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Abstract

A warm fluid model suitable for describing intense laser-plasma interactions is discussed. A mo-

mentum space transformation is developed for the Vlasov–Maxwell system that leads to significant

computational savings. Direct numerical solutions of the Vlasov equation are compared to the

predictions of the warm fluid model and excellent agreement is found. In particular, it is found

that, as predicted by the warm fluid, the bulk fields are largely insensitive to the details of the

phase-space distribution. The warm fluid is compared to the particle-in-cell model and it is found

that the latter model, at typical numerical resolution, predicts a momentum spread in the laser

that is unphysically large.

PACS numbers: 05.20.Dd, 52.27.Ny, 52.38.-r, 52.38.Kd, 52.25.Dg
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I. INTRODUCTION

The current generation of experiments (cf. Refs. 1–3) on the interaction of intense, short

laser pulses with underdense plasmas access a novel physical regime where the plasma elec-

trons experience relativistic motion while the momentum spread is quite small, and collisions

are practically nonexistent. This regime stands in stark distinction to the usual setting for

relativistic kinetic theories and other relativistic fluid models4–8, where the plasma is as-

sumed to a have relativistic thermal velocity and to be collision dominated. Such models

are inappropriate for the short-pulse case since collisions rates are orders of magnitude too

small to guarantee local thermodynamic equilibrium.

We have recently developed a Hamiltonian, relativistic warm fluid theory for modeling

intense laser-plasma interactions.9 This theory does not rely on a collisional closure, nor

make any other thermodynamic assumptions; in particular, no equation of state is assumed.

Indeed, with more than one momentum dimension, this theory describes intrinsically non-

equilibrium phenomena and does not admit an equation of state. Based on the predictions

of the warm-fluid model, we develop a momentum-space transformation for the Vlasov–

Maxwell system, which yields significant computational savings when applied to modeling

short-pulse laser-plasma interactions. Solutions of the Vlasov–Maxwell system confirm the

predictions of the warm-fluid model.

II. HAMILTONIAN WARM FLUID THEORY

We begin with an overview of the warm fluid model derived by Shadwick et al.9 The

fundamental assumption in this model is that of small momentum spread. This assumption

leads to a general form for phase-space distribution function

f(r,p, t) =
n(r, t)√

(2π)3 det Π
g(Q), (1)

where n is the spatial density, Q = δpi δpj Π−1
ij , Πij is a non-singular positive-definite tensor,

δpi = pi − Pi, P is the average momentum about which f has a small width, and g is some
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positive, integrable function. The dynamical variables in this theory are the moments

n(r, t) =

∫
d3p f(r,p, t), (2a)

P (r, t) =
1

n

∫
d3p p f(r,p, t), (2b)

Πij(r, t) =
1

n

∫
d3p δpi δpj f(r,p, t) . (2c)

The assumption of small momentum spread is equivalent to assuming |Π| ≪ m2c2. Dy-

namical equations for these moments are then obtained by appealing to the non-canonical

Hamiltonian structure of the Vlasov–Maxwell system. The primary motivation for using

this technique is the guarantee (1) of a consistent asymptotic ordering; and (2) that the

moment equations will conserve energy. An additional motivation is the ease of derivation

as the equations of motion are computed by taking derivatives. Somewhat remarkably, all

the Vlasov–Maxwell Casimir invariants map to Casimirs of the moment system. By keeping

only moments through second order, processes such as those associated with wave-particle

resonance are explicitly ignored. Since the phase-velocity of the oscillations of interest is

near c and a non-relativistic thermal velocity is assumed, this is not a particularly serious

deficiency.

The reduction of the Vlasov–Maxwell Poisson bracket to a bracket that only involves

the moments is accomplished by viewing Eq. (2) as a coordinate transformation. This

allows, through the chain rule, functional derivatives with respect to f to be expressed

as functional derivatives with respect to n, P , and Πij . The form of f is such that the

third-order moments vanish and the moment bracket is naturally closed. As a result, the

reduction is exact and it follows that the moment bracket satisfies the Jacobi identity. By

expanding the Hamiltonian to first order in Πij, one obtains equations of motion that are

independent of the form of g. As a result, the lowest order corrections to the cold theory are

universal, i.e., these corrections do not depend on the details of the distribution function.

