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While much of our knowledge about zirconium corrosion at high temperatures comes from out-of-pile
experiments performed over the last several decades, understanding the behavior of Zr clad in light
water reactor (LWR) conditions requires studying corrosion acceleration under irradiation. In-pile tests
are slow and costly to perform, and only allow limited flexibility when it comes to exploring key pa-
rameters such as dose, dose rate, temperature, and alloy composition. In contrast, proton irradiations
provide a good match for LWR dose rates and for the spatial uniformity of neutron irradiation, and thus
constitute a very robust experimental platform from which to explore these parameters. In this work, we
present an extension of a recently proposed Zr oxidation kinetic model that accounts for acceleration of
oxide layer growth due to irradiation, accompanied by a set of controlled experiments carried out in a
corrosion loop coupled to an accelerator beam line for parameterization and validation. The model in-
cludes radiation enhanced diffusion (RED) of oxygen in the oxide as the main effect of irradiation, and
uses the experimental results of oxide layer growth as a function of dose rate to parameterize the RED
coefficients. We show that these coefficients are strongly dose rate-dependent, which is quantitatively
consistent with a negligible effect of RED on corrosion acceleration in the pre-transition regimes of
samples irradiated under LWR conditions. We also find a smooth transition from columnar to equiaxed
oxide grain growth as the proton irradiation dose rate increases.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the behavior of nuclear-grade Zr alloy fuel clad
under irradiation is key to the safe and reliable operation of light-
water reactors (LWR) in nuclear power plants. Corrosion of the
cladding has been extensively documented, both under in- and out-
of-pile conditions [1-9], although the majority of our under-
standing comes from controlled autoclave and corrosion loop ex-
periments without irradiation in various Zr-based alloys going back
several decades [10—15]. Reactor experiments are costly to perform
due to irradiated specimen handling, low dose rates, and number of
variables implicated. However, from the limited in-pile database
available on Zr-metal clad, it is known that neutron exposure ac-
celerates corrosion compared to the unirradiated case [2,5—7,16].
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As well, irradiation is seen to fundamentally alter microstructure
evolution during the growth of the oxide scale in Zr alloys
[5,16—18]. However, due to the complex corrosion kinetics associ-
ated with LWR conditions, it is difficult to use in-pile data to
separate the effect of the different reactor variables (temperature,
neutron dose and dose rate, water chemistry, alloy composition,
spatial variations, etc) on the material response. Alternatives to in-
pile studies have been proposed, generally based on a combination
of exposure to high temperature water and controlled charged-
particle irradiations [19—21], exploiting the advantageous proper-
ties of ion beams for these types of studies [22—24]. For example,
Woo et al. have carried out ex situ tests consisting of exposing pre-
irradiated Zircaloy-2 to high temperature water followed by elec-
tron irradiation of the pre-corroded alloy [25]. Xu et al. inverted the
order by irradiating Zircaloy-4 specimens with Ar ions and subse-
quently exposing them to sulfuric acid at room temperature [26].
Bererd et al. have studied Zr oxidation in-situ under Xe-ion irradi-
ation to mimic the effect of irradiation of fission products
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originating in the fuel side [27]. Unfortunately, while ion-
irradiation studies provide easy control of irradiation variables,
their quantitative potential is typically constrained by low material
penetration and high irradiation dose rate. More recently, Wang
and Was have taken advantage of the unique properties of proton
irradiation to mimic neutron damage [28] to study corrosion effects
in implanted Zircaloy-4 samples [18]. They have carried out in situ
tests in a specially-designed corrosion loop at temperatures of
310°C. This modified loop allows modification of key experimental
variables such as water temperature, chemistry, and flow speed, as
well as irradiation dose and dose rate [29].

While it is clear that irradiation of Zr alloys accelerates corrosion
in-pile, the mechanisms behind such behavior are yet not clear.
Radiation enhanced diffusion (RED) is a well understood phe-
nomenon in which excess point defects produced by irradiation
couple to matrix or solute atoms, speeding up their motion through
the lattice. Oxygen ion transport is a natural RED candidate as it
proceeds via a vacancy mechanism that is highly susceptible to the
defect concentration. However, no convincing evidence has been
found of the accumulation of point defects in ZrO, [4,7,14] or other
features that would suggest an enhanced defect production.
Another aspect not clarified to date is how pre- and post-transition
kinetics are affected by irradiation. The evidence in some cases
suggests that only the post-transition regime is influenced [31—33],
consistent with the notion that no RED is observed in the oxide
during its initial growth period. However, recent studies paint the
inverse picture, with an apparent corrosion acceleration during the
pre-transition stage [18]. Note that in this paper the term ‘transi-
tion’ is used to refer to the first instance observed experimentally
when the kinetics appears to change from that described by a po-
wer law in time, while the oxide acts as a protective layer, to that
when this protectiveness is lost. Finally, radiolysis is also known to
be enhanced by irradiation [17,30,34—36], generally resulting in an
accelerated corrosion rate by way of an increased concentration of
oxidizing species in the water.

