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Spectroscopic and deep 
learning‑based approaches 
to identify and quantify cerebral 
microhemorrhages
Christian Crouzet1,2, Gwangjin Jeong3, Rachel H. Chae4, Krystal T. LoPresti1,2, 
Cody E. Dunn1,2, Danny F. Xie1,2, Chiagoziem Agu5, Chuo Fang8, Ane C. F. Nunes6, 
Wei Ling Lau6, Sehwan Kim3, David H. Cribbs7, Mark Fisher8 & Bernard Choi1,2,9,10*

Cerebral microhemorrhages (CMHs) are associated with cerebrovascular disease, cognitive 
impairment, and normal aging. One method to study CMHs is to analyze histological 
sections (5–40 μm) stained with Prussian blue. Currently, users manually and subjectively identify and 
quantify Prussian blue-stained regions of interest, which is prone to inter-individual variability and 
can lead to significant delays in data analysis. To improve this labor-intensive process, we developed 
and compared three digital pathology approaches to identify and quantify CMHs from Prussian 
blue-stained brain sections: (1) ratiometric analysis of RGB pixel values, (2) phasor analysis of RGB 
images, and (3) deep learning using a mask region-based convolutional neural network. We applied 
these approaches to a preclinical mouse model of inflammation-induced CMHs. One-hundred CMHs 
were imaged using a 20 × objective and RGB color camera. To determine the ground truth, four users 
independently annotated Prussian blue-labeled CMHs. The deep learning and ratiometric approaches 
performed better than the phasor analysis approach compared to the ground truth. The deep learning 
approach had the most precision of the three methods. The ratiometric approach has the most 
versatility and maintained accuracy, albeit with less precision. Our data suggest that implementing 
these methods to analyze CMH images can drastically increase the processing speed while maintaining 
precision and accuracy.

Cerebral microhemorrhages (CMHs), which are detected as cerebral microbleeds on gradient-echo T2*-weighted 
magnetic resonance imaging (MRI), are associated with cognitive impairment1 and an increased risk of hemor-
rhagic and ischemic stroke2. CMHs are present in 20% of individuals over 60 years old and 40% of individuals 
over 80 years old3,4. In addition to normal aging5,6, CMHs are increased in several disease states, including 
cerebral amyloid angiopathy7,8, chronic kidney disease9, hypertension10,11, and cerebral autosomal dominant 
arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL)12. Despite the large number of 
medical conditions associated with CMHs, there remains a fundamental gap in understanding their mecha-
nistic formation. One method that facilitates the study of CMH formation is the histological analysis of fixed 
tissue sections. (5–40 μm) stained with Perl’s Prussian blue. Current methods that identify and quantify CMHs 
are typically subjective and require tedious microscopic inspection. They rely on manual selection of Prussian 
blue-stained regions or use manual thresholding13, which is time and labor intensive. Recent advances in digital 
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pathology address these limitations by eliminating the need for laborious staining14 and automating the quan-
titative analysis of the samples15,16.

Here, we set out to develop and compare three digital pathology approaches to automatically identify and 
quantify CMHs from sections stained with Prussian blue: (1) ratiometric analysis of RGB pixel values, (2) phasor 
analysis of RGB images, and (3) deep learning. The ratiometric method applies a threshold to the ratio of the 
red and green pixel intensities to the blue intensity-squared. The phasor analysis method applies a mask to the 
RGB values in the phasor space17,18. The deep learning approach uses a mask region-based convolutional neural 
network (R-CNN) to segment the RGB images19. We found that each approach performs well at identifying 
CMHs and quantifying the CMH area. Furthermore, the deep learning and ratiometric approaches performed 
better than the phasor analysis approach. We found that the deep learning approach had the most precision, 
while the ratiometric approach had good accuracy and the most versatility, but less precision than the deep 
learning approach.

Materials and methods
An overview of the experimental design, segmentation approaches, and processing steps are outlined in Fig. 1.

