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Abstract 

Observers rapidly extract summary statistics from sets of 
visually presented items, like the mean size of a set of circles, 
or the mean expression of a set of faces. Their excellent 
ability to report summary statistics stands in contrast to near-
chance representation of any of the individuals. Here we 
asked to what extent this ‘ensemble perception’ signature 
extends to a more abstract property: relations among 
elements. Participants watched ten unique animations of 
visually patterned objects (hereafter, ‘shapes’) colliding with 
each other and producing a new shape. Collisions conformed 
to ABA patterns, such that the result shape always matched 
one of the collider shapes. Recognition tests showed that 
participants accurately recalled the collisions they saw, but 
also falsely accepted foils which conformed to the ABA 
pattern but which were not in fact specifically seen (were 
rearrangements of the original shapes across collisions). On 
the other hand, they were much less likely to accept foils 
which did not conform to the pattern, but were equally 
distinct rearrangements (e.g., AAB). This suggests that 
participants represented the overall, common pattern better 
than the specifics of what they saw; the superior encoding of 
the summary relative to the individuals thus applies to 
summaries of relations. However, in contrast to prior findings 
with visual features, we did not find that recall of individual 
patterns was entirely at chance. Our paradigm offers a way to 
pursue future questions such as the pressures and motivations 
which might govern the trade-off between summarizing 
evidence vs. retaining individual experiences.  

Keywords: ensemble perception; artificial grammar learning; 
pattern recognition; episodic memory; semantic memory 

Introduction 
Rather than encoding experiences in perfect detail, the mind 
naturally uses regularities and summary statistics to 
compress them. We can keep more items in working 
memory if items are predictive of each other (Brady, 
Konkle, & Alvarez, 2009); it becomes faster to find images 
in search display if they appear in predictable spatial 
configurations (Chun & Jiang, 1998); and we spontaneously 
and obligatorily register the mean orientation of sets of 
gabor patches (Parkes, Lund, Angelucci, Solomon, & 
Morgan, 2001). Although contingencies and averages are 
distinct statistics, all of these cases demonstrate that we 

spontaneously compress experiences, by encoding a 
summary of what is common across them.  

In principle, representational systems can differ in the 
extent to which they compute summaries and discard 
individual observations (Dennett, 1991). Curiously, human 
participants sometimes represent summaries better than the 
observations composing them. When we see sets—like a 
series of differently-sized circles—we recall their mean 
(here, size) substantially better than we can recall any 
particular individual (Ariely, 2001; Chong & Treisman, 
2003; Haberman & Whitney, 2009). This is true even when 
the number of items is relatively small (4) and when the 
items are presented sequentially. This suggests that we 
compute summaries and update them rapidly, discarding the 
items that went into this computation along the way. This 
‘ensemble perception’ signature is true for visual properties 
like size, orientation, or facial expression (see Alvarez, 2011 
and Whitney & Yamanashi Leib, 2018 for reviews). Here 
we asked whether this signature also applies to a property 
which is not a visual feature, but rather an abstract rule.   

Algebraic rules (Marcus, 2001) are patterns based on 
relations among elements, such as same and different. For 
example, triplets of syllables can be readily seen as 
belonging to patterns like ABA— “ga di ga”, “ku la ku”, or  
“do re do”—vs AAB—“ga ga di”. Learners (adults or 
infants) can recognize such patterns even with entirely 
distinct syllable sets and in both auditory and visual 
modalities (Ferguson, Franconeri, & Waxman, 2018; 
Marcus, Vijayan, Rao, & Vishton, 1999; Saffran, Pollak, 
Seibel, & Shkolnik, 2007).  Algebraic rules are hallmarks of 
relational thinking, requiring relatively advanced 
computational architecture (Marcus, 2001; Overlan, Jacobs, 
& Piantadosi, 2017). They are also excellent compressions: 
recognizing that the last element always matches the first 
reduces the number of bits needed to represent the triplet by 
1/3. Thus, despite the possible computational cost, encoding 
relations among stimuli is adaptive for circumventing 
limited memory capacity. 