An essential aspect of the investigation of oxidation kinetics
during irradiation is developing reliable models. Phenomenological
models assuming a priori power law kinetics to match experi-
mental observations have been developed over the years
[31,37—40]. These models predict power law pre-transition
behavior (whether it is 1/2 or 1/3 time scaling) by design and
therefore add little to our fundamental understanding of the
oxidation process. Approaches that are formulated starting from
fundamental transport equations and interface physics have sub-
sequently been developed [41—45], shedding light on issues such as
the role of electron transport, effects of charge distributions, tran-
sition from 1/2 to 1/3 time kinetics, etc. Extension to irradiation
conditions has been undertaken typically using empirical correla-
tions linking oxide growth to burnup [37,40,41]. While these
models can yield good quantitative estimates of oxide thickness
growth in a variety of conditions, they do not help us answer any of
the fundamental questions raised above.

In this paper, we present a numerical/experimental study of
Zircaloy-4 oxidation consisting of proton irradiation experiments as
a function of dose rate on specimens in a corrosion loop exposed to
water at 320°C, and an extension of the kinetic oxidation model
presented in Ref. [45] that incorporates RED during the pre-
transition stage. The model is calibrated with the experimental
data, yielding the values of the radiation-enhanced diffusion coef-
ficient as a function of dose rate. The paper is organized as follows.
Next, we discuss the phenomenology of the oxidation kinetics of
Zircaloy-4. Then, we describe the implementation of the RED
extension into the kinetic model, as well as the experimental
apparatus and conditions. We then extract the RED coefficient by
fitting the model to the experimental data points and discuss the

evolution of the alloy microstructure. We conclude with a discus-
sion of the results and their significance for understanding irradi-
ation effects in laboratory irradiation experiments. While we focus
on the behavior of Zr oxide under irradiation, it is worth noting that
irradiation damage in the substrate metal a-Zr has also been
extensively studied and documented [46—50].

2. Methods
2.1. Phenomenology of oxide growth during irradiation

In out-of-pile conditions, the oxygen ions available from the
reduction of water at the clad's outer surface penetrate in the Zr
matrix via diffusion. As the oxygen concentration builds up, the
resulting Zr—O mixtures evolve through different phases, including
solid solutions and intermetallics. As the O:Zr atom ratio reaches
the values of the different line compounds predicted by the phase
diagram, i.e. 2:1 corresponding to Zr,0, 1:1 for the ¢'-ZrO phase,
and 1:2 for ZrO,, well-defined interfaces appear, with clear jumps
in the stoichiometric oxygen concentration across each of them
[51,52]. Analyses of these phases using advanced characterization
techniques suggest very slow oxygen diffusivity through the Zr,0
and ZrO layers, consistent with strong stoichiometric compounds
with very low vacancy concentrations. This is substantiated by their
very small thicknesses (on the order of several tens of nm)
compared to the micron-level thickness of the ZrO, passivating
layer [12,51,53].

Interestingly, the existence of these suboxide phases appears to
be incompatible with the formation of a region near the oxide/
metal interface of tetragonal zirconia (denoted (-ZrO,) [54—56],
although the reasons for this are not clear. While $-ZrO, exists as a
high-temperature phase of Zr oxide, it is known to be stabilized at
reactor temperaturtes by Pilling-Bedworth stresses originating
from the lattice mismatch at the interface (1.56 for Zr alloys). As
well, tetragonal ZrO, is seen to form under slight nonstoichiometric
conditions, as ZrO(;_x) with x <0.02 [57,58]. The substoichiometric
nature of this tetragonal zirconia region is essential to under-
standing the growth kinetics of the oxide layer as a whole, as the
extra oxygen vacancies result in an excess concentration of holes
that leads to the formation of a charge gradient near the interface
[44]. In our previous paper describing the chemical reaction kinetic
model, we have shown that this charge gradient creates a drift for
oxygen diffusion, leading to the peculiar t!/3 dependence of the
oxide growth law in Zr alloys [45]. Away from the interface, ZrO,
exists as a strong line compound in the monoclinic phase (¢-Zr0,).
The oxide scale grows in the form of elongated (columnar) grains
aligned with the radial direction, with the exception of the local
tetragonal layer, where grains are seen to be smaller and more
equiaxed [59,60].

