of the
system. As the resolution theorem assures us of a complete logic
system, Green has in principle solved the problem: almost any question
can be phrased in the predicate calculus and any valid theorem will be
proved using resolution. Unfortunately, in practice things are not so
ideal. |

Green;s most recent system, called QA3, represents an éxtreme
example of the model we have chasen for question-answering (Fig. 1).
He tacitly assumes the existence of some interface to transform all

communication from the outside inte the predicate calculus. The entire




~21-

data base is thus represented as a set of formulae of first-order
logic., The query must also be so formulated. Then the resolution
proof procedure is applied to determine whether or not the formula
representing the query is a logical consequence of the set of formulae
representing the data base (the axioms). Since we know that there can
be no decision procedure for the predicate calculus, the completeness
of resolution suffices—in theory. In fact, however, there are two
major drawbacks to the use of QA3 as a real life question-answerer
(even though QA3 is currently being used by the robot at the Stanford
Research Institute and elsewhere) as we shall demonstrate.

An example is now in order. Following is a'very trivial dia-
logue with QA3 that demonstrates both the format of information and,
more importantly, the manner of representation, We begin by entering
two pieces of information into the system:

STATEMENT:  MAN(Smith)

STATEMENT: (x) [MAN(x) > ANIMAL(x}]

This says that "Smith is a man,'" and that '"'man is an animal," or more
precisely, "If x is a man then x is an animal.”' We now ask "Who is an
animgl?", which must be phrased "Does there exist a y such tﬁat y 1s
an animal? If so, exhibit such a y." and must be asked by typing:

" QUESTION:  (dy)ANIMAL(y)
and the system responds

ANSWER: YES, y = SMITH
The YES answer is given since the conjecture (Hy)ANIMAL(y) was proved.

The further information ''y = SMITH" is piovided since "Smith" is an
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instance of y satisfying ANIMAL(y), or in o%her words, ANIMAL{Smith)
is a theorem.

At this point we shall digress from our discussion of question-
answering to examine more closély Robinson's resolution strategy. This
digression is felt to be germane to the discussion because only through
familiarity with resolution can one appreciate the power of QA3, and
“also appreciate why that power loses its effectiveness in practice.

Above we stated that there were two major drawbacks to QA3, The first
has to do with resélution; the second is the manner of representation.
Let us now 1ookAat the resolution proof procedure.

We must begin by defining our vocabulary. The predicate calculus
deals-with strings of symbols called well formed formulas (wffs). WEfs
are composed of variables (the letters x,y,z,u,V,w with subscripts);
function letters (the letters f,g,h,a,b subscripted and also with super-
" scripts to denote the number of argﬁments); predicate letters (P,Q,R,F,
G,H sub and superscripted as are function letters); the logical aconnectives
A (and), v (or), ~ (not); and the existential and universal quantifiers.
A function of no variables (superscript zero) is a comstant; a predicate
of no variables is a proposition. A term is a constant, a variable or a
function letter fg preceeding n terms. An-afomic formula:is a bredicate
letter P? preceeding n terms. A wff is an atomic formula, the negation
. of a wff, two wffs.joinéd by a connective, or a wff preceede& by a quan-
tifier. (SuB and superscripts are almost always omitted when no confusion

can result and parentheses delimit the arguments to a function or predicate.}
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An interpretation of a wff S'is the selection of a non-empty
domain D, the assignment of each function letter f? in S to a mapping
Dn + D (zero-ary functions, or constants, are assigned to elements of
D}, and the assignment of each predicate letter Pz in S to a mapping
p" {T,F}. A variable then ranges over the domain D. An interpre-
tation is said to satisfy a wff S if S is made to be TRUE under that
interpretation, in which case the interpretation is called a model for
S. A wff is satisfiable if there exists a model for it., A wff is
logically valid if every interpretation is a model for it, or equiv-
alently, if its negation is unsatisfiable.

In first-order logic we require that variables represent terms
only—a variable can range only over the domain of interpretation, not
e.g. predicate letters. A wff is a closed formula just in case it
contains no free variables, i.e., variables not bound by (in the scope
of) a quantifier. In mechanical theorem-proving formulas are converted
to a standard quantifier-free form. A wff S éan be algorithmically
converted to prenex conjunative normal form S', where all quantifiers
occur at the béginning of §' (called the pref%xj, and the rest of S'
is an AND of OR's of literals (atomic formulas or the negatién of atomic
formulaé) called the matrix. Each quantifier ranges over the entire
mat;ix. Each existentially quantified variable is then replaced by a
 Skolem function of those universally quantified variables that preceed

it in the prefix (within whose scope it lies). As an example

@z} (x) @) [P{x,y) » Qx,z)]
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already in prenex form, would be converted to

(x) [~P(x,£(x)) v Q(x,a)]
where f(x) is the skolem function replacing y, and the constant a is
the skolem function of no variables replacing z. In this standard
form all variables are universally quantified, so the prefix may be
dropped. The matrix is an AND of OR's so it may be represented as
a .set of clauses‘where each conjunct is a clause, and each clause is
an (unordered) set of literals. Thus the canonical form of a wff for
resolution is simply a set of clauses, where each clause is a set of
literals. |

The mechanical conversion of S to S' does not preserve equiva-
‘lence. However interprovability is maintained so that S is a theorenm
if and only if S! is a theorem, or more to the point, S is satisfiable
if and only if S' is satisfiable.

A proof procedure is said to be éound if every theorem of that
procedure is a valid formula; it is said to be complete if every valid
formula is a theorem; consequently a procédure that is both sound and
complete has the very desirable property that the theorems of that
system exactly coincide with the valid formulas.

Resolution is a "Herbrand refutation" proof procedure. This means
that when we try.to prove that A is a logical consequence of B, we do so
by negating A and attempting to derive a contradiction. This is a very
common strategy fof proving theorems in everyday mathematics and follows
from the simple observation:

(B > A) <==> (~B Vv A) <==> ~(B A ~A)

1
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Thus we.assume (B A ~A) and attempt to deduce an explicit contradiction
thereby showing that no interpretation can satisfy (B A ~A). We can
then conclude that ~(B A ~A), or equivalently (B o A). Robinson showed
that the resolution procedure produces a contradiction from (B A ~A)
if and only if (B A ~A) ‘is unsatisfiable ((B o> A) is logically valid),
meaning that resolution is a sound and complete proof procedure.

The basic idea of resolution is best illustrated using the
propositional calculus (leading to the ground resolution theorem).
The basic strategy 'in ground resolution* is very close to the operation
of finding prime implicants in switching theory. The validity of the
ground resolution principle can be seen from the following tautology
(where o and w are any formulas):

[(RA vV a) A (AVw]>(oVaw (1

or equivalently

~(a v w) o ~[(~A V) A (AV )] (2)

In a refutation procedure we are trying to show that a set of formulae
(viz. the set of axioms and the negation of the conjgctured theorem)
cannot be satisfied. Thus if we were attempting to show that the premise
of implication (1) could not be satisfied, we would knoﬁ, by implication
(2) that it suffices to show that the consequent of (1) cannot be satis-
fied. Since in resolution we are always working Qith a formula in con-

junctive normal form, if any of the conjuncts is unsatisfiable, the entire

*Ground resolution is just resolution applied to formulae in which no
variables appear. A predicate of no variables is a proposition. Hence
ground resolution is resolution applied to the propositional calculus.
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formula is unsagisfiable. This means that if in our set of clauses
appear two clauses such as the premise of (1) (called a complemenfary
pair), we may add to our set of clauses the consequent (o V.w). In
other words, from the two clauses (~A V a) and (A V w) we may infer
the clause (o V w). This strategy éucceeds in deducing an explicit
contradiction whenever the empty clause is inferred (since of course
the empty clause can only be inferred by resolving the two singleton

clauses (~A)} and (A) which represent the contradiction (~A A A)).

We define the resolution space of a set S of clauses as:

2]

RO(s) =

n+l

R (s) = RRU(S))

H

-"where R(S), called the resolution of S, is the set of all clauses
—which are members of S or resolvents (inferred from a complementary
_ pair) of members of S. Thus the resolution procedure generates at
each level n, the nth resolution R"., One of three things must happen:
for some n, R" = Rn+1 indicating that the set of clauses S is safis-
fiable; for some n, R" contains the empty clause indicating that § is
unsatisfiable; 'or else tﬁe procedure does not terminate. |

The strategy outlined above is ﬁot very exciting when we speak
of it in terms of the propositional calculus. Indeed, far more efficient
methods are known. What Robinson did in [6] was prbvide the unification |
algorithm (and the proof of its correctness) which in turn provided é

means for extending this strategy to first-order.logic. Furthermore,

his resolution theorem guarantees us that using only the resolution rule
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of inference we .have a complete logic.

The extension to predicate calculus is anything but obvious,
The whole idea behind all of the 'Herbrand-type'" refutation procedures
is to demonstrate that the formula ﬁin_our case a set of clausesj is
not satisfiable under any interpretation. Obviously one cannot
enumerate all possible domains and'interpfetations on domains. However
Herbrand proved'(about 1930) that it is sufficlent to show.the unsatis-
fiability of only a finite subset of the Herbrand universe. The Herbrand
universe can be thought of as an (infinite) enumeration of all possible
interpretations. Technically, the Herbrﬁnd universe is simply the set of
all terms that can be generated by instantiating terms for variables in
‘the set of clauses, Formally, the.Herbrand universe of a set of clauses
S, H(S), is defined by: J

i) all constants in S are in H(S). If none, fg e H(S)
ii) for all n-tuples S RREPL where a, € H(S), and all.
“function letters f? in 8, the ;erm f? ap «ee 3 is in H(S)

iii) nothing else is in H(S):
Except for some* relatively rare and uninteresting cases, H(S) is infinite.
We have:

HERBRAND'S THEOREM: If 5 is any finite set of clauses and H its

- Herbrand universe, then S i& unsatisfiable if and only 1f some

finite subset of H(S) is unsatisfiable.
The resolution principle is actually a heuristic for finding that finite
" ‘subset of H(S). Of course in this search the accruéd subset 1s obviously

finite at all times and one never knows whether or not to stop if a con-

tradiction has not been found yet. This is just what we must expect, for

[
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by Church's theorem we know that we cannot have a decision procedure
(guaranteed to terminate) for first-order logic. As manifested in the
resolution procedure, when one infers the empty clause he is finished;
or when, at the ith level of resolution, nothing new is inferred he is
finished; otherwise it is undecidable whether or not to keép looking.
(Note that ground resolution always terminates since no new terms.are
eﬁer generated and there are only a finite number of resolvents of a
finite set of clauses.)

The main difficulty in applying the resolution principle to
predicate calculus is being able to identify complementary pairs. For
example resolution will readily infer from the pair of clauses

c, = {Qx,g(x),y,h(x,y),z,k(x,y,z)) , P(x,y)}

1

Cy

the resolvent clause

{~Q{u,v,e(v),w,f(v,w),x)}

C; = {Ply,elaly I} |
The unification algorithm gives an organized method of instantiating
terms for variables so that the resolvent is well-defined, An example
of another difficulty that unification overcomes is illustrated by the
set of clauses:

S = {(FfX),F(Y)), (~F(x),F(z)), (F(x},~F(y)), (~F(x),~F(y))}
S is certainly unsatisfiable since an instance of the first clause is
the negation of an instance of the fourth clause. Unification presents
a mechanical method of getting around the.pitfall of resolving the first
clause with_the second to form the 'resolvent" (F(y),F(z)) which.is

just an instance (change of variable) of the first clause and not a
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true resolvent because it adds nothing new to the set S (similarly for
any other pair in S). Specifically, what unification would accomplish
is the substitution of x for y in the first and last clauses of §

*
thereby collapsing (unifying) each to a singleton.

Now let us look at some of the ramifications of the above for-
mality when applied verbatim to question-answering, as was done in QA3.
Though resolution is an elegant theory and yields the most powerful
method of mechanically proving theorems known today, we still do not
have a practicable theorem-prover. While resolution is indeed a
powerful heuristic for cutting down the explosion of the Herbrand-
.universe (and a miriad of other techniques and heuristics have since
refined resolution), the Herbrand universe is still infinite and sﬁill

' grows at an alarming rate. The resolution theorem guarantees us that
-if the set of clauses is unsatisfiable, the empty clause will be
inferred—in a finite number of iterations. This means that given
enough time and space a valid formula willlbe proved. In practice,
however, the amounts of time and space required are enormous.

A fine illustration of the data representation problem where
predicate calculus is used as the language is provided in the following
example taken from [2]. QA3 is given the following_facts {shown in

~~ "LISP notation as they would actually be input):

W V .
In actual implementations of resolution, the unification is performed
in two seperate steps requiring a second rule of inference called

factoring.
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(IN JOHN BOY)

(FA(X) (IF(IN X BOY)(IN X PERSON)))
(FA(X) (IF(IN X PERSON) (IN X HUMAN)))
(FA(X) (IF(IN X HUMAN) (HAS X ARM 2)))

(FACY) (IF(IN Y ARM) (HAS Y HAND 1)))

I.e. John is a boy; a boy is a person; a éerson is a human; a human
has two arms; ana an arm has one hand. Now the question is asked |
"How many hands does John have?" This is posed as the conjectured
thecorem: {EX(X)(HAS JOHN-.HAND X))}. But these five axioms were
insufficient to answer the question! The system responded with the
comment: 'NO PROOF FOUND." The axiom required to answer the question
‘was: h

‘(FA(X YZM N)(IF(AND(HAS XY M((FAU(IF(IN U Y)(HAS U Z N))

)) (HAS X Z (TIMES M N))))

It is neither obvious why a sixth axiom was necessary, nor what it is
that this strange looking axiom says. Esseptially, the axiom expresses
the heredity property of the predicate HAS (and the necessary arith-
metic)., Note that this axiom is certainly necessary since the heredity
property is not syntactically logical, aé evidenced by the counter-
example: I HAVE A DOG; MY DOG HAS A TAIL; THEREFORE I HAVE A TAIL
( 'and after having added the sixth axiom such an absurdity is a valid
syllogism!). The point to be made is how easy it is to omit pertinent
“information and hoﬁ difficult it is to phrase that information.
Another major difficulty with this appfoacﬁ is the syntactic

rigidity of the system. Take, for example, the representation of the

[}
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fact that GEORGE IS AT HOME. This would be translated into the axiom
"AT(George,home)}." Despite the superficial resgmblance, this axiom
contains less information than the original English sentence. First,
we lose the semantic information that the "home" where George is-is
George's home. Second, temporal information is disregarded. The
problems thus created can be seen if we add the axiom "AT({Jill,home)"
from which we c;n now conclude (probably falsely) that George and
Jill are at the same place: ((dx)[AT{George,x) § AT(Jill,x)]). It
is further quite likely that tomorrow, or somgtime soon, George will
not be at home, yet this would lead to the logical falsehood of the
conjunction: [AT(George,home) § ~AT(George,home}].

Further represenatational pfoblems are illustrated by the earlier
example of ”MAN(Smithj.“ The first axiom was represented in a straight-
forward manner; leading one to presume that the second could be written

UANIMAL (MAN)" instead of as the implication "(x) [MAN(x) = ANIMAL(x)].".

But of course this would transcend first-order logic and such a straight-

forward representation would not yield the desired syllogism. This is

summed up in [17]:'

"In short, the present lack of a developed theory for representation
of semantic content—and therefore the present lack of systematic

procedures to translate from natural language to such a repre-

sentation—preclude the use of first-order theorem-proving pro-
cedures to answer questions in all but artificially contrived and
controlled environments so restricted ..."

Thus, while Green's application of theorem-proving techniques to

*
question-answering 1is quite powerful and elegant, overall, it does not

* +
Of perhaps even more interest was Green's application of resolution
methods to general problem solving by State-Transformation techniques.
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provide the desired solution to how one might implement Cooper's

fact retrieval algorithm.




Chapter 3. ASSOCIATIVE MEMORIES

The basic "document retrieval" technique used in the TRAMP
language is provided by the software simulation of an associative
memory. The earliest efforts in this direction (that we are aware
of) and the work that provided the biggest stimulus to the present
project, was the AL language of Feldman [18]. At virtually the
same time that TRAMP was being developed and the first prototype
of it became available, Feldman was extending AL into the LEAP
language [19]. In one further iteration, on different hardware,
LEAP ﬁas evolved into SAIL [20]. Although SAIL and TRAMP are both
derivatives of AL, the remaining similarities are negligible.

The key idea motivating assopiative memories is the desire
- for a.content~addressab2e computer memory: an associative memory
can effectively be employed to approximate content-addressability.
By an associative memory we mean a memory that stores information
in’ordered n-tuples, called associations, which can be referenced
by specifying any of the components of the association. We refer
to an association by its contents (components), rather than by any
address; indeed, it is.the lack of explicit addresses that charac-
- terizes an associative machine. The term contentaaddressablé be-
comes clearer when we see that we reference an association by its

contents, More precisely, by a content-addressable memory, we

-33%-
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essentially mean one in which the name of a datum contains a dynamic
cue to the relevant information about that datum. Content-address-
'ability obviates table lookups, binary search, etc. An associative
processor provides a useful approximation to content-addressabiiity.

In recent years the need for this type of computer memory has
become increasingly clear. Larger and laiger programs are being
written which réquire a structured data base to operate with any
efficiency. Many of these could well benefit by replacing tedious
searches with a fast, efficient, content-addressablé access of the
data store. A good example is the "key-word" library search. If
one asks for a list of the books written by J. von Neumann, we do’
‘not expect the system to look at eéch title in its store and save
only those written by'von Neumann, And, if there happens to be a
catalog prepared, designed to answer this particular question, we
do not want to have to do a binary search to find .the correct sec-
tion of the catalog—we want to retrieve the answer directly!

Thefe are many other problems which might find content-address-
ability advantageous. Examples abound in artificial intelligence
where prohibitively large tree searches are encountered; question
answering machines; graphics systems; and most conversational (time-
shared) systems, which require immediate, direct access to a largé
data storerto interact effectively. To date, most investigations
into cOntent—addre;sabIe memories have been concerned with hardware;
such memories have not yet proved to be economicélly feasible, Even

if they had, it is not clear that the obvious gain in speed would

®
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compensate for the loss in generality and flexibility. For the
moment it can be said that software simulations are a stopgap
measure. They are. But it is not certain that they will be
completely replaced by hardware in even the relatively distant
future.
It is also the function of a formal computer language to

permit the problem programmer to phrase his algorithm -in a natural
manner that does not distract him. For many problems, it is most
natural to talkaabout information as '"relatienal triples;" e.g. in
a graphics system one might want to say:

<Picture in> <Window A> is <Line B>;
or:

<Connected to> <Line B$7is <Line C>.
The associative processor approach to content-addressability allows this.

The following example helps to clarify how an associative pro-

cessor can be employed effectively to approxiﬁate content-addressability.
Suppose we wish to know the phone number of the Acme Corp. It is a
simple matter to look it up in the local phone'book (performing a binary
searph!). It is, however, quite a different story to find aut whose
number is 763-6244 (using the same directory). An associative processor
would find both tasks equal. In this exampie, the "association' is
bétween a subscriber's name and his phone number. In translating this
~to a two-place relation, "phone number of" could be the relation, and

using the <R,x,y> format we would éay:
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<Phone number of> <Acme Corp.> is <763-6244>,

This is a type of associativity wherein we may now directly reference
this triple by any of its content-addressable components or combination
thereof. If we use only the first component, phone number, as a key,
what will be referenced is the entire phone book. If we specify the
two components phone number and 763-6244, then we are referencing all
associations containing the name(s) of the person(s) having the phone
number 763-6244. |

We are, of course, working with a conventional computer memory.
The general strategy used to effect the simulation of an associative
processor was hash-coding. For those unfamiliar with the term, hash-
coding is simply a technique whereby an afithmetic transformation is
applied to a 'mame" or designator to generate an internal address.
Hash-coding (also called “scrambling,'" "Scattering," "tandomizing,"
ete.: for further information see [21,22]) by itself provides a
restricted but significant approximation to content-addressability,
but hashing alone does not provide any kind of associativity; and
thére is always the problem of the collision, i.e. when two distinet
names hash to the same internal address: X # Y and H(X) = H(Y).
Hashing partitions the space of names into equivalence classes.
Hopefully each class has only one element (otherwise it is tbe bucket
problem [22]), but two or more names may be equivalent under this

*
partition,

Even restricting names to four letters of the English alphabet, a one-
to-one transformation would require a table with 456,976 entries to
guarantee no collisions. '
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By providing an interpretive language with an asscciative
storage structure it is possible to achieve great flexibility. To
‘this end we decided to use an existing interpreter and give it a
new storage structure, rather than start at the bottom by designing
a special purpose interpreter, Priﬁcipally, we were concerned with
the storage structure, and the vehicle for it was initially felt to
be unimportant,'since the structure relies on the host only superfi-
cially. In considering the question of the interpreter, we were
faced with very little chpice. A major consideration was that of
availability; fortunately this consideratioﬂ led us to the TRAC*
language. It has proven to be a most elegant host, and credit for
.the power of the resulting system'ﬁust be shared by both the interp-
reter and the structures (storage- and data-) given to it. However,
we feel that the additional primitives are excellent vehicles which
change the original processor into an efficient language for writing_
man-machine and machine-machine communication systems. Familiarify

with the TRAC language will not be assumed in the sequel.

TRAMP is' two packages of primitive functions that have been
added to the TRAC language: one provides the inference mechanism
and the other provides the document retrieval. These functional

| packages were machine-coded for embedding in the UMISTT'interpreter

*
TRAC is the trademark of Rockford Research Institute, Inc., Cambridge,
Mass. in connection with their standard languages [15].

+UMIST [23) is closely patterned after the standard TRAC T-64 language
and was implemented at the University of Michigan by Tad Pinkerton with

the cooperation of Mr. C.N. Mooers, creator of TRAC T-64.
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on thé IBM 360/@7 under the MTS executive [23]. Although this union
has proved most fruitful, the associative processor is totally inde-
‘pendent of the interpreter and actually relies on it only for I/0.

In fact, a second version of the TRAMP associative processor is’
currently available, called MADAM f24], which can be used by any

host using standard 0S/360 calling sequences. The relational package
is also independent of TRAC, except that it relies on the type of
recursion that the interpreter provides. The relatiénal package is

totally dependent on the associative storage structure.

Feldman's initial work [18] was 2 strong motivation in the-
.design of this system, and led us to adopt his notatiom, viz. the
generic entity:
A (0) =V

<Attribute> of <Object> equals <Value>,

Thus the Associative Triple is: <A,0,V>., .Each of the three compénents
is a non-empty set: To the associative processor this is an ordered
triple but no ihterpretation or meaning is attached to the ordering* and
all three are treated equally, giving none a priority. By appropriately
designating the three components as being constant or variable, we can

ask eight " uestions"+ of the processor, Again using Feldman's notation,
g q P g

& .
This is in contrast to the relational package which places an artificial
structure on the triple, viz. calling the first -component a relation and
the second and third its arguments.

%For the remainder of this chapter we shall be using the word "question' to
mean a docwment retrieval request. This should not be confused with the
"guestions" asked of a question-answering program.
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with a slight re-ordering, they are:

FO A(0) =V
F1 A (0) = z
F2 A(y) =V
F3 AW =z
R4 x (0) =V
F5 x (0) =z
F6 x () =V
F7 x ) =z

where {A,0,V} represent constants, and {x,y,z} are variables. Question
F7 is not a question at all but a request for a dump of the associative
memory, and in TRAMP such a dump is given. Question FO simply asks:
"Does A {0) =V ?'* and the answer is a kind of truth value. In the
case where A, 0 and V are all singletons, the truth value is a straight-
forward 1 or O denoting whether or not the specified association can be
verified by thé data. The interpretation is siightly ambiguous, however;
when one or more of the three sets has cardinality greater than one. To
illustrate,.assuming that the associative sentence

COLOR (FLAG) = RED; WHITE; BLACK

has been stored, these five questions have the following truth values:

. .
Since the comma already plays an important role as a TRAC language meta
character, it is unavailable as a set element delimiter. Therefore the
semi-colon (;) plays that role in TRAMP.