Here we asked how a representation of a shared algebraic 
pattern relates to the representation of the diverse 
individuals exhibiting the pattern. Specifically, we asked 
whether we would see the signature of ensemble perception. 
If so, participants should not only recognize that the set of 
items tends to follow an ABA pattern, but they should find 
it easier to recall that abstract pattern than the particular 
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items they specifically saw (for instance, “ga di ga”, but not 
“ga ku ga”). Alternatively, due to the computational  

Figure 1. Top: Example of a collision between an A and B 
shapes and an A shape result. Bottom: Foil types for this 

collision, represented schematically. C shapes were taken 
from other collisions presented during the demonstration. 
 

demands of inferring algebraic patterns, participants may 
be less reliable at recognizing the common ABA pattern 
across items, failing to summarize the data, and may be 
better at discerning which individual items they specifically 
saw.  

We used a novel paradigm in which participants watched 
pairs of novel shapes collide with each other and ‘produce’ 
a third shape (Figure 1). Participants’ task was to watch the 
collisions and see how many they could remember. As there 
was no instruction to look for patterns, the choice to 
summarize or not had to be intrinsically motivated.  

Each collision was in fact governed by an ABA pattern: 
two distinct shapes, A and B, collided, producing another A. 
(We use ABA to denote the abstract elements, and 
lowercase aba to denote specific shapes). After watching 10 
unique ABA collisions once each, participants performed a 
recognition test where each test item was either a collision 
they had seen, or one of three kinds of foils (unseen 
collisions). ACA foils swapped shapes between collisions: if 
specific collisions aba and dcd were shown, foils were aca 
and dbd. AAB foils were rearrangements of the same shapes 
in seen collisions, so that two A’s collided to produce a B.  
We reasoned that if participants recalled the common 
pattern better than the individual items, they should accept 
ACA foils at a higher rate than AAB foils. This is because 
ACA is pattern-consistent while AAB is not, though in 
terms of individual shapes composing the collisions, ACA is 
in fact more different from the original. ABD foils were also 
used as these were equal in the number of element-wise 
changes from ABA as ACA, but were also pattern-
inconsistent. 
    We were also able to ask whether participants recalled 
only the summary pattern, and lost all item representations, 
by seeing whether they accept ACA foils at the same rate as 
ABA correct items. In ensemble perception, tests of 
individual recognition are often at chance (Ariely, 2001; 
Haberman & Whitney, 2009). Finally, a forced-choice test 
with new items directly tested whether learners represented 
the pattern in generalizable form. 

Methods 

Participants 
30 participants were recruited and tested via Amazon 
Mechanical Turk. Participants provided electronic consent 
and procedures were approved by the Institutional Review 
Board of the University of Pennsylvania. Compensation was 
$2. Three participants were excluded for failing an attention 
measure, and one for missing data. The included sample had 
15 females and 15 males, with age M = 37, range 21 – 64). 
The task took an average of 15.62 minutes. 

Stimuli 
Stimuli were animated shape collisions (Figure 1). In each 
animation, two shapes approached each other from the left 
and right sides of the screen, met in the middle, and a third 
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‘result’ shape appeared between them as they moved away. 
Individual frames were created in Adobe Illustrator and 
concatenated into GIFs. Each GIF was composed of 23 
frames shown at a 180 ms framerate and 4.14 s duration. 
GIFs were interspersed with 660 ms of blank screen for a 
4.8 s total ISI. The majority of shapes used in the displays is 
shown in the Appendix. 

Procedure 
The task was presented to participants using a custom 
JavaScript webpage. It began with a demonstration phase. 
Participants were shown the following instructions: “You 
will play a game where you will see pairs of shapes collide 
with each other and see how many you can remember.”  
They then watched 10 unique demonstration collisions in 
randomized order (lasting ~ 1 minute). Each of these 
collisions followed an ABA pattern: the two collider shapes, 
A and B, were distinct, and the result shape was a duplicate 
of A. A total of 20 different shapes were used, so that no 
shapes were repeated across collisions.  

They then saw the specific recognition test. On each trial, 
a collision was shown, and participants had to decide 
whether or not they had seen it in the demonstration phase, 
by clicking ‘yes’ or ‘no’ after it ended. They were allowed 
to replay the collision. Apart from all 10 demonstration 
collisions, test items also showed three types of foils, 
created by rearranging the shapes across or within the 
demonstration collisions. ACA foils swapped the ‘B’ shapes 
between two different collisions, so that if specific shapes 
aba and dcd had been shown, foils were aca and dbd. AAB 
foils rearranged the shapes within an original collision, so 
that now two A’s collided to produce B. ABD foils 
produced a result shape taken from another collision. The 
swaps were selected by pairing the 10 collisions into 5 foil-
pairs. One of each of the three foil types was shown for each 
of the 10 original collisions; thus, there were 10 data points 
for each participant for each test item type.  