Animal model.  All animal procedures were executed in accordance with relevant guidelines and regulations 
approved by the University of California, Irvine’s Institutional Animal Care and Use Committee. Male C57BL/6 J 
mice (12 weeks old) were used (n = 4). Our study design complied with ARRIVE 2.0 guidelines. However, since 
our overall goal with the animal research was to generate a set of brain histology slides with exogenously labeled 
CMHs, we did not include a control group or incorporate blinding or randomization practices. To induce CMH 
formation20, we administered three doses of lipopolysaccharide (LPS) (1 mg/kg) to the mice at 0 h, 6 h, and 24 h 
via intraperitoneal injection (Fig. 1A). The mice fed and drank ad lib and received up to three daily doses of 1 mL 
saline subcutaneously. Mice were euthanized 7 days after the first injection with an overdose of sodium pento-
barbital. After euthanasia, the chest cavity was immediately opened, and cardiac perfusion of saline followed by 
buffered formalin was performed. The brain was extracted and then immersed in buffered formalin for 24 h. The 
brain was then stored in PBS with 0.02% sodium azide21 until the time of sectioning.

Sample preparation.  Brains were sectioned into 40-µm coronal sections using a freezing microtome. Sec-
tions were stained with Prussian blue to detect hemosiderin, a marker of CMHs, using 10% hydrochloric acid 
and 5% potassium ferrocyanide trihydrate (Sigma, St. Louis, MO) for 30 min and rinsed in deionized water. 
Sections were then counterstained with Nuclear Fast Red (Sigma, St. Louis, MO) for 5 min, rinsed in deionized 
water, dehydrated, and mounted on a glass slide.

Data acquisition and preprocessing.  The stained sections were scanned for CMHs and imaged using a 
color camera (Chameleon3, FLIR, Wilsonville, OR) coupled to an inverted Nikon microscope. The light source 
from the Nikon microscope was used. One hundred unique images of Prussian blue-labeled CMHs were acquired 
and used for subsequent data analysis. Four independent users manually selected CMHs. Majority voting (i.e., at 
least two of the four users defined a pixel as a CMH) was done to determine the ground truth segmented data.

Segmentation approaches.  The key image processing steps for the segmentation approaches are shown 
in Supplementary Fig. 1.

Ratiometric approach.  The ratiometric approach was developed based on spectroscopic data acquired at 
31 wavelengths (Supplementary Figs. 2 and 3). We defined a segmentation ratio using the red, green, and blue 
pixel intensities to spatially discriminate Prussian blue-labeled CMH pixels from background pixels: 
segmentationratio =

Ired Igreen

I2blue
 . Segmentation ratio values that were below the specified threshold were included in 

the segmented image. We applied multiple segmentation ratio threshold values to (1) obtain segmented data for 
image processing, (2) calculate a receiver operator characteristic (ROC) curve22, and (3) determine the optimal 
segmentation ratio threshold. Please see the Data Quantification and Statistical Analysis section for how the 
optimal segmentation ratio was determined.

Phasor analysis approach.  Phasor approaches in biomedical optics have been extensively used in fluores-
cence lifetime imaging microscopy (FLIM) to identify fluorophores in the collected images23,24. Recently, phasor 
approaches have been applied to spectroscopic data and RGB images from fluorescence microscopy and bright-
field microscopy, respectively17,18. We applied a spectral phasor analysis technique to RGB images to isolate 
Prussian blue-labeled CMH pixels from background pixels. A discrete Fourier transform was performed at each 
pixel, which resulted in a phasor that consists of a real (H) and imaginary (S) component: H =

∑
3

l=1
Ilcos

2π l

3
 

and S =

∑
3

l=1
Ilsin

2π l

3
 where I is the collected intensity at channel l  , and l  is the red, green, or blue channel. For 

each image, a plot of H vs. S was plotted to create a 2D phasor space.
To remap Prussian blue-labeled pixels from the phasor space plot to the original image, we found the bluest 

location in phasor space by minimizing x/y, where x is the row index and y is the column index of the phasor plot 
matrix. The center of a circular mask (green circle in Fig. 1B) was created from this point, and pixels enclosed by 
the circular mask in phasor space were remapped to a segmented image. We varied the size of the circular masks 
to (1) obtain segmented data for image processing, (2) calculate a ROC curve, and (3) determine the optimal 
mask in phasor space. Please see the Data Quantification and Statistical Analysis section for how the optimal 
circular mask was determined.
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Deep learning approach.  For data preprocessing, the 100 CMH images were randomly divided into a 
training (n = 80) and testing (n = 20) set. The original 1000 × 1000 image resolution of the training set was down-
sampled to a resolution of 512 × 512 to reduce memory requirements and increase image processing speed. 
We applied a run-coding scheme to the 100 acquired CMH images25. To avoid overfitting, we augmented the 
training set by implementing random flip, rotations (90 ~ 270 degree), pixel multiplication with random values 
(0.8–1.5), and image blurring with Gaussian kernels (random sigma: 0 ~ 5) methods.