~40-

BLUE . 0

1. COLOR (FLAG) =

2. COLOR (FLAG) = RED;WHITE;BLACK 1

3. COLOR (FLAG) = RED;WHITE;BLUE ?

4. COLOR (FLAG) = BLACK . 1
5. COLOR (FLAG) = RED;WHITE;BLACK;BLUE ?

Questions 1 and 2 are clearly false and true respectively, but questions
3 and 5 are each partially true and partially false; question.4 is only
haif true, The interpretation which seemd most natural, and the one
adopted by fRAMP, gives the truth values as'shown, namely:

if ALL associations implied by the question are resident in memory,
or derivable therefrom, the value is "1V

if NONE, the value is 'O"

if SOME, but not all, the value returned is "?",
To say that these are the "values returned" in the context of TRAC is the
- same as saying that these are the three return codes of the function.

Questions F1-F6 simply ask the system to '"fill in the blank{s),"

i.e. to replace the variable with the set that is the answer to the ques-
tién. For example, question F1 asks for the set of all V's that A (0)
equals., Question F3 asks for the sets of all O's and V's that have a
first component "A.'" Because of the recursive nature of TRAC, questions
F1-F6 may be nested in any way, to any desired depth., One may ask:
"How many fingers on a hand?"; 'What figures are pdinted to Ey the arrows
in window Q?"; ''How old are the fathers of the wives of Mary's brothers?";
or any questions composed in any way compatible with the stored data,

nested to any level,
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For those totally unfamiliar with TRAC, this section assumes
only the syntax of a primitive function call, The sharp sign (#)
signals the start of a function call, with the call itself enclosed
in‘an immediately following pair of parentheses. The arguments are
separated by commas, and the first érgument is the name of the func-
tion. For example

# (sub,ARG)
is analagous to the Fortran

CALL, SUB (ARG)

3.1 ASSOCIATIVE STORAGE

The name of thé storage function is dr and the syntax of the call
is: #(dr,A,0,V). Again, the three arguments to dr are each non-empty
sets. FEach point in the cartesian product of the'three sets is stored,
i.e. each element of each set is.grouped with each pair of elements of
the other two sets, and the resulting triple is stored. Thus a single
call on dr stores as many.associations as the product of the cardinal-.
itieg of the three sets. The storage sentence:

#(dr,AGE,JOHN; MARY,64)
would therefore store:

AGE (JCHN) 64

il

64,

i

AGE (MARY)
The actual storage is accomplished by pairing each A and 0 to point to a

list of V's, each A and V point to a list of O's, and each 0 and V point
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to a list of A's, These "answer! lists are, strictly speaking,
unordered, except that they retain the order in which they were
stored. That is, asking the question:

"Whose age is 647" or AGE (y) = 64

would now yield the answer:

JOHN; MARY not MARY: JOHN

It should be noted that this is a puré storagelstructure, and
it does not deal with semantics; dr simply inserts associations into
memory in a‘way that they can be quickly retfieved. TRAMP is not a
question-answering system that checks for redundanciés or inconsist-

encies of data,

3.2 DOCUMENT RETRIEVAL

The primary retrieval function has the name »l. The syntax of
the function call is identical to that of dr except for the specification
of variables. - A variable in TRAMP is denoted by enclosing a name, possibly
“null, within asterisks (*). Thus #(rl,A,0,V) has no variables (F0) and
asks whether A (0) = V; #(rl,A,0,*X*) asks: "What does A(0) equal?"
If the variable is named, i.e. there is a name within the asterisks, then
the function is null-valued (see Appendix) and the answer is stored in
TRAC form storage labeled by the name: #(rl,A,0,*ANS*) would store the
set of V's which A (0) equals under the label "ANS.'' If the variable is

not named, e.g. #(rl,A,0,**), then the answer is the value of the function.
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#(r1,COLOR,**,*COLOR*) is an example of a two-variable question with
one named and one unnamed variable. The result in this case would be
that the set of things having the attribute COLOR would be returned
as the value of the function, while the set of colors is placed in
form storage under the label "COLOR.'

The two-variable questions (F3,F5 and F6) simply use the name
table of one of.the variables and index through that table, internally
always asking the one-variable questions. An alternative would have
been to supply a '"use-list' (see [19]) so that two-variable questioms
could be handled as efficiently as one~variagle questions. However,
in pfactice it turned out that storage space was much more critical
“than CPU time so the choice was méde to handle the two-variable ques-
tions in this 'brute-force" method. Since the associative processor
does not assign any prioiity to the three components, questions F3,

F5 and F6, although relatively slower than the one-variable questions,
are all equal among themselves. The process of answering a two-fariable
question in this implementation is less efficient because it must
jterate on the-one-variable questions, the number of iterations being

a linear function of the size of memoryf The speed with which the one-
variable questions are answered is not significantly affected by the
size of memory! The thrge—variable questioﬁ #(rl,** ** **) is answered
by an efficient enumeration of one of thé association taﬁles to give a

full dump of the associative memory. Alternatively, one can call; #(dump).

® ' :
Here, and subsequently, "size of memory'" refers to the amount of data
in the structure, rather than the physical extent of the system,

4
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Going back to the earlier example of the AGE's of. JOHN and MARY,
the question #(rl,AGE,JOHN;MARY,**) should have as its value 64,64,
That is, redundancies can be valid and should be reported. But there
are certain times, particularly in the two-variable questions, when
redundancies become quite a nuisance (and even threaten to overflow
the interpreter). Therefore, the function rl will always return an
answer set with all redundancies deleted. A second entry point is
provided, with the name rlr, which is identical except that it does
not check for reduﬁdancies (making it considerably faster) but returns
the answer '"set'" as it finds it.

rl generates the union of the answer sets. That is, the ques-
tion -#(rl, AGE,JOHN;MARY,**) has two answer sets: the AGE of JOHN
and the AGE of MARY. 1l simply forms the union of however many sets
there might be. <nt is the function (yet another entry point to the
same routine) which generates the intersection of the several answer
sets. Thus #(int,SOUTH;WEST,AUGUSTA,**) generates the set of all
things that are both south and west of Augusta; #(r;,SOUTH;WEST,AUGUSTA,**)

on the other hand, would generate the set of all things either south or

west of Augusta.

3.3 IMPLEMENTATION STRATEGY

As stated earlier, hash-coding is the technique most basic to the
associative processor design. We now discuss how this was implemented

and how it operates. Before going on we would like to restate and clarify
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the relationshig between TRAC and TRAMP (since there has -always seemed
to be confusion and uncertainty on this issue among those only ca;ually
‘acquainted with TRAMP)}. TRAMP is embedded in TRAC. That is, all of
the TRAMP functions described in the Appendix were written in system
360 assembly language and they are ﬁow callable from within TRAC as if
they were pre-defined primitives. -In\pthér words, TRAMP has extended
TRAC by adding a number of functions and operations. The TRAMP user
sees no operational distinctions whatever between the built-in functions
provided by .TRAC and the functions provided by TRAMP.

The associative processor uses three name tables and three assoc-
Zation tables, one each for each of the fhree components of the associa-
.tive friple. These tables are shown graphically in Figures 2 and 3
respectively. We shall expléin these figures by stepping through the
procedure that is followed for a typical storage operation. Suppose
that the statement #(dr,WIFE,JOHN,MARY) is made. Each name that
appears must be stored somewhere in memory. The full name must be
preseﬁt so that it can be retrieved and sorthat when it is referenced
a collision can be identified and resolved. The first hash, Hl’ then
is applied to the "A" component (MWIFE") to generate a displacement
from the A name table. The designated table entry is then inspected.
If the entry is zero, then there is no collision and '"WIFE" has never
appeared before as an "A'" component. Accordingly, the table entry is
now méde to ﬁoint to the header for the name "WIFE." If the table
entry is not zero, the header to which it points is inspected to see

if it is the header for "WIFE." If so, the '"A" name has been processed

3
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and we move on to the "O" component; otherwise there is a collision. For
a collision, instead of a single header, there is an alphabetical* list
-of headers. Thus collisions are not really special cases: if there is no
collision, then there is a list consisting of a single headér, otherwise
ltﬁe list contains two or more headers in alphabetical order.

If the above process did not find the name, before it is actually
placed in storage, a further check is made on the other name tables,
thus avoiding redundant storage. Any name will appear at most once in
memor}, with up to four headers pointing to it.

The same procedure is applied to "JOHN" and "MARY,' the "O'" and
'"v" of this example, on their respective name tables. As a result of
- the name table processing, a unique pointer is associated with each of
A, 0 and V, namely the pointer in the header which points to the loca-
tionbf.the actual name. It is this unique pointer that will be used
for the second hash,hHZ. This second hash is a function of two arguments.
Pairwise, in turn, the three components are now méde to point to each
other. It is this technique (with its inherent redundancy) that realizes
the associative simulation. In our example, "WIFE'" must now be placed on
the 4 assoeiation table. To accomplish this the "0" and '"V' pointers are
hashéd together to generate a displacement from the association table. To
be able to identify collisions, both pointers that were used to generate

the hash are stored in the header pointed to by the designated table entry.

*

There is little significance to the fact that these lists are alphabetical.
This was done simply because the "condition code' on the IBM 360 made it
the natural thing to do. The advantages of it being ordered are neg-
ligible. ' '
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Collisions are again resolved by ordered lists. The association table
format (Fig. 3) has the table entry pointing to an ordered list of
headers for 0-V pairs. Each header then points to the associated
"answer list," i.e. the set of all A's that have been associated with
fhat 0-V pair. The header contains the "O" and "V'" pointers for ident-
ification, the pointer to the answer list, and a pointer to the next
header on the list.

For the present example, '"WIFE" is appended to the answer list
by placing the unique pointer to "WIFE' at the end of the list. Note
that Hy is a function of the actual character string composing the name,

while H, is only a function of where the name is stored and is inde-

2

pendent of the name itself.

3.4 . INTERNAL ORGANIZATION

In effect, TRAMP employs a triple storage technique to be able
to reference an association in three different ways. Thus, the asso-
ciation A (0) = V is stored on each of.the A, 0 and V association
tables., This makes the answers to questions F1l, F2 and F4 equally
accessible and optimizes retrieval time. |

TRAMP uses eight principal blocks of core. Though it is designed
to run under a time-sharing supervisor whiqh continually swaps TRAMP on
and off a drum, TRAMP itself makes no explicit use of drums, discs, or
other secondary storage devices; that is, such uge by the system is
transparent to TRAMP as well as to the uger. Largely because of the

executive under which TRAMP must operate no serious attempt was made
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to alter this situation. It would, of course, seem advarntageous ;o
employ some sophisticated paging scﬁeme (such as [25]) but, happily,
the present impiementation seems not to suffer at all from having
igpored the virtual memory problem.

The blocks of virtual core uéed are: four name tables [A,‘O,
V and a name table for defined relations]; three association tables;
and a General Storage list (called GS in TRAMP-—analagous to '"Available
Space' in many list processors). GS provides all of the space for the
associative memory, the space for relational definitions (Chap. 4), and
all headers and lists. 'That is, all information indexed by the seven
tables is found in GS. All scratch work and set accumulations (via
.unpacking the lists) is done in the "private control section' (system
360 "PSECT").

For purposes of illustration, let us follow the interpretation

of:
# (dr ,HUSBAND,EVE , ADAM)

First the name tables are processed. 'HUSBAND" is hashed to produce a
displacement from the "A'" name table. The actual hashing stheme for Hl
is to form a fuil word (4 Bytes) by concatenating the first, last, and
middle two characters of the name, in that order. A single charécter
may play only one of those roles, i.e. a name consisting of only one
character has no last or middle characters. Any missing components are
filled with zeroes. Thus HUSBAND forms "HDBA'; Hl(EVE) = "EEV"; and
HI(ADAM) = "AMDA." The full word so generated is then transformed, with

the transformation being little more than squaring, mask and shift.
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A list is generated in GS to hold the EBCDIC représentation of
the name: 6 characters (bytes) per double word and a 2-byte pointer to
the next unit in the list. All units in GS are double-words (= 8 bytes
= 64 bits). All lists in TRAMP are terminated with a zero or ”sfop”
pointer. Each name list is terminated with a ''stop" meta character.

In the case of HUSBAND, two double-word uﬁits will be needed: the first
will hold the 6lcharacters H-U-8-B-A-N, and a 2-byte pointer to the next
unit which will hold the character "D", the stop meta character, and the
stop pointer—wasting four bytes. Since HUSBAND is used here as an
"attribute', we are concerned with the "A"™ name table. We look at tﬂe
entry in this table designated by:the hash, If this entry is empty, i.e.
‘zero, there is no collision and HUSBAND has not been used previously as
an attribute. If not émpty, we look at the list of headers pointed to
by the entry. Since the list is alphabetical, we need look only until
we find HUSBAND or its alphabetical position in. the list. Proceeding
down this list of headers we compare the list generated above with the
sublists pointed to be the headers. If a match is found, simply return
this temporary dist to GS and increment the 'use' count for HUSBAND in
its header. If it is not found, insert it ... after checking the 0 and
V tables for its occurance. Previously HUSBAND may have been used as,
say, an "object": #(dr,SEX,HUSBAND,MALE). In this case the HUSBAND |
name list would already be resident in GS. We therefore return the temp-
orary copy of if génerated above, and insert a pointer to the first list
on the A table header list. Thus a name never apbears in core more than

once, though many pointers may point to it, including up to four headers

[}
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if a name appears on all four name tables.

The above process is done for each HUSBAND, EVE and ADAM. The
final pointer to the one name sublist of each is saved to generate the
association table hash Hy. Let us follow the processing of the O asso-
ciation table. HUSBAND and ADAM ("A" and "V') are hashed together
(multiplied, shifted and masked)} to produce a displacement from the
association table. The hash is performed on the two Z-byte pointers
found during name table processing. The same sort of procedure is
again followed to search the list of headers.for a match, or insert a
new header if necessary. This finds, or creates, the proper association
list to which the pointer fo EVE will now be appended (in general, of
course, the list will not be a singleton, but even for this example
TRAMP does not concern itsélf with polygamy). The association listn—
or answer list—elements consist of three 2-byte pointers to name
sublists, the answers, and a 2-byte pointer to the next list element.

This is a simple, unordered list, with new elements always being

added to the right-hand end.

The entries of all the tables, as well as all list pointers
within GS, éoint to double word units in GS. All pointers are two
.bytes long (16 bits), but are capable of addressing 128 pages of GS
(1 page = 4096 bytes; 128 pages = 219 bytes). For some applications
this size is more than adequate, and for others not nearly enough.
With its present scheme {addressing 219 bytes with only 16 bits) TRAMP

has an upper limit of 128 pages, which is a usable size for the majority
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of cases, including many AI applications. There is obviously a
trade-off here since the more core that a pointer can address, thé
.less percentage (though not proportionately less} of that core is
available! There is a second trade-off because the size of the units
which must be addressed determines the number of bits needed to add-
ress them—the larger the unit, the fewer bits required, but generally,
the less efficiently it is used. We arbitrarily decided that the half-~
word pointers that TRAMP uses to address double-words are, in a sense,.
optimal, Should more experience prove us wrong, or if some special
application should require much greater capacity, the structure could
be augmented, e.g. to incorporate full 32-bit addresses, with little
_more tﬁan alteration of an assembly parameter. At this time it is not
anticipated that explicit use will be made of any peripheral storage
-~devices other than the transparent swapping performed by MTS. Without
._explicit utilization of peripheral storage, 32-bit addresses represent
an upper bound. |

The sizes of the various name and association tables are another
assembly parameter. Currently the seven tables occupy four pages of
core. This figure was arrived at arbitrarily also and will remain in
forcé pending feedback which indicates that it is inappropriate.

‘TRAMP is initially leaded into core with all of its tables, a
1-page PSECT and eight pages of GS. Thereafter, whén more space 1is
.needed TRAMP requests it of the system (MTS) in blocks of eight pages

until the maximum of 128 is reached, or the system is unable to comply

with the request.
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TRAMP is continually generating temporary lists which are
immediately returned to GS when no longer needed., As well, when an
.association is destroyed or a relational definition erased, the
storage that is being released is at that time returned to GS making
fofmal garbage collections unnecessary. However there is no obvious
way of compacting the data—filling the holes—to minimize'page

faults. The only way to do that is to "dump" onto disc, erase the

memory, and read it back in.




Chapter 4: THE RELATIONAL LANGUAGE

Thus far we have filled in two of the three components of the
fact retriever depicted in Fig. 1: the "memory' box is realized by
IBM 360 hardware and MTS software to afford a virtual memory using up
to 32-bit addresses, of which we are currently utilizing 128 pages
(19-bit addresses); the "document retriever" box is effected by the‘
associative processor described in the last chapter.

We finally come to the cémponent of most interest, the "logic"
box used to infer implicit data from memory. In chapter 2 we saw the
two principal approaches that have been taken: relational data struc-
tures and formal theorem provers. TRAMP takes the first approach, viz.
it attempts to supply the appropriate data structure. The relational
language to be described in this chapter was initially motivated by“fhe
need for data reduction and the observation of'thé natural compatibiiity
of a relational data structure mapping onto an associative storage

structure,

The software simulation of an associative machine, reported in the
last chapter,'provides a semblance of content-addressability and can be
used to store and retrieve efficiently large amounts of data, However,

any association, or combination of associations, will in general imply

~55.
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many more associations. For example:

[Husband (Mary) = John] ===2 [Wife (John) = Mary]

. Uncle (Norm)} = Sam
Father (Norm) = Harry | Nephew (Sam) = Norm
Brother (Harry) = Sam =D Brother (Sam) = Harry

Son (Harry) = Norm

etc.,

This situation can be resoclved by reqﬁiring that the user redun-
dantly enter his information in all the various ways that he might want
.to access it; or, more realisticaily, the user can define a relation,
whereby he specifies what inference rules may be used in deriving the
implied associations. Now the important distinction, once we have de-
cided to admit relations, is whether their defini;ions will be extensional
or intensional. We can extensionally define a relation by going through
the structure and generating and storing ail'implied associations. For.
example this might be done with an iteration loop:

FOR HUSBAND (A) = B, LET WIFE (B) = A.

That is, all the ordered pairs which comprise the (binary) relation are
generated and stored. This is the approach taken by many associative
processors. The result is that all the implied information can in fact

be made available, but there are two serious drawbacks:
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1) In general, an extensional definition will gobble up extensive
amounts of core (and peripheral storage), rendering it opera-

tionally uneconomical, or, in the extreme, infeasible.

2) Unless these iteration loops are entered frequentiy and regularly,

their time dependency renders the extension incomplete and/or

inaccurate.

|

The alternative to an extensionél definition is the intensional
definition. where we characterize the relation, rather than exhaustively
storing all-of its ordered pairs. As an exaﬁple, if we were to charac-
terize the relation '"Wife (of)'" as:

WIFE = Converse of HUSBAND
and we now want to ask who is the WIFE of Harry, we could ask:
WIFE (HARRY) = ?
and the system, using the characterization given above, would expand the

question to be:

WIFE (HARRY) = 7 or | HUSBAND (7} = HARRY.
It would ask both questions since it doesn't know if the desired asso-
ciation appears explicitly, implicitly, neither or both.

This is the operational strategy of the TRAMP intensional relational
definitions. The user enters the definition as a sentence of a modified
predicate calculus. This is the source program for a compiler whose out-
put is an object program written in the associative language. This objéct
program will then effect the '"expansion" of questions to extract from the

data those relevant associations that can be inferred from associations
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e%plicitly in (Yirtual) core and the intensional definitions of
correspondences,
In operation, the user enters a relational definition as a

sentence of the TRAMP relational language. The relational compiler

is called to parse that sentence and output a program (the relational
compiler is fully described in . Chapter 6 ) . This defined rel-
ation is entered on the relation name table, with that table entry
pointing to the compiled program which is held internally in GS. When
a retrieval.call is now made, via the function rl, a preprocessor,
having found the name bn the relation namé table, will interpret the
compiled program. This preprocessor expands the programs output by
_the compiler, filling in items specific to the call, like a macro-
expander. This entire process is described in detail in chapter 5,
but for now we shall only attempt to describe the strategy and tools;
As an example, suppose that the following relational definition has
been made:

SIS(x,y) = FATHER(x,z) A FATHERty,z) AFEM(y) A (x # ¥)

(which states that-a sister of x is a y other than x who is female and
hasnthe same father). The compiler would output a program template to
form the composition of FATHER with itself to generate a set of y's
from a set of x's. That set of y's would then be intersected with a
second set of y's generated by the unary relation FEM, and then the
-relative complemeﬁt of the set of x's and the intersection of the two

sets ofry‘s would be formed. Suppose that now rl is called by:

#(rl,SIS,HARRIET,**) [Who is Harriet's sister?]

3
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This will, first of all, be handled exactly as previously described (as
if the above definition had not been made) to retrieve any and all
(explicit) associations that were made via
#(dr,SIS,HARRIET,hersisters)
Secondly, the program template would now be expanded. The expansion
(described in Chapter 5) involves substituting HARRIET for "x", and
ascertaining.that the retrieval request is question type F1, The
template must be manipulated by the preprocessor to answer the correct
question of the eight possible (page 39). In this case the function
call
#(r1,FATHER ,HARRIET, **)
would be generated and the answer set to that question used in a second
call for the relation FATHER:
#(rl,FATHER,**,#(rl,FATHER,HARﬁIET,**))
" thus generating the first set of y's, namely the set of all things,
including HARRIET, whose father is Harriet's father. Next the call is
generated:
’ #(rl,FEM,**)~§~
whose answer set will be all those things that are female. These two
sets are next intersected to form the set of all of Harriet's father's

female offspring. Last, Harriet is removed from the set by the relative

- complement operation.

TNote that there are only two arguments to rl meaning that if the unary
relation FEM has not been defined, the function call is syntactically

invalid.
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4.1 THE LANGUAGE DEFINITION

Relational definitions are made by calling on the function named

ddr. The syntax of the call is:
#(ddr, (R = expression))

where R is the relation being "defined," and the ''expression' is a
sentence of a restricted predicate calculus, without explicit quan-
tifiers, which "defines" the relation. The equal sign currently is
read as impiication to the left ("if expression, then RY), or, if you
prefer, as set inclusion: the set of ordered pairs designated by the
expression is taken to be a subset of the set of ordered pairs that
comptrise R. Notice that this is the sense in which the word "define’
is used: the sentence defines a rule for determining set inclusion.
The right side of the equation consists of relations, not necessarily

distinct, with or without arguments, joined by the normal logical

connectives:
TRAMP symbol Logical symbol : . Meaning
Al A conjunction
V. v disjunction
.N, : ~ negation

In addition there are two relational operators: composition (or relative

product), denoted by a slash (/) and defined by:

() ) [(R/Q) (x,¥) <==> (32) (R(x,2) A Q(z,¥))]
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and converse, denoted by ''.CON.", and defined by:

OO RGLY) <=2 LCON. R(y,x)]
Finally, equality or inequality may be specified respectively by ".EQ."
and ".NE.". The precedence of these operators is as shown below:

.CON.

/

.EQ., .NE.
N,

A,

V.