We also added three attention check items, which showed 
previously unseen shapes in which two of the same shape 
collided, producing another duplicate (i.e., an AAA pattern). 
Participants had to respond ‘no’ to all three attention items 
to be included in the further analyses. Overall, there were 43 
specific recognition test trials, shown in randomized order. 
There was no trial-level feedback, but an overall score was 
shown at the end of the test.  

 
Participants were then given the generalization test. The 

instructions read, “The collisions you first watched followed 
certain patterns or rules. Now you will see new collisions 
and be asked to decide which ones follow similar patterns or 
rules.” A two-alternative forced-choice test asked them to 
choose between pairs of collisions, shown one at a time, 
side by side. We used previously unseen shapes to create 
two new sets of ABA, AAB, and ABD items. Critical 
questions asked participants to choose between a pattern-
consistent collision (ABA) and one of the two foils (AAB or 
ABD). Filler items showed the two foils, in order to balance 
the number of times each collision was shown overall. Each 

question type was shown once for each novel shape set, 
creating a total of 8 trials.  

Finally, we asked participants whether or not they took 
any notes during the task. No participant reported taking 
notes.   

Results 

Specific Recognition Test 
We computed the percent acceptance rate (‘yes’ response) 

for each type of test item; results are shown in Figure 2. The 
correct test item (ABA) was identical to the collision 
previously shown; this was (correctly) accepted at a high 
rate (M = 85%, SE = 0.05%). The ACA foil item maintained 
the pattern but its middle shape was swapped across 
previously seen collisions; this was (falsely) accepted at a 
high rate (M = 73%, SD = 0.05%). The AAB foil item was 
accepted at a low rate (M = 15%, SE = 0.06%) as was the 
ABD foil item (M = 13%, SE = 0.04%).  

A 4- way ANOVA indicated a significant effect of item 
type, F(75,3) = 59.43, p < .001. Planned t-tests were used to 
probe these differences pairwise. We found that ACA foils 
were accepted at a higher rate than AAB foils, t(25) = 6.77, 
p < .001, CI [40 75] and ABD foils, t(25) = 6.16, p < .001, 
CI [42 86], indicating that participants indeed represented 
the pattern better than the specifics. Nonetheless, we also 
found higher acceptance rates for the correct (ABA) items 
than the ACA foils, t(25) = 3.30, p = .002, CI [4 19], 
indicating that item information was not completely lost.  

 

 
Figure 2. Rate of acceptance on the specific recognition test 
for each type of test item, and accuracy on the 
generalization test. Statistical comparisons are shown with * 
indicating p < .01 and ** indicating p < .001. 
 

One potential account of these effects is that individual 
item representations decayed more rapidly or were more 
susceptible to interference from the question presentations. 
It should be noted that the majority of test items are also 
pattern-inconsistent, and so the amount of interference 
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should be equal for both specific and pattern recall; 
however, it could still be that the item representations are 
more susceptible. We thus looked at responses from the first 
10 test items only (thus, a random subsample from each 
participant). The critical effect of greater ACA than AAB 
acceptance was still significant, t(25) = 7.10, p < .001, CI 
[45 82], and the difference between ABA and ACA was 
marginal, t(25) = 1.89, p = .07, CI [-1 28].  
 

Generalization Test  
Participants were reliably above chance on choosing the 
pattern-consistent, entirely novel ABA collision relative to 
both foils; AAB: M = 89%, SE  = 0.05%; t(25) = 7.63,  CI 
[78 99], p < .001; ABD: M = 90%, SE = 0.05%; t(25) = 
8.38,  CI [81 100], p < .001 (Figure 2). They were thus 
highly reliable in learning a generalizable representation of 
the algebraic rule. As there was no difference between the 
two foil types (t < 1), accuracies for both were collapsed 
into a composite generalization score (M = 89%). We found 
that this composite accuracy was not significantly different 
from the rate at which participants accepted the correct 
ABA items on the specific recognition test (t < 1), 
indicating that the representation of the abstract pattern was 
no worse than specific recall. We also found that accuracy 
on the generalization test was substantially higher than 
participants’ ability to accurately reject the ACA foils (i.e., 
inverse of their acceptance rate; t(25) = 7.45, CI [47 82], p < 
.001. This is in line with the findings from the specific 
recognition test that the representation of the abstract pattern 
was superior to specific recall.  

