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ARTICLE

Nonlocal pseudopotential energy density functional
for orbital-free density functional theory
Qiang Xu1, Cheng Ma1, Wenhui Mi1, Yanchao Wang 1✉ & Yanming Ma1,2

Orbital-free density functional theory (OF-DFT) is an electronic structure method with a low

computational cost that scales linearly with the number of simulated atoms, making it sui-

table for large-scale material simulations. It is generally considered that OF-DFT strictly

requires the use of local pseudopotentials, rather than orbital-dependent nonlocal pseudo-

potentials, for the calculation of electron-ion interaction energies, as no orbitals are available.

This is unfortunate situation since the nonlocal pseudopotentials are known to give much

better transferability and calculation accuracy than local ones. We report here the devel-

opment of a theoretical scheme that allows the direct use of nonlocal pseudopotentials in OF-

DFT. In this scheme, a nonlocal pseudopotential energy density functional is derived by the

projection of nonlocal pseudopotential onto the non-interacting density matrix (instead of

“orbitals”) that can be approximated explicitly as a functional of electron density. Our

development defies the belief that nonlocal pseudopotentials are not applicable to OF-DFT,

leading to the creation for an alternate theoretical framework of OF-DFT that works superior

to the traditional approach.
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Ab initio calculations using Kohn-Sham (KS) density
functional theory (DFT)1,2 can accurately describe the
fundamental properties of various materials. However, its

computational cost scales with the cube of the number of elec-
trons in the simulation cell, which poses a major challenge to
large-scale simulations. In contrast, orbital-free (OF) DFT is
inherent of the lower computational cost that scales linearly with
the number of atoms in the system, as it relies only on the
electron density and the use of KS orbitals is avoided. As a result,
OF-DFT is successfully applied to large-scale simulations of
systems with up to millions of atoms3–6.

The accuracy of OF-DFT simulations depends strongly on the
quality of the non-interacting kinetic energy and the electron-ion
(or electron-pseudocore) interaction energy employed in the
simulations. Many approximate kinetic energy density func-
tionals (KEDFs) have been proposed to evaluate the non-
interacting kinetic energy in OF-DFT7–39. Their use in combi-
nation with local pseudopotentials40–44 can achieve results that
agree reasonably with those derived by KS-DFT, especially for
main-group metals, III–V semiconductors24,34,36,45, and even
systems with inhomogeneous electron density such as metal
clusters and quantum dots37,39.

Unfortunately, the local pseudopotentials28,31,32,40,41,43 used to
evaluate the electron-ion interaction energy suffer from a lack of
transferability43, as they fail to reproduce the correct scattering
behavior of the all-electron potentials46–48. Overcoming the
transferability problem requires a reliance on either all-electron
potential or nonlocal pseudopotentials (NLPPs), which are widely
used in orbital-based approaches. However, it is practically
unfeasible to use the all-electron potential, as an accurate all-
electron KEDF for OF-DFT calculations is not yet available49,50.
Furthermore, the use of NLPPs46,51 runs against conventional
understanding, as no orbitals are available in the traditional fra-
mework of OF-DFT41,42,44,52,53.

A crucial nonlocal energy term with a set of angular-
momentum-dependent energies has recently been added to OF-
DFT calculations54,55 in an effort to correct errors arising from
the use of KEDFs and local pseudopotentials. This approach has
successfully reproduced the bulk properties of several standard
structures of Ti. However, special care must be taken when
applying it to a wide range of practical simulations, as frozen on-
site orbitals and empirically directed fitting parameters are part of
the model52. There is substantial demand for a general approach
to evaluate the electron-ion interaction energy using NLPPs in
OF-DFT calculations. In this manuscript, we developed a theo-
retical scheme that allows the direct use of the NLPPs for the
calculation of electron-ion interaction energy in OF-DFT, toge-
ther with a specially designed theoretical framework of OF-DFT.
This development leads to an OF-DFT calculation that gives a
better transferability than the existing OF-DFT method based on
local pseudopotentials.