The above precedence (descending order) ordering may,be:altered in the
usual way by the appropriate use of parentheses,
The relational notation used by TRAMP is the <R(x,y}> format,
where R is the relation and x and y its arguments. This can be reéd_
as: 'y stands in relation R to x.' The arguments are set off by .
parentheses. This is a slight distortion of the associative format,
A (0) = V, but the ordering is preserved: R(x,yj corresponds to R (x} = vy.
With this as the source language, some typical definitions (primarily
easily understood kinship relations) are shown'in Figure 4. All def-
initions in Figure 4 show the argument to ddr, i.e. the sentence of the
relafional ianguage, enclosed in parentheses, as the prototype above,
This is due to one of the operational characteristics of the TRAC scanner.
It is not always necessary, but never hurts and is simply good practice.
The first two examples of Figure 4 show the difference between the
abbreviated and expanded formats. The prdblem of the compiler would Be
reduced to trivia if all definitions were abbreﬁiated (that would be anal-

ogous to propositional calculus). The expanded format is necessary for
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#(ddr, (BIGGER = BIGGER / BIGGER)) '"'BIGGER" is transitive

#(ddr, (BIGGER(a,b)} = BIGGER(a,q) .A. BIGGER(q,b})
exact same definition using the
expanded format—specifying the
dummy arguments,

#{ddr, (SIB = BRO .V. SIS .V. .CON.SIB))
a sibling is a brother or a sister,

and it is symmetric.

#{ddr, (BRO(cain,abel) = SIB(cain,abel) .A. SEX(abel,"male')})
a brother is a male sibling. Note
that constants are enclosed within
double quotes. '

#(ddr, (MALE(x) = SEX{x,"male'})) defines the unary relation "MALE"

#(ddr, (BRO(x,y) = FATHER(x,z)} .A. FATHER(y,z) .A. MALE(y) .A. x.NE.y))
a brother is a male offspring of the
same father, other than oneself.

#(ddr, (STEPMOTHER = FATHER / SPOUSE .A. .N.MOTHER))
a stepmother is the spouse of the

father who is not the mother.

. #(ddr, (NEPHEW = SIBLING / SON}) a nephew is the composition of
sibling and son.

.CON. (SIBLING / SON}))
in a male world, uncle is the converse

of nephew and may be defined as the
‘ converse of the definition of nephew ...

#(ddr, (UNCLE

1

#(ddr, (UNCLE .CON., NEPHEW)) or simply as the converse of nephew.

Freure 4:  SavpLe RetaTional DEFINITIONS
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several reasons: 1t is an important means of implicit existential
quantification (explained below)}; the equality operators EQ and NE
take as their operands the dummy variables of the expansion; and it
adds an important facet to the 1anguagew-easing the mathematical for-
mality with which the programmer must view his relations. Many rel-
ations would be much more difficult, and some impossible (e.g. unaxy
relations), to define without this feature, as exemplified by three
of the four expanded definitions of Figure 4.

"Theré are no explicit quantifiers. Quantification is handled
in the following manner. On the léft side of the defining “equation'
are two dummy relational érguments, either explicitly named in the
expanded format or else implicitly present in the abbreviated.format.
They are free variables. Any other dummy argument is existentially
quantified. Existential quantification is used in two different ways.
The first is composition, e.g.

GRANDFATHER = PARENT / FATHER
which in expanded form is -
| GRANDFATHER (x,y) = PARENT(x,q) .A. FATHER{q,y)
where the implicit quantification is:
(4q) [PARENT(x,q) A FATHER(q,y) ==> GRANDFATHER(x,y}]

q, the intermediary (link)} is a bound existéntial variable. The "free"
variables x and y may be thought of as universally quantified, since in
a formal theorem proving framework the only wffs dealt with are closed
wffs, and the closure S' of a wff S-is formed byruniversally quantifying

all free variables. S and S' are not equivalent, but they are intersatis-

fiable.
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The second case is where e.g. the ex&stential variable is used
to require only that the free variable lies in the domain (or range)
of some other relation. We illustrate this with the unary relation
MAUTHOR" which we might define as: "AUTHOR(x) if x WROTE something"
or formally as:

(4z) {WROTE (z,x) ==> AUTHOR(x)]
This would be written in TRAMP as:

AUTHOR(x) = WROTE(z,x)
rTo repeat, the two-(or one for unary) dummy arguments that appear omn
the left-hand side of the equation are free variables, and any other

dummy argument is existentially quantified.

As an example now of how one might translate the dialogue of
QA3 (shown on page 30), we suggest the following format. The reader
- should keep in mind that these tranélations which do not look much
better than QA3's. sentences, and perhaps a bit worse, will normally
be TRAMP function calls that are generated internally by a TRAMP-
coded program., The TRAC procedure definition (ds and ss described in
Appendix A) are shown as they would appear in TRAC. They are slightly

simplified in UMIST.

I) English version:
a) John is a boy; b) a boy is a person; <¢) a person is a human;
d) a human has 2 arms; 'e) an arm has 1 hand; £} heredity property

of "has."
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II) QA3 version:

a) (IN JOHN BOY)

b) (FA(X) (IF(IN X BOY)(IN X PERSON)})

¢) (FA{X) (IF(IN X PERSON) (IN X HUMAN)))

d) (FA(X) (IF(IN X HUMAN) (HAS X ARM 2)))

e) (FA(Y) (IF(IN Y ARM)(HAS Y HAND 1)})

£) (FA(X Y Z M N)(IF(AND(HAS X Y M) (FA(U) (IF(IN U Y) (HAS U Z N))
)) (HAS X Z (TIMES M N)))).

II1) TRAMP version:

# (ds,SUBSET, (# (dr,SUBSET,X,Y)# (ddr,X=Y))) #(ss,SUBSET,X,Y)
a) #(dr,ELEMENT,BOY,JOHN) |
b) #(cl,SUBSET,PERSON,BOY)
¢) #(cl,SUBSET,HUMAN, PERSON)
d) #(dr HAS,PERSON, ARM; ARM)
e) #(dr,HAS,ARM,HAND)

#(ddr, (HAS = HAS‘/ HAS))
& # (ddr, (HAS(x,y)}=ELEMENT(z,x) .A. (HAS(z;y) .V. SUBSET(z,u) .A.HAS(u,y)))
The two definitions given in (f) could also be expressed as:
#(ddr, (HAS = HAS/HAS .v. (.CON. ELEMENT)/(HAS .V. SUBSET/HAS)))
The counting function (e¢t, Appendix B) would then be used to answer the
question: "How many hands does John have?"
#(ct,#(int,# (rlr,HAS,JOHN, **) ,HAND) )
Examples of how these strange looking function calls can be generated

internally-afe given in Chapter 7.




Chapter 5: SYSTEM OVERVIEW

We have now introduced all of the components of the TRAMP
system. Perhaps the most interesting and non-obvious module of the
system is the relational compiler which processes the language des-
cribed in the last chapter. We shall defer discussion of that com-
piler to the next chapter, however. At this point it would be best
to understand the relation of the various components to one another
and see how they interact and function together to form a system.
After this, the role of the compiler will be clear and we will be in
a better position to discuss its operational characteristics and
strategy of implementation;

Figure 5 depicts the lines of communication between the com-
ponents of the system. We have omitted from Figure 5 the box which
would be labeled "Auxiliary Functions' and woﬁld designate the 60 odd
primitives of UMIST (including all of TRAC T-64) and the 20 odd primi-
tives provided‘by TRAMP, which provide the envirohment for the system.

In Figure 5 we have the user of a TRAMP-coded system.interacting
with that program. This is a dynamic interaction since both TRAC and
TRAMP were designed specifically for time—sharing, and in fact TRAC
directly addresses itself to the "reactive typewriter' [15]. The TRAMP

.coded program then consists of a number of procedures (or macros,

66
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Figure 5: OPERATIONAL FLOW DIAGRAM OF TRAMP SYSTEM
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sin;e TRAC is technically a ''‘macro-generator" language) which are
actuated by the TRAC scanner. The scanner makes all "function calls"
and receives and disposes of all "function values" and return codes.
The scanner communicates with the Associative memory when it makes
function calls to dr and rle (an entry to rl, see below). A function
call to rl results in the scanner communicating with the preprocessor;
and a function call to ddr invokes the relational compiler. The output
of the compiler is a program template which is stored in a list ori-
ented structure, The compiler has no return .value and communicates
with no other component. The box in Figure 5 labeled "Conventional
Virtual Memory' is shown partitioned to indicate the logical division
between that part of virtual core used for associative simulation and
that part used for storing program tempiates. The preprocessor re-
trieves the program templates, interprets them (exactly like a macro-
expansion) and then returns the expanded template, which is now a
TRAMP procedure, directly td the TRAC scanner to be recursively scanned.
For most of the present chapter a working familiarity with TRAC
would certainly be helpful. However it is not essential to being able
to féllow the TRAMP strategy for deduction. The crucial thiﬁg to know
about TRAC is its manner of recursive evaluation and replacement. .The
TRAC scanner is alway scanning left to right the active string. When
an end of function symbol is recognized (the right parenthesis that
matches the sgtart of function symbol, "#('"), then that function is called.
Every function returns a value, possibly null, which replaces the-string

of symbols constituting the function call on the active string. As an
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example, let the active string contain

THE SUM OF 3 AND 4 IS #(ad,3,4).
.f

with the arrow denoting the current symbol being scanned. The scanner
will keep moving to the right until the "#(' is encountéred, signalling
the start of a function (ad forms the sum of its two arguments). It notes
this start of function and continues scanning. In this example nothing
else will happen.before the end of function is encounfered, at which

£ime it will call ad., The function value returned will be the string "7"
and that value will replace the function call so that the active string
will now contain:

THE SUM OF 3 AND 4 IS 7.
.f,

As no function is called before the end of function symbol for that
function is encountered, if any of the arguments are functions, they

will have been evaluated first,

Now let us return to TRAMP. The following simple example should
help to clarify the system operation. Suppose that we have only the two
.facts:

JOHN IS HARRY'S FATHER
DORIS IS JOHN'S WIFE.
These two facts could be input in English, exactly as above, and parsed
by the TRAMP coded program to produce the necessary function calls:
#(dr ,FATHER ,HARRY , JOHN)

#(dr ,WIFE,JOHN,DORIS)
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Chapter 7 gives examples of how such a translation can easily be
effected, Now we wish to enter a few kinship relations which will
give rules for expanding the data to include its implications. For
example, we might want to express the relations of PARENThood and
MOTHERhood. One way to do that would be:

#(ddr, (PARENT = FATHER .V. MOTHER .V. PARENT/SPOUSE))

#{ddr, (SPOUSE = HUSBAND .V. WIFE))

#(ddr, (MOTHER = FATHER / SPOUSE))
[Note that we are using the convention that "R(x,y)" translates into
"R of x equals y," and thus FATHER (HARRY,JOHN) means ''the father of
Harry is John.'" Under this convention the composition operator (/)
may be read as '"apostrophe s,' e.g. a mother is the father'’s spouse.
One is quite free to adopt the convention that "R{x,y)" translates
into "xRy'" or "x stands in relation R to y" which would result in
FATHER (HARRY , JOHN) meaning-that "Harry is the father of John,'" If
-that convention were used, the order of compoéition would have to be
reversed and the slash would be read as '"of': MOTHER = SPOUSE/FATHER
would tzanslate to "a mother is the spouse of fhe father." A program
may use either convention, or any other for that matter, but.must of
course be consistent.]
These definitions are presumably entered as "English-like

sentences and parsed to generate calls to ddr. The user may now ask
- questions such as:
WHO IS HARRY'S MOTHER?

WHO ARE HARRY'S PARENTS?

which would be passed to the scanner, respectively, as:
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#(r1,MOTHER ,HARRY,**) . and #{rl,PARENT,HARRY, **)
The scanner would then call the preprocessor. For the first question,
involving the relation MOTHER, the preprocessor would retrieve the
program template for MOTHER and output (back to the scanner) the string:
#(rl,SPOUSE,# (r1,FATHER ,HARRY ,**) , **)
(the string actually output is somewhat more involved than this, .but
this is an operational detail irrelevant at this point and defered to
section 5.1). The scanner then processes this string and again calls
the preprocessor far the relation SPQUSE. When that is expanded, the

active string being scanned will be:
#(x1,HUSBAND, # (x1,FATHER ,HARRY , **)  **) ; # (r1,WIFE, # (r1,FATHER,HARRY, **) , **)

This will be recursively evaluated b} the scanner to effecfively be:
# (rl,HUSBAND,JOHN, **) ; # (r1,WIFE, JOHN, **)

since "JOHN" is the value of #(rl,FATHER,HARRY;**). That call will
initially go to the preprocessor, but since there is no definition for
FATHER, there wili be no expansion and the call will be passed directly
to, the associative processor for direct retrieval of the association.
Next, calls to the preprocessor are made for HUSBAND and WIFE, neither
of which were defined and both result in direct associative retrievals.
Since John of course does not have a HUSBAND, that associative retrieval
results in a null set thch will be joined with the set of his WIFEs,
resulting in the "set of" Harry's'mother(s), namely Doris,

The second question, "WHO ARE HARRY'S PARENTS?" will result in

the éame sort of expansions and yield the set {HARRY;DORIS}. To recap
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what has happened in this example, we have stored in the'associative
memory two facts relating John to his wife and son. We nexf entered
some rules expressing correspondences among both primitive (FATHER,
WIFE) and composite (MOTHER,SPOUSE,PARENT) relations. Then the ques-
tion "WHO IS HARRY'S MOTHER?" was expanded to be: 'WHO IS THE SPOUSE
OF HARRY'S FATHER?'" which was next expanded to: "WHO IS THE HUSBAND
OR WIFE OF HARRY'S FATHER?" which yielded ’''WHO IS THE HUSBAND OR
WIFE OF JOHN?'" leading to the final answer: DORIS.
To recapituiate the interaction of the various modules of the
TRAMP system as pertains to this example and illustrated in Figure 5,
the process proceeds as follows. The user, presumably sitting at a
termiﬁal, enters his data in "English-like'" sentences such as
JOHN IS HARRY'S FATHER.

and enters relational definitions, ggain in a pseudo—naturai language,

A PARENT IS EITHER A FATHER OR A MOTHER OR THE SPOUSE OF A PARENT.
This is read by the TRAMP coded program and parsed to generate function
calls to dr and ddr such as illustrated above, Those function calls are
acéually made by leaving the appropriate string, e.g. #(dr,FATHER,JOHN,
HARRY), on the TRAC active string to be processed by the TRAC scanner.
The scanner will then make the appropriate function call. In the case
of dr, the scanner will. call on the associative memory package; for ddr
~the scannef will call on the compiler; and for rl, the scann;r will
call the preprocessor. When the cohpiler is called, it will create a
program template (or macro definition) and store it in a list structure.

When the preprocessor is called, if the name of the relation does not
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have a definition (such as FATHER in our example}, then the pre-
processor just sends the call directly on to the Associative mem-
'ory retrieval mechanism; if the name is found to have been defined,
then the preprocessor retrieves the program template for it, expénds
that template, and returns the resulting TRAMP procedure to the TRAC
scanner for recursive calls back to the pfeprocessor, with the recur-
sion terminatiné on primitive (undefined) relations. The compiler
does not allow circular definitions in the sense that A is defined
in terms of B which is defined in terms of C ... which is defined
in terms of A, so that this recursion will always terminate. (A
relation defined in terms of itself, such as the above definition’

‘with  PARENT = ... PARENT / SPOUSE, is recursive, not circular.)

5.1 DETAILS OF THE PROGRAM TEMPLATES

The above discussion of the operational behavior of the total
system is sufficient for understanding intuitively how implicit iﬁfor~
mation is effectively deduced. That is, we have explained how the
output of the cbmpiler will ultimately result in a TRAMP procedure used
to infer data not explicitly present. However, there were certain
inaccuracies in the explanation which we shall now rectify,for the
interested reader. Others may skip this section and proceed to Chapter

6 without loss of continuity.

It is the operational strategy of the system that when a relation

is defined, a rule has been given for expanding that relation. The




-74-

relation may very well be a primitive as well. For example, we may
start with the illustration above of John's father Harry, and Harry's
Qife Doris, and then define PARENT, SPOUSE and MOTHER. Later, likely
in some éther context, data may be entered that explicitly relates
John and Doris:  JOHN'S MOTHER IS DORIS. The point is that when the
system is asked to retrieve a relation for thch it has a definition,
it does not presume anything about that relation except that it might
be implicit. Specifically, the system takes the position that the
desired association will appear either explicitly, implicitly, neither
or both. -Thus, when the preproceésor is invoked by:
#(rl,MOTHER;JOHN,**)
it will find the program template for MOTHER, as described above, but
now it will also assume that the association may be stored explicitly.
The system is always accumulating a set of answers and it tries té
gather as complete a set as defined by the various definitions involved.
In particular, it will retrieve everything if can-directly and will use
all of the information that it has for indireét retrievals (which led
to the seeming absurdity of asking for Harry's'husband).

However, the preprocessor having been called by #(rl;MOTHER,JOHN,**)
cannot now return the same call té the scanner since that would result in
an infinite recursion. For that reason thé fuﬁction rle is provided as
being identical to rl, except that it bypasses the preprocessor proceeding -
directly to the associative mechanism. Thus, in the above examp}e, the
actual string returned to the scanner by the prebrocessor would be:

¥ (r1e,MOTHER,JOHN, **) ; # (r1,SPOUSE , # (v1,FATHER,HARRY , ¥} ,**) ,
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The scanner will pass the first function call,rle, difectly to the
associative memory. The:second call, to rl, will result in the
expansion of the program template for SPOUSE.
The two function calls above are separated by a semi-colon,
the TRAMP set element delimiter. This is because in TRAC the value
of a function simply replaces the function call on the active string,
so that after evaluation, we will have the concatenation of:
<mothersofjohn> <semi-colon> <spousesofharrysfather>
or in other-words,-a TRAMP set., This leads us to a second problem: what
if there is moré than one way of finding the same y such that R(x,y)}? and
what happens in this 'union by concatenation'" with the null set? To |
illustrate, if we have the necessary defintions for MOTHER and only the
two original data items [FATHER{HARRY,JOHN) and WIFE(JOHN,DORIS)], then
after fully evaluating the string we would be left with the answer set:
; DORIS
which has a needless semi-colon, On the other haﬁd, if we now add the
data item MOTHER(HARRY,DORIS), then the final result on the active string
would be:
DORIS;DORIS
since the association occured both explicitly and implicitly. Naturally,
for more-complex relations, the situation can be much worse, with several
_empty sets, and/or many ways of inférring the same answer. éor this
reason, a special internal function is provided, which we shall designate
by "e@", where 8 is a non-graphic hexadecimal character. The function @@

"cleans-up" the result of the program execution by deleting duplicates
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created by multiple relational paths leading to tﬁe same . R(X,¥y)
pair. It also discards "dangling" semi-colons which will appear
-whenever one of the paths leads to a null set. Lastly, @@ will
properly dispose of the final cleaned-up set as was designated
bf the variable construction (expléined in Chapter 3 and described
more fully in Appendix B}.
There are also a few more internal functions (not described
in the TRAMP user's manual, Appendix B) that are needed. For example,
one is required for transitive relations., Clearly transitivity is a
special case because of the mode of operation under which the expanded
programs are executed. A transitive relation must call on itself.
_recursively, but must not recurse forever! The function 8¢rn (again,
as throughout this paper, @ represents a non-graphic hexadecimal chér—
“acter) is used to fbrm the transitive closure of a relation, calling
on the relation recursively accumulating an answer set, and terminating
when any single recufsion adds nothing new to tha£ answer set.
Symmetric relations are also slightly special cases which must

call on themse%ves.recursively exactly once, If we have the definitionf

#(ddr, (RELATION(x,y} = RELATION(y,x))
thén'RELATION has been defined to be symmetric and the retrieval call

# (r1,RELATION, X, **) |
must be expanded to:

#(@@,#(rle,RELATION,X,**);#(rl,RELATION,**,X))
that is, the stored association must be looked for in both "directions."

But, of course, the above expansion would lead to an infinite recursion.
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This is handled simply by having the compiler check for symmetry and
so flagging the relation if applicable. Then when the pPreprocessor
expands the relation, as above, a fourth argument is given to the
function rl which serves as a signal to the preprocessor not to rev-
erse the function call, though it will still effect any other expan-
sion that the template designates. In particular, the actual expan-
sion for RELATION, above, would be:

#(ee,# (rle,RELATION,X,**)} ; # (rl,RELATION, ** ,X,@))

Through the use of non-graphic hexadecimal characters and full
utilization of the TRAC scanner, all of the above has been implemented
in such a way that not a single change was required to the UMIST pro-
gram, and the TRAMP generated programs may call on procedures and gen-
erate names for forms and procedures, which will in no way interfere

with the rest of the program coded in TRAMP by the programmer.

