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ABSTRACT: The Dzyaloshinskii–Moriya interaction (DMI) has drawn great attention as it stabilizes 

magnetic chirality, with important implications in fundamental and applied research. This 

antisymmetric exchange interaction is induced by the broken inversion symmetry at interfaces or 

in non-centrosymmetric lattices. Significant interfacial DMI was found often at magnetic / heavy-

metal interfaces with large spin-orbit coupling. Recent studies have shown promise of induced 

DMI at interfaces involving light elements such as carbon (graphene) or oxygen. Here we report 

direct observation of induced DMI by chemisorption of the lightest element, hydrogen, on a 

ferromagnetic layer at room temperature, which is supported by density functional theory 

calculations. We further demonstrate a reversible chirality transition of the magnetic domain walls 

due to the induced DMI via hydrogen chemisorption/desorption. These results shed new light on 

the understanding of DMI in low atomic number materials and design of novel chiral spintronics 

and magneto-ionic devices.  
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I. Introduction 

 The Dzyaloshinskii–Moriya interaction (DMI) is an antisymmetric exchange interaction, which 

can be induced in systems with broken inversion symmetry [1,2], such as the initially proposed 

Fe2O3 with weak ferrimagnetism, bulk materials with broken inversion symmetry like B20 

compounds [3,4], or thin film systems [5,6]. The presence of the DMI may introduce various types 

of chiral magnetic structures, including helical spin spirals [3], helical/Bloch-type skyrmions [4,7], 

and magnetic bobbers [8] in bulk materials, or cycloidal spirals [5,9], Néel-type skyrmions [6,10-

12] and Néel-type chiral domain walls [13-16] in thin films. The non-zero topological charge in 

chiral magnetic structures adds an exciting degree of freedom [7,17], which is fundamentally 

intriguing. It enables novel chiral spintronic applications with ultra-low energy consumption, e.g., 

racetrack memories or neuromorphic computing devices [10-12,18-21], where the ability to 

sensitively control the chirality, stability, or size of the spin texture is critical. For instance, in the 

limit of stable skrymions, the radius of the skyrmion may be tailored by orders of magnitude with 

a fine tuning of the DMI strength [22]. Considering that many response quantities, e.g. magneto-

resistive read-out, scale with the area of the skyrmion, thus controlling the DMI on a fine scale has 

important technological ramifications.    

 In thin films, it has been found experimentally that significant interfacial DMI can be induced 

when magnetic layers are adjacent to transition metals of large spin-orbit interaction [10-12], 

oxides [23,24], or light elements such as graphene [25,26] or oxygen [27]. Theoretical calculations 

based on the Fert-Levy model [28] reveal that the transition-metal induced DMI originates from 

the strong spin-orbit coupling combined with the wave function or charge asymmetry, which can 

be measured by the electric dipole moment [29]. The magnitude of the DMI is closely related to 

the band filling and hybridization between 5d and 3d orbitals near the Fermi level [30]. On the 

other hand, the light element induced DMI may be explained by the Rashba effect [25], and the 

charge asymmetry resulting from the charge transfer and hybridization of the band structure at 

the interface [31]. 

 In this context manipulating surfaces and interfaces with the lightest element, hydrogen, is 

potentially a powerful path to control the DMI. Hydrogen absorption has been shown to 

significantly alter properties of magnetic materials, which permits tuning of interlayer exchange 

coupling [32], tailoring of magnetic anisotropy [33,34], or realization of magnetoelectric coupling 

in antiferromagnetic oxides [35]. Hsu et al. observed a hydrogenation-assisted formation of 

skyrmions in the Fe/Ir(111) system at 4.2 K, which is attributed to the modification of the 

Heisenberg exchange and DMI based on ab initio calculations [36]. A recent theory also predicts 

that hydrogen absorption on graphene alters the DMI at the graphene/Co interface [37]. 

On the other hand, few studies have distinguished hydrogen chemisorption induced effects 

on magnetic thin films, i.e., adsorption on the surface without penetrating the film. There have 

been reports on hydrogen adsorption induced effects on magnetic anisotropy [38,39]. However, 

direct and quantitative experimental confirmation of hydrogen-induced DMI is still lacking. 

Furthermore, Tan et al. have demonstrated H+-based reversible magneto-ionic switching at room 

temperature where electric field-controlled hydrogen transport to the buried Co/GdO interface is 

used to toggle the perpendicular magnetic anisotropy (PMA) [40]. Such modifications of materials 
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properties through ionic motion is highly effective in tailoring interfacial characteristics and 

consequently physical and chemical properties [41-46]. Hydrogen based magneto-ionics is 

particularly appealing, comparing to mostly oxygen-based systems studied so far, due to the 

superior reversibility and speed [40]. Yet quantitative understanding of the mechanism is still 

lacking because of the buried interfaces. Furthermore, besides PMA, other hydrogen-induced 

magneto-ionic functionalities remain largely unexplored. For example, it would be highly 

attractive to reversibly control the interfacial DMI, and in turn magnetic chirality, via hydrogen 

transport, especially given the high mobility of hydrogen in solids. Therefore, there is a critical 

need to confirm and quantify the DMI induced at hydrogen/ferromagnet interfaces and explore 

its effect on spin textures.    

 In this article, we report direct observation of a hydrogen-induced DMI at the surface of 

ferromagnets at room temperature and a reversible control of the magnetic chirality and spin 

textures in the ferromagnets. The interfacial DMI induced by chemisorbed hydrogen is 

quantitatively examined in perpendicularly magnetized Ni/Co/Pd/W(110) multilayers where the 

sign and magnitude of the DMI can be tuned by controlling the Pd layer thickness. When the 

multilayer has very weak Pd-like DMI (left-handed chirality), we discover a chirality transition of 

magnetic domain walls in the Ni/Co layers from left-handed to right-handed upon hydrogen 

chemisorption, indicating that the chemisorbed hydrogen on top of the surfaces introduces finite 

DMI which favors right-handed chirality, which is supported by density functional theory (DFT) 

calculations. We further demonstrate that the magnetic chirality of domain walls can be 

sensitively and reversibly switched between right-handed/left-handed during the 

chemisorption/desorption of hydrogen. Our results extend the picture of the interfacial DMI to 

the lightest element and enriches the hydrogen-related design of chiral spintronics and magneto-

ionic devices. 

