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Image processing tools for petabyte-scale 
light sheet microscopy data

Xiongtao Ruan    1  , Matthew Mueller    1,2, Gaoxiang Liu1, Frederik Görlitz1,8, 
Tian-Ming Fu    3,9, Daniel E. Milkie    3, Joshua L. Lillvis3, Alexander Kuhn4, 
Johnny Gan Chong    1, Jason Li Hong    1, Chu Yi Aaron Herr1, Wilmene Hercule1, 
Marc Nienhaus4, Alison N. Killilea    1, Eric Betzig    1,2,3,5,10   & 
Srigokul Upadhyayula    1,6,7,10 

Light sheet microscopy is a powerful technique for high-speed three- 
dimensional imaging of subcellular dynamics and large biological 
specimens. However, it often generates datasets ranging from hundreds 
of gigabytes to petabytes in size for a single experiment. Conventional 
computational tools process such images far slower than the time to acquire 
them and often fail outright due to memory limitations. To address these 
challenges, we present PetaKit5D, a scalable software solution for efficient 
petabyte-scale light sheet image processing. This software incorporates a 
suite of commonly used processing tools that are optimized for memory 
and performance. Notable advancements include rapid image readers and 
writers, fast and memory-efficient geometric transformations, high- 
performance Richardson–Lucy deconvolution and scalable Zarr-based 
stitching. These features outperform state-of-the-art methods by over one 
order of magnitude, enabling the processing of petabyte-scale image data at 
the full teravoxel rates of modern imaging cameras. The software opens new 
avenues for biological discoveries through large-scale imaging experiments.

Light sheet microscopy enables fast three-dimensional (3D) imaging 
of cells, tissues and organs1. Within this realm, variants like multi-view 
selective plane illumination microscopy2–4, lattice light sheet micros-
copy (LLSM)5, axially swept light sheet microscopy6,7 and single 
objective light sheet microscopy8–10, offer higher resolution and fast 
imaging speed. Combined with expansion microscopy11, these tech-
niques have been used to image millimeter-scale or larger cleared 
and expanded specimens12,13, while achieving nanoscale resolution. In 
such cases, the data produced from a single experiment can explode 
to the petabyte range. These high data generation rates introduce  
substantial challenges for data storage and processing that complicate 

visualization, assessment and analysis. First, even individual volumes 
from a four-dimensional (4D) time series can be so large as to render 
their preprocessing unwieldy or impossible for conventional processing 
codes. Second, acquisition in a non-Cartesian coordinate space adds 
substantial computational overhead. Third, light sheet data are often 
acquired at multi-terabyte-per-hour rates, which are too fast for con-
ventional tools to process in real time. This impedes the rapid feedback 
needed to adjust imaging conditions or locations on the fly or to extract 
biological insights from the resulting datasets in a timely manner.

Numerous computational tools encompassing various functionali-
ties have been developed to facilitate light sheet image preprocessing, 
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are not designed for large-scale compressed data, being restricted 
to single-threaded operations (for example, libtiff). For instance, an 
86-GiB 16-bit Tiff file (512 × 1,800 × 50,000) with libtiff (LZW compres-
sion) takes approximately 8.5 and 16 min to read and write, respectively 
(Extended Data Fig. 1a,b). These speeds pose a considerable bottleneck 
for efficient image processing, especially when the entire image needs 
to be loaded for the processing. Memory mapping is an alternative 
technique to process large images (for example, tifffile26 in Python), but 
it is mostly limited to working with uncompressed data in their native 
byte order. This limitation can drastically increase storage require-
ments for large datasets, and the processing may still be constrained 
by slow read and write speeds.

To rectify this, we developed an optimized Tiff reader and writer 
in C++. This implementation leverages the OpenMP framework27 to 
facilitate concurrent multi-threaded reading and writing (where only 
the compression process is parallelized in writing). Our Cpp-Tiff reader 
and writer are over 22 times and 7 times faster than conventional ones, 
respectively, for compressed data (Fig. 2a,b and Extended Data Fig. 1a,b 
for a 24-core node). Moreover, they substantially outperform the 
fast Python reader and writer library for Tiff files (tifffile26 in Python; 
Fig. 2a,b and Extended Data Fig. 1a,b). Their speeds also increase line-
arly as more CPU cores are devoted to read/write operations (Extended 
Data Fig. 1e,f).

Although the Tiff format is commonly used for raw micros-
copy images, it is not the most efficient for parallel reading and  
writing, especially for very large image datasets. One major limitation 
is its single-container structure for file writes, which restricts it to 
single-threaded operations. To overcome this, we instead chose Zarr22, 
a next-generation file format optimized for multi-dimensional data. 
Zarr efficiently stores data in nonoverlapping chunks of uniform size 
(border regions may be padded to match the full chunk size) and saves 
them as individual files. The format is similar to N5 (ref. 28), OME-Zarr29 
and TensorStore30.

Zarr allows individual jobs to access only the specific region of 
interest at a given time. Distinct regions can be saved to disk inde-
pendently and in parallel. Using optimized C/C++ code that leverages 
OpenMP, our Zarr reader/writer is 10–23 times faster for reading and 
5–8 times faster for writing (Fig. 2c,d and Extended Data Fig. 1c,d) 
than the conventional implementation (using MATLAB’s ‘blocked-
Image’ function to interface with the Python version of Zarr). Their 
performances also scale as more CPU cores are devoted to read/write 
operations (Extended Data Fig. 1g,h). Our implementation is also 5–10 
and 5–8 times faster for read/write compared with the native Python 
implementation of Zarr (Fig. 2c,d and Extended Data Fig. 1c,d). Moreo-
ver, compared to TensorStore, Cpp-Zarr is 2.2 times and 1.5 times faster 
for reading and writing, respectively, for their preferred data orders 
(row-major in TensorStore and column-major in Cpp-Zarr; Supple-
mentary Table 1). We opted to use the zstd compression algorithm31 at 
compression level 1 to achieve better compression ratios at comparable 
read/write times to the lz4 algorithm32 at level 5 (default in native and 
OME-Zarr; Extended Data Fig. 1i–k). We also created a Parallel Fiji Visu-
alizer plugin that quickly opens compressed Tiff and Zarr files using 
our fast readers, enabling efficient data visualization and inspection 
in Fiji33 (Supplementary Note 3).

Fast combined deskew and rotation
In many light sheet microscopes, the excitation and detection objec-
tives are oriented at an angle with respect to the substrate holding 
the specimen. It is convenient in such cases to image the specimen 
by sweeping it in the plane of this substrate, but the resulting raw 
image stack is then sheared and rotated with respect to the conven-
tional specimen Cartesian coordinates (Fig. 3a). Traditionally, the 
data are transformed back to these coordinates by deskewing and 
rotating in two sequential steps (Fig. 3b). However, zero padding dur-
ing deskew drastically increases data size, slowing computation and 

including deskew and rotation14,15, deconvolution16,17, stitching18,19 
and visualization20,21. While these tools have shown to be valuable for 
light sheet images on the gigabyte scale, their utility wanes for data 
sizes surpassing the terabyte threshold, due to a lack of scalability 
and efficiency required to process images in real time. Furthermore, 
many of these tools are standalone applications, providing only partial 
processing steps in a specialized context and varying input formats and 
requirements. This situation often requires extensive manual effort 
to integrate them into multi-step workflows, limiting their utility, 
especially for large-scale data.

To address these challenges, particularly for long-term imag-
ing of subcellular dynamics or vast multicellular image volumes, we 
developed PetaKit5D, a software solution designed to enable real-time 
processing of petabyte-scale imaging data. The software contains 
commonly used preprocessing and post-processing tools that are 
optimized for memory and performance, including deskew, rotation, 
deconvolution and stitching, all integrated into a high-performance 
computing framework capable of executing user-defined functions 
in a scalable and distributed manner.

To further increase throughput, we developed new algo-
rithms for image input/output using the Zarr data format for image  
storage22 and processing in conjunction with custom parallelized 
image readers and writers. These capabilities have been optimized 
for partitioned parallel processing of petabyte-scale datasets. The 
software incorporates an online mode during image acquisition to 
automatically process data and provide near-instantaneous feedback 
that is critical during long-term time series or high-throughput large 
sample imaging.