Irradiation fundamentally changes this picture by introducing
vacancies homogeneously across the oxide scale and weakening
the charge gradients. Oxygen transport is then seen to proceed
more uniformly, leading to microstructures that tend to be domi-
nated by more irregular grains without a clear directionality
[12,59—62]. Other key effects of irradiation in Zr alloys are the
amorphization and dissolution (not always connected) of Cr and Fe-
containing precipitates, which is known to accelerate the corrosion
kinetics in the post-transition regime, at least in PWR primary
water [7,63—67]. The cause of this is thought to be related to an
enhanced Fe solute concentration (otherwise trapped in Zr—Fe
intermetallics), as alloys without Fe have been observed to
display lower corrosion rates when subjected to similar environ-
ments [7]. Another factor to keep in mind for in-pile conditions is
an enhanced production of radicals from water molecules due to
radiolysis. However, by far the main effect of ionizing radiation on
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water chemistry has been shown to be the heightened production
of hydrogen (either as a single species or attached to water mole-
cules as H»03), having only a moderate impact on O ion production
[17,34,68,69], particularly in primary water where radiolysis is
suppressed by hydrogen enrichment of the water.

In any case, our one-dimensional kinetic model does not capture
these microstructural and chemical features, focusing instead on
the growth of different layers as affected by enhanced oxygen
diffusion. Here we further reduce the model by eliminating the ZrO
layer due to its limited effect on the overall time evolution of the
oxide layer, as has been shown in the literature [12,51,53], leading
to a system defined only by the ‘oxide’ (8 and « zirconia without
distinction) and the ‘metal’ (including all suboxides and solid so-
lutions). This approach is also consistent with recent observations
of corrosion acceleration in Zircaloy-4 irradiation experiments
where a sharp transition between the oxide film and the metal
layer was seen [33].

2.2. Description of the kinetic model

A detailed description of the model, its implementation, nu-
merical stability, and sensitivity to key parameters has been given
by Reyes et al. [45] and here we give only a brief overview. We use a
one-dimensional Stefan model to predict the evolution of the oxide/
metal interface. This interface moves as a consequence of discon-
tinuities in the oxygen flux resulting from diffusion in different
media. The evolution of the interface, located at coordinate s, is
described by the following equation of motion:

s Jox _ DoxVcox
S= — _ToXx7TroX
2pz; 2pz;

(1)

where Jox is the mass flux, Dox and cox are the oxygen diffusion
coefficient and concentration in ZrO,, respectively, and py, is the
atomic density of the metal. Determination of cox requires solving a
general mass balance equation of the type:

aC,'
ot

U;D;
=v(D;Ve;) + #VC,-VT +

gD,
TV GiVo) (2)

also known as the drift-diffusion equation [70]. The i subindex refers
to the oxide (‘ox’) or the metal (‘m’). The three terms on the r.h.s. of
the equation represent, respectively, Fickian diffusion, thermo-
migration, and electro-migration. D;, U;, and q; are, respectively, the
oxygen diffusivity, oxygen atom migration energy, and charge in
each layer i. ¢ is the electrical potential, which must be determined
separately solving a Poisson equation subjected to a fixed charge
density of pg at the interface. T is the absolute temperature, and k
Boltzmann's constant. Note that the diffusion coefficient is
assumed to follow an Arrhenius form:

U.
Di(T) = Dexp( i)

where D? is the corresponding diffusion prefactor.

Equation (2) can be further simplified by accounting for the
particularities of each layer and the boundary conditions. In this
work, we consider corrosion loops with constant water tempera-
ture, such that the thermomigration term can be neglected. Further,
it is assumed that the metal layer is charge neutral and therefore eq.
(2) reduces to a simple diffusion equation:

aCm
ot

For its part, the evolution equation in the oxide layer is written

= V(DmVem) (3)

as:
ac, D,
Lo V(Do Vi) + q°;§T°"V(c0Xv¢) (4)

where it is assumed that a charge gradient develops due to an
excess oxygen vacancy concentration at the interface associated
with the formation of tetragonal ZrO,_x [42,44,71,72]. A schematic
depiction of the geometry considered in the model is shown in
Fig. 1. Under irradiation, we adopt the standard form for the steady
state radiation enhanced diffusion (RED) coefficient [73,74]:

o =0 (1) = G)(1ed) @

where Uy is the activation energy for oxygen migration, ¢ is the
dose rate, a is a constant, and b is an exponent that reflects the
nature of irradiation defect recombination. When point defects
recombine via correlated (or spontaneous) recombination, or when
they annihilate predominantly at fixed sinks, the RED coefficient is
independent of temperature, and it depends linearly on irradiation
flux, b = 1. Conversely, when point defects annihilate by uncorre-
lated (diffusion mediated) recombination, b = 1/2 [74]. D29 re-
places Dox in eq. (4) under irradiation conditions.

