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ABSTRACT OF THE DISSERTATION 

 

Exploring the Changing Structures of 

Inventor Collaboration in U.S. Cities 

between 1836 and 1975 

 

by 

 

Frank van der Wouden 

Doctor of Philosophy in Geography 

University of California, Los Angeles, 2018 

Professor David L Rigby, Chair 

 

ABSTRACT 

The production of novel knowledge is seen as a key driver of economic development. However, 

knowledge production is unevenly distributed across space, giving rise to patterns of regional 

disparities in economic fortunes. Recent empirical evidence has shown that the production of 

knowledge is increasingly being dominated by collaboration and teamwork. This is explained by 

the rising complexity of knowledge, the production of which demands resources that exceed the 

capacity of individuals. The interactions of collaboration can provide a platform over which 

resources can flow between regions, boosting opportunities for knowledge sharing and learning. 

Yet, to date, there is little long-run, systematic, empirical evidence on the relationship between 

collaboration, geography and knowledge production before 1975.  
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 This dissertation contributes to this gap by examining the structures of inventor 

collaboration in U.S. cities between 1836 and 1975. A new inventor-patent database is 

constructed that identifies all (co-)inventors and their geographical location(s) on more than 3 

million patents granted by the USPTO during this time-period. The results of the analyses 

provide a number of new insights that aid the understanding of the role of inventor collaboration 

in knowledge production and regional economic development. This dissertation presents 

evidence on a significant positive relationship between the complexity of a patent and 

collaboration. Increasing complexity is associated with local collaboration. Geographical 

distance negatively impacts the odds of collaboration, while having a first- or second-order 

relationship boosts these odds. Inventors are more likely to collaborate with individuals with 

similar knowledge portfolios, especially during times of crises. Inventors who moved across 

space or between firms are found to have greater future productivity. These findings can help 

policy makers and corporate executive design policy that fosters interactions that are firm and 

place-specific.    
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Introduction 
 

 

Understanding innovation is key to our understanding of economic development. Individuals 

provide valuable inputs and resources that are required to produce innovations. As the 

technological frontier is being pushed further into technologies of increased complexity, some 

have argued that it becomes increasingly difficult for these individuals to produce novelty and 

thus slows down rates of economic growth (Jones, 2009). This ‘burden of knowledge’ drives 

individuals to deepen their knowledge in specialized areas of expertise and the need to 

collaborate with others (Jones et al., 2008; Wuchty et al., 2007). This changing nature of 

innovation thus has the potential of negatively affecting long-run economic growth.  

 

 In an increasingly globalizing economy, the role of geography in economic processes is 

changing. While consumption and production have traditionally been strongly localized together, 

developments in telecommunication and transportation technologies have allowed for the spatial 

separation of production and consumption. Firms no longer have to be close to their customers to 

serve them. The spatial scales on which economic interactions take place have rapidly grown the 

last centuries, giving rise to global markets, global production chains and international 

competition. Some scholars argue that these trends signify the ‘death of distance’ (Ohmae, 1990) 

and that the world is becoming flat (Friedman, 2005).  

 

 On the other side, individuals and firms are found to be clustering in space. Urbanization 

rates are increasing in virtual all parts of the world (Ravallion et al., 2007; Wang et al., 2012). 

People move to cities for reasons that range from protection against violence to reuniting with 
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family and access to services, but also for economic opportunities. Densely populated areas 

facilitate interactions between economic agents and the trading of services and goods, positively 

affecting the productivity of those located there. The spatial concentration of firms has long been 

recognized (Glaeser, 1999; Malmberg & Maskell, 2002; Marshall, 1920; Porter, 1990; Storper, 

1992). The local presence of economic activity attracts economic agents that benefit from close 

geographical proximity to other agents, setting in motion forces of agglomeration (Duranton & 

Puga, 2004). The strength of these forces fluctuates over space due to the specific quality, 

quantity and relatedness of localized economic activities, as well as the institutionalized practices 

that help shape the economic fortunes of regions. Thus the role of geography in economic 

processes is perhaps best described as a paradox (Porter, 2000). 

 

 Economic production that is knowledge intensive tends to be more spatially concentrated 

than other types of economic processes (Audretsch & Feldman, 1996; Balland et al., 2018). This 

is especially relevant because the production of knowledge might lead to innovations that give 

rise to novel technological trajectories and new economic geographies. From a Schumpeterian 

perspective, innovations are at the forefront of the emergence of new industries that provide 

significant employment opportunities. While processes of globalization have spread employment 

to different locations around the world, knowledge-based production remains highly clustered in 

large part because of its dependence on agglomerations of highly-skilled workers (Cowan, 

David, & Foray, 2000; McInerney, 2002; Zollo & Winter, 2002). These high technology clusters 

have attracted considerable attention for their role in job generation and regional growth 

(Michael E Porter, 1990; Saxenian, 1994).  
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 While the literature around agglomeration is extensive, it is only relatively recently that 

researchers have begun to focus on the micro-connections between economic agents within 

clusters (Gertler, 1995; Giuliani and Bell, 2005; Boschma and Ter Wal, 2007; Giuliani, 2007). 

Most of this work reports on snapshots of linkages that cover only a relatively short time-period. 

Hence, we have little information about the longer run development of collaboration within and 

between urban and regional concentrations of economic activity. In general, we know that 

economic actors rarely act in isolation. Rather, they interact with numerous partners – customers, 

suppliers, collaborators and competitors. These interactions connect agents building teams within 

firms and building inter-firm networks, both local and non-local, across which critical resources 

flow (Powell et al., 1996; Bathelt et al., 2004; Storper and Venables, 2004; Wuchty et al., 2007). 

 

Recent work on spatial differences in knowledge production has explored how networks 

linking inventors influence patent productivity. Fleming et al. (2007) and Lobo and Strumsky 

(2008) explore how the social networks of inventors impact the rate of innovation. Whittington 

et al. (2009) and Breschi and Lenzi (2016) examined interactions between social and spatial 

relationships influencing invention. Cantner and Graf (2004) developed the connection between 

the technological specialization of regions and the structure of cooperation networks. Van der 

Wouden and Rigby (2018) extend this work by examining the link between the degree of 

specialization of U.S. cities and the structure of inventor collaboration networks.   

 

 Analysis of regional economic performance and of the interactions between economic 

agents within urban-regional clusters is typically restricted to relatively short time intervals 

because of the lack of long-run data. Identification of the emergence of regional clusters, of the 
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linkages between actors, and the formation of the institutions in which they operate is difficult 

without detailed historical data, at least in part, because the legacy of past rounds of growth and 

development and inter-regional relationships often go unobserved. This is not to say that 

investigation of geographies of economic activity over shorter time scales are not useful, but 

merely to note that histories of growth and decline and path dependent development exert a long 

reach and shape future economic geographies in complex ways. One attraction of long-run 

historical data is that they offer researchers greater control over the influence of past events, even 

if only through larger numbers of observations. 

 

 Evolutionary economic geography is concerned with understanding the dynamics of 

geographical uneven development. Research in this sub-field would also benefit significantly 

from the availability of historical data. While Census records provide glimpses of the state of the 

U.S. space economy back for more than one hundred years, these data are relatively thin in terms 

of the number of variables available. Economists, geographers, historians and others seeking 

high quality historical data have looked increasingly to patent and inventor records for detailed 

information that might shed light on patterns and processes of regional uneven development. 

 

Patent related research in the U.S. really took off in the 1980s with the development of 

the NBER digital patent database (Jaffe & Trajtenberg, 2002). Individual patent records provide 

detailed information on the nature of new technologies developed, about the timing of such 

developments, the inventors involved, ownership of the patents, and linkages between 

technologies traced through citations. In aggregate the patent data inform researchers about the 

volume of invention over time and through space, about the linkages between patents and 
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inventors, the diffusion of knowledge and so much more (Feldman et al., 2014; Griliches, 1984; 

Hall et al. ,2001; Jaffe et al., 1993; Singh, 2005; Van der Wouden & Rigby, 2018). At the same 

time, patent data usually come with a series of “health warnings” to the researcher that they fail 

to capture all processes of knowledge discovery, that patents vary widely in terms of their 

importance, and that patent linkages, at least in the form of citations, are compromised 

(Griliches, 1990; Hall et al., 2001; Pavitt, 1985). 

 

The widely available NBER digital patent data for the United States only dates back to 

1975. Thus, most recent research on the geography and history of U.S. invention only dates back 

40 years or so. However, newer work has constructed patent data back to 1836, and in some 

cases 1790 (Petralia, Balland, & Rigby, 2016; Ackcigit et al., 2017). While these efforts are 

important, they remain incomplete because they offer only a glimpse of the information that can 

be extracted from historical patent records. As a result, very little is known about the 

characteristics of U.S. knowledge production before 1975, apart from a small number of 

important surveys (see Lamoreaux & Sokoloff, 1996), thus obscuring our long-run 

understanding of the processes of invention and their role in structuring regional development.  

 

 This dissertation contributes to this gap by examining the relationships between regional 

knowledge production, collaboration, geography and mobility among metropolitan inventors on 

U.S. patents between 1836 and 1975. This period is of special interest to economic historians 

because it covers the 1870-1970 “Golden Age” of U.S. knowledge production and invention 

(Akcigit et al., 2017; Gordon, 2016). This period also covers much of the early history of U.S. 
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industrialization and so provides an important perspective on the emergence of an early 

economic geography. 

 

 This dissertation comprises three chapters and a new inventor-patent data-base. The data 

generated for this data-base draws on and extends the publicly available HistPat (Petralia et al., 

2016) database. The HistPat database contains geographical information for historical patents 

provided by the USPTO between 1790 and 1975. Scholars from Utrecht University and UCLA 

scraped the text from digitized historical patent files available on Google Patents and EspaceNet, 

and recorded the first inventor and a geographical location. Unfortunately, HistPat provides no 

information for any possible additional co-inventors.  I contribute to these data by identifying all 

inventors and their geographical locations for each USPTO patent between 1836 and 1975
1
.  

Using the raw scraped text files for the 4,125,734 patents, I examine whether each word in these 

text files is part of a first or family name, or a geographical location in the U.S. The data for the 

lists of names comes from inventor names in HistPat, the digital USPTO patents from 1975 up to 

2005 (Li et al. 2011) and the U.S. Census. The data for the geographical locations come from the 

same sources as well as the U.S. Bureau of Economic Analysis.  

 

 After a (fuzzy) match between a word on the patent text with one of the lists with names 

and/or location occurs, a series of complex algorithms is run. These algorithms can broadly be 

placed in two groups. The first set of algorithms examines the words before and after the 

matched word to determine whether the matched word is a name or geographical location. 

Examining the text before and after the matched word helps to distinguish between name and 

                                                 
1
 I limit my analysis to 1836 because before 1836 the USPTO did not make use of patent examiners. It is generally 

accepted by economic historians that this institutional change has significantly impacted US patenting activity 

(Lamoreaux, Sokoloff, & Sutthiphisal, 2011; Sokoloff, 1988).  
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location. The second set of algorithms record a series of more than 30 statistics for each matched 

word. These statistics are used for the machine learning exercise, discussed below, to determine 

whether an observed name is truly an inventor and not the name of a witness, examiner, 

corporation or reference. Similar operations are undertaken for an observed geographical 

location that is linked to a name, but those statistics are only used to generate a likelihood 

measure of a correct name-location link. 

 

 The next step is to distinguish between inventors and non-inventors in the patent records. 

Non-inventor names can correspond to witnesses, attorneys, companies, references or other 

entities that have name-like characteristics. I use supervised machine learning techniques to 

classify each of the 8 million observed names as either an inventor (1) or a non-inventor (0). The 

details of this approach are outlined in the first chapter of this dissertation. The resulting 

inventor-patent database identifies 1,922,754 inventors, with 4,437,960 observations on 

3,365,253 unique US patents between 1836 and 1975. For all but three years more than 80% of 

the patents are in our database. For a lot of years more than 90% of the patents are included. The 

wide coverage of the annual number of patents and lack of theoretical or empirical motivations 

to expect systematic bias in the unobserved patents suggests that this database is a representative 

sample of the historical USPTO patents granted between 1836 and 1975. This data-base is used 

as the main source of data in this dissertation, and it is put to use to examine three core questions: 

• What are the relationships between complexity, collaboration and geography in 

knowledge production? 

• What mechanisms structure tie-formation between U.S. inventors? 
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• What is the form of long-run patterns of firm and spatial mobility of U.S. inventors, and 

does mobility boost productivity? 

 

 The first chapter explores the relationships between collaboration, geography and 

complexity.  Since 1950 the production of knowledge has become increasingly the product of 

collaboration (Wuchty et al., 2007). The reasons for scientific collaboration are widespread, 

ranging from resource optimization (Eaton, 1951), increased productivity (de Solla Price, 1986), 

access to ideas and resources (Wray, 2002), and to intellectual or social linkages 

(Thorsteinsdottir, 2000). The underlying argument in this field of study is that knowledge 

production is becoming increasingly complicated and requires inputs that exceed that of the 

individual. Large, complex projects cannot be undertaken by a single individual, especially when 

scientists and engineers are becoming increasingly specialized.  

 

 Knowledge is increasingly perceived as sets of embodied capabilities and routines 

constructed through processes of learning (Lundvall & Johnson, 1994; Zollo & Winter, 2002). 

The embodied nature of knowledge restricts its movement across space and between entities. 

This is especially the case for complex ideas resting heavily on non-ubiquitous forms of tacit 

knowledge (Kogut & Zander, 1992; Von Hippel, 1994). To diffuse complex, tacit knowledge 

repeated face-to-face interaction are required, emphasizing the need for co-location of economic 

agents (Singh, 2005; Sorenson, Rivkin, & Fleming, 2006; Storper & Venables, 2004). Complex 

knowledge tends to be limited to larger cities because its production rests heavily on face-to-face 

interaction (Balland et al., 2018). 
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 Scholarly interests in collaboration and complexity rests upon the idea that both have a 

positive association with the value, quality or quantity of production. Collaborative work is 

found to boost creativity (Uzzi & Spiro, 2005), have higher acceptance rates for academic 

publication (Presser, 1980), receive more citations (Glanzel, 2002), raise productivity (Lee & 

Bozeman, 2005) and enables researchers to engage with large research questions (Thagard, 

1997). Similarly, complex knowledge is seen as a crucial source of competitive advantage 

(Kogut & Zander, 1992; Maskell & Malmberg, 1999; Sorenson et al., 2006). Access to complex 

knowledge allows inventors to engage with more cutting-edge activities and capture the benefits 

that might arise from such engagement. These benefits may be monetary within firms and/or 

manifest as increased levels of economic development within society.  

 

 However, empirical evidence on the relationship between complexity and collaboration is 

limited. Long-run, large scale, systematic and historical evidence linking collaboration and 

complexity is lacking, primarily because empirical data on collaboration is absent. The research 

on collaboration tends to focus on relative short time-frames, specific fields or projects. The 

same is true for measures of knowledge complexity. Measures of complexity are also difficult to 

design, construct and operationalize over time and space.  

 

 The primary aim of this chapter is to examine patterns of co-invention on US patents 

along the axes of collaboration, complexity and geography. Using the new inventor-patent data-

base to merge with information on the technology classes of U.S. patents, available from the 

USPTO, measures of complexity for each patent are constructed. The resulting data reveals the 

characteristics of U.S. inventor collaboration on patents of varying complexity, across 
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geographies and at different moments in time. The key results of this study show that (1) 

collaboration has increased sharply since the 1930s; (2) there is a positive and significant 

relationship between complexity and collaboration on US patents; and (3) increasing complexity 

on patents promotes local, within-city collaboration.  

 

 The second chapter investigates the mechanisms that structure collaboration among US 

inventors. Most scholars agree that the change towards science-based knowledge production 

resulted in increased complexity of knowledge production. To produce novel knowledge, the 

increasing complexity requires inputs that exceed the resources of the individual. Some have 

labeled this the ‘burden of knowledge’ and argue it is increasingly becoming more difficult to 

produce innovations – especially for individuals (B F Jones, 2009). Empirical results show that 

knowledge production by scientist and inventors has become gradually more dominated by teams 

since the 1960s (Wuchty, Jones, & Uzzi, 2007).  

 

 There are numerous reasons for knowledge producers to collaborate. Knowledge 

producers might collaborate to optimize resources (Eaton, 1951), increase productivity (Lee & 

Bozeman, 2005; Melin, 2000; Price, 1986) or creativity (Uzzi & Spiro, 2005), access 

complementary ideas (de Solla Price, 1970) or resources (Katz & Martin, 1997; Wray, 2002), or 

for intellectual and social reasons (Edge, 1979; Stokes & Hartley, 1989; Thorsteinsdottir, 2000). 

