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ABSTRACT OF THE DISSERTATION

Parametric and Non-parametric Bayesian Modeling of Spatio-temporal

Exposure Data

in Industrial Hygiene

by

Nada Ahmed Abdelfattah Abdalla

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2018

Professor Sudipto Banerjee, Chair

In industrial hygiene, prediction of a worker’s exposure to chemical concentrations at the

workplace is important for exposure management and prevention. The objective of this

dissertation is to consider and address challenges in the statistical analyses of exposure data

in industrial hygiene. We outline flexible Bayesian frameworks for parameter inference and

exposure prediction. In particular, we will focus on two applications of the Bayesian approach

on exposure data.

The first application is spatial interpolation of chemical concentrations at new locations

when measurements are available from coastlines, as is the case in coastal clean-up oper-

ations in oil spills. We present a novel yet simple methodology for analyzing spatial data

that is observed over a coastline. We demonstrate four different models using two different

representations of the coast. The four models were demonstrated on simulated data and

two of them were also demonstrated on a dataset from the GuLF STUDY. Our contribution

here is to offer practicing hygienists and exposure assessors with a simple and easy method

to implement Bayesian hierarchical models for analyzing and interpolating coastal chemical

concentrations.

The second application is inference and prediction of chemical concentrations at the work-

place using state space models. Exposure assessment models are deterministic models that

ii



are usually derived from physical-chemical laws that explain the workplace under theoreti-

cally ideal conditions. We propose Bayesian parametric and nonparametric approaches for

modeling exposure data in industrial hygiene using a state space model framework which

combines information from observations, physical processes and prior knowledge. Posterior

inference is obtained via easy implementable Markov chain Monte Carlo (MCMC) algo-

rithms. The performance of the different methods will be studied on computer-simulated

and controlled laboratory-generated data. We will consider three commonly used occupa-

tional exposure physical models varying in complexity.
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CHAPTER 1

Introduction

In industrial hygiene, estimation of a worker’s exposure to chemical concentrations in the

workplace is an important concern. Prediction of exposure through statistical and mathemat-

ical modeling is gaining popularity, especially with the advent of the REACH regulations

in European Community that requires assessing exposure in a variety of scenarios when

monitoring may not be feasible [Ram08]. An accurate representation will produce better

concentration estimates and facilitates decision making in exposure management. However,

this is challenging because the workplace is complex and no physical model is likely to de-

liver complete representation. Therefore, accounting for parameter and model uncertainty

is crucial and a synergy of physical and statistical models is needed to better estimate the

processes in the workplace.

We address common problems associated with the evolution of the underlying processes

generating observed concentration levels. In other words, finding the predictive distribution

of the unknown physical process X given the data Y . In particular, the dissertation ad-

dresses the problem of parameter inference and prediction of chemical exposures that evolve

over space and time. In many situations, chemical concentrations are unobserved directly

and partial noisy measurements are available. The aim is to infer the latent process using

those observations, along with the physical model that theoretically describes it, as well as

incorporating professional knowledge. This data assimilation approach employs the spatio-

temporal data Y to predict X. Markov chain Monte Carlo is used to learn about both the

processes and the model parameters and for uncertainty quantification. Another problem

that may arise is when chemical concentrations evolve along a coastline, as is the case in

coastal clean-up operations in oil spills. In that situation, the spatial distribution of the
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chemical concentrations depends on the representation of the coast using curves.

More specifically, this dissertation will focus on some statistical approaches for the above

problems that are motivated by two applications in industrial hygiene. First, we propose a

simple approach for statistical interpolation of chemical concentrations at new locations when

measurements are available from coastlines which we call “coastal kriging”. This method

is demonstrated on simulated data and on a dataset from the GuLF STUDY (Gulf Long-

term Follow-up Study). The second application is the use of parametric and nonparametric

state space models for parameter inference and prediction using noisy chemical concentration

measurements at the workplace and the physical model describing the process. Posterior in-

ference is obtained via easy implementable Markov chain Monte Carlo (MCMC) algorithms.

The performance of the different models will be studied on computer-simulated data and

controlled laboratory-generated data. Three commonly used occupational exposure physical

models varying in complexity will be considered.

The remainder of this chapter is organized as follows. Section 1.1 provides a brief back-

ground introduction to “coastal kriging”. In Section 1.2, we provide a background on state

space modeling in industrial hygiene, where exposure modeling using state space models are

discussed in Section1.2.1 and common physical models in industrial hygiene are discussed in

Section 1.2.2, with more details to be covered in subsequent chapters.

1.1 Background to Coastal Kriging

Statistical interpolation at new locations based upon a set of observed measurements at

known locations is often referred to as “Kriging” in the geostatistical literature [Cre93].

Kriging customarily uses spatial analytic tools such as variograms or covariance functions

to construct best linear unbiased predictors for data collected from a bounded region of

interest with positive area. However, in our application the chemicals are sampled mostly

along a coastline and interpolation is sought at new locations along the coast. Thus, all

measurements are collected along a curve (approximating the coastline) and prediction is

sought at new points on this curve. We call this “coastal kriging.”
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Models for waterway stream networks using moving averages have been developed by

[HP10]. They used stream distance rather than Euclidean distance. These models are

flexible and adequate for stream networks and account for the volume and direction of

flowing water, but they are more complicated and difficult to fit than is necessary for coastal

kriging. Unlike networks, where we have a complex structure of line-segments and joints,

in simple coastal kriging we approximate the coastline with a single curve or a sequence of

line segments. Therefore, a simple parametrization of the coast will suffice and lead to easily

implementable statistical models.

We will illustrate our models using a specific dataset extracted from the GuLF STUDY

database. In April 2010 an explosion of the Deepwater Horizon oil rig resulted in an oil spill

in the Gulf of Mexico which was the largest oil spill in the US history. Thousands of workers

were involved in stopping and cleaning up the oil release. The GuLF STUDY was conducted

by the National Institute of Environmental Health Sciences (NIEHS) and sponsored by the

National Institute of Health (NIH) [KEM17]. One specific task in assessing exposures of

workers cleaning the coastline is to statistically interpolate the chemical concentrations at

new locations along the coast.

Here we outline a Bayesian hierarchical modeling framework to implement coastal kriging.

This offers easier interpretability for the uncertainty estimates and can be easily executed

using several software packages within the R statistical computing environment.

1.2 Background to State Space Models in Industrial Hygiene

1.2.1 Exposure Modeling using Bayesian State Space Models

Exposure models aim at capturing the underlying physical processes generating chemical

concentrations in the workplace. Exposure modeling through statistical and mathematical

models may provide more accurate exposure estimates than monitoring [NJ02]. Occupa-

tional hygienists seek to infer these latent processes from the available measurements as well

as quantification of uncertainty in parameter estimation. For example, generation and ven-
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tilation rates are crucial parameters that are difficult to obtain since most workplaces do not

collect information routinely.

Traditional approaches involve using deterministic physical models that ignore the exis-

tence of uncertainty. Bayesian methods combining professional judgment from experts and

direct measurements [GCS13] were successful in different settings [BRV14]. For example,

[ZBL09] introduced a nonlinear regression on the solution of the differential equations repre-

senting the underlying physical model within a Bayesian setting for the two-zone model using

Gaussian errors. The model has some limitations since it ignores extraneous factors and vari-

ations and requires a closed-form solution of the differential equations, which severely limits

the number of applicable physical models. [MBR11] introduced an R package (B2Z
¯

), which

implements the Bayesian two-zone model proposed by [ZBL09]. [MBR14] demonstrated that

straightforward Bayesian regression can be ineffective in predicting exposure concentrations

in industrial workplaces since the information is limited to partial measurements and does

not take into account the ”bias“ between the physical model and reality. They introduced

a process-based Bayesian melding approach where measurements are related to the phys-

ical model through a stochastic process that captures the bias in the physical model and

a measurement error. The resulting inference suffers from inflated variability because of

the additional complexities in the model, cumbersome computations and opaque interpre-

tation. Bayesian formulation that utilized Gaussian process (GP) models was also provided

by [HGW08] which allows for highly multivariate output.

There are main issues with the current practice in exposure assessment. First, the ex-

isting methods tend to assume Gaussian distributions for errors and random effects. This

is usually less appropriate for concentration measurements and even if they are transformed

to resemble normality, such transformations exacerbate inconsistencies with the underlying

physical models. Second, the methods are restricted to a rather confined class of physical

models whose solutions are analytically tractable or efficiently computed [MBR14]. One

needs the solution to the nonlinear differential equations representing the physical model.

This precludes fitting computationally demanding but richer physical models that could have

yielded better estimation of physical parameters and concentrations.
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We offer a principled Bayesian approach to efficiently and effectively synergize informa-

tion from the three sources of information (a) professional judgment from experts, and (b)

direct measurements of the environment exposure in the workplace and (c) scientific physical

models representing the state in the workplace in theoretically ideal conditions. Further-

more, the approach we propose here will completely obviate the need to solve the nonlinear

equations governing the physical model. We achieve this by deriving a dynamic statistical

model by discretizing the deterministic physical model and incorporating stochastic mea-

surement error. The prior knowledge about the model parameters are encoded using prior

distributions (including variance components attributed to measurement error and model

approximations). The parameters are estimated by sampling from the posterior distribution

[GCS13]. We consider a number of Monte Carlo based filtering methods for parameter es-

timation and inference in state space models and uncertainty quantification. We also relax

the assumption of Gaussian error terms and consider nonparametric alternatives.

The different models are compared and assessed using computer-simulated data and lab-

generated data. In the lab-generated data, most of the model parameters are known up

to a considerable level of accuracy. Experiments were conducted in a controlled chamber

that mimics real workplace settings. Concentrations were generated at different ventilation

and generation rates and under different exposure physical models that are discussed in the

following section.

1.2.2 Physical Models in Industrial Hygiene

Physical models represent the physical processes generating chemical concentrations in the

workplace. They are usually derived from physical-chemical laws assuming a workplace under

theoretically ideal conditions. We will consider three of the most popular physical models

for exposure assessment in industrial hygiene [Ram05]. These are the one-zone (well-mixed

compartment) model, two-zone model and the eddy diffusion model.

The one-zone model assumes a single compartment with one source of chemical emission.

It assumes that the source is generating the contaminant at a generation rate G(mg/min) in
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a room of volume V (m3) with a supply and exhaust flow rates (ventilation rate) Q(m3/min).

The room is assumed to be perfectly mixed which means that there is a uniform concentration

of the contaminant throughout the room (Figure 1.1). The loss term KL(mg/min) measures

the loss rate of the contaminant due to other factors such as chemical reactions or the

contaminant being absorbed by the room surfaces.

Figure 1.1: One-zone model schematic showing key model
parameters; generation rate G, ventilation rate Q and loss rate KL

The differential equation describing this model is

V
d

dt
Ct + (Q+KLV )Ct = G.

The two-zone model [Nic96] assumes different physical behavior near the source of emis-

sion “near field” from that far from the source “far field”. Both fields are assumed to be

a well-mixed box, i.e., two distinct places that are in the same field have equal levels of

concentration of the contaminant. Similar to the one-zone model, this model assumes the

contaminant is generated at a rate G(mg/min), in a room with ventilation rate Q(m3/min)

and loss rate by other mechanisms KL(mg/m3). This model includes one more parameter

that indicates the airflow between the near field and the far field β(m3/min). The volume

in the near field is denoted by VN(m3) and the volume in the far field is denoted by VF (m3).

Figure 1.2 illustrates the dynamics of the system.
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Figure 1.2: Two-zone model schematic showing key model
parameters; generation rate G, ventilation rate Q airflow β and loss

rate KL

The following system of differential equations represents the two-zone model

d

dt

 CN(t)

CF (t)

 =

 −β/VN β/VN

β/VF −(β +Q)/VF −KL

 CN(t)

CF (t)

+

 G/VN

0


Turbulent Eddy diffusion model [KBA09] is an example of models which, unlike the one-

zone and the two-zone models, provides a concentration gradient from the source outward.

It takes into account the worker’s location relative to the source. The concentration Ct,s is a

function of location s(x, y) in a two-dimensional Euclidean coordinates and time t. The pa-

rameter that is unique to this model is the turbulent eddy diffusion coefficient DT (m2/min).

DT describes how quickly the emission spreads with time (Figure 1.3) and is assumed to be

constant over space and time. The following differential equation represents the change in

concentration over time at location s = (x, y)

d

dt
Ct,s =

G

4(DTπt)3/2
exp

(
−||s||2/4DT t

)
.

The one-zone and two-zone experimental datasets were generated in a controlled lab.

[ASR17] conducted a series of chamber studies under controlled conditions in an expo-

sure chamber of size 11.8 m3. A solvent (toluene/ 2-butanone/ acetone) was released into

the chamber at one of three known generation rates G(mg/min) where ventilation rate
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Figure 1.3: Eddy diffusion model schematic showing key model
parameter; diffusion coefficient DT

Q(m3/min) was controlled. To achieve good mixing, two fans were placed in opposite cor-

ners of the chamber. Three ventilation rates representing residential and industrial settings

of 0.04 − 0.07 m3/min, 0.23-0.27 m3/min and 0.47-0.77 m3/min were used. The two-zone

model near field (0.105 m3) was constructed from perforated wire mesh within the far filed

(11.79 m3). The airflow rate β cannot be measured directly but estimated according to the

equation β = 1/2×FSA×S where FSA(m2) is the free surface area of the near field which is

the sum of the area across the six sides of the box and S(m/min) is the local air speed [Nic96].

Values of β were expected to be between 0.24 and 1.24 m3/min. A study for each of the

three solvents at the three ventilation and generation rates was conducted. Concentrations

were measured every 90 seconds using gas monitors that require gas specific calibration. In

our analysis, three different experimental datasets at three different ventilation rates were

used for model comparison and assessment.

The eddy diffusion experimental datasets were generated in a controlled chamber as well.

[SRA17] constructed an experimental chamber of size 11.9 m3 with spatial concentration

gradient away from the contaminant source at different airflow conditions. They used dif-

fusers to promote eddy formation. A series of experiments were conducted where acetone or

toluene was pumped into the chamber at known generation rates G(mg/min). Gas detec-

tors were placed at two locations at distances 0.41m and 1.07 m away from the source and

concentrations were measured every 120 seconds. Experiments were conducted at different

values of air change per hour (ACH).
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1.3 Contributions and Dissertation Outline

The focus of this dissertation is parameter inference and prediction of chemical exposure data

using new approaches. The dissertation provides a framework for coastal kriging. It also

provides a methodology to perform parameter estimation and state prediction in parametric

and nonparametric state space models using MCMC methods. The nonparametric methods

can be particularly useful when the model is misspecified. Chapter 2 presents a literature

review of kriging, spatial processes for coastline measurements and discusses coastal kriging

in details. Chapter 3 presents a literature review on state space models and Bayesian in-

ference in state space models. It addresses inference of the latent state process that arises

from different chemical-physical laws. The solution proposed utilizes the discretization of

the physical model which, is expressed as a linear system of ordinary differential equations

(ODEs) and uses a state space model as a representation of an unobserved state of interest

that evolves over time and partial observations that are observed sequentially over discrete

time. Chapter 4 expands upon the parametric state space models into a more flexible model

that relaxes the distributional assumptions of the parametric model.
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CHAPTER 2

Coastal Kriging: A Bayesian Approach

2.1 Introduction

Data observed over locations with known geographic coordinates are often referred to as

point-referenced data and are commonly seen in environmental health. Recent applications

consider such data measured along coastlines or shores. For example, to assess exposures of

workers to chemicals along the coastline may require statistical interpolation of the chemical

concentration at new locations along the coast. Statistical interpolation at new locations

based upon a set of observed measurements at known locations is often referred to as “Krig-

ing” in the geostatistical literature [Cre93]. Kriging customarily uses spatial analytic tools

such as variograms or covariance functions to construct best linear unbiased predictors.

When chemicals are sampled mostly along a coastline, interpolation is sought at new loca-

tions along the coast. Thus, all measurements are collected along a curve (approximating

the coastline) and prediction is sought at new points on this curve. We call this “coastal

kriging.”

Models for waterway stream networks using moving averages have been developed [HP10].

They use stream distance rather than Euclidean distance. These models account for the

volume and direction of flowing water in stream networks. They offer richness and flexibility,

but are complicated and can be difficult to compute. Unlike networks, where we have complex

structure of line-segments and joints, in simple coastal kriging we approximate the coastline

with a single curve or a sequence of line segments. A simple parametrization of the coast

will suffice and lead to easily implementable statistical models.

We will pursue Bayesian coastal kriging. Bayesian models offer easier interpretability for
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parameter estimates, provide exact estimates of uncertainty without requiring assumptions of

large sample sizes and independence of observations, and can incorporate prior information

when available. Bayesian models can be easily executed using several software packages

within the R statistical computing environment.

We will illustrate our models using a specific dataset extracted from the GuLF STUDY

(Gulf Long-term Follow-up Study) database. In April, 2010 an explosion of the Deepwater

Horizon oil rig resulted in an oil spill in the Gulf of Mexico. It was the largest oil spill in US

history. Tens of thousands of workers were involved in stopping and in cleaning up the oil

release. The GuLF STUDY is conducted by the National Institute of Environmental Health

Sciences (NIEHS) and sponsored by the National Institute of Health (NIH) [KEM17]. It

is collecting information to study potential adverse effects on the health of those workers.

Among other activities, the workers capped the well, applied dispersants to break up the

oil, skimmed or burned the oil on the Gulf waters, cleaned beaches, marshes and structures,

decontaminated equipment, and provided support for these activities. Personal air measure-

ments are available on many of these tasks. The highest portion of the STUDY participants

were involved in cleaning the beaches, marshes and structures. One specific task in assess-

ing exposures of workers cleaning the coastline is to statistically interpolate the chemical

concentration at new locations along the coast.

Our contribution expands upon existing geostatistical models to allow for better pre-

diction of quantities of interest at new locations over coastlines. The chapter is organized

as follows. Section 2 provides a brief review of Bayesian methods for kriging. Section 3

discusses spatial processes for coastline measurements. Section 4 discusses our geostatistical

models for interpolating point-referenced coastline data and simple algorithms for implement-

ing Bayesian kriging. Section 5 discusses simulation results that help validate our method.

Section 6 illustrates our model through applying it to the GuLF STUDY data. Section 7

provides conclusions and suggestions for some future work.
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2.2 Model-based Kriging

2.2.1 Spatial process models with Euclidean coordinates

Point-referenced spatial modeling seeks to capture associations between observations geo-

graphically closer to each other and to predict the value of the response or outcome variable

at arbitrary locations. This is achieved using a spatial regression model,

Z(s) = x(s)>β + ω(s) + ε(s) , ε(s)
iid∼ N(0, τ 2) (2.1)

where x(s)> is a 1×p vector of covariates (predictors) observed at location s, ω(s) is a latent

(unobserved) spatial random effect at location s, and ε(s) accounts for measurement error.

For any collections of locations, the measurement errors in (2.1) are normally distributed

independently and identically, each with a zero mean and variance τ 2.

If ω(s) = 0 for all locations, then (2.1) reduces to an ordinary linear model with indepen-

dent outcomes. If the outcomes are spatially correlated, then ω(s) introduces dependence.