We will now give one final example, somewhat more complicated
than the previous, and go through it in detail, showing exactly what
would actually be returned to the scanner by the preprocessdr. We will
begii by initializing TRAMP with the following function calls:

-

#(ddr, (COUSIN

i

PARENT/SIBLING/OFFSPRING))

#(ddr, (PARENT = FATHER .V. MOTHER .V. PARENT/SPOUSE))

HUSBAND .V¥. WIFE .V. .CON.SPOUSE)})

#(ddr, (SPOUSE
~#(ddr, (OFFSPRING = .CON. PARENT))
# (ddr, (SIBLING = BROTHER V. SISTER .V. .CON.SIBLING))

#(ddr;(SIBLING(x,y) = SIBLING(x,z) .A. SIBLING(y,z) AL X.NE.y))
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# (dr , FATHER, BOB, DAVE)

#(dr ,WIFE,DAVE ,ELAINE)

# (dr ,BROTHER, DAVE , SAM; HAROLD)
#(dr , FATHER, SUE ; JIM, HAROLD)

#(dr,COUSIN, BOB,CAROL ; EMMY ; SHARON)

We have thus put into our system a small family tree and a few kinship
relatidns for filling in branches on that tree. We will now reproduce
on the next.page a "trace" of the active string resulting from asking
for Bob's cousihs. Each line will represent the contents of the active
string just before a function call is made by the scanner. The arrow
will indicate which character is being scanned. This example is quite
tedious, but it illustrates just how the preprocessor expands a temp-
late by manipulating the template to answer the correct quéstion (of

- the eight possible—only F1 and F2 éré shown in this example}, and
properly gives »l.its arguments: cOnstanfs and variables, This example

further displéys the recursive replacement of TRAC and how it is used.-

#
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# (RL,COUSIN,BOB,**)
+

#(@@,# (RLE,COUSIN,BOB,**) ;# (RL,OFFSPRING, # (RL,SIBLING,# (RL,PARENT,
.t.
BOB,**),**),**})

# (@@, CAROL ; EMMY ; SHARON; # (RL,OFFSPRING, # (RL,SIBLING,# (RL,PARENT,BOB,
‘k*) **) **))

# (8@ ,CAROL ; EMMY ; SHARON; # (RL,OFFSPRING, # (RL,SIBLING, # (@@, # (2TRN, (
# (RL,SPOUSE , # (RLE , PARENT , BOB, #*) ; # (RL, FATHER,, BOB, **) ; # (RL,
MOTHER,BOB,**) ,%%}})),**},**}) +

#(@@,CAROL; EMMY ; SHARON; # (RL,OFFSPRING, # (RL,SIBLING,# (@@ ,# (@TRN, (
#(RL, SPOUSE,,#(RL FATHER,BOB,*¥*} ; #(RL MOTHER , BOB **),**)))]
$4),%%)) t ‘

# (@@, CAROL ; EMMY ; SHARON; # (RL ,OFFSPRING, # (RL, SIBLING, # (@€, # (8 TRN, (
# (RL,SPOUSE, ; DAVE ; # (RL,MOTHER ,BOB, **) ,**)}) ), *%) ,**))
+

# (@@, CAROL; EMMY ; SHARON; # (RL,OFFSPRING , # (RL,SIBLING, # (@@ ,# (@TRN, (
#(RL,SPOUSE, ;DAVE; ,**)})},**),**})
+

#(@@,CAROL; EMMY ; SHARON ; # (RL ,OFFSPRING, # (RL,SIBLING, # (@@, # (@TRN, (
#(e@,# (RLE,SPOUSE, ;DAVE; ,**) ; # (RL,SPOUSE, **, ; DAVE; ,@) ; # (RL,
+
HUSBAND, ; DAVE; ,**) ; # (RL,WIFE, ;DAVE; ,**}))}))},**),**))

# (@@, CAROL; EMMY ; SHARON: # (RL,OFFSPRING, # (RL,SIBLING, # (@€, # (6TRN, (
#(8@, ; # (RL, SPOUSE, **, ; DAVE; , @) ; # (RL, HUSBAND |, ; DAVE; , **) ; # (
4

RL,WIFE, ;DAVE; ,**)}]}),**),**))

# (@@, CAROL ; EMMY ; SHARON; # (RL ,OFFSPRING, # (RL,SIBLING, # (2@ ,# (@TRN, (
# (@@, #(@e,# (RLE,SPOUSE,**, ; DAVE;) ; # (RL ,HUSBAND, **, ; DAVE; )
4
;# (RL,WIEE,**, ;DAVE;) ) ; # (RL,HUSBAND, ; DAVE; , **) ; # (RL, WIFE,
;DAVE; ,*%))))),%%),**)) :
" #(@@,CAROL; EMMY ; SHARON ; # {RL, OFFSPRING , # (RL,SIBLING, # (@@, # (&TRN, ( -

#(ee,;#(@e,;# (RL,HUSBAND,**, ;DAVE;) ; # (RL,WIFE,**, ;DAVE;));
+

# (RL,HUSBAND, ; DAVE; , **} ; # (RL,WIFE, ;DAVE; ,*¥))))), **) ,%*))
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# (@@, CAROL; EMMY ; SHARON ; # (RL,OFFSPRING , # (RL, SIBLING, # (0@, # (8TRN, (
508, 340, ; 3 # (RL,NIFE,** , ;DAVE;)) ; # (RL, HUSBAND, ; DAVE; , **)
+
3 #(RL,WIFE, ;DAVE;,**})))},%*),**})

# (@@, CAROL; EMMY ; SHARON ; # (RL, OFFSPRING, # (RL,SIBLING, # (@@, # (RTRN, (
#(ee,;#(@@,;;); #(RL,HUSBAND,;DAVE;,**);# (RL,WIFE, ;DAVE;,**)
+
3))),%*),4%))

# (@@, CAROL ; EMMY ; SHARON ; # (RL,OFFSPRING , # (RL,SIBLING, # (@@, # (@TRN, (
#(80, ; ; # (RL,HUSBAND, : DAVE; ,**) : # (RL,WIFE, ;DAVE; , **)}))), **)
*)) +

#(@@,CAROL; EMMY ; SHARON ; # (RL,OFFSPRING, # (RL, SIBLING, # (@@, # (@TRN, (
#(@@,;;;#(RL,WIFE,;DAVE;,**))))},**),**))
. 4

#(@@, CAROL ; EMMY ; SHARON ; # (RL, OFFSPRING, # (RL,SIBLING, # (@@, # (@TRN, (
#(@@,;;;ELAINE)))),**),**))
+

#(@@, CAROL ; EMMY ; SHARON;; # (RL ,OFFSPRING, # (RL,SIBLING, # (8@, # (@TRN, {
ELAINE;DAVE))),**),**))

[in this last line We have shown what will happen with the function
etrn—the set of parents is ELAINE;DAVE.]

# (@8, CAROL ; EMMY ; SHARON; # (RL, OFFSPRING, # (RL,SIBLING, # (@@ ,ELAINE ; DAVE)
. ,**) J'**)) +

# (@@ ,CAROL; EMMY ; SHARON ; # (RL,OFESPRING, # (RL, SIBLING ,ELAINE; DAVE, **) , **))
1.

# (@@, CAROL ; EMMY ; SHARON; # (RL ,OFFSPRING, # (@@ , # (RCOM, # (§TRN, (# (RL, SIBLING,
#% ELAINE;DAVE,@);# (RLE,BROTHER,ELAINE;DAVE,**) ; # (RL,SISTER,
ELAINE;DAVE, **})},ELAINE;DAVE) ) ,**))

_ " ,

[thi§ time we shall not show expansions within @trn, since they do not
actually happen that way anyway]

# (@@, CAROL ; EMMY ; SHARON; # (RL, OFFSPRING, # (@@ , # (RCOM, SAM; HAROLD ; ELAINE ; DAVE,
ELAINE;DAVE)), **))
+

# (@@, CAROL ; EMMY ; SHARON; # (RL,OFESPRING , # (@@, SAM;HAROLD) , **) )
' 4+

#(@@,CAROL; EMMY ; SHARON; # (RL, OFFSPRING , SAM; HAROLD, **} )
?
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# (@@, CAROL; EMMY ; SHARON ; # (@@, # (RLE ,OFFSPRING , SAM ; HAROLD **) #(RL,
PARENT , ** | SAM; HAROLD) ) )

#(@@,CAROL; EMMY ; SHARON; # (8@, ; # (RL, PARENT, ** , SAM; HAROLD} ) )
+

#(@e,CAROL ; EMMY ; SHARON ; # (@@, ; # (@@, # (@TRN, (# (RL,SPOUSE, # (RLE , PARENT, **
,SAM;HAROLD) ; # (RL,FATHER, ** , SAM; HAROLD) ; # (RL ,MOTHER,, ** , SAM;
HAROLD),**)}) 1))

{.
[again, we do not show expansions within @trn]

#(e@,CAROL; EMMY ; SHARON ; # (@@, ; # (8@ ,SUE; JIM) })
,f.

# (@@, CAROL; EMMY ; SHARON; # (@@, ; SUE; JIM))

~ $
#(@@,CAROL ; EMMY ; SHARON ; SUE ; JIM)
+

CAROL; EMMY ; SHARON; SUE; JIM 1
+

While this might appear to be an inordinate amount of work, it
is accomplished very efficiently. All calls to the associative memory
are extremely fast and the interpreter (preprocessor) is quite stream-
lined. The TRAC scanner does not scan the entire active string each
time but always resumes where it left off. In fact, once something has
been scanned, it actually leaves the active string and is placed on what
is called the neutral string. While no statistics are available, the
elapsed real time from input of: "WHO ARE BOB'S COUSINS?'" to output of

"CAROL ; EMMY ; SHARON ; SUE; JIM" with MTS under normal load (20-25 users)

would be under 5 seconds.




Chapter 6: THE RELATIONAL COMPILER

We have now seen the source language for the compiler in Chapter
4, the object language that the compiled code is to be written in
(Chapter 3), and in the last chapter we saw how ihe object code will
be manipulated so that the code, viewed as a TRAMP procedure, can be
used by the preprocessor to ''ask fhé right questions' of fhe associative
memory, thereby inferring implicit data. We shall now describe how the
relational sentences are parsed to produce the correct program templates,

Referring back to the discussion in Chapter 4 of how variébles in
relational sentences are quantified, there are two free variables appear-
ing on the left side of the '"equation,' and any other variables that
appear on the right-hand side are existentially quantified (meaning that
. they may be thought of as skolem fuﬁctions‘of the free variables),
Variable names in the language are, of course, not restricted, as they
are treated as dummy arguments, but for the sake of standardization in
the present discussion, we will make the convention that the free variables
are named "x" and "y," and all the skolem functions of x and y will be
deno£ed by other Latin letters. Further, we will use capital Latins to
stand for relations, and all variables, both free and existentially bound,

will be denoted by small Latins.

It is the 0peratioﬁal strategy of the compiler that of the eight

-87-
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possible questions (page 39), the compiler will only be concerned

with questions F1 and F2:

13
-3

F1: A (0) R(x,7)

il

F2: A(?) =V R(?,y)

Appropriate manipulation of these fwo questions by the preprocessor
will allow the other six questions to be answered. The compiler,
however, will only be concerned with the cases where the relation

and one of its arguments is given. The programs written by the com-
piler will then be designed to retrieve the set of things which com-
plete the triple. For example, given R and ﬁ, the program output by
the compiler will find the set of y's such that R(x,y). From the-
.discussion in the last chapter, it can be seen that since the output
is for an assoclative object machine (which operates as described in
Chapter 3), the object code of the compiler will have an "A" component
{(relation), and one of either the "Q" or ny" components (x or y), and
will associatively retrieve the other 0" or '"V" component dependent
on the question being type Fl or F2. For éxample, given the sentence:

R(x,y) = Q(x,a) .A. S(y,a)

for the question F1 the program will be given R and x. R will designate
the program and x will be the initial Znmput for that program, being
input to relation Q. Inputting x to Q will “generate” a set of a's,
namely the answer set to the associative question "Q (x} = 7", That
set of a's will then be the input to the relation S to generate a set
of -y's, the final answer set of this program (the set of y's is the

answer to the associative questibn: "S (?) = A", or here "S$(?7) = Q(x)”).
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Likewise, for question F2, the.program would be given R and y and
asked to find x: y would be the input to the program, being input
to S and chaining through Q to generate the set of x's. For ques-
tion FO (no variables—a true or false question) the program would
be given all three of R, x and y, and either F1 or F2 could be asked
internally tec generate an answer set, For example, if the question
were
#(rl,R,X,Y).

then F1 could use R and X to generate a set of y's. The original-
true/false question would then be answered by intersecting the gen-
erated set of y's with the given set Y, i.e., determining whether or
not the statement is true by seeing whether or not the set Y is con-
tained in the set of y's, "In the exact same way, question F2Z could
have been used to answer FO by generating a set of x's. Similarly
question F3 (where neither x nor y is given)rcould be answered with
Fl, e.g. by using the entire "O0" name table as X; etc. (the domain
or range of a relation may be computed from the "global" domain and
ranges represented by the "0" and "V'" name tébies). Such manipulation
as just described is performed automatically by the preproceésor.

.‘ Thus.the task of the compiler is to determine what the Znput to
a relation is and how the output (answer set retrieved from the rel-
ation and its input) is to be manipulated (e.g. intersected, composed,
etc.). This is the primary task of the compiler, Significant to the
translétion process, the compiler must also determine certain seméntic

properties of a relation, as will be described in Sec. 6.3,
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It should be obvious that for the purposes of determining which
argument of the two is input and which is output, the pair of arguments
- may be considered an unorderéd pair, as their ordering gives no infor-
mation whatever. If either argument is x or y, then there is no prob-
lem since x is always an input (for question F1—F2 is the exact dual
and we shall not concern ourselves with it) and y is always the final
output. Likewise in a compositional chain of arguments there is no
problem as they must simply be chained together.

| R(x,y) = A(x,a) .A. B(b,a) .A. C(y,b) (6.1)
clearly dietates that x is input to A; a is input te B; and b is input
to C. We can introduce complications into the above example by chang-
ing the defining equation slightly to be:

R(x,y) = A(x,a) .A., B(b,a) .A. C(y,b) .A., D{a,c) (6.2)
where we have added the relation D to our conjunction. In this case we
would interpret the relation D as placing a constraint on the relation
A. This is because we would consider the input fo D to be c, the output
would then be a and intersected with the set of a's generated by A and x.
There is no ambiguity here since if a were the input to D instead of ¢,
we would have a compositional chain (A/D) leading nowhere. Qur context
is tﬁat (fof question F1) we are given x and look for a path to y: all
paths must end at y! The above compiicatioh is not serious, but it
does demonstrate that our language is not context-free. The two atoms
“B(b,a)!" and "D(a,c)'" are syntactically identical, differing only in
the arbitrary naming of "b" and "c.' Further, since they appear in a

conjunction, the "a'" represents the same skolem function in each case.
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- Yet one relation takes "a'" as input while the other outputs "a," depend-
ing on the context established by the other atoms.

We shall further complicate the issue by adding one more atom to
our defining equation for R:

R(x,y) = A(x,a) .A. B(b,a) .A. C(y,b) .A. D(a,c) .A. E(c,y) (6.3)
This changes the context of relation D. On the one hand we can continue
to interpret D as placing a restriction on the A relation, as above, and
interpret the new relation E as placing a restriction on the final gen-
erated set of y's, i.e., the set of y's generated by (6.2) is to be int-
ersected with the range of the relation E. ﬁsing the vertical bar to
denote restriction, this interpretation is: R = ((A|D)/B/C)|E. On the
- other hand if we reverse the inpuf and output of relation D from that of
(6.2), then the chainiA/D/E is formed and we have: R = A/(B/C A D/E).

Before leaving this example, let us add one more term to (6.3):
R(x,y) = A(x,a).A.B(b,a).A.C(y,b).A.D(a,c).A.E(c,y).A.F(x,c) (6.4)
We now have two complete chains (A/B/C and F/E) that lead from x.to Y,
but there is the relation D joining the twé chains together. It is
clearly ambiguoeus which "direction" D is to go, i.e. which of its two

arguments is to be the input and which the output.

A second instance of the context-sensitivity of the language
arises from the fact that there are essentially two levels of operators:
we have the "normal" operators, such as conjunction, which take as
their operands relations; but now the relations. themselves are a kind

of operator, taking as operands the relational arguments. Ultimately
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it is these dummy arguments of the expansion that determine the context
and hence the semantic interpretation of the higher level (logical)
operators. For example, the meaning of the conjunction operator is
dependent on the number of individual variables in common out of the
four (two for each of its binary operands):

1) if 0 in common, then .A, is a no-op R(a,b) .A. Q(c,d)

2) if 1 in common, then .A. means composition: R(a{b) AL Q(b,e)

3) if 2 in common, then .A. means intersection: R{a,b).A. Q(a,b)

In Chapter 4 we saw that the language allows two formats: expanded
and abbreviated, the difference being whether or not the relations are
given arguments. For exampie relation R in (6.1} is defined in the
expanded format. The exact same definition could have been entered in
..abbreviated form by deleting the arguments and using the relational
operators:

R= A/ .CON. B/ .CON. C

{Note however that definitions (6.2) and (6.4) could not have been
entered in abbreviated form.) The abbreviated form is provided as a
convenience where applicable, Clearly it is not necessary since any
abbreviated definition can be expanded, while the converse is not true.
Thé'abbreviated form is quite simple, being gemerated by a well under-
stood [26,27] operator precedence grammar. The expanded form is not
only not operator precedence, it is not even context-free. The sig-
nificance of this can be seen by drawing an analogy to the logical

calculi. The abbreviated form is strikingly similar to the propositional '
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calculus, while, the eipanded form resembles exactly, save for
quantifiers, a subset of the first-order predicate calculus. Cer-
tainly a "predicate" and a 'relation' are just different ways of
looking at the same thing. We define an n-place predicate as a
mapping over a domain D such that P: D" —> {T,F}, while we define
an n-place relation as being a suﬁset of the nth cartesian product
of D, They are.clearly the same thing since given an n-place rel-
ation R it directly corresponds to the n-place predicate P according
to the rule: P(dy,...,d ) = T if and only if (dj,...,d ) e R.

Indeed, the complexity of parsing the two formats is true to
this analogy. The propositional calculus possesses several well known
-decision procedures and operator p}ecedence languages are well under-
stood; the predicate calculus can have no decision procedure and
context-sensitive languages present problems in mechanical parsing
that are barely understood at all.

Internally, the compiler will only work with expanded definitions
since a first phase of the compiler will convert all relational sent-
ences to a standard canonical form in which all relations have arguments.
Thus the compiler cannot take advantage of the rather pleasant operator
precedence properties of the abbreviated form. In fact, in the context
of expanding an abbreviated sentence, the -abbreviations are not even
context-bounded. This is because of the composition operator. As an

example, consider the three sentences and their expansions:
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1} R = (A .V. B) —> R(x,y) = (A(x,y) .V. B(x,y))
2) R= (A .V. B)Y / C —> R(x,y) = (A(x,a) .V. B(x,a)) .A. C{a,y)
I) R=(A V. B/D) / C — R(x,y)=(A(x,b);V.B(x,a}.A.D(a,b)).A.C(b,y)

We see that all three sentences begin exactly the same = "R=(A.V.B"
but the relation A is given a different argument in each case.
Further, note that the differences in these arguments is not just
arbitrary naming of variables. In sentence (1) the output is the free
variable y, while in (2) and (3) it is a skolem function of the free
variables x-and y! There is no way of determining the arguments, in
general, until the end of the sentence is encduntered, and thus it is
not of bounded context [28}.
Many standard languages, e.g. ALGOL, are not operator precedence

or even context-free, but very simple changes will convert them to
context-free languages, and even if minor changes do not result in an
operator precedence grammar, it is sufficiently close that operator
precedence techniques may be used. This-is not the case here. For
example consider the sentence:

R(x,y) = (A(x,a) .V. B(x,b)) .A. (C(a,y) .V. D(b,y)) (6.5)
Thig sentence is‘&ogically equivalent to: .

R=A/C V. B/D . (6.6)
It is not the canonical expansion of (6.6) but it is a valid expansion.
Operator precedence techniques would attempt to work individually on each
of the two parenthetical phrases in (6.5). This cannot be done, however,

since out of context each of those phrases is meaningless. Furthermore,
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it is not immediately clear how the phrases should be distributed
against each other since that results in terms such as “A(k,a).A.D(b,y)"

whose meaning is not clear.

6.1 -~ THE PARSING ALGORITHM

It has been illustrated above that the relational language that
we must parse is at best pathological, and at least does not lend itself
to the highly developed mechanical iparsing techniques for formal lang-
uages [26]. We shall now describe-our method of deaiing with this prob-
lem, and in section 6.2 demonstrate that our algorithm is correct in the
sense that it both terminates and terminates after having generated the
program template that will.realize exactly the intent ({as described in
Chapter 4) of the relational sentence source program.

The compiler-is broken up into three 1pgica1 phases. The first
phase is necessary to the operation of the compiler within the system
but does not perform any parsing per se. The first phase has the job
of converting all. sentences to the canonical form, performing almost all
of the syntactic error checking, and accomplishing the linkages necessary
for incorporating the program template into the total system, as described
in the previous_chapter;

The canonical form that the parsing mechanism will deal with is
as follows: First, all abbreviated sentences will haﬁe been totally
expanded, This means removal of the two relatioﬁal operators converse

and composition and the correct instantiation of dummy variable names
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for all relations. As indicated above, this task is not context
bounded. Phase I must make a complete scan of the sentence to det-
efmine the context before it can rescan and perform the instantiations,
The context so gathered is also used to effect the converse operator,
For the simple case where we have:
R = .CON. S
it is obvious that .CON. simply inverts the order of the arguments of
$ (in this case from S(x,y) to S(y,x)). However, .CON, may be applied
to parenthetical ekpressions of arbitrary complexity, in which case the
entire expressién must be viewed as a ''sub-definition' of a single
relation. Then the input and output of that "imaginary'" relation must |
be identified and reversed, leaving everthing else unchanged. For
example,
R=A/ . CON.(B/C/D)/E

- will first be expanded to |

R(x,y) = .A(x,a) .A. .CON.(B(a,b).A.C(b,c).A.D(c,d)) .A. E(d,y)
Now the composition B/C/D is considered as a sub=definition of an
imaginary relatiop which takes in this case "a' as its input and outputs
"d", Thus a and d are switched yielding:

R(x,y) = A(x,a) .A. B(d,b) .A. C(b,c) .A. D{(c,a) .A, E(d,y)
For this operation of removing the converse operator, we again require
_context to determine the input and output in order to know wﬁich var-
iables to reverse., (Of course,‘the alphabetical ordering above and in
most of the exampleé of this chapter, does not give any information as

it might seem to do in these examples.) One cannot, as might seem at
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first to be the, case, apply the .CON. operator by simply'pairwise.
inverting all arguments in the expression, rather the expression
must be viewed as a sub-relation.

In additibn to removing the two relational operators, thé can-
onical form will convert the equality operators to normal looking
relations. The input format for the equality operators is: '"x.NE.y".
This will be converted to "@NE(x,y)" which is an internal pseudé-
relation. The non-graphic "@'" serves as a flag that this is a
pseudo-relation, not to be translated into a retrieval call, and of
course precludes interference with user defiﬁed relation names.

OQur canonical form alsc requires that the sentence be in
- disjunctive normal form (dnf, an OR of ANDs—the exact dual of
conjunctive normal form described in Chapter 2). This form will
eliminate the apparent ambiguity of the scope of an existentially
quantified variable (or in more familiar terms, the scope over which
a dummy variable is Zoeql}. Within any one disjunct any one variable
name will always refer to the same thing; lbetween disjuncts the same
name will refer to'differént things. Thus in the sentence:

R(x,y} = A(x,a} .A. B{x,y) .V. C(x,a) .A, D(a,y)
we have the ''a' as argument to relations C and D being the same, but
having no connection with the "a'" in relation A.

Disjunctive normal form is also extremely useful because of the
environment that fhe program is to operate in. Disjunction is accomp-
lished, as was seen in Chapter 5, simply by COncétenation; conjunction
is accomplished in the sense oflintersection by the. int fuﬁction

+
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(Appendix B), and in the sense of composition by recursive nesting.
In dnf, the compiler can consider each clause (a clause is a dis;
junct—the exact dual of the clauses discussed in connection with
resolution, Chapter 2) independently, out of context of the other
clauses, with the several clauses Eeing joined (ORed)} together by
simple concatenation.* |

The last function that Phase I performs is the list processing
necessary for incorporation into the TRAMP system. The program temp-
lates, once- generated, will be stored in normal TRAMP lists (in GS)
and they must be accessible, requiring that éonventions be respected.
The list processing that is performed is illustrated in Figure 6. 1In
. that figure the information stored includes two seperate programs Pl
and P2. The compiler, it was stated, considers the cases where the
relation and one argument is given. There are two such cases and each
generates a program. We shall restrict our discqssion entirely to
program P1, which is designed to answer question Fl, since P2 is just
its dual, :

Phase Il of the compiler performs the actual parse, which, as
poipted out above, is largely a question of deciding which argument is
the "input" of the associative retrieval call, and which argument rep-

resents the generated answer set of that call. . After this has been

- :
The compiler is presently being run without the section of code that

performs the conversion to dnf. This is due to the bulk of that code.

" There is no theoretical problem whatever in algorithmically performing
this conversion. This is not much of a hinderance in practice, since
almost all user definitions are already in dnf, unlike the pathological
examples of this chapter. Note that in Fig. 4 all of the examples are
in-dnf. '




"A1TIRTNOITD JOF Yoous B duriztxed
‘UOTIBTOI STYL SUTFOp 01 pasn SUOTIBTOX JO
3SIT °Yy3 st 5 ‘xertdwod ayz £q indino sweid
~oad om3 9yl 03 sxsyutod Uyl axe 74 pue 14
*(Burkerdstp pue Suryrpe I0F) Ia9sn oyl Aq
PSISIUS S UOTITUTIOP oyl JO IX01 JIAN4d oY1
01 xe3utod syl st ‘( ‘31811F oy1 :siaszurod
IN0F SUTBIUOD OSTe 00Tq I93utod oy

*ISTT 92Ul UO JULWBYS XU
Y3 031 xsjurod oyiy ST N pue {MDT2q paqrad
-$9p ‘Y201g I93uTOg 3yl 01 siyutod g4 ‘ouwru
9yl Burproy 1IsTIQns oyl 30 AT1saT309dsex
[1B]l pue pesy 2yl o3 sxejutod syl sae f pue
H :sidjutod inoy sey xepesy yowy *SISPEIY
30 3ISTT ® 031 sjutod Lx3us YL ‘sTqe] swwu
UOTIBISX POUTISP Yl UT AIjus ue 81BUd TSP
O3 POYSEY ST UOTIBTSI 9Y] JO ouUEU Yy,

SNOLLVTIY ¥0d

TI9VE HWYN - 9 oanSty

-94 -

(8d) Y009 YAINIOd

Javl

JWYN

dd

SY3av3H 40 LSIT .