Results and discussion
Nonlocal pseudopotential energy density functional. In general,
the total energy density functional of OF-DFT can be expressed
as:

E½ρ� ¼Ts½ρ� þ EH ½ρ� þ EXC½ρ� þ EII fRag
� �

þ
Z

ρðrÞVlocðrÞd3r;
ð1Þ

where ρ, Ts, EH, EXC, EII, {Ra}, and Vloc are the electron density,
KEDF, Hartree energy, exchange-correlation energy, ion-ion
repulsion energy, the set of atomic positions, and local pseudo-
potential, respectively. To include the nonlocal electron-ion
interactions, the total energy density functional of OF-DFT is

reformulated as:

E½ρ� ¼ Ts½ρ� þ EH ½ρ� þ EXC½ρ� þ EII fRag
� �

þ
Z

ρðrÞVlocðrÞd3rþ Enl½ρ�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

EEI ½ρ�

; ð2Þ

where the total electron-ion interaction energy EEI[ρ] can be
separated into two parts: a local part Eloc[ρ]= ∫ρ(r)Vloc(r)d3r and
a nonlocal part Enl[ρ]. All of the terms in Eq. (2) except the
nonlocal part of pseudopotential (Enl[ρ]) can be evaluated easily.

The exact NLPP energy depends on the KS orbitals or the
density matrix:

Enl �∑
i
f i

Z Z
ψ�
i ðr0ÞVnlðr0; rÞψiðrÞd3rd3r0

¼
Z Z

Vnlðr0; rÞγsðr; r0Þd3rd3r0;
ð3Þ

where fi, Vnlðr0; rÞ ¼ hr0jV̂nljri, and γsðr; r0Þ ¼ ∑if iψiðrÞψ�
i ðr0Þ

represent the occupation number of the ith KS orbital ψi, the real-
space representation of the nonlocal part pseudopotential, and the
non-interacting density matrix, respectively. Considering that the
density matrices γs½ρ�ðr; r0Þ can be used to approximate the
KEDFs7,56,57, an NLPP energy density functional (NLPPF)
relying directly on the density matrix is proposed to evaluate
the nonlocal electron-ion interaction energy. The nonlocal
electron-ion interaction energy is then rewritten as a function
of electron density

Enl½ρ� ¼
Z Z

Vnlðr0; rÞγs½ρ�ðr; r0Þd3rd3r0: ð4Þ

By taking the Kleinman-Bylander form58 of norm-conserving
NLPPs, the nonlocal part pseudopotential59 can be written as

Vnlðr0; rÞ ¼ ∑
a;lm

Ea;lm
KB χalmðr0Þχa�lmðrÞ; ð5Þ

where Ea;lm
KB ¼ ½R ϕa�lmðrÞδVa

l ðrÞϕalmðrÞd3r�
�1

and χalmðrÞ ¼ δVa
l ðrÞ

ϕalmðrÞ. The terms ϕalm and δVa
l are the atomic pseudo-wave-

function and the short-range pseudopotential corresponding to
the lmth angular momentum of ath atom, respectively. γs[ρ]
denotes the density matrix as a function of electron distribution ρ.
Although there is no exact analytic form available for the density
matrix functional, a modified Gaussian (MG)60 form derived
from the second-order Taylor expansions of the density matrix61

was employed to approximate the density matrix functional:

γMG
s ½ρ�ðr; r0Þ ¼ ρð�rÞe� s2

2βð�rÞ 1þ A
s2

2βð�rÞ

� �2
" #

; ð6Þ

where s ¼ jr� r0j and �r ¼ ðrþ r0Þ=2. The second term in the
square bracket is O(s4) correction60, where A is an adjustable
parameter. β(r) denotes the “local temperature” βðrÞ ¼ 3

2
ρðrÞ
tsðrÞ

62,63,

where ts(r) is the exact kinetic energy density defined as tsðrÞ ¼
tKSs ðrÞ � ∑Occ:

i¼1
1
8 j∇ρiðrÞj2=ρiðrÞ � 1

8∇
2ρðrÞ and ρi(r)= ∣ψi(r)∣2 is

ith KS orbital’s density (see Refs. 60,61). To remove the orbital-
dependent problem in ts(r) and obtain a solely density-dependent
form of the density matrix functional, the kinetic energy density is
obtained directly from the integrand of KEDFs to replace the
exact one: ts(r) ≈ ts[ρ](r). The widely used Wang-Teter (WT)
KEDF28 is chosen as an exemplary case, and ts[ρ](r) can be
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expressed as

tWT
s ½ρ�ðrÞ ¼ 3

10
3π2
� �2=3

ρ5=3ðrÞ þ 1
8

∇ρðrÞ
�� ��2
ρðrÞ

þ ρ5=6ðrÞ
Z

ωWT ðr; r0Þρ5=6ðr0Þd3r0;
ð7Þ

where ωWT ðr; r0Þ is the kernel of WT functional. The Supple-
mentary Notes give the details of the kinetic energy densities
obtained from WT and Xu-Wang-Ma38 KEDFs.