II. RESULTS AND DISCUSSION 

A. Reversible chemisorption/desorption of hydrogen on Ni(111) and Co(0001) surfaces 

The essential hydrogen/metal interface is realized via chemisorption of hydrogen on solid 

surfaces of Ni(111) and Co(0001). In the dissociative adsorption of molecular hydrogen as used in 

this study (see Appendix A), prior experimental work showed that the hydrogen atoms adsorb 

favorably on the top surface (as opposed to diffusion into subsurface binding sites) due to the 

presence of a chemisorption energy well [47,48], which is also corroborated in more recent 

analyses using DFT for the case of Ni [49] and Co [50]. Experimental results show that in the case 

of Ni(111), the hydrogen atoms occupy three-fold hollow sites with a Ni-H bond length of (1.84 ±

0.06) Å , corresponding to an overlayer-substrate spacing of (1.15 ± 0.10) Å  [51], and DFT 

results find that the binding geometry for hydrogen on close packed Co is very similar [50]. 

In our experiments the hydrogen coverage is monitored by measuring the chemisorption-

induced work function shift ∆𝜑 using Low-Energy Electron Microscopy (LEEM) [48]. The LEEM is 

a powerful tool to measure the work function of material surfaces by fitting LEEM IV curves (Fig. 

1a) [52] (see Appendix B). We observed a work function increase of ∆𝜑 ≈ 120 meV on a (111) 

oriented Ni film upon 0.9 Langmuir hydrogen exposure (180 seconds at 5 × 10−9 torr ) at room 

temperature (Fig. 1a) (see Appendix A). This significant work function shift is in excellent 
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agreement with prior work [53], where a shift of ∆𝜑 ≈ 139 meV was reported to occur upon 

hydrogen adsorption on a Ni(111) surface at 41 ℃ with hydrogen pressure set to 5 × 10−9 torr, 

and with DFT calculations (Appendix D) where a shift of ∆𝜑 ≈ 141 meV is found for a full atomic 

monolayer (ML) H coverage. 

 To explore the possible reversibility at room temperature, the evolution of ∆𝜑 is monitored 

during cycles of turning hydrogen partial pressure ON and OFF, where the ON state refers to 

5 × 10−9 torr of hydrogen and OFF refers to the base pressure (below 4 × 10−11 torr). For the 

hydrogen covered Ni(111) surface, prior flash desorption work identified two desorption maxima 

around 290-310 K (𝛽1  state) and 370-380 K (𝛽2  state) [53,54], where the 𝛽2  feature is only 

observed at low hydrogen coverage and saturates at 0.5 ML hydrogen, and the 𝛽1  feature is 

observed at higher coverage and saturates at 1 ML hydrogen [54]. Here the depth of the 

chemisorption well is hydrogen-coverage dependent due to the repulsive planar H-H interaction 

[48,54], which tends to lower the hydrogen binding energy at higher hydrogen coverage [48], 

resulting in different depth of the chemisorption well as ∆𝐸𝛽1
= 0.43 eV and ∆𝐸𝛽2

= 0.50 eV 

[47]. Because the desorption temperature of the 𝛽1  state is just above room temperature, 

spontaneous hydrogen desorption at room temperature is expected in ultrahigh vacuum (UHV) 

condition [53]. Figure 1b shows the work function shift ∆𝜑 on a Ni(111) surface as a function of 

time over four ON(3min)/OFF(10min) cycles. The plot shows the gradual work function increase 

of ∆𝜑 ≈ 120 meV during the first hydrogen exposure (0.9 Langmuir), and reversible oscillations 

of ∆𝜑 during the subsequent ON/OFF cycles with an amplitude of about ±40 meV. The known 

dependence of ∆𝜑 on the hydrogen coverage [48,53] indicates that chemisorption of hydrogen 

on Ni(111) is indeed partly reversible at room temperature, and desorption is likely limited to the 

𝛽1 state (high hydrogen coverage sites) [53,54]. Consistent with prior literature [53], our result 

indicates that roughly one third of hydrogen can be reversibly chemisorbed/desorbed on a Ni(111) 

film surface at room temperature and under ultrahigh vacuum conditions. Note that this coverage 

ratio may vary as a function of hydrogen dose and pressure [53]. 

 Hydrogen chemisorption also occurs on the Co(0001) surface, where temperature 

programmed thermal desorption measurements indicated desorption maxima with coverage 

dependent positions around 325-370 K (𝛽1  state) and 400-420 K (𝛽2  state) [55], somewhat 

resembling the case of Ni(111). Similar to Ni(111), we found that cyclical hydrogen 

chemisorption/desorption on a Co(111) film is associated with a reversible work function change, 

albeit the amplitude is smaller with ∆𝜑 ≈ ±20 meV . Figure 1c plots time-dependent ∆𝜑 

measurements over four ON(3min at 5 × 10−9 torr )/OFF(10min) cycles. The observed 

spontaneous hydrogen desorption from Co(0001) films at room temperature is consistent with 

the detailed thermal desorption study of this system reported in Ref. [55]. 

 For DMI measurements described in detail below, we will use Ni/Co/Pd/W(110) multilayer 

samples. Here we first discuss the hydrogen chemisorption properties of such structures. 

Interestingly, we find that the hydrogen coverage ratio that results in cyclical 

chemisorption/desorption at room temperature can be greatly enhanced on these multilayer 

structures, compared to the single-element films described above. Figure 1d shows the evolution 

of ∆𝜑 on the surface of a Ni(1)/Co(3)/Pd(2)/W(110) multilayer, where the numbers in brackets 
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stand for layer thickness in ML, over an identical hydrogen ON/OFF cycle as shown in panels b and 

c. We find that the initial work function rise of ∆𝜑 ≈ 125 meV upon hydrogen exposure (3min 

at 5 × 10−9 torr ) is comparable to ∆𝜑  observed on Ni(111) ( ~120 meV ). However, the 

amplitude of work function oscillations during the subsequent hydrogen pressure cycles is around 