We developed PetaKit5D in MATLAB and offer Python wrappers 
for the deployed version. To ensure accessibility for users with little 
or no programming experience, the software includes a user-friendly 
graphical user interface (GUI).

Results
Overall design: distributed image processing framework
High frame rate modern cameras enable light sheet microscopes to cap-
ture images at nearly four terabytes per hour per camera. This presents 
formidable challenges for sustained image acquisition, real-time (de)
compression, storage and processing, especially when using a single 
conventional workstation. In response, we developed a distributed 
computing architecture comprising a cluster of computing nodes and 
networked data storage servers that enables uninterrupted stream-
ing and real-time processing of vast quantities of data continuously 
acquired over extended periods. Our standard workflow is illustrated 
in Fig. 1a.

Our approach uses a generic distributed computing framework in 
MATLAB to parallelize user-defined functions (Fig. 1b). The complete 
dataset or set of tasks is divided into distinct, self-contained subtasks, 
each appropriately sized for processing by an individual worker unit 
with one or more central processing unit (CPU) cores or GPUs (Fig. 1c,d). 
A conductor job orchestrates all operations, distributes tasks across the 
computing cluster and monitors their progress to completion (Fig. 1b). 
Failed jobs are automatically resubmitted with additional resources. 
Our MATLAB-based framework offers greater flexibility for various task 
types, enhanced robustness against failures and seamless integration 
across multiple processing steps, compared with Spark23 and Dask24. 
We use it to manage all processing methods in PetaKit5D (Fig. 1e).

Fast image readers and writers
Efficient image reading and writing are essential for real-time image 
processing. The widely used Tiff format stores two-dimensional 
(2D) and 3D microscopy data, offers the ability to compress (such as  
Lempel–Ziv–Welch (LZW) compression), and can include specialized 
metadata (such as Open Microscopy Environment TIFF25). Unfortu-
nately, conventional image readers and writers for the Tiff format 
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Fig. 1 | Overall design of the image processing framework. a, Image acquisition 
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process-merge mechanism for the distributed processing of a large image file.  
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risking out-of-memory faults, particularly for large images with many  
frames (Fig. 3c).

To address this issue, we combined deskew and rotation into a 
single step, which is possible given that both operations are rigid geo-
metric transformations. While prior studies have explored combining 
processing techniques using vertical interpolation in the deskew/
rotated space and customized transformations9,10,34–36, they are limited 
either in speed or the amount of data they can handle. Unlike previous 
approaches, our method first interpolates the data in the raw skewed 
space (depending on the scan step size), followed by standard affine 
transformation. When the ratio of the scan step size in the xy plane to 
the xy voxel size (defined as ‘skew factor’) is smaller than 2.0, this is 
readily feasible (Fig. 3d). However, when the skew factor is larger than 
2.0, artifacts may manifest due to the interpolation of voxels that are 
spatially distant within the actual sample space during the combined 
operations, as depicted in Extended Data Fig. 2a,b. Thus, in this case, 
we first interpolate the raw skewed data between adjacent planes 
within the proper coordinate system to add additional planes to reduce 
potential artifacts in the following combined operations (Fig. 3d).

Our combined deskew and rotation method yielded nearly iden-
tical results to the same operations performed sequentially (Fig. 3e 
and Extended Data Fig. 2c–e). The combined operation is an order of 
magnitude faster and becomes increasingly more efficient in speed and 
memory compared to sequential operation as the number of frames 
increases. This enables us to process ten times larger data with the 
same computational resources (Fig. 3f,g and Extended Data Fig. 2f,g). 
By additionally combining our fast Tiff reader/writer with combined 
deskew/rotation, we achieve at least 20 times more gain in processing 

speed compared to conventional Tiff and sequential processing, allow-
ing us to process much larger data (Fig. 3h and Extended Data Fig. 2h). 
Our approach is faster than the CPU and GPU implementations in 
pyclesperanto35) without succumbing to GPU memory limitations, 
and also outperforms the implementation in qi2lab-OPM36 (Extended 
Data Fig. 2i). Finally, resampling and cropping, if necessary, can also 
be integrated with deskewing and rotation to optimize processing 
efficiency and minimize storage requirements for intermediate data.

OTF masked RL deconvolution
Deconvolution plays a crucial role in reconstructing the most accurate 
possible representation of the sample from light microscopy images, 
especially for light sheet images with strong side lobes associated with 
higher axial resolution37. Richardson–Lucy (RL) deconvolution is the 
most widely used approach due to its accuracy and robustness38,39. We 
have found that applying RL to the raw light sheet data before combined 
deskew/rotation not only is faster (due to no zero padding) but also 
yields better results with fewer edge artifacts (Extended Data Fig. 3a). 
To do so, the reference point spread function (PSF) used for deconvo-
lution must be either measured in the skewed space as well (Extended 
Data Fig. 3c), or calculated by skewing a PSF acquired in the sample 
Cartesian coordinates (Extended Data Fig. 3b).

RL is an iterative method that typically requires 10–200  
iterations (Biggs accelerated version40) to converge, depend-
ing on the type of light sheet or image modalities. Consequently, 
RL deconvolution is the most computationally intensive step for 
large datasets relative to deskew, rotation and stitching, even with 
GPU acceleration. Despite being notably faster than the traditional 
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Fig. 2 | Performance improvement factors of our C++ Tiff and Zarr readers 
and writers. a, Performance gains of our Cpp-Tiff reader versus the conventional 
Tiff reader in MATLAB and tifffile reader in Python versus the number of frames 
in 3D stacks. b, Performance gains of Cpp-Tiff writer versus the conventional Tiff 
writer in MATLAB and the tifffile writer in Python versus the number of frames in 
3D stacks. c, Performance gains of our Cpp-Zarr reader versus the conventional 
Zarr reader (MATLAB interface of Zarr) and native Zarr in Python versus the 

number of frames in 3D stacks. d, Performance gains of Cpp-Zarr writers versus 
the conventional Zarr writer (MATLAB interface of Zarr) and native Zarr in Python 
versus the number of frames in 3D stacks. The images have a uint16 frame size of 
512 × 1,800 (xy) in all cases. The benchmarks were run independently ten times on 
a 24-core CPU computing node (dual Intel Xeon Gold 6146 CPUs). Data are shown 
as the mean ± s.d.
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RL method, the Wiener–Butterworth (WB) method proposed by  
Guo et al.17 with unmatched backward projector was initially dem-
onstrated on Gaussian light sheets with ellipsoid support, and failed 
to achieve full-resolution reconstruction of LLSM images (Fig. 4a,b 
and Extended Data Fig. 3d–f) since it truncates the optical transfer 
function (OTF) near the edges of its support (Fig. 4a,b and Extended 
Data Fig. 3d–f), resulting in the loss of information. This limitation is 
particularly pronounced for lattice light sheets capable of high axial 
resolution, such as the hexagonal, hexrect and multi-Bessel types37, 
whose OTF supports are nearly rectangular rather than ellipsoidal 
in the xz and yz planes. Another concern is that the WB method sup-
presses high-frequency regions near the border of its back projector’s 
ellipsoid, thereby underweighting or even eliminating high-resolution 
information in the deconvolved images.

To address these issues, inspired by Zeng et al.41 and Guo et al.17, 
we optimized the backward projector by using the convex hull of the 

OTF support to define an apodization function. This function filters 
noise close to the support and eliminates all information beyond it 
(Fig. 4a,b Extended Data Fig. 3d–f and 4a,b), and is applied to the 
Wiener filter (Extended Data Fig. 4c,d). Unlike the WB method, this 
OTF masked Wiener (OMW) technique covers all relevant frequen-
cies in the Fourier space (Fig. 4c,d and Extended Data Fig. 3g,h) and 
achieves full-resolution image reconstruction while maintaining 
rapid convergence speed (Fig. 4e,f and Extended Data Fig. 3i–l). By 
using the OTF support for apodization, the OMW method is generic 
for any PSF. Our specific implementation offers a tenfold speed 
improvement compared to the traditional RL method (Biggs ver-
sion) on both CPUs and GPUs (Fig. 4g,h and Extended Data Fig. 5).  
A detailed comparison with other deconvolution methods is pro-
vided in Supplementary Note 4.