Collaborative work tends to outperform work produced by single individuals. Collaborative work 

is more frequently cited citations than individual work (Fox, 1991; Frenken, Hölzl, & Vor, 2005; 

Glanzel, 2002; Katz & Martin, 1997; Lindsey, 1978), has higher acceptance rates for academic 

publication (Presser, 1980), and enables researchers to engage with large research questions 
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(Thagard, 1997). Faems et al. (2005) finds that collaborating firms are more likely to produce 

commercially successful products than non-collaborating firms. Katz & Martin (1997) provide a 

critical review of the literature on R&D collaboration. 

 

 Although these reasons to collaborate are well documented and understood, the 

understanding of tie-formation processes in collaborative knowledge production remains 

incomplete. To date, research on tie-formation among knowledge producers has largely focused 

on the firm-, region- or nation-state level, ignoring the level of the individual (a notable 

exception is Crescenzi, Nathan, & Rodríguez-Pose, 2016). In addition, the limited research on 

collaboration between individual knowledge producers has concentrated on the impact of 

individuals’ attributes on tie-formation and ignoring relational, dyadic and triadic processes. As a 

result, little structural empirical evidence on the dyad-level mechanisms governing actual tie-

formation among individual knowledge producers is available. This is surprising, because there 

is a vast social sciences literature that stresses the importance of dyad-level processes on tie-

formation (Borgatti, Mehra, Brass, & Labianca, 2009; Oswald, Clark, & Kelly, 2004). 

  

 This chapter uses the new long-run inventor-patent data to examine the impact of three 

popular dyad-level mechanisms – geographical, social and technological distance – on tie-

formation between individual inventors. Exponential random graph models (ERGMs) are used to 

estimate the impact of these three measures of proximity on the probability of a tie-formation 

between inventors and how this impact has evolved over time. This method has a main 

advantage over conventional statistical methods because ERGMs are designed to deal with the 
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interdependence of observations in relational data and thus produces more accurate estimates on 

the dyad-level mechanisms modelled than conventional statistical models.  

 

 The results are the first long-run systematic empirical evidence on the mechanisms that 

foster and hinder tie-formation between inventors on US patents between 1836 and 1975. The 

key findings are that (1) geographical distance negatively impacts collaboration, that this effect 

has been decreasing over time but has levelled off in the 20
th

 century; (2) technological 

proximity between inventors’ patent portfolio positively impact collaboration, especially in times 

of uncertainty; and (3) social proximity promotes collaboration, but only to a certain extend. 

These results have important implications for the understanding of knowledge production 

because they stress the complexity of innovation dynamics 

 

 The third chapter examines whether mobility raises the productivity of inventors. The 

mobility of skilled workers within the economy has generated significant interest for decades. 

The main concern with mobility focuses on the impacts of the movement of skilled-workers 

across the economy. Scholars have captured the efficiency gains of worker sorting and matching, 

and separated these from the returns to agglomeration (Behrens, Duranton, & Robert-Nicoud, 

2014; Jackson, 2012; Topel & Ward, 1992). In the innovation literature these gains are reflected 

as higher rates of inventor and firm productivity following movement (Hoisl, 2007; Kaiser et al., 

2015).  

 

 The mobility of inventors has attracted attention for its role as drivers of knowledge flows 

and spillovers between firms and over space (Breschi & Lissoni, 2009; Zucker, Darby, & 
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Armstrong, 1998).  At the regional level, the flow of knowledge through the movement of 

technology embodied in skilled workers is associated with high performing regions (Almeida & 

Kogut, 1999; Audretsch & Feldman, 1996; Saxenian, 1994). On the national scale, the 

movement of skilled workers is linked to inventive activities in emerging economies (Nathan, 

2014; Saxenian, 2005, 2007). 

 

 The primary goals of this chapter are to explore long-run shifts in inventor mobility 

between firms and over space and to examine whether that mobility raises the inventor 

productivity. Most studies concerning the mobility of skilled-workers and inventors focus on 

specific growth sectors, regions or limited time-periods. There are no data comparing the rates of 

movement of inventors over the long-run, nor whether mobility raises the productivity of 

inventors. It is important to know whether rates of inventor mobility have significantly changed 

over time and thus whether the flow of knowledge may play as important a role in regional 

economic performance as many suggest. 

 

 

 To date, answering the above questions has been difficult because individual inventors in 

the United States have not been systematically identified and tracked. The new inventor-patent 

data-base constructed for this dissertation allows doing so. In addition, using search, match and 

machine learning techniques the assignee data for these historical patents is extended. This 

allows tracking individual inventors in time and across space and firms. Matching algorithms are 

used to match mobile to non-mobile inventors on a series of covariates, such that there is no 

connection or bias between the treatment variable (mobility) and the control variables. These 

matched samples are used in statistical models examining the effect of firm and spatial mobility 

on the future number of patents produced by inventors. 
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 The key findings are that firm mobility and spatial mobility raise the future productivity 

of inventors. In general, inventors moving in space tend to have greater patent production over 

the following five years than their non-mobile counterparts. This effect is strongest for the last 30 

years of the sample. Similarly, inventors moving between firms produced more patents than 

inventors who stayed with the same firm. This positive effect on productivity is observed for all 

time-periods in the sample, except for the aftermath of the Second World War. Inventors who 

moved both between firms and locations have significantly higher patent productivity than their 

counterparts who moved only between firms or locations. Inventors who moved between firms 

have greater productivity gains compared to their control group than the inventors who moved 

geographically compared to their control group. This suggests that firm mobility impacts 

inventor productivity more than spatial mobility.  

 

 The remainder of this dissertation is organized as follows. The next chapter presents the 

research on the relationships between complexity, collaboration and geography. The third 

chapter examines the mechanisms that structure patterns of collaboration among US inventors. 

The fourth chapter focuses on the relationship between inventor mobility and productivity. The 

last chapter presents a series of conclusions and discussion that points to future research 

possibilities. 
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Chapter 1: Co-inventors on historical US patents: Changing Patterns in 
Collaboration, Complexity and Geography 
 

 

Abstract 
This paper examines co-invention on U.S. patents between 1836 and 1975. The patent data show 

that the production of knowledge is increasingly the result of collaboration. This is explained by 

the rising complexity of knowledge, the production of which demands resources that exceed the 

capacity of individual specialized inventors. To date, there is little long-run, systematic, 

empirical evidence on the relationship between complexity and collaboration. This paper 

contributes to the literature by reporting the growth of inventor collaboration, highlighting the 

timing of that growth and its geography. The paper then explores the statistical relationship 

between inventor collaboration and knowledge complexity. A new inventor-patent database is 

built that identifies all (co-)inventors along with their geographical location for more than 3 

million US patents. The key findings are that (1) collaboration has increased sharply since the 

1930s; (2) there is a positive relationship between complexity and collaboration on US patents; 

and (3) increasing complexity on patents is associated with within-city collaboration. 

 

Introduction 
Recent work shows that since 1950 the production of knowledge has become increasingly the 

output of collaboration (Wuchty et al., 2007). Theories explaining scientific collaboration  are 

extensive, ranging from resource optimization (Eaton, 1951), increased productivity (de Solla 

Price, 1986), access to ideas and resources (Wray, 2002), and to intellectual or social linkages 

(Thorsteinsdottir, 2000). However, the key underlying argument is that knowledge production is 

becoming increasingly complicated and requires inputs that exceed that of the individual. For 



23 

 

example, to generate new insights and knowledge on particle physics The Large Hadron Collider 

project pools resources from over 100 countries, linking thousands of scientists and engineers. 

Such complex projects cannot be undertaken by a single individual, especially when scientists 

and engineers are becoming more specialized.  

 

 The production of knowledge is unevenly distributed across space (Balland & Rigby, 

2017). Increasingly, knowledge is perceived as sets of embodied capabilities and routines 

constructed through processes of learning (Lundvall & Johnson, 1994; Zollo & Winter, 2002). 

The embodied nature of knowledge restricts its movement between entities and across space. 

This is especially the case for complex ideas that rest heavily on non-ubiquitous forms of tacit 

knowledge (Kogut & Zander, 1992; Von Hippel, 1994). The diffusion of complex, tacit 

knowledge requires repeated face-to-face interaction, emphasizing the need for co-location of 

economic agents (Singh, 2005; Sorenson et al., 2006). Because complex knowledge production 

rests heavily on face-to-face interaction, it tends to be limited to larger cities (Balland et al., 

2018) 

    

 The political and scholarly interests in collaboration and complexity rest upon the notion 

that both have a positive relationship with the value, quality or quantity of output. Collaborative 

work is found to spur creativity (Uzzi & Spiro, 2005), receive more citations (Glanzel, 2002), 

have higher acceptance rates for academic publication (Presser, 1980), raise productivity (Lee & 

Bozeman, 2005) and enables researchers to engage with large research questions (Thagard, 

1997). In similar vein, complex knowledge is seen as a key source of competitive advantage 

(Kogut & Zander, 1992; Maskell & Malmberg, 1999; Sorenson et al., 2006). Access to complex 
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knowledge allows inventors to engage with more advanced activities and capture the benefits 

that might arise from such engagement. These benefits may be pecuniary within firms or 

manifest as increased levels of economic development within society.  

 

 Surprisingly, empirical evidence on the relationship between complexity and 

collaboration is limited. There is no long-run, large scale, systematic and historical evidence 

linking collaboration and complexity, primarily because empirical data on collaboration is 

lacking. Most research on collaboration focuses on relative short time-frames, specific fields or 

projects. The same is true for measures of knowledge complexity. Measures of complexity are 

also difficult to design, construct and operationalize over time and space.  

 

 The primary aim of this paper is to examine patterns of co-invention on US patents along 

the axes of collaboration, complexity and geography. Using state-of-the-art machine learning and 

text mining algorithms, I construct a unique inventor-patent database that identifies all (co-

)inventors and their geographical location(s) on more than 3 million patents between 1836 and 

1975. The raw data originate in the United States Patent and Trademark Office (USPTO). I 

merge the inventor collaboration data with information on the technology classes of US patents, 

available from the USPTO, to construct measures of complexity for each patent. The resulting 

data reveals the characteristics of US inventor collaboration on patents of varying complexity, 

across geographies and at different moments in time. The key results of this study show that (1) 

collaboration has increased sharply since the 1930s; (2) there is a positive and significant 

relationship between complexity and collaboration on US patents; and (3) increasing complexity 

on patents is associated with within-city collaboration.  
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 The rest of this paper is structured as follows. In the second section I motivate the 

research and discuss recent work concerning collaboration, knowledge complexity, geography of 

collaboration and economic history. The third section describes the construction of the historical 

long-run U.S. patent-inventor database. Section four presents the empirical analyses that examine 

co-invention on US patents with respect to collaboration, complexity and geography. The final 

section presents and discusses the key findings of this paper.  

2. Literature 

This section reviews relevant literature on collaboration, knowledge complexity, geography of 

collaboration and economic history. Four hypotheses are posited. 

2.1 Collaboration 

Scholars across different disciplines have recognized the increasing presence of collaboration in 

the production of knowledge. Since the 1950s there is empirical evidence that knowledge 

production in general is no longer the product of the ‘lone-wolf’ (Patel, 1973) or individual 

genius (Merton, 1968), but increasingly the outcome of cooperation. This trend is observed in 

almost every field and across the globe (Crescenzi et al.,2016; Hoekman et al., 2010; Jones et al., 

2008; Merton, 1973; Wuchty et al., 2007). 

 

 The increasing complexity of contemporary knowledge production requires inputs that 

exceed that of the individual. De Solla Price (1963) refers to this trend as the shift to ‘big 

science’, emphasizing the increasing importance of complex science-based technologies (Noble, 

1979; Pavitt, 1984). Within such system, knowledge producers might collaborate to optimize 

resources (Eaton, 1951), increase productivity (de Solla Price, 1986), access complementary 
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ideas (de Solla Price, 1970), access to resources (Wray, 2002), or for intellectual or social 

reasons (Thorsteinsdottir, 2000). Jones (2009) argues that the cumulative nature of knowledge 

produces a ‘knowledge burden’ that makes subsequent innovation all the harder. This knowledge 

burden is dampened to some degree by collaboration that spurs creativity (Uzzi & Spiro, 2005). 

 

 Collaboration is positively associated with the value, quality or quantity of output. 

Collaborative work receives more citations than individual work (Frenken et al., 2005; Glanzel, 

2002), it has  higher acceptance rates in academic publication (Presser, 1980), it raises 

productivity (Lee & Bozeman, 2005) and enables researchers to engage with larger research 

questions (Thagard, 1997). Faems et al. (2005) find that collaborating firms are more likely to 

produce commercially successful products than non-collaborating firms. Katz & Martin (1997) 

provide a critical review on research collaboration. 

 

 Analysis of collaboration has been restricted to relatively recent data. Using USPTO 

patent records from 1975 to 1995, Wuchty et al. (2007) report that the average number of 

inventors on patents has been increasing over time. Others report similar findings (Crescenzi et 

al., 2016; Fleming & Frenken, 2007; Lobo & Strumsky, 2008). While this research shows the 

rise of inventor collaboration over the last 30-40 years, we have little information about the 

longer-run history of co-invention. In particular, we do not know if the recent data exhibit a 

significant break from the past. A first research question thus focuses on the long run history of 

collaboration on U.S. patents. In relation to this question, I pose a first hypothesis to examine: 

  

 H1: Collaboration on US patents increased between 1836 and1975 
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2.2 Knowledge complexity 

The production of knowledge has widely been identified as the key input to innovation. It is 

therefore seen as the source of competitive advantage and the driver of long-run economic 

growth (Lucas, 1988; Romer, 1986; Solow, 1957). Combined with a growing awareness of the 

heterogeneity of firms (Nelson & Winter, 1982), this led to the development of knowledge-based 

views of the firm, in which coordination, recombination and integration of the (specialized) 

knowledge of individuals is seen as central to firm performance (Grant, 1996). These views 

rapidly became extended to incorporate the coordination of inter-firm processes, as inter-firm 

collaboration and mobility of employees produced knowledge spillover and knowledge networks 

(Almeida & Kogut, 1999; Kogut, 2000).   

 

 Not all knowledge is equal and some forms of knowledge impact the competitiveness of 

firms and regions more than others (Maskell & Malmberg, 1999). Knowledge can be 

differentiated across multiple dimensions (Winter, 1998). The classic work by Polanyi (1958) 

distinguishes knowledge based on the degree to which it is codifiable. Unlike codified 

knowledge, tacit knowledge is difficult to codify, it is embodied within and across economic 

agents and structures the routines that they employ, often unconsciously. The non-ubiquitous and 

relatively immobile nature of tacit knowledge is widely seen as a critical agent of regional 

competitive advantage in our global, interconnected age (Asheim & Gertler, 2005).  

 

 Knowledge also varies in complexity, though Kogut & Zander (1992) argue that 

complexity is a critical dimension of what makes knowledge tacit. Different perceptions on 

knowledge complexity exist. For Fleming & Sorenson (2001) knowledge complexity can be 
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derived from the interaction between the components it combines and how easily these 

components can be combined. Others argue that knowledge is complex when it can surprise the 

observer and its characteristics cannot simply be linked to its components (Axelrod & Cohen, 

2000; Tsoukas, 2005). From both perspectives, complex knowledge is emergent and more likely 

to rely on tacit, non-ubiquitous knowledge than less complex knowledge. Like tacit knowledge, 

complex ideas tend not to flow readily over space (Balland & Rigby, 2017; Sorenson et al., 

2006).  

 

 Many scholars have argued that knowledge is becoming increasingly complex over time, 

witnessed in the shift to big science and the importance of science-based technologies (Pavitt, 

1984; de Solla Price, 1963). Some stress this is troublesome as producing new knowledge 

becomes increasingly difficult and costly, slowing down economic growth (Jones, 2009). 

Surprisingly, there is very limited empirical evidence that shows whether knowledge is 

becoming more complex. This paper aims to provide such evidence using historical USPTO 

patents. 

These remarks lead to the following hypotheses: 

 

H2: The complexity of patents increased between 1836 and1975 

and, 

H3: There is a positive relationship between knowledge complexity and collaboration  

on US  patents 
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2.3 Geography of collaboration 

 Relational ties can act as links between agents at different geographical locations over 

which knowledge is shared. Knowledge is distributed unevenly across space. This is witnessed 

by localized pockets of specializations across which the quality and value of knowledge varies 

(Balland & Rigby, 2017). Many scholars have emphasized the role of relational linkages and the 

network structures they create in the transfer of knowledge (Broekel et al., 2014; Singh, 2005; 

van Oort & Lambooy, 2014), the diffusion of technological change (Feldman, Kogler, & Rigby, 

2014) and regional knowledge production (Van der Wouden & Rigby, 2018). Indeed, 

collaborations facilitate the flow of knowledge over space and allow for external knowledge 

sourcing.  

 

 Although complex technologies might be more prone to collaboration than less complex 

technologies, the geographical patterns of collaboration on complex and less complex knowledge 

remains unexplored. On the one hand, it is argued that the production of complex knowledge 

relies heavily on face-to-face interactions provided by local buzz – the dynamics and interactions 

that arise from the co-location of a set of related economic agents (Storper & Venables, 2004). 