80 meV, about two thirds of the initial ∆𝜑. This amplitude is almost twice that observed in the 

thicker (6 ML) Ni(111) film (Fig. 1b). The element Pd is known for its large bulk hydrogen 

adsorption capacity and one might surmise that the presence of 2ML Pd underneath the Ni/Co 

bilayer has something to do with the observed enhancement of hydrogen induced work function 

change. However, using a Ni(1)/Co(3)/Pd(20)/W(110) sample with a ten-fold thicker Pd layer, we 

observe that the ∆𝜑 evolution induced by identical hydrogen ON/OFF cycles is almost identical 

as in the sample with just 2ML Pd (Fig. S1 [56]). This suggests that the large ∆𝜑 ON/OFF ratio 

originates from the top Ni/Co bilayer, and not from the Pd layer. Moreover, the enhanced ∆𝜑 

ON/OFF ratio at room temperature, compared to the single element films, is likely related to the 

different hydrogen binding energy on the bilayer composed of closed-packed Co surface with a 

1ML Ni overlayer [57]. Exactly how multilayer structure affects hydrogen desorption at various 

coverages may merit further investigations using temperature programmed thermal desorption, 

which exceeds the scope of this paper. An even greater ∆𝜑 ON/OFF ratio can be achieved on the 

same Ni(1)/Co(3)/Pd(2)/W(110) structure at elevated temperatures. Figure 1e shows that when 

the sample is held at ~90 C then in the hydrogen OFF part of the cycles the work function nearly 

fully recovers to the initial value of the hydrogen-free surface. As a result, the ratio of hydrogen 

coverage extrema in the ON/OFF cycles is on the order of ~90% of the initial work function rise. 

This indicates that the sample temperature of 90 C is sufficient to activate the hydrogen 

desorption process related to the 2nd desorption maximum (𝛽2  state, the higher temperature 

desorption peak in the low hydrogen coverage case), which is comparable to the reported 𝛽2 

state at 380 K in the hydrogen/Ni(111) system [53]. Note that our observed initial work function 

rise of ∆𝜑 ≈ 50 meV at 90℃ is also in reasonable agreement with the value of ∆𝜑 ≈ 40 meV 

reported in Ref. [53] for Ni(111) at 89℃ in 5 × 10−9 torr hydrogen.  

B. Exploring interfacial DMI induced by chemisorbed hydrogen 

Direct measurement of magnetic chirality is one of the major approaches to unravelling the 

interfacial DMI [12]. For instance, ground-breaking observations of cycloidal spin spirals using 

spin-polarized scanning tunneling microscopy have revealed the role of the interfacial DMI on 

magnetic chirality as well as the period of the spin spirals [5,6,9,10,13]. More recently, observation 

of magnetic chirality in magnetic domain walls also allows the quantification of the magnitude 

and sign of the interfacial DMI [16,25,58]. A particularly versatile approach to measure the DMI at 

the top interfaces of magnetic multilayers emerges when the magnitude and sign of the effective 

DMI induced at buried interfaces within the structure can be tuned predictably and accurately. 

This can be done by using hybrid substrates composed of a bulk crystal coated with a spacer layer 

where the crystal and spacer induce a DMI of opposite sign, such as Ir/Pt(111) [58], or Pd/W(110) 

[27]. The advantage of using a tunable-DMI substrate in this fashion was previously demonstrated 

in quantifying the DMI induced by chemisorbed oxygen on the Ni(111) surface [27]. Here, we test 

the DMI induced by chemisorbed hydrogen on the top surface of Ni(1)/Co(3)/Pd(𝑡Pd)/W(110), 



6 

 

where the effective DMI in the buried interfaces favors left-handed Néel chirality (Pd-like) at thick 

Pd thickness 𝑡Pd, and right-handed Néel chirality (W-like) [14] at thin 𝑡Pd. 

What makes this method advantageous for quantifying even rather weak DMI contributions 

is the fact that the magnitude and sign of the effective DMI of the buried interfaces can be fine-

tuned right around the point of null-DMI. Here we tracked the magnetic chirality evolution upon 

hydrogen chemisorption on various samples with different initial chirality. We observe a clear 

hydrogen-induced chirality switching in samples with Pd spacer layer thickness 𝑡Pd~2.09ML , 

where the effective DMI of the hydrogen-free multilayer is weakly Pd-like (left-handed). Figure 2a 

shows a SPLEEM image of the sample in the as-grown state, where the domain wall magnetization 

preferentially points from gray domain (−𝐌z) to the black domain (+𝐌z), corresponding to left-

handed Néel chirality. Upon hydrogen chemisorption, Figure 2b shows that the same domain wall 

evolves to right-handed Néel chirality (now the domain wall magnetization predominantly points 

from black domain (+𝐌z ) to gray domain (−𝐌z ) in Fig. 2b). We denote this switching of the 

magnetic chirality as the chirality transition. For a more quantitative analysis, we measure domain 

wall chirality in a statistically significant number of image pixels along the domain wall center-line. 

Defining the parameter 𝛼  as the angle between the domain wall normal direction n and the 

magnetization vector m at each point along the domain wall center-line (see inset in panel c), 

histograms of this angle 𝛼 measured from SPLEEM images represent the statistics of domain wall 

chirality [25,58]. Figure 2c/2d show that, before/after a 0.9 Langmuir hydrogen exposure, the peak 

at 𝛼~0° in panel c indicates left-handed Néel chirality, whereas the peak at 𝛼~180° in panel d 

indicates right-handed Néel structure. This statistical approach allows quantification of the 

chirality transition as shown in Figure 2e, where the average domain wall chirality before and after 

0.9 Langmuir hydrogen exposure is plotted for several samples, as a function of Pd spacer layer 

thickness 𝑡Pd. Note the hydrogen coverage resulting from this dose at room temperature can be 

roughly estimated as 𝑡H = (0.6 ± 0.1) ML with respect to the planar atomic density of Ni(111) 

(see Appendix A).  

When the Pd spacer layer is too thin and the effective DMI remains W-like (right-handed), as 

in the 𝑡Pd 22.00 ML and 𝑡Pd 22.05 ML measurements, then the domain wall chirality remains 

completely unaffected by hydrogen chemisorption because the induced DMI at the hydrogen/Ni 

interface and the effective DMI in Ni/Co/thin-Pd/W have the same sign (both right-handed). 