The performance of RL relies crucially on finding an optimum 
number of iterations: too few yields fuzzy images and, in the case 
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Fig. 4 | Fast RL deconvolution. a, Left, theoretical xy and xz PSFs (top, intensity 
γ = 0.5; scale bar, 1 μm) and OTFs (bottom, log-scale; scale bar, 2 μm−1) for 
the multi-Bessel (MB) light sheet with excitation NA 0.43 and annulus NA 
0.40–0.47. Blue represents theoretical support; orange and yellow indicate 
theoretical maximum (orange) and experimental (yellow) envelopes for the 
WB method; magenta indicates experimental envelope for the OMW method. 
Right, illustration of deconvolution of a simulated stripe pattern. The raw and 
deconvolved images with traditional, WB and OMW methods are displayed along 
with their line cuts. The orange lines indicate the theoretical line locations, and 
the blue curves give the actual intensities along the line cuts. b, Similar results for 
a Sinc light sheet (NA 0.32, σNA = 5.0). c,d, illustration of backward projectors (top; 

scale bar, 1 μm), their Fourier spectra (middle; intensity γ = 0.5), and the products 
with forward projectors in Fourier spaces (bottom; intensity γ = 0.5; scale bar, 
1 μm−1) for the MB light sheet (c) and Sinc light sheet (d). e,f, Orthogonal views of 
cell images for raw, traditional RL, WB and OMW methods for the MB light sheet 
(e) and Sinc light sheet (f), with iteration numbers as shown (scale bar, 2 μm). The 
Fourier spectra are shown below each deconvolved image (intensity γ = 0.5; scale 
bar, 1 μm−1). g,h, Relative deconvolution acceleration for traditional RL and OMW 
methods on CPU (g) and GPU (h) (only the deconvolution performance is shown 
in the comparison). Each test in g and h was run independently ten times; data are 
the mean ± s.d.
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of LLSM, incomplete sidelobe collapse; too many amplifies noise 
and potentially collapses and fragments continuous structures as 
represented in the deconvolved image. To find an optimum, we use 
Fourier shell correlation (FSC)42. While the traditional RL method 
often needs tens of iterations to optimize resolution by the FSC metric 

(Supplementary Fig. 1a), the OMW method typically only needs two 
iterations when we use FSC to determine the optimal Wiener parameter 
(Supplementary Fig. 1b,c) for the backward projector for light sheet 
images. Widefield and confocal images, however, may need more 
iterations (Extended Data Fig. 6).
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in registration. c, Raw 2D oblique illumination 'phase' tiles of live HeLa cells 
before processing. d, Final processed phase image after flat-field correction, 
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shown at higher magnification in Extended Data Fig. 7a,b. e, Zoomed-in region 

of d showing retraction fibers. f, xy MIP view of long-term large field-of-view 3D 
imaging of cultured LLC-PK1 cells. Blue denotes H2B-Cherry; orange denotes 
Connexin-Emerald. Intensity γ = 0.5. Boxes labeled g1–g4 and h are the cropped 
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ZarrStitcher: Zarr-based scalable stitching
To image specimens such as organoids, tissues or whole organisms 
larger than the field of view of the microscope, it is necessary to stitch 
together multiple smaller image tiles. Overlapping regions between 
adjacent tiles facilitate precise registration and stitching. With the 
combination of high-resolution light sheet and expansion microscopy, 
thousands of tiles comprising hundreds of terabytes of data may be 
generated. This presents substantial challenges for existing stitching 
software, particularly with respect to the large number of tiles, the 

overall data size and the need for computational efficiency. To address 
these issues, we developed ZarrStitcher, a petabyte-scale framework 
for image stitching.

ZarrStitcher involves three primary steps (Fig. 5a): data format 
conversion, cross-correlation registration and stitching (fusion). We 
first convert tiles into the computationally efficient Zarr format, while 
also applying user-defined preprocessing functions such as flat-field 
correction and data cropping if necessary. Next, we use the normal-
ized cross-correlation algorithm43 to correct for sample movement 
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Fig. 6 | Large-scale processing. a, Schematic of processing steps for large-scale 
stitching, deconvolution and deskew/rotation. For deconvolution, the data are 
split into subvolumes in all three axes with an overlap border size of slightly over 
half of the PSF size. For deskew and rotation, the data are split along the y axis 
with a border of one slice. b, Total run times for large-scale stitching of a single 
volume with size ranging from 1 TiB to 1 PiB. c, Total run times for large-scale 
deconvolution of a single volume with size ranging from 1 TiB to 1 PiB.  

d, Total run times for large-scale deskew and rotation of a single volume  
with size ranging from 1 TiB to 1 PiB. Each benchmark in b–d was repeated three  
times independently. The resulting standard deviations are smaller than the  
data markers in the plots. e, MIP view of the entire fly VNC at 8× expansion.  
Cyan indicates VGlutMI04979-LexA::QFAD, and purple indicates MN-GAL4. Intensity 
γ = 0.5. f–i, MIP views of cropped regions from e. Intensity γ = 0.75 for all  
four regions.
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and stage motion errors and thereby accurately register the relative 
positions of adjacent tiles. We then apply a global optimization to infer 
the optimal shifts (Fig. 5b) of all tiles collectively. This better manages 
potential discrepancies between neighboring tiles than the typical 
‘greedy’ local approach (Fig. 5b). For large volumes, data are often col-
lected in multiple batches, each consisting of multiple tiles, sometimes 
with differing rectangular grids in each batch. In such cases, we imple-
ment two-step optimization, where global optimization is first applied 
to each batch, followed by optimization across batches (Fig. 5b).

The final operation in ZarrStitcher involves stitching the registered 
tiles together into a single unified volume. We developed a scalable 
distributed architecture to this end, with individual tasks allocated to 
different workers for different subregions. The software incorporates 
multiple methods to address overlapping regions, including direct 
merging, mean, median or feather blending. Feather blending, a type 
of weighted averaging with weights determined by distances to the 
border, has shown to be particularly effective44.

ZarrStitcher is substantially faster than BigStitcher-Spark (Spark 
version of BigStitcher)19 (Supplementary Table 2): in the case of the 
108-TiB dataset for the entire mouse brain imaged with 4× expan-
sion using ExA-SPIM (13), ZarrStitcher took 1.4 h using 20 computing 
nodes (480 CPU cores) to assemble the complete volume, 14.3 times 
faster than BigStitcher-Spark. This is an active research area, with 
ongoing development efforts working to close the performance gap 
(Supplementary Table 2). Stitching-spark12, another alternative, is not 
usable at this scale, due to its use of Tiff files that are limited to 4 GB 
in size. ZarrStitcher outperforms BigStitcher-Spark in fusing images 
in cases with extensive overlap, minimizing ghost image artifacts 
caused by imperfect structure matches in overlapping regions (Sup-
plementary Fig. 2).

By integrating fast readers and writers, combined deskew and 
rotation, and ZarrStitcher, we assembled a pipeline with real-time feed-
back during microscopy acquisition that facilitates rapid analysis and 
decision-making. In the online processing mode, this pipeline uses the 
native coordinates for stitching without global registration. It allows 
acquisition errors to be identified mid-stream, so that corrections 
can be made (Supplementary Fig. 3a) and helps determine when the 
specimen has been fully imaged so the acquisition can be concluded 
(Supplementary Fig. 3b). It also enables quick identification of specific 
cells or specific events in a large field of view worthy of more detailed 
investigation (Fig. 5c–e), such as cell fusion (Extended Data Fig. 7a) 
or cell division (Extended Data Fig. 7b and Supplementary Video 1).

We have also coupled our processing pipeline to NVIDIA’s 
multi-GPU IndeX platform45 to enable real-time visualization of 4D 
petabyte-scale data at full resolution (Supplementary Note 5 and 
Supplementary Video 3). This allows us to simultaneously follow the 
dynamics of hundreds to thousands of cells (Fig. 5f and Supplemen-
tary Videos 2 and 3), and identify infrequent or rare events such as 
normal cell divisions or the division of a cell into three daughter cells 
(Fig. 5g,h and Supplementary Videos 2 and 3). Furthermore, it ena-
bles us to explore their 3D high-resolution subcellular structures in 
detail over an extended period (Supplementary Videos 2 and 3). The 
entire processing and imaging pipeline is applicable to many micro-
scope modalities in addition to light sheet microscopy. These include 
high-speed, large field-of-view oblique illumination ‘phase’ imaging 
(Fig. 5c–e and Supplementary Video 1), large volume adaptive optical 
two-photon microscopy (Extended Data Fig. 8 and Supplementary 
Video 4), widefield imaging (Extended Data Fig. 6a,b) and confocal 
imaging (Extended Data Fig. 6c,d).