From this perspective, collaboration on complex knowledge, in comparison to less complex 

knowledge, is more likely to take place by inventors in the same location. On the other hand, 

scholars have argued that the inputs to complex knowledge are highly specialized and produced 

in specific but not necessarily the same locations. Thus, collaboration on complex knowledge 

might span pipelines that connect different knowledge sets at multiple locations (Bathelt et al., 

2004) Following these claims, I construct the following hypothesis: 
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H4: Complexity promotes within-city collaboration rather than between-city 

collaboration 

           

2.4 Economic and institutional context  

The time-window of this study covers events that have significantly impacted the U.S. 

economy
2
. From a technological perspective, the period 1870-1970 is often referred to as the 

“Golden Age” of U.S. invention (Akcigit et al., 2017; Gordon, 2016). Researchers of American 

innovation have long stressed the importance of the institutional environment constructed in the 

US since the 19
th

 century. In general, institutional, political and legal frameworks secure 

property and enforce contracts (Landes, 1969). Intellectual property rights provide incentives to 

explore new technological endeavors and encourage risk-taking behavior because it makes 

economic agents immune from political turmoil, and allows  the appropriation of new 

technologies (North & Thomas, 1973; Rosenberg, 1982).  

 

 In contrast to popular perception, recent research provides evidence of how the rapid 

industrialization of the US in the late 19
th

 century co-occurred with the creation of robust 

democratic governmental institutions (Bensel, 2000; Novak, 2008). Two specific institutions are 

particularly important for technological progress. First, the construction and enforcement of a 

patent system created a market for technologies which allowed inventors to appropriate, sell or 

license their inventions, providing incentives for inventors to specialize in technology 

(Lamoreaux et al., 2013; Lamoreaux & Sokoloff, 1996). Although the United States was not the 

first country to develop such a system, it is generally perceived as constructing the first modern 

                                                 
2
 For example, the American Civil War, First and Second World War and the Great Depression 



31 

 

patent system in 1836
3
. The US established a patent evaluation process conducted by certified 

patent examiners that required detailed information on the specifications of the technology. This 

system created a modern interference and administrative appeal practices (Lamoreaux & 

Sokoloff, 2005). This system also promoted the diffusion of technological knowledge because 

the patent records were publicly available (Lamoreaux & Sokoloff, 1999). In the 1840s networks 

of interconnected inventors, patent agents, lawyers and journals became organized around the 

publicly available patent records and actively diffused the technical knowledge across the 

country (Lamoreaux & Sokoloff, 2002). There are no reports of similar networks emerging in 

19
th

 century England, The Netherlands, France, Germany or other industrializing nations.   

 

 Importantly, under the original 1836 US patent system only individuals were able to 

apply for patents. Firms were not allowed to patent – even if the invention was created in their 

shop (Coriat & Weinstein, 2012). Fisk (1998) argues that part of this legislation rested upon the 

commonly hold notion that an invention is the result a one person’s ‘genius’. To maintain their 

competitive position, firms readily acquired new technological ideas. Patents as tradeable and 

profitable goods in a market for technologies gave rise to specialized ‘entrepreneurial’ inventors. 

These inventors became a great source of technical knowledge, because they made a career 

producing specialized patents and assigning the rights to firms (Lamoreaux & Sokoloff, 2005).   

       

 Second, the construction of the US postal system proved to have a significant impact on 

technological progress. During the late 18
th

 and early 19
th

 century, the postal system rapidly 

extended communications throughout vast country, providing access to information and long-

distance communication for rural and urban populations (John, 2009). Moreover, Khan (2005) 

                                                 
3 US Congress, “An Act to Promote the Progress of Useful Arts”, July 1836 
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notes that inventors could send their patent application to the USPTO at the expense of the postal 

system. Acemoglu et al. (2016) provide empirical evidence that U.S. counties with a post office 

had significantly greater patenting rates than counties without a post office. 

 

         Aside from the construction of the US patent and postal system, transformations of the US 

capitalist system significantly impacted the production of knowledge in the U.S. during the19
th

 

and 20
th

 centuries. The US was transforming from entrepreneurial capitalism to corporate 

capitalism dominated by large firms (Coriat & Weinstein, 2012). With the anti-trust Sherman 

Act of 1890, large corporations faced increased competition and relying on acquiring new 

technologies produced by independent inventors was an increasingly risky strategy. As an 

alternative they began to construct in-house R&D facilities to internalize knowledge production. 

By the early 1900s highly productive inventors increasingly developed long-term relationships 

with firms (Khan & Sokoloff, 2001).  

 

 The construction of in-house R&D labs resulted in questions about ownership of the 

technologies invented. The 1836 Patent Act allowed only individuals to apply for patents. This 

began to change with the emergence of the ‘shop right’ doctrine in the 1880s. Shop rights’ 

granted employees ownership of patents they invented, but employers were granted licenses to 

the patented technology as compensation for their funding of R&D.  

 By the early 1900s it was clear that the romantic vision of the lone genius was essentially 

dead. New technologies became increasingly complicated, demanding multiple and different 

skills and resources. Fisk (1998, p.1141) argues that “collective research and development had 

become the source of most inventions long before courts and the public finally realized it”. This 
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new reality challenged the individualistic paradigm of US patent law and set in motion the move 

towards the second major change in US patent legislation. In 1933 the US Supreme Court ruled 

that ‘the respective rights and obligations of employer and employee, touching an invention 

conceived by the latter, spring from the contract of employment’ (in Coriat & Weinstein, 2012). 

Thus, if employees were ‘hired-to-invent’, the product of their labor belongs to the firm (Coriat 

& Weinstein, 2012). Indeed, inventors recruited by corporates became colleagues and possible 

collaborators instead of competitors. 

 

 Finally, developments in transportation and telecommunication technologies rapidly 

changed in the 19
th

 and 20
th

 century. By the end of the 19
th

 century railroads had extended across 

most of the US, fostering economic growth by connecting markets (Atack et al., 2010) and 

inventive activities (Perlman, 2016). The extension of the railroad was accompanied by the 

telegraph, making use of the railroads’ right-of-way. According to Nonnenmacher (2001) the 

travel time from New York to Chicago was 2 days in 1860, but the telegraph allowed for almost 

instant messaging. Around 1920, US commercial air travel took off, significantly cutting down 

the travel time between cities. Perhaps even more importantly, the early 1900s are characterized 

by the rapid introduction of the telephone and automobile. By 1930 around 40% of the US 

homes had a telephone connection and 20% of American families had an automobile (Fischer & 

Carroll, 1988). These developments make it significantly easier to collaborate in general and 

across distance.  

3. Data  

In this section I discuss the methods used to construct the collaboration data.  
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3.1 Searching, matching and recording 

The data generated for this work extends the publicly available HistPat database (Petralia, 

Balland, & Rigby, 2016). HistPat contains geographical information for historical patents 

provided by the USPTO between 1790 and 1975. The authors of HistPat scraped the text from 

digitized historical patent files available on Google Patents and EspaceNet, and recorded the first 

inventor and a geographical location. Unfortunately, HistPat provides no information for any 

possible additional co-inventors.   

 

 I contribute to these data by identifying all inventors and their geographical locations for 

each USPTO patent between 1836 and 1975
4
. I use the raw scraped text files for the 4,125,734 

patents and examine whether each word in these text files is part of a first or family name, or a 

geographical location in the US. Figure 1 shows an example of the data for USPTO patent 1. The 

upper part of the image is the scanned copy of the original document. The lower part is the 

digitized version of this document, published by Google Patents. The data for the lists of first and 

family names comes from the digital USPTO patents from 1975 up to 2005 (Lai et al., 2012), 

inventor names in HistPat, and the U.S. Census. The data for the geographical locations come 

from the same sources as well as the U.S. Bureau of Economic Analysis.  

 

 Once a (fuzzy) match between a word on the patent text with one of the lists with names 

and/or location occurs, a series of complex algorithms is run. These algorithms can broadly be 

placed in two groups. The first set examines the words before and after the matched word to 

determine whether the matched word is a name or geographical location. For example, the word 

                                                 
4
 The analysis is limited to 1836 because before 1836 the USPTO did not make use of patent examiners. It 

is generally accepted that this institutional change has significantly impacted US patenting activity 

(Lamoreaux et al., 2011; Sokoloff, 1988).  
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“EDISON” can be matched to inventor “THOMAS EDISON”, but also to the location 

“EDISON, NEW JERSEY”. Examining the text before and after the matched word helps to 

distinguish between name and location. At the end of this stage, more than 8 million names on 

the 4.1 million patents are recorded. For about 60% of these observed names, the algorithms also 

associate a location. All the words that are categorized as geographical locations but can’t be 

linked to a name on the patent are ignored. 

 

 The second set of algorithms record a series of more than 30 statistics for each matched 

word. These statistics are used for the machine learning exercise, discussed below, to determine 

whether an observed name is truly an inventor and not a witness, examiner, corporation or 

reference. For instance, once a name is observed I count how often it occurs in the text, how far 

the name is from the word “inventor”, how many words are between the observed name and the 

top and bottom of the patent, if it is adjacent to corporate identifications, and so on. Similar 

operations are undertaken for an observed geographical location that is linked to a name, but 

those statistics are only used to generate a likelihood measure of a correct name-location link. 

Table 1 shows a truncated snapshot of the resulting database. Note that the algorithms have been 

able to match words from the digitized text in Figure 1 to actual names and locations. At this 

stage it is still unclear whether the observed name corresponds to an inventor. 

 

 A great challenge for the data construction is to deal with the poor quality of the scanned 

documents and the corresponding digital text. As is clear from Figure 1, for some patents the text 

is difficult to read and match against names and locations. To overcome this issue I employ 

fuzzy match algorithms if an exact match is not found. Fuzzy matching allows for deviation 
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between two text strings to be matched. This means that if a word is misspelled, a positive match 

may still occur if it meets a set of criteria. However, it also allows for false-positive matches 

when words are matched that are not the same. Given the poor quality of the digital text for some 

years, the benefits of fuzzy matching outweigh the drawbacks. Moreover, the machine learning 

exercises described below limit the potential impact of false-positive matches because they are 

less likely to correspond to an inventor and thus ignored.       

 

Figure 1. Photo-copied and digitized records of USPTO patent US1A 

 

 

 
Source: Google Patents  
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Table 1. Observed names and geographical locations for USPTO patents (truncated) 

 

Patent Year Inventor City County State A1 Ax 

1 1836 JOHN RUGGLES THOMASTON KNOX MAINE 3 … 
2 1836 GEORGE SULLIVAN    0 … 
2 1836 FRANKLIN BROWN    0 … 
3 1838 FOWLER M RAY CATSKILL  NEW YORK -48 … 
4 1853 BENJAMIN IRVING GREENPOINT KINGS NEW YORK 0 … 

 

3.2 Supervised machine learning to identify inventors 

The next step is to distinguish between inventors and non-inventors in the data. Non-inventor 

names can correspond to other entities that have name-like characteristics. I use supervised 

machine learning techniques to classify each of the 8 million observed names as either an 

inventor (1) or a non-inventor (0). Each observed name on a patent is called an event. 

 

 Supervised binary classification machine learning techniques typically make use of three 

different datasets. The training set contains verified or known information on events and the 

corresponding characteristics. Machine learning algorithms can be deployed to this dataset to 

model and learn which characteristics and structure among the characteristics can best classify 

events. A validation dataset is used to tune the parameters of the candidate models and prevent 

the models from over-fitting to the training data. A test set is used to evaluate the performance of 

the candidate models and select the final model. The final model is used to predict for the events 

in the mined data whether each event is an inventor.  

 

 To construct the co-inventor data I follow this approach, but have to overcome a key 

issue. The only training data that can be built for this project is the first inventor data recorded in 
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HistPat
5
. If the observed names generated by my algorithms match with the inventor listed on the 

patent recorded in HistPat, I have a known event for an inventor with corresponding 

characteristics
6
. However, I have no information on known events for non-inventors. Such 

situations call for a one-class classifier approach in which only characteristics for one class can 

be learned. Events are classified into that class if their characteristics fit into the class given 

certain thresholds derived from distributions in the training data. The quality and accuracy of 

one-class classifiers often underperform multi-class classifiers because they can only learn from 

one class. Based on this underperformance, I follow a multi-class classifying approach
7
. 

  

 To be able to continue with the multi-class classifier approach, I generate artificial known 

event data for non-inventors. From the work of Wuchty et al (2007) it is reasonable to assume 

that the average number of inventors on a patent is well below two before 1975. Given the fact 

that there are more than 8 million events for 4 million patents a fair share of events are non-

inventors. I take a random sample of 30% of all the events that are not known inventors and 

artificially classify them in my training data as known non-inventors
8
. The remaining 70% of not 

known inventors are excluded from the training data. The training data now consists of over 3 

million events with known inventors and more than 1 million artificial known non-inventors. 

                                                 
5 Inventor names are scraped from Google Patents and EspaceNet, cleaned and formatted by Petralia et al. 

(2016).  

 
6 This assumes that the scraped inventor names recorded in the HistPat data are correct. 
 
7 Several extensive one-class classifier algorithms are ran. None came close to the performance of multi-

class classifiers.  

 
8 In larger samples the quality of my trained models decreases, which indicates that I falsely artificially 

assign inventors to the non-inventor class, obscuring the learning process. In smaller samples there are not 

enough correct non-inventors artificially assigned as non-inventor in the training data to learn from.  



39 

 

Although there might be false-negative events in the latter group (non-inventors that are actually 

inventors), the majority of events provide data to learn from.    

 

 There is an expansive battery of machine learning algorithms available that can be used 

to train a supervised binary classification model. It is uncertain which algorithm will generate the 

best performance. Therefore, it is best practice to explore a variety of algorithms and examine 

fitness criteria. Some of the algorithms have multiple parameters that can be optimized to 

increase the performance of the models. This leads to extensive searches through parameter 

space and requires considerable computing power. For the exercise described below, I’ve 

experimented with support vector machine, generalized linear models, random forest, gradient 

boosting machine and deep learning algorithms, as well as stacking and ensemble techniques. 

The final, best performing trained model is fit using gradient boosting machine algorithms. This 

model performed the best on the test data with an average accuracy of 83%. Other algorithms 

that produced interesting results were deep learning and random forest algorithms, with 

respectively 79% and 80% accuracy.  

  

 It is important to note that after the trained model is applied on the mined data, roughly 

200 results have been randomly selected and manually compared to the original photo-copied 

patents available online
9
. Although a handful of patents were incorrectly classified, the analysis 

of these patents didn’t show any sign of a systematic bias.  

 

 The next step is to disambiguate the inventors that are assigned to patents and assign each 

unique inventor with a classifying ID. This means that we want to know if Josephine Bruin 

                                                 
9
 Available at http://google.patents.com 
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living in Los Angeles in 1919 is the same inventor as Josephine Bruin living in Los Angeles in 

1921. To deal with such issues, many disambiguation approaches have been developed. I loosely 

follow Ventura et al. (2015) and construct a supervised machine learning approach. This 

approach involves a training, validation and test dataset. My training, validation and test datasets 

come from the Lai et al. (2012) database that holds information on disambiguated inventors on 

US patents between 1975 and 2012. All databases hold event-level information with a series of 

similar characteristics. Importantly, the training database also holds information about which 

inventors are the same.  

 The disambiguation approach involves the following steps: 

1. Select characteristics on which pairs of inventors are to be compared. These 

characteristics need to occur in all databases. I select: first name, middle name, last name, 

year, city, county, state, technology class (1:5).  

2. Generate for each of the characteristics a method to compare similarity between two 

strings (i.e. how similar are ‘Josephine’ and ‘Josphine’) 

3. Pair-wise compare all inventors in the training database and find the similarity score for 

each of the characteristics. This results in a vector of 12 similarity scores. 

4. For each pair-wise comparison in the training database we know whether the pair of 

inventors are the same unique inventor. We can classify the vector of similarity scores 

with a 1 if the compared inventors are the same and 0 if they are not. 

5. Train a series of supervised machine learning algorithms to ‘learn’ which combination of 

similarity characteristics correspond to pair-wise comparison of identical (1) and different 

inventors (0). The trained model can be used to predict whether a vector of similarity 

characteristics correspond to the same inventor or not. 
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6. Repeat step 3 and 4 for the newly mined event data. This results in hundreds of millions 

of vectors with similarity characteristics.  

7. Apply the model generated in step 5 to the data generated in step 6. 

8. Assign the inventors that are identified as the same individuals with the same ID.  

 

 The resulting inventor-patent database identifies 1,922,754 inventors, with 4,437,960 

observations on 3,365,253 unique US patents between 1836 and 1975. Figure 2 shows the annual 

number of patents granted by the USPTO (left axis) and the percentage of the patents for which 

at least one inventor is identified. For all but three years more than 80% of the patents are in the 

database. For a lot of years more than 90% of the patents are included. The wide coverage of the 

annual number of patents and lack of theoretical or empirical motivations to expect systematic 

bias in the unobserved patents suggests that this database is a representative sample of the 

historical USPTO patents granted between 1836 and 1975. 