Figure 1.   Overarching experimental timeline and data processing scheme. (A) Experimental timeline to 
induce cerebral microhemorrhages (CMHs), followed by tissue sectioning, staining, imaging, analysis, and 
quantitation. (B) Data preprocessing steps include: (1) acquiring raw color images of each CMH, (2) manually 
annotating color images by four users, and (3) determining the ground truth through majority voting. Three 
segmentation approaches (ratiometric, phasor analysis, and deep learning) were developed and compared. After 
the segmentation approaches, each set of results went through a series of image processing, data quality check, 
and quantitation steps (see the Image Processing section for details regarding each approach).
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To identify and segment CMHs, we adopted a mask region-based convolutional neural network (R-CNN) 
deep learning algorithm developed by Matterport Inc.26. The Resnet-101 feature pyramid network model was 
employed as a backbone for the Mask R-CNN. The model was initialized using the weights obtained from the 
pre-training of the Microsoft common objects in context (MS-COCO)27 datasets through a transfer learning 
scheme28. Next, the network heads were trained for 20 epochs with a learning rate of 0.005. Then, all networks 
were trained for 60 epochs with a learning rate of 0.001. Finally, callback was set to stop training when the vali-
dation loss did not improve for ten epochs.

To assess consistency across our relatively small data set, we performed a fivefold cross validation. We ran-
domly divided the 80 training set images into five groups (n = 16/group). Five models were created (n = 64 images/
model) by leaving one group out per model. Each model was validated on the testing set. The Dice similarity 
coefficient29 was calculated using the testing, training, and combined data sets. Across the five different models, 
the Dice similarity coefficient ranged from 0.772 to 0.810 using the combined data sets, which shows consist-
ency across the developed models. The model with the largest Dice similarity coefficient across the combined 
data set was used as the final deep learning model for further analysis. A ROC curve was calculated using the 
optimal deep learning model by applying different threshold values to the probability of each pixel being a CMH.

Image processing.  We empirically designed and performed the following image processing steps for all 
segmented images (ground truth, ratiometric, phasor, and deep learning). First, all segmented areas less than 
5 µm2 were removed. Next, segmented areas less than 50 µm2 that were greater than 50 µm from the closest 
segmented spot were removed. For the ratiometric and phasor approaches, segmented areas larger than 6000 
µm2 were removed. The phasor approach filled holes with an area of less than 1.73 µm2, which was empirically 
chosen. Finally, for the ratiometric and phasor approaches, a manual check was performed by drawing a coarse 
circle around all Prussian blue spots to remove pixels that were not CMHs. The deep learning approach did not 
require this step due to extremely high specificity and underestimation of CMH area.

Data quantification and statistical analysis.  ROC curves were calculated after the first two image 
processing steps. To obtain the final segmented image for each segmentation approach and subsequent data 
quantification, we performed one of the following steps:

1)	 Ratiometric approach: following all image processing steps, we found the median segmentation ratio thresh-
old across all RGB images that resulted in the minimum percent error between the ground truth area and 
segmented area;

2)	 Phasor approach: after implementing all image processing steps, we found the mean radius of the circular 
mask in phasor space that, when remapped to the original image, resulted in the minimum percent error 
between the ground truth area and segmented area;

3)	 Deep learning approach: the final deep learning model had the highest Dice similarity coefficient across all 
images.

The final sensitivity and specificity were calculated for each approach using their final segmented image. To 
assess the agreement between the segmented areas and ground truth area, we calculated the intraclass correlation 
coefficient (ICC). We used a two-way random effects model with absolute agreement to calculate the ICC30. To 
further assess the agreement between the segmented areas and the ground truth, we generated Bland–Altman 
plots with 95% confidence limits of agreement31.