There are several different mechanisms for specifying ω(s) [Cre93, BCG14], but we choose a

fairly straightforward and interpretable model here. We assume that each ω(s) has mean 0

and the dependence at two points s and s′ is modeled as

Cov{ω(s), ω(s′)} = Kθ(s, s
′) = σ2 exp(−φ‖s− s′‖) , (2.2)

where ‖s − s′‖ is the distance between two locations s and s′, θ = {σ2, φ}, σ2 captures the

variation attributed to spatial effects (referred to as partial sill) and φ controls the rate at

which the spatial correlation drops to zero. The spatial range is defined as the distance

beyond which the spatial correlation becomes negligible. For the exponential covariance

function in (2.2), the spatial range is given by approximately 3/φ which is the distance

where the correlation drops below 0.05.

We incorporate the covariance function (2.2) into a probability model. Let S = {s1, s2, . . . , sn}

be the set of spatial locations. The n× 1 vector ω, whose i-th entry is ω(si), follows a mul-
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tivariate normal distribution N(0, Kθ), where Kθ is the n × n spatial covariance matrix

with (i, j)th entry Kθ(si, sj) in (2.2). The measurement errors are independent across loca-

tions, hence ε(si)
iid∼ N(0, τ 2). This implies that the data vector Z, whose i-th element is

Z(si), is multivariate normal with mean vector Xβ, where x(si)
> are the rows of X, and

variance-covariance matrix Kθ + τ 2In, where In denotes the n× n identity matrix.

Spatial regression models, such as (2.1), are fitted by estimating geostatistical parameters

σ2, φ and τ 2 in addition to the regression coefficients β. We use (2.1) to predict the outcome

at a new location after accounting for the uncertainty in parameter estimates. When all

points lie on a region represented as a 2-D plane, the distance between s and s′ in (2.2)

is given by the standard Euclidean distance formula. Here, the correlation drops at the

same rate for every direction, so the spatial range is a function of distance only. Also, the

covariance function in (2.2) ensures that Kθ is always positive definite [BCG14].

In our current context, the points lie along a curve representing the coastline. There are

two issues. First, the Euclidean distance is inappropriate for modeling spatial covariances

because the effective spatial range will be the distance along the coast at which the corre-

lation becomes negligible. Second, covariance functions that insure positive definiteness in

Euclidean coordinates need not be valid for other domains [Ban05]. This means that we will

need to construct valid covariance functions along the coastline. Subsequently, we describe a

simple approach to construct models such as (2.1) using valid covariance functions for points

along curves.

2.2.2 Spatial processes for coastline measurements

We now extend the model discussed in the previous section to the case where the data are

observed over a coastline. Since all observations lie along the coastline, we will model spatial

dependence along the coastline. The spatial range and variability will need to be interpreted

in terms of distance along the coastline. Prediction is also sought at arbitrary points along

the coast. We assume that any point s on the coast is given by γ(t) = (γ1(t), γ2(t)) for

some t ∈ T ⊂ <1, where γ1(t) = f(t) and γ2(t) = g(t) are parametric equations for the
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coordinates. Therefore, each value of t determines a coordinate on a plane and traces out

a curve γ(t) as t varies over a range T . The coastline is now given by the set of all points

on it: γ(T ) = {γ(t) : t ∈ T ⊂ <1}. For example, a simple curve could be approximated by

line segments. For each line segment, γ(t) is a straight line, γi(t) = {si + tu | t ∈ [0,∞]},

originating at si and parallel to the direction vector u. Here, si =

γ1i

γ2i

, u =

u1

u2

 and,

hence,

γi(t) =


γ1i + tu1

γ2i + tu2

 | t ∈ [0,∞]

 (2.3)

A customary choice for the parameter t is the arc length. As another example, consider a

circular coast with radius r. The curve is defined as

γ(t) = {γ1(t) = r cos t, γ2(t) = r sin t | t ∈ [0, π/2]} (2.4)

The point γ(t) = (r cos t, r sin t) moves in a fixed orientation (e.g., clockwise) as t increases.

If t is the length of an arc of the circle and λ is the angle in radians which the arc subtends

at the center of the circle, then t = rλ.

A spatial regression model such as (2.1) can be defined over a coast by representing each

point on the coast by γ(t). Thus, we write Y (t) = Z(γ(t)) for every t ∈ T . Therefore,

Y (t) = x>(t)β + ω(t) + ε(t); , (2.5)

where x(t) is the vector of covariates observed at the point γ(t), ω(t) is now defined over T

with covariance function

Cov(ω(t), ω(t′)) = Kθ(t, t
′) = σ2 exp(−φ|t− t′|) , (2.6)

where |t − t′| is the absolute difference between t and t′, and ε(t)
iid∼ N(0, τ 2). Coastal

covariance is demonstrated in Figure 2.3. Here, the correlation between two points decreases

as the coastal distance between them increases.
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The choice of t depends on the parametric equation used to approximate the coast. If

the coast can be well-represented in closed form using a parametric equation, then t as the

arc-length is a reasonable and convenient choice. More generally, an arbitrary coastline can

be well approximated using a series of small line segments. Each segment is then defined

according to (2.3). For example, in our subsequent simulation experiments we present linear

approximations for an elliptical coastline. In our real example we use a series of small linear

segments to model the coast along Waveland Beach in Mississippi.

2.2.3 Coastal kriging

Exposure assessors may be interested in predicting the concentration of a toxicant at any

arbitrary location on the coast. Let Y (t0) be the toxicant concentration measurement at

the point γ(t0) on the coast. The posterior probability distribution of Y (t0), which is also

referred to as the posterior predictive distribution, is computed in two steps. First, the un-

known parameters in (2.5) are estimated by using Bayes’ theorem to compute their posterior

distributions. Thus, if p(θ, β, τ 2) represents the prior distribution for unknown parameters

and p(y | θ, β, τ 2) represents the likelihood, then the posterior distribution is given by

p(θ, β, τ 2 | y) =
p(θ, β, τ 2)× p(y | β, θ, τ 2)

p(y)
∝ p(θ, β, τ 2)× p(y | θ, β, τ 2) . (2.7)

The prior distribution can be informative or non-informative. Non-informative priors typi-

cally deliver inference consistent with classical methods. Even for weakly informative priors,

the inference is often close to classical methods because the effect of the data typically

overwhelms the prior. While often producing inference numerically very similar to classical

inference, Bayesian inference will retain simpler interpretability.

Suppose we have toxin measurements at points γ(t1), γ(t2), . . . , γ(tn) on the coast and

have collected the y(ti)’s in an n × 1 vector y. Let X be the n × p matrix with i-th row

x>(ti) and ω be the n× 1 vector with elements ωi. The posterior distribution of the model
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parameters is

p(β, σ2, τ 2, φ | y) ∝ U(φ | aφ, bφ)× IG(τ 2 | aτ2 , bτ2)× IG(σ2 | aσ2 , bσ2)

×N(β |µβ, Vβ)×N(y |Xβ + ω, τ 2I) , (2.8)

where U(·, ·), IG(·, ·) and N(·, ·) represent the uniform, the inverse-Gamma and the Normal

distributions, respectively, as expounded in [GCS13].

Posterior distributions, in general, are not available in simple closed-forms. Instead we

sample {β, ω, θ, τ 2} from their posterior distribution, where θ = {σ2, φ}, using Markov chain

Monte Carlo (MCMC) methods [GCS13]; [BCG14]. Some simplifications are often made.

One is to use a flat completely noninformative prior on β. Another is to integrate out ω

from (2.8). The posterior samples for {β, σ2, τ 2, φ} are then obtained from

p(β, θ, τ 2 | y) ∝ U(φ | aφ, bφ)× IG(τ 2 | aτ2 , bτ2)× IG(σ2 | aσ2 , bσ2)×N(y |Xβ,Kθ + τ 2I) .

(2.9)

The posterior samples for ω are subsequently obtained by sampling one instance of ω from

N(·, ·) for each sampled value of {β, σ2, τ 2, φ}. This is called composition sampling [BCG14].

Suppose we have collected M post-convergence posterior samples for the model param-

eters, say {β(j), θ(j), τ
2
(j)}, for j = 1, 2, . . . ,M . Then the posterior samples for Y (t0) are

obtained by composition sampling, i.e., for each j we draw Y(j)(t0) from the conditional

normal distribution, say N(m(j), v
2
(j)), where the mean and variance are

m(j)(t0) = x(t0)>β(j) + K̃θ(j)(t0, t)K̃
−1
θ(j)

(t, t)K̃θ(j)(t, t0)(y −Xβ(j))

and v2
(j)(t0) = K̃θ(j)(t0, t0)− K̃θ(j)(t0, t)K̃

−1
θ(j)

(t, t)K̃θ(j)(t, t0)) , (2.10)

where K̃θ(j)(·, ·) = Kθ(j)(·, ·) + τ 2I. Note that m(j)(t0) and v2
(j)(t0) are precisely the classi-

cal kriging estimator and variance evaluated at {β(j), θ(j), τ
2
(j)}. Bayesian kriging, therefore,

quantifies uncertainty in kriging by averaging the classical kriging estimator over the pos-

terior distribution of the parameters. The resulting Y(j)(t0) are samples from the posterior
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predictive distribution. The mean of these samples yields a point estimate of the predicted

value at t0, while the variance of the posterior samples estimates the predictive variance.

One assumption to simplify matters is that φ and α = τ2

σ2 are fixed, say at values re-

sulting from the empirical variogram [BCG14]. Hence, the posterior samples for the model

parameters are obtained from the conjugate model

p(β, σ2 | y) ∝ IG(σ2 | aσ2 , bσ2)×N(β |µβ, σ2Vβ)×N(y |Xβ, σ2Vy) , (2.11)

where Vy = R(φ) +αI and R(φ) is the spatial correlation matrix with elements exp(−φ|ti−

tj|). Here one can sample exactly from the posterior distribution in (2.11). For each j =

1, 2, . . . ,M we first draw σ2
(j) ∼ IG(a∗(j), b

∗
(j)) followed by β(j) |σ2

(j), y ∼ N(Bb,Bσ2
(j)), where

a∗(j) = aσ2 + n/2 and b∗ = bσ2 + (y>Vyy − b>Bb)/2, where B = (X>V −1
y X + V −1

β )−1 and

b = X>V −1
y y.

2.3 Simulation

The simulated data consists of n = 100 data points. The outcome Y (t) values were generated

on an ellipse. We first generated li ∼ Uni(0, 2π) for i = 1, 2, . . . , n, where the corresponding

parametric equations are m = 2cos(l) and n = sin(l). We then drew a multivariate normal

random variable ω ∼ N(0, Kθ) and then y(ti) ∼ N(β0 + ω(ti), τ
2), where ti is the arc-length

between points (mi−1, ni−1) and (mi, ni).

In the data generation step, we fixed τ 2 = 0.1, β = 0 and θ = {1, 1}. For assessing

predictive performance, we used 75 observations for training the model and withheld 25

observations for testing the predictive validation.

We estimated the models in (2.9) and (2.11). To compare the performance of coastal

kriging to kriging using Euclidean distance, we estimated the model in (2.1) as well using the

covariance in (2.2). For all models, we assigned a noninformative prior to β0 (i.e., V −1
β = O

the matrix of zeroes) and an IG(2, 2) prior to τ 2. In (2.9) σ2 and φ were assigned IG(2, 2)

and U(0.8, 30) priors. The IG(2, b) prior provides a prior mean of b but has, in theory, an
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infinite variance yielding a relatively vague prior but with a prior value centered around b.

In (2.11), we fixed φ = 1.07 and α = 0.25 for the coastal kriging model and φ = 22009.68

and α = 8.13× 10−5 for kriging with Euclidean distance. Starting values for σ2, τ 2 and φ in

(2.8) and the fixed values for φ and α = τ 2/σ2 in (2.11) were provided using their estimates

from the empirical variogram for the data [BCG14].

We also compared coastal kriging to universal kriging (UK). Universal kriging is kriging

with a trend, where E(Z(s)) is a linear combination of the known functions {f0(s), . . . , fp(s)}

[Cre93]. We assume that the mean E(Z(s)) is a function of the coordinates in a linear form,

i.e Z(s) = β0 + β1x1(s) + β2x2(s) + ω(s) + ε(s), where x1(s) is the longitude at location s,

x2(s) is the latitude at location s.

In practice we will not have an exact parametric formula for the coastline. This needs to

be approximated by simple parametric curves. The easiest such option is a sequence of line

segments, as described earlier. We used our simulated dataset to evaluate the performance

of such linear approximations. Let ∆mi = mi −mi−1 and ∆n = ni − ni−1, then the length

of the straight line segment connecting the two points is t∗ =
√

(∆m)2 + (∆n)2. For small

∆m, the sum of the lengths of these line segments provides an approximation to the length

of the curve. We will, therefore, consider four models for coastal kriging. The model in

(2.9) with the exact parametrization for an ellipse will be called Model 1a , while that

with linear approximation will be called Model 1b. Similarly, the exact and approximate

parameterizations corresponding to the model in (2.11) will be referred to as Model 2a and

Model 2b respectively.

Table 2.1 presents the posterior medians and 95% Bayesian credible intervals for the

parameters in each of the above four models, the simple Euclidean distance kriging model

and the UK model. The credible intervals from all models include the true values of β0.

Models 1a and 1b captured the true values of σ2 and φ. Model 2b also captured the true

value of σ2 and Models 2a and 2b captured the true value of τ 2. To assess predictive

performance across the six models, we used mean square prediction error (MSPE). Coastal

kriging and UK models produced very similar MSPE values, and the highest MSPE was

produced by the simple Euclidean distance kriging model. For model comparison we also
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used the Kullback-Leibler (K-L) divergence criterion (DKL(M0 |Mi)), i = 1, . . . 5, where M0

is the true distribution and Mi is the distribution under model i. For multivariate normal

distributions the Kullback-Leibler divergence ([BT94]) takes the form

1

2
(tr(Σ−1

Mi
ΣM0) + [xβMi

− xβM0 ]
>Σ−1

Mi
[xβMi

− xβM0 ]− n+ ln(det(ΣMi
))− ln(det(ΣM0)))

where Σ = Kθ + τ 2I.

[0.04,0.08)
[0.08,0.089)
[0.089,0.097)
[0.097,0.1)
[0.1,0.104)
[0.104,0.113)
[0.113,0.132)
[0.132,0.382]

Figure 2.1: Map of interpolated total hydrocarbons (ppm) over
Waveland Beach, Mississippi

Model 1a produced the lowest DKL followed by Models 1b, 2b and 2a, and the highest

values were produced by the UK model and the simple Euclidean distance kriging model.

We also used deviance information criterion (DIC), which is commonly used in Bayesian

model selection. Model 2a produced the lowest value followed by Models 2b, 1a and 1b, then
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Figure 2.2: Observed total hydrocarbons (ppm) over Waveland
Beach, Mississippi and Model 1b interpolated values

the UK model, and the highest value was produced by the simple Euclidean distance kriging

model. Finally, ten-fold cross validation (CV(10)) was the lowest among coastal kriging

models followed by the UK model then the simple Euclidean distance kriging model. We

also used Bayesian 95% prediction intervals and the predicted mean values of the outcome

from the 25 holdout locations and plotted them against the true values (Figure 2.4). For
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Table 2.1: Medians, 2.5% and 97.5% quantiles of the posterior samples of the coefficient
estimate, partial sill σ2, nugget effect τ 2, decay parameter φ, MSPE, DIC, Kullback-Leibler
and CV(10) for the fitted models to the simulated data

True Model 1a1 Model 1b2 Model 2a3 Model 2b4 Simple kriging5 Universal kriging

β0 0 0.16(-0.41,0.79) 0.16 (-0.51,0.89) 0.19(-0.35, 0.71) 0.24(-0.49, 0.97) 0.006(-0.16, 0.18) 0.03(-0.24, 0.31)
σ2 1 0.55(0.30,1.09) 0.56 (0.30, 1.14) 0.48(0.36,0.67) 0.74(0.55, 1.04) 0.58(0.43, 0.81) 0.18(0.12,0.26)
τ2 0.1 0.18(0.12,0.28) 0.18 (0.12,0.27) 0.12(0.09, 0.17) 0.12(0.09, 0.17) 2.8× 10−5(2.1× 10−5, 3.9× 10−5) 0.17(0.12,0.25)
φ 1 1.20(0.85,2.81) 1.15 (0.71,3.58) 0.76 0.76 31773.42 0.32(0.16, 0.96)
MSPE 0.57 0.59 0.53 0.54 1.23 0.56
DIC 30.11 30.95 28.80 29.82 55.43 37.8
Kullback-
Leibler 4.10 5.61 5.68 5.64 73.67 100.7
CV(10) 0.170 0.169 0.171 0.176 0.558 0.183

1 Full hierarchical model using arc-length.
2 Full hierarchical model using line segment approximation.
3 Simplified hierarchical model using arc-length.
4 Simplified hierarchical model using line segment approximation.
5 Simplified hierarchical model using Euclidean distance.

the coastal kriging models, the intervals include the true values of the outcome variable in

each of the holdout locations except for one location. The UK model provided improved

prediction over simple Euclidean distance kriging model which produced the least accurate

prediction with wider credible intervals.

These results indicate that Bayesian models using linear approximation to a parametric

curve do not seem to adversely affect the inferential performance relative to models using

the true form of the parametric curve. They also indicate that coastal kriging is better than

classical kriging methods such as simple Euclidean distance kriging and UK when the source

of variability in the data arises from a curve. Thus, Models 1b and 2b are good candidate

models to be used in the data analysis.

2.4 Data Analysis

Coastal kriging of the concentration of chemicals inhaled by the clean-up workers following

the oil spill in 2010 may be useful to assess the potential health effects associated with the

spill for locations without measurements. The data set used here consists of air samples
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collected on clean-up workers on Waveland beach, Mississippi which extends in an S-shape

for seven or eight kilometers (Figure 2.1). The samples were collected for approximately 10

hours per day using passive dosimeters clipped to the workers’ collars to measure breathing

zone concentrations. The chemicals in the air diffused on to a charcoal pad inside the

sampler. Five analytes were analyzed at the laboratory. They include total hydrocarbons

(THC) which is a composite of the volatile chemicals in crude oil and is our main variable

of interest. There were a total of 60 sample points (THC parts per million (ppm)) collected

between September 19 and December 21, 2010 that were used in the analysis. Two exposure

groups were considered, workers who cleaned jetties and other land-based structures and

workers who cleaned beaches.

Candidate models include Models 1b and 2b where the curve is approximated by line

segments and the parameterization in (2.3) is used. The fixed values of φ and α in (2.11)

could be the estimated from the variogram. However in coastal kriging, the variogram

may not provide accurate estimates. Hence, we will use Model 1b in the data analysis

and compare the results to simple Euclidean distance kriging results. For both models, we

assigned a noninformative prior to β0 (i.e., V −1
β = O the matrix of zeroes) and an IG(2, 2)

prior to τ 2. In (2.9) σ2 and φ were assigned IG(2, 2) and U(0.8, 30) priors. The prior on

φ implies that the effective spatial range, i.e., the distance beyond which spatial correlation

is negligible, is between 0.1 and 3.8 on a coastline with a distance of 7.6 kilometers. In

addition, coastal kriging was compared to universal kriging (UK) with a linear trend.