(Similar ideas have been extensively explored for the non-relativistic Vlasov–Poisson system

by Jones.10)

From the reduced bracket and the moment Hamiltonian, one obtains the equations of
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motion in the usual way:9,11

∂tn + ∇ · nu = 0 , (3a)

∂tP + u · ∇P = q
(
E +

u

c
× B

)
−

1

n
∇ · p , (3b)

∂tΠij + uk ∂kΠij = −Πik ∂juk − Πjk∂iuk

+
pki

n
(∂kpj − ∂jpk) +

pkj

n
(∂kpi − ∂ipk) , (3c)

where p is the canonical momentum, γ0 =
√

1 + P 2/m2 c2,

uk =
Pk

m γ0

[
1 −

Πii

2 γ2
0 m2 c2

+
3

2

Pi Πij Pj

γ4
0 m4 c4

]
−

ΠkiPi

γ3
0 m3 c2

, (4)

and the pressure tensor p is given by

pij =
n

γ0 m

(
δik −

Pi Pk

γ2
0 m2 c2

)
Πkj . (5)

The fields E and B are determined by Maxwell’s equations from the plasma current j = qnu.

As we mentioned above, these equations are independent of the details of the distribu-

tion function. We expect these equations to be valid even if the distribution is not of the

form Eq. (1) provided its width is small and higher order moments are much smaller than

the appropriate power of Π. We will return to this in Sect. III.

In the usual relativistic thermodynamic treatment,4,5 the assumption of collisional dom-

inance forces the pressure to be isotropic, and one may introduce the temperature T by

pij = (nT/γ0)δij. Isotropy of the pressure then implies

Πij = m T

(
δij +

PiPj

m2c2

)
. (6)

This special form for Π is not structurally stable:9 starting from an isotropic initial condi-

tion, the evolution equations will take Π out of this form. That is, the moment equations do

not correspond to local thermodynamic equilibrium as there are no collisions. The isotropy

of the pressure can be interpreted as a consequence of assuming an equation of state which,

in the low temperature limit, is adiabatic. It is interesting to note that in one momentum

dimension, the equation of motion for Π is identical to that obtained by assuming an adia-

batic equation of state. This coincidence does not persist in higher dimensions where, the

pressure is intrinsically non-isotropic, it is not possible to interpret the momentum spread

equations as coming from any equation of state.
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A. A Quasi-static Example

To illustrate the importance of non-equilibrium effects in a low temperature plasma,

we examine the response of an initially thermalized plasma to an intense short laser with

frequency ω0 and pulse with length kp L = 2, such that a large wake is excited, where ωp =

c kp is the plasma frequency. For simplicity, we consider the under-dense case (ωp ≪ ω0) in

one spatial dimension where the plasma response can be assumed to be quasi-static.12 For

a linearly polarized laser propagating in the z-direction, evolution equations for Π in the

comoving coordinates (t, z) 7→ (t, ξ = t − z/c) can solved analytically, giving

Πxx = mT0, (7a)

Πxz = mT0

βx

1 − βz

= mT0

n

n0

βx, (7b)

Πzz = mT0

1 + β2
x

(1 − βz)2
= mT0

(
n

n0

)2

(1 + β2
x), (7c)

where β = P /(mcγ0).

Figure 1 shows (a) the density wave, and (d) the longitudinal electric field driven by

a resonant Gaussian laser pulse with frequency ω0 = 20 ωp and normalized vector poten-

tial a0 = |q|A0/(mc2) = 1 computed using the cold quasi-static model. Fig. 1(b) shows

the behavior of Π for an initial temperature of 15 eV and (c) shows the corresponding

pressure. The behavior of Πzz is in qualitative agreement with the thermodynamics of an

adiabatic process. This solution exhibits significant anisotropy in the momentum spread

and little “heating.” Consequently, in this regime, self-trapping of electrons in the wake

(leading to dark current13) should not be important. Thus, provided the initial plasma

temperature is sufficiently small, it should be possible to operate a laser-plasma accelerator

without excessive dark current, even at large wake amplitude. Shown in Fig. 1(e) are the

components Π from Eq. (6), i.e., with the assumption that the pressure is isotropic, while

Fig. 1(f) shows the isotropic pressure. The clear differences between these results indicate

that the assumption of local equilibrium is not justified for this case and, indeed, leads to

mis-characterization of phase space. In particular, comparing Fig. 1(c) with Fig. 1(f) we

see that the isotropy assumption overstates the transverse force and understates the lon-

gitudinal force. These quasi-static results have also been compared to solutions of the full

time-dependent equations and good agreement was found.14
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III. VLASOV THEORY

An important prediction of the warm fluid model is that the momentum spread does

not increase substantially in the short pulse case. Moreover, since the warm fluid equations

are not sensitive to the details of the distribution function, we expect this behaviour to

hold for distributions that are not necessarily of the form Eq. (1). Even for rather high

temperatures, the fields are quite close to those of the cold fluid.14 This suggests that the

momentum centroid of f will very nearly follow the path of the cold fluid momentum and

that the spread about the centroid will remain small. Hence, it would seem advantageous

to formulate the Vlasov equation in an oscillation center-like manner, but instead of just

removing the fast oscillations, we should transform away all of the cold fluid motion. We

call resulting numerical method a “moving phase-space grid.”