 

 Table 2 shows the top 10 inventors identified by these exercises. All names in this table 

are well known inventors. Surprisingly, Thomas A. Edison is not the most observed inventor in 

our dataset, although he is generally regarded as the most inventive individual in the late 19
th

 and 

early 20
th

 century. Times Magazine assigns 1,093 patents to his name, while I only find 536 

patents on which he is an inventor. In our dataset, Francis H. Richard is found on 737 patents, 

while Times Magazine connects him to 894 patents. There are multiple reasons why Edison 

might not be identified on the other 500 or so patents: the quality of the OCR was too poor to 

read or due to usages of different spellings of his name (i.e. Thomas Alva Edison). More likely, it 

is because his name occurs on a disproportionally large numbers of patents as a reference (thus 
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not an inventor). The machine learning algorithms have learned this and require a large number 

of positive scores to identify “Thomas Edison” as an inventor. If the algorithms can’t construct 

these scores in the patent document, the probability that “Thomas Edison” is truly an inventor of 

the patent is assessed as low by the learning algorithm and is not regarded as such. 

 

Figure 2. Annual number of patents granted and percentage of patents in database  

  
Table 2. Top 10 inventors in database 

Number Name Patents 

1 Francis H. Richard 738 

2 Thomas A. Edison 536 

3 Elihu Thomson 516 

4 John F. O’Connor 511 

5 Edwin H. Land 465 

6 Clyde C. Farmer 458 

7 George Albert Lyon 453 

8 Carleton Ellis 481 

9 Louis H. Morin 406 

10 Thomas E. Murray 388 
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4. Empirical results 

In this section, the patterns of collaboration on U.S. patents since 1836 are explored. 

4.1 Collaboration on US patents 

Collaboration on US patents has increased over time. Figure 3 indicates that up until the 1920s, 

annual shares of collaborated patents remained below 20 percent. After the 1920s a rapid 

increase occurs and by the 1960s about 30 percent of patents result from collaboration. By the 

1970s, inventor collaborations generate about 40 percent of patents. 

 

 The average number of inventors on patents has also expanded over time. Figure 4 shows 

the annual average number of inventors on patents. The average number of inventors remained 

rather stable up until the 1940s. After 1940, a constant increase in the number of inventors on 

patents is observed. By 1970 the average team size is 1.6 inventors per patent compared with a 

value of about 1.2 inventors at the end of the 19
th

 century. The same trend is observed if only 

collaborated patents are considered. The in-set in Figure 4 shows that in the 1940s the average 

team-size increases rapidly. This indicates that the increase in the average number of inventors 

on a patent is not produced by fluctuations in the annual number of single inventors, but can be 

attributed to growing average team-sizes. Note that the average numbers in the late 1970s 

presented here align with the average numbers documented for 1975 in Wuchty et al. (2007).  

  

 There is variation in the average number of inventors on patents in different technological 

categories. Patent examiners classify each patent into one or more classes depending on the 

knowledge claims that they make. There are 438 different primary level technology classes in the 

USPTO into which all utility patents are placed. Hall et al. (2001) produced a classification that 
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aggregates these 438 classes into 6 broad categories. Figure 5 plots the annual average number of 

inventors on patents for each of these broad categories. In early years there is substantial 

variation because of the low number of counts. By the late 19
th

 century the ‘Computer & 

Communication’ category has the highest average number of inventors on patents – the era of 

great advances in telecommunication technologies. Throughout the entire 20
th

 century, patents in 

the ‘Chemical’ category have the highest average number of inventors. Together these findings 

confirm hypothesis 1.  
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Figure 3. Share of collaborated patents between 1836 and 1975. 

 
Figure 4. Average number of inventors on a patent between 1836 and 1975 
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Figure 5. Average number of inventors per patent by technological category 
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4.2 Complexity and collaboration 

Did the complexity of patents increase over time, and is there a positive relationship between 

complexity and collaboration? The complexity measure of a patent originates in  Fleming & 

Sorenson (2001) and is based on the NK model of Kauffman (1993). Patent examiners classify 

each patent into technological classes. The patents examined here are classified in 438 primary 

classes that can be disaggregated to 10,562 mainline classes and 153,305 sub-classes. The 

proposed complexity measure is based on the ease with which each mainline class can be 

recombined with other mainline classes on a single patent. That is, if a mainline class co-occurs 

relatively often with other mainline classes on a patent, the ease of recombination of the 

technology class is relatively high. Formally, the ease of recombination of mainline class i is 

defined as 

 

 Ei  =  
𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑀𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑤𝑖𝑡ℎ 𝑀𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝐶𝑙𝑎𝑠𝑠 𝑖

𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑖𝑛 𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝑐𝑙𝑎𝑠𝑠 𝑖
 

(1) 

 

 However, the number of mainline classes increases rapidly over time and has an 

influence on the ease of recombination measure. Patents in 1840 are classified in 372 mainline 

classes, while the 1970 patents are classified across 7,722 mainline classes. This means that the 

ease of recombination of technology classes in early year patents is relatively low compared to 

later year patents because there are fewer classes in which a patent can be located.  As a control I 

construct a standardizing coefficient S defined as 

 

 
𝑆 =  

𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛 1975

𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡
 

(2) 
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This standardizing coefficient S is used to get an adjusted ease of recombination score 

 

 𝐸𝐴𝑖 = 𝐸𝑖 ∗ 𝑆 (3) 

 

The complexity of patent l is defined as the number of mainline classes divided by the sum of the 

ease of recombination of these classes. Formally,  

 

 Complexity l  =  
𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑀𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 𝑜𝑛 𝑃𝑎𝑡𝑒𝑛𝑡 𝑙

∑ 𝐸𝐴𝑖𝑙∈𝑖
 

(4) 

 

The ease of recombination for a patent is calculated using a ten-year window of patent 

recombinations recorded up to the grant year date of the focal patents. Thus, the ease of 

recombination for technology classes shifts over time. 

 

 Figure 6 shows that the average complexity of patents has been increasing over time. 

From the inset in Figure 6, average complexity increases through the nineteenth century, it falls 

from the 1920s to the mid-1940s and then increases once more. The period of initial increase 

matches the Second Industrial Revolution (Gordon, 2016) and the ‘golden age’ of US invention 

(Akcigit et al., 2017). The drop in complexity after the 1920s aligns with the Great Depression. 

The increase in complexity after the 1940s supports the literature on the shift to ‘big science’ in 

knowledge production.   

 

 The average complexity of patents varies by technological category. Up until the 1900s 

the ‘Drugs & Medical’ patents were most complex. Throughout the first half of the 20
th

 century, 

patents in the ‘Computers & Communication’ category are most complex, on average. This 
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period marks the development of the telephone. The decrease after the 1920s might be the result 

of the ‘exhaustion’ of this generation of communication technologies. Indeed, complexity rises 

again in the 1950s when computer related technologies begin to emerge. In the 1960s 

‘Chemicals’ patents are on average the most complex. Patents in the ‘Drugs & Medical’ category 

increased in complexity when the production of drugs became integrated with synthetic organic 

chemistry post World War II (Drews, 2000). Remarkably, the ‘Mechanical’ category has long 

been among the most complex categories, but they fell to the bottom of the complexity ranking 

by 1975. 

 

 The average complexity of the patent stock across US cities increased over time. 

Complex knowledge is unevenly distributed across space (Balland & Rigby, 2017). In Figure 7, 

the annual distribution of US cities in terms of average complexity of their patent portfolio is 

shown
10

. The figure shows clear variation amongst the complexity of the patent portfolio of US 

metropolitan region. Over time the complexity of patents produced in US cities is increasing as 

the distributions of cities shift to the right. Moreover, the spread in the distribution is increasing 

over time. At the end of the 19
th

 century the coefficient of variance was below 0.5, while in the 

1970s it reached to above 0.60. These findings confirm hypothesis 2: Complexity on patents 

increased on average between 1836 and 1975. 

 

  

                                                 
10 Outliers are not plotted because these are generated by extremely low patent counts. 
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Figure 6. Average complexity per technological category between 1836 and 1975 

 

    
 

Figure 7. Distribution of US cities based on average complexity of patents between 1836 and 1975  
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 A key question in this paper is whether there is a positive relationship between 

complexity and collaboration at the patent level. Figure 8 plots the annual correlation between 

complexity and collaboration on all patents by year. There is no consistent and systematic 

relationship between complexity and collaboration before the 1920s. During the 1920s there is a 

significant but weak negative relationship between complexity and collaboration. Interestingly, 

from 1940s onwards there is an increasing, significant and positive relationship, suggesting that 

increasing complexity is associated with a higher probability of a patent being produced through 

collaboration. 

 
Figure 8. Correlation between complexity and collaboration on a patent between 1836 and 1975  

 

 

 These ideas are extended in models examining the relationship between complexity and 

collaboration in more detail. The dependent variable is a binary variable indicating whether the 

patent is the result of a collaboration (1) or not (0). The key independent variable of interest is 
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the complexity of the patent. A positive and significant coefficient for this variable would 

confirm hypothesis 3. The second independent variable is a time dummy that indicates whether 

the patent is produced after 1940 (1) or not (0). This cut-off point is chosen because Figure 6 

indicates there is a structural relationship between complexity and collaboration that after 1940s. 

Given the evidence on increasing collaboration and complexity over time presented above, a 

positive coefficient is expected. The third independent variable is the interaction between 

complexity and the time dummy. A positive coefficient for this interaction term means that for 

patents produced after 1940 the effect of complexity on collaboration increases with the 

estimated coefficient for the interaction term. In addition, city, year and technology fixed effects 

are estimated. It is plausible that specific city-level characteristics promote or hinder 

collaboration. Year fixed effects control for time-specific shocks in collaboration across the 

sample. Technology fixed effects control for the possible heterogeneity in the propensity to 

collaborate across the technology classes. The sample size is restricted to patents for which the 

primary inventor (first listed on patent) lives in a MSA to satisfy the requirements for the city 

fixed effects variable. The unit of analysis is the patent. Each patent is assigned to the MSA of 

the first inventor.     

 

 The results presented in Table 3 indicate that there is indeed a positive and significant 

relationship between complexity and collaboration on a patent, regardless of the model 

specifications. Model 1 is the baseline model and reports a positive and significant relationship 

between complexity and collaboration. A coefficient of β1 = 0.15 means that a doubling of 

complexity is associated with a change in the odds of a patent being a collaboration by a factor of 

1.11. In models 2-5, technology, city and year fixed effects are introduced. The estimated 
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coefficient for complexity remains roughly of the same value and is positive and significant. The 

estimated coefficient for complexity on collaboration remains positive and significant. In model 

7 the time dummy and its interaction with complexity are introduced. The coefficient for 

complexity now corresponds to patents produced before 1940 (dummy variable is zero). For 

these patents, controlling for city and technology fixed effects, a coefficient of β1 = 0.06 means 

that a doubling of complexity is associated with a change in the odds that a patent is the result of 

a collaboration by a factor of 1.04. The positive and significant coefficient for the time dummy 

(0.54) means that the odds of a patent being collaborated changes by 1.72 if a patent is produced 

after 1940. The significant coefficient for the interaction term between the time dummy and 

complexity indicates that when a patent is produced after 1940 (dummy variable is one) the 

effect of complexity on collaboration increases with 0.03 to 0.09 in terms of log-odds. A 

doubling of complexity for patents produced after 1940 is associated with a change in the odds 

that a patent is a collaboration by the factor of 1.06. This indicates that the positive relationship 

between complexity and collaboration is significantly stronger for patents produced after 1940, 

than patents produced before 1940. The results presented here confirm hypothesis 3.  

 

 

  



54 

 

Table 3. Results of Logistic Regression with fixed effects 

Dependent variable Is patent collaborated (0/1)? 

 
(1) (2) (3) (4) (5) (6) (7) 

Complexity (log) 0.15
***

 0.10
***

 0.15
***

 0.10
***

 0.10
***

 0.03
***

 0.06
***

 

 
(0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) 

Dummy > 1940 
      

0.54
***

 

       
(0.01) 

Complexity (log) * 

Dummy > 1940       
0.03

***
 

       
(0.004) 

Fixed Effects:        

- Technology        

- City        

- Year        

Constant -1.23
***

 -1.78
***

 -1.38
***

 -1.78
***

 -1.09
***

 -1.88
***

 -1.95
***

 

 
(0.003) (0.02) (0.12) (0.13) (0.42) (0.44) (0.13) 

N 1,764,733 1,764,733 1,764,733 1,764,733 1,764,733 1,764,733 1,764,733 

Log Likelihood -997,311 -976,428 -993,265 -974,236 -972,388 -960,603 -964,249 

AIC 1,994,627 1,953,710 1,987,254 1,950,044 1,945,059 1,923,055 1,930,074 

*
p < .1; 

**
p < .05; 

***
p < .01    

 

4.3 Geography of co-invention 

In this section the distinct patterns to the geography of co-invention on historical US patents is 

described. The data used consist only of patents for which all inventors reside in an MSA. 

Geographical distance of co-invention 

Figure 9 reveals that the geographic distance between co-inventors on US patents has been 

steadily growing over time. The distance of between-city collaboration is measured as the 

straight-line distance in kilometers between the centers of U.S. metropolitan regions. In the 

1850s, the average distance between co-inventors was below 10 kilometers. This increased to 

around 20 kilometers in the 1930s and to 40 kilometers in the 1960s. This increase in the 
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distance between collaborators can result from two processes: a greater share of patents resulting 

from collaborations between inventors in different cities, or inventors collaborate over greater 

distance. I find evidence for both processes. Between-city collaboration increased from roughly 1 

percent through the 19
th

 century up to 5 percent in 1975. In addition, the average distance of 

collaboration involving multiple cities has doubled from about 200 kilometers in the mid-19
th

 

century to about 400 kilometers in 1975. Interestingly, the average distance of between-city co-

inventors decreased slightly after the 1940s. This might have to do with the dynamics in the 

spatial distribution of the US population and inventors as the US expanded to the West. Such 

expansion might have spurred coast-to-coast collaboration in the initial years of settlement in the 

West, but leveled off as the population on the west-coast started to grow and provided an 

increasing local pool of possible (co-)inventors, limiting the need for coast-to-coast 

collaboration.     

 

Figure 9. Average distance (KM) on patents in 1836-1975 
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Internal and external collaboration: 

Collaboration occurs primarily by inventors from the same city. Figure 10 shows that within-city 

collaboration (blue dots) is also growing at a faster rate than between-city collaboration (red 

dots). Single authorship of patents is dropping rapidly across all categories. Although these 

general trends are observed across the six aggregate technology categories, patterns of 

collaboration differ across categories. For instance, since the 1940s the majority of patents in the 

‘Chemicals’ category result from collaboration, whereas it takes until the 1960s for patents in the 

‘Mechanicals’ and ‘Others’ category to reach this point.
11

 

 

Figure 10. Collaboration across technology categories 

 

                                                 
11 Note that the data in Figure 10 slightly deviates from Figure 1. The data used to construct Figure 1 

includes patents with inventors who reside in non-MSA locations. These are excluded from Figure 10 

because these are not metropolitan areas.  
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Geography, collaboration and complexity 

Does complexity promote within-city collaboration rather than between-city collaboration? 

Although complex patents are found to result from collaboration more frequently than less 

complex patents, the geographical patterns of these collaborations are unknown. Collaboration 

on complex patents might be local, because its construction relies more heavily on repeated face-

to-face interactions and trust than less complex patents do. On the other hand, inputs to complex 

patents might be heavily localized in pockets of specialization. Inventors collaborating on 

complex patents might span between-city pipelines, connecting different pockets of 

specialization. 

 To examine this issue, logistic regression models are estimated. The unit of analysis is the 

patent. Only collaborated patents are selected for which all inventors resided in an MSA. The 

dependent variable is whether a patent is the result of a within-city (0) or between-city (1) 

collaboration. The key independent variable is the Complexity of a patent. The second 

independent variable is the number of inventors on a patent. Larger teams might be more likely 

to be non-local. If a patent becomes complex to the point that inputs from a larger number of 

inventors is needed, the probability this input is not found locally might increase too. That is, 

increasing number of inventors on patents might raise the probability of between-city 

collaboration. Finally, city, year and technology fixed effects are estimated to control for specific 

unobserved characteristics that promote or hinder between or within-city collaboration. 

 To isolate the effect of complexity on collaboration, a matching procedure has been 

undertaken in which between-city collaborated patents are matched to within-city collaborated 

patents with identical scores on the number of inventors, city, year and primary technology class 

of the patent. Unmatched observations are dropped. The outcome is a sample with balanced 



58 

 

covariates for within and between-city collaborated patents, except for the Complexity score. 

Complexity is now closer to being independent of the covariates. This makes estimates based on 

the parametric analyses less reliant on model specifications and modeling choices (Ho et al., 

2007).  