Twelve observations acted as a holdout testing sample and the models were assessed

based on their predictive performance at new locations using MSPE in addition to 10-fold

cross validation (CV(10)) and on the goodness of fit measure DIC. All observations were log

transformed to achieve normality.

Table 2.2 shows parameter estimates of the fitted models. MSPE is almost the same

among the three models, and the highest CV(10) resulted by the UK model. Model 1b pro-

duced the lowest DIC value. Results show that coastal kriging proposed in (2.5) provides a

better fit for coastal data compared to other classical kriging methods. Figures (2.1) and (2.2)

show plot of 100 total hydrocarbon (ppm) interpolated values resulted from Model 1b fit at
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randomly generated coordinates, and Figure (2.2) shows the true observed values as well.

Table 2.2: Medians, 2.5% and 97.5% quantiles of the posterior samples of the coefficient
estimate, partial sill σ2, nugget effect τ 2, decay parameter φ, and MSPE, DIC, and CV(10)
for the fitted models of the log transformed total hydrocarbons

Model 11 Simple kriging2 Universal kriging

β0 -2.29(-2.71, -1.83) -2.23(-2.67,-1.73) -71.2(-8663.9, 7497.1)
σ2 0.59(0.29, 1.26) 0.59(0.28, 1.15) 0.52(0.34,0.89)
τ2 0.46(0.25, 0.80) 0.46(0.27, 0.85) 0.17(0.12,0.23)
φ 9.08(1.26, 24.82) 7.43(1.78, 22.70) 0.29(0.29,6.48)
MSPE 0.06 0.06 0.05
DIC 34.4 38.6 65.05
CV(10) 0.06 0.06 0.13

1 Full hierarchical model using line segment approximation.
2 Full hierarchical model using Euclidean distance.

2.5 Discussion

We developed a flexible yet simple Bayesian framework for spatially-oriented data that can

be used to assess exposures of workers by interpolating levels of chemicals along a coastline.

The statistical models for coastal kriging exploit a simple representation of the coast as

a parametric function of the coordinates of points along the coastline. We presented four

models using two different parameterizations. We found that for a simple curve, kriging using

line segment approximation performs better than spatial kriging using Euclidean distance.

This could be a useful and practical approach for kriging over any simple curve. The model

is relatively easy to fit since the covariance depends on parameters in <1.

We remark that the current analysis only considers worker exposure assessment, not

community-based exposure assessment. In the GuLF STUDY more than 28,000 samples

of THC and several other chemicals were collected across the Gulf, along the coasts, and

at ports and docks, providing sufficient data for the STUDY exposure estimates [SSR17].

These estimates were derived from groups of samples based on the tasks being performed.
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Figure 2.3: Coastal kriging estimated correlation versus coastal
distance using the simulated data and Model 1a results with 95% C.I.

The concentrations generated by these tasks (i.e. cleaning the beaches of oil and tar) rep-

resent task-derived exposures and, to a lesser extent, ambient air exposures. Using such

task-based measurements is not appropriate to impute general or community air concentra-

tions because the task concentrations will be higher than ambient concentrations due to the

workers being nearer to the source of the chemical emission than the community. With the

data used here, however, the imputed concentrations from the methodology described above

may represent workers’ exposures performing those same tasks in unmeasured locations. To

date, occupational assessment methodologies have focused primary on fairly localized expo-

sure situations. The method described here may be useful in more geographically extended

situations, such as workers building a highway or mitigating a chemical release in a river or
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Figure 2.4: Simulated data true versus predicted values with 95%
prediction intervals with 45◦ line of the four coastal kriging and

simple kriging models

residents living along a fenceline adjacent to a manufacturing site.

Our study has some limitations within which our findings need to be interpreted carefully.

First, the results are based on a total of 60 data points from which 48 were used in training

the model and 12 were used in testing it. Second, the data points are distributed on a

coast with little curvature which rendered the coastal kriging results slightly better than

simple Euclidean distance kriging results. Last, but not least, the distribution of total

hydrocarbons in the air is unknown and its source is not arising from the coast which may

add some uncertainty in the fitted model, although in our data this uncertainty is assumed
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to be minimal.

Building valid models for coastal kriging presents many new research opportunities. For

instance, it would be of interest to develop a model for more complicated coastlines and,

in particular, along closed curves such as the coasts of an island. Thus, future work will

investigate potential problems such as, complexity of the curve, covariates inclusion, potential

changes in the coastline and temporal changes. Future work will also consider the modeling

and analysis of censored data, as is commonplace in exposure studies, due to measurements

below the limits of detection. Finally, we will also consider extending this work to exposure

assessment for communities rather than individuals.

26



CHAPTER 3

Bayesian State Space Modeling of Physical Processes

in Industrial Hygiene

3.1 Introduction

In industrial hygiene, estimation of a worker’s exposure to chemical concentrations in the

workplace is an important concern. In many situations, chemical concentrations are un-

observed directly and partial noisy measurements are available. Exposure models aim at

capturing the underlying physical processes generating chemical concentrations in the work-

place. Exposure modeling through statistical and mathematical models may provide more

accurate exposure estimates than monitoring [NJ02]. Industrial hygienists seek to infer these

latent processes from the available measurements as well as quantification of uncertainty in

parameter estimation. For example, generation and ventilation rates are crucial parameters

that are difficult to obtain since most workplaces do not collect information routinely.

Traditional approaches involve using deterministic physical models that assign values to

those parameters [KBA09]. These approaches however do not provide accurate represen-

tation in a real workplace environment as they ignore the model sources of uncertainty.

For example, the uncertainties in the true values of the parameters, the numerical imple-

mentation, the adequacy of the physical model, the observations and the initial values, and

uncertainties from physical processes that are not resolved at the temporal and spatial scales

represented in the physical models. Bayesian methods combining professional judgment from

experts and direct measurements [GCS13] were successful in different settings. For example,

[ZBL09] introduced a nonlinear regression on the solution of the differential equations repre-

senting the underlying physical model within a Bayesian setting for the two-zone model using
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Gaussian errors. The model has some limitations since it ignores extraneous factors and vari-

ations and requires a closed-form solution of the differential equations. This severely limits

the number of applicable physical models. [MBR11] introduced an R package (B2Z
¯

), which

implements the Bayesian two-zone model proposed by [ZBL09]. [MBR14] demonstrated that

straightforward Bayesian regression can be ineffective in predicting exposure concentrations

in industrial workplaces since the information is limited to partial measurements and does

not take into account the ”bias“ between the physical model and reality. They introduced

a process-based Bayesian melding approach where measurements are related to the phys-

ical model through a stochastic process that captures the bias in the physical model and

a measurement error. The resulting inference suffers from inflated variability because of

the additional complexities in the model, cumbersome computations and opaque interpre-

tation. Bayesian formulation that utilized Gaussian process (GP) models was also provided

by [HGW08] which allows for highly multivariate output.

We propose using a data assimilation approach in a Bayesian state space model, by

discretizing the physical model differential equations that model the rate of change in con-

centrations, and incorporating information from observed measurements and experts prior

knowledge. This approach will enrich the existing methods, as industrial hygienists will no

longer be restricted to fitting a confined selection of physical models amenable to analytic

solutions. Any conceivable physical model, in theory, can be accommodated. Neither will

they be restricted to Gaussian data, an assumption that most industrial hygiene practitioners

will agree is rarely tenable, especially given the small to moderate number of measurements

they have to deal with.

State space models provide filtered, more accurate state estimates using measurements,

which contain some noise, along with the physical model. The importance of filters lies in

their ability to produce estimates of the latent process using information generated by the

observations which may provide a poor representation of the latent process if used alone. The

Bayesian framework provides a natural approach for probabilistic forecasting [GK14], which

helps quantify uncertainties in predicted or filtered states. [HGL13] used ensemble Kalman

filter (EnKF) for computer model calibration from a Bayesian perspective. [HB18] used
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a representation of uncertainty using a class of outer measures in filtering and smoothing,

which do not require all sources of uncertainty to be described only by strict probability

distributions. [HDZ18b] developed Bayesian inference in a nonlinear filtering framework for

parameter uncertainty quantification, while in [HDZ18a], they used Bayes factors and the

posterior model probability to quantify model uncertainty.

We focus on approaches for uncertainty quantification (UQ), data assimilation and model

calibration that help estimate exposure levels and the model parameters. Recent develop-

ments in UQ have been mostly notable in climate and engineering applications. We offer a

novel methodology for flexible modeling of chemical concentrations within a Bayesian state

space model framework. Representing uncertainty when performing parameter estimation

and inference is important for model assessment and selection. We offer a general framework

using MCMC methods to sample from the posterior distributions for all the model parameters

and the predictive distributions. Our method will be demonstrated on computer-simulated

data and lab-generated data.

The chapter is organized as follows. In Section 3.2 we provide a brief review of state

space models. Section 4.1.4 provides a brief review of three families of commonly referenced

exposure physical models and the corresponding proposed statistical models. Section 3.4

describes the models implementations and assessment methods. Section 3.5 illustrates our

models through applying it to simulated data and experinmental chamber data. Section 3.6

concludes the chapter.

3.2 State Space Models

Suppose that {Xt : t ∈ T }, Xt ∈ <nx is a stochastic process, where T is the index set and nx

is the dimension of the state vector. A state-space model (SSM) is a representation of that

unobserved stochastic process that evolves over time, and sequential partial observations

{Yt : t ∈ T }, Yt ∈ <ny , where t can be taken as discrete time [Fea11] and ny is the dimension

of the observation vector. In a linear discrete SSM, the measurements Yt can be represented
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Figure 3.1: Graphical representation of state space model

as

Yt = HtXt + νt,

for unobserved state vectors Xt, t ∈ N and known transformation matrices that map the

state vector into the measurement domain Ht : <ny×<nx → <ny and zero mean i.i.d. random

noise νt ∈ <ny with covariance Rt [Far12]. The state of a system at time t is assumed to

evolve from the prior state at time t− 1 according to the state equation

Xt = FtXt−1 + g + ωt,

where Ft is a state transition matrix, g are control inputs and ωt ∈ <nx is an i.i.d. process

noise sequence with covariance Qt [Eub05].

In a more general setting, the state vector {Xt : t ∈ N} is assumed to evolve according

to

Xt = ft(Xt−1, ωt−1) (3.1)

where ft is usually a known, possibly nonlinear function in Xt−1 and ωt is an i.i.d. process

noise sequence. We want to find filtered or updated estimates of Xt based on the measure-
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ments Yt which are assumed to be related to the state vector according to

Yt = ht(Xt, νt), (3.2)

where ht is the measurement function and νt is an i.i.d. measurement noise.

A continuous state space model can generally be expressed as

d

dt
Xt = FtXt + g + ωt; Yt = HtXt + νt. (3.3)

We want to transfer the continuous equation into a discrete one. The solution to the first

equation in (4.3) when the eigenvalues of Ft are real and distinct can be obtained as follows

Xt = exp(tFt)X0 + F−1
t × [exp(tFt)− I]g, (3.4)

where exp(A) denotes the matrix exponential (see [BR14, p. 333-334]). The discretized latent

state Xt follows an AR(1) transition model, i.e. for small steps of size δt, for t = 1, . . . , T ,

the first equation in (4.3) can be approximated by

Xt+δt ≈ (I + δtFt)Xt + δtg + ωt. (3.5)

3.3 Physical models and their statistical counterparts

Bayesian state space representations for exposure assessment models combine direct mea-

surements of the environmental exposure, physical models and prior information. There

are several physical models varying in their level of complexity [Ram05]. Three commonly

used families of physical models are the well-mixed compartment (one-zone) model, the two-

zone model and the turbulent eddy diffusion model. We use discrete approximations to the

deterministic physical models and introduce stochastic error terms to derive corresponding

dynamic statistical models. This obviates the need for exact analytic solutions to the differ-

ential equations, which can be sensitive to the choice of initial conditions. Prior specifications
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for the model parameters produce Bayesian state space models (SSMs).

Dynamic models combine measurements with the true underlying state. They are com-

posed of (i) a measurement equation that relates the observations (or some function thereof)

to the true concentrations; and (ii) a transition equation describing the concentration change

from time t to time t+δt. We will derive the dynamic models from the respective differential

equations for three popular physical models in industrial hygiene.

3.3.1 Well-mixed compartment (one-zone) model

The well-mixed compartment model assumes that a source is generating a pollutant at a

rate G (mg/min) in a room of volume V (m3) with ventilation rate Q(m3/min). The room

is assumed to be perfectly mixed, which means that there is a uniform concentration of the

contaminant throughout the room (Figure 4.1). The loss termKL(mg/min) measures the loss

rate of the contaminant due to other factors such as chemical reactions or the contaminant

being absorbed by the room surfaces.

Figure 3.2: One-zone model schematic showing key model
parameters; generation rate G, ventilation rate Q and loss rate KL

The differential equation describing this model is

V
d

dt
Ct + (Q+KLV )Ct = G . (3.6)
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The solution to the differential equation is

Ct = exp{−t(Q+KLV )/V }C(t0) + ((Q+KLV )/V )−1 [1− exp{−t(Q+KLV )/V }]G/V .

(3.7)

Theoretically, the steady state concentration is the limit of Ct as t → ∞ which is G/Q

(mg/m3). Details of the steady state solution are provided in the supplementary material.

Further specifications yield the Bayesian SSM corresponding to (4.13). For example,

Measurement: Zt = f(Ct) + νt , νt
iid∼ Pν,θν ;

Transition: Ct+δt =

(
1− δt

Q+KLV

V

)
Ct + δt

G

V
+ ωt , ωt

iid∼ Pω,θω .

Q ∼ Unif(aQ, bQ) ; G ∼ Unif(aG, bG) ; KL ∼ Unif(aKL , bKL) ; σ2 ∼ IG(aσ, bσ) ;

(3.8)

where Zt represents measurements (perhaps transformed), f(·) is a function that maps Ct to

the scale of Zt, Pν,θν and Pω,θω are probability distributions to be specified, while the prior

distributions for the physical parameters are customarily specified as uniform within certain

fixed physical bounds.

3.3.2 Two-zone model

The two zone model assumes the presence of a source for the contaminant in the workplace.

Two zones or regions are defined: (i) the region closer to the source is called the “near

field”, while the rest of the room is called the far “far field”, which completely encloses the

near field. Both fields are assumed to be a well-mixed box, i.e., two distinct places that

are in the same field have equal levels of concentration of the contaminant. Similar to the

one-zone model, this model assumes that a contaminant is generated at a rate G(mg/min),

in a room with supply and exhaust flow rates (ventilation rate) Q(m3/min) and loss rate by

other mechanisms KL(mg/m3). This model includes one more parameter that indicates the

airflow between the near and the far field β(m3/min). The volume in the near field is denoted

by VN(m3) and the volume in the far field is denoted by VF (m3). Figure 4.2 illustrates the

33



dynamics of the system.

Figure 3.3: Two-zone model schematic showing key model
parameters; generation rate G, ventilation rate Q, airflow β and loss

rate KL

The following system of differential equations represents the two-zone model

d
dt
Ct︷ ︸︸ ︷

d

dt

 CN(t)

CF (t)

 =

A︷ ︸︸ ︷ −β/VN β/VN

β/VF −(β +Q)/VF −KL


Ct︷ ︸︸ ︷ CN(t)

CF (t)

+

g︷ ︸︸ ︷ G/VN

0

 . (3.9)

The solution to the differential equations is

Ct = exp(tA)C(t0) + A−1 [exp(tA)− I] g , (3.10)

where exp(tA) is the matrix exponential. Theoretically, for large values of t, the steady state

concentration in the near field is G/Q + G/β (mg/m3), and G/Q (mg/m3) in the far field.

We note that the matrix exponential may be numerically unstable to compute in general.

For example, for non-diagonalizable matrices a Jordan decomposition (see, e.g.,[BR14]) may

be required, which is very sensitive to small perturbations in the elements of A. Hence, we

will avoid this approach.
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Analogous to (3.8), the discrete counterpart of (4.16) can be

Measurement: Zt = f(Ct) + νt , νt
iid∼ Pνt,θν ;

Transition: Ct+δt = (δtA(θc;x) + I)Ct + δtg(θc;x) + ωt ; ωt
iid∼ Pωt,θω ;

Q ∼ Unif(aQ, bQ) ; G ∼ Unif(aG, bG) ; KL ∼ Unif(aKL , bKL) ; β ∼ Unif(aβ, bβ) ,

where Zt is the 2 × 1 vector with near-field and far-field measurements (or some func-

tion thereof) at time t, Ct is the unobserved concentration state at time t, A(θc;x) = −β/VN β/VN

β/VF −(β +Q)/VF −KL

 and g(θc;x) =

 G/VN

0

. Similar to the one-zone model,

we will specify distributions for νt and for ωt, where θν and θω are parameters in Pν,θν and

Pω,θω , respectively.

3.3.3 Turbulent eddy diffusion model

In real workplace settings, the rooms may neither be perfectly mixed nor consist of well-

mixed zones. Furthermore, the concentration state could depend upon space and time. A

popular model for such settings is the turbulent eddy diffusion model. This model accounts

for a continuous concentration gradient from the source outward. It takes into account the

worker’s location relative to the source. The concentration Ct,s is a function of the location

s = (x, y) in a two-dimensional Euclidean coordinate frame and time t. Without loss of

generality, the source of the contaminant is assumed to be at coordinate (0, 0). The parameter

that is unique to this model is the turbulent eddy diffusion coefficient DT (m2/min). It

describes how quickly the emission spreads with time (Figure 4.3) and is assumed to be

constant over space and time. There has been very little research on the values of DT due

to the difficulty of measuring it. Some studies suggest a relationship between DT and air

change per hour (ACH) [SRA17]. We will provide inference for this parameter.

The exact contaminant concentration at location s relative to the source of emission is

Ct,s =
G

2πDT ‖s‖

{
1− erf

(
‖s‖√
4DT t

)}
, (3.11)
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Figure 3.4: Eddy diffusion model schematic showing key model
parameter; diffusion coefficient DT

where erf(z) = 2
π

∫ z
0

exp(−u2)du. The steady state concentration at location s is theoretically

the limit of the concentration as t→∞, which is G/(2πDT (s)) (mg/m3).

The following differential equation represents the change in concentration over time

d

dt
Ct,s =

G

4(DTπt)3/2
exp

(
−||s||2/4DT t

)
.

A general dynamic modeling framework accounting for space and time is as follows:

Measurement: Zt,s = f(Ct,s) + νt,s + ηt , νt,s∼Pνt,s,θν , ηt ∼ Pηt,θη ;

Transition: Ct+δt,s = Ct,s + δt
G

4(DTπt)3/2
exp

(
−||s||2/4DT t

)
+ ωt+δt,s , ωt,s∼Pωt,s,θω ;

DT ∼ Unif(aDT , bDT ) ; G ∼ Unif(aG, bG) , (3.12)

where Pνt,s,θν and Pωt,s,θω are spatial-temporal stochastic processes. Note that νt,s is a spatial-

temporal process discrete in time and continuous in space. This is reasonable because the

measurments are taken over discrete time intervals and the estimation for the latent con-

centration states are required at those intervals. On the other hand, ωt,s would ideally be a

process continuous in both space and time because it models spatial-temporal associations

between concentration states at arbitrary space-time coordinates.
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3.4 Model Implementation and Assessment

For each physical model in Section 4.1.4 we will consider two different Bayesian SSMs. We

will refer to the first as a Gaussian SSM. Gaussian (linear) SSMs result from specifying

f(Ct) = BtCt, where Bt is a known p×p design matrix (usually the identity matrix), Pν,θν ≡

N(0,Σν) and Pω,θω ≡ N(0,Σω) are p-variate Gaussian densities. These deliver accessible

distribution theory for updating parameters using Kalman-filters or Gibbs samplers. Let

T = {t1, . . . , tn} be timepoints where concentration measurements Zt have been measured.