The direct numerical evaluations of ρð�rÞ and βð�rÞ at the average
position �r are very complicated. They are therefore approximated

using q-mean “nonlocal density” ρqðr; r0Þ ¼ ρqðrÞþρqðr0Þ
2

h i1=q
and

two-point average temperature βðr; r0Þ ¼ ½βðrÞ þ βðr0Þ�=2 for
systems with slowly varying electron densities. The density
matrix functional of Eq. (6) can then be reformulated as

~γMG
s ½ρ�ðr; r0Þ ¼ ρqðr; r0Þe�

s2

2βðr;r0 Þ 1þ A
s2

2βðr; r0Þ

� �2
" #

: ð8Þ

Combining Eqs. (4), (5), and (8) gives the NLPPF as

Enl½ρ� � ∑
a;lm

Ea;lm
KB

Z

Ωa

Z

Ωa

χalmðr0Þχa�lmðrÞ~γMG
s ½ρ�ðr; r0Þd3rd3r0; ð9Þ

where the integral domain Ωa is the ath ionic core region. Owing
to the short-range nature of fχalmðrÞg, the computational cost of
Eq. (9) scales linearly O½cNa� with the number of atoms (Na),
where c can be regarded as a constant derived from the double
integral within the near-core region. Within the NLPPF scheme, a
new theoretical framework of OF-DFT has been built and
implemented in ATLAS5,64. The further computational details are
provided in Methods Section. The parameters of pseudopotential

and NLPPF are presented in Supplementary Tables 1 and 2,
respectively.

Computational accuracy of NLPPF scheme. We first applied this
scheme for OF-DFT calculations of Li, Mg, and Cs within
hexagonal-close-packed (HCP), face-centered cubic (FCC), body-
centered cubic (BCC), simple cubic (SC), and cubic diamond
structures. For each structure, 13 energy-volume points were
calculated by expanding and compressing the approximate
equilibrium volume by up to 20%, and the bulk properties (the
equilibrium cell volume V0, bulk modulus B0, and the relative
energy ER with respect to HCP structure) were determined by
fitting the energy-volume curve against Murnaghan’s equation of
state65. The comparison of the results obtained by OF-DFT using
both local pseudopotentials (BLPS41 and OEPP43) and NLPPs
against those calculated by KS-DFT using the projector
augmented-wave (PAW)66 method are presented in Supple-
mentary Table 3. For Li and Mg solids, the OF-DFT calculations
within both local pseudopotentials and NLPPs give reasonable
predictions of V0, B0, and ER, which are comparable with the KS-
DFT results. It is noteworthy that our scheme shows an
improvement over the local pseudopotentials of OEPP for bulk
Cs. The accurate bulk properties of Li/Mg/Cs obtained by the
current scheme demonstrate its valid applicability to simple
metallic solids.

Further assessment of the accuracy of our scheme was
demonstrated by molecular dynamics calculations for Li-Mg
alloy. The calculations used a canonical ensemble (at 1000 K) in a
supercell containing 108 atoms (Li54Mg54). The calculated pair
distribution functions g(r) for Li-Mg alloy are shown in Fig. 1.
Overall, the predicted shapes and peak neighbors of pair
distribution functions by OF-DFT within NLPPF match the

Fig. 1 Pair distribution functions for Li54Mg54 alloy. a Total, b Mg-Mg, c Li-Mg, and d Li-Li pair distribution functions.
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results calculated by KS-DFT. Especially notable are the resulting
contributions of the partial distributions (Fig. 1b–d) calculated by
OF-DFT within the NLPPF being almost identical to the KS-DFT
calculations, which are superior to those obtained by the local
pseudopotentials.