Likewise, when the Pd spacer layer is too thick, as in the 𝑡Pd22.15 ML sample, then the Pd-like 

effective DMI (left-handed) is sufficiently strong to dominate the domain wall spin texture, and 

the chirality of the wall remains unaffected even after hydrogen chemisorption because the sign 

of the effective DMI (left-handed) will not change with the additional weak hydrogen-induced 

right-handed DMI. However, when the initial DMI is sufficiently weak, as in the samples with 𝑡Pd 

2 2.08 ML, 2.09 ML and 2.10 ML, then hydrogen chemisorption induces a transition of the domain 

wall chirality, clearly revealing the right-handed DMI induced at the hydrogen/Ni(111) top 

interface. Here the magnitude of the effective DMI is considered to change roughly linearly as a 

function of sub-monolayer Pd thickness variation [27], because the typical length scale of the 

domain walls in our experiment is much larger than the size of third-monolayer Pd islands on top 

of the completed second-layer Pd film (see Appendix A). It is interesting to consider whether 
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atomic-scale roughness, such as atomic steps surrounding the islands that make up incomplete 

atomic monolayers might introduce appreciable DMI. However, if one particular kink-site at the 

edge of a monolayer island induces a certain amount of DMI, then another mirror-symmetric kink 

site on the opposite side of the island would induce equal and opposite amount of DMI because 

of the mirror-symmetric atom arrangement. In absence of a symmetry-breaking condition, any 

arrangement of atoms is energetically degenerate with its mirror arrangement. For this reason 

populations of left-handed and right-handed DMI-inducing step-segments are expected to occur 

with equal frequencies and must cancel each other. That said, in principle crystals can be cut in 

planes that expose chiral kinks such as vicinal surfaces [59-61]. However, the epitaxial layers grown 

on the W(110) surface studied here are achiral and for these symmetry reasons atomic-scale 

roughness induced contributions to the effective DMI would vanish. 

Note that the typical Néel- to Bloch-wall transition near zero DMI is suppressed because a 

weak in-plane uniaxial magnetic anisotropy in this system prevents Bloch-like alignment of domain 

wall magnetization along the W[1-10] direction [27]. The Néel components of the wall 

magnetization, however, are clearly sensitive to the sign of the DMI [62]. These results show that 

chemisorbed hydrogen on top of the Ni(111) surface introduces finite DMI favoring right-handed 

spin structures, i.e. the same sign of the DMI induced by overlayer Pt, Pd or oxygen [27] (left-

handed is favored when ferromagnetic layer is on top). 

C. Estimation of the strength of chemisorbed hydrogen induced DMI 

The systematic 𝑡Pd spacer layer thickness-dependent chirality studies summarized in Figure 

2e allow us to estimate the magnitude of the hydrogen-induced DMI. The chirality evolution 

towards right-handedness is observed between 2.08 ML and 2.10 ML during 0.6 ML hydrogen 

chemisorption. Above 2.10 ML Pd, no significant chirality change can be observed as the initial 

effective Pd-like DMI now dominates and hydrogen induced DMI at the Ni(111) surface can no 

longer affect the chirality. This approach provides an opportunity to quantify the hydrogen 

induced DMI by linking it to the dependence of the initial DMI on the Pd spacer layer thickness 

𝑡Pd. Without hydrogen the achiral state of domain walls, where the effective DMI is essentially 

zero, occurs at 𝑡Pd ≈ 2.08 ML. Upon chemisorption of 0.6 ML hydrogen the achiral state shifts to 

𝑡Pd = (2.095 ± 0.004) ML . The relative change of the DMI in the Ni/Co/Pd/W(110) system as a 

function of the Pd layer thickness 𝑡Pd  was previously quantified as (0.41 ± 0.17) meV/

surface atom per monolayer ∆𝑡Pd21 ML [27]. For the DMI values estimated by SPLEEM-images-

based evolution of the thickness-dependent domain wall [27,58], we note that the unit of the DMI 

vectors is given in meV per surface (interface) atom. The measurements summarized in Figure 2e 

show that the change of effective DMI induced by 0.6 ML hydrogen chemisorption on top of the 

Ni/Co/Pd/W(110) multilayer is equivalent to the change of the DMI induced by increasing the Pd 

spacer layer thickness by 𝑡Pd = (0.015 ± 0.004) ML in the absence of hydrogen. Therefore, the 

DMI induced by the chemisorbed hydrogen on Ni/Co/Pd/W can be estimated as:  

(0.41 ± 0.17) ×
0.015±0.004

0.6 ±0.1
 meV/surface atom = (0.01 ± 0.005) meV/surface atom for 1 ML 

equivalent hydrogen coverage. Note that only the chemisorption of hydrogen on the Ni surface 



8 

 

and the role of the hydrogen/Ni interface on the DMI are considered here because the 

combination of chemisorption well and energy barrier of hydrogen bulk diffusion favors the 

occupation of chemisorption sites [54] in our approach of introducing low dose (0.9 Langmuir) 

hydrogen molecules when the sample is held at room temperature. 

Figure 2f shows a comparison of the DMI induced by various elements adjacent to Ni. For 

instance, the chemisorbed hydrogen induced DMI is much weaker than the chemisorbed oxygen 

induced DMI on Ni, which is (0.63 ± 0.26) meV/surface atom  at 1 ML equivalent oxygen 

coverage. The strength of the hydrogen-induced DMI is one to two orders of magnitude smaller 

than the DMI induced at Ni/transition metal interfaces, for example, 𝐷Ni/Cu + Fe/Ni = (0.15 ±

0.02) meV/surface atom  [16], 𝐷Ni/W ≈ 0.24 meV/surface atom  [62], 𝐷Ni/Ir = (0.12 ±

0.04) meV/surface atom  [58], 𝐷Ni/Pt = (1.05 ± 0.18) meV/surface atom  [58]. The 

hydrogen-induced DMI is also much weaker than the DMI induced at the Co/graphene interface, 

which is (0.16 ± 0.05) meV/surface atom [25]. Note that here we only compare DMI measured 

in SPLEEM-based experiments using methods described in Refs. [16], [62] and [27], to avoid 

possible systematic measurement biases resulting from the use of different methods [12]. The 

element-dependent magnitude of the DMI is related to different mechanisms [12]. In the Fert-

Levy model [28,63], the DMI scales with the strength of spin-orbit coupling of the adjacent heavy-

metal [28], and with the degree of orbital hybridization at the 3d-5d interface as well as 3d band 

lineup dictated by the Hund's first rule [30]. The graphene-induced DMI is dominated by the 

Rashba effect and its magnitude scales with the Rashba coefficient [25]. The oxygen-induced DMI 

is related to the charge transfer and hybridization at the interface [27,31], and the plausible 

mechanism of hydrogen-induced DMI is discussed in section D below.  