This approach is viable in any number of dimensions, but we specialize to three phase-

space dimensions (z, px, and pz) and perform the transformation in two steps for clarity.

The Vlasov equation for the phase-space distribution function f is

∂f

∂t
+ vz

∂f

∂z
+ q

(
Ex −

vz

c
By

) ∂f

∂px

+ q
(
Ez +

vx

c
By

) ∂f

∂pz

= 0 , (8)

where the fields are determined from the charge density n =
∫

dp f and current density j =

q
∫

dp v f through Maxwell’s equations. In the first transformation we introduce p̃x = px−P̃x

and put f(z, px, pz, t) = F̃ (z, p̃x, pz, t). For our case, the transverse cold fluid equation can

be solved to give P̃x = −(q/c) Ax, where Ax is the vector potential, and we can write Eq. (8)

as
∂F̃

∂t
+ vz

∂F̃

∂z
+ q

(
−

∂φ

∂z
+

px

mcγ

∂Ax

∂z

)
∂F̃

∂pz

= 0 . (9)

Using the definition of γ, we obtain

∂F̃

∂t
+ vz

∂F̃

∂z
− q

(
∂φ

∂z
+

∂γ

∂z

)
∂F̃

∂pz

= 0 , (10)

where γ2 = 1 + {p2
z + [p̃x − (q/c)Ax]

2}/(m2c2).

By the same means, we remove the longitudinal fluid motion. It is clearest to start

with Eq. (9) rather than the more compact form Eq. (10). The equation of motion for the

longitudinal momentum P̃z can be written as

∂P̃z

∂t
+

∂ (q φ + mc2 γ̃)

∂z
= 0 , (11)
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where γ̃ =

√
1 + P̃ 2/m2 c2. As above, we define p̃z = pz − P̃z and put f(z, px, pz, t) =

F̃ (z, p̃x, pz, t) = F (z, p̃x, p̃z, t). The transformed Vlasov equation becomes

0 =
∂F

∂t
+ vz

∂F

∂z

+
∂F

∂p̃z

(
mc2 ∂γ̃

∂z
+

q px

mcγ

∂Ax

∂z
−

pz

mcγ

∂P̃z

∂z

)
. (12)

Under this transformation we have γ2 = 1 + {(p̃z + P̃z)
2 + [p̃x − (q/c) Ax]

2}/(m2c2) from

which we see that the last terms in Eq. (12) can be combined to give

∂F

∂t
+ vz

∂F

∂z
+

∂F

∂p̃z

mc2 ∂

∂z
(γ̃ − γ) = 0 . (13)

It is important to understand that in this transformation, P̃x and P̃z are prescribed ; it

proves advantageous if they are chosen (as we have done) to solve the cold fluid equations.

While it will turn out that P̃x and P̃z are reasonable approximations to the first moments

of F ; this is solely due to the nature of the problem. We have not assumed that P̃x and P̃z ap-

proximate the moments of F ; we are simply performing an exact coordinate transformation

(of course the phenomenology of the problem leads to this choice of transformation).

The attraction of this transformation as a numerical technique lies in the relative sizes of

the (px, pz) grid versus the (p̃x, p̃z) grid. Now the (p̃x, p̃z) grid will cover an area in momentum

space of approximately m T , while the (px, pz) grid will cover an area (due in large part to

the excursion of P̃ ) of approximately m2c2a3
0 in the linear case (a0 < 1) and m2c2a2

0 in

the nonlinear case (a0 > 1). For T0 = 5 eV and a0 = 1.5, the (p̃x, p̃z) grid is some 104

times smaller. Since the resolution requirements are the same on both grids (both must

resolve f), the computational savings is proportional to the ratios of the areas. For the

example, this means a savings of approximately 104 in solving Eq. (13) over Eq. (8). It is

worth reiterating that there is no approximation involved in this method and so there is no

danger of inaccurate solutions being produced when the basic assumption is violated. If the

momentum spread of f starts to grow significantly, then the p̃ grid will be readily seen to

be too small and the appropriate steps can be taken.