A Bayesian hierarchical SSM is

p(θc)× IW (Σω | rω, Sω)× IW (Σν | rν , Sν)×N(Ct0 |m0,Σ0)

×
n∏
i=1

N(Cti |Ati(θc)Cti−1
+ δigti ,Σω)×

n∏
i=1

N(Zti |BtiCti ,Σν) , (3.13)

where p(θc) is the prior distribution on θc, δi = ti−ti−1, and the other distributions follow defi-

nitions as in [GCS13]. Gibbs updates are implemented using p(Cti | ·) = N(Cti |Mtimti ,Mti),

where mti = Σ−1
ν Zti + Σ−1

ti|ti−1
Ati(θc)Cti−1

and Mti = (Σ−1
ν + Σ−1

ti|ti−1
)−1, where Σti|ti−1

=

Ati(θc)Mti−1
Ati(θc)

T + Σω and Mt0 = Σ0, p(Σν | ·) = IW (Σν | rν|·, Sν|·) and p(Σω | ·) =

IW (Σω | rω|·, Sω|·), where rν|· = rν + n, Sν|· = Sν +
∑n

i=1(Zti − BtiCti)(Zti − BtiCti)
T ,

rω|· = rω + n and Sω|· = Sω +
∑n

i=1(Cti − Ati(θc)Cti−1
)(Cti − Ati(θc)Cti−1

)T .

Note that the two-zone model has p = 2, while the one-compartment and eddy-diffusion

models have p = 1. Gaussian Bayesian SSMs for p = 1 specify Pν,θν ≡ N(0, σ2) and

Pω,θω ≡ N(0, τ 2). The measurement equation is linear in the state Ct. The IW (·, ·) priors in

(3.13) are replaced by IG(σ2 | aσ, bσ) and IG(τ 2 | aτ , bτ ). The full conditionals now assume

the form p(Cti | ·) = N(Cti |Mtimti ,Mti), where mti = σ−2Zti +σ−2
ti|ti−1

Ati(θc)Cti−1
and Mti =

1/(σ−2+σ−2
ti|ti−1

), where σ2
ti|ti−1

= Ati(θc)
2Mti−1

+τ 2, p(σ2 | ·) = IG(σ2 | aσ|·, bσ|·) and p(τ 2 | ·) =

IG(τ 2 | aτ |·, bτ |·), where aσ|· = aσ + n/2, bσ|· = bσ +
∑n

i=1(Zti − BtiCti)
2/2, aτ |· = aτ + n/2

and bτ |· = bτ +
∑n

i=1(Cti − Ati(θc)Cti−1
)2/2.

Although Gausian SSMs are very popular in dynamic modeling of physical systems, es-
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pecially due to convenient updating schemes, the Gaussian assumption for the concentration

measurements may be untenable. Our second Bayesian SSM assumes that Zt = log Yt are

log-concentration measurements and f(Ct) = logCt in the measurement equation. We still

specify Pν,θν as Gaussian, which means that Zt’s are log-normal and is probably a more

plausible assumption than in Gaussian SSMs. In the transition equation, again the Gaus-

sian assumption on ωt seems implausible: if the measurements of the state are log-normal,

then why should Ct be Gaussian? Since Ct is positive, a Gamma or log-normal specification

for Pω,θω seems much more plausible. For p = 2, we will specify logarithmic bivariate normal

distributions, while for p = 1 we will explore with both Gamma and log-normal densities.

We will refer to all of these models as non-Gaussian Bayesian SSMs.

The turbulent eddy-diffusion model requires some further specifications. While the frame-

work in (3.12) is rich, unfortunately it will not usually be applicable to practical industrial

hygiene settings because typically very few measurements are available over distinct locations

in a workplace chamber and estimating the processes will be unfeasible. Hence, we will need

simpler specifications. For example, we can consider a setting with locations {s1, s2, . . . , sm}

and n time-points. We fit the model in (3.12) with Zt(si) = log Yt(si) are log-concentration

measurements and f(Ct(si)) = logCt(si). We further specify Pηt,θη as a white-noise process,

i.e., ηt
iid∼ N(0, τ 2) for every t and s, and Pνt,s,θν is a temporally indexed spatial Gaussian

process with an exponential covariance function, independent across time. This means that

the m×1 vector νt
ind∼ N(0, σ2

tRt(φt)), where Rt(φt) is an m×m matrix with (i, j)-th element

exp(−φtdij) and dij = ‖si − sj‖.

Note that Pνt,s,θν can, in theory, be a continuous-time spatial-temporal process speci-

fied through a space-time covariance function (see, e.g.,[BCG14]). Alternatively, one could

treat time as discrete and evolving, for each location s, as an autoregressive process so

that νt,s = γνt−1(s) + ηt(s) with ηt(s) being spatial processes independent across time (see,

e.g.,[WC99, GBG]). One could continue to embellish the model in (3.12) using spatial-

temporal structures that represent richer hypotheses and more flexible modeling. However,

in realistic industrial hygiene applications such specifications will rarely lead to estimable

models given the scarcity of data points. For example, most settings will provide measure-
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ments from only a handful of locations (e.g., m ∼ 5) and some moderate numbers of time

points (e.g., n ∼ 100). Therefore, we will not explore these specifications any further. More-

over, even when we assume independence across time it will be difficult to estimate models

with time-varying spatial process parameters. Hence, we let νt
iid∼ N(0, σ2R(φ)) so that each

m× 1 vector νt has the same m-variate Gaussian distribution.

Finally, we turn to smoothing and filtering. Smoothing is achieved by evaluating at each

time point ti the posterior expectation of the concentration value given the entire observed

data y = {yti : i = 1, 2, . . . , n}, including observations before and after ti. Thus, we sample

from the posterior density p(Cti | y) in posterior predictive fashion by sampling a Cti from

its full conditional, p(Cti | ·), for each sampled value of the parameters. For linear Gaussian

SSM, Kalman smoother can be used where the smoothed distribution at time t also follows a

Gaussian distribution. For the nonlinear non-Gaussian SSM, [BDM09] provided a discussion

of the different smoothing approaches. This provides an idea about the structure of the

smoothing distribution of the collection of states [GDW04]. Filtering, on the other hand,

aims to estimate the posterior expectation of the concentration value Cti , given the data up

to ti, i.e., {y(tj) : j = 1, 2, . . . , i}. We have implemented both smoothing and filtering for all

the physical models considered above.

To compare between models, we adopt a posterior predictive loss approach (see, e.g.,

[GG98]). We generate the posterior predictive distributions for each data point, yrep,i for

i = 1, 2, . . . , n by sampling from p(yrep | y) =

∫
p(yrep | θ, {Ct})p(θ, {Ct} | y)dθ, where θ de-

notes the full collection of unknown parameters and {Ct} is the collection of latent con-

centrations over the entire time frame. We will compute the posterior predictive mean,

µrep,i = E[yrep,i | y], and dispersion, Σrep,i = var[yrep,i | y], for each yrep,i; these are easily cal-

culated from the posterior samples for each yrep,i. We will prefer models that will perform

well under a decision-theoretic balanced loss function that penalizes departure of replicated

means from the corresponding observed values (lack of fit), as well as the uncertainty in

the replicated data. Using a squared error loss function, the measures for these two crite-

ria are evaluated as G =
∑n

i=1 ‖yi − µrep,i‖2, where ‖ · ‖ denotes the Euclidean norm, and

P =
∑n

i=1 Tr(Σrep,i), where Tr(A) denotes the trace of the matrix A. We will use the score
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D = G+ P as a model selection criteria, with lower values of D indicating better models.

We will also use the deviance information criterion (DIC) as a model comparison metric

[SBC]. The DIC is a generalization of the AIC and is calculated by adding a measure

of fit which is the posterior expected deviance D̄ = Eθ|y[−2logp(data|θ)] and a penalty

pD = D̄ −D(θ̄), where θ̄ refers to the posterior expectation of the model parameters.

3.5 Data Analysis

In this section we evaluate the performance of the models discussed in Section 3.4, for

the three physical exposure models illustrated in Section 4.1.4, using computer-simulated

datasets as well as experimental lab-generated data. In particular, we consider two models:

a Gaussian linear model and a non-Gaussian nonlinear model, and they will be referred to as

Gaussian SSM and non-Gaussian SSM respectively. The prior settings are based on physical

knowledge and experience, and discussed in the following section.

The computer-simulated data was generated using R computing environment. The lab-

generated data experiments were conducted in test chambers. [ASR17] examined parts of this

data using the deterministic one-zone and two-zone models and showed that performance is

highly reliable on the model assumptions and knowing the generation (G) and ventilation (Q)

rates. [SRA17] studied the eddy diffusion data using a deterministic model and concluded

that it is suitable for indoor spaces with persistent directional flow toward a wall boundary,

as well as in rooms where the airflow is solely driven by mechanical ventilation (no natural

ventilation involved). These results imply the need for a more flexible model that accounts

for uncertainty and also be used for parameter inference.

3.5.1 Prior settings

In Bayesian exposure models, reasonable informative priors are usually used, based on expert

knowledge and physical considerations [MBR14]. We assigned informative priors to the

generation rate G, ventilation rate Q, loss rate KL, airflow rate β and diffusion coefficient
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DT using uniform distributions for the plausible values of the parameters.

For the simulation data, uniform priors were assigned within at least 20% of the true

values following the prior settings in [MBR11]. The assigned parameter values simulate

conditions similar to the real data set in [ZBL09]. In [ZBL09] a test chamber with length of

1.73 m, width of 1.27 m and hight of 1.73 m (volume of 3.8 m3) was constructed, where a

mixing fan was placed to maximize air mixing effect and toluene was released at a rate of

G = 351.5 mg/min. For the two zone model, the near field represents the region very near

and around the source and its volume contains the breathing zone of the worker and is equal

to half of the volume of a sphere with radius 0.2 m (i.e VN = 10−2 × π), and the volume

of the far field is equal the difference between the volume of the room and the volume of

the near field. A mixing fan was placed such that it maximizes the air-mixing effect. The

measured average flow rate was Q = 13.8 m3/min and toluene was generated at a rate

of G = 351.5 mg/min. For the two zone model, the airflow flow rate was not measured

directly but estimated using the steady-state solution, i.e β → G
CN−CF

≈ 5 m3/min. For the

eddy diffusion data, we assumed same test chamber with the same generation rate G = 351.5

mg/min, where Dt = 1 m2/min. The assigned value of DT agrees with the values in literature

reported in [SRA17].

In the one-zone and two-zone models, we assume thatG ∼ Unif(281, 482), Q ∼ Unif(11, 17),

KL ∼ Unif(0, 1), and β ∼ Unif(0, 10) in the two-zone model and DT ∼ Unif(0, 3) in the

eddy diffusion model. For the exponential covariance function, the spatial range is given by

approximately 3/φ which is the distance where the correlation drops below 0.05. The prior

on φ ∼ Uni(0.5, 3) implies that the effective spatial range, i.e., the distance beyond which

spatial correlation is negligible, is between 1 and 6 meters.

Wider ranges for the prior distributions were considered in the lab-generated data analysis

because the exact true values for some of the parameters were unknown but rather a range.

The ranges of the true values in the one-zone and two-zone models for G, Q, KL and β are

(40− 120)(mg/min), (0.04− 0.77)(m3/min), < 0.01 and (0.24− 1.24)(m3/min) respectively.

We assume that G ∼ Unif(30, 150), Q ∼ Unif(0, 1), KL ∼ Unif(0, 1) in the one-zone and

two-zone models and β ∼ Unif(0, 5) in the two-zone model. For the eddy diffusion model,
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the true value for G is 1318 (mg/sec) and from literature [SRA17] the range for DT is (0.001-

0.2) m2/sec, hence we assigned priors of G ∼ Unif(1104, 1650) and Dt ∼ Unif(0, 1). Non

informative priors were assigned to the variance covariance matrices using IW (3, I) [GCS13].

3.5.2 Simulation results

Monte Carlo filtering methods were used to estimate the latent processes and the model

parameters. The effectiveness of the model is assessed through checking whether the 95%

C.I.s of the parameters include the true values, MSE, DIC and posterior predictive loss

(D=G+P), in addition to graphical assessment.

3.5.2.1 One-zone model

We generated 100 exposure concentrations at equally spaced time points using the exact

solution to the ODE in equation (3.7) and the measurements (yt, t = 1, . . . T ) were generated

by adding random noise to the true values. The initial concentration C(0) was assigned a

value of 1 mg/m3. Theoretically, the steady state concentration is ≈ 25 mg/m3. The models

applied to the synthetic data and compared are: Gaussian SSM, non-Gaussian SSM in

addition to the simple Bayesian nonlinear regression model (BNLR) proposed by [ZBL09].

The Gaussian SSM in (3.13) assumes linearity and Gaussian errors, where the Kalman filter

equations are used, where

At(θc) =

(
1− δt

Q+KLV

V

)
and g = δt

G

V
.

Table 3.1 shows the medians and 95% credible intervals of the MCMC posterior samples

of the model parameters, MSE, DIC and D=G+P for the three aforementioned models and

Figure 3.5 shows the simulated concentrations, measurements and the mean of the poste-

rior samples of the latent states conditional on the measurements, in addition to smoothed

estimates obtained from the Non-Gaussian SSM filtered states for one of the simulations.

Details of the performances are as follows:

42



• Non-Gaussian SSM: The 95% C.I.s include the true values for all the parameters except

KL. The latent state estimates are very close to the true simulated values as shown in

Figure 3.5.

• Gaussian SSM: Gaussian SSM: The 95% C.I.s for the generation rate G and the venti-

lation rate Q include the true values. The interval for the loss rate KL does not cover

the true parameter value. The model estimates for the latent states are closer to the

observed values than the true values, i.e. it produced noisy estimates for the state

process.

• BNLR: The 95% C.I.s include the true values for all the parameters. The model

estimates for the latent states are close to the true values.

The D=G+P scores show that the non-Gaussian SSM predictive ability is superior to the

Gaussian and BNLR models. The DIC scores show that the Non-Gaussian model has the

best model fit followed by the BNLR and then the Gaussian model.

Table 3.1: Posterior predictive loss (D=G+P), MSE, DIC, medians and 95% C.I. of the
posterior samples of the one-zone model parameters for the simulated data

Parameter Non-Gaussian SSM Gaussian SSM BNLR

G(351.5) 326.8 (283.3, 351.7) 363.5(314.2,413.8) 1 353.9(292.0,393.8)
Q(13.8) 12.9(11.1, 14.8) 12.8(11.4, 14.3)98 13.0(11.0,15.5)
KL(0.1) 0.34(0.19,0.78) 0.30(0.28, 0.41)1 0.35(0.0,0.8)

D=G+P
312.2= 435.8= 727.9

5.9+306.3 232.8+203.0 371.0+ 356.8
MSE 0.07 2.3 0.3
DIC -410 402.1 -184.3

3.5.2.2 Two-zone model

We generated 200 exposure concentrations each, at the near and far fields at equally spaced

time points using the exact solution (3.10). The initial concentrations CN(0) and CF (0) were

assigned values 0 and 0.5 mg/m3 respectively. Theoretically, the steady state concentration
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Figure 3.5: Plot of the simulated concentrations, measurements and the mean of the
posterior samples of the latent states conditional on the measurements for:

a: Non-Gaussian SSM, b: Gaussian SSM and BNLR

at the near field is ≈ 95 mg/m3, and ≈ 25 mg/m3 at the far field. The Gaussian SSM in

(3.13) assumes linearity and Gaussian errors, such that

At(θc) = δtA+ I and g = δtg.

Table 3.2 shows the medians and 95%C.Is of the MCMC posterior samples of the model

parameters, MSE, DIC and D=G+P scores. Figure 3.6 shows the simulated concentrations,

measurements and the mean of the posterior samples of the latent states conditional on the

measurements at the near and the far fields in addition to smoothed estimates obtained

from the non-Gaussian SSM filtered states for one of the simulations. We compared the
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performance of the two SSMs and the BNLR. Details of the performances of the three

models are as follows:

• Non-Gaussian SSM: The 95% C.I.s include the true values for all the parameters. The

estimates of the latent states are close to the true values at both the near field and the

far field as shown in Figure 3.6.

• Gaussian SSM: Gaussian SSM: The 95% C.I.s for all the parameters except the venti-

lation rate Q do not include the true values. The model estimates of the latent states

are closer to the true values at the near field than the far field, yet all the estimates

are noisy.

• BNLR: The 95% C.I.s include the true values for all the parameters. The model

estimates of the latent states are closer to the true values at the near field than the far

field

The D=G+P scores indicate that the non-Gaussian model provides better predictions and

model fit than the BNLR and the Gaussian models. MSE, DIC and Figure 3.6 confirm these

results.

Table 3.2: Posterior predictive loss (D=G+P), MSE, DIC, medians and 95% C.I. of the
posterior samples of the two-zone model parameters for the simulated data

Parameter Non-Gaussian SSM Gaussian SSM BNLR

G(351.5) 347.3(315.6,379.3) 450.5(395.2, 480.2) 335.1(302.5,382.6)
Q(13.8) 14.7(12.1,16.8) 13.5(11.1, 16.7) 14.4(11.2, 15.8)
KL(0.1) 0.38(0.02,0.78) 0.22(0.16,0.35) -
β(5) 5.0(4.3,5.8) 0.40(0.23,1.2) 5.1(4.0, 6.8)

D=G+P
1049840= 1118550= 2504429=

1010905+38934.0 1033428+85121.7 1359016+ 1145413
MSE 15.3 116.1 54.9
DIC 167.2 1618.4 477.6
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Figure 3.6: Plot of the simulated near and far fields concentrations, measurements and the
mean of the posterior samples of the latent states conditional on the measurements for:

a: Non-Gaussian SSM, b: Gaussian SSM and BNLR

3.5.2.3 Turbulent eddy diffusion model

We generated 500 exposure concentrations each, at 5 different locations over equally spaced

100 time points using the exact equation (3.11). Table 3.3 shows the medians and 95% C.I.s

of the MCMC posterior samples of the model parameters, MSE, DIC and D=G+P. Figure 3.7

shows the simulated concentrations, measurements and the mean of the posterior samples

of the latent states conditional on the measurements at three locations and the smoothed

estimates obtained from the non-Gaussian SSM filtered states for one of the simulations.

Figure 3.8 shows image plot of the posterior mean surface of the latent spatial process νt,s.

The plot indicates higher concentration values near the source of emission at the bottom-left
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corner and lower values away from the source. Details of the performance of the two models

are as follows:

• Non-Gaussian SSM: The 95% C.I.s include the true values for all the parameters. The

estimates of the latent states are close to the true values at the five locations.