Transferability of NLPPF scheme. To demonstrate the trans-
ferability of our scheme, we randomly generated 50 structures of
Li systems using CALYPSO67,68. The total energies of these
structures were calculated by OF-DFT and KS-DFT. The com-
parisons of total energy relative to the HCP structure (ER) are
shown in Fig. 2. The orderings of energy are well captured by OF-
DFT within NLPPF. The relative energies of different phases are
overall well reproduced and in reasonable agreement with the KS-
DFT results. The least-square fitting lines of WT-NLPPF are
generally closer to the KS-PAW results than those from the local
pseudopotentials. For example, the mean error of ER for Li sys-
tems obtained by OF-DFT within the WT-NLPPF is 45 meV/
atom, which is lower than that within BLPS (73 meV/atom), or
OEPP (201 meV/atom). Therefore, this framework of OF-DFT
with improved transferability is superior to the traditional one.

Previous studies have shown that OF-DFT with local
pseudopotentials can be applied to most s- and p-block metals.
However, OF-DFT simulation using the local pseudopotential

OEPP shows unacceptable errors for various crystalline phases of
Be (Fig. 3): the curves of energy with respect to volume for HCP
and FCC structures show the total energy monotonically
decreasing with increasing volume. In contrast, the curves with
clear minima predicted by OF-DFT within NLPPF agree well
with those produced by KS-DFT. These findings indicate the
significant superiority of our proposed framework over the
conventional one.

Note that the bulk properties (e.g., equilibrium volume, bulk
modulus, and relative energy) calculated by OF-DFT within
NLPPF reproduce the results of KS-DFT for Li and Mg almost
exactly (Table 1), considering the maximal deviation of ER is
within 32 meV/atom. However, there are some discrepancies for
crystalline phases of Be: in particular, the deviation of ER for the
SC structure is larger than 400meV/atom. To explore the causes
of these discrepancies, we estimated the errors of the kinetic
energy density of the WT-KEDF with respect to the KS kinetic
energy density along the [100] and [111] directions in the SC
structures of Li, Mg, and Be (Fig. 4). The kinetic energy density of
KS-DFT is clearly reproduced accurately by the WT-KEDF for Li
and Mg with slow variations of electron densities. However, it is
seriously underestimated for Be, in which the electron distribu-
tion rapidly varies in the near-core region. Therefore, we believe
that errors in the kinetic energy densities for Be lead to the
discrepancy in its bulk properties obtained by the framework of

Fig. 2 Relative energies for random structures of elemental Li. The results
are calculated by OF-DFT using BLPS, OEPP and NLPPF in comparison with
that by KS-DFT using the PAW method. Blue dash-dotted and red dashed
lines are the least-square fittings of WT-BLPS and WT-NLPPF results,
respectively.

Fig. 3 Relative energy versus volume curves for Be systems. a The calculated energy-volume curves of Be-HCP. b The calculated energy-volume curves
of Be-FCC. The total energy shift of WT-OEPP is −33.030 eV/atom.

Table 1 B0 (GPa), ER (eV/atom), and V0 (Å3/atom) for bulk
Li, Mg, and Be by KS-DFT and OF-DFT.

Method HCP FCC BCC SC

Li B0 KS-PAW 13.9 13.6 13.9 12.1
WT-NLPPF 13.5 13.5 13.7 11.0

V0 KS-PAW 20.280 20.372 20.396 20.580
WT-NLPPF 19.483 19.462 19.352 20.844

ER KS-PAW 0.000 0.000 0.001 0.120
WT-NLPPF 0.000 0.000 0.001 0.152

Mg B0 KS-PAW 35.8 35.5 34.8 22.7
WT-NLPPF 33.0 31.3 31.3 21.2

V0 KS-PAW 22.838 23.071 22.826 27.478
WT-NLPPF 23.194 23.924 23.730 28.274

ER KS-PAW 0.000 0.012 0.029 0.382
WT-NLPPF 0.000 0.011 0.031 0.372

Be B0 KS-PAW 123.3 119.7 124.1 74.5
WT-NLPPF 91.5 90.5 87.2 63.3

V0 KS-PAW 7.910 7.875 7.822 10.274
WT-NLPPF 7.690 7.942 7.798 10.160

ER KS-PAW 0.000 0.080 0.099 1.004
WT-NLPPF 0.000 0.058 0.082 0.561
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OF-DFT within the NLPPF. The findings are fairly consistent
with our expectation that the performance of the NLPPF relies
strongly on the accuracy of kinetic energy density, as manifested
by Eqs. (7) and (8).