 The results presented in Table 4 demonstrate a negative and significant relationship 

between complexity and between-city collaboration. In model 1 the estimated coefficient for 

Complexity (β1 = -0.03) indicates that a doubling of the complexity score is associated with an 

expected change in the odds of between-city collaboration by a factor of 0.98. Similar results are 

found for models with different specifications. In model 6, controlling for Number of Inventors 

and year, city and technology fixed effects, the estimated coefficient for Complexity (β1 = -0.16) 

suggest that a doubling of the complexity score is associated with an expected change in the odds 

of between-city collaboration by a factor of 0.89. The Number of Inventors on a patent has a 

positive and significant relationship with between-city collaboration in all models. In model 6, 

controlling for Complexity and year, city and technology fixed effects, the estimated coefficient 

for Number of Inventors (β2 = 0.43) indicates that for every additional inventor on the patent, the 

odds of the patent being collaborated between cities increases by 1.54. These findings confirm 

hypothesis 4: Increasing complexity on patents is associated with within-city collaboration. 
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Table 4. Statistical models on within- and between-city collaboration 

 
Dependent variable: Patent is collaborated within-city (0) or between-city (1) 

 
(1) (2) (3) (4) (5) (6) 

Complexity (log) -0.08
***

 -0.07
***

 -0.32
***

 -0.18
***

 -0.15
***

 -0.16
***

 

 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Number of Inventors 0.34
***

 0.38
***

 0.36
***

 0.38
***

 0.40
***

 0.43
***

 

 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Fixed effects:       

- City        

- Year       

- Technology        

       

Constant -2.14
***

 -1.80
***

 -1.78
*** 

-2.29
***

 -2.15
*** 

-1.69
*** 

 
(0.03) (0.07) (0.68) (0.14) (0.75) (0.75) 

N 160,484 160,484 160,484 160,484 160,484 160,484 

Log Likelihood -76,919 -75,809 -76,768 -76,177 -76,066 -75,098 

AIC 153,844 151,983 153,775 153,131 153,143 151,566 

 *
p < .1; 

**
p < .05; 

***
p < .01 
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5. Conclusion 
This paper examined historical U.S. inventor collaboration for the years 1836 to 1975. Recent 

research has shown the increasing importance of collaboration in the production of knowledge. 

The key underlying assumption is that the rising complexity of knowledge requires resources 

that exceed the inputs of individuals. Yet, little empirical evidence on the relationship between 

collaboration and complexity is available. The key findings are that (1) collaboration has 

increased sharply since the 1930s; (2) there is a positive relationship between complexity and 

collaboration on US patents; and (3) increasing complexity on patents is associated with within-

city collaboration. 

 Using the raw text files of the HistPat database I utilize search, match and machine 

learning techniques to identify and disambiguate all (co-)inventors including their geographical 

location as recorded on US patents between 1836 and 1975. The resulting inventor-patent 

database contains about 80-90% of the patents granted by the USPTO and identifies 1,922,754 

inventors, from 4,437,960 observations on 3,365,253 unique patents. These data are used to 

examine co-invention on U.S. patents.  

 The research finds evidence for a growing tendency to collaborate on US patents between 

1836 and 1975. This finding is in line with other research on inventor collaboration on US 

patents  (Wuchty et al., 2007)  and scientific collaboration on papers (Jones et al., 2008) that both 

extend back to 1975. The observed increase in the percentage of patents collaborated, along with 

the growth in average team-size after the 1930s might be linked to the 1933 US Supreme Court 

ruling to assign the rights of technologies developed by inventors hired-to-invent directly to the 

firm. This provided an incentive for firms to recruit and hire inventors, instead of buying licenses 

to patented technologies by inventors operating privately. In doing so, the firm becomes a 

platform in which inventors can collaborate instead of being direct competitors. More general, 
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infrastructure and transportation developments throughout the 19
th

 and 20
th

 century have made it 

easier for inventors to collaborate across increasing distance. By the 1920s almost all major US 

cities were connected by the railroads; in 1930 about 40% of US homes had a telephone 

connection and 20% of Americans had access to an automobile. 

 The observed positive relationship between complexity and collaboration on US patents 

confirms the theoretical claim that complexity and collaboration are significantly correlated. The 

evidence presented in this paper suggests that the impact of complexity on the odds of a patent 

being collaborated becomes markedly stronger after the 1940s. This supports a shift to ‘big 

science’ after World War II, in which the complexity of knowledge production accelerated. 

However, the direction of a possible causal link between complexity and collaboration remains 

unclear.  

 Co-invention on US historical patents has a distinct geography. Metropolitan 

collaboration is mostly between inventors from the same city. Moreover, as complexity 

increases, the odds of between-city collaboration decreases. This suggests that the production of 

complex knowledge relies more strongly on the geographical co-location of inventors than does 

less complex knowledge. Local collaboration allows repeated face-to-face meetings, spontaneous 

encounters and other interactions facilitated by the local buzz, than non-local collaboration. 

These interactions might be particularly important for the production of complex knowledge, 

because such knowledge relies difficult to diffuse tacit knowledge. 

 The paper presented here has at least two major short-comings. First, this paper has 

focused on inventors located in US cities. In doing so, the geography of collaboration as 

presented in this work is biased because it doesn’t include rural-urban and foreign collaboration. 

Second, the poor quality of the text files makes it difficult to retrieve all (co-)inventors and 
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geographical locations on patents. As a consequence, about 5-20% of patents per year are 

missing in the database.  

 Future research could focus on our understanding of patterns of rural-urban and foreign 

collaboration on historical US patents and examine the direction of causality between complexity 

and collaboration. Moreover, little is known on the mechanisms that structure tie formation 

between co-inventors and to what extent these structures have evolved over time. In addition, 

much remains unclear on how the movement of inventors in space affects patterns of 

collaboration and impact urban networks of invention. Finally, the role of firms has been 

neglected and remains unclear in collaboration on historical US patents. 
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Chapter 2: What Mechanisms Structure Tie-Formation among U.S. 
Inventors: Empirical Evidence from U.S. Patents between 1836-1975 
 

Abstract 
What mechanisms structure US inventor collaboration? Scholars have emphasized the role of 

collaboration and increasing team-sizes in the production of knowledge. Although the reasons to 

collaborate are many and well understood, long-run structural empirical evidence on the 

mechanisms that structure tie-formation amongst inventors is lacking. This paper investigates 

this process by examining collaborative tie formation between inventors in US metropolitan 

regions between 1836 and 1975. This long-run era covers the ‘golden age of US invention’ and 

captures the development and introduction of numerous transport and tele-communication 

technologies that facilitate collaboration and at greater distance. Within this light of rapidly 

changing technologies, this paper explores to what extent geographical, social and technological 

distance influence tie-formation between US inventors and how these have evolved over time. 

Exponential random graph models are used to statistically estimate the impact of these forms of 

distance on tie-formation. The three key findings are that (1) geographical distance negatively 

impacts collaboration, that this effect has been decreasing over time but has levelled off in the 

20
th

 century; (2) technological proximity between inventors’ patent portfolio positively impact 

collaboration, especially in times of uncertainty; (3) social proximity promotes collaboration, but 

only to a certain extend. Together these findings contribute to the existing literature by 

identifying a set of key mechanisms that structure collaborative knowledge production. These 

results are of relevance for policymakers constructing innovation policies and corporate 

executives concerned with innovation because they highlight the complexity of collaborative 

knowledge production. 
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Introduction 
 

Scholars across different disciplines have reported the increase in collaboration in the production 

of knowledge. Most scholars agree that the shift towards science-based knowledge production 

increased the complexity of knowledge production. To produce new knowledge, the increasing 

complexity requires inputs that exceed the resources of the individual. Some have labeled this 

the ‘burden of knowledge’ and argue it is increasingly becoming more difficult to produce 

innovations – especially for individuals (Jones, 2009). Empirical results show that knowledge 

production by scientist and inventors has become gradually more dominated by teams since the 

1960s (Wuchty, Jones, & Uzzi, 2007). Using long-run US inventor-patent data, Van der Wouden 

(2018) finds that the average team-size and the percentage of collaborated US patents has 

increased over time, especially since the 1940s.    

 

 There are numerous reasons for knowledge producers to collaborate. They might 

collaborate to optimize resources (Eaton, 1951), increase productivity (Lee & Bozeman, 2005; 

Melin, 2000; D. J. de S. Price, 1986) or creativity (Uzzi & Spiro, 2005), access complementary 

ideas (Price, 1970) or resources (Katz & Martin, 1997; Wray, 2002), or for intellectual and social 

reasons (Edge, 1979; Stokes & Hartley, 1989; Thorsteinsdottir, 2000). Collaborative work pays 

off: it is more frequently cited citations than individual work (Fox, 1991; Frenken, Hölzl, & Vor, 

2005; Glanzel, 2002; Katz & Martin, 1997; Lindsey, 1978), has higher acceptance rates for 

academic publication (Presser, 1980), and enables researchers to engage with large research 

questions (Thagard, 1997). On the firm level, Faems et al. (2005) finds that collaborating firms 

are more likely to produce commercially successful products than non-collaborating firms. A 

critical review of R&D collaboration is provided by Katz & Martin (1997). 
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 Although these reasons to collaborate are relatively well documented and understood, our 

understanding of tie-formation processes in collaborative knowledge production remains 

incomplete. Thus far, research on tie-formation among knowledge producers has largely focused 

on the firm-, region- or nation-state level, ignoring the level of the individual (a notable 

exception is Crescenzi, Nathan, & Rodríguez-Pose, 2016). Moreover, the limited research on 

collaboration between individual knowledge producers has concentrated on the impact of 

individuals’ attributes on tie-formation, ignoring relational, dyadic and triadic processes. 

Consequently, little structural empirical evidence is available on the dyad-level mechanisms 

governing actual tie-formation among individual knowledge producers. This is surprising, 

because there is a vast social sciences literature that stresses the importance of dyad-level 

processes on tie-formation (Borgatti, Mehra, Brass, & Labianca, 2009; Oswald, Clark, & Kelly, 

2004). 

  

 This paper uses long-run US inventor data between 1836 and 1975 to examine the impact 

of three popular dyad-level mechanisms – geographical, social and technological distance – on 

tie-formation between individual inventors. Exponential random graph models (ERGMs) are 

used to estimate the influence of these three measures of proximity on the probability of a tie-

formation between inventors and how this influence has changed over time. This method has a 

main advantage over conventional statistical methods because ERGMs are designed to deal with 

the interdependence of observations in relational data and thus produces more accurate estimates 

on the dyad-level mechanisms modelled than conventional statistical models.  
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 The results of this paper are the first long-run systematical empirical evidence on the 

mechanisms that foster and hinder tie-formation between inventors on US patents between 1836 

and 1975. The key findings are that (1) geographical distance negatively impacts collaboration, 

that this effect has been decreasing over time but has levelled off in the 20
th

 century; (2) 

technological proximity between inventors’ patent portfolio positively impact collaboration, 

especially in times of uncertainty; and (3) social proximity promotes collaboration, but only to a 

certain extent. These results have important implications for understanding knowledge 

production, because they stress the complexity of innovation dynamics. 

 

 The remainder of this paper is structured as follows. The next section provides the 

theoretical motivation of this research and identifies three hypotheses derived from the existing 

literature on collaboration. Section three discusses the data and introduces the exponential 

random graph models. The descriptive and statistical results are presented in section four. The 

last section provides the discussion of the findings. 

 

2. Tie formation amongst inventors on US patents 
 

 Scholars have reported a recent rise in collaboration among knowledge producers 

(Crescenzi et al., 2016; Hoekman, Frenken, & Tijssen, 2010; Jones, Wuchty, & Uzzi, 2008; 

Wuchty, Jones, & Uzzi, 2007). Van der Wouden (2018) shows that collaboration among US 

inventors has been increasing rapidly since the 1930s. These works relate to earlier research on 

the diminishing role of the ‘individual genius’ (Merton, 1968) or ‘lone-wolf’ (Patel, 1973), that 

has been connected to the general shift in knowledge production towards complex science-based 

knowledge (Noble, 1979; Pavitt, 1998; D. de S. Price, 1963). The complex nature of science-

based knowledge requires inputs and resources that often exceed that of the individual and hence 
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promotes collaboration. Jones (2009) argues that the increasing complexity weighs knowledge 

production down, because increasingly more effort and resources are needed to produce novelty.  

 

 Knowledge producers have numerous reasons and benefits to collaborate. Collaborating 

individuals have access to additional resources (Katz & Martin, 1997; Wray, 2002), 

(complementary) ideas (de Solla Price, 1970), and allows individuals to take on more elaborate 

research questions (Thagard, 1997). Others have argued that individuals collaborate to optimize 

resources (Eaton, 1951),  for intellectual or social reasons (Edge, 1979; Stokes & Hartley, 1989; 

Thorsteinsdottir, 2000), or to increase their creativity and productivity (Lee & Bozeman, 2005; 

Melin, 2000; D. J. de S. Price, 1986; Uzzi & Spiro, 2005). The benefits from collaboration are 

tangible for individuals and firms. Collaborated academic articles tend to have higher acceptance 

rates (Presser, 1980) and are cited more frequently (Fox, 1991; Frenken, Hölzl, & Vor, 2005; 

Katz & Martin, 1997; Lindsey, 1978). Firms engaged in collaboration benefit from greater 

learning performance and increased innovativeness (Ahuja, 2000), are more likely to produce 

commercial successful products (Faems, Van Looy, & Debackere, 2005), tend to survive longer 

(Mitchell & Singh, 1996; Singh & Mitchell, 1996) and grow faster (Powell, Koput, & Smith-

Doerr, 1996), and have privileged access to potential collaborators (Stuart, 1998). A critical 

review is provided by Katz & Martin (1997). 

 

 While the reasons and benefits of collaboration received much research attention, the 

structures that promote collaborative tie-formation among knowledge producers remain a black 

box. Over the last two decades a set of  literature has emerged that stresses the impact of 

different forms of proximity between knowledge producers on collaboration  (Bathelt & 
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Gluckler, 2003; Bathelt, Malmberg, & Maskell, 2004; Bercovitz & Feldman, 2011; Boschma, 

2005; Breschi & Lissoni, 2009; Cassi & Plunket, 2014, 2015; Crescenzi et al., 2016; Hoekman et 

al., 2010; Maggioni, Nosvelli, & Uberti, 2007; Storper & Venables, 2004). In this literature, it is 

argued that geographical proximity facilitates collaboration because it lowers the costs of 

interactions. These costly repeated interactions are required to build the trust that, in turn, is 

fundamental for knowledge sharing. In addition, when knowledge-sharing occurs, being close in 

geographical space eases the processes of coordination. 

 

 Hypothesis 1: Geographical distance hinders tie-formation between inventors   

 

 Social proximity also promotes collaboration. Agents with a social relationship are more 

likely to trust each other than agents without a relationship (Coleman, 1990; M. Granovetter, 

1985; Uzzi, 1996). Agents might also trust others with which they are indirectly connected. For 

instance, two unconnected agents with a mutual collaborator are more likely to trust and connect 

with each other than two unconnected agents without such common connection. This behavior is 

described as triadic closure and is found to influence tie-formation across different contexts 

(Burt, 1992; Granovetter, 1973; Harary, 1955; Martin, Ball, Karrer, & Newman, 2013; Rapoport, 

1953; Shi, Foster, & Evans, 2015; Ter Wal, 2013). In such case, agents infer the trust from the 

relationship their collaborator has with the agent. From this perspective, well-connected agents in 

a social network are proximate to a greater number of agents than less well-connected agents and 

have access to a greater number of potential collaborators. However, it is important to note here 

that geographical and social proximity are often entangled. The social interactions of agents tend 

to be geographically localized, making it difficult to unravel and allocate the effects of both 
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proximities on collaboration and knowledge production (see Boschma, 2005 and Malmberg & 

Maskell, 2006)  

 

 Hypothesis 2: Social proximity promotes tie-formation between inventors  

 

 Likewise, technological or cognitive proximity is argued to foster collaboration. Agents 

are more likely to collaborate if they have similar sets of knowledge because “they speak the 

same language”. This overlap promotes communication and thus facilitates knowledge sharing 

and learning (Brown & Duguid, 2002; Jaffe, 1989). However, too much overlaps leaves little 

opportunities for learning. For effective collaboration agents require some degree of similarity 

and variation in their knowledge sets (Broekel & Boschma, 2012; Nooteboom, 2000).     