• Gaussian SSM: The 95% C.I.s include the true value for the generation rate G but not

for the eddy diffusion coefficient DT . The model estimates for the latent states are

closer to the observed values than the true values.

• BNLR: The 95% C.I.s do not include the true value for the eddy diffusion coefficient

DT . The model estimates for the latent states are close to the true values.

The non-Gaussian SSM produced the most accurate parameters estimates. The D=G+P

scores indicate that the non-Gaussian model provides better predictions and model fit than

the BNLR and the Gaussian models. MSE, DIC and Figure 3.7 confirm these results.

Table 3.3: Posterior predictive loss (D=G+P), MSE, DIC, medians and 95% C.I of the
posterior samples of the turbulent eddy diffusion model parameters for the simulated data

Parameter Non-Gaussian SSM Gaussian SSM BNLR

G(351.5) 355.9(284.0,477.5) 449.6(301.0,480.5) 376.5(281.0,480.0)
DT (1) 1.2(0.9,1.5) 1.4(1.3,1.6) 1.14(1.03, 1.8)

D=G+P 7062.4=1564.5+5497.9 22025.7=1112.5+20913.1 27719.1=14529.7+13189.5
MSE 3.11 5.55 20.6
DIC -215.1 1583.2 1068.1

3.5.3 Experimental Chamber Data Results

In this section we study the performance of the non-Gaussian and Gaussian SSMs on con-

trolled lab-generated data in which solvent concentrations have been measured under differ-

ent scenarios. We are interested in the inference through the posterior distributions of the

parameters Q and G in the one-zone model, in addition to β in the two-zone model, and G

and DT in the eddy diffusion model.
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Figure 3.7: Plot of the simulated concentrations, measurements and the mean of the
posterior samples of the latent states conditional on the measurements at three locations

for:
a: Non-Gaussian SSM, b: Gaussian SSM and BNLR

3.5.3.1 One-zone model

A series of studies were conducted in an exposure chamber under different controlled condi-

tions. [ASR17] constructed a chamber of size (2.0m × 2.8m × 2.1m = 11.8m3), where two

industrial solvents (acetone and toluene) were released using different generation G(mg/min)

and ventilation Q(m3/min) rates. In particular, three levels of ventilation rates correspond-

ing to ranges of 0.04-0.07 m3/min, 0.23-0.27 m3/min and 0.47-0.77 m3/min were used. The
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Figure 3.8: Interpolated surface of the mean of the random spatial effects posterior
distribution

loss rate KL was determined from empirical studies to be < 0.01. Solvent concentrations

were measured every 1.5 minutes. Details of the experiments can be found in [ASR17].

Table 3.4 shows the medians and 95% C.I.s of the MCMC posterior samples in addition

to DIC and D=G+P. The non-Gaussian SSM 95% C.I.s cover the true values for both G and

Q, while Gaussian SSM 95% C.I.s include the true values for G at low and high ventilation

levels. BNLR 95% C.I.s include the true values for G at high ventilation levels and Q at

all levels. Posterior predictive loss (D=G+P) and DIC values indicate better fit for the

non-Gaussian SSM model followed by the Gaussian model and finally the BNLR. Figure 3.9

confirms these results.

3.5.3.2 Two-zone model

The near field box of size (0.51m × 0.51m × 0.41m = 0.105m3) was constructed within the

far field box [ASR17]. The volume of the far field is 11.79 m3, which is the chamber volume

minus the near field volume. The airflow parameter β cannot be directly measured, but it

was estimated from the local air speed to range from 0.24 to 1.24 m3/min. Similar to the

one-zone model, three different experimental data sets at three different ventilation levels

were used. Table 3.5 shows the medians and 95% C.I.s of the MCMC posterior samples, DIC

and D=G+P. At medium and high ventilation rates, non-Gaussian SSM 95% C.I.s include

the true values of Q but only at a medium ventilation rate, it includes the true value for G.
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Table 3.4: Posterior predictive loss (D=G+P), DIC, medians and 95% C.I. of the posterior
samples of the one-zone model parameters using toluene and acetone solvents

Parameter Ventilation level True value Non-Gaussian SSM Gaussian SSM BNLR

G
low 43.2 38.1(30.2,62.9) 35.3(30.2, 46.7) 30.1(30.0,30.4)

medium 43.2 45.06(30.5,101.9) 72.9(45.6,94.9) 30.9(30.0,34.2)
high 39.55 81.7(32.9,142.4) 38.1(30.5,51.4) 36.1(30.2,67.6)

Q
low 0.04-0.07 0.27(0.02, 0.41) 0.20(0.15,0.27) 0.07(0.003,0.19)

medium 0.23-0.27 0.50(0.02,0.97) 0.15(0.10,0.21) 0.57(0.02,0.94)
high 0.47-0.77 0.59(0.03,0.98) 0.30(0.23,0.45) 0.5(0.03,0.97)

D=G+P

low 129.4= 208.0= 52257.53=
88.8+40.6 4.3+203.7 36044.83+16212.71

medium 9.8= 77.7= 16256.04=
0.52+9.2 0.20+77.1 3040.128+13215.91

high 7.5= 38.2= 4345.8=
1.0+6.5 0.1+38.1 237.4+4108.4

DIC
low -650.1 -640.5 55.8

medium -500.6 97.1 155.2
high -496 89.4 161.5

The Gaussian SSM 95% C.I.s cover the true value of Q at medium ventilation level but none

of the generation rates G. The BNLR 95% C.I.s only cover the true value of Q at a high

ventilation level. The true value for β was not directly measured and hence is unknown,

however, it was estimated to be between 0.24 and 1.24. In general, non-Gaussian SSM 95%

C.I.s for β are closer to those values.

DIC and D=G+P scores clearly indicate that non-Gaussian SSM produced better fit

than the BNLR and the Gaussian SSM which is also confirmed in Figure 3.10.

3.5.3.3 Turbulent eddy diffusion model

[SRA17] constructed a chamber of size (2.8m × 2.15m × 2.0m = 11.9m3), where toluene

was released. Measurements were taken at two locations at distances 0.41 m and 1.07

m away from the source every two minutes. Due to the limited spatial information from

the two locations, an unstructured covariance for νt,s was used instead of the geostatistical

exponential covariance that was considered in the simulation analysis. Non informative prior
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Figure 3.9: Plot of the measured concentrations and the mean of the posterior samples of
the latent states conditional on the measurements for:
a: Non-Gaussian SSM, b: Gaussian SSM and BNLR

was assigned to the covariance matrix using IW (3, I) [GCS13].

Table 3.6 shows the medians and 95% C.I.s of the MCMC posterior samples, DIC and

the D=G+P. The value of DT is difficult to measure; hence, the true value is unknown.

However, [SRA17] demonstrated that most of the reported values of DT in literature range

from 0.001 to 0.01 m2/sec. The 95%C.I.s for DT in non-Gaussian SSM lie within that range.

In addition, the 95%C.I.s of G include the true value. The 95%C.I.s of the Gaussian SSM

do not include any of the true parameter values. The BNLR 95%C.I. of G does not include

the true value and the range for Dt is very narrow. Figure 3.11 shows that the latent state

estimates for both SSMs are closer to the measurements in the first location than in the

second location. The BNLR model is clearly biased and that is illustrated in the D score

51



Table 3.5: Posterior predictive loss (D=G+P), DIC, medians and 95% C.I. of the posterior
samples of the two-zone model parameters using toluene and acetone solvents

Parameter Ventilation True Non-Gaussian Gaussian BNLR
level value SSM SSM

G
low 43.2 30.4(30.0, 32.2) 115.8(88.9, 143.9) 28.1(28.0,28.4)
med 86.4 73.7(60.2,90.5) 141.6(130.6,149.7) 28.5(28.0,30.8)
high 120.7 49.8(33.9,68.3) 132.9(121.6,148.0) 43.7(37.8,50.3)

Q
low 0.04-0.07 0.68(0.09, 0.98) 0.28(0.23,0.36) 0.62(0.60,0.65)
med 0.23-0.27 0.38(0.11,0.50) 0.25(0.20,0.31) 0.38(0.29,0.50)
high 0.47-0.77 0.46(0.45,0.98) 0.14(0.11,0.16) 0.5(0.30,0.64)

β
low 0.24-1.24 3.0(2.3,3.7) 5.1(4.1,6.0) 4.9(4.7,5.0)
med 0.24-1.24 2.9(2.5, 3.4) 2.3(2.0,2.8) 4.5(3.4,5.0)
high 0.24-1.24 2.2(1.5, 2.8) 2.5(2.0,3.0) 4.1(2.7,4.9)

D=G+P

low 5653= 554650= 248358=
189+5464 554234+416 73006+ 175352

medium 22262= 850014= 93267=
10596+11666 424452+425562 16824+76443

high 20941= 479098= 119212=
4345+16596 240278+238820 64968+54244

DIC
low -116.0 490978 50.6

medium -152.7 3263 79.8
high -65.5 8089 -5.2

and in Figure 3.11. DIC and D=G+P scores show that non-Gaussian SSM provides a better

fit.

Table 3.6: Posterior predictive loss (D=G+P), DIC, medians and 95% C.I. of the posterior
samples of the turbulent eddy diffusion model parameters using toluene solvent

Parameter True value Non-Gaussian SSM Gaussian SSM BNLR

G 1318.33 1207.3(1107.2,1371.7) 1118.7(1104.5,1294.3) 1108.4(1104.1,1127.7)
DT 0.001-0.01 0.007(0.006,0.008) 0.67(0.64,0.78) 0.008(0.008,0.008)

D=G+P
100877.8= 3664659= 6458521=

59369.9+41507.9 3660710+3949.3 6289785+168735.6

DIC -31.6 1222 420.2
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Figure 3.10: Plot of the measured concentrations and the mean of the posterior samples of
the latent states conditional on the measurements in the near field and far field for:

a: Non-Gaussian SSM, b: Gaussian SSM and BNLR

3.6 Discussion

We have proposed a framework of Bayesian SSMs for analyzing experimental exposure data

specific to industrial hygiene. This approach combines information from physical models

in industrial hygiene, observed data and prior information. We derive a likelihood by dis-

cretizing the physical models. It also expands upon the Gaussian noise assumptions, hence

industrial hygienists will not be restricted to Gaussian SSMs.

In practical industrial hygiene settings, Gaussian SSMs are still often used as approx-

imations to analyze possibly non-Gaussian data. To do so, some possibly inappropriate

accommodations may need to be made. For example, [HYM08] allowed negative values in
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Figure 3.11: Plot of the measured concentrations and the mean of the posterior samples of
the latent states conditional on the measurements at the two locations for:

a: Non-Gaussian SSM, b: Gaussian SSM and BNLR

estimating PM10 concentrations, while [LCC02] used Kalman filters to predict gas concen-

trations by using a tuning parameter to fix σ2
ω and σ2

ν in a one dimensional autoregressive

exposure model, rather than pursuing full statistical inference. Our simulation experiments

and results demonstrate that Gaussian SSM’s may yield extremely poor fits when data are

non-Gaussian. This was especially evident for the two-zone analysis. Our results will, we

hope, inform the industrial hygiene community about some of the pitfalls of Gaussian SSMs.

Non-Gaussian SSM’s tended to perform better than linear Gaussian SSM’s, a result

that appeared to be consistent across different exposure models and different experimental

conditions. Moreover, our analysis revealed that the discretized models outperform the

BNLR method proposed by [ZBL09]. This is unsurprising given that our approach is richer

by accommodating stochastic distributions at two levels—one each for the measurement

and transition equations—whereas BNLR accommodates only an error distribution from a

nonlinear regression. Finally, our proposed approach also enjoys better interpretation than

the hierarchical Gaussian process models of [MBR14] as they provide greater precisions in
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estimates because the random effects in the hierarchical models of [MBR14] tend to inflate

variances.

For the experimental data, the performance of the models was better for simpler models.

The one-zone model results were superior, followed by the two-zone model results then the

eddy diffusion model results. This is not entirely surprising since simpler models imply sim-

pler data and assumptions and possibly fewer parameters. We also believe that the one-zone

model is superior because there is only one state at each time point to be estimated, unlike

the two-zone and the eddy diffusion models, where there are at least two point estimates at

each time point. However, we believe that in a real workplace settings, assuming a uniform

concentration of the contaminant across the room may not be realistic and a more flexible

model like the eddy diffusion model would yield better results.

The eddy diffusion data has some limitations related to the small size of the chamber,

which rendered a small difference between the concentrations in the two locations which also

makes it hard to measure the spatial variation for Model (3.12) implementation. Despite

that, in most cases, a nonlinear non-Gaussian Bayesian SSM was able to characterize the

data well and the model seems robust to most of the experimental scenarios.

We conclude with some indicators for future research. First, as alluded to earlier, we

will need to do a much more comprehensive spatiotemporal analysis for eddy diffusion ex-

periments. While our simulation experiments showed the promise of spatiotemporal SSM’s

in analyzing eddy diffusion experiments, our chamber data analysis had limited scope be-

cause of the very small number of spatial measurements. Another important consideration

is misaligned data, such as was considered in [MBR14] for two zone experiments where not

all measurements for the near and far fields came from the same set of timepoints. An

advantage of the Bayesian paradigm is that we can handle missing data, hence misaligned

data, very easily and indeed our Bayesian SSMs should be able to handle them as easily as

the models in [MBR14]. Future work will include such analysis and also extensions to spa-

tiotemporal misalignment for eddy-diffusion experiments, where not all timepoints generated

measurements for the same set of spatial locations.
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CHAPTER 4

Nonparametric Bayesian State Space Modeling of

Physical Processes in Industrial Hygiene

In exposure data modeling, a parametric model may not always capture the true latent pro-

cess that generates the observed values. Relaxing the parametric assumptions (e.g. Gaussian

noise) might render a more flexible and robust model. Physical models that describe emitted

exposure concentrations in a workplace do not consider extraneous factors and may deviate

from the true emitted values. It can be unrealistic to assume a distribution on the error

terms which can lead to unsatisfactory inference and prediction.

Bayesian nonparametric or semi-parametric methods are highly flexible, but more com-

plex. There is very little work on nonparametric Bayesian state space models. Recent

work mostly focused on the functional forms in the transition and measurement equations

assuming Gaussian errors. For example, [GMR14] assumed unknown functional forms for

the transition and measurement functions, and modeled them as independent Gaussian pro-

cesses. The approach proposed by [Lau14] to describe the unknown functional form, was

based on using penalized splines. Another form of nonparametric modeling includes the use

of kernel density approximation to the conditional probability density of the latent state in

the update step [GV13]. In addition, some recent work considered Dirichlet processes (DP)

in several contexts. For instance, [BC14] used a Poisson-Dirichlet prior on the coefficients

in a state space model for clustering. Hierarchical DP hidden Markov model (HDP-HMM)

was introduced by [TJB06] to address the problem of clustering of grouped data, where the

number of clusters is unknown. [TJB06] considered a DP for each value of the current state,

sharing a base measure which is itself a DP. [RVD12] introduced the use of DPM prior on the

distribution of the transition error term in a nonlinear SSM in a global positioning system
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(GPS) problem where they assumed that the distribution of the error term associated with

the measurement equation is Gaussian. [CDD07] proposed Dirichlet process mixture (DPM)

priors to provide a nonparametric specification for the distributions of the error terms in lin-

ear state space models. We extend upon the model proposed by [CDD07], where we impose

constraints on the DPM and consider processes that are not constant in space and time.

We specify the distribution on the error terms as infinite mixture model using Dirichlet

processes. [EW95] first introduced Bayesian inference in models for density estimation using

Dirichlet processes. The use of a nonparametric Bayesian framework allows very flexible

modeling of the physical processes. We offer a general framework using MCMC methods to

sample from the posterior distributions for all the model parameters and the predictive dis-

tributions. Our method will be demonstrated on computer-simulated data and lab-generated

data.

The chapter is organized as follows. In Section 4.1 we discuss the representation of

physical models as state-space models with unknown distributions (Section 4.1.1). Specific

modeling details are illustrated for common families of exposure models in Section 4.1.4.

Section 4.2 describes the models implementations and assessment methods. Section 4.3

illustrates the proposed approach through applications to simulated data and experimental

chamber data. We conclude with a critical discussion in Section 4.4.

4.1 Non-Parametric Bayesian Representation of Dynamic Physi-

cal Models

A hierarchical construction for a dynamic model of exposure starts by identifying the ‘sure

thing’ relation, which as described by [WH97], arise due to physical and mathematical laws

and constraints, which we refer to as the physical model. The physical model represents

the structure of the underlying process {Ct : t ∈ T }. In industrial hygiene, physical models

are commonly expressed as linear systems of ordinary differential equations (ODEs), which

include a source that emits the airborne contaminant at a fixed rate [Nic96, NJ02] and they

describe the rate of change in the contaminant over time (dCt/dt). The solution proposed
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utilizes a discretization of the model [ABR18] and uses a state space model (SSM) as a repre-

sentation of the unobserved state of interest that evolves over time and partial observations

that are observed sequentially over discrete time. In the following section, we provide brief

review of SSMs in general and illustrate how one can derive a state space representation

using a discretized physical model.

4.1.1 Physical Models as State Space Models

Suppose that {Ct : t ∈ T }, Ct ∈ <nC is a stochastic process, where T is the index set and nC

is the dimension of the state vector. A state-space model (SSM) is a representation of that

unobserved stochastic process that evolves over time, and sequential partial observations

{Yt : t ∈ T }, Yt ∈ <ny , where t can be taken as discrete time [Fea11] and ny is the dimension

of the observation vector.

In a general setting, the state vector {Ct : t ∈ N} is assumed to evolve according to the

state or transition equation

Ct = ft(Ct−1, ωt−1) (4.1)

where ft is usually a known, possibly nonlinear function in Ct−1 and ωt ∼ Pωt is an i.i.d.

process noise sequence. We want to find filtered or updated estimates of Ct based on the

measurements Yt which are assumed to be related to the state vector according to

Yt = ht(Ct, νt), (4.2)

where ht is the measurement function and νt ∼ Pνt is an i.i.d. measurement noise.

As previously mentioned, physical models in industrial hygiene describing the rate of

change in the contaminant over time can be represented by differential equations, which

gives rise to continuous state space models,

d

dt
Ct = FtCt + g + ωt; Yt = HtCt + νt. (4.3)

We want to transfer the continuous equation into a discrete one. The solution to the first
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equation in (4.3) when the eigenvalues of Ft are real and distinct can be obtained as follows

Ct = exp(tFt)C0 + F−1
t × [exp(tFt)− I]g, (4.4)

where exp(A) denotes the matrix exponential (see [BR14]). The discretized latent state Ct

follows an AR(1) transition model, i.e. for small steps of size δt, for t = 1, . . . , T , the first

equation in (4.3) can be approximated by

Ct+δt ≈ (I + δtFt)Ct + δtg + ωt. (4.5)

In parametric settings, the distributions of the error terms in the transition (4.1) and

measurement (4.2) equations Pνt and Pωt are assumed to be known. Gaussian distributions

are the most commonly used distributional assumptions as they offer optimal solution under

linearity [Eub05]. However, such assumptions may not be valid in some situations. Here,

we assume that the distributions Pνt and Pωt are unknown and modeled as Dirichlet process

mixtures (DPM). Before introducing modeling details for these quantities, we provide a brief

review of DPM in the following section.