Equations (3) and (4) are linked by the jump in the oxygen
concentration at the interface, i.e.:

Cox (S, t) =Cm(S,t) + 2pz;

where the term 2py, reflects the stoichiometric concentration of
oxygen in the oxide (twice the number of Zr atoms). Note that this
is a dynamic boundary condition in the sense that it depends on s,
which in turn depends on t. The system of equations (1)—(4) is
closed by adding the following boundary conditions to the one just
introduced:

ctm(x,0)=0

cox(0,t) =Gy

H,O — 0%~ +2H*
| | | | |
i
02— Ht (Hz)

monoclinic ZrOs

Water

7Zr-O intermetallics
. . Zr metal
and solid solutions

¥y _ -

Fig. 1. Schematic diagram (not to scale) of the geometry considered in the corrosion
model considered in this work. x is the depth variable, s is the thickness of the oxide
layer, and L is the total thickness of the specimen. The chemical processes occurring at
each interface are shown for reference.
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ocm(L, £) _0
oy

with Cy the free oxygen concentration in the coolant, and L the clad

total thickness.

The above equations are valid during Stage 1, while the oxide
layer grows maintaining its protective properties. However, as the
oxidation process continues, microcracks developed in the oxide
scale created by Pilling-Bedworth stresses grow, leading to porosity
and providing enhanced avenues for O diffusion. This marks the
beginning of Stage 2, where O transport is no longer the rate-
limiting mechanism. Then, one uses the following evolution
equation which replaces eq. (1):

. C()U
s= 6
2pz; ®

where v is the velocity of the viscous flow of water through the
crack network. Upon this transition, the boundary conditions
switch to:

Cox(X<S, t>t12)=Cm(S, t>t12) =Gy

v sets the slope of the linear growth regime when t>t;_,5.
The time evolution of the oxide layer thickness in the pre-
transition regime is ultimately fitted to an expression of the type:

s(t) = ct" (7)

where ¢ and n are a prefactor and the growth exponent, respec-
tively. The transition from Stage 1—2 appears to correlate very
clearly with oxide thickness, suggesting that fragmentation occurs
above a given stress threshold. This thickness, which we term s, is
alloy-dependent but is seen to generally range between 1.0 and 2.5
um [14]. Thus, the relationship between oxide growth and irradi-
ation can be condensed into the following two points:

(i) Aseq.(6) shows, the growth of the oxide layer during Stage 2
does not depend on irradiation dose (inasmuch as it does not
depend on diffusion).

(ii) While irradiation dose is seen to have little effect on s, the
time at which the transition occurs is accelerated with dose
rate [18], as will be shown below.

2.3. Experimental

The purpose of the experiments was (i) to validate the
irradiation-accelerated oxidation kinetic model and act as a plat-
form for fitting some of its key parameters, and (ii) to study the
effect of dose rate on oxide microstructure under dynamic condi-
tions. To mimic operation conditions as closely as possible, the
experimental samples were simultaneously exposed to high-
temperature, high-pressure water (320°, 14 MPa) on one side, and
proton irradiation from the backside of the sample (corresponding
to high vacuum conditions, ~ 10~8 torr).

2.3.1. Specimen design and damage calculations

Proton irradiations were conducted at the Michigan lon Beam
Laboratory, using a proton beam accelerated to 5.4 MeV. To achieve
the highest degree of spatial uniformity in the irradiation, the
specimen thickness was designed to allow the proton beam to pass
completely through and into the water as modeled using the SRIM
program [75]. A 5.4-MeV proton has a range of 146 um, so a sample
thickness of 120 um was chosen to ensure complete penetration by
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Fig. 2. SRIM simulated damage rate, atom deposition and water dose rate plot for a
120 um Zr sample irradiated with 5.4 MeV protons at 320°C in water.

the proton beam. As a result, the damage peak lies in the water as
shown in Fig. 2.

The irradiation of the water must be taken into consideration to
account for radiolysis of corrosion species and their effect on
oxidation Kkinetics. The proton beam deposits approximately
3.9 MeV in the Zr sample, and 1.5 MeV in the water. The range of the
proton in the water was calculated to be approximately 100 um at
320°C. Under a typical proton current density of 2pAjcm?, a
damage rate at the metal/water interface of 7 x 10~7 dpa/s is
calculated, leading to an energy deposition rate in the water of
340 kGy/s, as shown in Fig. 2 .

Energy deposited in the water is expended primarily in radiol-
ysis of water molecules. Although there are several types of
possible radiolytic species, H,O; is known to be longest-lived and
strongly affects the electrochemical corrosion potential. The G-
value for hydrogen peroxide production at 320°C based on the
model given by Elliot and Bartels [78] is G(H20,) = 0.4 x 10~7 mol/
J. The estimated molar concentration of hydrogen peroxide at our
beam density of 2 uA/cm? is then 0.16 uM. As shown by Tachibana
et al. [79], the corrosion potential for hydrogenated water is shifted
from —600 mVsyg (typical for simulated primary water conditions)
to the range — 200-to-+100 mVsyg at 0.16 uM (5 wt ppb) Hz0,.