 

 Hypothesis 3: Technological proximity promotes tie-formation between inventors  

 

 During the time-window of this study major developments in telecommunication and 

transportation technologies have made it significantly easier to collaborate and at greater 

distance. A clear example is the development of the telegraph. From 1851 onwards telegraph 

wires were installed along railroad tracks. Whereas it still took roughly two days to travel 

between New York and Chicago in 1860, sending a telegraph between the cities was nearly 

simultaneously (Nonnenmacher, 2001).  Railroad tracks connected most of the US cities by the 

end of the 19th century, connecting markets and promoting economic activities (Atack, Bateman, 

Haines, & Margo, 2010) and stimulate inventive activities  (Perlman, 2016). After the railroad 

and telegraph, new technologies were introduced in the early 19
th

 century. By the 1930s roughly 
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20% of US citizens had access to an automobile and 40% of the US homes had a telephone 

connection (Fischer & Carroll, 1988). Finally, commercial air-travel took off in the 1920s, 

connecting US cities at great geographical distance. All these developments allow US citizens to 

connect, communicate and collaborate with more ease than ever before.  

 

 Changes in the US patent laws have arguably impacted trends in US inventor 

collaboration. The original 1836 US patent system only granted patents to individual men or 

women and excluded firms to patent (Coriat & Weinstein, 2012). Individual inventors exploited 

their patents by selling or licensing the rights to the patent to firms. This market for technologies 

made inventors competitors and provided incentives for inventors to specialize in certain 

technologies. Firms acquired these new technologies to enhance their competitive position (N R 

Lamoreaux & Sokoloff, 1999; Naomi R Lamoreaux & Sokoloff, 2005). In 19th and 20th century 

the US economy was transforming from entrepreneurial capitalism to corporate capitalism 

(Coriat & Weinstein, 2012; Freeman, 1979). The production and sole appropriation of 

technological knowledge became increasingly important for the competitiveness of firms (Fisk, 

1998; Noble, 1979; Pavitt, 1984), but was hindered by inventors who could license their patents 

to multiple firms, undermining the competitive advantage of firms. Although firms increasingly 

started hiring inventors to incorporate the development of technologies in-house, to the dismay 

of firms the legal rights to these technologies still belonged to individual inventors. In 1933 the 

US Supreme Court responded with the ruling that ‘the respective rights and obligations of 

employer and employee, touching an invention conceived by the latter, spring from the contract 

of employment’ (in Coriat & Weinstein, 2012). Thus, the rights to the technologies developed by 

employees ‘hired-to-invent’ belong to the firm (Coriat & Weinstein, 2012; Fisk, 1998). 
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Effectively, this ruling made an increasing number of corporate inventor collaborators instead of 

competitors. 

 It is important to note that geographical distance is, unlike social and technological 

proximity, posited here as an exogenous variable. That is, geographical distance is seen as given. 

While this perspective has several computational advantages (i.e. a fixed distance), geographical 

distance is produced by socio-economic processes in society. Of course, cities connected by a 

direct highway or railway are more easily accessible than when such transportation infrastructure 

didn’t exist. Socio-economic processes, put forward in political and economic power, ultimately 

decide which places become connected. The relative geographical distance between connected 

places decreases with respect to other places. This note is especially of relevance in early time-

periods of this study when the connectivity between U.S. cities was rapidly developing over 

time
12

. 

 3. Data and methods 

3.1 Data 
 

The empirical analysis of this paper uses the historical US inventor-patent collaboration data 

introduced and described in Van der Wouden (2018). This data-set is an extension to the HistPat 

database (Petralia et al. 2016). This latter database contains technical and geographical 

information for historical patents provided by the USPTO between 1790 and 1975. The authors 

of HistPat scraped the text from digitized historical patent files made available by Google Patents 

and EspaceNet, and recorded the first inventor and a geographical location. However, the HistPat 

database holds no information for any possible additional co-inventor(s) and their geographical 

location(s). Van der Wouden (2018) used a series of complex searching, matching and machine-

                                                 
12

 In the analysis presented below, I’ve used railroad data (Atack, 2016) to proxy for changing connectivity over 

time, but did not change the observed results.  
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learning algorithms to identify and disambiguate all US inventors and their geographical 

locations on historical US patents between 1836 and 1975. Merging the new inventor data (and 

their geographical location) with the technical information available in HistPat, a rich inventor-

patent data becomes available.  

 Table 3.1 provides a simplified and semi-hypothetical example on how the raw 

information is structured. The unit of observation is the inventor-patent pair. The first patent has 

only one inventor – John Ruggles from Thomaston, Maine. This patent is classified in 

technology class 12. Up to five technology classes are recorded for each patent. The third patent, 

granted in 1853, is invented by two inventors. Benjamin Irving lived in Greenpoint, New York, 

and Josephine Bruin lived in Los Angeles, California. Patent three is thus a collaboration by two 

inventors living in different cities. The unique inventor ID allows us to follow inventors through 

time and space. For instance, two years later Josephine Bruin patents again but this time from 

Greenpoint, New York. In 1856 Joe and Josephine Bruin collaborate on patent five. The 

variables marked with an asterisk originate from the HistPat database (Petralia et al. 2016).  

 

Table 3.1 Simplified and semi-hypothetical example of structure inventor-patent data. 

 

Patent* Year* ID Inventor City County State Technn
*

 … 

1 1836 1 JOHN RUGGLES THOMASTON KNOX MAINE 12 … 
2 1838 2 FOWLER M RAY CATSKILL  NEW YORK 33 … 
3 1853 3 BENJAMIN IRVING GREENPOINT KINGS NEW YORK 19 … 
3 1853 4 JOSEPHINE BRUIN LOS ANGELES  CALIFORNIA 19 … 
4 1855 4 JOSEPHINE BRUIN GREENPOINT  NEW YORK 19 … 
5 1856 4 JOSEPHINE BRUIN LOS ANGELES  CALIFORNIA 20 … 
5 1856 5 JOE BRUIN LOS ANGELES  CALIFORNIA 20 … 
 

 The inventor-patent data introduced by Van der Wouden (2018) is used to construct an 

inventor collaboration network in which the nodes are individual inventors. If two or more 

inventors collaborate on the same patent they are linked with an edge. Both nodes and edges 
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have a number of attributes – that is, associated information. Node attributes are inventor ID, 

inventor name, number of previously granted patents and geographical location. Edge attributes 

are patent number, technology classes and year granted
13

. Note that if an inventor occurs on 

multiple patents (edges), this inventor can have different geographical locations due to 

movement in geographical space. Figure 3.1 represents the network of the inventor-data in table 

3.1. The red dots indicate the inventors as nodes. The grey curved edges between the inventors 

indicate the patent these inventors collaborated on. If a patent is not collaborated, the 

corresponding edge is a self-loop. These patents are not plotted in graphs and are not 

incorporated in the statistical analysis outline below because they are not collaborations. 

  

 The total number of inventor-patent observations in the database is 4,446,008. A little 

more than 2 million observations are dropped because (1) no correct geographical location is 

available because the patent text was unreadable; (2) the inventor was not living in the USA; or 

(3) the inventor was not living in a Metropolitan Statistical Area
14

. The number of inventor-

patent observations used in the analysis is 2,350,248 and consists of 1,057,805 unique inventors 

and 1,780,118 patents. These patents are granted to inventors living in 360 different cities and 

across 140 years. The distribution of inventors across cities is highly uneven: most cities only 

host a handful of inventors, whereas only a handful of cities host thousands of inventors. 

Similarly, the distribution of inventors is uneven across time – there are 60 unique inventors in 

1836, but 34,065 in 1970. For a detailed description of the data see Van der Wouden (2018). 

 

  

                                                 
13

 Note that these edge attributes are directly derived from HistPat.  

 
14

 Van der Wouden (2018) describes that the combination of city, county and state is used to assign a 2008 CBSA 

code to the inventor-patent observation.   
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Figure 3.1 Network representation of example data in table 3.1 

 

3.2 Method, variables and statistics 

3.2.1 Method 
In this article, I examine the processes that give rise to collaborative ties between inventors in US 

metropolitan regions between 1836 and 1975. The structure of the ties in the population of 

inventors originates from both the distribution of individual attributes and the dynamics of 

interactions. For example, the tendency of inventor collaboration relies on the number of 

possible inventors and the aptitude to collaborate. The ability of inventors to collaborate with 

multiple inventors gives rise to complex social network structures in which collaborative ties 

may be interdependent. A classic example tells that friends of friends are much more likely to 

become friends than one would expect at random. This process is often referred to as triadic 

closure (Rapoport, 1953) and is observed across a wide range of social networks (for instance, 

Ter Wal, 2013). Importantly, this dependency between observations renders the use of most 



79 

 

statistical approaches inappropriate because it violates the assumption of independent 

observation. Moreover, population-level structures can act as a platform over which knowledge 

might flow that can shape and/or reshape individual-level interactions that, in turn, might 

influence population-level structures and characteristics (Cartwright & Harary, 1956; Davis, 

1970; Goodreau, Kitts, & Morris, 2009; Kohler, Behrman, & Watkins, 2001). 

    

 Thus, social networks are complex structures that arise from mechanisms that operate at 

multiple levels simultaneously and in which observations are interdependent. The recently 

developed exponential random graph models (ERGM) can handle these types of data, allowing 

researchers to make statistical inference from such data. This group of models has become 

popular in social sciences for at least three reasons. First, ERGMs allows for interdependency 

among observations. Tie-formation is seen as an endogenous process that involves dyadic 

dependence. Second, ERG models estimate effects across individual, dyadic, triadic and network 

levels simultaneously and can help researchers distinguish the effects of multiple micro-level 

dynamics. Third, ERG models allow researchers to test network theories and model the structural 

properties of networks. To do so, these models rely heavily on probability theory and stochastic 

procedures for their statistical inference. The observed network is generally regarded as an 

outcome from a set of possible networks with similar characteristics - the stochastic process. 

Because the information on this stochastic process is unknown, the goal in constructing the 

model is to formulate and test hypotheses that structure this process. Indeed, the objective of 

ERG modelling is to find a model for the structural characteristics of a network that maximizes 

the likelihood of an observed network being constructed (Robins, Pattison, Kalish, & Lusher, 

2007; Snijders, 2011).  
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 Exponential random graph models specify the probability of a random network Y with a 

set of n nodes and their attributes as 

 

𝑃(𝑌 = 𝑦|𝑛 inventors) =  (
1

𝑘
) exp {∑ ƞ𝑠𝑔𝑠(𝑦)

𝑆

} 

 

in which P(Y = y) represents the probability that the structural characteristics of network Y 

constructed in the exponential random graph process are identical to the structural characteristics 

of the observed network (y). Yij represents the tie between inventors i and j, and takes the value 

of 1 if a tie is present and 0 otherwise. Thus, network Y can be represented as a matrix of n x n in 

which each element indicates whether or not a tie between inventors is present. The network 

statistic(s) that represents the structural characteristic(s) of the network is denoted as gs(y). ƞs 

refers to the parameter corresponding to network configuration S. If the score on this parameter 

of the network statistic is the same as in the observed network, then gs(y) = 1, otherwise it is 0. 

Finally, k is a normalizing constant to generate a proper probability distribution (Robins et al, 

2007). 

 

 Following Goodreau et al. (2009), the equation above can be rewritten as the conditional 

log-odds of a single tie between inventor i and j as: 

 

𝑙𝑜𝑔𝑖𝑡 ( 𝑃 (𝑌𝑖𝑗 = 1 | 𝑛 inventors, 𝑌𝑖𝑗
𝑘)) =  ∑ ƞ𝑠 𝛿𝑔𝑠(𝑌)

𝑆

𝑠=1
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in which 𝑌𝑖𝑗
𝑘 indicates all dyads other than 𝑌𝑖𝑗. The 𝛿 term represents the extent to which the 

network statistic(s) changes when a tie is present or not between inventor i and j. The ƞ vector 

can now be interpreted as the increase in log-odds of a tie forming if the forming of that tie 

increases 𝑔𝑠 by one unit.  

 

 In a proposed model with a set of statistics (g), the ƞ vector maximizing model likelihood 

can be approximated using Markov chain Monte Carlo simulation techniques (Hunter et al. 

2008). These techniques use stochastic simulation processes to produce a distribution of random 

graphs using an initial set of parameter values. The generated random graphs are then compared 

against the real-world observed graph. The values of the set of parameter are continuously being 

refined to come as close to the characteristics of the observed graph. The parameter estimates 

stabilize when additional refinement of the estimates under the proposed models (with a set of g 

statistics) is impossible (Snijders, 2001, 2002). If the specified model is unlikely to proximate the 

observed graph there is model degeneracy and the model fails to converge or produce very poor 

fits to the data (Handcock, 2003). To assess a model’s goodness-of-fit, the structure of the 

simulated graphs can be compared to the structure of the observed graph (Hunter et al., 2008a).      

 

3.2.2 Proximity variables 
 

In this paper three key mechanisms often proposed to affect tie-formation and are examined in 

the context of US inventor collaboration. These mechanisms (geographical, social and 

technological proximity) are exogenous dyad level covariates and are constructed for each of the 

140 years in the analysis and for any possible pair of inventors, regardless of whether they 

collaborate. For example, if there are 100 inventors in year t, matrix m of [100 x 100] is 
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constructed in which the 10,000 elements are filled with the value of the measure that 

operationalizes the proposed mechanism of tie-formation. 

 

 The three mechanisms are operationalized as follows. First, the geographical proximity 

between any possible pair of inventors in a given year is calculated by taking the absolute 

distance in kilometers between the centers of the US metropolitan regions each inventor lives in. 

If inventors live in the same city, the geographical distance between them is coded as zero. 

 

 Second, social proximity between any possible pair of inventors in a given year is 

calculated by retrieving for each inventor his/her previous collaborators (1-order), the 

collaborators of these collaborators (2-order) and their collaborators (3-order) from the previous 

ten years (that is, t-1 : t-10). This measure  indicates which inventors were in the social network 

of an individual inventor in the ten years prior to the patent(s) in the focal year. In this case, only 

the first-, second- and third-order neighborhood of an inventor is recorded, but one could extend 

this to any n-order up to the maximum path-length of a network. Here the arbitrary cut-off point 

is the third neighborhood order because neighborhoods of growing order are increasingly less 

likely to impact tie-formation. Figure 3.2 shows a network representation of the three orders of 

neighborhoods. For each of the three orders a square matrix is built that holds information 

whether any pair of inventors are connected (0/1) by a minimum of that order. This means that 

the inventor-pairs that can be reached with an order of one or two are not recorded in the third-

order matrix. Making this distinction allows to disentangle the effects of different orders of 

neighborhood connections on tie-formation. One could also extend the time-period further back 

in time. In this context, it seems unlikely that social connections from more than 10 years ago 
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promote tie-formation in the focal year. Note that the social proximity measure is operationalized 

in three separate variables. 

 

Figure 3.2 Example of 1-order, 2-order and 3-order connections 

  

 

 

 

 

 

 Third, technological proximity between any pair of inventors is based on the similarity of 

the technology classes in their patent portfolios of the previous 10 years. The technological 

proximity of a pair of technology classes is measured using co-classification on patents. Pairs of 

technologies that often co-occur on patents are assumed to be more proximate than technology 

classes that do not co-occur on patents. These pair-wise technological proximity scores are 

calculated annually by examining the patents produced in the focal year. These annual proximity 

scores are used to calculate the average technological proximity of a pair of inventors’ patent 

portfolio. Note that the proximity of the portfolios is calculated using the pair-wise technological 

proximity scores in the focal year and not the years in which the patents in the portfolio are 

produced. For a detailed description of the calculations see Van der Wouden & Rigby (2018). 

 

 Table 3.2 and 3.3 illustrate the calculation. In year t Josephine and Joe are patenting 

(either collaborative or autonomous). In the previous ten years, Josephine has patented in class 1 

and 3, whereas Joe patented in class 2 and 4. Technology classes 1 and 2 seldom co-occurred on 

a patent in year t, so the technology proximity between these classes is relative low. Technology 

classes 3 and 2 co-occurred frequently, resulting in a higher proximity score. The average 

technological proximity between Josephine’s and Joe’s patent portfolio is 2.01.   
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Table 3.2 Technological portfolio of inventors Josephine and Joe 

 

 Josephine Joe 

Technology 1 2 

Technology 3 4 

  

 

Table 3.3 Pair-wise technological proximity between technologies of inventor portfolios 

 

Technologies 

Josephine 

Technologies 

Joe 

Proximity 

1 2 0.01 

1 4 1.52 

3 2 4.3 

3 4 2.2 

Average proximity 2.01 

 

3.2.3 Additional model statistics 
Next to the three key variables introduced above, three other statistics are used to specify the 

ERGM for the annual inventor collaboration networks between 1836 and 1975.  

 First, a network statistic for tie-density is calculated. This term, labelled ‘edges’, is the 

total number of collaborations between inventors in the network. It represents the density of the 

network and the estimated coefficient can be interpreted as the log-odds of a tie between any 

random two inventors in the network, ceteris paribus. 

 Second, a term is added to account for differences in the number of patents inventors 

have produced in previous years. It is likely that inventors with large number of patents produced 

are more preferable collaborators than inventors with smaller number of patents produced. Thus, 

the probability of a collaboration might be a function of the inventor’s number of patents. This 

term, labelled ‘Node covariate – Patents’, is equal to the sum of the number of patents of 

inventors that have collaborated together. The estimated coefficient should be interpreted as the 
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change in log-odds of a tie between any two inventors caused by the increase of one patent in the 

patent portfolio of the two inventors.  