4.1.2 Dirichelet Process Mixtures

Let G ∼ DP(α,G0) index a Dirichelet Process with precision α > 0 and base measure G0.

A DPM is defined as

the convolution of a positive normalized kernel fθ(.) with the Dirichlet random probability

[Fer83], so that

fG(xi) =

∫
fθi(xi)dG(θi). (4.6)

An alternative representation of the DPM in 4.6 makes use of the so called stick breaking

process [IJ01].

Specifically, for 1 ≤ h < ∞, let wh = βh
∏

l<h(1 − βl), βh ∼ Beta(ah, bh) and mh i.i.d

draws from the centering measure G0.
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We can write Eq. (4.6) as

fG(xi) =
∞∑
h=1

whfmh(xi). (4.7)

In our work we consider finite dimensional approximations of the process in 4.6, by taking

1 ≤ h ≤ H, with H finite [IJ02].

Specifically, we introduce a latent variable ζ, such that ζi = h if observation i came from

group h, and define

Xi | ζi = h
ind∼ fmh(.) ; ζi

ind∼ Cat(H,w), (4.8)

where ζ ∼ Cat(H,w) is a categorical random variable with P (ζ = h) = wh, for h = 1, . . . , H

and w = (w1, . . . , wH)′. The main advantage of this construction shows in the reduced

complexity of posterior simulation as we illustrate in Section 4.2.

4.1.3 State Space Models with Unknown Error Distributions

In the proposed model, we assume that the distributions Pνt and Pωt in the transition (4.1)

and measurement (4.2) equations are modeled as DPMs. Specifically, the distributions Pνt

and Pωt are assumed Normal with means µνt and µωt and covariances Σνt and Σωt respectively.

Let θνt = {µνt ,Σνt} and θωt = {µωt ,Σωt}, a DPM is constructed defining a DP as the base

distribution of these parameter vectors, s.t. θνt ∼ G0ν , θωt ∼ G0ω.

Assuming Gν ∼ DP (α,G0ν), the joint density of Yt given Gν , and Ct, is

f(Yt|Gν , Ft, Ct) =

∫
N(FtCt + µν ,Σν)Gν(dθνt). (4.9)

Furthermore, assuming Gω ∼ DP (α,G0ω), the joint density of Ct given Gω, and Ct−1, is

f(Ct|Gω, Ht, Ct−1) =

∫
N(HtCt−1 + µω,Σω)Gω(dθωt). (4.10)

More generally, the proposed nonparametric SSM admits the following hierarchical repre-

sentation:
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Yt | Ct, νt = f(Ct, νt), Ct | Ct−1, ωt = h(Ct−1, ωt);

νt | µvt ,Σvt
i.i.d∼ N(µνt ,Σνt), ωt | µωt ,Σωt

i.i.d∼ N(µωt ,Σωt);

θνt | Gν
i.i.d∼ Gν , θωt | Gω

i.i.d∼ Gω;

Gν | G0ν ∼ DP(α,G0ν), Gω | G0ω ∼ DP(α,G0ω).

(4.11)

In order to preserve the interpretation of Ct as the filtered process, we consider centering

the random measure describing the distribution of νt. Specifically, we follow [YDB10] and

assume νt follows a centered stick-breaking process (CSBP).

Moreover, because we model data in their original scale, non-negativity constraints are

applied to the distribution of Yt and Ct.

Some physical models aim to characterize the distribution of airborne toxicants in more

than one location. For example, the turbulent eddy diffusion model model in Section 4.1.4.3

considers a monitoring configuration at multiple worker’s locations. Following [GKM05],

we readily extend the formulation presented in (4.11) to allow for point-referenced time-

series. More precisely, for a finite set of locations (s1, . . . , sn), the joint density of Yt =

(yt(s1), . . . yt(sn)) given Gθ, where Gθ ∼ DP (αG0θ), and τ 2, is

f(Yt|Gθ, Ft, Ct, τ
2) =

∫
N(FtCt + θt, τ

2)Gθ(dθt), (4.12)

where θt = (θt(s1), . . . , θt(sn)) are realizations from Gθ ∼ DP (α,G0θ), where G0θ is a random

process (e.g. Gaussian process).

4.1.4 Physical Models in Industrial Hygiene

Physical models of airborne toxicant dynamics vary in their goals and levels of complexity

[Ram05]. In what follows we apply the general framework introduced in Section 4.1.1 to

three commonly used families of physical models; namely: the well-mixed compartment

(one-zone) model (Section 4.1.4.1), the two-zone model (Section 4.1.4.2) and the turbulent

eddy diffusion model (Section 4.1.4.3).
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4.1.4.1 Well-mixed compartment (one-zone) model

The well-mixed compartment physical model assumes that a source is generating a pollutant

at a rate G (mg/min) in a room of volume V (m3) with ventilation rate Q(m3/min). The

room is assumed to be perfectly mixed, which means that there is a uniform concentration

of the contaminant throughout the room (Figure 4.1). The loss term KL(mg/min) measures

the loss rate of the contaminant due to other factors such as chemical reactions or the

contaminant being absorbed by the room surfaces.

The differential equation describing this model is

V
d

dt
Ct + (Q+KLV )Ct = G. (4.13)

The solution to the differential equation using (B.1) is

Ct = exp{−t(Q+KLV )/V }Ct0 + ((Q+KLV )/V )−1× (4.14)

[1− exp{−t(Q+KLV )/V }]G/V.

The dynamic model after approximating equation (4.13) through discretization, can be ex-

pressed as the following measurement and transition equations describing the concentration

change from time t to time t+ δt:

Transition: Ct+δt =

(
1− δt

Q+KLV

V

)
Ct + δt

G

V
+ (ωt) , ωt

iid∼ Pω,θω

Measurement: Yt = Ct + νt , νt
iid∼ Pν,θν

The dynamic model relies on the unknown distributions Pν,θν and Pω,θω , which are assumed

to be DPMs. As outlined in Section 4.1.3 the DPM is constructed through a location-scale
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Figure 4.1: One-zone model schematic showing key model
parameters; generation rate G, ventilation rate Q and loss rate KL

mixture of Normal residuals, assuming:

ωt | µωt , σωt
iid∼ N(µωt , σωt), µωt | G

µω
0

iid∼ DP(Gµω
0 , α), Gµω

0 = N(µω0 , σ
ω
0 ),

σωt | Gσω
0

iid∼ DP(Gσω
0 , α), Gσω

0 = IG(aω0 , b
ω
0 );

νt | µνt , σνt
iid∼ N(µνt , σνt), µνt | Gν

0
iid∼ DP(Gν

0, α), Gν
0 = N(µν0, σ

ν
0 ),

σνt | Gσν
0

iid∼ DP(Gσν
0 , α), Gσν

0 = IG(aν0, b
ν
0).

(4.15)

The full one-zone Bayesian SSM is completed by placing prior distributions on the parame-

ters:

Q,G,KL, α ∼ U(Q; aQ, bQ)× U(G; aG, bG)× U(KL; aKL , bKL)×Ga(α; aα, bα).

Theoretically, the steady state concentration is the limit of Ct as t → ∞ which is G/Q

(mg/m3). Details of the steady state solution are provided in [ABR18].

4.1.4.2 Two-zone model

The two zone model assumes the presence of a contaminant in the workplace and that the

region closer to the source is called the “near field” while the rest of the room is called

the far “far field”, which completely encloses the near field. Both fields are assumed to be
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Figure 4.2: Two-zone model schematic showing key model
parameters; generation rate G, ventilation rate Q, airflow β and loss

rate KL

a well-mixed box, i.e., two distinct places that are in the same field have equal levels of

concentration of the contaminant. Similar to the one-zone model, this model assumes that

a contaminant is generated at a rate G(mg/min), in a room with supply and exhaust flow

rates (ventilation rate) Q(m3/min) and loss rate by other mechanisms KL(mg/m3). This

model includes one more parameter that indicates the airflow between the near and the far

field β(m3/min). The volume in the near field is denoted by VN(m3) and the volume in the

far field is denoted by VF (m3). Figure 4.2 illustrates the dynamics of the system.

The following system of differential equations represents the two-zone model

dCt︷ ︸︸ ︷
d

dt

 CN(t)

CF (t)

 =

A︷ ︸︸ ︷ −β/VN β/VN

β/VF −(β +Q)/VF +KL


Ct︷ ︸︸ ︷ CN(t)

CF (t)

+

g︷ ︸︸ ︷ G/VN

0

 (4.16)

The solution to the differential equations using (B.1) is

Ct = exp{tA}Ct0 + A−1 [exp{tA} − I] g. (4.17)

We approximate the differential equations in (4.16) by representing time as discrete points.

So, for a δt unit change in time, the state space model equations are
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Transition: Ct+δt = (δtA(θc;x) + I)Ct + δtg(θc;x) + ωt , ωt
iid∼ Pωt,θω ,

Measurement: Yt = Ct + νt , νt
iid∼ Pνt,θν ; where,

Yt =

 YN(t)

YF (t)

 , Ct =

 CN(t)

CF (t)

, A(θc;x) =

 − β
VN

β
VN

β/VF − (β+Q)
VF

+KL

 and g(θc;x) = G
VN

0

 .
Similar to the one-zone model, we assume the distributions for νt and for ωt to be DPMs,

constructed as follows:

ωt | µωt ,Σωt
iid∼ N(µωt ,Σωt), µωt | G

µω
0

iid∼ DP(Gµω
0 , α), Gµω

0 = N(µω0 ,Σ
ω
0 ),

Σωt | GΣω
0

iid∼ DP(GΣω
0 , α), GΣω

0 = IW (r, S);

νt | µνt ,Σνt
iid∼ N(µνt ,Σνt), µνt | Gν

0
iid∼ DP(Gν

0, α), Gν
0 = N(µν0, σ

ν
0 ),

Σνt | GΣν
0

iid∼ DP(GΣν
0 , α), GΣν

0 = IW (r, S);

(4.18)

with priors

Q,G,KL, β, α ∼ U(Q; aQ, bQ)× U(G aG, bG)× U(KL; aKL , bKL)×

×U(β; aβ, bβ)×Ga(α, aα, bα).

Theoretically, for large values of t, the steady state concentration in the near field is

G/Q+G/β (mg/m3), and G/Q (mg/m3) in the far field.

4.1.4.3 Turbulent eddy diffusion model

In real workplace settings, the room may neither be perfectly mixed nor consist of well-mixed

zones. A popular model for such settings is the turbulent eddy diffusion model. This model

accounts for a continuous concentration gradient from the source outward. It takes into
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account the worker’s location relative to the source. The concentration Cs,t is a function of

the location s(x, y) in a two-dimensional Euclidean coordinates and time t. The parameter

that is unique to this model is the turbulent eddy diffusion coefficient DT (m2/min). It

describes how quickly the emission spreads with time (Figure 4.3) and is assumed to be

constant over space and time. There has been very little research on the values of DT due

Figure 4.3: Eddy diffusion model schematic showing key model
parameter; diffusion coefficient DT

to the difficulty of measuring it. Some studies suggest a relationship between DT and air

change per hour (ACH) [SRA17].

Suppose we observe the contaminant at m different locations, the contaminant concen-

tration at location s relative to the source of emission is

Cs,t =
G

2πDT ‖s‖

{
1− erf

(
‖s‖√
4DT t

)}
, (4.19)

where erf(z) = 2
π

∫ z
0

exp(−u2)du. The following differential equation represents the change

in concentration over time

d

dt
Cs,t =

G

4(DTπt)3/2
exp

(
−||s||2/4DT t

)
.

We approximate the differential equation by representing time as discrete points. For a δt
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unit change in time, the state space model equations are

Transition:

Cs,t+δt = Cs,t + δt
G

4(DTπt)3/2
exp

(
−||s||2/4DT t

)
+ ωt,s.

Measurement:

Ys,t = Cs,t + νs,t + ηt , νs,t∼Pνs,t,θν ;

with ωt,s∼Pωt,s,θω and ηt ∼ Pηt,θη . The dynamic model relies on the distributions Pωt,s,θω ,

Pνs,t,θν and Pηt,θη . The full eddy diffusion Bayesian SSM is completed by placing prior

distributions on the parameters;

Cs,t+δt = Cs,t + δt
G

4(DTπt)3/2
exp

(
−||s||2/4DT t

)
+ ωs,t;

Ys,t = Cs,t + νs,t + ηt;

ωs,t
iid∼ N(µω, σω); µω|Gµω

iid∼ Gµω , Gµω ∼ DP(Gµω
0 , α), Gµω

0 = N(µω0 , σ
ω
0 ) (4.20)

σω|Gσω
iid∼ Gσω , Gσω ∼ DP(Gσω

0 , α), Gσω
0 = IG(aω0 , b

ω
0 )

ηt
iid∼ N(0, ση); νs,t|Gν

iid∼ Gν , Gν ∼ DP(Gν
0, α), Gν

0 = GP (0, Kθν )

Q,DT , σ
2
η, α ∼ p(θ) = Unif(aQ, bQ)× Unif(aDT , bDT )×

IG(aση , bση)×Ga(aα, bα) ,

Note that νs,t is a spatial-temporal process discrete in time and continuous in space, while

ωs,t ideally is a process continuous in both space and time since it models spatial-temporal

associations between concentrations at arbitrary space-time coordinates. We extend upon

the spatial DP introduced by [GKM05] by considering different structures for νs,t. For

example, one could treat time as discrete and evolving for each location s, representing it as

an autoregressive process, such that νs,t = γνt−1(s)+ψt(s) with ψt(s) being spatial processes

independent across time (see, e.g.,[WC99, GBG]). In that case, we assume ψt(s)|Gψ
iid∼

Gψ,where Gψ ∼ DP(Gψ
0 , α), and Gψ

0 = GP (0, Kθψ) with geostatistical covariance Kθψ , an
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m × m spatial covariance matrix. Other spatial-temporal structures that represent richer

hypotheses and more flexible modeling, where classes of non-separable (NS) covariances will

also be considered [CH99]. Covariance functions of this type allow for more flexibility in

modeling space-time interactions.

The steady state concentration at location s is theoretically the limit of the concentration

as t→∞, which is G/(2πDT (s)) (mg/m3).

4.2 Model Implementation and Calibration

4.2.1 Implementation

Let θ be a collection of all unknown parameters, and x1:T be the vector of hidden states.

Bayesian inference for SSMs is based on the joint posterior distribution of the hidden states

and the parameters p(θ, x1:T | y1:T ), where y1:T are the observed concentrations. We can write

that posterior distribution as

p(θ, x1:T | y1:T ) ∝ p(θ)p(x1 | θ)
T∏
t=2

p(xt |xt−1, θ)
T∏
t=1

p(yt |xt, θ).

Monte Carlo samples from this distribution are often obtained through Markov transitions

updating θ conditional on x1:T , then updating x1:T conditional on θ.

For linear Gaussian models, efficient sampling strategies are implemented through the

Kalman filter (KF) [Eub05]. However, inference under nonlinear and non-Gaussian assump-

tions can be challenging. In this setting, several algorithms have been proposed, including:

the Extended Kalman filter [Jaz07], particle filtering strategies [GSS93], and Metropolis

Hastings corrected versions [ADH10].

We consider updating x1:T a single component at a time [Fea11, WH97]. While not

particularly efficient, this strategy can be implemented in standard generic samplers, and

is readily extended to the nonparametric case. A Jags implementation based on the finite

DP representation of [IJ02] is implemented under the R computational environment. Code
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is provided in a supplementary document.

4.2.2 Calibration

We frame the question of uncertainty quantification from a predictive perspective. Specifi-

cally we evaluate model forecasts in terms of their calibration and sharpness [GFE07]. Model

calibration refers to the statistical consistency between the model forecasts and the obser-

vations and is a property of both the observations and the forecasts, sharpness on the other

hand, refers to the concentration of the predictive distribution, and hence is a property only

of the forecasts.

Due to the existence of uncertainty in the forecasts, forecast distributions F in the form

of Monte Carlo samples from the posterior predictive distribution rather than point forecasts

are of main interest.

We consider graphical evaluation, summary measures and scoring rules to assess the

different models. Following the definitions in [GFE07], we assume that Gt, t = 1, . . . T ,

is the true distribution generating the observations yt, and Ft is the model’s predictive

CDF. The ideal forecaster will render Gt = Ft, t = 1, . . . T . Since the true distribution Gt is

unknown, the predictive model would be assessed based on the predictive distribution Ft and

the observations yt, which motivates the use of the probability integral transform (PIT), first

proposed by [Daw84]. PIT is used to asses probabilistic calibration (i.e 1
T

∑T
t=1Gt◦F−1

t (p)→

p ∀p ∈ (0, 1)), where uniformity of the PIT values pt = Ft(yt), t = 1, . . . , T , implies an

ideal forecaster.

Marginal calibration (i.e lim
T→∞

1

T

T∑
t=1

Gt(y) = lim
T→∞

1

T

T∑
t=1

Ft(y), for all y ∈ R), can be

assessed by plotting the difference of the two CDFs, F̄ (y) = lim
T→∞

{
1

T

T∑
t=1

Ft(y)

}
and

ĜT (y) = 1
T

∑T
t=1 1(yt ≤ y) and evaluating fluctuation patterns around 0.

Graphical evaluation of the width of the 50% and 90% prediction intervals are used to

assess sharpness of the predictive distribution. These intervals are produced from the MCMC

output of the posterior predictions.
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In addition, we consider scoring rules denoted by s(F, y) [GFE07], which are numeri-

cal measures that assess calibration and sharpness. For example, the continuous ranked

probability score (crps) defined in [GR07] as

crps(F, y) =

∫ ∞
−∞
{F (s)− 1(y ≥ s)}2ds, (4.21)

can be used. The average crps CRPS = 1
T

∑T
t=1 crps(Ft, yt) corresponds to the total area

between the CDF of the forecast and the CDF of the observation, hence a smaller value

implies a better forecast.

Finally, let Ĉt and Ct be the estimated (posterior mean) and true values at time point

t respectively, In our simulations, model performance is evaluated through the mean square

error (MSE=
∑T

t=1(Ĉt − Ct)2/T ).

4.3 Data Analysis

In this section, we evaluate the performance of the models discussed in Section ??, using

computer-simulated datasets as well as experimental lab-generated data. Monte Carlo fil-

tering methods were used to estimate the latent processes and the model parameters as

discussed in Section 4.2.1. The effectiveness of the methods proposed are assessed through

graphical evaluations, summary measures and scoring rules as discussed in Section 4.2.2.

Moreover, we compare the performance of the proposed nonparamteric SSM to the para-

metric SSM discussed in the previous chapter. The prior settings are based on physical

knowledge and experience, and discussed in the following section.

4.3.1 Simulation results

The computer-simulated data was generated using R computing environment. To investigate

the performance of the proposed framework, we simulated concentrations at different signal-

to-noise ratios under the one-zone, two-zone and eddy diffusion model scenarios as follows.
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4.3.1.1 One-zone model

We conducted 100 simulations at different signal to noise ratios of 100 exposure concentra-

tions each, at equally spaced time points using the exact solution to the ODE in equation

(3.7). The initial concentration C(0) was assigned a value of 1 mg/m3. Theoretically, the

steady state concentration is G/Q ≈ 25 mg/m3. Results of the nonparamteric SSM in

Eq. 4.15 are evaluated and compared to the parametric SSM in Table 4.1.