2.3.2. Beam operation and sample assembly

While raster-scanning an area of approximately 1 cm?, the beam
passes through a set of 6 x 6 mm slit openings, after which the
beam thickness is further reduced by a 2-mm diameter circular
tantalum aperture on the back of the sample mount. This is done to
reduce the activation caused by high energy protons directly hitting
the zirconium mount. An additional center hole 1.6 mm in diameter
was machined in the sample mount to act as the final aperture for
the beam to pass through and hit the specimen, while still being
sufficiently small to allow the mount to support the foil, preventing
any mechanical failure or deformation of the sample. The sample
assembly consists of a flat foil sandwiched between the mount and
the top washer, as shown in Fig. 3. The assembly was then welded
at the perimeter of the sample using a pulse arc welder to create a
watertight seal between the vacuum-facing side and water-facing
side. After the welding process, each welded sample undergoes a

! Details on how to arrive at these numbers can be found in Refs. [76,77].
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Sample Dise

$=1.6 mm
aperture

Fig. 3. Schematic diagram of the sample assembly.

high-pressure water leak test to ensure water tightness and me-
chanical integrity. No sample oxidation was observed after the
welding process.

As shown in Fig. 4, the welded sample assembly is then loaded
between the beam-line flange and the miniature corrosion cell. The
high-pressure water seal was achieved by use of a pre-oxidized
zirconium gasket, which deforms elastically when compressed
between the cell and beam-line flange and is chemically stable
when exposed to high-temperature water. The full vacuum seal was
achieved by a soft copper gasket, which plastically deforms into the
matching grooves.

2.3.3. Post-irradiation characterization

Post-irradiation characterization was carried out on the
irradiated-corroded sample using focused ion beam (FIB) milling to
prepare 100-nm-thick lamellas for transmission electron micro-
scopy (TEM) analysis on a FEI Helios 650 nanolab SEM/FIB. The
irradiated oxide thickness was measured and the oxide micro-
structure was characterized in bright field (BF) and high angle
annular dark field (HAADF) mode using a JEOL 3100R05 scanning
TEM (STEM).

2.4. Model parameterization

An exhaustive parameterization study was conducted in our
previous work for pure Zr, Zircaloy-4, and Zr—Nb alloys [45]. Table 1
gives the values of the relevant material constants for unirradiated
Zirc-4 used to solve egs. (3) and (4) (with the source indicated in

Beamline
Flange

Sample
Muount

Proton Beam

each case). These set the baseline behavior of the alloy, together
with the values of L and T, which are set experimentally to 120 um
and 320°C. The permittivity used here was 3.26 x 1029 [C%-eV~].
Here we fit the values of Cy and pg such that the model predicts a
Stage 1 — 2 transition precisely at a thickness of s* and a time t;_,,
for the unirradiated case, and then assume that these values remain
constant under irradiation. This is intended to limit the effects of
dose rate to the RED coefficient alone, and not muddle the global
behavior by using multiple parameter dependences. We recognize
that this might be a strong assumption in some cases. Beyond that,
the numerical behavior of the model is discussed in detail in ref.
[45]. The values of 6t and dy employed here were obtained from
numerical stability analyses for explicit finite difference dis-
cretizations of eq. (4), and were, respectively, 0.26 h and 0.16 pm.

3. Results

Fig. 5 shows oxide thickness measurements from in-situ irradi-
ation corrosion experiments compared with in-pile data generated
from MATPRO [82]. All experiments were conducted in miniature
corrosion cells (as illustrated in Sec. 2.3) at 320°C, in pure water
with 3 wt parts per million of dissolved hydrogen, for up to 54 days
for the unirradiated exposure, and up to 72h for the in-situ
irradiation-corrosion experiments. The unirradiated oxide growth
rate was in good agreement with out-of-pile data, while the results
from the proton irradiation corrosion experiments reveal signifi-
cantly higher growth rates, up to 13 times, than in the unirradiated
case.

Next, we apply the model described in Sec. 2.2 with the pa-
rameters discussed in Sec. 2.4 to the conditions under which the
experimental data from Fig. 5 were obtained. We have used the
model previously for out-of-pile Zircaloy-4 with good success [45],
and thus we use the same parameters (as given in Table 1), except
the oxygen diffusivity, for which the RED model is now used (cf. Sec.
2.2). The results are provided in Fig. 6, where the experimental data
points are shown along with the model curves for all irradiation
dose rates considered. The values of c and n in eq. (7) for each dose
rate are given in Table 2.