Strategies for large-scale processing
For large datasets consisting of many tiles, it is most efficient to stitch 
the tiles in skewed space before deconvolution (Fig. 6a), thereby elimi-
nating duplicated effort in overlapping regions as well as potential edge 
artifacts. Deconvolving the stitched volume in skewed coordinates 

immediately thereafter is most efficient (Extended Data Fig. 3a), 
because the data are more compact than after deskewing. Thus, the 
optimal processing sequence is stitching (if necessary), followed by 
deconvolution, and finally combined deskew and rotation (Fig. 6a).

When handling datasets that exceed memory capacity, certain 
processing steps become challenging. ZarrStitcher already enables 
stitching data that exceed memory limitations as long as the interme-
diate steps can be fitted into memory. For stitching with even larger 
tiles, we developed a maximum intensity projection (MIP) slab-based 
stitching technique (Fig. 6a) where tiles are downsampled by different 
factors for different axes (for example, 2× for the xy axes and 100× for 
z) to generate MIP slabs that fit into memory. These slabs are used to 
calculate registration information and estimate distance-based weights 
for feather blending, ensuring accurate stitching of the complete 
dataset (Supplementary Fig. 2b–f).

For deskew, rotation and deconvolution, we distributed subvol-
umes of large data among multiple workers for faster processing and 
merged the results into the final output (Fig. 6a). Zarr seamlessly ena-
bles this process.

In many imaging scenarios, a substantial amount of data beyond 
the boundary of the specimen is empty to ensure complete coverage. 
Processing these empty regions is unnecessarily inefficient, particu-
larly for deconvolution (Supplementary Fig. 4a,b,f). We, therefore, 
define the boundary based on MIPs across all three axes and skip 
the empty regions for large-scale deskew/rotation (Supplementary  
Fig. 4c–e) and deconvolution (Supplementary Fig. 4f–h).

With the above techniques, petabyte-scale processing becomes 
feasible and efficient. Processing time scales linearly for stitching, 
deconvolution and deskew/rotation for data sizes ranging from 1 TiB 
to 1 PiB (Fig. 6b–d).

As an example, we processed a 38-TiB image volume of the  
Drosophila adult ventral nerve cord (VNC) at 8× expansion (Fig. 6e–i 
and Supplementary Video 5). All glutamatergic neurons, which include 
all motor neurons, are shown in cyan, and a subset of VNC neurons that 
include a small number of these motor neurons is shown in purple. 
The ability to image, process and visualize major complete anatomi-
cal regions such as the VNC at nanoscale resolution in multiple colors 
at such speeds opens the door to study the stereotypy and variability 
of neural circuits at high resolution over long distances, across large 
populations, different sexes and multiple species.

Discussion
PetaKit5D achieves real-time processing at the multi-terabyte-per-hour 
acquisition rates of modern scientific cameras, for the extended times 
and/or large volumes that produce petabyte-scale datasets. It can be 
applied to many imaging modalities but includes deskew and rotation 
operations specifically useful in light sheet microscopy.

One limitation of the current pipeline is that it only supports rigid 
registration to compensate for sample translation, which performs 
well in most scenarios. However, it may not be suitable for multi-view 
registration or fusion, image tiles with rotation, shrinking, swelling 
or warping, which would require nonrigid methods such as elastic 
registration46. We anticipate addressing these limitations in future 
versions by developing nonlinear registration and multi-view fusion 
functionalities for petabyte-scale datasets. While zstd compression in 
Zarr is helpful, storing raw and intermediate data for petabyte-scale or 
larger datasets may still require hundreds of terabytes to petabytes of 
storage. Real-time preprocessing of raw data followed by massive com-
pression during acquisition may be necessary to tackle this challenge.

Notably, our software is at least tenfold more efficient compu-
tationally than existing processing solutions, which can be used to 
either increase experimental throughput or decrease the number (and 
hence the cost) of computing nodes needed. In the former case, high 
throughput could prove useful in obtaining high-quality training data 
for deep learning image processing tasks47–49, such as deconvolution50, 
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denoising51 or registration52. In future releases, we aim to support a 
broader range of capabilities to extract biologically meaningful insights 
from petabyte-scale 4D and 5D datasets, including segmentation, clas-
sification, tracking and image restoration by leveraging machine learn-
ing models. The speed of PetaKit5D is also attractive for combining with 
multi-GPU 4D visualization45 to monitor vast image-based biological 
experiments in real time, including high-throughput, high-resolution 
3D drug screening53, large tissue or whole organism spatial transcrip-
tomics54 or long-term imaging of subcellular dynamics in live multicel-
lular organisms55,56.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02475-4.
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Methods
Generic computing framework
Our generic computing framework supports both single machines and 
large-scale Slurm-based computing clusters with CPU and/or GPU node 
configurations. The conductor job orchestrates the processing after it 
receives a collection of function strings (a MATLAB function call or a Bash 
command executed by each worker), input file names, output file names 
and relevant parameters for job settings, such as required memory, 
the number of CPU cores and the system environment. The conductor 
job initially checks for the presence of output files, skipping those that 
already exist. In single-machine setups or when Slurm job submission is 
disabled, the conductor job will sequentially execute tasks. Conversely, 
in cluster environments with the Slurm job scheduler, the conductor job 
formats and submits Slurm commands based on the function strings and 
job parameters, delegating tasks to workers in the cluster. It continuously 
monitors these jobs, ensuring the completion of the tasks. If a worker 
job fails, the conductor job resubmits it with an increased memory and 
CPU resources, often doubling the original specifications, until all tasks 
are completed, or a preset maximum retry limit is reached. Additionally, 
the framework allows users to define a custom configuration file. This 
feature tailors Slurm-related parameters to specific needs, ensuring 
adaptability to various user-defined function strings and compatibility 
with different Slurm-based computing clusters.

Fast Tiff and Zarr readers and writers
Our Tiff reader/writer leverages the capabilities of the libtiff library in 
C++ with the MATLAB MEX interface. When reading, a binary search is 
used to determine the number of z-slices by identifying the last valid 
slice, as there is no direct way to query the number of z-slices in libtiff. 
The OpenMP framework is then used to distribute the reading tasks 
across multiple threads, partitioning the z-slices into evenly sized 
batches (except for the last one). For large 2D images, the Tiff strips 
are partitioned to facilitate multi-threaded reading using the OpenMP 
framework. For the Tiff writer, LZW compression from libtiff is adapted 
to support compression on individual z-slices. This approach enables 
parallel compression across z-slices, leveraging the OpenMP frame-
work for multi-threading. The final compressed data are written to disk 
using a single thread because a Tiff file is a single container, making 
parallel writing of compressed data infeasible.

As MATLAB lacks a native Zarr reader and writer, we developed 
custom C++ code that complies with the Zarr specification (version 2) 
with enhanced parallelization. This code is also integrated with MAT-
LAB through the MEX interface. In our implementation, the OpenMP 
framework is used for both reading and writing to distribute the tasks 
across multiple threads, treating each chunk as a separate task. We 
use the compression algorithms from the Blosc library57, which intro-
duces an additional layer of multi-threading, thus optimizing the use 
of system resources. Zstd compression with a level 1 setting is used 
to achieve an optimal balance of compression ratio and read/write 
time. The high compression ratio of zstd substantially reduces the 
overall data size, reducing network load, particularly in extensive 
high-throughput processing scenarios where the network is often 
the primary bottleneck. By default, we read and write Zarr files in the 
‘Fortran’ (column-major layout) order because MATLAB is based on 
‘Fortran’ order, and converting between ‘C’ (row-major layout) and 
‘Fortran’ orders adds additional overhead.