Table 4.1: CRPS, empirical coverage of the forecasts, medians and 95% C.I. of the poste-
rior samples of the one-zone model parameters for the simulated data (averaging over 100
simulations at different signal to noise ratios)

Parameter DP Parametric

G(351.5) 357.1 (322.5, 419.3) 326.8 (283.3, 351.7)
Q(13.8) 12.9(11.1, 15.5) 12.9(11.1, 14.8)
KL(0.1) 0.29(0.02,0.70) 0.34(0.19,0.78)

CRPS from 100 simulations 1.4 2.1
MSE from 100 simulations 0.7(1.8) 0.6 (0.7)

4.3.1.2 Two-zone model

We conducted 100 simulations at different signal to noise ratios of 200 exposure concentra-

tions each, at the near and far fields at equally spaced time points using the exact solution

(3.10). The initial concentrations CN(0) and CF (0) were assigned values 0 and 0.5 mg/m3

respectively. Theoretically, the steady state concentration at the near field is G/Q+G/β ≈

95 mg/m3, and G/Q ≈ 25 mg/m3 at the far field. Results of the nonparamteric SSM in

Eq. 4.18 are evaluated and compared to the parametric SSM in Table 4.2.

4.3.1.3 Turbulent eddy diffusion model

We conducted 50 simulations at different signal to noise ratios of of 500 exposure concen-

trations each, at 5 different locations over equally spaced 100 time points using the exact

equation (3.11) at three different scenarios, where different covariance structures are used in
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Table 4.2: CRPS, empirical coverage of the forecasts, medians and 95% C.I. of the poste-
rior samples of the two-zone model parameters for the simulated data (averaging over 100
simulations at different signal to noise ratios)

Parameter DP Parametric

G(351.5) 297.8(281.5,363.1) 307.3(283.1,345.5)
Q(13.8) 12.8(11.1,16.2) 13.6(11.4,16.1)
KL(0.1) 0.30(0.02,0.48) 0.38(0.02,0.78)
β(5) 4.2(3.9,5.2) 4.3(3.9,4.9)

CRPS 6.4 8.6
MSE 27.0 20.3

the simulation. The first scenario assumes that the error term νt is a random noise, hence

the variation of yt around Ct does not depend on time or location. The second scenario

assumes an autoregressive process such that, for each location s, νt,s = νt−1(s) + ψt(s) with

ψt(s) being a Gaussian process with a simple geostatistical covariance Kθψ = σ2e−φ‖s−s
′‖,

where ‖s− s′‖ is the squared Euclidean distance between s and s′, σ2 and 1/φ are the partial

sill and the effective spatial range respectively. The third scenario representing more flexi-

ble modeling, where a NS covariance was used; Kθν = σ2

(a2|t−t′|2+1)d/2
exp

{
− b2‖s−s′‖2
a2|t−t′|+1

}
, where

a ≥ 0 is the scaling parameter of time, b ≥ 0 is the scaling parameter of space and σ2 is the

covariance when ‖s− s′‖ and |t − t′| are equal to 0 [CH99]. Even though this class of NS

covariances can be computationally demanding, it is appropriate for this application, since

typically measurements are available over few distinct locations in a workplace chamber,

hence estimating the processes will be feasible.

Two different models with different assumptions for νs(t) are considered in fitting the non-

paramteric SSM in Eq. 4.20. The first is the additive AR model, where νt,s = νt−1(s)+ψt(s),

where ψt(s) is a DP with GP as the base distribution and the second is the NS covariance

model where νt,s is a DP with GP as the base distribution using a NS covariance. Results

are evaluated and compared to the parametric SSM in Table 4.3.

Results were consistent across the three physical models. The 95% C.I.s include the

true values for all the parameters and the latent state estimates are very close to the true

simulated values. The values of CRPS indicate better calibration and sharpness among the
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nonparametric models. Results of the eddy diffusion model varied by different assumptions,

where the NS model consistently showed better calibration than the additive AR model.

Details of the simulation results are reported in the supplementary material.

Table 4.3: CRPS, empirical coverage of the forecasts, medians and 95% C.I of the posterior
samples of the turbulent eddy diffusion model parameters for three simulation scenarios

Parameter additive AR NS1 Parametric

random

G(351.5) 376.9(285.0,476.1) 401.0(296.0, 474.8) 368.7(284.4,476.2)
DT (1) 1.2(0.9,1.5) 1.3(1.0,1.7) 1.3(1.0,1.6)
CRPS 0.80 0.67 2.5
MSE 387.9(26.9) 367.2(2.0) 361.7(8.4)

additive
AR

G(351.5) 432.9(319.5,479.3) 407.0(288.0, 479.0) 370.9(285.0,475.6)
DT (1) 1.3(1.0,1.6) 1.5(1.0,2.9) 1.2(1.0,1.6)
CRPS 0.8 0.7 2.2
MSE 385.3(35.0) 367.4(2.7) 372.9(8.4)

NS

G(351.5) 405.2(289.0,477.2) 398.4(308.5,476.2) 365.5(284.8,474.0)
DT (1) 1.3(1.0,1.6) 1.4(1.0,2.6) 1.3(1.0,1.6)
CRPS 0.64 0.70 2.1
MSE 403.1(42.9) 368.7(7.0) 367.5(4.7)

4.3.2 Experimental Chamber Data Results

In this section, we study the performance of the models on controlled lab-generated data.

The experiments were conducted in test chambers where solvent concentrations have been

measured under different scenarios. [ASR17] examined parts of this data using the deter-

ministic one-zone and two-zone models and showed that performance is highly reliable on

the model assumptions and knowing the generation (G) and ventilation (Q) rates. [SRA17]

studied the eddy diffusion data using a deterministic model and concluded that it is suitable

for indoor spaces with persistent directional flow towards a wall boundary, as well as in rooms

where the airflow is solely driven by mechanical ventilation (no natural ventilation involved).

These results imply the need for a more flexible model that accounts for uncertainty and

also be used for parameter inference.

We are interested in the inference through the posterior distributions of the parameters

Q and G in the one-zone model, in addition to β in the two-zone model, and G and DT in
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the eddy diffusion model. Details of the experimental chamber data results are as follows.

4.3.2.1 One-zone model

A series of studies were conducted in an exposure chamber under different controlled condi-

tions. [ASR17] constructed a chamber of size (2.0m × 2.8m × 2.1m = 11.8m3), where two

industrial solvents (acetone and toluene) were released using different generation G(mg/min)

and ventilation Q(m3/min) rates. In particular, three levels of ventilation rates correspond-

ing to ranges of 0.04-0.07 m3/min, 0.23-0.27 m3/min and 0.47-0.77 m3/min were used. The

loss rate KL was determined from empirical studies to be < 0.01. Solvent concentrations

were measured every 1.5 minutes. Details of the experiments can be found in [ASR17].

Table 4.4 shows that estimates for the ventilation rate are more accurate using the non-

parametric DP model, while estimates for the generation rate (G) are not accurate in either

models. In both models, there is more uncertainty in the estimates when the ventilation

level is high. The CRPS values show better calibration among the DP model throughout

the three different ventilation level scenarios. Figure 4.4 shows that the estimated latent

concentrations are close to the measurements. Results show better model calibration among

the low and medium ventilation level scenarios which is reflected by the CRPS values. One

reason might be the much lower number of observations in that particular data set.

Table 4.4: CRPS, empirical coverage of the forecasts, medians and 95% C.I. of the posterior
samples of the one-zone model parameters using toluene and acetone solvents

Parameter Ventilation level True value DP Parametric

G
low 43.2 100.5(93.1,103.7) 38.1(30.2,62.9)

medium 43.2 136.1(125.7,146.1) 141.6(130.6,149.7)
high 39.55 82.4(54.0,142.4) 81.7(32.9,142.4)

Q
low 0.04-0.07 0.03(0.008, 0.04) 0.27(0.02, 0.41)

medium 0.23-0.27 0.11(0.01,0.80) 0.50(0.02,0.97)
high 0.47-0.77 0.45(0.02,0.98) 0.59(0.03,0.98)

crps
low 0.03 0.17

medium 0.04 0.08
high 0.05 0.10
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Figure 4.4: Plot of the measured concentrations and the mean of the posterior samples of
the latent states conditional on the measurements

4.3.2.2 Two-zone model

The near field box of size (0.51m × 0.51m × 0.41m = 0.105m3) was constructed within the

far field box [ASR17]. The volume of the far field is 11.79 m3, which is the chamber volume

minus the near field volume. The airflow parameter β cannot be directly measured, but it

was estimated from the local air speed to range from 0.24 to 1.24 m3/min. Table 4.5 shows

that, while the point estimates in the DP model results are more accurate, the 95% C.I.

of the posterior samples for both the generation rate (G) and the ventilation rate (Q) for

the DP and the parametric models include the true values except for G at low ventilation

level. Similar to the one-zone model, the CRPS values show better calibration among the DP

model throughout the three different ventilation rate scenarios, the highest being at the high

ventilation level, perhaps reflecting the higher noise among the lower number of observations

as shown in Figure 4.5. Results show better calibration at the far field throughout.
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Table 4.5: CRPS, empirical coverage of the forecasts, medians and 95% C.I. of the posterior
samples of the two-zone model parameters using toluene and acetone solvents

Parameter Ventilation level True value DP Parametric

G
low 43.2 30.4(30.0, 32.2) 30.4(30.0, 32.2)
med 86.4 83.5(76.1,114.6) 73.7(60.2,90.5)
high 120.7 108.6(75.4,126.1) 49.8(33.9,68.3)

Q
low 0.04-0.07 0.15(0.03, 0.67) 0.68(0.09, 0.98)
med 0.23-0.27 0.36(0.01,0.91) 0.38(0.11,0.50)
high 0.47-0.77 0.42(0.03,0.93) 0.46(0.45,0.98)

β
low 0.24-1.24 4.4(3.7,4.9) 3.0(2.3,3.7)
med 0.24-1.24 3.5(2.7,4.4) 2.9(2.5, 3.4)
high 0.24-1.24 2.9(2.5, 3.4) 2.2(1.5, 2.8)

CRPS
low 0.17 6.2

medium 1.6 5.5
high 0.44 7.9

4.3.2.3 Turbulent eddy diffusion model

[SRA17] constructed a chamber of size (2.8m× 2.15m× 2.0m = 11.9m3), where toluene was

released. Measurements were taken at two locations at distances 0.41m and 1.07m away

from the source every two minutes. Table 4.6 shows more parameter estimation uncertainty

at the parametric model compared to the NS covariance and the additive AR nonparametric

models. Despite the high noise at location 1, the NS covariance model was able to provide

more smooth, accurate state estimates and better calibration compared to the additive AR

model which is reflected in Figure 4.6.

Table 4.6: CRPS, empirical coverage of the forecasts, medians and 95% C.I. of the posterior
samples of the turbulent eddy diffusion model parameters using toluene solvent

Parameter True value additive AR NS cov Parametric

G 1318.33 1367.2(1223.9,1506.3) 1174.8(1105.2,1373.5) 1503.7(1168.7,1645.3)
DT 0.001-0.01 0.006(0.005,0.006) 0.008(0.007,0.008) 0.0014(0.001,0.002)

CRPS 18.4 8.9 26.4
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Figure 4.5: Plot of the measured concentrations and the mean of the posterior samples of
the latent states conditional on the measurements in the near field and far field at low,

medium and high ventilation levels

4.4 Discussion

In this chapter we developed a general Bayesian SSM based on centered Dirichlet processes

for analyzing experimental exposure data specific to industrial hygiene. The unknown dis-

tributions of the error terms in the measurement and transition equations at any time point

are constructed using Dirichlet process mixtures of Gaussian distributions with constraints

to prevent negative concentration values. The proposed method allows for very flexible yet

robust modeling of exposure data, such that any physical model in theory can be accommo-

dated. In addition, the Bayesian framework provides a natural approach for probabilistic

forecasting where we can study calibration and sharpness in predictions. One more advan-
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Figure 4.6: Plot of the measured concentrations and the mean of the posterior samples of
the latent states conditional on the measurements at the two locations using add cov

tage of the proposed method, is the simplicity in implementing the MCMC sampler, which

uses an extension to the Gibbs Sampling in [IJ01] and the Gaussian dynamic linear models

(DLMs) in [WH97]. We have showed the effectiveness of our methodology with simula-

tion experiments and lab-generated data under several experimental settings where different

physical models and different experimental conditions were considered.

Results show that inference and prediction are robust to different physical models and

different experimental scenarios. Nonparametric SSMs tended to perform better than para-

metric SSMs, a result that appeared to be consistent across different exposure models and

different experimental conditions, in particular regarding calibration and sharpness. Our

simulation experiments showed the promise of using spatiotemporal SSMs in analyzing eddy

diffusion experiments, and even though our chamber data analysis had limited scope be-

cause of the very small number of spatial measurements, the model that used non-separable

covariance was more robust and was able to characterize the data well.
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Although we have focused on three classes of physical models, the proposed methodology

is more general and in theory, can accommodate any physical model. We conclude with some

indicators for future research. First, as suggested earlier, the use of non-separable covariance

is the most auspicious which encourages exploring more general classes of non-separable

covariances proposed by [Gne02]. A limitation of using SSMs in general, is that conditional

on the state vector, observations are assumed to be independent, which in more complex

physical processes that exhibit strong temporal dependence may be unrealistic.
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CHAPTER 5

Discussion

5.1 Exposure Modeling Challenges and Applications Addressed

In this dissertation, I outlined challenges commonly arise in the filed of exposure modeling

and parameter inference. The proposed frameworks are likely to be useful to industrial

hygienists for exposure assessment and management. The main challenges that motivated

the work arised from important research questions that cannot be addressed by the current

common methodologies due to data limitations.

The GuLF STUDY coastal data at Waveland beach Mississippi motivated our first

methodology. The available data consisted of breathing concentration measurements from

clean-up coastal workers which extended in an S-shape for seven or eight kilometers. Avail-

able methods for point-referenced data modeling use Geostatistical covariances that rely on

the Euclidean distance between the measurements in capturing the spatial correlation be-

tween them. The problem with this approach is that the Euclidean distance is inappropriate

for modeling spatial covariances because the effective spatial range will be the distance along

the coast at which the correlation becomes negligible. Second, covariance functions that

insure positive definiteness in Euclidean coordinates need not be valid for other domains

[Ban05]. This means that we will need to construct valid covariance functions along the

coastline. Subsequently, we describe a simple approach to construct models such as (2.1)

using valid covariance functions for points along curves. We developed a flexible yet sim-

ple Bayesian framework for spatially-oriented data that can be used to assess exposures of

workers by interpolating levels of chemicals along a coastline. The statistical models for

coastal kriging exploit a simple representation of the coast as a parametric function of the
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coordinates of points along the coastline. We presented four models using two different pa-

rameterizations. We found that for a simple curve, kriging using line segment approximation

performs better than spatial kriging using Euclidean distance. This could be a useful and

practical approach for kriging over any simple curve. The model is relatively easy to fit since

the covariance depends on parameters in <1.

Another motivating problem that commonly arise in exposure assessment in industrial

hygiene, is the complexity of the workplace and the lack of physical models that deliver a

complete representation of the underlying processes generating chemical concentrations. An

accurate representation will produce better concentration estimates and facilitate decision-

making in exposure management. Therefore, accounting for parameter and model uncer-

tainty is crucial and a synergy of physical and statistical models is needed to better estimate

the processes in the workplace. Traditionally, one needs the solutions for the nonlinear dif-

ferential equations representing the physical model and they need to be evaluated through

several iterations for convergence. This precludes fitting computationally demanding but

richer physical models that could well have yielded better estimation of physical parameters

and concentrations.

We offered a principled Bayesian approach to efficiently and effectively synergize informa-

tion from the three sources of information, (a) professional judgment from experts, and (b)

direct measurements of the environment exposure in the workplace and (c) scientific physical

models representing the state in the workplace in theoretically ideal conditions. Furthermore,

the approach we proposed will completely obviate the need to solve the nonlinear equations

governing the physical model. We achieved this by deriving a dynamic statistical model

by discretizing the deterministic physical model and incorporating stochastic measurement

error. This is then extended to a Bayesian framework by assigning prior distributions (us-

ing information from (a)) to the parameters and the model parameters (including variance

components attributed to measurement error and model approximations) are estimated by

sampling from the posterior distribution.

Our proposed framework enriches and expands upon existing methods. IH practitioners

will no longer be restricted to fitting a confined selection of physical models amenable to an-
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alytic solutions. Any conceivable physical model, in theory, can be accommodated. Neither

will IH practitioners be restricted to Gaussian or transformed Gaussian data, an assumption

that most practitioners will agree is rarely tenable, especially given the small to moderate

number of measurements they have to deal with. Our Bayesian framework also allowed sta-

tistically sound model evaluation and assessment in terms of how well it fits the data. We

also introduced Bayesian computation methods and algorithms to efficiently implement the

proposed synergistic Bayesian modeling framework.

The adaptation of Bayesian Kalman filters to IH settings was novel. We also innovated

to expand upon Bayesian Kalman filters with Gaussian noise. We explored classes of skewed

error distributions and the results showed that non-Gaussian state space models tended

to perform better than linear Gaussian state space models, a result that appeared to be

consistent across different exposure models and different experimental conditions.

To expand upon the proposed approach for exposure concentration modeling, we con-

sidered an extension that allows for more flexibility in the model. We developed classes

of nonparametric Bayesian Kalman filters and designed algorithms for their implementa-

tion based on centered Dirichlet processes for analyzing experimental exposure data specific

to industrial hygiene. The unknown distributions of the error terms in the measurement

and transition equations at any time point are constructed using Dirichlet process mixtures

of Gaussian distributions with constraints to prevent negative concentration values. We

demonstrated the performance of the proposed extension using simulations and real data,

in which we compared the performance of the nonparametric method to the one previously

presented that impose distributional assumptions on the error terms. Results showed that

the nonparametric models tended to perform better than the parametric ones, a result that

appeared to be consistent across different exposure models and different experimental condi-

tions, in particular regarding calibration and sharpness. Our simulation experiments showed

the promise of using spatiotemporal state space models in analyzing eddy diffusion exper-

iments, and even though our chamber data analysis had limited scope because of the very

small number of spatial measurements, the model that used non-separable covariance was

more robust and was able to characterize the data well.
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5.2 Future Work

This dissertation provides a new direction to exposure modeling in industrial hygiene. First,

building valid models for coastal kriging presents many new research opportunities, such as

developing a model for more complicated coastlines or along closed curves such as the coasts

of an island. Thus, future work will investigate potential problems such as, complexity of the

curve, covariates inclusion, potential changes in the coastline and temporal changes. Future

work can also consider the modeling and analysis of censored data, which is common in

exposure studies, due to measurements below the limits of detection.

The area of parameter estimation and exposure prediction using state space models is

still also an open area of research. As mentioned previously, a much more comprehensive

spatiotemporal analysis for eddy diffusion experiments is needed. Our simulation experi-

ments showed the promise of spatiotemporal state space models in analyzing eddy diffusion

experiments which encourages exploring broader classes of non-separable covariances that

reflects different types of interaction between space and time. Another area of interest for

future work is related to physical processes that exhibit strong temporal dependence. A

limitation of using state space models in general, is that conditional on the state vector,

observations are assumed to be independent, which may be unrealistic in some scenarios.