Figure 2g summarizes DFT analysis of the H-induced change of the micromagnetic DMI-

strength D for the system Ni(1)/Co(3)/Pd(dPd)/W (for details of the calculations see Appendix D). 

Since the DMI depends on structural details the total DMI is calculated as the sum of layer-

decomposed contributions. The DMI of Ni and Co (Pd and W) layers are calculated in the 250 (275) 

pm lattice constant model. We find that in the absence of Pd, the contribution of W to the DMI is 

negative, favoring a right-handed domain-wall, consistent with the analysis of Fe on W(110) [14]. 

The DMI of Pd favors left-handedness (like Pt), and with increasing Pd thickness, D becomes larger 

and changes sign in Pd/W. The DMI of Ni and Co favors left-handedness (like Pd), but the 

magnitude is smaller than that of Pd and W, consistent with the lower atomic number Z and the 

subsequently smaller spin-orbit interaction. Adding up all contributions, we obtain the total DMI 

of Ni(1)/Co(3)/Pd(dPd)/W with a sign change at a Pd thickness of dPd ≈ 1 ML. In comparison to 

the Fig 1H of Ref. [27], the Pd thickness of achirality (thickness of zero DMI) moved by about 0.5 

ML due to our refined structural model treating the Pd and W layers in the 275 pm lattice constant 

instead of 250 pm. Adding 1ML H on Ni(111) we find that the total strength D is reduced and H 

acts like an additional contribution favoring the right-rotating domain wall, thus requiring a larger 

Pd thickness to reach the achiral point. All these are consistent with the experimental facts, but in 

comparison with the experimental data, the theoretical DMI values are somewhat larger. The 

experimental thickness to achirality is about dPd ≈ 2 ML, and theoretically the hydrogen-induced 
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shift equivalent is found to be 0.35 ML of Pd, while in the experiment it is about 0.015 ML of Pd. 

We attribute these quantitative discrepancies to the difficulty in accurately modeling the true 

structure of the materials stack. 

D. Hydrogen-assisted reversible control of the chirality 

The observation of substantial reversibility of hydrogen chemisorption by desorption in clean 

UHV at room temperature, together with the observed hydrogen-induced switching of domain 

wall chirality, suggests the possibility to reversibly switch the domain wall chirality by hydrogen 

chemisorption/desorption cycles. To test this possibility, we use SPLEEM to continuously monitor 

the domain wall magnetization in a Ni(1ML)/Co(3ML)/Pd(2.09ML)/W(110) multilayer, while 

periodically cycling between 5 × 10−9 torr  hydrogen pressure for 3 minutes and negligible 

hydrogen pressure (UHV base pressure) for 10 minutes. Figure 3a shows the evolution of the 

domain wall chirality in the four cycles, where the chirality switched from predominantly left-

handed to predominantly right-handed upon the 1st hydrogen chemisorption (see the definition 

of the chirality in Fig. 3a), and the chirality partially evolves toward left-handedness/right-

handedness during “H OFF”/”H ON” states for the rest of the cycles. Figure 3b shows the statistics 

of this domain wall switching experiment, tracking reversibility of the chirality over four cycles at 

room temperature (see Appendix C). This magnetic chirality measurement is correlated with a 

hydrogen coverage measurement, as monitored by tracking the work function change of +120 

meV for the 1st H-on state and ±80 meV for the subsequent cycles. These results indicate that 

the hydrogen coverage changes shown previously in Fig. 1d indeed reversibly affect the DMI of 

the system so as to switch the sign of the effective DMI as well as the domain wall chirality. In this 

experiment, the chirality reversal during the H-OFF state is imperfect in the sense that a small 

fraction of domain wall sections remains in the right-handed state corresponding to the hydrogen-

induced DMI. It is plausible that these minor imperfections in the chirality switching are due to a 

combination of defect-induced pinning and the weaker DMI associated with residual hydrogen 

coverage due to incomplete desorption in the 10-minute OFF cycles.  

In the end, the physical origin of the chemisorbed hydrogen-induced change in the DMI is the 

change in the spatial asymmetry of the wave function in the transition metals, especially in Ni 

surface atoms. The hydrogen causes this change by a slight outward relaxation of the nickel 

position above the Co film (see Appendix D), induced by a small charge transfer from nickel to 

hydrogen and by the polarization and rehybridization of the orbitals in nickel. The electrical surface 

dipole moment and the work function are the corresponding physical quantities that provide 

information about these changes. In fact, a linear relationship between the work function change 

and the DMI was demonstrated for Pt/Co/transition metals trilayers [64], and a linear relationship 

between the electronegativity, the electric dipole moment and the DMI was proposed in Ref. [29]. 

To shed more light on these relationships, we compare the changes in DMI (H: 0.01 ±  0.005 

meV/1ML H, O: 0.63 ± 0.26 meV/1ML O), work-function (H: ~0.12 eV, O: ~0.70 eV) and Pauling 

electronegativity differences (H: 0.29, O: 1.53, relative to Ni) between the hydrogen (H:) and 

oxygen (O:) [27] terminated NiCoPdW systems (the electronegativities of H, O, and Ni are 2.20, 

3.44, 1.91, respectively). Note that the electronegativity of both hydrogen and oxygen is larger 

than that of nickel, which is consistent with the measurements that the work function on the 



10 

 

surface of NiCoPdW increases upon adsorption of both hydrogen and oxygen. Also, the 

electronegativity of oxygen is larger than that of hydrogen, and the strength of the right-handed 

DMI increases, more significantly for the oxygen system than for the hydrogen system. Indeed, the 

ratios of the work function shift ( 𝑅∆𝜑 = 0.70/0.12 ≈ 5.8 ) and the changes of the 

electronegativities ( 𝑅∆𝜒 = 1.53/0.29 ≈ 5.3 ) between the oxygen system and the hydrogen 

system are about the same, i.e. 𝑅∆𝜑/𝑅∆𝜒 ≈ 1 . Evidently, for these systems the change of the 

electronegativity is an excellent measure for the estimation of the change of the work function. 