The shaded area in the figure corresponds to Stage 1 growth
when the oxide acts as a protective layer, which ends after the oxide
reaches a thickness of 2.0 um. As mentioned above, we hypothesize
that this threshold remains independent of irradiation dose rate,
which follows from the conjecture that failure is primarily deter-
mined by the accumulation of Pilling-Bedworth stresses [45]. A
feature not immediately evident from the experimental data is
whether the post-transition growth rates above approximately

Sample
Vaguim
10* tarr

(L3100 MPa) N

Fig. 4. Schematic representation of the miniature corrosion cell for the in-situ proton irradiation-corrosion experiment.
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Table 1
Material constants for unirradiated Zircaloy-4 with the source indicated in each case.
s" [um] t1-.2 [days] DY, [mys '] Um [eV] DYy [m*+s7'] Uox [eV] Co [pz] po [C-m~?]
2.1[18] 512 [18] 3.92 x 10-4[80] 2.2[80] 2.76 x 10-6[81] 1.5 [81] 0.87 145.0
10 10-6 dpa-s~! are insensitive to the proton irradiation rate. We will
I —— Out-of-pile kinetics (MATPRO) shed light on this issue below when the results are analyzed in the
| == In-pile kinetics (MATPRO) context of the experimental growth rates.
® Non-irradiated/Autoclaved oxide The RED coefficient can now be extracted from the results
sl A Trradiated oxide/Variable dose rate expt. shown in Fig. 6 by mapping the model parameters to the RED co-
6 efficient in eq. (5). Fig. 7 shows the values at the different dose rates
, 8x10°" dpa’s considered, from which the values of a and b can be extracted. Not
—_ / shown in the range of the figure is the diffusivity for the unirra-
£ /',,’ 3.5x107° dpals diated case, which is also used as a fitting point. The values of D524
Y or ,’,,' 1 1x10°5 dpa/ at 320°C are also provided in Table 2.
E" /j,’ ,/ ’ pass Two analytical functions are plotted in Fig. 7, one bearing a 1/2
2 I,'/;/ exponent and the other being linear. The coefficients a and b in eq.
= e (5)area= 3.0 x 10~ % and b = 1/2 for the blue curve,and a = 4.9 x
ra 4 ;‘:’I/I 10-12, b = 1 for the red one (a in units of m? dpa-s—2). The square-
©) . 4 root dependence provides a reasonable fit to the data in the entire
,;'/2 dose rate range, suggesting perhaps that irradiation defect accu-
155:/ mulation is recombination-controlled for all dose rate experiments
) S . 2.2x1077 dpa/s g i reported here. However, the high dose rate data points are also well
o e 5.1x10 " dpa/s__—-==T represented by a linear law. Linear behavior is expected when
I P — R
,:,’/ /,x’ 7x1078 dpa/s _—::::i::—:""o dpa/s damage accumulation is defect sink-controlled, which could be
o ,=========" plausible in view of the microstructural changes that will be pre-
0 A sented below. In other words, our data cannot conclusively estab-
0 1 2 3 4 5 6 lish the type of regime encountered in the experiments at the
Time (d %) higher dose rates, as arguments for and against a linear law can be

Fig. 5. Experimental measurements of the dependence of oxide layer thickness on
damage rate.
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Fig. 6. Model predictions and associated experimental data (squares) as a function of
dose rate.

Table 2
Coefficients of eq. (7) and RED coefficients (at 320°C) as a function of the proton
irradiation rate.

Dose rate [dpa/s] c n D24 [m?/s]
0.0 0.28 0.33 4.7 x 10-20
50x 108 0.30 0.33 6.4x 1020
7.0x 108 0.31 0.33 7.0x 10-20
22x 1077 1.31 0.33 48x 1018
1.1x 1076 2.12 0.32 21x 107"
35x 10°6 2.55 0.32 3.7x 10717
80x 106 2.91 0.32 57x 1017

made. What can be said with more certainty is that the low dose
rate results are consistent with a recombination-controlled
behavior characterized by long-range diffusion and low sink den-
sities. It must also be noted that eq. (5) has been found to work well
in metals, but there is no evidence that it should also in ceramics as
in this case.

Finally, we study the growth rate of the oxide scale, comparing
model predictions to experimental mass gain measurements,
which are done for Zirc-4 specimens containing 3 ppm of H; at
320°C. Our predictions are obtained by differentiating eq. (7) with
respect to time and calculating the resulting values at 24h of
exposure, consistent with experimental conditions:

$(t, ¢) = cnt" 1

1076
&
‘510—17
€
Q 18
(&) - L
2 10
(0]
o
g -19 :
B 10 3 . \/:; -
4
1020 ‘ Extrgcted (]
1078 1077 1078 1073

Damage Rate [dpa/s]

Fig. 7. Variation of the radiation enhanced diffusivity (RED) with dose rate and fits to
two RED models based on eq. (5). (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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Fig. 8. Oxide scale growth rate as a function of dose rate. The graph shows the
experimental results (of Zircaloy-4 exposed to irradiation for 24 h in pure water with
3wt ppm dissolved H, at a temperature of 320°C), an exponential fit to the mea-
surements (denoted by R(¢)), and predictions from the present model.