Due to the existence of significant differences in kinetic energy
density between WT and the exact one for Cd systems including
localized d-channel electrons (see Supplementary Fig. 1), the
NLPPF using WT cannot be applicable to investigate Cd systems
with d-channel electrons. Therefore, the NLPP of Cd was
constructed without d-channel electrons for the additional
calculations. As listed in Table 2, the bulk properties predicted
by the OF-DFT within NLPPF framework agree fairly well with
the predictions by KS-DFT using the same NLPP, whereas WT-
OEPP gives serious discrepancies compared with KS-NLPP
results in all bulk properties. Although the calculations using
NLPP without d-channel electrons cannot give the accurate bulk
properties for Cd systems (Table 2), OF-DFT within NLPPF
works superior to that within OEPP. Overall, it can be expected
this NLPPF scheme using accurate KEDF and its kinetic energy
density can be applied to the systems including localized
electrons, such as the transition metals or covalent systems.

Computational efficiency of NLPPF scheme. To assess the
computational efficiency of the current scheme, static simulations
of Cs BCC supercells containing 128–16,000 atoms were per-
formed by OF-DFT within NLPPF. The total wall time of the
single point energy calculations is plotted with respect to the
number of atoms in Supplementary Fig. 2. The computational
cost of this framework clearly scales linearly with the number of
atoms in the simulation cell, in sharp contrast to the cubic scaling

of KS-DFT. This shows that the OF-DFT within NLPPF is
potentially applicable to the simulation of large-scale systems
containing millions of atoms.

In summary, we proposed an NLPPF scheme that allows the
direct use of NLPPs in OF-DFT calculations. The static and
dynamic properties of s- and p-block metals calculated within this
scheme agree well with KS-DFT predictions and show significant
improvements in the computational accuracy and transferability
over conventional OF-DFT with local pseudopotentials. With this
work, we defy the conventional wisdom of orbital-dependent
NLPPs being incompatible with OF-DFT, leading to the creation
of an alternative framework of OF-DFT, which opens up new
avenues for further development of the theory.

Methods
Pseudopotential generations. The Troullier-Martins NLPPs59 are generated by
the FHI98PP47 code for all considered systems [see Supplementary Table 1] and
the p-channel of the NLPPs is used as the local pseudopotential of Vloc(r) in OF-
DFT.

Numerical calculations. The KS-DFT calculations using the PAW66 and NLPP are
performed by VASP69,70 and ARES packages71, respectively. The k-point meshes
are generated using the Monkhorst-Pack method72 with the k-spacing of 0.10Å−1.
The kinetic energy cutoff is 500 eV for all the simulations using VASP. The OF-
DFT calculations are carried out by ATLAS5,64 using WT28 as KEDF, and the
corresponding kinetic energy density is used to construct the NLPPF. The gen-
eralized gradient approximation with the form of Perdew-Burke-Ernzerhof73 is
employed for both OF-DFT and KS-DFT calculations. The grid spacings of 0.18,
0.18, 0.22, 0.10, 0.15, 0.22, 0.12, and 0.15Å are used in ATLAS/ARES for Li, Mg,
Cs, Be, Cd, K, Zn, and Li-Mg alloy, respectively. The parameters of A and q in
NLPPFs are presented in Supplementary Table 2 carefully tuned to yield the bulk
properties, which agree with the KS-DFT (NLPPs) predictions.

Molecular dynamics. The molecular dynamic simulations of Li-Mg alloy are
performed in the canonical ensemble (at 1000 K) applying the Nosé-Hoover
thermostat74,75 simulations up to 10 ps (0.5 fs/step), with the first 10,000 steps for
equilibrating the system. The data for further analysis were collected from the
subsequent 10,000 steps.

Data availability
The authors declare that the main data supporting the findings of this study are
contained within the paper and its associated Supplementary Information. All other
relevant data are available from the corresponding authors upon reasonable request.
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