JWVN NOLLVI3Y d4O HSWH




-85~

decided, phase III performs the code generétion and analyzes the
sentence semantically to determine various properties of the rel-
ation in question, e.g. transitivity,

The introduction to the present chapter pointed out some of the
problems with mechanical parsing of the relational language, and the
lack of any developed and applicable linguistic theory to fall back on.
We shall rephrase our description of the parsing that is to be performed,
and then we shall see that the chosen description is so powerful that it

actually embodies the solution of how the parse can be accomplished!

6.1.1 REFORMULATION OF THE PROBLEM

We shall consider the relational sentence to be represented by
a directed network. Each individual variable, x, y and the skolem
functions of x and y, will be represented as a node of the ﬁetwork.
Each relation will be represented as a directed line between the two
nodes representing its arguments. The source of the network will be
tﬂ; node labeled x, and the sink of the network will be the node labeled
y. -In this framework it can be seen that the associative retrieval calls
that must be generated as the object code, are directly represented by
the directed lines. R (x) = ? is the associative question Fhat tdkes
R and a set x and generates an answer set; this '"generation'" is just
the directed line, with the node from which the line leads being the

input and the node to which it points being the generated set. The

“intent of the object program is to take a set X and a relation R and
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generate a set of Y's, This will simply be the set that comes from
starting at the source of the network, x, and tracing all paths to

the sink, y. For example, the sentence (6.1) has the graphical rep-

rqsentation:
[R(x,y) = A(x,a) .A. B(b,a) .A. C(y,b) (6.1)]
a .
X b y

The sentence (6.2) is graphed below, with ¢ being a "spurious" source,

since no line comes into c.

[R(x,y) = A(x,a).A.B(b,a).A.C(y,b).A.D(a,c) (6.2)]

~

This is clearly an accurate formulation of the parsing problem,
but it also solves the problem! Just construcf the graph and, knowing
that all sentences are in dnf {so that only clauses ever need be con-
sidered, meaning that the only operator is the conjunction operator),
we may interpret the resulting network as follows. The node y will be
théronly node in the network thqt is a sink, it is the final answer.

For all other nodes, if only one line is incident to the node then it
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is a source (there may also be other nodes.distinct from x with more
than one line incident to it that:is a source—this condition is
clarified below). The node x is always a source., In the usual way
[29], we shall do away with multipie sources by creating a single,
imaginary source that feeds all other "sources.' In our context we
shall do this by means of two new relations, I and U, defined by:

X identity relation

I (x)

U (x) = everything universal relation

The single imaginafy source will be labeled &, and there will be the
line I(s,x) and for any other source p, there will be the line U(s,p).

Thus we would redraw the graph for (6.2) as:

Henceforth we shall not distinguish between s and x, but simply refer to
the source, assuming that s has been created if necessary.

Given this network formulation of the sentence, we interpret the
network by examining thé configuration of the arrows at each node. Every
‘node, except the imaginary node s, will héve at léast one line directed
into it, and every node except y will have at least one line directed out
from it. Our interpretation is that we "collapse" the sets of lines

directed in and out and consider the single collapsed line going out as
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meaning the composition with the collapsed line ceming in. The several
lines coming in are collapsed by simple set intersection; the several
lines going out are collapsed by "domain intersection," accomplished by
sending the set elements along the several paths one at a time, taking
the set intersections of the paths where they meet (they must meet, at
least at y), and forming the union of these intersections over all
elements.of the incoming set.

, Phase III will recursively trace out paths of the final network
to produce the required object code, The task for phase II is now
reduced to simply directing the lines of the network properly. This is
truly a significant reduction of the problem, but are we really any
better off? The problem of correctly directing the lines does not
appear to be all that simple, in general. For example, sentences (6.2)
and (6.3) apparently demonstrated a situation where the added context

of a single atom might change the direction of one of the lines:

(6.3)

Sentence (6.4) demonstrated a true ambiguity in that there is no.

apparent way to decide which way the line for relation D is to be

directed:
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(6.4)

We shall prove in section 6.2 that these apparent difficulties in fact
'vanish, and‘the.direction of the lines is easily and correctly computed
by the algorithm presented in section 6.1.3. The algorithm as stated
tacitly assumes that the original sentence is in dnf and is only applied
tora single clause, which may be taken out of context. The algorithm
further assumes the remaining conventions regarding canonical form. The
pseudo-relations (@NE) are ignored during construction of the network

| and are easily handled by phase III.

6.1.2 SOME NEEDED DEFINITIONS

For the purposes of defining the algorithm, as well as more
precisely clarifying some of the graph theory terminology used in the
preceeding discussion,.we shall now intfoduce some necessary formal
definitions. A few of these definitions are peculiar to our purpose,
but mostly they are semi-standard (paralleling a.standard reference

such as [30]) and presented here for precision of terminology.
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DEFINITION 6.1: A graph is an ordered pair <S$,R>, where.$ is a set of
eleﬁents called.nodes (or points, vertices, etc.) and R is a symmétric,
.irreflexive, binary relation over S. The graph is drawn such that a
point represents each element of S, and for each unordered pair.(sl,sz)
fdr 5. € S, a line (also called an arc, edge, etc.) is drawn between

sy and 5, just in case (51,52) € R.

DEFINITION 6.2: Two nodes joined by a line are said to be adjacent to
one another and each is said to be inecident with the connecting line.

The line joining the two nodes p and q is often denoted {p,q).

DEFINITION 6.3: A directed graph -(or digraph) is a graph in which the
relation R is asymmetric. The digraph is drawn the same as a graph,

- except that each pair of points is an ordered pair, and the ordering
is denoted by assigning a direction to each line. The direction is
specified by drawing an arrow, and the line (p,q]—is‘ﬂirected from p

to q, and said to be ineident (out) from p'and ineident (in) to q.

DEFINITION 6.4: A multi-graph is a graph in which more than one line

may be drawn between the same two points, often called a graph.

DEFINITION 6.5: The degree of a node in a graph is the number of lines
incident with that node. For a digraph, the indegree of a node p, 7
written ID(p), is the number of lines directed into p; the outdegree of p,

written OD(p), is the number of lines directed out from p.
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DEFINITION 6.6: A network is a digraph with two sets of distinguished
nodes called sources and sinks. A source has positive degree and zero
indegree. A sink has positive degree and zero outdegree. All other

nodes are called intermediate nodes.

DEFINITION 6.7: A path is a sequence of alternating nodes and lines,

<N1,L1,N2, 550

for each i, 1 = 1 < n, the line Li is drawn between the nodes Ni and

L .,N_ >, beginning and ending with a node, such that
n-1’"n £ £ ‘

Ni+1‘ A path is normally written simply as as sequence of adjacent
nodes, the lines being understood. A directed path in a digraph is a

path in which each line L. is directed from N, to N. ..
1 1 i+l

DEFINITION 6.8: A cycle is a path with at least two distinct nodes,

- that begins and ends at the same node. In a digraph, a directed cycle

(or cycle) is a directed path that begins and ends at the same node; an
undirected cycle (or gsemi-cycle) is an undirected path that begins and
ends at the same node. A graph that contains no cycles is said to be

acyeclic.

DEFIﬁITION 6.9: A graph is said to be connected if there exists a path
between every pair of points. A digraph is said to be strongly connected .
if there exists a directed path between every pair of points; it is
weakly connected if there is an undirected path between every pair of
poeints, A graph that is not connected is disconnected. A network is

said to be N-connected if every intermediate node lies on a directed

path from a source to a sink.
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DEFINITION 6.10: A cut-point is a node in a (weakly) connected

graph, which if removed would disconnect the graph,

DEFINITION 6.11: An isolated cycle is a cycle, one of whose nodes is
a cut-point, and removal of that cut-point would disconnect the graph
into two components (or more), one of which would consist only of the

remaining nodes of the cycle,

DEFINITION 6.12: A metric is placed on a graph by defining the distance
function D(p,q) for each pair of points p aﬁd‘q, as being the length
(number of lines) in the shortest path between p:and q. For a digraph,
D(p,q) is the length of the shortest directed path. For all p we have
‘P(p,p) = 0; for all adjacent nodes (p,q) we have D(p,q) = 1; and for
--p-and-¢q not connected we have D(p,q) = ®. ~For a network we define for

~all nodes p, D(p) is the minimum over all y in the set of sinks, of D(p,y).

DEFINITION 6.13: A bridge of a digraph is a directed path B whose end
points u and v respectively lie on directed paths U aﬁd V, such that U
and V have exactly two nodes in common, p and-r, and such that u, v, p
~and f are four distinct nodes. (The two paths U and V thus form a

semi-cycle, with B "bridging" across that semi-cycle.)
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6.1.3 THE ALGORITHM

We start with an undirected graph G which'represents a single
clause of the canonical sentence. Each individual variable appearing
in the sentence i1s a node, and each relation is a labeled line between
the two nodes representing its arguments., We shall transform the graph
G, first into a simpler graph G', then into a directed graph G'', and
then into a‘final network G''' which will be the input to phase III.
(In what follows, "graph' means ”multi—graph.”)
STEP 1) |

The graph G is converted to a smaller graph G'. All intermediate
nodes with degree 2 represent composition. Any intermediate node with
degree 2 may be deleted along with its two incident lines, and its iwo
~adjacent nodes joined by a new line. This compression may well result
in a multi—graph.‘ Any compositional chain that collapses to a point im
this process clearly represents an isolated cycle and is noted for hand-
ling in step (IV). Any intermediate node of G' (aftef all other reductions
have been made) that has degree 1, is deleted for handling in step (V).

The fesulting multi-graph G' is undirected and has no intermediate node

with degree tess than 3.

STEP 1I)

We shall now construct a sequence of sinks Yi as follows. We

initialize Y, = {y}, the single sink of the original network. Iteratively
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we compute the sequence <Yi> by the rule:

i
= {p e (G - \g Yj) | (p,q) € G' A q ¢ Yi}

\

i+l
As each Yj is computed by this rule, each line (p,q) for p € Yj;
q € Yj—l’ is directed from p to q; Clearly, for some k, Yk = @,

k
at which time if |/ Yj # N(G'} (the set of nodes of G'}, then G'
0

is disconnected and it is rejected. The resulting digraph is G''.

.STEP I1Ia)
Step (Ii) does not specify how the line (p,q) is to be directed

in the event that p « Yi and also q ¢ Y, for some i. This condition
_often identifies a bridge and is dmbiguous. We shall resolve the ambi-
guity by placing an ordering on the nodes of G'. Let Qi = {q ¢ Yi};

let Q? be the jth component of Qi {(i.e. the jth equivalence class of Qi
induced by the equivalence relation: p = q if and only if there exists

a path from p to q in the sub-graph Qi). Within each Qi assign each node
q the number A(q) which is its alphabeticai order within Qi. For each

q € Qi we can qstimate* its indegree by subtracting its out&egree from its
degree., Clearly, for g ¢ Qi we have D(q} = D(q,y) = 1i. We now define
f(q)-= (D(q),ID(q),A(q)}, and the ordering relation » by: g > p if énd
only if f{q) is lexicographically greater than f(p)}. Now, for p,q € Q?,

we direct the line (p,q) from p to q if and only if p » q.

¥
This can only be an estimate because of course we do not yet know how the

other lines will be directed. However this is quite sufficient and is
only used because often it will produce better code.

+
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STEP III)

The result of steps I-Ila is a directed, but also compacted,
version of the original graph G. We now expand it to include all of
the nodes and lines of the original graph. ©Nodes with degree 1 are
- replaced with the single line directed out from the node. Isolated
cycles are handled in step (IV). The only other nodes that were de-
leted were those with degree 2. Such nodes were replaéed by new lines
which are now directed. We simply switch back: the node and its two
incident lin;s replace the artificial line; fhe dire;tion of the

composition is the same as the direction of the artificial line.

STEP 1V)

An isolated cycle is a compositional chain one of whose nodes
is a cut-point. The chain is directed (arbitrarily) so that it closes
a directed cycle. The line from the cycle that leads into the cut-
‘point, say q, is replaced by a 1ine directed to a newly generated node
q'. The line (q,q') is added to the graph. Finally, for all p such

that (q,p) € G'', the line (q,p) is replaced by the line (q';p).

STEP V)

Nodes with indegree 0 {including any node with degree 1), say q,

other than the source, result in the directed line U(s,q).
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Before examining the properties of this algorithm, we shall
give a single comprehensive example of how it operates. We show the

graph below in all of its forms: G, G', G'', and the final form G''".
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6.2 ON THE VALIDITY OF THE ALGORITHM

We shall now investigate the properties and utility of the
algorithm, and demonstrate that it does in fact parse our language

correctly.

LEMMA 6.1: The graph G'' is acyclic.

fROOF: Suppose there is a cycle C = 81285500 +58,58 in G''. Though
it was only-made explicit in step (IIa), at all tiﬁes what the algo-
rithm was actually doing was computing f(g) for each g in G', and
then directing the line (p,q)} from p to q if and only if p > q.
Clearly the function f is unique in the sense that for p # q,

f(p).# f{q). Further the relation » is irreflexive, antisymmetric,
and transitive. But the presumed cycle C indicates that g, > gn > gy

and hence by transitivity g > g1 contradicting the irreflexiveness

of ».

LEMMA 6.2; The graph G''' is weakly connected.
PROOF: Step (II) checks for the connectedness of G', and none of the

transformations is capable of disconnecting it.

LEMMA 6.3: For each node g ¢ G'' other than the source and the sink,

Ib{g) > 0 and OD(g) > 0,
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PROOF: Step (V) explicitly ensures that no intermediate node has
indegree 0. Evéry intermediate node has positive outdegree for we
‘have N(G') egual to the union of the Yi and thus for each node g,
there is a k such that g ¢ Yk’ which by definition of Yk implies that
the directed line (g,p) € G'' for some p ¢ Yk-l (and of course for

g # y we must have k = 1).

LEMMA 6.4: The network G''' is N-connected., That is every node lies
on a directgd path from source to sink.

PROOF : .Suppose that some.point g does not lie on a directed path to y.
Then neither does the point p for (q,p) ¢ G''' (which we are assured
exists by lemma 6.3). We repeat this argument for p and so on, indef-
linitely. But since our graph is finite, this implies that there is a
cycle, contradicting lemma 6.1. Likewise, the same argument convinces

us that every intermediate node lies on a directed path from the source.

We have given little rationale for ocur algorithm, particulariy
rule ITa seems quite arbitrary. We have: |
LEMMA 6.5: Giv;n two undifected, isomorphic networks H and K, and
-direéting the lines of H in any arbitrary way that results in H being
N-connected, and directing the lines of K in any arbitrary way subject
to the same condition, the two directed networks H"and X! represent,
under the relational interpretation of section 6.1.1, identically the

same relation,
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PROOF: We need cnly consider networks in which all intérmediate nodes
have degree z 3. This is because G'' has this property, but more to
the point, if a node has degree 2 and the network is N-connected, then
altering either one of the lines and not the other would violate the
N-connectedness; both lines would have to change together, so we might
as well consider them as one line. Further, N-connectedness means that
no intermediate node can have degree < 2. That is, for H' and K' to be
N-connected, we need only worry about their ébstractioﬁs as produced by
stgp (1) of the algorithm. Now let H be a directed network that is
N-connected énd let K be an exact copy of H, gave that the line (b,a)
has been inverted to be (a,b). 1In order that K be Nméonnected we must
have in H that OD(b) z 2 and ID(a) 2 2. The relational interpretation
in question would "collapse" multiple arcs coming into or out from a node
by treating such multiple arcs as a single complex relation (analogous to
a "sub-expression' in an algebraic compiler). Thus tﬁe situétion is

succinctly described by the sub-network: T

We know nothing about the nodes u, v, w and z except that u and z cannot
be sinksxand v and w cannot be the source; we only assume that the lab-
eled lines Q, R, S and T exist (each one may represent a complex sub- -
relation) and are so directed. In H the relation P is directed b to a;
.in K, P is directed a to b, We now write out in predicate calculué
exactly what the two relational interpretations of these two network

portions would be:
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H:
(x) (y) (3z) (Ib) [X(x,2) A T(z,b) A (W) (S(b,w) A (Ja) () [X(x,u} A
Q(u,a) A P(a,b} A () (R(a,v))I]}]

K:
(x}(y) (Ju) (4a) [X(x,u) A Q(u,a) A (Fv)(R(a,v) A (3b)(Fz)[X(x,z)} A

T(z,b) A P(a,b) A (4w)(S(b,w)}])]

In the above we have tacitly assumed that all flow is from source to
sink so that we may introduce the dummy relation X. We next reduce

the two wffs, above, to prenex normal form:

H:
(X)CY)CQZ)(Eb)(SW)(Ba)(iu)tEV)[X(x,Z) A T(z,b) A S(b,w) A X(x,u) A

Q(u,a) A P(a,b) A R(a,v)]

K:
(x) (¥) (Fu) (Fa) (v} (3b) (3z) (Fw) [X{x,u) A Q(u,a) A R(a,v) A X(x,z) A
T{z,b) A P{a,b) A S(b,w}]

Now the matrices of the twe wffs are identical up to order, but order is
immaterial for conjunction is commutative, .Also in the prefix, the only
difference is in the ofder. Logically this is indeed a difference, but
it is not relevant here. In particular, if we next skolemize our form-
ulas, they become identical, save for the arbitréry naming of the skolem

functions. The reason why the order of quantification is immaterial is
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.that if we have (3p){dq), then, strictly speaking, the qlasserted to
exist is a function of our choice of p asserted to exist. In the
present context, however, we do not choose one p that satisfies the
wEf, rather we are always gathering an answer set and we always use
all p's that satisfy the wff. This consideration takes away any
meaning from .the order of quantification.

The result now follows by a simple inductive argument.

Another way of intuitively seeing why this lemma is true is to
notice that inverting a line means (assuming N-connectedness) that
instead of Aaving two lines going out, we have two coming in, or
vice-versa. The thing to recognize is that in either case the

interpretation is intersection, and thus the direction is immaterial.

We now have:

THEOREM: The algorithm presented in section 6.1.3 for converting the
graph G to the network G''' terminates, and when it does the lines
héve been directed so as to exactly represent the meaning of the

sentence under the relational interpretation,

The correctness of the algorithm has just been proven in the

preceeding lemmas. Termination is guaranteed by the finiteness of G

and the fact that there is no back-up in the sense that no node is ever

considered more than once (note that the Y, computed by Step II are

digjoint).
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6.3 FURTHER SEMANTICS

Phase II having converted G to G''' then gives way to phase III
to convert G''' into a program template, This is extremely straight-
forward, and involves starting at the sink, y, and forming the indi-
cated compositions and intersections, walking backwards through the
network to the source,

After this has been done, phase III checks on the semantics of
the definition.. First of all, circular definitions are not vélid since
they would lead to an infinite recursion when the program waslexecuted.
This is checked by phase III using the list of relations that the
present relation is defined in terms of (see Fig. 6). Each name on
that list also has a "circularity' list (empty if the name is not a
defined relation) which is appended to the current list. (A recursive
| definition does not place itself on its own circularity list.) The
list is processed;by comparing each name on it with the name of the
relation being defined: if the same then reject the definition as being
circular; if not get the new list to add, if any. This check must
terminate by exhausting the list, since none of the relations on the
1list is circular.

The relation is checked for symmetry and transitivity, Any
" clause in the definition of R that consists only of R either has the
arguments in the same order [R(x,y)}], in which case that clause is
deleted as carrying no information, or else the arguments are reversed

[R(y,x)], indicating symmetry, Symmetry is flagged (section 5.1) and
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that clause produces no code; Transitivity is recognized when a
clause consists of the relation, say R, being composed with itself,
and that being the entire clause. Again this is flagged and no code
generated. An interesting situation arises when we have:

R(x,y) = R(x,a) .A. R(y,a)
which is the expanded form of

R=R/ .CON. R

We have the following relational proposition:

1 < R, then

 PROPOSITION: If the relation R satisfies- R/ R

a) if R is reflexive, then R is an equivalence relation,

b) if R is symmetric, then R is transitive.

¢) if the domain and range of R coincide, then R is reflexive,

and hence .an equivalence relation.
An example of such a situation is the definition of SIBLING on page 77.
Since it is impossible at compile time to know anything about the domain
or range of a relation, {c) cannot be used (althoﬁgh it might be a very
useftt ''guess' that they are in fact identical and R is an equivalence
relation). But in the definition of SIBLING on page 77, We do know
that it is symmetric alloﬁiﬁg (b) to be applied.
| The last piece of semantics detected by phase III that is of

general interest, is the case where the relation R is defined as being

the composition of itself with something else, which we might proto-

typically designate by:
R=P/R/Q
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This definition is recursive and expanding it recursively we have:
R = B/R/Q = P/(P/R/Q)/Q = P/ (P/(P/R/Q)/Q)/Q = . |
indicating that:
R=pP"/R/Q"

where P denotes the transitive closure of P. An example of this is
illustrated on page 77 {PARENT = ... PARENT/SPOUSE)} and the resulting
transitive closure of SPOUSE shown being performed by the @trn func-
~ tion on page 79,

One final observation is the invalidity of disconnected graphs.
One might well want to define e.g.

R(x,y) = Q(x,a) .A. P(b,y)

.which specifies that the domain of R is the domain of § and the range
of R is the range of P, and each domain element is related by R to each
~range element. This is well-defined., However, it is not a very useful
relation and the Q and P of the example are actually being used as unary
predicates—or properties, i.e. x lies in the doméin of R and is related
to the entire range of R if and only if x has the property of being a
domain element of . The fact that TRAMP does not allow such definifions

is not considered to be a handicap, except perhaps theoretically.

Proof of the relational proposition:

Basic Hypothesis: R/ R7! c R l ' (6.7)
Starting with (b), R is symmetric means R = le, and the basic hypothesis
(6.7) says:

(,y) € RA (y,2) ¢ R& ==> (x,2) ¢ R
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Since R = R‘l, we can rewrite this as
(x,y) € R A (y,2) ¢ R ==> (x,z) ¢ R

which says that R is transitive.

Part (a) requires that we show reflexiveness implies symmetry. If R is
reflexive, then
(x,¥) € R ==> (x,x) ¢ R.A (y,y) ¢ R
thus for (x,y) R, we have
(v,y) € R A (y,x) e R
which implies by (6.7) that (y,x) ¢ R, and thus R is symmetric. By

part (b), R is also transitive, hence an equivalence relation.

.For part (c) we note that (x,y) ¢ R ==> (y,x) € R-l, and thus by
(6.7) we have (x,y) ¢ R ==> (x,x} ¢ R. That is, the domain of R

is a subset of the range of R, and each domain element is in relation
R to itself. If the domain is not a proper subsef, then the domain
and range coincide and we have each range element standing in relation
R to itself, and thus R is reflexive. By part (a), R is then an

equivalence relation.




Chapter 7: EXAMPLES AND CONCLUSIONS

7.1 QUESTION-ANSWERING

At the outset we placed TRAMP in the framework of '"question-
answering.'" The power of the language as pertains to question-answering
appears to be twofold: the associative storage structure is decidedly
question-oriénted and the inference capabilities achieved by facilitating
intensional definitions of relations., The inference mechanism is by no
means as general or formal as a resolution theorem-prover, but in some
ways it is more realistic and useful, In particular, one has some fac-
ility at least for incorporating semantics into the system (in the sense
that the context surrounding a relation may sometimes be used instead of
'having to axiomatize all predicates which leads to the problems illustrated
below)—wreSOIution‘must operate completely on syntax. Further, since
TRAMP residegxin a ""text-processing" environment provided by TRAC, a
pleasant interface with the question-asker is accomplished relatively
easily.

Before presenting an exaﬁple of a TRAMP-coded question answering
program, we would like to emphasize that TRAMP is in no way a, fully
adequate tool for constructing really intelligent question-answerers.