Combined deskew, rotation, resampling and cropping
We execute deskew, rotate and resampling (if needed) in a single step 
by combining these geometric transformations. The fundamental 
geometric transform involves:

It = FT(I )

where I is the original image, It represents the transformed image,  
FT( ⋅ ) denotes the image warp function corresponding to the geometric 

transformation matrix T. The deskew operator applies a shear transfor-
mation defined by the shear transformation matrix Sds. In the rotation 
process, there are four sub-steps: translating the origin to the image 
center, resampling in the z axis to achieve isotropic voxels, rotating 
along the y axis, and translating the origin back to the starting index. Let 
the transformation matrices be denoted as T1, S, R and T2, respectively. 
If resampling factors are provided (by default as 1), then there are three 
additional sub-steps in resampling: translating the origin to the image 
center, resampling based on the factors provided, and translating the 
origin back to the start index. Let the transformation matrices in these 
sub-steps be TR1, SR and TR2, respectively.

Traditionally, these three steps are executed independently, result-
ing in multiple geometric transformations. However, this incurs sub-
stantial overhead in run time and memory usage, particularly during 
the deskew step. Instead, we combine deskew, rotation and resampling 
into one single step, resulting in a unified affine transformation matrix:

A = Sds(T1SRT2)(TR1SRTR2)

This affine transformation matrix can be directly applied to the raw 
image if the scan step size is sufficiently small. A quantity, denoted as 
‘skew factor’, is defined to describe the relative step size as

fsk = dz cosθ/px

where θ ∈ (−π/2, π/2] is the skewed angle, dz denotes the scan step size, 
and px is the pixel size in the xy plane. If fsk ≤ 2, the direct combined 
processing operates smoothly without noticeable artifacts. For fsk > 2, 
interpolation of the raw data within the skewed space is performed 
before deskew and rotation, taking account of the proper relative posi-
tions of slices. Neighboring slices above and below are utilized to 
interpolate a z-slice. Let ws and wt = 1 − ws represent the normalized 
distances (ranging from 0 to 1) along the z axis between the neighboring 
slices and the target z-slice. In the interpolation, we first create two 
planes aligned with the correct voxel positions of the target z-slice by 
displacing the neighboring slices with a specific distance in the x direc-
tion (wsdz cosθ and wtdz cosθ, respectively). Following this, the target 
z-slice is obtained by linearly interpolating these two planes along the 
z axis with weights 1 − ws and 1 − wt. Because the image warp function 
permits the specification of the output view, we have also incorporated 
a cropping feature by providing a bounding box that allows us to skip 
empty regions or capture specific regions.

For combined deskew and rotation without resampling, the trans-
formation simplifies to a 2D operation in the xz plane. We optimized this 
scenario using SIMD (single instruction, multiple data) programming 
in C++. Our implementation directly supports uint16 input and output 
for both skewed space interpolation and deskew/rotation functions, 
while utilizing single-precision floating-point for intermediate steps. 
This improves throughput and reduces memory usage.

In acquisition modes where the deskew operation is unnecessary 
(for example, objective scan mode of LLSM), the above processing 
can still be applied, provided Sds is replaced with the identity matrix.

Deconvolution
RL deconvolution has the form ofwhere I is the raw data, f is the  
forward projector (that is, the PSF), b is the backward projector and bT 
is the transpose of b, ⊛ denotes the convolution operator and x(k) is the 
deconvolution result in k-th iteration. In traditional RL deconvolution, 
b = f. In the OMW method we use, the backward projector is generated 
with these steps:

1.	 The OTF H of the PSF f is computed, H = ℱ(f), where ℱ(⋅) 
represents the Fourier transform.

2.	 The OTF mask for the OTF support is segmented by applying a 
threshold to the amplitude |H|. The threshold value is deter-
mined by a specified percentile (90% by default) of the  
accumulated sum of sorted values in |H| from high to low.
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3.	 The OTF mask undergoes a smoothing process, retaining 
only the central object, followed by convex hull filling. For 
deskewed space deconvolution, the three major components 
are kept after object smoothing and concatenated into a uni-
fied object along the z axis, followed by convex hull filling.

4.	 The distance matrix D is computed with the image center as 0, 
and the edge of the support as 1 with the ray distance from the 
center to the border of the whole image.

5.	 The distance matrix D is used to calculate the weight matrix W 
with the Hann window function for apodization, as expressed 
by the following formula:

w(x) =
⎧⎪
⎨⎪
⎩

1 x ≤ l

cos2 ( π(x−l)
2(u−l)

) l < x ≤ u

0 x > u

Where l and u are the lower and upper bounds for the relative dis-
tances. By default, l = 0.8 and u = 1 (edge of the support). For skewed 
space deconvolution, the weight matrix is given as a single distance 
matrix by adding the distance matrix from the corresponding three 
components together.

6.	 Calculate Wiener filter F = H∗

|H|2+α
, where α is the Wiener 

parameter, and H* denotes the conjugate transpose of H.
7.	 The backward projection in the Fourier space is expressed as 

B = W ⊙ F, where ⊙ denotes the Hadamard product operator 
(element-wise multiplication), and the backward projector in 
the real space is b = ℱ−1(B), where ℱ−1(⋅) represents the inverse 
Fourier transform.

The FSC method42 is used to determine the optimal number of 
traditional RL iterations and the optimal Wiener parameter in the OMW 
method. Here, the central portion of the volume, which is consistent 
in size across all three axes and covers sufficient content (for exam-
ple, 202 × 202 × 202 for a volume with size 230 × 210 × 202), is used to 
compute the relative resolution. By default, the FSC is calculated with 
a radius of ten pixels and an angle interval of π/12. Cutoff frequencies 
for relative resolution are determined using one-bit thresholding58 by 
default, or can be user-defined. The relative resolution across iterations 
(or different Wiener parameters) is plotted. In ref. 37, it was determined 
that a slightly higher threshold produced better results (Supplemen-
tary Fig. 1a). In practice, the optimal number of RL iterations or the 
Wiener parameter is defined by the value closest to 1.01 times the 
minimum of the curve beyond the point where the curve reaches its 
minimum value.

Stitching
The stitching process requires a CSV meta-file documenting file names 
and corresponding coordinates. The pipeline consists of three steps: 
Tiff to Zarr conversion (or preprocessing), cross-correlation regis-
tration, and parallel block stitching (fusion). The overall stitching 
workflow is governed by a conductor job in the generic computing 
framework. For Tiff to Zarr conversion and/or processing on indi-
vidual tiles, the conductor job distributes tasks to individual worker 
jobs, assigning one worker for each tile. Each worker: (a) reads its data 
using the Cpp-Tiff or Cpp-Zarr (if existing Zarr data need rechunking or 
preprocessing) reader depending on the format; (b) performs optional 
processing such as flipping, cropping, flat-field correction, edge ero-
sion or other user-defined operations; and (c) writes the processed 
data using the Cpp-Zarr writer.

Following file conversion, stitching can be executed directly 
using the input tile coordinates, or normalized cross-correlation reg-
istration43 can be used first to refine and optimize the coordinates 
before stitching. In the registration, the conductor job utilizes coor-
dinate information and tile indices to establish tile grids and identify 

neighboring tiles with overlaps. Cross-correlation registration is per-
formed for overlapping tiles that are direct neighbors, defined as 
those whose tile indices differ by 1, and only in one axis. To optimize 
computing time and memory usage, only the overlapping regions for 
the tiles are loaded, including a buffer size determined by the maxi-
mum allowed shifts along the xyz axes within one tile. We can also 
downsample the overlapping data to achieve faster cross-correlation 
computing. The optimal shift between the two tiles is identified as the 
one exhibiting the maximum correlation within the allowable shift lim-
its. We include a feature to exclude shifts for pairs with the maximum 
correlation values below a user-defined threshold. After completing 
the cross-correlation computation for all pairs of direct neighbor 
tiles, we determine the shifts for all tiles using either a local or a global 
method. The local approach is based on the concept of the minimum 
spanning tree, where the pairs of overlapping tiles are pruned to form 
a tree based on the correlation values from high to low, followed by 
registration with the pairwise optimal shifts. In the global approach, 
the optimal final shifts are calculated from the pairwise relative shifts 
through a nonlinear constrained optimization process:

min
x

∑
i, j

wij ∥ xi − x j − dij∥
2
2

s.t. l < xi − x j < u

where xshift = {x1, …, xn} are the final shifts for the tiles, dij is the pairwise 
relative shift between tile i and j and wij is the weight between tile i and 
j based on the squares of maximum cross-correlation values. l and 
u are the lower and upper bounds for the maximum allowable shift, 
respectively. The goal is to position all tiles at optimal coordinates 
by minimizing the weighted sum of the squared differences between 
their distances and the pairwise relative shifts while adhering to the 
specified maximum allowable shifts.