The results are given in Fig. 8, where good agreement is found
between the model predictions and the experimental data. In ac-
tuality, this represents an internal consistency check, as the model
predictions themselves at each dose rate derive from oxide layer
thickness measurements (in Fig. 6). It is worth noting that the
corrosion rates shown in the figure for the higher damage rates are
significantly higher those found in-reactor corrosion. This is not
surprising in light of the fact that the corrosion kinetics is always
fastest at the beginning, and our data points are all in the first 24-h
period. More importantly, our corrosion rates at reactor-equivalent
dose rates match well with those found in LWR conditions.

In any case, an important determination can now be inferred
from the figure: the saturation of the growth rate with irradiation
dose rate suggests that in all experiments carried out above ¢ >3 ~
4x10-% dpa-s~!, oxide growth is insensitive to irradiation rate.
Since it was established earlier that breakaway growth (Stage 2)
occurs at the same rate irrespective of dose rate, this behavior
suggests that tests done in this regime result in almost no
discernible transition between Stages 1 and 2.

3.1. Evolution of the microstructure with dose rate

There are two fundamental questions relating irradiation to the
microstructure of the oxide. The first is the shape of the grains. It is
well known that the oxide actually forms by way of nucleation and
growth of grains that grow into the metal. The manner in which
they grow, however, can be noticeably different with and without
irradiation. It is believed that oxygen diffusion through the oxide
—on its way to the oxide/metal interface— proceeds along grain
boundaries, which provide enhanced avenues for atomic transport
compared to the interior of the grain [83,84]. Compressive Pilling-
Bedworth stresses are known to assist in this mechanism by
neutralizing diffusion along the hoop direction. This directionality
may be behind the observation of long columnar grains forming the
oxide layer in out-of-pile conditions, both for Zircaloy-2 and 4
[12,62,85—87]. Under irradiation, the emergence of RED, with
excess vacancies supplying extra oxygen transport inside the
grains, helps relax the compressive stresses in the oxide. This
naturally results in less elongated, more equiaxed grains in the case

2 While this is a generally accepted observation, it does not always apply to
corrosion films obtained under light water reactor irradiation conditions.

of irradiation. Nucleation is another key factor that influences grain
morphology. The enhanced oxygen transport brought about by RED
during irradiation can also accelerate the nucleation rate, and so
long as damage is produced more or less uniformly within the
oxide, this results in smaller grains undergoing isotropic growth.

The role of dose rate, then, would be to provide a transition from
columnar growth to equiaxed grains, with importance shifting
from growth to nucleation. This is indeed confirmed in our char-
acterization of the oxide microstructures presented in Fig. 9. The
figure clearly illustrates the transition from elongated to equiaxed
grain shapes as the irradiation dose rate increases. The images
correspond to exposures of 24 h, which puts these microstructures
mostly in the pre-transition stage.

The second microstructural aspect is the stability of monoclinic
Zr oxide under irradiation. Recent work points to modifications in
the volume fraction of the tetragonal ZrO, phase with irradiation
dose and dose rate, which is generally seen to increase. Monoclinic
ZrO, has been observed to transform into the tetragonal (as well as
cubic) phase in controlled Xe ion irradiations to 2 dpa of fluence at
temperatures as low as 120K [88]. The effect has also been seen
under Ni-ion irradiations at 323 K [89]. While equiaxed grains of
tetragonal ZrO; are routinely seen in contact with the a-Zr matrix
in out-of-pile conditions [58], this evidence points to an inter-
dispersion of these grains in the monoclinic layer under irradiation.
Whether this is a transformation to the tetragonal phase of existing
monoclinic grains or simply a retention of grains formed under
compressive stresses at the interface [90] is not clear, and our
characterization does not provide any additional evidence at this
moment.