Results
Identifying CMH pixels.  To assess the agreement between the regions of interest (ROIs) selected by the four 
independent users, we calculated their intraclass correlation coefficient (ICC) from the calculated CMH areas. 
The ICC was 0.954 (95% confidence interval 0.897–0.976), which demonstrates excellent agreement between 
the four independent users30. To assess the ability of each segmentation approach to identify CMH pixels, we 
compared the ground truth data to the segmented CMH data from each approach. Figure 2 shows ROC curves 
for the (A) ratiometric, (B) phasor analysis, and (C) deep learning approaches compared to the ground truth, 
and the final post-processed sensitivity and specificity. The ratiometric ROC curve has an AUC of 0.973, and a 
final post-processed sensitivity and specificity (green square) of 0.835 and 0.997, respectively (Fig. 2A). The pha-
sor analysis ROC curve has an AUC of 0.960 and a final post-processed sensitivity and specificity (green square) 
of 0.768 and 0.998, respectively (Fig. 2B). The deep learning model ROC curve has an AUC of 0.932 and a final 
post-processed sensitivity and specificity (green square) of 0.708 and 0.998, respectively (Fig. 2C). Qualitative 
inspection shows good agreement among seven representative RGB images, ground truth data, and segmented 
images from each approach (Fig. 3). Interestingly, the final column of Fig. 3 shows a shadow artifact that is not 
detected as a CMH using any segmentation approach.

Quantifying CMH area.  To assess the agreement of the CMH area between each segmentation approach 
and the ground truth, we calculated the ICC. We examined the ICC using all CMH areas (n = 100), and CMH 
areas less than 1500 µm2 (n = 75). Using all calculated areas, the ICCs from the ratiometric, phasor, and deep 
learning approaches were 0.992 (95% confidence interval 0.989–0.995), 0.993 (95% confidence interval 0.977–
0.997), and 0.961 (95% confidence interval 0.915–0.979), respectively (Fig. 4A–C). Using areas less than 1500 
µm2, the ICCs from the ratiometric, phasor, and deep learning approaches were 0.968 (95% confidence inter-
val 0.928–0.984), 0.929 (95% confidence interval 0.386–0.978), 0.977 (95% confidence interval 0.743–0.993), 
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respectively (Fig. 4D–F). These results demonstrate excellent agreement between each developed approach and 
the ground truth (majority voting data). However, the ratiometric approach had the most consistent results 
compared to the phasor and deep learning approaches based on the 95% confidence interval.

To further assess the agreement between the segmented areas from each approach and the ground truth, we 
generated Bland–Altman plots. We examined the Bland–Altman plots using all CMH areas (n = 100), and CMH 
areas less than 1500 µm2 (n = 75). For each graph in Fig. 5, the y-axis is the percent difference between the areas 
from the selected segmentation approach (ratiometric, phasor, or deep learning) and the ground truth. The 
x-axis is the mean CMH area between the selected segmentation approach and ground truth. Each segmentation 

Figure 2.   Receiver operating characteristics (ROC) curve for each approach to localize CMHs. (A) The 
ratiometric approach had an AUC of 0.973 and a final post-processed sensitivity and specificity of 0.835 and 
0.997, respectively. (B) The phasor analysis approach had an AUC of 0.960 and a final post-processed sensitivity 
and specificity of 0.768 and 0.998, respectively. (C) The deep learning approach had an AUC of 0.932 and a 
final post-processed sensitivity and specificity were 0.708 and 0.998, respectively. The red circles represent 
the sensitivity and specificity for each independent user (relative to the ground truth), and the green squares 
represent the post-processed sensitivity and specificity for each approach.

Figure 3.   Representative examples (n = 7) of raw RGB images, ground truth data, and three segmentation 
approaches. The sensitivity is shown in the upper left of each image. The specificity of each image is greater than 
0.990. The scale bar in the raw images is 50 µm.
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approach underestimates the calculated areas (negative percent difference), as is shown by the horizontal solid 
black line. This underestimation could be attributed to the users from the manual method not drawing on the 
exact border of the CMH, but around the CMH. The mean difference from the ratiometric approach (− 6.4% 
and − 10.3% for all CMH areas and less than 1500 µm2, respectively) was the closest to zero compared to the 
phasor (− 19.4% and − 23.6% for all CMH areas and less than 1500 µm2, respectively) and deep learning (− 13.3% 
and − 11.6% for all CMH areas and less than 1500 µm2, respectively) approaches. The proximity to zero suggests 
that the ratiometric approach may be most closely tied to the average CMH area. However, the deep learning 
approach had the smallest range for the upper and lower limits of agreement (35.2% and 27.6% for all CMH 
areas and less than 1500 µm2, respectively) compared to the ratiometric (68.1% and 68.8% for all CMH areas 
and less than 1500 µm2, respectively) and phasor (69.1% and 68.3% for all CMH areas and less than 1500 µm2, 
respectively) approaches. These results collectively suggest that the deep learning approach had the highest 
precision among the three developed approaches.