For images collected by subregions (batches) that have different 
tile grids, we use the global method for tiles within each subregion. Sub-
sequently, the subregions are treated as super nodes, and a nonlinear 
constrained optimization is applied to those nodes, by minimizing the 
sum of squared differences of the centroid distances to the averaged 
shift distances.

min
x

∑
i, j
∥ xri − xrj − dr,ij∥

2
2

s.t. lr < xri − xrj < ur

where xri and xrj are the centroid coordinates for subregions i and j, and 
lr and ur are lower and upper bounds for the maximum allowable shifts 
across subregions, respectively. The averaged shift distance, denoted 
as dr,ij, is determined by a weighted average of the absolute shifts across 
subregions, which is expressed as:

dr,ij =
∑m∈Si ,n∈S j

wmndmn

∑m∈Si ,n∈S j
wmn

where wmn is the cross-correlation value at the optimal shift between 
tiles m ∈ Si, and n ∈ Sj, and Sk denotes the set of tiles in subregion k. 
Once the optimal shifts for the subregions are obtained, the last step 
is to reconstruct the optimal shifts for the tiles within each subregion 
by applying the optimal shifts of the centroid of the subregion to the 
coordinates of the tiles in it. The final optimal shifts are then applied 
to the tile coordinates to determine their final positions.

After registration, the conductor job determines the final stitched 
image size and the specific locations to place the tiles. To facilitate 
parallel stitching, the process is executed region by region in a nono-
verlapping manner. These regions are saved directly as one or more 
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distinct chunk files in Zarr format. For each region, information about 
the tiles therein and their corresponding bounding boxes are stored. 
The conductor job submits stitching tasks to worker jobs. If the region 
comes from one tile, the data for the region are saved directly. If the 
region spans multiple tiles, these must be merged into a single cohesive 
region. For the overlap regions, several blending options are available: 
‘none’, ‘mean’, ‘median’, ‘max’ and ‘feather’. For the ‘none’ option, half of 
the overlap region is taken from each tile. For the ‘mean’, ‘median’ and 
‘max’ options, the voxel values in the stitched region are calculated as 
the mean, median and maximum values from the corresponding voxels 
in the overlapping regions, respectively. Feather blending involves 
calculating the weighted average across the tiles44. The weights are the 
power of the distance transform of the tiles as follows:

wi,m = dα
i,m/ (d

α
i,m + dα

j,n) and w j,n = dα
j,n/ (d

α
i,m + dα

j,n)

Is,l = wi,mIi,m +w j,nI j,n

where di,m and dj,n are distance transforms for voxel m in tile i and voxel 
n in tile j, α is the order (10 by default), Ii and Ij are the intensities for tiles 
i and j, and Is is the intensity for the stitched image s. Here we assume 
voxel m in tile i and voxel n in tile j are fused to voxel l in the stitched 
image. For the distance transform, we utilize a weighted approach, 
applying the distance transform to each z-slice and then applying 
the Tukey window function across z-slices to address the anisotropic 
properties of voxel sizes. When all tiles are the same size, we compute 
the weight matrix for a single tile and apply it across all other tiles in 
the stitching process to save computing time. The final stitched image 
is obtained once all the subvolumes are processed.

Large-scale processing
For stitching involving large tiles where intermediate steps above 
exceed memory capacities, including large, stitched subregions, chal-
lenges arise in the registration and calculation of the distance transfor-
mation for feather blending, due to the need to load large regions or 
tiles into memory. In such cases, we use MIP slabs for the registration 
and distance transform. These are computed across all three axes with 
downsampling factors [Mx, My, Mz, mx, my, mz]. The MIP slab for each spe-
cific axis is computed using the major downsampling factor Mi for that 
axis, and the minor downsampling factors mj and mk for the other two. 
To enrich the signal for cross-correlation in sparse specimens, we use 
maximum pooling, that is, taking the max value in the neighborhood 
for the downsampling. Alternatively, we can also smooth the initial data 
by linear interpolation before maximum pooling. For the registration, 
normalized cross-correlation is calculated between direct neighbor 
tiles using all three MIP slabs, generating three sets of optimal shifts. 
The optimal shifts from the minor axes are then averaged to obtain the 
final optimal shifts, with weights assigned based on the squares of the 
cross-correlation values. For the distance transform, only the MIP slab 
along the z axis (major axis) is used to compute the weights for feather 
blending. In the stitching process, for overlapping regions, the down-
sampled weight regions are upsampled using linear interpolation to 
match the size of the regions in the stitching. The upsampled weights 
are then utilized for feather blending, following the same approach as 
that used for stitching with smaller tiles.

For large-scale deskew and rotation, tasks are divided across the 
y axis based on the size in the x and z axes, with a buffer of one or two 
pixels on both sides in the y axis. These tasks are then allocated to 
individual worker jobs for processing, with the results saved as inde-
pendent Zarr regions on disk. MIP masks can be used to define a tight 
boundary for the object to optimize efficiency in data reading, pro-
cessing and writing. We also perform deskewing and rotation for the 
MIP along the y axis to define the bounding box for the output in the 
xz axes. The geometric transformation function directly relies on this 

bounding box to determine the output view to minimize the empty 
regions, thereby further optimizing processing time, memory and 
storage requirements.

For large-scale deconvolution, tasks are distributed across all three 
axes, ensuring that regions occupy entire chunk files. An additional 
buffer size, set to at least half of the PSF size (plus some extra size, 10 
by default), is included to eliminate edge artifacts. MIP masks are again 
used to define a tight specimen boundary to speed computing. In a 
given task, all three MIP masks for the region are loaded and checked 
for empty ones. If a mask is empty, deconvolution is skipped, resulting 
in an output of zeros for that region.

Image processing and simulations
All images were processed using PetaKit5D. Flat-field correction was 
applied for the large field-of-view cell data (Fig. 5f–h), phase contrast 
data (Fig. 5c–e) and VNC data (Fig. 6e–j) with either experimentally 
collected flat-fields or ones estimated based on the data using BaSiC 
software59.

The images used to benchmark different readers and writ-
ers, deskew/rotation and deconvolution algorithms were gener-
ated by cropping or replicating frames from a uint16 image of size 
512 × 1,800 × 3,400. The stripped line patterns used to compare decon-
volution methods were simulated using the methodology outlined in 
ref. 37. The confocal PSF for the given pinhole size used in the stripped 
line pattern simulation was generated based on the theoretical wide-
field PSF. We benchmarked large-scale stitching from 1 TiB to 1 PiB 
using one channel of the VNC dataset with 1,071 tiles, each sized at 
320 × 1,800 × 17,001. The datasets were created by either including 
specific numbers of tiles or replicating tiles across all three axes based 
on the total data size from 1 TiB to 1 PiB, as specified in Supplementary 
Table 4. We benchmarked large-scale deconvolution and deskew/rota-
tion using the stitched VNC dataset (15,612 × 28,478 × 21,299, uint16) 
by either cropping or replicating the data in all three axes to generate 
the input datasets, as indicated in Supplementary Table 4.