 Third, a statistic called the geometrically weighted degree distribution (GWDEGREE) is 

added (Hunter, 2007). This term estimates the change in tie-formation given the number of 

connected inventors and thus helps to model the degree distribution in the network. 

Geometrically weighted refers to the fact that the effect of any additionally connected inventor is 

discounted by scale parameter α. This discount is necessary to prevent model degeneracy in 

which the model produces unrealistic networks (Handcock, 2003). For instance, if collaborating 

with one inventor renders an additional tie 30% more likely, collaborating with four inventors 

makes an additional tie 120% more likely. These values become quickly unrealistic, so 

marginally decreasing the weight of an additional collaborator is preferable (see Goodreau et al. 

(2009) for an intuitive explanation). 

 The final model that is used to model the 140 networks is as follows: 

 

Collaboration (0/1) = f(edges, geographical distance, technological proximity,  

   social proximity (order 1), social proximity (order 2),  

   social proximity (order 3), number of patents in previous years,  

   geometrically weighted degree distribution) 

  

   

4. Empirical results 
 

4.1 Descriptive statistics of networks 
In Table 4.1 the descriptive statistics show how the inventor networks have changed on ten 

characteristics between 1840 and 1970.  

 In general terms the networks have strongly increased in size. The number of inventors 

increased from 251 to 34,060 between 1840 and 1970. The growth in the number of 

collaboration is even stronger. It has grown from just 58 collaborations in 1840 to 28,709 
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collaborations in 1970. This means that the inventor-to-collaboration ratio changed from roughly 

4 in early years to close to 1 in last years. This indicates a trend towards more collaboration on 

US patents. Note that a ratio of close to one does not mean that each inventor collaborates, 

because the count of collaboration is inflated by increasing team-sizes over time. For instance, a 

patent with 5 inventors results in 10 collaborations. For a more detail description on the 

evolution on collaboration on US patents between 1836 and 1975, see Van der Wouden (2018).  

 The density of the networks dropped over time. This makes sense because the density is 

measured as the observed collaborations divided by the possible number of collaborations. 

Adding an additional inventor raises the number of possible collaboration faster than the number 

of collaboration an average inventor adds to the network. Networks with extremely low density 

indicate that the overall population of inventors is very poorly connected. Indeed, it is very 

unlikely that the inventor of the “rocking bath-tub” (patent US643094A, 1900) collaborates with 

the inventor of the “chicken eye protectors” (patent US730918A, 1903
15

). 

 Over time the average geographical distance between all pairs of inventors, regardless of 

whether they collaborate or not, has increased over time. The average geographical distance 

between all inventors was about 370 kilometers in 1840, but reached roughly 1300 kilometers in 

1970. This trend reflects the changing spatial distribution of innovative activity in the US. An 

increasing number of cities is producing inventors. In the 19
th

 century most of the US economic 

and innovative activities took place in the northeastern part of the country. But throughout the 

20
th

 century the expansion and rapid settlement of the West was a fact. For instance, in 1880 the 

estimated population of California was around 800,000 people. In 1910 there were already close 

to 2.4 million Californians. This means that the West now also started to increasingly produce 

inventors, raising the average geographical distance.  

                                                 
15

 Both examples originate from http://www.wipo.int/patents/en/historical_patents.html  

http://www.wipo.int/patents/en/historical_patents.html
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 The average technological proximity between the patent portfolios of inventors has been 

trending upwards until the 1900s. In the 20
th

 century the average technological proximity 

between inventors remains rather stable. An increase in proximity means the patent portfolio of 

US inventors are filled with patents that hold technology classes more proximate to the 

technology classes on patents of other inventors. Three developments might explain part of the 

trend. First, Lamoreaux & Sokoloff (1996) report that by the late 19
th

 century the ability to 

produce patents and license the rights of the patents to firms promoted specialization in invention 

and facilitated the growth of ‘career’ inventors. This increasing group of inventors specialized in 

the production of certain technologies and thus created portfolios with rather low technological 

proximity to the portfolio of other specialized inventors. Second, by the 1930s inventor 

collaboration starts to take-off (Van der Wouden, 2018). If collaboration brings together 

inventors specialized in different technologies and produce novel cross-technological patents, the 

patent portfolios of both inventors will become more technologically diversified and proximate. 

Third, the introduction and spread of general purpose technologies (GPTs) throughout patent 

portfolios in the late 19
th

 century might have made the portfolios of inventors more 

technologically proximate
16

. That is, when an increasing number of patents rely, make use or 

build upon these technologies of great applicability, the technology classes of the GPTs will be 

listed on many patents and reflected in an inventor’s portfolio.  

 The total social proximity between inventors in collaboration networks also has been 

steadily growing over time. Up to 1870 inventors didn’t have any first, second or third order 

connections made in the previous ten years with the other inventors that year. The inventors in 

1970 together had 3,204 first order connections with other 1970 inventors. This increase results 

from three developments: (1) an increasing proportion of the inventors are repeating inventors 

                                                 
16

 Examples of GPTs in the late 19
th

 century are electricity and the internal combustion engine. 



88 

 

(as witnessed by the increasing average number of previous patents); (2) inventors collaborate 

more over time; and (3) average team-size of patents is increasing over time (Van der Wouden, 

2018). The connections made on earlier patents are counted in the social networks of subsequent 

years if the collaborating inventor(s) of these earlier patents also patent in the focal year. 
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Table 4.1 Descriptive statistics of annual networks in periods of 10 years

     (1) (2) (3) (4) (5) (6) 

Year Inventors Collaborations Density Cities 

Average 
Geographical 

Distance 

 

Average 
Techn. 

Proximity 
 

Sum Previous 
Collaborators 

in Network 

Sum 
Collaborators 

of Previous 
Collaborators 

in Network 

Sum 
Collaborators 

of Previous 
Collaborators’ 
Collaborators 

in Network 

Average 
Patents 
Previous 

Years 

1840 251 58 0.0018 46 370.5 0.01 0 0 0 0.08 
1850 461 85 0.0008 55 485.2 0.35 0 0 0 0.28 
1860 2,181 439 0.0002 126 635.3 0.19 0 0 0 0.25 
1870 5,024 1,283 0.0001 172 757.1 0.06 12 8 6 0.34 
1880 6,168 1,876 0.00009 193 862.9 0.82 176 152 122 1.11 
1890 11,457 3,052 0.00005 242 1009.5 0.70 334 257 154 1.47 
1900 11,652 3,415 0.00005 262 1085.4 1.86 355 396 372 2.53 
1910 15,772 4,732 0.00004 278 1231.3 1.43 892 1,213 1,592 3.45 
1920 19,135 6,157 0.00004 282 1281.5 1.53 933 1,179 1,588 2.16 
1930 16,136 5,464 0.00004 260 1272.1 1.78 1,527 1,838 2,223 4.11 
1940 17,354 7,741 0.00005 262 1154.9 1.60 1,869 2,609 3,830 4.59 
1950 21,854 13,382 0.00006 270 1231.5 0.92 2,416 3,364 4,940 3.79 
1960 27,153 19,367 0.00005 288 1272.7 1.79 2,707 2,327 2,815 2.28 
1970 34,060 28,709 0.00005 308 1329.7 1.58 3,234 4,331 8,057 1.84 
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4.2 Statistical results 
This section presents the empirical findings of the estimation of annual exponential random graph models. 

The results of the models between 1836 and 1840 are excluded from the figures because the impact of 

geographical distance, technological and social proximity couldn’t be properly estimated due to very 

limited number of non-zero values. The black dots in the figures correspond to the estimated coefficient 

in log-odds. The blue line represents the Theil-Sen slope indicating the overall trend in the time-series. 

This estimator fits a slope to a series of points in the plane based on the median of the slopes through all 

pairs of points, making it robust to outliers. The red dotted vertical line indicates there is a significant 

Pettitt trend-break in the time-series. The Pettitt trend-break uses the Mann and Whitney statistical test 

to compare segmentations of the complete time-series. The solid red lines represent the Theil-Sen 

slopes for each separate time-series.  

 

4.2.1 Probability of connection 

The log-odds of tie-formation between any random pair of inventors – independent of the other variables 

in the model – has dropped between 1840 and 1975. Figure 4.1 shows the overall trend is slightly 

negative, indicating that the tie-formation between any random pair of inventor is decreasing over time. 

This is to be expected because the networks have grown over time, making it less likely a random pair of 

inventors to collaborate. This is probably also causing the significant negative slope in the period before 

the 1865 trend-break. However, after the trend-break a significant positive trend is observed, indicating 

that regardless of the growing network size, the log-odds that any two random inventors collaborate is 

increasing over time. This can be explained by the increasing tendency to collaborate and the growing 

team-sizes on US patents over time and especially since the 1940s (Van der Wouden, 2018).  

 

4.2.2 Geographical distance 

Geographical distance has a negative impact on collaboration. The coefficients plotted in Figure 4.2 are to 

be interpreted as the change in log-odds when geographical distance between pair of inventors increases 
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by 1 kilometer. For instance, in 1850 the log-odds of a collaboration between two random inventors living 

100 kilometers apart is -1.80. However, in 1975 these log-odds are -0.086. The negative influence of 

geographical distance on tie-formation between inventors has decreased over time. The biggest decrease 

occurs between the 1840 and 1870. During this period of time the US railroads and telegraph were rapidly 

expanded, connecting cities in the north-eastern states. This allowed people to travel and communicate 

more easily – easing the friction of geographical distance. Interestingly, after the 1870 trend-break the 

positive slope of the trend is very small. This indicates that the negative impact of geographical distance 

on tie-formation did not change much over time. For example, the negative impact of one kilometer 

distance between two inventors on tie-forming in 1910 is -0.0030 and -0.0028 in 1960.  These data thus 

suggest that after the initial reduction in the friction of geographical distance on tie-formation in the late 

19
th
 century, the impact of geographical distance remained rather stable throughout the 20

th
 century. 

 

Figure 4.1 The log-odds of tie-formation between any pair of inventors between 1840 and 1975 
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Figure 4.2 Impact of geographical distance on the log-odds of tie-formation 

 

4.2.3 Technological proximity 

Technological proximity between the patent portfolios of two inventors has a positive impact on tie-

formation. This means that the log-odds of a tie-formation are greater when two inventors have produced 

patents in similar technology classes. However, Figure 4.3 shows an overall negative trend over time. In 

the mid-19
th
 century technological proximity had a relative strong positive impact on tie-formation. This 

impact dropped until the wake of Great Depression in the mid-1920s. During the Great Depression, 

throughout the Second World War and its aftermath the impact of technological proximity on tie-

formation increased again. From the mid-1950s onwards the impact of technological proximity was 

returned to its pre-war impact on tie-formation. Still, inventors are more likely to collaborate if they have 

similar technological expertise.  
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Figure 4.3 Impact of technological proximity on the log-odds of tie-formation between inventors 

 

 
4.2.4 Social proximity 

Social proximity between inventors has, in general, a positive effect on tie-formation between inventors. 

Figure 4.4 show how the log-odds of a tie-formation between two inventors changes when they have 

collaborated on a patent in the previous ten years. The impact is positive and relatively strong. The overall 

trend shows an (insignificant) upward slope, suggesting that the impact is increasing over time. However, 

the trends before and after the trend-break are both negative, suggesting that the log-odds of tie-formation 

decreases over time. Yet, the impact of having a previous collaboration with an inventor changes the odds 

of a tie tremendously. In 1950 the odds of a collaboration change by a factor of 1376 if two inventors 

have a previous collaboration. This suggests that pairs of inventors are rather robust and connections 

endure over time. Moreover, these results indicate that first-order connections made in previous years are 

a strong predictor of tie-formation between inventors, but that the impact is decreasing in the 20
th
 century.   
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Figure 4.4 Impact of previous collaboration on the log-odds of tie-formation 

 

 
 

Having a second-order connection in the previous ten years has a precarious effect on tie 

formation up to the 1940s. Figure 4.5 indicates that there is an overall negative trend in impact of 

having a second-order connection on the log-odds of tie-formation between a pair of inventors. 

However, this trend and the trends before and after the 1892 trend-break are insignificant. 

Interestingly, having a second-order connection has a relatively strong and consistent positive 

impact on tie-formation since the 1940s.  
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Figure 4.5 Impact of having a previous collaborator in common on the log-odds of tie-

formation 

 
 

The impact of a third-order connection in the previous ten years on tie formation is less clear. 

Figure 4.6 shows that in the period before 1874 having such connection did not have a 

significant impact on tie-formation. After 1874 a third-order connection has a precarious effect 

on tie-formation between a pair of inventors. The volatile nature of the data in early years can be 

explained by the very low annual counts of such connections. But even when counts are 

relatively high after the 1930 trend-break, third-order connections still have an unclear effect on 

tie-formation. As a result, no significant trends are detected. What is clear is that there is no 

strong, consistent, positive effect of a third-order connection on tie-formation between inventors.   
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Figure 4.6 Impact of having a third-order connection on the log-odds of tie-formation 

 

 

Number of previous patents 

Having previous patents significantly increases the likelihood of tie-formation between two 

inventors, but this impact is decreasing over time. Figure 4.7 indicates that having one previous 

patent increases the log-odds of tie-formation in 1858 with 0.096. This number drops until the 

1895 trend-break. After 1895 there is a rather weak, insignificant positive trend. In the 19
th

 

century, experienced inventors are more likely to form ties with other inventors than do 

experienced inventors in the 20
th

 century.  
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Figure 4.7 Impact of the number of previous patents on the log-odds of tie-formation 

 

Changing impacts over time 

The probability of tie-formation has changed over time. To provide a hands-on understanding of 

how these probabilities have changed, Table 4.2 lists three examples of situations for tie-

formation for inventor i and j. These inventors have 1 and 2 patents in previous years, 

respectively.  

 To estimate the probability of tie-formation, the log-odds parameter model estimates need 

to be transformed logistically. While the impact of a unit change of a certain variable on the log-

odds of tie-formation can be examined independently of the other variables in the model, to 

properly find the probability of tie-formation, all model variables need to take a certain value 

(Luke, 2015). In the Geographical situation the inventors are close in geographical space. The 

technological and social proximity variables take a (arbitrary) constant value. In the 
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Technological example, inventors i and j have a rather great technological proximity in their 

knowledge portfolio. The geographical distance and social proximity take a constant value. 

Finally, in the Social example, the inventors have a lot of connections in common. Again, the 

geographical distance and technological proximity take a constant value.  

 

Table 4.2 Three example situations for tie-formation among two inventors 

Situation   Geog. Techn. Social 1 Social 2 Social 3 Patentsi Patentsj 

Geography 0 1 1 0 0 1 2 

Technology 1000 800 1 0 0 1 2 

Social 1000 1 2 1 1 1 2 

 

 Table 4.3 shows how tie-formation across these three situations has changed over time. 

The baseline estimates (identical to the ‘edges’ term discussed above) represents the overall 

probability that any two inventors collaborate in the focal year. This baseline is used to evaluate 

the change in probability of collaboration across the three situations. As expected, inventors 

close in geographical space are much more likely to collaborate. The probability that two 

inventors in the Geography situation collaborate is 28.5% in 1880 and drops to 10.8% in 1970. 

While the benefits of being close in geographical space are decreasing over time, the impact 

geographical proximity is still significant. An opposite effect is observed in the Technology 

situation – the impact of technological proximity is increasing over time. In 1880, the probability 

that two inventors with a relatively great technological proximity collaborate is roughly 1.2% 

and increases up to 2.8% in 1970. Having first- and second-order prior social ties has the largest 

impact on tie-formation, increasing over time. The probability that two inventors in the Social 
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situation (see Tables 4.2 and 4.2) are collaborating increases from 67.4% up to a staggering 

98.1%.  

Table 4.3 Change in probability of tie-formation across three situations and time 

 Probability of tie-formation 

Year 1880 1925 1970 

Baseline 0.0008 0.0007 0.0005 

Geography 0.285 0.121 0.108 

Technology 0.012 0.025 0.028 

Social 0.674 0.915 0.981 

 

Goodness-of-fit 

 

From the 135 fitted models all but 3 models converged. The models for years 1850, 1922 and 

1971 didn’t converge. It is unclear why the models for these years fail to converge, but the 

spread of these models across the time-window of this study does not suggest a systematical 

issue. However, while model convergence indicates that the algorithms were able to settle on 

stable coefficient estimates, additional information is needed to evaluate the goodness-of-fit of 

the models. Given the generative nature of ERGM, Hunter et al. (2008) suggest to use the 

estimated model coefficients and same MCMC algorithms to simulate a number of networks, and 

compare the simulated networks to the observed network on a series of graph-level structural 

properties. If the properties of the simulated networks differ significantly from the properties of 

the observed network, the goodness-of-fit of the estimated model is poor and caution is needed to 

interpret the results of this model. The goodness-of-fit of the models presented here is generally 

good, except for the models in early years (pre-1850) and later years (post 1961).        