Discussion
Histological sections remain the gold standard for assessing pathology from ex vivo tissue samples14,32. Clinical 
pathologists and researchers rely on data from these samples to guide patient management and gain mechanistic 
insights. However, tissue processing is laborious, requires extensive expertise, and is subjective14. Furthermore, 
gaining quantitative data from these samples is time exhaustive and subjective. Specifically, there are typically 
four steps required to characterize Prussian blue-stained CMHs. First, the brain is sectioned and stained with 
Prussian blue. Second, an individual visually inspects brain sections to identify and count CMHs with a bright-
field microscope. Third, images of the identified CMHs are digitally acquired. Finally, a user manually outlines 
and adjusts RGB thresholds13 to quantify Prussian blue positivity or CMH area20. Each step is prone to error, 
variability, and subjectivity, and demands extensive personnel time.

In the present study, we set out to develop a digital processing approach to decrease the subjectivity and time 
involved in CMH quantitation. We developed and compared three approaches to identify and quantify CMHs 
stained with Prussian blue: (1) ratiometric, (2) phasor analysis, and (3) deep learning (Fig. 1). Our ratiometric 
approach used a combination of red, green, and blue pixel intensity values. Automated histological studies using 
different wavelengths of light have primarily been applied in cancer applications33,34. One breast cancer study 
used multispectral (16-wavelengths) and RGB data to spectrally unmix breast cancer markers33. The multispec-
tral approach performed better than the RGB approach but is substantially more costly as it uses an expensive 
camera with an embedded liquid crystal tunable filter. A major advantage of our approach is that it can use the 
simple RGB values to study CMHs, which decreases the complexity and cost of the imaging system. Our second 
approach, the phasor analysis method, transforms the RGB image into phasor space through Fourier analysis. 

Figure 4.   CMH area quantification between segmentation approaches and ground truth data with intraclass 
correlation coefficient (ICC). (A–C) Comparison between the ground truth and the segmentation approaches 
(A) ratiometric, (B) phasor analysis, and (C) deep learning for all calculated areas. (D, E) Magnified data of the 
shaded gray box shown in (A–C). Comparison between the ground truth and the segmentation approaches 
(D) ratiometric, (E) phasor analysis, and (F) deep learning for areas less than 1500 µm2. Intraclass correlation 
coefficients (ICC) and 95% confidence intervals are located in the lower right of each figure. In each graph 
(A–F), the solid black line is unity, and the dashed lines are ± 20% error.
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Phasor analysis in biomedical optics was first pioneered using FLIM data to identify fluorophores in images23. A 
proof-of-concept study applied spectral phasor analysis to brightfield, RGB data from a lymph node with meta-
static cancer18. We leveraged off these advances in spectral phasor analysis of brightfield microscopy to separate 
Prussian blue-stained CMH pixels from background pixels. Although the phasor approach was the worst-per-
forming approach, it may have advantages with new data sets from different microscopes, as it is based on global 
image analysis and requires limited or no reference information17. Our last approach, which uses deep learning, 
applies a mask region-based convolutional neural network (R-CNN). Many digital pathology approaches have 
used mask R-CNNs in applications of nuclei segmentation12 and cancer35–37. Similar to our study, these studies 
spatially identified specific features (e.g., nuclei). Our study is the first to apply a mask R-CNN to identify and 
quantify CMHs in histological images, where it performed well, similar to prior reports in other applications.

Our data demonstrate that each approach performs well at identifying CMHs and quantifying CMH areas 
(Figs. 2,3 and 4). A summary of the different approaches is shown in Table 1. The deep learning and ratiometric 
approaches performed better than the phasor analysis approach. The deep learning approach was the most precise 
method but had less versatility as it is not easily modifiable. This approach may require a lengthy re-training 
process when quantifying CMHs from different microscopes and image sets. The ratiometric approach had less 

Figure 5.   CMH area quantification between the segmentation approaches and ground truth data with the 
Bland–Altman plot. (A–C) Comparison between the ground truth and the segmentation approaches (A) 
ratiometric, (B) phasor analysis, and (C) deep learning for all calculated areas. (D–E) Comparison between the 
ground truth and the segmentation approaches (D) ratiometric, (E) phasor analysis, and (F) deep learning for 
areas less than 1500 µm2. In each graph (A–F), the y-axis is the percent difference between the areas from the 
selected segmentation approach (ratiometric, phasor, or deep learning) and the ground truth, and the x-axis is 
the mean area between the selected segmentation approach and ground truth. The solid black line is the mean 
difference and the dashed black lines are the 95% upper and lower limits of agreement.