Computing infrastructures
Our computing cluster has 38 CPU/GPU computing nodes: 30 CPU 
nodes (24 nodes with dual Intel Xeon Gold 6146 CPUs, 6 nodes with 
dual Intel Xeon Gold 6342 CPUs) and 8 GPU nodes (3 nodes with dual 
Intel Xeon Silver 4210R and 4 NVIDIA Titan V GPUs each, 4 nodes with 
dual Intel Xeon Gold 6144 and 4 NVIDIA A100 GPUs each, and 1 NVIDIA 
DGX A100 with dual AMD EPYC 7742 CPUs and 8 NVIDIA A100 GPUs). 
The Intel Xeon Gold 6146 CPU and GPU nodes have 512 GB RAM on each 
node, the Intel Xeon Gold 6342 CPU nodes have 1,024 GB RAM on each 
node, and the NVIDIA DGX A100 has 2 TB RAM. The hyperthreading 
on all Intel CPUs was disabled. Benchmarks were performed on hard-
ware aged approximately 3 to 4 years. We have four flash data servers, 
including a 70 TB (SSD, Supermicro), two 300 TB (NVMe, Supermicro) 
and a 1,000 TB parallel file system (VAST Data). We also accessed the  
Perlmutter supercomputer from the National Energy Research Scien-
tific Computing Center (NERSC), with both CPU and GPU nodes. Each 
CPU node is equipped with two AMD EPYC 7713 CPUs and 512 GB RAM; 
each GPU node has a single AMD EPYC 7713 CPU, four NVIDIA A100 
GPUs and 256 or 512 GB RAM.

Microscope hardware
Light sheet imaging was performed on a lattice light sheet micro-
scope comparable to a published system55. Two lasers, 488 nm and 
560 nm (500 mW, MPB Communications 2RU-VFL-P-500-488-B1R, 
and 2RU-VFL-P-1000-560-B1R), were used as the light sources. Water 
immersion excitation (EO, Thorlabs TL20X-MPL) and detection objec-
tives (DO, Zeiss, ×20, 1.0 NA, 1.8 mm FWD, 421452-9800-000) were 
used for imaging with a sCMOS camera (Hamamatsu ORCA Fusion). 
The oblique illumination microscopy was also performed on the  
modified lattice light sheet microscope using a 642-nm laser 
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illuminated through the EO, and imaged using an inverted DO (Zeiss, 
×20, 1.0 NA, 1.8 mm FWD, 421452-9880-000). Widefield and confo-
cal imaging were performed on an Andor BC43 Benchtop Confocal 
Microscope (Oxford Instruments) with a Nikon Plan Apo ×40, 1.25 NA 
SIL Silicone objective (Nikon, MRD73400), a 488-nm laser (Oxford 
Instruments, Andor Borealis) and a modified Andor Zyla sCMOS camera 
(Oxford Instruments, 4.1 MP, 6.5-μm pixel size). Two-photon micros-
copy was performed on a custom-built microscope equipped with 
an upright DO (Zeiss, ×20, 1.0 NA, 1.8-mm FWD, 421452-9880-000), 
pulsed laser (Coherent, Chameleon LS), deformable mirror (ALPAO, 
DM69) and MPPC modules (Hamamatsu, C13366-3050GA and C14455-
3050GA). The imaging conditions for the datasets can be found in 
Supplementary Table 5.

Cell culture and imaging
Pig kidney epithelial cells (LLC-PK1, a gift from M. Davidson at Florida 
State University) cells and HeLa cells were cultured in DMEM with Glu-
taMAX (Gibco, 10566016) supplemented with 10% FBS (Seradigm) in an 
incubator with 5% CO2 at 37 °C and 100% humidity. LLC-PK1 cells stably 
expressing the endoplasmic reticulum marker mEmerald-Calnexin 
and the chromosome marker mCherry-H2B were grown on cover-
slips (Thorlabs, CG15XH) coated with 200-nm diameter fluorescent 
beads (Invitrogen FluoSpheres Carboxylate-Modified Microspheres, 
505/515 nm, F8811). When cells reached 30–80% confluency, they were 
imaged at 37 °C in Leibovitz’s L-15 Medium without Phenol Red (Gibco 
catalog, 21-083-027), with 5% FBS (ATCC SCRR-30- 2020) and an antibi-
otic cocktail consisting of 0.1% ampicillin (Thermo Fisher, 611770250), 
0.1% kanamycin (Thermo Fisher, 11815024) and 0.1% penicillin–strep-
tomycin (Thermo Fisher, 15070063). HeLa cells were cultivated on 
25-mm coverslips until approximately 50% confluency was achieved. 
They were imaged in the same media as above.

Mouse brain sample preparation and imaging
All mouse experiments were conducted at Janelia Research Campus, 
Howard Hughes Medical Institute (HHMI) in accordance with the US 
National Institutes of Health Guide for the Care and Use of Laboratory 
Animals. Procedures and protocols were approved by the Institutional 
Animal Care and Use Committee of the Janelia Research Campus, HHMI. 
Mice were housed in a specific pathogen-free condition on individually 
ventilated racks with 100% outside filtered air in the holding room. 
They were maintained on a 12–12-h light–dark cycle at 20–22 °C with 
30–70% relative humidity.

Transgenic Thy1-YFP-H mice (The Jackson Laboratory) of 8 weeks 
or older with cytosolic expression of yellow fluorescent protein (YFP) 
at high levels in motor, sensory and subsets of central nervous system 
neurons were anesthetized with isoflurane (1–2% by volume in oxygen) 
and placed on a heated blanket. An incision was made on the scalp fol-
lowed by removing of the exposed skull. A cranial window made of a 
single 170-μm-thick coverslip was embedded in the craniotomy. The 
cranial window and a headbar were sealed in place with dental cement 
for subsequent imaging. A direct wavefront sensing method60 was used 
for adaptive optical correction before image acquisition. Aberrations 
at each volumetric tile were independently measured and corrected 
using a pupil conjugated deformable mirror, and imaged at 16 Hz using 
Hamamatsu MPPC modules.

Fly VNC sample preparation and imaging
A genetically modified strain of fruit flies (Drosophila melanogaster) 
was raised on a standard cornmeal-agar-based medium in a con-
trolled environment of 25 °C on a 12–12-h light–dark cycle. On 
the day of eclosion, female flies were collected and group housed 
for 4–6 days. The genotype was VGlutMI04979-LexA:QFAD/MN-GAL4 
(attp40); 13XLexAop-Syn21-mScarle [ JK65C], 20XUAS-Syn21-GFP 
[attp2]/MN-GAL4 [attp2]61,62. Dissection and immunohistochemistry 
of the fly VNC were performed following the protocol in ref. 63 with 

minor modifications. The primary antibodies were chicken anti-GFP 
(1:1,000 dilution; Abcam, ab13970) and rabbit anti-dsRed (1:1,000 
dilution; Takara Bio, 632496). The secondary antibodies were goat 
anti-chicken IgY Alexa Fluor 488 (1:500 dilution; Invitrogen, A11039) 
and goat anti-rabbit IgG Alexa Fluor 568 (1:500 dilution; Invitrogen, 
A11011). VNC samples were prepared for 8× expansion as described in 
ref. 63. The imaging protocol for the expanded VNC sample was identi-
cal to that described in ref. 12.

Visualization and software
Lattice light sheet images were acquired with LabView (National 
Instruments) software. Videos were made with Imaris (Oxford Instru-
ments), Fiji33, Amira (Fisher Scientific), NVIDIA IndeX (NVIDIA) and 
MATLAB R2023a (MathWorks) software. Figures were made with MAT-
LAB R2023a (MathWorks). Python (3.8.8) with Zarr-Python (2.16.1), 
tifffile (2023.7.10), TensorStore (0.1.45), pyclesperanto-prototype 
(0.24.2), qi2lab-OPM (a734490) and clij2-fft (0.26) libraries were used 
for benchmarking image readers and writers, deskew and rotation and 
deconvolution. The traditional RL deconvolution method is an acceler-
ated version of the original RL algorithm40,64. It was implemented and 
adapted from MATLAB’s ‘deconvlucy.m’ with enhancements such as 
GPU computing and customized parameters. Backward projectors for 
the WB deconvolution method were generated using the code from 
https://github.com/eguomin/regDeconProject/. Spark versions of 
BigStitcher (https://github.com/JaneliaSciComp/BigStitcher-Spark/) 
and https://github.com/saalfeldlab/stitching-spark/ were used 
for the stitching comparison. NVIDIA IndeX can be obtained from  
https://developer.nvidia.com/index/ with a free license for noncom-
mercial research and education.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The full datasets for this manuscript exceed the size limits of any data 
repository, but they will be shared upon reasonable request. The 
representative subsets of the full datasets can be downloaded from  
https://doi.org/10.5061/dryad.kh18932g4 (time-lapse live cell imaging 
data, two-photon live mouse brain imaging data, oblique illumination 
’phase’ imaging of HeLa cells, widefield and confocal imaging data)65 
and https://doi.org/10.5061/dryad.jq2bvq8jd (VNC data)66. The cell 
data for deconvolution comparison for light sheet microscopy data are 
from ref. 37, and can be accessed from https://doi.org/10.6078/D1VT6K, 
https://doi.org/10.6078/D1MB09 and https://doi.org/10.6078/
D1GM7G. The stitching comparison dataset (ExA-SPIM) is from ref. 13 
and can be accessed from s3://aind-open-data/exaSPIM 615296 2022-
09-28 11-47-06 using AWS CLI (https://github.com/aws/aws-cli/). AWS 
CLI, users can use the following command: aws s3 cp –no-sign-request  
s3://aind-open-data/exaSPIM_615296_2022-09-28_11-47-06/ /local/
path/to/destination –recursive, or following the instructions at  
https://allenneuraldynamics.github.io/data.html.