4. Discussion

On the experimental side, the main finding of this paper is that
irradiation dose rate has a strong effect on corrosion kinetics. From
a qualitative point of view, this is consistent with a scenario gov-
erned by radiation enhanced diffusion, which supplies excess va-
cancies that accelerate oxygen transport in the oxide. In metals,
RED manifests itself in two clearly differentiated forms: (i) as a
square root dependence of the oxygen diffusion coefficient on
irradiation dose rate at low values of ¢, and (ii) a linear dependence
at higher dose rates. While it is not clear that the same scalings can
be applied to ceramics, here our goal is to simply use a well-
established model of RED and evaluate its applicability to Zr ox-
ide. The existence of different scalings can be correlated with a
gradual transformation of the microstructure from large directional
grains increasingly towards smaller, equiaxed grains as the dose
rate is increased. However, our analysis of the diffusivities at each
rate shown in Fig. 7 cannot conclusively establish this presuppo-
sition, as a curve with a 1/2 exponent —i.e. irradiation damage
controlled by defect recombination— suffices to fit the data in the
entire dose rate range. We are led then to conclude that we do not
have a sufficient amount of data to ascertain whether such a
transition exists.

The question still remains as to how to reconcile the present
results with recent and past in-reactor experiments which lead to
different observations. For example, Kammezind et al. [33] have
carried out irradiations of Zircaloy-4 specimens in PWR conditions
(temperatures between 270 and 350°C, fluxes of 104 (fast,
>1MeV) neutrons per cm? per second). They observed that the
radiation environment had little effect on the pre-transition
corrosion rates, up to fluences on the order of 1022 neutrons per
cm?, indicating that neutron damage had no effect on the oxide
layer itself. Instead, TEM examinations revealed that irradiation
was seen to impact only the underlying base metal. Similar con-
clusions were reached in other studies carried out in PWR
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Fig. 9. Damage rate dependence on microstructural evolution, clearly showing a transition with dose rate from columnar to equiaxed grain growth. The environment side is at the

top of the figures.

conditions [31]. In general, the observed microstructures in these
tests consisted primarily of columnar monoclinic grains elongated
in the growth direction of the oxide layer, with an interspersed
distribution of smaller and more equiaxed grains within the
columnar structure. Interestingly, this is the type of microstructure
observed at low dose rates in our experiments. As Fig. 9a shows, at
dose rates below 10~7 dpa/s, the oxide layer is composed of mostly
large columnar grains, much like those observed in PWR irradia-
tions. Indeed, representative (fast neutron) dose rates at ATR and
HFIR® are on the order 107 dpa/s [91].

Therefore, we are led to surmise the existence of a shift at a
threshold dose rate between a regime where damage is seen to
have little effect on the pre-transition corrosion kinetics but sig-
nificant alterations to the post-transition kinetics (up to 30 x in
some cases [33]), and one characterized by the inverse —i.e. strong
impact on pre-transition and little or no effect on the post-
transition behavior. This would correspond to a fundamental
transformation of the microstructure from a long columnar grain
structure to a smaller equiaxed structure. In turn, this could
potentially indicate a situation where irradiation damage is
controlled by uncorrelated defect recombination shifting to one
controlled by correlated recombination (square root dependence
on dose rate of the RED coefficient) or, alternatively, defect ab-
sorption at grain boundary sinks (linear dependence).

At any rate, our data do not conclusively support that the
mechanisms observed here may also be representative of LWR
(primary water) experiments. Our argument then is that either (i)
the low dose rates typical of light-water reactor conditions are not
sufficient to push the oxide layer microstructure through this
presumed transition, or (ii) our results are not extrapolable in a
meaningful way to reactor conditions. However, our results sys-
tematically varying the ion irradiation dose rate are the first to
capture this behavior, revealing a new regime where corrosion of
Zircaloy (and possibly other derivative alloys) is accelerated during
Stage 1.

5. Conclusions

We end this paper with a list of the most important conclusions:

3 The Advanced Test Reactor and the High-Flux Isotope Reactor, the primary
experimental neutron irradiation facilities in the US.

e Systematic proton irradiations of Zircaloy-4 in an especially-
designed corrosion loop have been carried out at dose rates
between 5 x 10~8 and 8 x 106 dpa-s~! and a temperature of
320°C. The experiments show an acceleration of corrosion rate
of the samples with dose rate, with the growth rate gradually
flattening as the dose rate increases.

A kinetic model of oxide scale formation and growth in Zircaloy
under irradiation that tracks the motion of the oxide/metal
interface governed by oxygen diffusion has been developed. The
model includes concentration driven transport, thermo-
migration, and electro-migration.

e The model is parameterized with both experimental and
computational data. The RED coefficient is directly fitted to the
experimental data obtained in this work.

The model accounts for irradiation by replacing the diffusivity of
oxygen in ZrO, with a radiation enhanced diffusion coefficient
that depends on the irradiation dose rate. The scaling of the RED
coefficient with the irradiation dose rate follows a square root
scaling at the lower dose rates, while at higher dose rates we do
not have sufficient information to decisively establish the
scaling displayed by the data.

Our results show that at dose rates characteristic of light water
power reactors, RED is not a significant corrosion-enhancing
mechanism, in agreement with corrosion data for Zircaloy-4 in
LWR conditions.
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