Table 1.   Comparison between manual method and three segmentation approaches for quantitation of 
cerebral microhemorrhages.

Analysis process

Average time 
commitment per 
image Modifiable Sensitivity, specificity

Intraclass correlation 
coefficient
(95% confidence 
interval)

Absolute area 
difference (µm2)
(interquartile range)

Percent area 
difference (%) 
(interquartile range)

Manual approach Subjective 10 min N/A N/A N/A N/A N/A

Ratiometric approach Semi-automated 15 s Easy 0.835, 0.997 0.992
(0.989–0.995)

75.2
(33.3–172.3)

11.0
(4.7–21.2)

Phasor approach Semi-automated 30 s Moderate 0.768, 0.998 0.993
(0.977–0.997)

124.5
(55.2–255.2)

18.8
(9.3–29.4)

Deep learning 
approach Automated 3 s Difficult 0.708, 0.998 0.961

(0.915–0.979)
71.1

(33.6–167.7)
12.7
(8.8–18.9)
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precision than the deep learning approach. However, this approach accurately quantifies the CMH area and 
provides the user with more versatility to alter the threshold robustly. Therefore, depending on the needs of the 
user and the type of data set, the deep learning or ratiometric approach will be the optimal method to detect 
and quantify CMHs. Our data suggest that implementing these methods to analyze CMH data can drastically 
increase the processing speed while maintaining precision and accuracy.

Our study does contain limitations that can be addressed with future work. Although the deep learning 
approach had the lowest sensitivity and ICC, the training data set was relatively small. Increasing the data set 
size could improve the deep learning results, especially for the larger sized CMHs, where the deep learning 
approach underestimated the CMH area. Second, the CMHs in our study were induced with LPS. Further test-
ing of these approaches in other CMH models, such as chronic kidney disease9, hypertension7, and cerebral 
amyloid angiopathy38–40, in addition to human brain samples, are needed. Third, the algorithms have not been 
tested on different microscopes to assess if a calibration factor is needed to account for differences in camera 
spectral sensitivity and excitation spectrum. The deep learning approach may especially require a calibration or 
normalization step to ensure consistent input data into the deep learning model. Future work should test and 
assess the ability of the algorithms on different microscopes and with the use of multiple wavelengths of laser light 
on optically-cleared thick tissue sections to obtain three-dimensional (3D) information41,42. In addition, adding 
attention-based methods to the deep learning approach could help feature recognition and minimize background 
variability43,44. Fourth, the brain sections were visually scanned by users to find and acquire a digital image for 
each CMH. Using a slide scanner in conjunction with one of the developed approaches could drastically decrease 
the personnel time required to identify and quantify CMHs. One advantage that deep learning could provide that 
we did not investigate is to determine areas within images that contain CMHs and use the ratiometric or phasor 
approach for quantitation. Fifth, although Prussian blue is commonly used to detect CMHs, it does not detect 
newly formed CMHs, nor distinguish between hemoglobin-derived (hemosiderin) and nonhemoglobin-derived 
iron13. Combining our Prussian blue-developed approaches with future algorithms that use fresh CMHs stained 
with hematoxylin and eosin (H&E)45 may help detect non-acute and acute CMHs. Finally, in this work, we only 
focused on the analysis of CMH images labeled with exogenous Prussian blue. Future work that virtually stains 
samples through machine learning of autofluorescent and absorption features may minimize inter-batch vari-
ability due to staining, which could revolutionize the histological pipeline for examining CMHs by removing 
the manual tissue staining step14,46,47.

In conclusion, we developed and compared three segmentation approaches: (1) ratiometric, (2) phasor analy-
sis, and (3) deep learning to identify and quantify CMHs stained with Prussian blue. The developed approaches 
can substantially reduce the considerable personnel and time commitment required to quantify CMHs in indi-
vidual histological sections. The deep learning and ratiometric approaches performed better than the phasor 
analysis approach. We found that the deep learning approach had the most precision; however, the ratiometric 
approach had good accuracy and the most versatility, but less precision than the deep learning approach. Our 
data suggest that implementing these methods to analyze CMH images can drastically increase the processing 
speed, while maintaining precision and accuracy.
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