Considering the ratios between the change in DMI to the change in work function, one obtains 

0.63 meV / 0.70 eV for the oxygen system, i.e., a change in DMI of ~1 meV per 1 eV change in 

work function. For the hydrogen system, one gets a value which is more than 10 times smaller 

(0.01 meV/0.12 eV). Also, the same ratios are obtained if the work function changes are replaced 

by the electronegativities. Testing whether one-to-one relationships between DMI and work 

function change [64] or electronegativity [29] hold more generally goes beyond the scope of this 

paper. We speculate that either the changes induced by the oxygen are so strong that we are no 

longer in the linear regime or the DMI value of the hydrogen system is so small due to the 

compensation of the different contributions.  

Chemisorption of hydrogen occurs on many transition metals, in particular a considerable 

hydrogen-induced dipolar moment appears (via the observation of a work function shift) on the 

surfaces of ferromagnetic metals such as cobalt, nickel and iron or 4d/5d metals, and we expect 

that chemisorbed hydrogen induced DMI can be generally observed on ferromagnetic thin films. 

However, the reversibility demonstrated in Figs. 1 and 3 may require additional testing for each 

specific case. Furthermore, we note that hydrogen is the lightest element of the periodic table. It 

is tiny, has no chemical aggressiveness, and is not as electronegative as oxygen. In this sense 

hydrogen is rather gentle, might be the ideal chemical element that enables the best control of 

the DMI needed to change the spatial properties of spin textures such as skyrmions, much more 

precisely than oxygen.  

The sensitive and reversible switching of the DMI and chiral spin texture via hydrogen 

chemisorption is highly relevant for chiral spintronics, such as racetrack memories based on 

domain walls or skyrmions, where hydrogen-induced DMI may be used to manipulate the chiral 

domain wall motion by controlling the chirality, or to sensitively control the skymion size over 

orders of magnitude [22], a feature particularly interesting for neuromorphic computing. One key 

advantage is that the switching via chemisorption may be done in a tunable and contactless 

fashion, without requiring electrical leads being attached to the device. This is particularly 

attractive for complex device geometries such as 3-dimensional racetrack memory [65] and 

networks [66] involving numerous domain walls or skyrmions. Note that the role of hydrogen on 

the DMI is not limited to surfaces as demonstrated in this paper, and rich possibilities exist where 

hydrogen may occupy sites inside the bulk, such as hydrogenated Fe/Ir(111), which may also alter 

the DMI via lattice spacing changes [36]. These hydrogen-based results are also relevant to the 

emerging field of magneto-ionics, which has so far been largely based on oxygen ions and 

vacancies. They not only significantly expand on the magnetic functionalities that can be 

controlled magneto-ionically, but also offer exciting potentials for completely reversible and 
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energy-efficient switching. We speculate that the hydrogenation of interfaces of films consisting 

of magnetic and high-spin-orbit materials opens a vista to new magneto-ionic or memristive 

functionalities. For example, electrical control of hydrogen coverage through magneto-ionic 

means could lead to a change of DMI and consequently spin textures, such as chiral domain wall 

motion or skyrmion size; in the former case the chiral domain wall motion may be useful for 

magnetic logic devices as well as artificial synapses [67], and in the latter case magnetoresistive 

properties of skymion-based devices may be relevant for memristors. Importantly, using the 

chemisorption mechanism, the hydrogen ions can be driven across atomic distances to contact 

the relevant ferromagnet surface in solid state devices (and reduce to atomic form [40]), but 

without actually penetrating the surface and causing any irreversible changes, thus leading to 

excellent reversibility, endurance and potential for high speed. 

III. CONCLUSION 

In summary, we report direct and quantitative observation of a hydrogen chemisorption 

induced DMI on ferromagnet surfaces at room temperature, which can be used to sensitively and 

reversibly switch chiral domain walls. We find that the chemisorption/desorption ratio of the 

hydrogen is greatly enhanced by combining 1ML Ni and 3ML Co at the top of the multilayers and, 

even under constant room temperature conditions, the reversibility of hydrogen chemisorption 

can reach as much as two thirds of the initial hydrogen coverage. We observe that the hydrogen 

chemisorption induces a finely controllable, reversible and non-volatile chirality transition of 

magnetic domain walls in the Ni/Co/Pd/W(110) system at room temperature. This chirality control 

is attributed to the hydrogen induced DMI, which is experimentally quantified. These results help 

to advance the understanding of the DMI induced by light elements, and open up new device 

potentials in chiral spintronics and magneto-ionics.  
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APPENDIX A: Sample preparation and hydrogen exposure 

The SPLEEM experiments were performed at the National Center for Electron Microscopy of 

the Lawrence Berkeley National Laboratory. All samples were grown in the SPLEEM chamber 

under ultra-high vacuum (UHV) conditions, with a base pressure better than 4.0×10−11 torr. The 

W(110) substrate was cleaned by cycles of flashing to 1,950℃ in 3.0×10−8 torr O2, followed by a 

final flashing at the same temperature to remove oxygen. Ni, Co and Pd layers were deposited by 

physical vapor deposition from electron beam evaporators when the substrate is held at room 

temperature, and the film thicknesses of Ni, Co and Pd layers were calibrated by monitoring the 

oscillations of the LEEM image intensity associated with atomic layer-by-layer growth [27]. In 

contrast to the significantly larger Pd island structures grown at high temperature [68], in our 

room-temperature sample preparations the strong layer-by-layer electron reflectivity oscillations 

together with the observation of featureless LEEM images indicate that the typical size of next-

monolayer Pd islands at the growth front of the Pd films is smaller than the spatial resolution at 

the magnification used in these experiments (image pixel size is ~22 nm at 10 m field of view 

used in this work). Note that the Pd thickness with zero effective DMI (𝑡Pd ≈ 2.08 ML) here is 

slightly thinner than that reported in ref. [27] (𝑡Pd ≈ 2.46 ML ), which is possibly due to slight 

differences in experimental conditions. 