Code availability
The source code of the software is available at https://github.com/
abcucberkeley/PetaKit5D/. The version associated with this manuscript 
is available on Zenodo (https://doi.org/10.5281/zenodo.13686337)67. 
We also provide a Python version for the wrapper of the deployed ver-
sion of PetaKit5D at https://github.com/abcucberkeley/PyPetaKit5D/. 
The GUI for the software can be downloaded from https://github.com/
abcucberkeley/PetaKit5D-GUI/. The Parallel Fiji Visualizer plugin can 
be accessed from GitHub (https://github.com/abcucberkeley/Parallel_
Fiji_Visualizer/) or Zenodo (https://doi.org/10.5281/zenodo.7613228)68. 
The code for replicating the benchmark results is available on Zenodo 
(https://doi.org/10.5281/zenodo.13690716)69. The NVIDIA IndeX 
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software can be acquired by following the instructions in Supple-
mentary Note 5. Example code and data for data format conversion 
and visualization are available on Zenodo (https://doi.org/10.5281/
zenodo.12539579)70.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Additional benchmarks for Tiff and Zarr readers 
and writers. a–b, run times of Tiff readers and writers for libtiff (MATLAB), 
tifffile (Python), and Cpp-Tiff versus the number of frames. c–d, run times 
of Zarr readers and writers, comparing the MATLAB interface of Zarr, native 
Zarr (Python), and Cpp-Zarr across different numbers of frames. In panels 
a-d, all images are in unit16 format with a frame size of 512 × 1,800 (xy), and the 
benchmark results are the absolute run times for Fig. 2. e–f, run times of Tiff 
readers and writers for libtiff (MATLAB) and Cpp-Tiff versus the number of 
CPU cores for a unit16 image stack of size 512 × 1,800 × 20,000. g–h, run times 

of Zarr readers and writers for the MATLAB interface of Zarr, and Cpp-Zarr 
versus the number of CPU cores for a unit16 image stack of size 512 × 1,800 × 
20,000. i–k, data size and read/write times versus compression level for lz4 
and zstd compressors for a uint16 image stack of size 512 × 1,800 × 30,000. The 
benchmarks were run ten times independently on a 24-core CPU computing node 
(dual Intel Xeon Gold 6146 CPUs). All 24 cores were allocated for panels a–d and 
i–k, and varying numbers of CPU cores were allocated for panels e–h. Data are 
shown as mean ± s.d. in panels a–h and j–k.
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Extended Data Fig. 2 | Additional benchmarks for deskew and rotation.  
a, sequential deskew/rotation for an image stack with a step size 0.6 μm between 
planes. b–c, combined deskew/rotation and interpolation plus combined 
deskew/rotation for the same image as in panel a. d, orthogonal views of 
combined deskew/rotation for the image in Fig. 3b. e, Difference map between 
sequential and combined deskew/rotation for the images in Fig. 3b and panel d. 
f–h, benchmarks of sequential, combined, and interpolated combined deskew/
rotation versus the number of frames, for run time (f), memory usage (g), and 
overall run time including reading and writing (h). The benchmark results show 
the absolute run times and memory usages for Fig. 3f–h. In groups with larger 
frame numbers, some benchmarks (especially for the sequential method) failed 

due to out-of-memory issues and are not shown in the bar charts. i, benchmarks 
of the combined deskew/rotation methods implemented in pyclesperanto using 
both CPU (‘Cle’) and GPU (‘Cle (GPU)’), qi2lab-OPM (‘OPM’), and our combined 
interpolated approach (‘Combined’). Results are normalized to the mean run 
times of the qi2lab-OPM method. The method in pyclesperanto failed for images 
with 1,500 or more frames. All benchmarks were performed with 32-bit float 
output. We also included results from our method with uint16 output (‘Combined 
(16bit)’). For panels f–i, all images have a uint16 frame size of 512 × 1,800 (xy). Each 
benchmark was run independently ten times on a 24-core CPU computing node 
(dual Intel Xeon Gold 6146 CPUs), except for ‘Cle (GPU)’ which was run on a GPU 
node with 80 GB A100 GPUs. Data are shown as mean ± s.d. in panels f–i.
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Extended Data Fig. 3 | Comparison of deconvolution methods for different 
light sheets. a, comparison of first deskew then deconvolution and rotation 
(center) versus first deconvolution then deskew and rotation (right), alongside 
the raw deskewed and rotated image (left). b–c, microscope PSF as seen 
in deskewed space (top) and skewed space (bottom). d–f, comparison of 
deconvolution of a simulated stripe pattern with different deconvolution 

methods for confocal with 1 Airy unit (AU) (d), harmonic- balanced (HB) HexRect 
light sheet (e), and Gaussian light sheet (f). g–h, illustration of backward 
projectors for different deconvolution methods for HB HexRect (g), and 
Gaussian light sheets (h). i–j, comparison of cell images deconvolved by different 
deconvolution methods for HB HexRect (i) and Gaussian (j) light sheets.  
k–l, Fourier spectra for the raw and deconvolved images in panels i and j.
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Extended Data Fig. 4 | Generation of the OMW backward projector. a–b, OTF support for WB (orange) and OMW (purple) methods for PSFs in deskewed (a) or 
skewed (b) spaces. c, OMW backward projector generation process using the PSF in the deskewed space. d, OMW backward projector generation process using the PSF 
in the skewed space.
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Extended Data Fig. 5 | Additional benchmarks comparing conventional to 
OMW deconvolution. a and d, deconvolution processing times only on GPU (a) 
and CPU (d). b and e, deconvolution plus read/write time on GPU (b) and CPU 
(e). c and f, deconvolution plus combined deskew/rotation time on GPU (c) and 

CPU (f). Each benchmark was run independently ten times on a 24-core CPU 
computing node (dual Intel Xeon Gold 6146 CPUs) for CPU benchmarks (d–f), 
and a GPU node with 80 GB A100 GPUs for GPU benchmarks (a–c). Data are 
shown as mean ± s.d. in all panels.
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Extended Data Fig. 6 | Deconvolution methods comparison for widefield and 
confocal microscopy images. a, comparison of deconvolved orthoslices (scale 
bar: 5 μm) and b, Fourier spectra outputs for a widefield image (intensity γ = 0.5, 
scale bar: 1 μm−1). c, comparison of deconvolved orthoslices (scale bar: 5 μm) and 

d, Fourier spectra outputs for a confocal image (intensity γ = 0.5, scale bar:  
1 μm−1). ‘RL NC’ stands for the non-circulant RL method. The number of iterations 
is noted in the title for each method. For panels b and d, the blue lines indicate the 
theoretical OTF support. For panel d, the OTF support for 1 AU is shown.
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Extended Data Fig. 7 | Time-lapse of cropped regions from the large field of view oblique illumination ‘phase’ imaging of HeLa cells in Fig. 5d and 
Supplementary Video 1. a, the cropped regions for two cells merging over time. b, cropped regions for a dividing cell over time.
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Extended Data Fig. 8 | Application of the processing pipeline to two-photon live imaging of a mouse brain. a, xy MIP of an adaptive optical two-photon image of 
dendrites and axons across a large stitched field of view in the cortex of a live mouse. b–c, comparison of raw and deconvolution images in smaller subregions.  
d, Example of an axon extending across 210 μm field of view.
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