The system does present a single method of deduction that unlike res-
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olution is not complete, but does some things more efficiéntly and in
a more natural way. In Chapter 2 we tried to point out that the res-
olution approach to question-answering, by itself, was inadequate.
Certainly our approach, in isolation, is inadequate. We think that
in the years ahead a corpus of knowiedge will develop on various
strategies of deduction, none completely utilitarian, all of some
value, out of which eventually the type of question-answerer envi-

sioned by Turing [34] might be constructed.

The program listing on the following péges is intended only as
. an illustration of how one might write a program having a pleasant’
"front-end!" interface, and possessing enough power to perform respec-
tably on Cooper's now standard chemistry example, as well as handle
LWﬁAHMA#(gNMQiffﬁéliy”éii‘ofﬂfﬁé'iinship'exémpleé présénféd-éarlier. The progrém-
~accepts an "English-1ike" language L, of which a BNF description is
we--——-——depicted in Figure 7. :The program accepts Coéper*s original EngliSh
- Statements, wheréas Green states [2] that t&o hours were required to
perform the translations from English to predicate calculus by hand.

Indeed, it took only slightly longer than two hours to write the

-~ program shown below.




~-119-

FIGURE 7: B N F Grammar for the Language L
<statement> :== <fact>. | <rule>. | <question>?
<fact> == SYNONYM: <id> <noise> <id> | <idl>!<is> <q> <art> <idl>

| <id> <rel> | <idl> <rel> <idl> | <id>'S <rel> IS <id>

| <id> IS <art> <rel> OF <id> | THE <rel> OF <id> IS <id>

<article>

== A | AN | ANY | EITHER | BOTH

<art> == <article> | <art> <art> | THE | A

<rel> == <id> A

<q> == NOT | A

<is> == IS | ARE

<idl> == <id> | <id> , <idl> | <idl> AND <id>

<id> == <alphanumeric string> )

<noise> == <id> | <art> |isis> | <noise> <noise>

<rule> == IF <exp> THEN <rel> | NO <rel><is> <art> <rel>
| <article> <rel> IS <art> <exp>

<exp> == <rel> I <exp> <op> <art> <exp> | TRANSITIVE
| <rel>'S CONVERSE | THE CONVERSE OF <rel>
| <exp> OF <art> <rel> | <exp>'S <rel>

<op> == AND [ OR

<question> == DID <id> <rel> <id> | WHO <is> <id>'S§ <rel>
| WHAT <noiz> <art> <id> <noise> <rel>
| HOW MANY <id>S <noiz> <id> <rel>
| <qual> <id> <art> <id > |<is> <id> NOT <art> <id>
| <is> <id> <art> <idx>

<noiz> == <is> | <id>

<qual> = IS EVERY | ARE ALL | <is> NO |<is> SOME

<idx> == <id> | <id> , <id1> | <idl> <that>

<that> == THAT <is> <id1> | THAT <idl>

(A represents the null string.)




(1)

(2)

(3)

(4)

(5)
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# (DS, START, (# (DS,READ, ## (RS)) # (SS,READ, (, ),:,.)#(DS,READ, ##(READ,,))
#(#(LS))# (START)))"

# (DR, LEXTYPE, IS;ARE,VERB) # (DR, LEXTYPE,, AND ; OR, OP)

# (DR, LEXTYPE , THE ; EITHER ; BOTH ; A; AN ; ANY , ART)

# (DR, LEXTYPE , CONVERSE ; TRANSITIVE ; SYNONYM; IF ; THEN ; OF ; WHAT ; WHO ; DID ; HOW;
NO;NOT ; SOME ; EVERY ; ALL ; THAT , KEYWORD) *

#(SET,GET,RL) # (DS,RL, (# (GET, # (SYN,A) ,# (SYN,0) ,# (SYN,V))) ) # (S8, RL A,O,V)
# (DS, SYN, (## (GET, SYN,X,**) ;X)) # (S5,SYN,X)
#(DDR,IS = SYN .V, .CON. IS .V. @IS)’

#(DS,LS, (#(DS,@A,## (READ)) # (DS, @@, ## (READ) ) #(SS,0A, ,?7)#(SS,80, ,?)
#(LS1Y))

#(DS,LS1, (#(DS,@B,##(CS,8A))# (EQ,## (@B) , , (## (SRCH, ## (READ) , 7, QUERY,
INPUT) ), (# (EQ, ## (GET,LEXTYPE, ## (8B) ,**), , (# (DR, LEXTYPE, ## (€B),
1D)))#(LS1)))))! |

# (DS, INPUT, (# (DS,@0,## (CS,@@) ) # (EQ, ## (80) ,THE, (# (THE)) , (# (GET, LEXTYPE,
##(@0) , *@A*)# (EQ, ## (@A) ,KEYWORD, (# (KEY)) , (# (EQ, ## (@A) , ID,
(# (FACT)), (# (RULE)...)'

#(DS,QUERY, (# (SS,READ, AND )#(DS,@e,## (READ,;))#(SS,e@, ,?)#(COUNT)
#(##(€1))))"

#(DS, COUNT, (#(DS,CX,0)#(CR,@@)# (CONT)))

# (DS, CONT, (# (DS, @A, ## (CS,08) ) # (EQ, ## (8A) ,, , (# (EQ,## (GET, LEXTYPE, ## (@A) ,

**),ART,, (#(DS,CX,# (AD,##(CX),1)) #(DS,@## (CX) ,##(RA))))#(CONT)})I}) )"

#(DS,THE, (# (COUNT) # (DR, ## (€1) , ## (@3) ,##(85))))
#(DS,KEY, (# (COUNT) # (##(€1))))

# (DS,RULE, (# (COUNT)# (DDR, ## (@1)=# (EXP,3))))
#(DS,SYNONYM, (# (DR,SYN, #4 (€2) , ## (@## (CX)))))
#(DS,IF, (#(DDR,## (@##(CX))=#(EXP,2))))
#(DS,NO, (# (DDR, ## (@2)=.N. ## (##(CX)))})"
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(6}  #(DS,FACT, (#(SS,READ, AND )#(DS,@e,## (READ,;))}#(SS,ee, ,.)#(COUNT)

# (EQ,## (GET, LEXTYPE, ## (€2) ,**) ,VERB, (# (VERB) ), (# (SRCH, ## (1) ,
('S), (#(SS,el, ('S))# (DR, ##(@2),##(@L),## (84))), (#(EQ,##(CX),
2, (# (DR,PROP, ## (@1} ,##(@2))), (# (DR, ## (@2) ,## (@) ,##(€3)...)"

#(DS,VERB, (# (SRCH, ## (@@, ), OF , (#(DR,# (NEXT),## (@4 (CX)),##(€1))),
(# (SRCH, ##(ee, ), IS A ,(#(VERB1)), (#(SRCH,##(ee, ), IS AN ,
(# (VERB1) ), (# (EQ, ##(@2) ,ARE, (¥ (VERB2)), (¥ (DR, @IS, ##(e1),
##(@3)...)"

#(DS,VERBI, (# (RELATE, ## (@3) , ## (@1) ) # (DR, SUB, ## (@3) ,##(€1)...)

#(DS,RELATE, (#(DS,@A,X)#(DS,@B,Y)#(S8S,8A, ;) #(SS,@B,;)#(RELAT}))

#(DS,RELAT, (#(DS,@C, ## (CS,@A) ) # (EQ, ##(@C),, , (# (DDR, ## (8C)=
## (@B, .V.))#(RELAT)...)#(SS,RELATE,X,Y)"’

#(DS,VERB2, (# (NL, # (LAST,@1) ) # (EQ, # (LAST,@3,S, (¥ (VERB1) ), (# (DR,@IS,
#(@1),##(@3)...)"

#(DS,NEXT, (# (DS,@E,##(CS,# (CR,@@)@e))# (NEX)))

#(DS,NEX, (# (DS, @E, ## (CS,@@) ) # (EQ, ## (GET, LEXTYPE, ## (@E) , **) , ID, (## (€E)
Y}, (F(NEX)...)!

# (DS, LAST, (# (DS,X,#(SS,X,S;)##(X,;)) #(NL,#(CS,X)) # (DS, @E,## (CN,X,-1))
#(EQ, ##(QE),S, (#(DS,X,# (CN,X,#(SU,# (LEN,##(X)),1)))))##(GE)}))
#(SS,LAST,X) -

(7)  #(DS,EXP, (#(EQ,##(@Y),THEN,, (# (EQ,Y,##(CX), (##(@Y)), (¥ (EQ, ## (e# (AD,
Y,1)),0F, (# (COMP,# (AD,Y, 1)) /## (@Y)# (EXP, ## (CXX))) , (# (SRCH, ##(
8Y), ('S), (#(SS,@Y, (*S))##(@Y)/#(EXP,#(AD,Y,1))), (FEQ,## (GET,
LEXTYPE, ## (@Y) ,**) ,0P, (. #(EQ, ## (@Y) ,0R,V,A) . # (EXP,# (AD,Y,1))),
(#(PS, *** DO NOT UNDERSTAND STATEMENT.)...)#(SS,EXP,Y)

#(DS,COMP, (# (EQ, ## (GET,LEXTYPE, ## (€Y) ,**) ,0P, (# (DS,CXX,Y)), (# (EQ, ##(
@Y), THEN, (# (DS,CXX,Y)), (# (SRCH, ## (@Y}, ('S), (#(SS,@Y, ('S) ) ## (€Y)
/# (COMP, # (AD,Y,1})), (#(EQ, ## (@#(AD,Y, 1)) ,OF, (# (COMP, # (AD,Y,2))
JHECRY)), (#H (BY) #(DS,CXX,# (AD,Y,1))#(EQ,Y,## (CX), (# (DS, @## (CXX)
,THEN) ...} #(SS,COMP,Y) ! ’
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# (DS, HOW, (# (CT,# (RL,#4 (@## (CX) ), #1 (@# (SU,#4#(CX,1)),%*))))

# (DS, WHAT, (# (RL, ## (@## (CX)) ,# (NL, # (CS,@@) # (CS, @) ) # (NEX) ,**}))

#(DS,DID, (# (EQ, # (RL, ## (@3) ,## (€2) ,##(@4)),1,##(YES))))

#(DS,WHO, (# (RL,##(e4),#(SS,03, ('S))##(@3),**)))

#(DS, 1S, (# (EQ, ## (GET,LEXTYPE, ## (€2) ,**} ,KEYWORD, (# (QUAL) ), (# (EQ, ##(€3),
NOT, (# (NOT)), (# (SRCH, ## (@@, ), THAT IS ,(#(THATIS)), (#(SRCH,
##(@@, ), THAT , (#(THAT)), (#(EQ,# (INT,##(@2),#(RL,IS,##(@3),**)
), #(NAY) ...}

#(DS,NOT, (# (EQ, # (INT, ## (@2) ,# (RL, IS, ## (@4) ,**)), ,# (YES)...)

#(DS,THATIS,(#(EQ,#(INT,##(@Z),#(INT,iS,#(NL,#(CS,@@),#(CS,@@),#(NEX);
#NEX), %)), , ## (NAY) .. .) | ' ' :

# (DS, THAT, (# (EQ, # (INT, ## (@2) ,# (INT,# (RL,IS,## (@3),**)} ,#(RL,PROP,**,
##(@##(CX)));#(EQ,##(@#(SU,##(CX),1)),THAT,,(#(RL,##(@#(SU,##(CX)
>1)), ##(@#H(CX)),**))))), , ##(NAY)))) _

#(DS,QUAL, (# (EQ, ## (@2) ,SOME, (# (SOME) ), (# (EQ, ## (@2) ,NO, (# (SOME)), (¥ (EQ,
#(SYMD, # (RL,SUB, ##(@3),**) ,#(RL,SUB, ##(@4),**)), ,##(YES)...)

# (DS, SOME, (# (EQ, # (INT, # (RL;SUB, ## (@3),**) ,# (RL,SUB, ## (@4) ,**) ), ,## (NAY) ...

#(DS,YES, (YES,NO(,} NOT AS FAR AS CAN BE DETERMINED.))

#(DS,NAY, (NO(,) NOT AS FAR AS CAN BE DETERMINED,YES))'
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The program listing on the preceeding pages represents a
fairly sophisticated use of UMIST and is almost unreadable even
to those familiar with the language (it writes quite fluently
though). The program is coded iﬁ UMIST and not all of the functions
used are available in TRAC. We will now briefly describe the program
structure and strategy. Note that the program is oversimplified, for
example it has only a lexicon for keywords and would not properly
parse Cooper's fact: COMBUSTIBLE THINGS BURN, since it doesn't know
the meaning of "THINGS." The parenthesized numbers in the margin of
the program listing identify program ''blocks' which will be referred
to in the discussion below.

| Block (1) is what amounts to the '"main program.'" It is the
procedure which replaces the UMIST ”idler“ and reads in each statement,
standardizes punctuation, calls the lexical scanner (LS),rthen calls
on the appropriate routine (INPUT or QUERY), after which it regains
control recursively to read the next inpqt.

Block (2) is the definition of the lexical types of all of the
réserved words of the language. Any other word is of type ID. This
blo¢k also provides the system thesaurus by redefining RL. All calls
to the redefined RL.will first make any substitutions found in the
thesaurus. [Note that this provides a fairly natural way of answering
the "nonsense" question of Cooper: IS MAGNESIUM MAGﬁESIUM,.since the
question type "IS A B" will see if A is a synonym for B, and by the
definition of SYN in block (2), everything is avsynonym for itself.
This is opposed to the extra equality axioms needed by Green to answer

the same question.]
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Block (3) is the lexical scanner. It determines the type of
statement by whether or not it ends with a question mark, and also
ensures that each word in the statement {(words are delimited by blanks)
is assigned a lexical type. Throughout, the symbol "@" is used as a
reserved symbol, and the strings @A, @B, etc. are internal temforary
forms used by the program.

Block (4) contains the two_procedures'that can ‘be called: INPUT
and QUERY. Each of these functions performs initializations and assigns
each foom @1, @2, ... , @n the sequential content word of the statement.
Then, on the basis of fhe first word of the statement, it decides which
procedure to call to process that particular statement.

Block (5) contains most of the procedures that are called as a
result of the first word béing a keyword. The procedure RULE processes
rules that do not begin with a keyword but are identified by context.
Block (6) shows the various functions necessary to process facts.
Although this program does distinguish betweeﬁ rules and facts, it is
a different distinction than TRAMP makes. In particular, the routine
FACT will geneiate calls to both dr and ddr, tﬁus making some rules
retpievablek . |

The heart of all of the various procedures used to parse ''rules"
is the "expression scanner" (EXP) shown in‘Block (7). The expression
scanner operates recursively to gemerate the correct arguments to ddr.
" EXP 'calls on a subroutine COMP.to forﬁ)"revefse” compositions neces-

sitated by constructions of the form "RL OF R2" {the interpretation of

such constructions is discussed on page 70).
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-Finally, block (8) translates questions into the proper
retrieval requests.
As an example of how the program operates, suppose that it is

input:
OXYGEN, SULFUR, COPPER AND TRON ARE ELEMENTS.

The main program, START, will remove the commas yielding:
OXYGEN; SULFUR; COPPER AND IRON ARE ELEMENTS.

Next the lexical scanner assigns:

OXYGEN, SULFUR, COPPER, IRON, ELEMENT type ID
AND type QP
ARE type VERB
and statement type FACT.
Since the statement type is FACT, the routine INPUT is called which in
this case will just pass the call on to the routine FACT. FACT will

change the "AND" to a semi-colon and call COUNT which stores:

@1 = OXYGEN;SULFUR;COPPER; IRON
@2 = ARE
@3 =

ELEMENT
'On the basis of the keyword ARE, the routine VERB2Z is final;y called, which
ultimately generates the TRAMP function calls:

# (DDR, ELEMENT=0XYGEN. V.SULFUR.V.COPPER.V, IRON) # {(DR,SUB,ELEMENT ,OXYGEN;

SULFUR; COPPER; IRON).

In lieu of exhibiting output of the program we shall discuss of
what significance such output would be. Suffice it to say that the

program would handle all of the kinship examples presented earlier, a class
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of questions that might be asked of an automated library retrieval
system, and would handle almost all of Cooper's example (page 127)
correctly. It would not understand questions 16 or 17 of Cooper's
chemistry example; it would miss question 23 because it would not
understand fact #10; and it would expect all twenty-three questions
to be worded as questions, not facts. All of the facts {except the
last three used by Green) would be accepted exactly as they are.

This '"question-answering' program is shown only as a demon-
stration of‘how’TRAMP can be used. Actually, to call that program
a question-answerer is somewhat presumptuous. Let us now take a
closer look at the area termed "question-answering! and examine the
validity of the results being obtained therein,

All too often in artificial intelligence one is presented with
a "machine' that pﬁrportedly performs some task, e.g. answering ques-
" tions. Too frequently the significance of such a machine is appraised
before its insides are examined: "Here is a black box; this is its
input and that is its output." If we do not closely inspect this
maéhine, but simply accept it as a ''black box," we may well be the
victims of a hoax. If the machine has all of its responses built-in,
then we should not want to call it heuristic or say that it is é very
interesting machine simply on the basis of its responses.

Inasmuch as Cooper [3] essentially made the first organized
attempt at the general problem of question-answering, his chemistry
example has become a standard of comparison ard éoint of reference.

For example Cooper, Slagle [35], Green, among others, run their
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SIMPLE CHEMISTRY

EXAMPLE

BASIC FACTS

MORE EXTRA FACTS USED BY GREEN

1. magnesium is a metal 35, ferrous sulfide is a sulfide
2. magnesium burns rapidly 36. equality is reflexive
3. magnesium oxide is a white 37. equality 1is symmetric
metallic oxide 38. equals can be substituted for equals
4. oxygen is a nonmetal
5. ferrous sulfide is a dark-
gray compound that is
brittle
6. iron is a metal QUESTIONS
7. sulfur is a nonmetal : Co .
. . : 1, magnesium is a metal
8. gasoline is a fuel . .
. . . 2. magnesium i$ not a metal
9. gasoline is combustible . .
: . 3. magnesium is a nonmetal
10. combustible things burn . .
. 4, magnesium is not a nonmetal
11. fuels are combustible . .
. . - . 5. magnesium is a metal that burns
12, ice is a solid .
. rapidly
13. steam is a gas 6. magnesium is magnesium
14, magnesium is an element ' 5 . gnes
- - 7. some oxides are white
15. iron is an element : ; -
. 8. no oxide is white
16. sulfur is an element . .
: 9. oxides are not white
17. oxygen is5 an element . : . .
. . 10. magnesium oxide is an oxide
18. nitrogen is an element . . .
: 11. every oxide is an oxide
19. hydrogen is an element . .
: 12, ferrous sulfide is dark gray
20, carbon is an element . . .
: 13. ferrous sulfide is a brittle compound
21. copper is an element . . .
. 14, ferrous sulfide is not brittle
22. salt is a compound X .
: 15. some sulfides are brittle
23, sugar is a compound o .
. 16, ferrous sulfide is not a compound
24, water is a compound

. sulfuric acid is a compound 17

26. elements are not compounds
27. salt is sodium chloride 18
28, sodium chloride is salt 19'
29. oxides are compounds 20'
21,
EXTRA FACTS USED BY COOPER 22,

{AND GREEN) 23.

metals are metallic
no metal is a nonmetal .
dark-gray things are not white
"33, a solid is not a gas

34. any thing that burns rapidly

30,
31.
32.

that is not dark gray
anything that is not a compound is
not ferrous sulfide
no dark gray thing is a sulfide
ferrous sulfide is white
sodium chloride is a compound
salt 1s an element -
sodium chloride is
gasoline is a fuel

an element
that burns
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question-answering programs on thislchemistry example as ‘some sort of
demonstration that it works. But this chemistry example tnvolves
almost no deductive logic; rather it is nearly entirely a semantic
game, Typical '"questions" are:

MAGNESIUM IS MAGNESIUM, ana EVERY OXIDE IS AN OXIDE.
The full example is shown on page 127. Of the twenty-three questions,
about the deepest deduction required is to go from:
GASOLINE IS A FUEL, GASOLINE IS COMBUSTIBLE, COMBUSTIBLE THINGS BURN,
to:  GASOLINE IS A FUEL THAT BURNS.

The questions in the chemistry examplé involve being able to
translate from English and comprehend the statement mechanically, ‘not
.performing logical deduction. In this light, one wonders why Green
should have performed all of the translation by hand (requiring two
hours). Cooper was able to correctly answer all questions except #19,
20, 22 and 23. One also wonders how he was able to answer question 15
without fact 35; Another discrepancy lies with fact #38 used by Creen.
How could that sentence possibly be transléted into first-order logic?
Of course it cannot, and so the single instance of that schema that
willlbe required is translated instead, viz.

(FA(X Y) (IMP{AND(IS X Y) {COMPOUND X)) {(COMPOUND Y)}).
How fortunate that the translator could foresee how‘this féct would be
needed. A final observation from a cursory scan of page 127, is that
--facts 36 and-S?-exbressmonly~the properties_of equ#lity required for

this example—o need to say that equality is an”equivalence relation
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since this example does not use the transitivity of equality.

It would have been considerably easier to write a TRAMP
program specifically for this example that would have answered all
the questions correctly, than the program for the language L. It
would have been easier still to have just translated all of the
facts and questions into TRAMP code directly. However, the problem‘
involved is reaily one in mechanical translation, which we said at
the outset was not the topic of this paper—we are interested in
methods of deduction,

The point about the chemistry example.is that it does not
demonstrate deductive capabilities, yet that is what people use the

-example to illustrate. Our model'of question-answering, explicitly
employed by Green, assumes that the information is in a canonical
form. But if these questions are phrased canonically they become
quite trivial, even absurd to the point of nonsense, or else unans-
werable! For example question 15 is unanswerable from the origiﬁal
29 {(or 34) facts, since we do not know wha£ a sulfide is.

An example of how a program can be adapted to produce desired
responses is provided by question 17. One first becomes suspicious
of this question by looking at the dialogue that fesolution produced:
Q ANYTHING THAT IS NOT A COMPOUND IS NOT FERROUS SULFIDE
A YES, X - MA

~ We have a strangel?’ﬁorded "question' which was worded in that way as

a thallenge to a mechanical parser, and we get béck the answer "YES,"

the validity of which is not immediately clear. The added information
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that "X = MA" only helps to confuse the issue. This quegtion seems
extremely simple reduiring the deduction that
ANYTHING THAT IS NOT A COMPOUND IS NOT FERROUS SULFIDE
from the fact that
FERROUS SULFIDE IS A ... COMPQUND.

Simple as it is{ the deduction doés require proper representation of
the verb "is" by the predicate "IS," which is beyond a straightforward
translation to predicate calculus as needed for resolution. The
antecedent is translated: (COMPOUND FES), and the question is trans-
lated: (FA (Y} (IMP (NOT (COMPOUND Y))(NOT (IS Y FES))})}. When the
question is negated and placed in skolemized conjunctive normal férm,
‘no contradiction can be inferred because the semantics of "is" has not
been captured by fhis translation! This is gotten around by changing
the question slightly to require that ''something'' is not a compound:
(AND(EX(X)(NOT(COM?OUND X))) (FA(Y) (IMP(NOT{COMPOUND Y)} (NOT(IS Y FES}}))).
fthe abbreviation "FES" also gets us around the nasty problem of knowing :
that "ferrous' is a kind of sulfide and that 'ferrous sulfide" is one
entity]. This'seeﬁs quite legitimate since if the added condition were
false, the implication would be vacuously true. We see that it is only
a ploy because it is only used when necessary. Implications which can
be proven or disproven without requiring that the domain be non-empty
do not require that it be non-empty!