Another important consideration is misaligned data, where not all measurements at different

locations come from the same set of time points. An advantage of the Bayesian paradigm is

that we can handle missing data, hence misaligned data, very easily and indeed our Bayesian

state space models should be able to handle them.

A third area for future work may integrate coastal kriging into state space models in what

we call coastal state space models that will enable us to analyze chemical concentrations

from underlying physical processes along a coastline. A simple re-parametrization of the

physical model can produce accurate parameter inference and prediction. A scenario for

coastline concentrations assuming a single source of emission situated in the water could be

a malfunctioning discharge pipe in an oil rig. If a uniform concentration of the contaminant

throughout the coast is assumed, a one-zone model can be used. If different physical behavior
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near the source of emission “near field” from that far from the source “far field” is assumed,

then the two-zone model can be used.

5.3 Final Remarks and Conclusion

Exposure modeling and parameter estimation are important as they enable industrial hy-

gienists to manage and assess exposure in the workplace. It is also crucial to have efficient

representation of uncertainty, and account for its different sources such as errors, complex

physical models and others, and hence choosing the appropriate uncertainty quantification

is an important question. There are many different applications of the approaches presented

in this dissertation and we anticipate more use of the presented models in industrial hygiene.
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Appendix A

Supplementary details for Chapter 3

This document provides technical details of the solution to the linear ODE, discretization of

the SSMs and steady state solution.

Solution to the linear system of ODE: The simulated data was generated from the ex-

act solution to the ODE [BR14]. In order to obtain that exact solution, we assume an

m dimensional system
d

dt
xt = Ftxt + g; , (A.1)

where xt is an m × 1 vector at time t, Ft is an m × m matrix and g is an m × 1

vector. The solution when the eigenvalues of Ft are real and distinct can be obtained

as follows. The eigen decomposition of Ft = LΛL−1 where L is the matrix of linearly

independent eigenvectors and Λ is the diagonal matrix of eigenvalues λi, i = 1, . . .m.

By definition of the matrix exponential and the fact that F n
t = LΛnL−1 we can write

eFt = LeΛL−1. Now, let Gi = uiv
T
i , where ui is the i-th column of L and vTi is the i-th

row of L−1. It easily follows that eFt =
m∑
i=1

eλiGi. Consequently,

d

dt
etFt =

m∑
i=1

λie
λitGi =

m∑
i=1

λie
λituiv

T
i = LΛetΛL−1 = LΛL−1LetΛL−1 = Fte

tFt

and

∫
etFtdt =

m∑
i=1

1

λi
eλitGi = LΛ−1etΛL−1 = LΛ−1L−1LetΛL−1 = F−1

t etFt .

Multiplying both sides of (A.1) by e−tFt from the left yields:

e−tFt
[
d

dt
xt − Ftxt

]
= e−tFtg =⇒ d

dt

[
e−tFtxt

]
= e−tFtg . (A.2)
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Integrating out both sides of (A.2), we obtain e−tFtxt = −F−1
t e−tFtg + k, where k is a

constant vector. The initial condition at t = 0 yields x0 = −F−1
t g+k, so k = x0+F−1

t g.

Consequently, xt = etFtx0 + F−1
t

[
etFt − Im

]
g which is the solution to (A.1).

Discretization of the differential equations: We approximate the deterministic phys-

ical model through discretization. The Taylor expansion of Ct at t = t∗ is Ct =∑∞
n=0

C(n)(t∗)
n !

(t− t∗)n, where C(n)(t∗) = dn

dtn
Ct

∣∣∣
t=t∗

. Let t = t∗ + δt hence

C(t∗ + δt) =
∞∑
n=0

C(n)(t∗)

n !
(δt)

n = C(t∗) +
C ′(t∗)

1 !
δt + o(δt), (A.3)

for small δt. From the above equation we can express C ′(t∗) as

C ′(t∗) =
C(t∗ + δt)− C(t∗)

δt
+ o(δt). (A.4)

In the applications to the three physical models we replace the first order derivative

d
dt
Ct at t = t∗ with equation (A.4) using the appropriate value of δt. In the one zone and

two-zone models a value δt = 0.01 was found to provide an accurate approximation,

while for the eddy diffusion model δt = 1 was used.

Steady states derivations: The steady state is achieved as t → ∞ in the exact solution

of the ODE.

lim
t→∞

exp{tFt}C(t0) + F−1
t [exp{tFt} − I]g. (A.5)

For the one zone model Ft = −(Q + KLV )/V and g = G/V so A.5 = F−1
t [−I]g =

G/(Q + KLV ). Since KL is usually small, it can be approximated by G/Q. Hence as

t→∞ Ct ≈ G/Q.

For the two zone model, Ft = A =

 −β/VN β/VN

β/VF −(β +Q)/VF +KL

 and g =

 G/VN

0

.

Since KL is usually small it can be ignored for simplicity. The term exp(tFt), where
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exp() is the matrix exponential, can be written as exp(tLΛL−1) =
∑
etλGi where

Gi = uiv
T
i , ui is the i-th column of L and vTi is the i-th row of L−1. It easily follows

that etFt =
m∑
i=1

etλiGi. The eigenvalues are available in closed form [ZBL09] as

λ1 = 1
2

[
−
(
βVF+(β+Q)VN

VNVF

)
+

√(
βVF+(β+Q)VN

VNVF

)2

− 4
(

βQ
VNVF

)]
,

λ2 = 1
2

[
−
(
βVF+(β+Q)VN

VNVF

)
−
√(

βVF+(β+Q)VN
VNVF

)2

− 4
(

βQ
VNVF

)]
.

(A.6)

As long as β and Q are positive, the two eigenvalues are negative. Hence etFt =
m∑
i=1

etλiGi → 0 as t → ∞ and the first term becomes 0 and the second term becomes

A−1[−I]g. The determinant of A is det(A) = Qβ/VNVF , and

A−1 =

 −((β +Q)/VF )(VNVF/βQ) −(β/VN)(VNVF/βQ)

−(β/VF )(VNVF/βQ) −((β)/VN)(VNVF/βQ)

. So the steady state

is a 2 × 1 vector equal to A−1[−I]g =

 G
Q

+ G
β

G
Q

. So as t → ∞ CN(t) ≈ G
Q

+ G
β

and

CF (t) ≈ G
Q

.

The steady state for the eddy diffusion model is theoretically the value of Ct,s in

equation (B.4) when t→∞. Clearly limt→∞
G

2πDT (||s||)

(
1− erf ||s||√

4DT t

)
= G

2πDT (||s||) .
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Appendix B

Further results for Chapter 4

B.1 Simulations

We studied the performance of the proposed framework through simulations at different

physical model scanarios and different model assumptions. We generated the latent concen-

trations from the exact solution to the differential equation corresponding to the physical

model in use,

Ct = exp(tFt)C0 + F−1
t × [exp(tFt)− I]g, (B.1)

where Ft is a state transition matrix, g are control inputs and C0 is the initial concentration

value. The observed concentrations are generated from Yt = HtCt + νt, at different signal-

to-noise ratios. Then we evaluated the performance of the proposed non-parametric SSM

framework and compared the results to the parametric SSM proposed in Chapter 3.

B.1.1 One-zone model

Setup: We generated 100 datasets at different signal to noise ratios of 100 exposure con-

centrations each, at equally spaced time points. The latent concentrations were generated

from

Ct = exp{−t(Q+KLV )/V }C(t0) + ((Q+KLV )/V )−1 [1− exp{−t(Q+KLV )/V }]G/V,

(B.2)

where, Q = 13.8 m3/min, G = 351.5 mg/min, V = 3.8 m3, KL = 0.1 mg/min and C(0) = 1

mg/m3 [ZBL09]. The observed measurements were generated from Yt = Ct + νt, νt
iid∼

N(0, σνt), where σνt varied between 1 and 5.
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Results: Table B.1 presents the medians and 95% credible intervals of the MCMC pos-

terior samples of the model parameters averaged over all simulations. The 95% credible

intervals include the true values for all the parameters values. The CRPS values indicate

better calibration and sharpness among the nonparametric model. Figure B.1 shows the

simulated concentrations, measurements and the mean of the posterior samples of the latent

states conditional on the measurements for one simulated dataset, in addition to the 50%

and 90% prediction intervals which shows that the latent state estimates are close to the

true simulated values. Figure B.3 and Figure B.2 show that both the sample PIT histogram

and the marginal calibration plot do not indicate a deficiency in the forecasts.

Table B.1: CRPS, empirical coverage of the forecasts, medians and 95% C.I. of the poste-
rior samples of the one-zone model parameters for the simulated data (averaging over 100
simulations at different signal to noise ratios)

Parameter DP Parametric

G(351.5) 357.1 (322.5, 419.3) 326.8 (283.3, 351.7)
Q(13.8) 12.9(11.1, 15.5) 12.9(11.1, 14.8)
KL(0.1) 0.29(0.02,0.70) 0.34(0.19,0.78)

CRPS from 100 simulations 1.4 2.1
MSE from 100 simulations 0.7(1.8) 0.6 (0.7)
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Figure B.1: Plot of the simulated concentrations, measurements and the mean of the
posterior samples of the latent states conditional on the measurements
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Figure B.3: Marginal calibration plot for one-
zone model 100 simulations

B.1.2 Two-zone model

Setup: We generated 100 datasets at different signal to noise ratios of 100 exposure con-

centrations each, at equally spaced time points. The latent concentrations were generated

from

Ct = exp{tA}C(t0) + A−1 [exp{tA} − I] g, (B.3)

where, A(θc;x) =

 −β/VN β/VN

β/VF −(β +Q)/VF +KL

, g(θc;x) =

 G/VN

0

, Q = 13.8 m3/min,

G = 351.5 mg/min, V = 3.8 m3, KL = 0.1, β = 5 m3/min, VN = π × 10−3 m3 and VF = 3.8

m3 mg/min and CN(0) and CF (0) were assigned values 0 and 0.5 mg/m3 respectively [ZBL09].

The observed measurements were generated from Y (t) = Ct + νt, where Y (t) =

 YN(t)

YF (t)

 ,
Ct =

 CN(t)

CF (t)

 νt iid∼ N2(0,Σνt).

Results: Table B.2 presents the medians and 95% credible intervals of the MCMC poste-

rior samples of the model parameters averaged over all simulated datasets. The 95% credible

intervals include the true values for all the parameters values. The CRPS values indicate

better calibration and sharpness among the nonparametric model. Figure B.4 shows the

simulated concentrations, measurements, the mean of the posterior samples of the latent
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states conditional on the measurements and the 50% and 90% prediction intervals at the

near and far fields for one of the generated datasets. Figure B.21 and Figure B.6 show that

both the PIT histogram and the marginal calibration plot do not indicate a deficiency in the

forecasts.

Table B.2: CRPS, empirical coverage of the forecasts, medians and 95% C.I. of the poste-
rior samples of the two-zone model parameters for the simulated data (averaging over 100
simulations at different signal to noise ratios)

Parameter DP Parametric

G(351.5) 297.8(281.5,363.1) 307.3(283.1,345.5)
Q(13.8) 12.8(11.1,16.2) 13.6(11.4,16.1)
KL(0.1) 0.30(0.02,0.48) 0.38(0.02,0.78)
β(5) 4.2(3.9,5.2) 4.3(3.9,4.9)

CRPS 6.4 8.6
MSE 27.0(18.0) 20.3(14.5)
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Figure B.4: Plot of the simulated near field and far field concentrations, measurements and
the mean of the posterior samples of the latent states conditional on the measurements,

and 50% and 90% quantiles

B.1.2.1 Turbulent eddy diffusion model

Setup: We conducted 50 simulations at different signal to noise ratios of of 500 exposure

concentrations each, at 5 different locations over equally spaced 100 time points. The latent
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Figure B.5: PIT histograms for two-zone model simulations
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Figure B.6: Marginal calibration plot for two-zone model simulations

concentrations were generated from using the exact equation

Ct,s =
G

2πDT ‖s‖

{
1− erf

(
‖s‖√
4DT t

)}
, (B.4)

where erf(z) = 2
π

∫ z
0

exp(−u2)du, such that G = 351.5 mg/min and Dt = 1 m2/min and the

observations were generated from Yt,s = Ct,s + νt,s + ηt at three different scenarios, where

different covariance structures are used in the simulation. The first scenario assumes that

ηt = 0 and νt,s is a random noise. The second scenario assumes an autoregressive process

such that, for each location s, νt,s = νt−1(s) + ψt(s) with ψt(s) being a Gaussian process

with a simple geostatistical covariance Kθψ = σ2e−φ‖s−s
′‖, where σ = 0.1 and 1/φ = 1.

The third scenario representing more flexible modeling, where a NS covariance was used;

Kθν = σ2

(a2|t−t′|2+1)d/2
exp

{
− b2‖s−s′‖2
a2|t−t′|+1

}
, where a = b = 1 and σ = 0.1.

Results: Two non-parametric SSMs were considered, the first assumes an additive AR
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model and the second assumes a NS covariance model. Table B.3 presents the results of

the three simulation scenarios and the three models. The 95% credible intervals include the

true values for all the parameters values. The CRPS values indicate better calibration and

sharpness among the nonparametric models with a slightly better calibration results among

the NS covariance model. Figure B.15 shows the simulated concentrations, measurements,

the mean of the posterior samples of the latent states conditional on the measurements and

the 50% and 90% prediction intervals at the five locations for one of the generated datasets

at the random, additive AR and NS covariance simulations for the NS covariance model.

The PIT histogram and the marginal calibration plots show much better calibration and

sharpness among the non-parametric models which was also reflected in the values of the

CRPS.

Table B.3: CRPS, empirical coverage of the forecasts, medians and 95% C.I of the posterior
samples of the turbulent eddy diffusion model parameters for three simulation scenarios

Parameter additive AR NS1 Parametric

random

G(351.5) 376.9(285.0,476.1) 401.0(296.0, 474.8) 368.7(284.4,476.2)
DT (1) 1.2(0.9,1.5) 1.3(1.0,1.7) 1.3(1.0,1.6)
CRPS 0.80 0.67 2.5
MSE 387.9(26.9) 367.2(2.0) 361.7(8.4)

additive
AR

G(351.5) 432.9(319.5,479.3) 407.0(288.0, 479.0) 370.9(285.0,475.6)
DT (1) 1.3(1.0,1.6) 1.5(1.0,2.9) 1.2(1.0,1.6)
CRPS 0.8 0.7 2.2
MSE 385.3(35.0) 367.4(2.7) 372.9(8.4)

NS

G(351.5) 405.2(289.0,477.2) 398.4(308.5,476.2) 365.5(284.8,474.0)
DT (1) 1.3(1.0,1.6) 1.4(1.0,2.6) 1.3(1.0,1.6)
CRPS 0.64 0.70 2.1
MSE 403.1(42.9) 368.7(7.0) 367.5(4.7)
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Figure B.7: Parametric model plot of the simulated concentrations at five locations,
measurements and the mean of the posterior samples of the latent states conditional on the

measurements, and 50% and 90% quantiles using a: simulations from random error, b:
simulations from additive AR error and c: simulations from error with NS covariance
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Figure B.8: PIT histograms and marginal calibration plot for eddy diffusion model random
error simulation using the parametric model
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Figure B.9: PIT histograms and marginal calibration plot for eddy diffusion model additive
AR additive simulation using the parametric model
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Figure B.10: PIT histograms and marginal calibration plot for eddy diffusion model
additive NS covariance simulation using the parametric model
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Figure B.11: Additive AR model plot of the simulated concentrations at five locations,
measurements and the mean of the posterior samples of the latent states conditional on the

measurements, and 50% and 90% quantiles using a: simulations from random error, b:
simulations from additive AR error and c: simulations from error with NS covariance
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Figure B.12: PIT histograms and marginal calibration plot for eddy diffusion model
random error simulation using the additive AR model
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Figure B.13: PIT histograms and marginal calibration plot for eddy diffusion model
additive AR additive simulation using the additive AR model
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Figure B.14: PIT histograms and marginal calibration plot for eddy diffusion model
additive NS covariance simulation using the additive AR model
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Figure B.15: NS covariance model plot of the simulated concentrations at five locations,
measurements and the mean of the posterior samples of the latent states conditional on the

measurements, and 50% and 90% quantiles using a: simulations from random error, b:
simulations from additive AR error and c: simulations from error with NS covariance
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Figure B.16: PIT histograms and marginal calibration plot for eddy diffusion model
random error simulation using NS covariance model
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Figure B.17: PIT histograms and marginal calibration plot for eddy diffusion model
additive AR additive simulation using NS covariance model
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Figure B.18: PIT histograms and marginal calibration plot for eddy diffusion model
additive NS covariance simulation using NS covariance model
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B.2 Data Analysis

B.2.1 One-zone model

The CRPS values show better calibration among the DP model throughout the three different

ventilation level scenarios which is also reflected in Figure B.19 and Figure B.20. Results

show better model calibration among the low and medium ventilation level scenarios. One

reason might be the much lower number of observations in that particular data set.
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Figure B.19: PIT histograms and marginal calibration plot for one-zone at low, medium
and high ventilation levels
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Figure B.20: PIT histograms and marginal calibration plot for one-zone at low, medium
and high ventilation levels using parametric model
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B.2.2 Two-zone model

The calibration plots do not show better calibration among the DP models as shown in

Figure B.21 and Figure B.22. Results show better calibration at the far field throughout.
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Figure B.21: PIT histograms and marginal calibration plot for two-zone at low, medium
and high ventilation levels

low near field

Probability Integral Transform

Fre
qu
en
cy

0.0 0.2 0.4 0.6 0.8

0
20

medium near field

Probability Integral Transform

Fre
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
4

high near field

Probability Integral Transform

Fre
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
3

0 50 100 150

-0.
10

Index

F.f
ore
ca
st-
F.o
bs
erv
ed

0 20 40 60

-0.
05

Index

F.f
ore
ca
st-
F.o
bs
erv
ed

0 10 20 30 40

-0.
15

Index

F.f
ore
ca
st-
F.o
bs
erv
ed

low far field

Probability Integral Transform

Fre
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
25

medium far field

Probability Integral Transform

Fre
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
3

high far field

Probability Integral Transform

Fre
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.0
2.5

0 50 100 150

-0.
15

Index

F.f
ore
ca
st-
F.o
bs
erv
ed

0 20 40 60

-0.
01
5

Index

F.f
ore
ca
st-
F.o
bs
erv
ed

0 10 20 30 40

-0.
05

Index

F.f
ore
ca
st-
F.o
bs
erv
ed

Figure B.22: PIT histograms and marginal calibration plot for two-zone at low, medium
and high ventilation levels using parametric model
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B.2.3 Eddy diffusion model

Despite the high noise at location 1, the NS covariance model was able to provide more

smooth, accurate state estimates and better calibration compared to the additive AR model

and to the parametric model which is reflected in Figure B.24 and Figure B.23.
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Figure B.23: Marginal calibration plot for eddy diffusion data
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Figure B.24: Marginal calibration plot for eddy diffusion data using parametric model
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