Hydrogen exposures were realized by leaking of high-purity hydrogen (99.999%) at a 

pressure of at 5 × 10−9 torr. The pressure of hydrogen reading of the ionization gauge has been 

corrected by a factor of 0.46. No noticeable change was observed in the LEED pattern upon 

hydrogen chemisorption at room temperature, which is consistent with ref. [51]. On Ni(111), the 

maximum work function shift occurs at the hydrogen coverage of 0.5-0.6 ML [51], and volumetric 

measurements reveals that the saturation coverage of chemisorbed hydrogen on Ni(111) is ~0.7 

ML at room temperature [53]. Therefore, the hydrogen coverage on the surface of 

Ni/Co/Pd/W(110) is estimated based on the work function shift measurement with a maximum 

work function shift (∆𝜑 ≈ 125 meV, Fig. 1d), which roughly corresponds to 0.5-0.7 ML hydrogen 

overlayer. 

APPENDIX B: Time-dependent work function measurement 

The work function is determined by fitting the LEEM IV spectrum (image intensity vs incident 

energy of electrons, see Fig. 1a) with a complementary error function 𝑒𝑟𝑓𝑐 (Start voltage)[52]. 

The value where the drop-off occurs, 𝑉S
0, represents a measurement of the sample work function 

given by 𝜙sample = 𝑉S
0 + 𝐸C

0, where 𝐸C
0 represents the peak of the electron distribution emitted 

from our photocathode (p-type GaAs crystal activated with CsOx). The emission of the GaAs 

cathode of SPLEEM is set to 100nA to optimize the energy spread to about 180 meV (full width at 

half maximum) and 𝐸C
0~1.4 − 1.5  eV measuring a reference surface such as Highly Oriented 

Pyrolytic Graphite (HOPG). Time-dependent work function measurements were performed by 

recording the reflectivity of low energy electrons while sweeping the start voltage in a loop (Fig. 

S2 [56]). In order to record the work function changes during hydrogen adsorption/desorption at 
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the surface, the start voltage was swept from 1.5 V below to about 2 V above the intensity drop-

off using 50 mV voltage steps and an image integration time of 250 ms. Relative changes in the 

work function over time can be detected with very-high sensitivity down to about 5 mV given by 

the shift of the centroid of the gaussian distribution extracted by the 𝑒𝑟𝑓𝑐(Start voltage) fitting. 

APPENDIX C: Time-dependent in-plane domain wall analysis 

Due to the noise present in the individual in-plane domain wall images, we used standard 

image denoising methods to provide a more accurate estimate for the magnetization presented 

in Fig. 3. The measured images were denoised by 3D total variational denoising (3D-TVD), using a 

Matlab implementation and 3D extension to the methods given in ref. [69]. After normalizing the 

data to have a mean intensity of zero and a standard deviation of one, we used regularization 

parameters of µ = [2 2 1] and 𝜆 2 [1/8 1/8 1/16] for the dimensions of x,y and time respectively. 

FISTA acceleration was used to speed convergence. The regularization was applied isotropically to 

the x and y directions. After the TVD was applied, we normalized the images to have a mean of 

zero and the boundary contrast to have an approximate range of -1 to +1. 

 

APPENDIX D: DFT results and analysis 

All first-principles calculations of clean and hydrogen covered Ni(1)/Co(3)/Pd(n)/W(110) 

systems were based on DFT. All calculations, approximations to exchange and correlation 

functional, first-principles methods, computational procedures and computational parameters 

are consistent with the calculations in Ref. [27]. We have investigated systems varying the 

thickness of Ni between 0 and 3 atomic layers and of Pd between 0 and 3 layers keeping the 

number of Co layers fixed at 3 atomic layers. 

Structural Model: Since the substrate is a (110) oriented bcc W crystal, Pd, Co and Ni grow as 

fcc (111), and the lattice constants of Ni and Co are considerably different from Pd, we expect that 

some adaptation of the atoms and some strain release may take place on the way from the W-

surface to the Ni-layer, which is difficult to capture in full detail in our structural model. We have 

modeled all systems by pseudomorphically (111) stacked transition-metal layers with a stacking 

order of the preferred bulk ordering for each metal. The system was approximated by an 

asymmetric stack of layers where the W-substrate is modeled by 5 layers of W. We studied results 

for two different structural models (a) with the in-plane lattice constants 𝑎IP = 250 pm, and (b) 

with 𝑎IP = 275 pm, the former is related to the average of the experimental bulk lattice constant 

of Ni (𝑎Ni = 352 pm and 𝑎IP_Ni = 𝑎Ni/√2  = 249 pm) and hcp-Co (𝑎IP_Co =  251 pm) and the 

latter to the average of the experimental bulk lattice constant of fcc-Pd (𝑎Pd = 389  pm and 

𝑎IP_Pd = 275  pm) and the cubic bulk lattice constant of W ( 𝑎W = 316  pm and 𝑎IP_W =

𝑎W√3 /2 =  274  pm). To most accurately model the W(110) substrate, we adjusted the W 

interlayer distances to obtain the correct experimental bulk volume. For simplicity, we considered 

a 100% coverage of H on the Ni surface. In the following, we relate all surface-related quantities 

to the results of the 250 pm model and all W and Pd related results to the 275 pm model. 

Results: On the basis of structural optimization by energy minimization we found: (i) H 

adsorbs on the fcc hollow sites for the a2250 pm model. (ii) H reduces the bond strength between 
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Ni and Co and increases the interlayer distance from 198 pm to 207 pm. This result is basically 

independent of the number of Pd layers. (iii) H reduces substantially the magnetic moment of Ni 

from 0.72 𝜇𝐵 to 0.21 𝜇𝐵 and by a tiny amount (2.2%) the magnetic moment of the first Co layer 

adjacent to Ni. (iv) The work function of W in the 275 pm model amounts to 𝜑W = 5.40  eV, in 

good agreement with the experimental work function of W(110), 𝜑W = 5.22  eV. (v) The work 

function of Ni/Co/Pd/W in the 250 pm model amounts to 𝜑Ni = 5.28  eV, in good agreement 

with the experimental work function of Ni(111), 𝜑Ni = 5.35  eV . The result is practically 

independent of the number of Pd layers. (vi) The work function change ∆𝜑 upon adsorption of 

H on the surface of Ni for the system Ni(1)/Co(3)/Pd(2)/W is ∆𝜑 ≈ 141 meV, which is in excellent 

agreement with the experimentally measured value ∆𝜑 ≈ 139 meV for H on Ni(111) at 41 ℃ 

and 5 × 10−9 torr hydrogen pressure [53] and within this work for which ∆𝜑 ≈ 125 meV was 

found but for a smaller coverage of about 0.6 ML. 