The difficﬁlty with representation of English statements in the
prédicate calculus is not in the direct translation (e.g. as performed

mechanically with moderate success in [40]); but in supplying the
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proper axioms to adequately reflect the meaning of a pre&icate and
its interaction with other predicates. Further ramifications and
examples of this problem are discussed at the end of section 7.2.

To further illustrate the semantic problems underlying the
chemistry example, from facts # 3 and 5 one should be able to deduce
something about the colors of magnesium oxide and ferrous sulfide.
Yet no system without a good bit of built-in information could answer
the question:

- -WHAT COLOR IS FERROUS SULFIDE?
or phrased as a true/false question:
FERROUS SULFIDE IS COLORED CANARY YELLOW,
Yet, just this kind of information was needed, and perhaps built-in
subconsciously by Cooper, to answer question 15 without explicitly

knowing that FERROUS SULFIDE IS A SULFIDE.

7.2 EVALUATION AND CONCLUSIONS

We have presented a relational language and implied that while
faliing short of the expressive power of the predicate calculus, it is
a relatively rich language. Exactly What can and what cannot be phrased
in this language? As aemonstrated in Chapter 6, one can express any
relation using the rules definéd.in Chapter 4: i.e. on the next iter-
ation we can say that any relation that can be represented as the union

of relational metworks of other relations. Still, this is not too helpful.
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The language clearly does not have the power of first-order logic,
since it does not allow explicit quantification. Also it presently
allows only binary and unary relations (though this, theoretically, is
not a real problem, and, practically, the restriction could quite easily
be lifted). The basic framework underlying the relations is the concept
of the set of ordered pairs. Within this framework we can then perform
various set operations, constituting a "complete" set ‘of operations, viz.
ﬁegation, union, intersection, subtraction. Theoretically, negation and
union alone ‘suffice, except that for our context negation is ill-defined.
The complement of a set is taken with respect to something, and that
something is ill-defined in TRAMP. Indeed, this is the most serious, ‘if
not the only major restriction in our relational language.

Let us examine the éause and implications of this restrictiomn.

In one version of TRAMP "global' complements are not allowed such as
specified by the relational sentence:
R = .N. Q

The rationale for that was the relatively inefficient processing that
would be required and the uselessness of such constructions. - For
example, if one defines

MALE(x) = .N. FEMALE (x)
one would have everything that is not a femﬁie being a male, including
such things as cars, stone, rocks, computers, etc, Every single time
" that any piece of information was added or deleted from the data base,

either the relation MALE or the relation FEMALE would change! What one

really means is:
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.MALE(x) = .N. FEMALE(x) .A. (PERSON'[Qc) .V. SEX(x,something))
i.e. one really means that the negation is to be relative to some
universe of discourse. TRAMP generally requires that such a universe
be specified (as does Levien [33] who only allows the operator AND NOT,
the operator NOT by itself being undefined). A later version of TRAMP
allows global complements, but does not take action on them until a
universe is otherwise defined, Thus R = .N. Q by itself is not used
as information about the relation R. But if also we have some definition
R = P, then TRAMP will form the relative complement of Q and P, i.e. it
will compute the relation P as specified and then subtract out the
relation Q.

" This problem with complements points out one of the major
restrictions of the relational language , viz. it is quite difficult
to translate some simple Zmplications. One can do this in the frame-
.work of set theory, much as Cooper did using Aristotelian logic. To
see the difficulty, if we have R = Q, then the meaning of this.in TRAMP
is "Q IS A SUBSET OF R." Thus we can translate positive implications:
‘ (x) [Q(x) > R(x}]
in a straightforward way by translating the sentence into set theory,
and éaying that Q is a subset of R. But suppose we have the equally
simple implication:
(x) [Q(x) = ~R(x)]

Now, having no convenient way to &eal withrglobal complements, this
cannot be straightforwardly translated!

The implication Q > ~R 1is a negative statement! In TRAMP
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we are always looking for "inference rules' that tell us how to

derive one relation from others; negative rules do not tell us how

to do that, except in the sense of formihg a relative complement,

since the above negative implication does tell us that Q and R are
disjoint so that we may use all of our information to compute a set

of Q's and then subtract out any R's that were also computed in the
process. But still, even though TRAMP can in fact use the information,
it does not directly translate into set theory that we can use, it

only tells us that two sets are disjoint, which is a negative statement.

It certainly cannot be handled in TRAMP in the same simple way that

positive implications are handled.

The relative strengths and weaknesses of the TRAMP relational
language are perhaps best Brought out by comparison with other lang-
uages and methods of deduction. We will start with Elliott [8].
Firstly, his language, GRAIS, did not allow recursive definitions.

He sharply distinguished between 'primitive" énd "composite' relations.
A composite relation (one that is defined in terms of primitives) may

be defined only in terms of primitive relationg. The properties, such
as symmetric, transitive, etc. may only be applied to primitive rel-
ations. Another major difference between GRAIS and TRAMP is the context
in which his language is used. Although GRAIS doeslallow the retrieval

of answers, if the relation in question is composite, then one can only

receive a YES or a NO. In this context he does not compile the relational

sentence, as TRAMP does, but simply interprets it at execution time, by

going through and assigning truth values to each relation, thereby
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reducing the sentence to a proposition with a truth value, and that
truth value is the answer to the question. This context simplifies
GRAIS processing significantly, and yet that truth value evaluation
mechanism is the most complex and involved part of the GRAIS program,
indicating that our results in Chapter 6 may be of value.

Levien's work [33] is more recent, and more difficult to evaluate,
His language, like Elliott's, does not allow recursive definitions. Also,
ﬁe too has his relational language operating in a different context than
TRAMP. Namely, the relational sentences of his system are part of a
program that must be written each fime that it is exécuted; it is not
saved by the system as a 'rule of inference' as is done in TRAMP. A
major difference is that his relations are not very general or abstract,
and in fact seem to be buiit—in to the language by the system for the
user, Levien's language is difficult to evaluate since he never precisely
defines it, but rather seems content to show that the very simple sent-
ences that he expects can be processed without difficulty. TRAMP has
taken the position that anything that is syntactically valid can (and
will) arise, and has seen to it that any such_sehtence can bg correctly
parsed. Levien does not say how he does process these simple sentences,
only that not much attention has been paid to it and the method is ad hoc.
It is interesting to note that Levien does not allow global complements
either, but requires (syntactically) that a universe be specified. In
 summary, his language is imprecise and he in no way indicates that path-

ological sentences may occur, and what action he will take if they do.
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It is difficult to compare TRAMP to Green's QA3, -First-order
logic is certainly richer. He has no parsing problem since he will
deal with sentences exactly as they come in (with well—known algorithms
to convert to prenex conjunctive normal form). One advantage of TRAMP
is the ease with which the relational sentences can Ee written in
English-1like sentences to be parsed by a TRAMP procedure, not some
hypothetical front-end. Also, though TRAMP has quite the syntactic
rigidity of QA3, there is the possibility of incorporating semantics
into the triples, Qhereas this is all but impossible in resolution.

Our appréach to fact retrieval is diametrically opposed to that
of Green. We cannot claim the theoretical completeness of our system,
but we can claim that in practice some things can be done sufficiently
easier that it is, overall, more useful for certain applications. The
underlyiné storage structure of TRAMP is perhaps sufficiently better
- than QA3's storage management that more answers lie within its physical

limits, if not its theoretical limits. Certainly we do not discount
resolution, and the theorem-proving approach to question-answering, we
siﬁply do not think that by itself it is adequate. Neither do we think
that‘the data structure approach by itself is adquate. It seems obvious
that later day sophisticated question-answerers will have to draw from
various techniques including clever storage management, efficient theorem-
.proving techniques, and the proper data structure.
- -An- example illustrating the relative strengths of TRAMP and QA3
is Green's dialogue on page 61 of [2] (where he is using a dialogue taken

from SIR [36]). On the basis of the two facts:
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(FA (X)(IF {IN X KEYPUNCH-OPERATOR}) (IN X GIRL}))
(FA (Y)(IF (IN Y GIRL) (IN Y PERSON}))
QA3 cannot answer the question:
(IN KEYPUNCH-OPERATOR PERSON)
First of all, one could not directly ask such a question in TRAMP, since
TRAMP strictly distinguishes between facts and rules; Green treats them
exactly the same—as wffs. However, this question could be asked indir-
ectly in TRAMP and_would be answered correctly if phrased correctly. QA3
cannot answer this because a keypunch-operator is not an element of the
set of persons, it is a swbset. In TRAMP, almost any representation
that allowed that question would answer it since TRAMP deals with sets.
Another example is found on page 62 of [2] consisting of the
following dialogue:
S (FA (X Y)(EQV (IS X Y)(ISY X)})
S (FA (Y Z WY(IF (AND (IS Y Z)(IS Z W})(IS Y W)))
S  (IN JOHN TEACHER)
S (IS JOHN JACK)
@  (IN JACK TEACHER)
NO PROOF FOUND
CONTINUE
NO PROOF  FOUND
' QA3 cannot deal with the semantics of the predicate IS in a natural way
at all (as earlier illustrated in the chemistry example). The first
two statements of the above dialogue attempt to éxiomatize the meaning

of the predicate IS, but they fail. What is needed in the above example
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is the statement that EQUALS CAN BE SUBSTITUTED FOR EQUALS, but this
transcends first-order logic. This example could be easily done iﬁ
TRAMP (in fact, the program shown for processing the language L provides
two ways of handling this particular situation: firstly by using ddr

to define JOHN to be equal to JACK,‘and secondly by using dr to make

a thesaurus entry), since the formal axiomatization is not required.

In summary, QA3 is richer, more formal, and therefore much more rigid.
The completeness is purchased at the expénse of informality (usefulness)
and is of dubious value since it cannot be realized on present day

equipment for any useful class of wffs.




Chapter 8: SUMMARY

Let us now review what we have done and what has been learned
from it, TRAMP is a language; The TRAMP language consists of two
separate sub-languages: the relational language and the associative
language., The project initially was undertaken as an experiment in
associative memories*. The associative experiment was a failure in
the sense that it failed to accomplish the vague notions that had
originally motivated it., This motivation was the desire for a
"dynamic content-addressable' memory structure. It is difficult to
articulate what it was that was wanted. Whatever that was, associative
memories seemed like something to try, but they were not the answer.
Since the project was experimental, the implementation was never
very polished and was never released to the general public. Nevertheless
““there were several key users of the implementa£i0n whose applications
covered a surprisingly wide range. The language was employed for such
diverse tasks aé: a large scale interactive gréphics system [31]; a
smaller interactive graphics system using machine-machine communication [32];
artificial intelligence [9]; a pfoject accounting system doing mostly

numertical calculations, among others.

.-
At that time the only other experiment was Feldman's [18], which we
were not acquainted with until the project was about to begin.
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Because of the diversity of the applications to which the

TRAMP language has been put, and its successes in such applications,
the associative experiment was hardly a total failure, The assoc-
iative language was designed and implemented rather hasfily and it
was never returned to, as the relational language was of primary
interest—and, of course, the basic problems of deduction that the
relational language was designed to alleviate. As such, the only
sérious deficiency in the associative language is the inability to
refer to.an associative triple within an associative triple. For

example, the sentence:
JOHN GAVE $100 TO MARY

should be expressed in triples as:

S1: GAVE, JOHN, S2

-S2: TO, MARY, $100
This would Ee accémplished by allowing names for associative sentences,
or otherwise allowing an entire sentence to be refered to within an
association.

In addition to the associative language, a relational data
structure and language was provided, requiring a compiler, macro-
expanﬁer, and several internal utility functions, This relational
mechanism and language were of paramount interest. Today there seem
to be a great many languages being proposed along the lines of Elliott [8]
and Levien [33]. To our knowledge, all of these languages are either
less rich than the TRAMP relational language in expressive power,'or
else they have not been implemented. Thus, the very simple method of

dealing with a relatively rich language, presented in Chapter 6 is
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perhaps of some practical utility.

Though the TRAMP relational language, as implemented, relies
heavily on the associative language as well as on the UMIST host
language, fhe ideas embodied in Chapter 6 are applicable to a very
wide class of relational languages. ©Note that the algorithm of
section 6.1 is quite independent of the rest of the system, and only
assumes that the basic building blocks of the data structure are
binary relations (i.e. triples), regardless of how they are actually
storedm-assotiatively or otherwise. This is a standard assumption the
merits of which we shall not argue here. To repeat, we feel that the
algorithm of section 6.1 may be significant if only because of the
recent-upsurge in interest in relational languages, particularly in
the field of data base management. It seems that many languages are
being proposed, and of the ones that this author is aware of, the
‘languages are either imprecise, needlessly restricted, or unimplemented.

The individual constituents of the system were each motivated
and explained in some detail. Chapter 5 explained.how these various
pieées fit together to form the TRAMP language. Chapter 7 analyzed
and evaluated the TRAMP language and compared it to other notable

related work in the field.
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APPENDIX A: A BRIEF SUMMARY OF THE UMIST LANGUAGE

The following excerpts from the Umist manual are reproduced
with the kind permission of Mr. Tad Pinkerton. What follows is partial
and incomplete and is intended only to familiarize the reader with the
structure of the langﬁage and enable him to follow the Tramp deéfinitions
aﬁd examples. A complete description of the Umist language may be
found in Vol. 11 of reference 23.

A level of the TRAC language called "TRAC 64'" is described in [15].
It is the basic standard and point of reference for Umist. A good
discussion of TRAC 64's design goals and principles is given in reference
[37]. Much of the motivation for the development of the TRAC language
came from the work of Eastwood and McIlroy [38] at Bell Laboratories.
A system similar to the TRAC language which was developed independently

in Great Britain is described by Strachey [39].

UnuUALAUAURUAUAUNUNUNUAURUNUNUAUNUAUNUAYNUNUAUAUNUNUNUNUNUNLAUAUNUOUNUNUN

MODE OF OPERATIGN

There are two kind of functions: primitives, or machine-language
subroutines that support the system in its enviromment. The primitives
are the basis for the second type of function, called forms, or named

procedures in Umist storage, which are character strings written like
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macro definitions and expanded, interpretively, when called. When
writing a functioﬁ call, one specifies whether its value (replacing
the call) is to be processed again as part of the input string (active
call), or whether processing is to continue starting with the portion
of the string to the right of the value returned (neutral call). A
single processing cycle is completed when the scanning and evaluating
process reaches the right-hand end of the string.

Sequencing and evaluation in Umist are inherently recursive: .
function calls are evéluated from left to right, but may be nested to
any depth in the arguments of othef calls. Each function call is
evaluated when, and only when, all of its arguments have been completely
processed. Thus the st¥ing being processed is divided logically into
two parts: the active strfng, consisting of inpﬁt text (possibly
preceded by inserted functional values) which is yet to be scanned,
and evaluated arguments of function calls which are not completely
ready for evaluation. This mode of opergtion; based on the completely
interpretive execution of function calls, eliminates the distinction

between program and data.

SYNTAX

Each function call in Umist has the form of a specially delimited
argument list, in which the name of the function is always the first
argument. Calls may be open (a variable number of arguments) or .closed. ”
A function call may be protected from evaluation by the use of literal

delimiters. . Another delimiter signals the right-hand end of the input
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string. These considerations iéad to a syntax in which there are
seven special symbols, whose occurances are deleted from the string
during syntax scanning and whose presence indicates the beginning or
énd of a substring. The character strings enclosed in brackets below
are the Umist special symbols:

1. Beginning of neutral function call [##(]

2. Beginning of active function call [#(]

3. End of argument [,]

4. End of call [)]

5. Beginning of literal [q

6. End of literal D1

7. End of input string [']

Note that the three beginning-of-substring symbols ##( and #(

and ( are terminated by the occurance of the same end-of-substring
. character, ). Umist has a "parenthesis balanced" syntax, in the sense
that an occurance of the right parenthesis matches only the last
previous occurance of any one of the beginmning-of-substring special
sy%bols. Whenever a literal substring is encountered, the Umist
processor removes the enclosing parentheses, but only the outer set 1is
removed if more than one matching pair occurs. Tﬁus a string initially
protected from evaluation may be evaluated if scanned a secopd time,

" and, in general, evaluation can be controlled to occur the nth time

the substring is scanned.




-146-

READ STRING AND PRINT STRING

The value of a 'read string' function call

# (RS)
is an input string accepted from the current input device, The
'print string' function

#(PS,X)
causes the display of the second argument, here.symbolized by X, on
the current output.device, and has a null value. |

When'the,Umist processor is first given control, and at the end

of every processing cycle, the idliné procedure

i#(PS,#(RS))
is automatically loaded as an input string., This procedure first causes
a read from the input device, with the input string becoming the second
argument of.the 'print string' call. Thus the string, if any, remaining
when the input string has been completely processed, is finally printed
before the idlingrprocedure is again loaded. For example, if the input
st?ing is

#(PS,ABC)"
then after the 'read string' has been evaluated the processor is scanning
the string
##(PS,# (PS,ABC))

“and the inner call produces the output ABC ; tﬁe outer call nothing,

since the inner 'print string' has a null value.
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DEFINE, CALL, AND SEGEMENT STRING

Any character string in Umist can be given a name and placed in
storage, from whence it can be called by using its name. The null-valued

'define string' function

#(DS,A,B)
places the string B in storage with the name A . A is called a form
with value B ., At most one string can be defined with a given name at

any one time: wuse of the same name replaces a former definition. The
value is reérieved with the ‘'call string' function
#(CL,A)

A form name, like a value, is any character string. The oﬁly
.restrictidn on length.is that of the total string capacity of the
processor.

The occurence of strings in storage is deleted‘with the 'delete
definition' function

#(DD,N1,N2,...)}
This null-valued function removes the names N1, N2, ... as forms and
discards their values.

Once defined, a form can be "parameterized," or segmented, using
the 'segment string' function:

#(SS,A,X1,X2,...)
This nullwvaluedrfunction scans the form A , searching for an occurence
of the String X1 as a substring, If X1 matches a part of A , that
paft is excluded from further matching, creating a ''formal variable;” or

segment gap. The rest of the form is also compared'with Xl to create,
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if possible, more segment gaps, all of which are assigned the ordinal
value one, identifying the argument matched. The (separate) substrings
of the form not already taken for segment gaps are next scanned with
respect to the string X2 , and any occurences of the latter substring
in A create segment gaps of ordinal-value two, etc.

Thus, the 'define string' and 'segment stiing' functions together
create a "macro" in which the segment gaps locate the '"formal parameters.'
The "macro" is expanded by supplying the "actual parameters' in a call on
the 'call string' function ﬁentioned above:

#(CL,A,Y1,Y2,...)
The value of the 'call' is generated by returning the form A with all
of thé segment gaps of ordinal value 1, 2, ... replaced by Y1, Y2, ...
respectively, If extra arguments are given in a CL, they are ignored.

If some are missing, null strings are used as their values.

THE EQUAL FUNCTICON

A decision function is provided for character strings:
/ #(EQ,A,B,T,F) |
If the string A is identical to the string B , then the value of
tﬁig function is the fourth argument, T; otherwise the value is the
‘fifth argument, F. Since the strings T and F may be any Umist

procedures, this primitive is the one normally used for branching.
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APPENDIX B: TRAMP FUNCTIONS

This.appendix is intended as a reference manual for Tramp and
provides full specifications for using the various functions available
in it. This section assumes familiarity with Umist (Appendix A), as
well as an understanding of the design goals of Tramp as set forth in

the body of this paper.

Running Tramp in MTS (Michigan Terminal System)

Tramp is inovked in the normal way by specifying it as the
iject file of a "RUN" command. The input is taken from the logical
device SCARDS; output is put on the logical device SPRINT; and error
comments (Tramp, not Umist) appear on the logical device SERCOM.

While all three are global run parameters, the active input/output
devices may be switched from SCARDS/SPRINT to some other logical
device, dynamically within Umist, via the PAR function.

The "RUN" command can accept, besides these keyword parameters,
a parameter list (via '"PAR=") consisting of the following three global
parameters, whose default values are underscored:

a. NOPRIME or PRIME
This parameter specifies whether or not the prime (") will be
required to terminate Tramp input lines. If EAR=PRIME, then the

program is in the normal Umist mode of operation: an input line is
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not terminated until the prime is encountered., Otherwise, a prime
will automatically be appended to the end of each input line (if not
already there), as delineated by a carriage return or other device-
dependent end-of-record signal, by Tramp before it is passed on to
Umist, which is still operating in the normal mode. If an input
record has as its last character an ampersand (§), then that is taken
to be a continuation mark: the ampersand is deleted from the line,
which is passed on to Umist without a prime. If the ampersand is
followed by a blank, then it is not a continuation mark; it must be
the last character, not just the last non-blank character!

The mode of operation is initially set with this parameter,
but may be dynamically altered during execution via the PRIME

function, fully described in this appendix.

*UMISTL or *UMIST
This parameter specifies which‘version-df Umist is to be used
as the host interpreter. Presently fhe above two files are the two
versions of Umist available. These two, and any other that might

become available, may be used.

NOW or [LATER

This parameter specifies when the Tramp functions are to be

loaded. If PAR=LATER, then only Umist will be loaded initially, with

the loading of Tramp being deferred until a call on #(tramp),-further

explained below.
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Tramp in,no way alters anything internal to Umist. With the
exception of the function DSS (Define Special Symbol), the full
facilities of Umist are available to the Tramp user. The Umist
erasure functions, DA (Delete All)} and RES (Restart), do not affect

Tramp. If that is desired, you must also call ERM,

PRIMITIVE FUNCTIONS PROVIDED BY TRAMP:

+ NAME : DR
PROTOTYPE: #(DR,A,0,V)
PURPOSE : This is the associative storage function—the function

that inserts the data into the structure.

DESCRIPTION: The three arguments, A, O, and V, are each non-empty
sets. The set element delimiter in Tramp is the semicolong (;)
because of the important role played by the comma in Umist. The
triple is.ordered and can be interpreted as meaning: A (0) = V.
Bach element of each set is grouped with each pair of elements of
the other two sets, and the resulting triple is stored, i.e. each
point in the cartesian product is stored. The three sets are
ordered sets only inasmuch as the order in which they appear in
the storage declaration is retained.

DR simply inserts the data into the structure in a way in which
it can be efficiently retrieved. Né check is made for inconsistency

of data or for redundancies.
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EXAMPLES: # (DR, AGE ,MABLE ; EUNICE, 39)

this would store: AGE (MABLE) = 39
AGE (EUNICE) = 39
# (DR, COLOR, CAR,RED ; GREEN)
NAME : KR
PROTOTYPE #(KR,A,0,V)
PURPOSE ; To undo what DR did—to erase an association from memory.
DESCRIPTION: The syntax of this function is exactly the same, and

the effect exactly the opposite, of DR.

EXAMPLES : # (KR,AGE, # (RLR,AGE, **, *X*) ,## (X))
this would delete ALL associations
containing "AGE" as the "A" component.
# (KR, COLOR,CAR, CHARTREUSE)

NAME : RL
PROTOTYPE: #{RL,A,Q,V)
PURPOSE: This is the associative retrieval function. 'Questions"

are asked of the data structure by calling RL and specifyiﬁg which,

if any, among ‘A, O and V are variables.