As an example of this method we solve the quasi-static version of Eq. (13) and explore

the extent to which the bulk fields and moment spread, as predicted by the warm fluid, are

independent of the details of the distribution. We consider three initial distributions, shown
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in Fig. 2. In addition to the simple Maxwellian

fM =
n0

2πT
exp

(
−

p̃2

2T

)
, (14)

we take

fD =
n0

2πT

(1 + 4b)

(1 + 2b)2
exp

(
−

1 + 4b

1 + 2b

p̃2
x + p̃2

z

2T

)

×

[
1 +

b (1 + 4b)

1 + 2b

p̃2
x + p̃2

z

T

]
(15)

and

fTS =
n0

2π (a + b)
√

T (T − a b p2
0)

×

{
b exp

[
−

pz
2

2T
−

(px + a p0)
2

2 (T − a b p2
0)

]

+ a exp

[
−

pz
2

2T
−

(px − b p0)
2

2 (T − a b p2
0)

]}
(16)

as initial conditions, where a, b, p0, and T are constants. Like the Maxwellian, these latter

distributions have Πxx = Πzz = m T and Πxz = 0. While fD is of the form Eq. (1), clearly fTS

is not.

Shown in Fig. 3 are representative sections of phase space for the Maxwellian initial

condition. The plasma wave is clearly evident in both sections, while the quiver motion,

and the accompanying fine scale structure in f , is clearly visible in Fig. 3(b). Fig. 4 shows

the density (a) and average longitudinal momentum (b) for all three initial conditions.

Fig. 5 shows the longitudinal momentum spread for the three initial conditions. There is

essentially no difference in both the bulk fields and momentum spread for these very different

distributions. Fig. 6 shows the density (a) and longitudinal momentum (b) for a Maxwellian

initial condition for temperatures of 5 eV, 50 eV, and 500 eV. Again we see virtually no

difference in the bulk behaviour. Not only are the bulk fields insensitive to the details of the

distribution, they are largely insensitive to the width as well. This behaviour results from

the relatives sizes of the pressure and Lorentz forces. For an intense laser, the Lorentz force

dwarfs the the pressure force at all but the highest temperatures.14 This result has serious

implications for the benchmarking of kinetic models for use in low temperature laser-plasma

interactions. To be effective, benchmarks must look beyond the bulk fields and be carefully

8



chosen to ensure sensitivity to the distribution function. This is essential as many processes

of interest, such as all optical injectors, self trapping phenomena, etc., depend on the details

of phase-space and are commonly modeled numerically.

IV. BENCHMARKING PIC

Now that we have solutions of the Vlasov equation in a parameter regime of direct rele-

vance to high intensity, short-pulse laser-plasma interactions, it is logical to compare these

solutions to the predictions of other kinetic models. Because of its widespread use, the

particle-in-cell (PIC) model is the natural candidate for this comparison. In the following

examples we use a one dimensional version of the OOPIC code.15,16 Due to space limita-

tion we present an overview of the results of our comparison; the details will be published

elsewhere.17 We consider a resonant (kp L = 2) Gaussian laser pulse in under-dense regime

with a0 = 1, ω0 = 10 ωp, and initial temperature of 10 eV. Reconstructing the phase-space

distribution from a PIC model would require an impractically large number of particles, so

instead we consider the second moments of the distribution which, in this case, are well

described by quasi-static expressions.9 To meaningfully compare the momentum spread to

the analytical result, we must coarse-grain the particle distribution in space. We take care to

choose the spatial bin size to be small enough that the binning artifacts (which are manifest

as contributions to the momentum spread) are smaller than the intrinsic momentum spread.

The numerical parameters for the cases shown are summarized in Table I. Shown in Fig. 7

are the hydrodynamic quantities for both the lowest and highest resolutions at cases ωp t =

19π/2. Aside from a slight phase shift (due to the dependence of the numerical group

velocity on ∆z), we see that the hydrodynamic quantities are reasonably accurate even at

low resolution. Notice there is more noise (most easily seen in the density but also visible in

the momentum) in the high-resolution case even though Np is the same in both cases. Fig. 8

shows the longitudinal momentum spread for the resolutions of Table I superimposed on the

quasi-static prediction. The quasi-static response is computed using the average momentum

from each simulation. We see that at the lower resolutions, the momentum spread inside

the laser pulse is significantly too large. This error appears to scale quadratically with ∆z,

which indicates the source is related to truncation error in the PIC algorithm. The ratio

of ∆z to ∆t is fixed at c/2. Thus, from these results alone we can not isolate the source of
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the error. Preliminary results (not shown) suggest this error scales quadratically with ∆t,

which leads us to believe that the origin the is particle advance. We are pursuing this

matter further and will report our findings in a future publication.17 Behind the laser, the

momentum spread is quite close to the quasi-static result (which rules out grid heating as

the source) even in the low resolution case. This error in the momentum spread has the

qualitative effect of raising the plasma temperature and thus can lead to spurious trapping

at higher amplitudes.