DMI: In determinating the interface DMI and its changes upon hydrogen coverage, we 

proceeded analogously to the experimental procedure. We first calculated from DFT the DMI 

strength D [61] of the micromagnetic DMI tensor, which was then expressed in the language of 

the atomistic spin-model, as in the experiment, with the energy expression 𝐸DM =

 ∑ 𝐃𝑖𝑗 (<𝑖𝑗> 𝐒𝑖  × 𝐒𝑗) in terms of an effective DMI-vector 𝐃𝑖𝑗  between nearest neighbor (n.n.) 

pairs. Here <ij> denotes the summation over unique pairs of nearest-neighbor atoms. The 

effective atomistic nearest neighbor strength, 𝐷𝑛.𝑛., and the micromagnetic DMI strength, D, are 

related as 𝐷𝑛.𝑛. = 1 (3𝜋𝑎IP)⁄ 𝐷, with 𝑎IP = 251 pm (see the in-plane lattice constant 𝑎∥ used 

to determine the dipolar energy [27]). Summing up all pairs < 𝑖𝑗 > across the domain wall, 𝐸DM 

corresponds to the DMI energy in one domain wall and relates to the size of the effective nearest 

neighbor DMI vector 𝐷𝑛.𝑛. as  𝐸DM = −√3𝜋𝐷𝑛.𝑛.. 
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Figure 1. Room temperature observation of reversible chemisorption/desorption of atomic 

hydrogen on metal surfaces. (a), LEEM IV spectra on bare 1ML Ni/3ML Co (initial) and the same 

surface before/after the hydrogen exposure. Measuring the energy at which the reflectivity drops 

allows quantification of the work function. (b-d), Work function response on the surface of metals 

during the presence/absence of hydrogen at room temperature. Red/black triangles indicate the 

ON/OFF control of the hydrogen leak valve. Panel b: 6ML Ni, panel c: 6ML Co, panel d: 1ML Ni/3ML 

Co. (e), Work function response of 1ML Ni/3ML Co at ~90 C, indicating ~90% 

chemisorption/desorption ratio.
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Figure 2. Exploring chemisorbed hydrogen induced Dzyaloshinskii–Moriya interaction. (a,b) 

Observation of hydrogen induced domain wall chirality switching in compound SPLEEM images of 

1ML Ni/3ML Co/2.09 ML/W(110), panel a: as-grown (sketch shows left-handed walls in magnetic 

layers), panel b: with hydrogen exposure at 5 × 10−9 torr  (sketch shows right-handed walls 

upon hydrogen chemisorption). Black/gray area indicates perpendicularly magnetized up/down 

domains, colors indicate the in-plane orientation of magnetization in the domain wall region. (c,d) 

𝛼 Histogram of the SPLEEM image before (panel c)/after (panel d) the hydrogen exposure, 𝛼 is 

the angle between domain wall magnetization m and domain wall normal vector n (insert). (e) 

Hydrogen exposure dependent evolution of Néel-type chirality at various Pd thicknesses. (f) 

Summarized values of DMI strength D induced by various elements adjacent to Ni, all measured 

by the same SPLEEM-based method. (g) DFT calculation of Pd layer dPd dependent DMI strength D 

from various contributions: Ni/Co layers in the 250 pm structure model (solid square), Pd/W in 

the 275 pm model (hollow square), the sum of both contributions (red dots) and the total 

contribution including the chemisorbed hydrogen (H/Ni/Co in 250 pm model + Pd/W in 275 pm 

model) (green dots). Lines are guides to the eyes.   
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Figure 3. Reversible switching of magnetic chirality via hydrogen at room temperature. (a) time 

sequence of SPLEEM images of a domain wall in a Ni(1ML)/Co(3ML)/Pd(2.09ML)/W(110) system, 

hydrogen status is labelled above/below images. The in-plane magnetization in the domain wall 

region is rendered in gray-level according to the scale bar (right). Domains left and right of the 

domain wall are perpendicular magnetized. The magnetization in the left/right region points 

up/down, respectively. Magnetic chirality is highlighted by red/cyan arrows (see sketch). The field 

of view is 2μm × 4μm. (b) Evolution of average magnetic chirality (derived from the sum of the 

wall contrast). Gray diamonds indicate the timing of the images in a.  
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S1. Pd thickness dependent work function change 

 

 

Figure S1. Work function response on the surface of metals during the presence/absence of 

hydrogen in Ni(1ML)/Co(3ML)/Pd(2ML)/W(110) and Ni(1ML)/Co(3ML)/Pd(20ML)/W(110) 

systems at room temperature. 

  



Fig. S2 Time-dependent work function measurement 

 

 
Figure S2. Evolution of the work function and electron reflectivity as a function of hydrogen 

adsorption/desorption for Ni(1ML)/Co(3ML)/Pd(2ML)/W(110). (a) The electron reflectivity as 

a function of electron energy (horizontal scale) and hydrogen adsorption/desorption time 

(vertical scale). The electron reflectivity across the full plot was normalized by the total 100% 

reflection given by the mirror electron mode (MEM)- electrons below the intensity drop-off 

which do not interact with the sample’s surface- and is represented in colour code ranging 

from black to pale yellow. Four H2 ON cycles are highlighted in white in the reflectivity map, 

clearly showing that the reflectivity shifts towards higher energies upon hydrogen 

chemisorption on the surface. (b) The extracted work function 𝑉S
0 from the reflectivity map 

of panel a. The relative work function (∅H2 ON−∅NiCoPdW) steeply increases as hydrogen is 

chemisorbs on the surface, reaching a peak after about 3 min of exposure. Black arrows 

indicate four peaks in the work function over time due to hydrogen exposure (four ON and 

OFF cycles). 

 

 

 

 