Discussion 
We investigated the relationship between the ability to recall 
specific items (unique collisions of three shapes) and to 
identify and recall the common pattern governing them 
(here, an ABA algebraic rule). We found that analogously to 
signatures in ensemble perception, participants recalled the 
common pattern substantially better than the specifics of the 
individual items. Nonetheless, some memory of the 
individuals persisted, in contrast to certain findings with 
visual feature ensembles.  

Our results indicate that the core signature seen in 
ensemble perception—superior fidelity of summary 
statistics over individual items—generalizes beyond visual 
features like size, facial expression, or line orientation 
(Whitney & Yamanashi Leib, 2018) and similarly applies to 
relational properties over visual events, like algebraic rules. 
This substantially extends the repertoire where such 
ensemble signatures might be found.  

Our findings also speak to the question of how much a 
pattern-based summary relies on the representation of the 
individuals being summarized. Individual items must of 
course be processed at some level, but showing that their 
details can be quickly forgotten in spite of near-ceiling 
summary representations suggests that this level is relatively 
minimal. Because items were shown sequentially, and were 
short-lived, learners had to encode the pattern and update 
the summary with each subsequent representation—

otherwise, it would be too late. It could therefore be the case 
that the item representation is discarded almost immediately 
after it is perceived.  

The literature on episodic memory has similarly 
investigated whether summary recall is dependent on item 
recall, and has separated out these representations using 
delay paradigms and studies of amnesia. With multi-day 
delays, animals’ reliance on the locations of specifically 
experienced platforms in a water maze declines, and is 
replaced by a representation of their mean location 
(Richards et al., 2014). Patients with amnesia (impairment 
to episodic memory) are as able as controls to extract 
patterns in artificial grammar learning studies, but unlike 
them, fail on recognition tasks of individual items from 
which they learned that grammar (Knowlton, Ramus, & 
Squire, 1992). Here we offer an elegant way to show this 
dissociation in healthy participants within a few minutes of 
testing, and to directly quantify the amount of information 
preserved about the individual items and the overall 
patterns. This opens an avenue of research investigating the 
circumstances and pressures that may motivate our 
cognitive system to rely on one or the other.  

What might such pressures be? If learning is an attempt to 
infer the underlying model that generates observations, 
specific experiences serve as evidence towards hypotheses 
about that model—for example, a mean value or an 
underlying structure (Tenenbaum, Kemp, Griffiths, & 
Goodman, 2011). Once their beliefs over relevant models 
are updated, data points could be discarded (Nagy, Török, & 
Orbán, 2018). In this light, it has been argued that the choice 
to update a model vs. keep the data may be informed by 
factors such as the number of relevant models or how likely 
the relevant model to update might eventually change (Nagy 
et al., 2018; Richards & Frankland, 2017). Here, the right 
model was the ABA pattern, which explained all 
observations reliably. We might predict that if the pattern 
sometimes changed, recalling the specifics of all collisions 
might be enhanced, as this suggests to the learner that the 
model may not tell the full story or might change. We plan 
to test this in future work.   

Another factor may be the computational cost of that 
update. Representing items in terms of their relations may 
be inferentially complex (Frank & Tenenbaum, 2011; 
Kuehne, Gentner, & Forbus, 2000; Overlan et al., 2017) and 
appears optional: one could perceive and remember a 
specific collision without ever representing the relations 
among its elements. If hypotheses about relations are 
computationally costly to update, the compression benefit of 
computing a relation may not outweigh the costs. The 
qualitative divergence we saw between algebraic patterns 
here vs. visual features in the past is consistent with this 
possibility: in the case of algebraic patterns, representations 
of individuals were not entirely lost, while for visual feature 
summaries, they often are (Ariely, 2001; Haberman & 
Whitney, 2009). If visual features require fewer inferential 
steps to encode than relational patterns, this could be 
consistent with that idea. Our paradigm offers a way to test 
some of these questions directly in future work.  
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