DESCRIPTION: Variables are denoted by enclosing a name, possibly null,
within asterisks (*). To ask the question: 'What color is the car?"
one would write: #(RL,COLOR,CAR,**) or "#(RL,COLOR,CAR,*NAME*)
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The "answer set' in this example is the set of all third comp-
onenets of associations having '"COLOR" as ths first component
and "CAR'" as the second. In the first instance above, the vari-
able is not Named [nothing between the asterisks}. In this case,
the answer set is the Value of the function. In the second
instance, the variable is Named, which results in the function
being Null-Valued, and the answer set being stored in Umist form
storage labeled by the Name within the asterisks. Thus, the
following two statements are exactly equivalent: '
#(DS,ANS, # (RL,COLOR,CAR, **))

# (RL,COLOR, CAR, *ANS*)
If there are no variables, e.g. #(RL,COLOR,CAR,RED), then the
question being asked is: "Does A(0) = V?", or in this case,

"Is the car colored red?" No answer set is generated, rather

a "truth value" is returned as the value of the function. If
the specified association is in fact resident in the structure,
or derivable thereof,‘then the value is "1'"; if not, the value
is "0." An ambiguity arises when one or more 6f the three sets
has cardinality greater than one. Suppose #(DR,COLOR,CAR,RED)
had been enterd. Then, '

~ #(RL,COLOR,CAR,RED) would have the walue 1"

#(RL,COLOR,CAR,BLUE) n noon " 1o
# (RL,COLOR,CAR,RED; BLUE) " W g

That is, the first association is found in storage, and the answer
.is "1v" The second is not found, and the answer is "0." But two
associations are specified by the last example, one is verified, 7
the other not, and Tramp returns the value "?"

If there is one variable, then Tramp is being asked to "fill
in the blank." The one variable may be in any of the three positions
of the triple. The variable may be either named or unnamed, with
the respective consequences described above.

If there are two variébles, then two answer sets are generated,

One of the variables is picked as the index variable, and values are
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one-by-one substituted for it, internally iterating on the one-
variable question., The one constant may again be in any of the
three positions of the triple. If both variables are named,

the function is null-valued, and the two answer sets are stored
and labeled by their respective names. If one is named and the
other unnamed, then the set corresponding to the named variable
is stored and the other answer set is the value of the function,
It is syntactically valid for both variables to be unnamed, but
this should not be done since then the value of the function
would be the concatenation, not union, of the two answer sets.

The two-variable questions generate two answer sets—not a
set of ‘ordered pairs! Soon a variation of this function may be
offered which will allow the generation of ordered pairs. In
the meantime, if this is desired, the user will have to write a
short Umist procedure to pick out the proper subset of the
cartesian product of the two answer sets.

The present form of the two-variable questions—generating
two answer sets—is very often used to find qll "objects' asso-
ciated with some other "objects," without regard for the third
component of the triple, For example, to find the domain of the
relation SON, i.e. all those who have sons, one could say:

#{RL,SON,*#,*X*)
with the set of all sons now being stored in the form "X." 1In
general, this generated set, here the set X, will not be further
uséd, is not wanted, and wastes processing time. For this reason
" Tramp recognizes one special named variable for twOmvariabZe
questions; '"@," as denoting that the corresponding answer set is
not to be generated. Thus,

#(RL,SON,** *SONS*) would return the set of all those who
have sons, and store the set of all
sons in the form "'"SONS"
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#{RL,SON,**,*@*) would likewise return the set of all
those who have sons, but would discard
the set of sons,

If there are three variables, it is interpreted as being a request
for a dump of the associative memory. If any of the three var-
iables are named, the names are ignored. Alternatively, one can

simply call: #(DUMP).

EXAMPLES: # (RL,*REL*,JOHN,HARVEY) put the set of all relations that
associate John with Harvey in the form
HREL.H

#(RL,80N,CLYDE, **) return the set of Ciyde's SOns.

#(RL,COLOR, **,*COLOR*) return the set of all objects that
have the attribute "COLOR,' and place the
set of all colors in the string "COLOR."

#(RL,*X*,*Y* *Z%) give a dump of the associative memory.
The three names are ignored.

# (RL,AGE, # (RL,FA, # (RL,WIFE, # (RL,BRO,MARY , **} , *WIVES*)
##(WIVES) ,**),**)! recursively asks the question: 'How
old are the fathers of the wives of Mary's
brothers?" Also, the set of wives of Mary's
brothers is now in the string "WIVES."

#{RL,;COLOR, **, *@*) return the set of all objects that have
the attribute "COLOR,'" but do not generate
the set of colors.

#(RL,COLOR,CAR,*@*)} put the set of the colors of the car in
the string "@.'" '"@'" is a special symbol
only in the two-variable questions,
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NAME: RLI

PROTOTYPE: #(RLI,A,0,V)
PURPOSE: To retrieve only implicit associations.

DESCRITPTION: This function has the exact same syntax as RL. [t
does not retrieve explicit associations. This is effected

by deleting the "prefix" when expanding the program temp-
p panding P P

lates.
NAME : RLE
PROTOTYPE: # (RLE,A,0,V)
PURPOSE : To retrieve only explicit associations.
DESCRIPTION: This function has the exact same syntax as RL. It

does mot retrieve implicit associations. Calls to RLE bypass
the preprocessor, thus ignoring any definition that may have

been given for a relation. A normal call to RL calls both RELI

and RLE.
NAME : RLR
PROTOTYPE: #(RLR,A,0,V)
PURPOSE: - To retrieve answer sets that may contain redundancies

DESCRIPTION: This function is identical to RL except that any redundancies
are reported, RL returns non-redundant answer sets, while RLR does

not check for redundancies, and is therefore significantly faster.
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NAME : INT

'PROTOTYPE: #(INT,A,0,V)

PURPOSE: To generate intersections of answer sets.

DESCRIPTION: This function has the same syntax as the one-variable

question of RL. RL .generates the union of the answer sets, while

INT generates the intersection:

#(RL,SOUTH; WEST, TOLEDQ, **) generates the set of all things -
either south or west of Toledo.

# (INT,SOUTH; WEST TOLEDO,**} generates the set of all things
both south and west of Toledo.

If both constant sets are singletons, INT and RL will yield identical
answer sets. The variable may again be in any of the three positions

and may be either named or unnamed. This function must have éxactly

one variable.

EXAMPLES:

#(INT NORTH ; EAST,CHICAGO,*NE*)
place the set of everythlng both north

and east of Chicago in the form "NE.'

# (INT, **,JOHN;MARY ,CLARA)
return the set of all relations that

John and Mary commonly share with Clara.
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NAME ; RCOM

PROTOTYPE: # (RCOM, SET1, SETZ2 ,NAME)

PURPOSE : To compute the relative complement of two Tramp sets.
DESCRIPTION: The third argument is logically subtracted from the

second argument, with the disposition of the resulting set
determined by the fourth argument: if it is present, the function
is null-valued and the set is stored in Umist form storage labeled
by the name; if the fourth argument is omitted, 'the relative
complement of the other two arguments is returned as the value of
the function. The set computed consists of all elements of "SETIY

that are not elements of "SET2."

EXAMPLE :

# (RCOM, # (RL ,AGE, ** ,40) , # (RL,SPOUSE, ** , *@*) , SPINSTER)
this would store in the form '"SPINSTER"
all those who are 40 years old and not

married.
NAME : SYMD-
PROTOTYPE: #{SYMD,SET1,SET2 ,NAME)
PURPCSE: "~ To compute the symmetric difference of two sets.
DESCRIPTION: The symmetric difference of two sets is defined to be

“the set of all things that are in either of the two sets, but not
in both (exclusive OR). The syntax of SYMD is identical to that of
. RCOM, with the fourth argument determining what will be done with
the computed set. ' '
EXAMPLE : # (SYMD, #f (RL,BRO,** *@*) # (RL,SIS,**, *@*)).
: this would return the set of all those

who have siblings, but siblings of only
one sex.
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INT
PROTOTYPE: # (INT,SET1,SET2 ,NAME)
PURPOSE : To intersect two Tramp sets,
DESCRIPTION: This function has the same syﬁtax as the other tworset

operators, RCOM and SYMD. The two operands are the second and
third arguments (SET1 and SET2) and the fourth argument specifies

~ the disposition of the result: if it is present, it will be used
as the name of the form into which the answer will be placed; if
omitted, the answer will be returned as the value of the function.
The answer is.a straight set intersection, except that any redun-
dancies are deleted.

Note that this function has the same name as the retrieval
function INT. There is no ambiguity and there should be no
confusion, since the two functions have dissimilar syntax., The
retrieval function INT is called by specifying exactly three
functional arguments, of which exactly one is a variable; the
set operation INT is invoked by giving either two or three
functional arguments, of which-exactly zero are variables. I.e.

a variable specifies retrieval—if there is no variable then a

.question is not being asked.

EXAMPLES:

# (INT, # {INT,NORTH; EAST,CHICAGO, **} ,# {INT,SOUTH; WEST ,MAINE, **) , UNHUH)
recursively uses both forms of INT to place
the set of all things both northeast of
Chicago and southwest of Maine in the form
"UNHUH."

#(INT, # (RL,AUTHOR ,** ,GEORGE) , # (RL, SUBJECT, ** ,SEA} )
this returns the set of everything that

George wrote about the sea.
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NAME DUMP
PROTOTYPE: # (DUMP) or B(RL,** *% #%)
PURPOSE: To obtain a complete listing of everything that is

explicitly stored in the associative memory.

DESCRIPTION: All associations explicitly stored are printed out,
using the "A (0) = V" format. A and O are singletons and V
is the set of all "values' associated with the A/0 pair. Any
redundancies in the V set are printed. Implied associations are
not listed in the dump. After all of the associations are listed,

all of the current relational definitions are displayed.

EXAMPLES: # (DUMP)
# (RL’ *X* , %k , **)
- NAME: USE
PROTOTYPE: # (USE ,NAME)
PURPOSE: To obtain the number of explicit associations that the

., Name is used in.

DESCRIPTION: The value of the function is the total number of
* associations that the name in the argument is used in. Any implied
associations are not included in the USE count. There is no break-
down as to how the name'is used within the associations, simply a

count of the triples in which it appears.

EXAMPLES ; # (USE,COLOR) how many objects have the attribute Color?
# (USE, JOHN)
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NAME : ERM

PROTOTYPE: # (ERM)

.PUR?OSE: To completely erase the memory for a fresh restart.
DESCRIPTION: It is not anticipated that this function will bé

called very often, if ever, and to prevent its being invoked
unintentionally, via misspelling, etc., confirmation is required
by Tramp before it actually erases the structure. This is
similar in form and in content to the confirmation that MTS
requires before EMPTYing a file: an exclamation point (!) or
the two letters "OK' are positive confirmation. Anything else
cancels the request.'

The above confirmation procedure is useful during debugging,
but in a production program written in Tramp it will likely be
desirable to provide your own confirmation procedure or eliminate
it entirely. In such cases, ERM should be called with an arg-
ument. That argﬁment is the single hexadecimal (non-graphic)
character '3C'. This is easily done in Umist: 7

# (ERM, # (XTC, 3C))
and is hardly likely to\happen by accident.

NAME : CT

PROTOTYPE #(CT,SET)

PURPOSE: To determine the cardinality of a Tramp set.
DESCRIPTION: This is a very simple function that is significantly

faster and more convenient than a Umist procedure that would do the

--same thing. it distinguishes between: a missing argument; a null
set; and a singleton (set with no semicolons); but otherwise is
simply an efficient way to count semicolons.

EXAMPLE #(CT,#(RL,SON; DAUGHTER , SHERMAN, *#)) How.many children does
: . Sherman have?
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NAME : TABLE
PROTOTYPE: # (TABLE,X)
PURPOSE: To obtain the contents of oﬁe of the name tables.
DESCRIPTION: The argument, X, specifies which of the four name
tables is desired:
A - Attribute
Q0 - Object
V - Value
D - Defined relation

The set of names found on the particular table is returned as the

value of the function.

EXAMPLES: # (RCOM, # (TABLE,A) ,#(TABLE,D)) return the set of all names

that have been used as 'attributes' but
have not been given definitions.  The
Defined relation name table is always

a subset of the "A" name table.

# (INT, # (INT, # (TABLE,A) , # (TABLE,0) ) , # (TABLE,V))

return the set of all things that have been
nsed at some time in each of the three pos-
itions of the associative triple.

#(SYMD, # (TABLE, A} , # (TABLE, V) )

-

return the set of all names used as either

- Tattributes' or 'values' but not as both.

NAME : TRAMP

PROTOTYPE: # (TRAMP)

PURPOSE : To load Tramp if PAR specified that loading was to be delayed.
DESCRIPTION: If PAR=LATER, then only Umist will be loaded initialiy.

When ready for Tramp, the user issues this function call which loads

~and links up all the Tramp functions.
The function TRAMP is defined only when PAR=LATER, and then

only until it has been called.
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NAME : PRIME
PROTOTYPE: # (PRIME, [ON,OFF])
PURPOSE: To set or invert the mode of operation regarding the prime

that terminates all Umist input lines.

DESCRIPTION: An internal switch in Tramp determines whether or not
a prime is required to terminate an input line, This switch is
initially set by the parameter in the RUN command. The function
PRIME may be used to alter dynamically the setting of this switch
during execution. Normally, the switch should be ON while the
program is being initialized (forms defined, etc.) and then is
turned OFF just before reading the first input line from the user
of the program.

The argument to PRIME may specify that this switch is to be
turned ON or OFF, or simply inverted from its present setting.
#(PRIME,ON) turns the switch ON, i.e. it specifies that a prime
will be required to mark the end of a line. #(PRIME,OFF) sets
the switch the other way, equmivalent to: PAR=NOPRIME. Full s
details of operation with the switch off appear in the introduction

to this appendix.

EXAMPLES: .
# (PRIME,OFF)
. #(PRIME} no argument inverts the switch
# (PRIME,ON) '

#(PRIME,X) an unrecognizable argument inverts the switch.
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NAME : SRCH
PROTOTYPE: # (SRCH, STRING,PATTERN,T,F)
PURPOSE: To provide pattern matching facilities along the lines of

SNOBQL., There is no replacement (Umist segment string and call
function provide replacement), but a string may be scanned for the

occurence of a substring, and a decision made on that basis.

DESCRIPTION: The second argument, STRING, is scanned for an occurence
of the third argument, PATTERN. If it is found the value of the

function is the fourth argument, T, otherwise the fifth argument, F.

EXAMPLE:
# (SRCH, ## (FORM) , 7, (# (FUNC1)), (# (FUNC2)))

searches the string named FORM for an
occurence of a question mark. If found
"branch' to the procedure FUNC1l, other-
wise control goes to procedure FUNCZ.

TTTT'NAME: 0 SAVE

T TPROTOTYPE: # {(SAVE , FDNAME ,RLNG, ID}

R PURPOSE : To save the current state of the data structure on an

auxiliary device so that at a later date the structure can be

initialized to contain the present data.

-DESCRIPTION: FDNAME is the name of the file or device onto which the
data are to be SAVEd. RLNG is an optional argument spe¢ifying the
record lengths to be written. If this argument is either omitted

—.or .specifies too large a record length for the particular device,
the following default values, which are the respective physyical

maximums, will be used:
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+PUNCH 80
FILE 255
TAPE - 32,760

If RLNG = 80, either explicitly or by default, then each record
will contain 72 bytes of information and 8 characters of seduential
identification, the first 4 of which may optionally be specified
in the last argument, ID. If more than 4 characters are given,
extra characters on the right will be truncated. If less than 4,
trailing blanks will be appended. If RLNG = 80 and this argument
is omitted, the 4-character MTS signon ID will be used. CIf

RLNG =-XA, A # 80, then there will be XA bytes of information with

no identification,

EXAMPLES:

# (SAVE ,MYFILE)
write 255-byte records into the file.

# (SAVE,MYFILE, 80, IDX)
write 80-byte records into the file with
the specified ID. Can now be copied to
a card punch.

# (SAVE, *PUNCH*, , IDZ) :
punch the data onto cards with "IDZ" ID.

# (SAVE, *PDN1*,80)
' write 80-byte records onto tape using
MTS signon ID.

# (SAVE, *PDN2*,255)
write records on tape that can be copied
into a file.
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NAME: COPY

PROTOTYPE: # (COPY,FDNAME)

PURPOSE: To read back in what has previously been SAVEd,
DESCRIPTION: COPYing in a new structure completely erases anything

that might be in the structure at the time the COPY is called.
There is no direct way to merge two Tramp data files, The
following procedure is one way that two data files can be merged.

Assume that DATA]l and DATAZ are the two files to be merged:

# (PRIME , OFF) '

# (COPY , DATA1)

# (PAR, FDO, SCRATCH) # (DUMP) # (PAR , FDO , *SINK*)

# (COPY , DATA2)

© #(DS,PARSE, (¥ (DS, X, ## (RS))# (EQ, ## (CC,X), , (#(SS,X, )&

# (DR, ## (CS,X) , #(CS,X) , # (NL, # (CS, X)) ## (CS, X)) &
# (PARSE)) , (# (PAR, FDI, *SOURCE*)))))

# (PAR, FDT, SCRATCH( (2)) ) # (PARSE)

A second routine, very similar to PARSE is then required to read

in the dumped relational definitioms,
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NAME ; PAGE

PROTOTYPE : # (PAGE)
PURPOSE : To ascertain what size file will be required to SAVE in

and/or how much core the data structure is occupying.

DESCRIPTION: PAGE is a null-valued printing function which prints
on the current output device. The output is the number of pages
currently in core that will have to be saved, and how many
extensions have been made to Tramp. The sizes of the various
tables used by Tramp are assembly parameters and are likely to
change. Presently the tables occupy a total of 4 pages of core.
The information printed by PAGE is the amount of core being used

in addition to the tables (tables cannot grow during execution},

. Tramp is initially loaded with an Available Storage List

8 pages long (32,768 bytes). As this is used up, more is acquired
from the system in blocks of 8 pages, called extensions. There
can be up to 16 extensions (presently meaning that a maximum of
132 pages = 540,672 bytes would have to be SAVEd)}. These 8-page
blocks are never broken up—SAVEing requires that the entire.
block(s) be written. In summary, (assuming 4 pages for tables)
there is a minimum of 12 pages (= 49,152 bytes) and a maximum of
132 pages (= 540,672 bytes), with the minimum approaching the

maximum in steps of 32,768 bytes.
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NAME : DDR
PROTOTYPE: #{DDR, (REL = EXP))
PURPOSE : To define a relation in terms of other relations, thereby

creating implicit associations in the associative structure.

DESCRIPTION: In the prototype, EEL is the relation being defined,
and EXP is an expression which is the definition. The equal
sign is the delimiter and must be present. The interpretation
of “REL = EXP" is that the ordered pairs specified by the
expression EXP are taken to be a subset of the ordered pairs of
REL. In the prototype the entife argument to DDR is enclosed
in parentheses, i.e. a Umist "literal." Depending on the
particular definition, this may or may not be necessary, but
it will never hurt and it is good practice to always parenthesize

the argument.

EXP is composed of one or more relations joined by the logical
connectives: .A. (conjunction); .V. (disjunction); .N. (negation);
two relational operators: / (slash meaning composition); .CON.

(converse); and equality operators .EQ. and .NE. with obvious

meanings.

The "R(x,y)'" format is the relational format adopted by Tramp

and is interpreted to mean that R (x} = y in the associative format.

The "converse" operator simply inverts the order of the two relational
arguments: R(x,y) <==> ,CON. R(y,x). Thus 'child of" is the
converse of "parent of," any symmetric relation is its own converse,

etc.

The composition operator is defined by:

() IE/T){x,y) <==> (2] (S(x,2) A T(z,y})]
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DDR is the only Tramp function that allows spurious blanks.
Before compiling the definition, all blanks are removed. 1In
all other functions {except EDIT, below, which is another entry
to DDR}, blanks are valid EBCDIC characters and are treated like
any other. Definitions may be either abbreviated (only the names
of the relations specified—mno relational arguments); or expanded
(all of the relations given arguments in parentheses), There is
the restriction that any one definition be consistent, e.g.
#{DDR, (R1 = R2(X,Y))} 1is not legal. Thé same relation may be
defined any number of times with each new definition being appended
to the old, not replacing it, so that one can enter:

#(DDR, (R1 = R2 .V. R3))#(DDR, (R1(X,Y)=R4(Y,X)).

The two relational operators, composition and converse, may
be used only in abbreviated definitions where there are no '
explicit relational arguments, since the purpose of these operators
is to give information for expanding the relations to have arg-
uments. On the other hand, the equality operators may only be
used with the relational arguments as their operands, and hence
may appear only in expanded definitions.. A constant which is to
be used as a relational argument is denoted by enclosing the name
of the constant in double quotes (''). The names of the dummy

arguments used in expanded definitions may be up to 8 characters

long.

Precedence of the operators: the precedence ordering of the

various operators is as follows, descending order.

.CON. converse
/ composition
.EQ., .NE, equality
.N. negation
A. | conjunction

V. disjunction
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The above precedence ordering may be altered in the-usual way

by the appropriate use of parentheses,

One may specify a "global' complement, e.g.
#(DDR, (R = .N., S)

which shall be ignored unless and until some other definition is
given for R. (See discussion on page 135.) When multiple
definitions are made for the same relation, the several expressions
are ORed together—except in the case where one of the definitions
specifies a global complement. In that case the global complement
is ANDed with the others, if any, or else ignored if there are no
others. If a new definition is entered for an already defined
relation, any compilation error in the new definition results in

a diagnostic being printed and retention of the old definition.

EXAMPLES ; |
#(DDR, (HUSBAND = ,CON. WIFE))
#(DDR,BIGGER = LARGER)
" #(DDR, (PARENT = FATHER .V. MOTHER))
# (DDR, (SPOUSE (X,Y) = CHILD(X,Z) .A. PARENT(Z,Y) .A. X.NE.Y))

for further éxamples, see Figure 4, page 62.

NAME : KDR

PROTOTYPE: # (KDR,REL1,REL2,REL3, ... }
- PURPOSE: To erase definitions made by DDR.
" 'DESCRIPTION: KDR may have any number of arguments. The definition for

each of the relation names given as arguments is deleted.

EXAMPLES : # (KDR,SIBLING)
#(DS,X, # (TABLE,D) ) #(SS,X, ;) # (KDR, ## (X, (,)))

would erase All deflnltlons_
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NAME : SHOW
PROTOTYPE: # (SHOW, RELATION )
PURPOSE: To display the current definition of a relation.

DESCRIPTION: SHOW will display the definition of the relation
"~ specified by its argument exactly as it was entered by the
user, except that blanks will have been removed. If more than
one definition has been given for the relation, they will all
be concatenated, separated by a break character, and displayed
in a continuous line., Three actions may be taken by  SHOW :
if the relation has been successfully defined, its definition
will be displayed on.the current output device; if Tramp has
never heard of the relation, the comment:
RELATION XXX HAS NOT BEEN DEFINED."

will be printed; if the relation was unsuccessfully defined; or

was erased via KDR, the commeﬁt:
RELATION XXX IS UNDEFINED."

will be printed.

NAME: . DDEE

PROTOTYPE: # (DDEF)
PURPOSE: To display all current relational definitions.
DESCRIPTION: BDEF iteratively calls on SHOW for each name found

in the name table of defined relations. DDEF is an entry to the

second half of DUMP which bypasses the listing of the associations.
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NAME : EDIT

PROTOTYPE: #(EDIT,RELATION,PATTERN, REPLACEMENT)

PURPOSE: To correct or alter a relationmal definition made by DDR.
DESCRIPTION: The second argument, RELATION, is the name of the

relation that is to be EDITed. The third argument is the pattern
within the definition, as displayed by SHOW, that is to be altered.
If this argument is null, it matches the void immediately to the
right of the relation name in the definition string. The last
argument is the string that repiaces the pattern specified by

the third argument. Any blanks in the PATTERN or REPLACEMENT

will be ignored. If the last argument is omitted, the pattern

is simply deleted. If the string specified by the third arg-
ument occurs more than once in the definition, only the first

occurence is changed.

Calling EDIT implicitly calls SHOW to display the EDITed

~-definition.

EXAMPLES: -

#(EDIT,SIB, (.V.), (.A.))
change the first OR to AND in the

definition of SIB. Like DDR, it is good
practice to enclose the arguments in
parentheses.

#(EDIT,REL, (.A. R4})
' delete the string '".A.R4" from the

definition of REL.
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