V. CONCLUSIONS

We have reviewed a recently developed a warm fluid model that treats the momentum

spread of the distribution asymptotically. This model does not rely on a collisional closure

and can describe non-equilibrium phenomena. In this model the distribution function and

pressure are intrinsically anisotropic. The model predicts that the plasma response is largely

insensitive to the details of the phase-space distribution. In addition, it predicts little heating

in response to a short laser pulse. We have developed a new formulation for the Vlasov–

Maxwell equations (the moving phase-space grid), where the bulk motion in momentum

space is removed by an exact transformation. Numerical methods based on this formulation

are orders of magnitude less computationally demanding than those that solve the Vlasov

equation on a fixed phase-space grid. Using this method we have solved the Vlasov–Maxwell

equations for various initial distributions and confirmed the prediction of the warm fluid

model that the bulk fields are insensitive to the details of the distribution. In the quasi-

static case, we have shown excellent agreement between the solution of the warm fluid

equations and those of the Vlasov equation.

We have begun a preliminary comparison between Vlasov–Maxwell and the PIC model.

Our results show that truncation errors in the particle advance result in excessively large

momentum spread within the laser. At high laser intensity, this can lead to spurious trap-

ping. Mitigation of the momentum spread error may require unacceptably high resolution

in a second order PIC code suggesting the need to develop higher-order methods for PIC

models.
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FIG. 1: Quasi-static plasma response to a resonant (kp L = 2) Gaussian laser pulse with fre-

quency ω0 = 20ωp and dimensionless vector potential a0 = 1: (a) density, n/n0; (b) Πij/m

from Eq. (7); (c) pij/n0 corresponding to Π in (b); (d) longitudinal electric field, Ez/E0

(E0 = c m ωp/q is the cold wavebreaking field); (e) Πij/m from Eq. (6), assuming an isotropic

pressure; and (f) pressure assuming isotropy, p/n0. (See Ref. 14.)

FIG. 2: Various initial distribution all with T = 50 eV: (a) fM; (b) fD with b = 2; and (c) fTS

with a = 0.5, b = 1.5 and p0 = 0.01m c.

FIG. 3: The phase distribution function (a) at p̃x = 0 and (b) at p̃x = 0.02 obtained from

solving Eq. (12) for a resonant laser pulse with a0 = 1 and ω0 = 10ωp. The initial distribution was

fM with T = 50 eV [see Fig. 2(a)]. The fine scale phase-space structure of the distribution function

due to the quiver motion is clearly visible.

FIG. 4: The density, n/n0, (a) and longitudinal momentum, Pz/mc, (b) for the initial distributions

shown in Fig 2: fM (solid red); fD (dashed green); and fTS (dashed blue).

FIG. 5: Longitudinal momentum spread, Πzz/m, for the initial distributions shown in Fig 2: fM

(solid red); fD (dashed green); and fTS (dashed blue).

FIG. 6: The density, n/n0, (a) and longitudinal momentum, Pz/mc, (b) for Maxwellian initial

distributions with temperatures of 5 eV (solid red), 50 eV (dashed green), and 500 eV (dashed

blue). The bulk fields exhibit little sensitivity to temperature.

FIG. 7: Hydrodynamic quantities from PIC simulations: (a) Pz/m c, and (b) n/n0 for ∆z = λ0/20,

Np = 400; (c) Pz/m c, and (d) ne/n0 for ∆z = λ0/160, Np = 400. All quantities are shown

at ωp t = 19π/2.

FIG. 8: Longitudinal momentum spread from PIC simulations shown in Fig. 7 (red) and cor-

responding quasi-static results (blue) for various resolutions: (a) ∆z = λ0/20, Np = 400; (b)

∆z = λ0/40, Np = 800; (c) ∆z = λ0/80, Np = 400; and (d) ∆z = λ0/160, Np = 400.
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TABLE I: Grid resolutions ∆z, and number of particles-per-cell Np, for the results shown in Figs. 7

and 8. In all cases, c∆t = 1
2
∆z.

λ0/∆z Np

20 400

40 800

80 400

160 400
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