100 

 

5. Conclusion 
This research has examined the mechanisms that structure collaboration among US inventors 

between 1836 and 1975. Although the main reasons to collaborate are well defined and 

understood, long-run structural empirical evidence on the mechanisms that structure tie-

formation amongst inventors is missing. To address this gap, three frequently posited 

mechanisms that impact collaboration are examined: geographical distance; technological 

proximity; and social proximity. The three key findings are that (1) geographical distance 

negatively impacts collaboration, that this effect has been decreasing over time but has levelled 

off in the 20
th

 century; (2) technological proximity between inventors’ patent portfolio positively 

impact collaboration, especially in times of uncertainty; (3) social proximity promotes 

collaboration, but only to a certain extend.  

 

 Using new inventor-patent data (Van der Wouden, 2018), 140 annual networks of 

inventor collaboration are constructed and examined. For each year, matrices are constructed that 

hold information on the geographical distance and technical and social proximity for each 

possible inventor pair. The inventor collaboration network and the matrices are used as inputs for 

140 exponential random graph models (ERGMs). These ERGMs estimate how the three 

proposed mechanisms, together with three control variables, impact the likelihood of observing a 

tie between two inventors. ERGMs have a number of advantages over traditional statistical 

techniques. These models allows for interdependency among observations, which is essential for 

network data. Tie-formation is seen as an endogenous process that involves dyadic dependence. 

In addition, ERGMs model effects across individual, dyadic, triadic and network levels 

simultaneously. This allows researchers to distinguish the effects of multiple micro-level 

dynamics. Finally, using probability theory and stochastic procedures for statistical inference, 
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ERGMs can test network theories and model the structural properties of networks. Together, 

these characteristics enable researchers using ERGMs to make proper and accurate model 

estimates for mechanisms structuring tie-formation in networks.   

 

 This research finds evidence that geographical distance has a negative effect on tie-

formation between inventors. This finding has already been well documented in the literature 

(Cassi & Plunket, 2015; Crescenzi et al., 2016; Ter Wal, 2013). What is novel is that this 

research shows there is a large decrease in the negative impact in the 19
th

 century. Geographical 

distance matters less. However, the negative impact of geographical distance on tie-formation 

only decreased incrementally throughout the 20
th

 century. This finding is surprising when 

keeping in mind the incredible developments in telecommunication and transport technologies 

during this era. Geographical distance still negatively affects tie-formation. The advances in 

communication and transportation developments seem not to have been able to match the 

benefits of geographical proximity (see Audretsch & Feldman, 1996; Feldman & Kogler, 2010; 

Jaffe et al. 1993; Storper & Venables, 2004).     

 

 Technological proximity has a positive impact on tie-formation between two inventors. 

The evidence presented in this paper shows that the impact of technological proximity on tie-

formation is largest in two specific time-periods: during the mid-1800s and between 1930 and 

1950. Both periods are characterized by high levels of uncertainty. In the first time-period, the 

1836 US patent system was still relative new. It is likely that the introduction of this novel 

system confronted inventors with unknown rules and processes that determined their chances of 

successful application. In the second period, the Great Depression, the Second World War and its 
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aftermath raised uncertainty on a different level. During crises individuals might be less likely to 

experiment because it is unclear if society will appreciate their experiments. Instead, in both 

time-periods inventors are more likely to make traditional, less risky decisions and collaborate 

with inventors with similar technological skills. That is, in times of uncertainty, inventors might 

choose the exploitation of familiarity over the experimentation with new technologies 

(Granovetter, 2005; March, 1991; Schumpeter, 1934). In this case, the exploitation of familiarity 

is the collaboration with inventors with similar technological portfolios. 

 

 Social proximity has a strong positive effect on the likelihood of collaboration. However, 

this only holds for first-order connections and for second order connections after the 1930s. 

First-order connections are established between two inventors when they have collaborated on a 

patent in the previous 10 years. A positive impact of a first-order connection thus means that 

inventors are more likely to re-collaborate with a previous collaborator. Inventors know the 

expertise of previous collaborators and can more readily evaluate their contributions on future 

patents than that of unfamiliar inventors, increasing the likelihood of collaboration. Second-order 

collaborations have a consistent positive effect on collaboration after the 1930s. This could be 

explained by the rapid increase in US inventor collaboration after the 1930s, reported by Van der 

Wouden (2018). This development generated a large number of connections throughout an 

increasing pool of inventors that has experience with collaboration. This is likely to increases the 

overall likelihood of new collaborations to occur and especially promotes collaboration with an 

inventor with whom previous collaborators already collaborated. The impact of a third-order 

connection on tie formation is less distinct. Throughout the entire time-frame of this study the 
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impact has been volatile, suggesting that these type of connections have limited impact on future 

tie-formation.   

 

 The number of previous patents has a positive effect on tie-formation, but this impact is 

decreasing over time. Its strongest effect on collaboration was in the 19
th

 century. Through the 

20
th

 century, its effect on collaboration was rather stable. There are a number of possible 

explanations for these findings. First, the processes of applying for and being granted a patent 

might not have been as transparent and obvious in the 19
th

 century as it was throughout the 20
th

 

century. The 1836 patent system was only just introduced and only a relatively small number of 

Americans had experience with the novel system. New inventors might decide to team-up with 

inventors with successful patenting experience to overcome this ignorance. Second, patenting 

costs money. Although patenting in the US was relatively inexpensive compared to other 

countries, it still was costly (Khan & Sokoloff, 2001; Lerner, 2000) . Financial assistance might 

not have been as readily available as in later years, because inventors mostly worked 

independently of firms in the 19
th

 century (Lamoreaux & Sokoloff, 2005). Collaborating and 

jointly applying for a patent allows cost sharing. In the 20
th

 century, firms would increasingly 

finance patents. Third, experienced inventors are more attractive partners if they had a good 

reputation. In the 19
th

 century most inventors operated independently and made a living by 

licensing specialized patents to firms. Inventors who did this successfully would have built good 

reputations and become attractive to other (novel) inventors to collaborate with. This effect drops 

over time, because inventors increasingly become recruited by firms. In 1933 the US Supreme 

Court ruled that the patent and its rights that result from inventors hired by firms belong to the 
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firm (Coriat & Weinstein, 2012). This took away the direct monetary incentive for an increasing 

pool of corporate inventors to collaborate with experienced inventors.  

 

 This paper has four contributions to research on knowledge production. First, this 

research has shown that the negative effect of geographical distance on collaboration changes 

over time, but seems to be rather resilient to the technological advances in tele-communication 

and transportation introduced in the 20
th

 century. Second, not all social connections have a 

positive effect on collaboration. Only after the 1930s having a second-order connections 

consistently affects collaboration positively. Third-order connections don’t seem to positively 

impact collaboration in a systematic fashion. Third, in times of uncertainty US inventive 

collaborative behavior is different. Inventors are more likely to collaborate with inventors with 

similar knowledge stocks than in times with less uncertainty. Finally, this paper has shed light on 

collaboration in a period US knowledge production that has been undocumented before. The 

results presented here are the first systematical long-run evidence identifying mechanism that 

structure tie-formation among US inventors.  

 

 The results of this analysis are of relevance for policymakers constructing innovation 

policies and corporate executives concerned with innovation. As collaborative knowledge 

production has numerous benefits on firm and regional level, understanding the mechanisms 

structuring collaboration is important. First, geographical proximity is still an important driver of 

collaboration and suggests the significance of clustering economic activities in space – even with 

telecommunication and transportation technologies in place and controlling for social 

connections and technological proximity. Second, simply clustering activities might not be 
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enough. Social connections between inventors, either first- or second-order, significantly 

promotes collaboration. Facilitating environments that stimulate the creation of dense social 

networks will benefit collaborative knowledge production. Promoting individuals to interact and 

engage with previous collaborators and their close connections is most likely to result in 

successful collaborative output, ceteris paribus. Third, the direction of knowledge production is 

impacted by the degree of uncertainty. In times of high uncertainty, US inventors are found to 

avoid risk and collaborate with technologically similar inventors. Policies aimed at reducing the 

inherent uncertainties of knowledge production could result in less path dependent and more 

diversified outcomes.  

 

 This research has several limitations that should be taken into account. First, the role of 

the firm in tie-formation is unclear. Currently, there is no reliable data that links firms to the 

historical US patents. This becomes an issue after 1933, because then firms become legally able 

to apply for patents. Second, this paper has focused on historical US patents. Knowledge 

production is much broader than the production of patents. Clearly, not all knowledge is 

patented. Therefore, caution is advised generalizing these findings. Third, the data used for this 

research is incomplete. Only patents that are assigned to inventors living in MSAs are 

incorporated in the study. This means that patents containing rural or foreign inventors are 

dropped from the analysis.  Finally, the analysis in this paper is limited from 1836 to 1975. It is 

unclear how these mechanisms structure tie-formation after 1975. What is especially of interest 

is how the introduction of the Internet will impact the effect of geographical, social and 

technological proximity on tie-formation among US inventors.   
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Chapter 3: Inventor Mobility and Productivity: A Long-Run Perspective 
 

Abstract 
 

U.S. inventor mobility is traced between firms and over space from 1836 to 1975. Historical 

patent data are used to identify all U.S. inventors on patents, the locations of those inventors and 

whether the patents were assigned on issue. Mobility is identified for the set of repeat inventors 

who change assignee or location over time. Rates of inventor mobility are generated by decade 

over the period examined. Firm and geographical mobility increase over time, with only 

temporary reversals around the Great Depression and Second World War. Comparisons of patent 

productivity among matched samples of mobile and immobile knowledge producers reveals that 

firm mobility and spatial mobility raise the future number of patents produced by inventors. Firm 

mobility has a greater impact than geographical mobility on inventor productivity. However, the 

impact of both forms of mobility change over time.  
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Introduction 
The mobility of skilled workers, researchers and inventors within the economy has generated 

considerable interest for some time. The concern with mobility hinges primarily on the impacts 

of the movement of skilled-workers across the economy. From Topel and Ward (1992) through 

to Jackson (2013) and Behrens et al. (2014), capturing the efficiency gains of worker sorting and 

matching, and separating these from the returns to agglomeration has long been a research target. 

These gains play out in the innovation literature as higher rates of inventor and firm productivity 

following movement (Hoisl, 2007; Kaiser et al., 2015). At the same time, inventor mobility has 

attracted more recent attention for its role in driving knowledge flows or spillovers between 

firms and over space (Zucker et al., 1998; Breschi and Lissoni, 2009). Such flows are a key 

component in models of economic growth resting on increasing returns, after Romer (1986, 

1990). At the regional level, knowledge sharing through the movement of technology embodied 

in skilled workers is thought to characterize high performing regions (Saxenian 1994; Audretsch 

and Feldman, 1996; Almeida and Kogut, 1999; Miguelez and Moreno, 2013). At broader spatial 

scales inventor and skilled-worker mobility is also linked to innovation in emerging economies 

(Saxenian, 2005, 2007; Nathan, 2014) prompting calls for a mobility-driven model of economic 

growth and international development (Clemens, 2010). 

This paper explores inventor mobility in the U.S. economy from 1836 to 1975. The 

primary goals are to explore long-run shifts in patterns of inventor mobility between firms and 

over space and to examine whether that mobility raises the productivity of inventors. Most 

studies of skilled-worker and inventor mobility focus on specific growth sectors, regions or 

limited time-periods. There are no data comparing the rates of movement of inventors over the 

long-run, nor whether mobility raises the productivity of inventors. It is important to know 

whether rates of inventor mobility have significantly changed over time and thus whether the 
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flow of their knowledge may play as important a role in regional economic performance as many 

suggest. 

 To date, answering the questions just posed has been difficult largely because individual 

inventors in the United States have not been systematically identified and tracked. Patent data 

available from the United States Patent and Trademark Office (USPTO) provides a potential 

source of inventor records, though this source is compromised as individual inventors are 

identified by name and are not disambiguated. Further complicating the task of examining long-

run inventor mobility, patent records before 1975 have not been available in digital form until 

recently (Van der Wouden, 2018). 

 The data used in this paper draw heavily on the publicly available HistPat database 

(Petralia et al., 2016) and the disambiguated inventor data from Van der Wouden (2018). HistPat 

contains geographical and technological information for historical patents granted by the USPTO 

between 1836 and 1975 and can be linked to the disambiguated inventor data. Using search, 

match and machine learning techniques the assignee data for these historical patents is extended. 

This allows tracking individual inventors in time and across space and firms. Matching 

algorithms are used to match mobile to non-mobile inventors on a series of covariates, such that 

there is no connection or bias between the treatment variable (mobility) and the control variables. 

These matched samples are used in statistical models examining the effect of firm and spatial 

mobility on the future number of patents produced by inventors. 

 The key findings of this paper are that firm mobility and spatial mobility raise the future 

number of patents produced by inventors. In general, inventors who move in space tend to have 

greater patent production over the following five years than non-mobile inventors. This effect is 

strongest for the last 30 years of the sample. Similarly, inventors who moved between firms 



114 

 

produce more patents than inventors who stayed with the same firm. This positive effect on 

productivity is observed for all time-periods in the sample, except for the aftermath of the 

Second World War. Inventors who moved both between firms and locations have significantly 

higher patent productivity than their counterparts who moved only between firms or locations. 

Inventors who moved between firms have greater productivity gains compared to their control 

group than the inventors who moved geographically compared to their control group. This 

suggests that firm mobility impacts inventor productivity more than spatial mobility.  

 The remainder of the paper is organized as follows. The next section presents an 

overview of the relevant literature in which the paper is embedded. Section three introduces the 

construction of the data and methods. In section four these data are described in more detail. The 

empirical results of the statistical models exploring the influence of mobility on inventor 

productivity are presented in section five. The last section presents a series of conclusions, a 

discussion of the findings and directions for future research. 
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2. Literature Review 
Technology is increasingly important to the performance of firms and, in aggregate, regions. The 

management of technology within organizations, its production and its protection, is a critical 

component of the resource based view of the firm (Barney, 1991; Wernerfelt, 1984; Grant, 1996) 

and related models of the regional economy (Saxenian, 1994; Lawson and Lorenz, 1999; Asheim 

and Gertler, 2005). For most researchers, knowledge, especially that of a tacit nature, is 

considered locked inside individuals, groups of workers and firm routines (Kogut and Zander, 

1992). The relative immobility of knowledge is then seen as a key determinant of the competitive 

advantage of firms and especially regions even in a world economy that is increasingly 

integrated (Maskell and Malmberg, 1999). 

 Differentials in firm and regional performance notwithstanding, some knowledge clearly 

does move within the capitalist space economy. Ideas flow between organizations as they 

increasingly share the burden of innovation through collaboration (Schilling and Phelps, 2007; 

Hoekman et al., 2010). Knowledge also diffuses over time across firms and regions via spillovers 

of various kinds (Jaffe et al. 1993; Owen-Smith and Powell, 2004; Acs and Varga, 2005; 

Miguelez and Moreno, 2013) and through the movement of skilled individuals (Almeida and 

Kogut, 1999; Zucker and Darby, 2006). The relative significance of these mechanisms is keenly 

debated (Zucker et al., 1998; Breschi and Lissoni, 2009). 

The mobility of workers within the economy and the impact of that movement has 

generated considerable debate. From early theoretical discussion on learning by Arrow (1962), to 

work on sorting and matching in labor markets (Topel and Ward, 1992; Jackson, 2013) a large 

literature has emerged that attempts to explain wage differences across the economy (Abowd et 

al., 1999; Behrens et al., 2014;  Dauth et al., 2016) and to separate the influence of worker and 

firm heterogeneity on productivity and wages from the characteristics of cities, or agglomeration. 
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Related research focuses on processes of firm learning through hiring skilled employees (Song et 

al., 2003; Rosenkopf and Almedida, 2003) and extensions of these claims to regional economic 

performance (Boschma et al., 2008; Faggian and McCann, 2008; Cappelli et al., 2018). 

The global dimensions of worker mobility and linkages to technology transfer, economic 

growth and development are explored by Saxenian (2005; 2007) who traces the international 

mobility of high-skilled U.S. workers, the networks they form and their role in circulating ideas 

between industrialized and emerging economies. Kerr (2008), Edler et al, (2011) and Nathan 

(2014) extend this work, while Clemens (2010) goes further in advocating for a labor mobility 

agenda to fuel international development. Links to the literature on globalization emerge in 

research that examines the role of technology spillovers from foreign firms, often transnational 

subsidiaries, channeled through worker mobility (see Gorg and Strobl, 2005; Balsvik, 2011; 

Poole (2013). There is abundant evidence of the impacts of skilled foreign workers on economic 

performance and innovation in the U.S. and Europe (Niebuhr, 2010; Peri, 2012; Stuen et al., 

2012; Bosetti et al., 2015) 

An important, though small, body of literature has also focused more specifically on the 

impacts of inventor mobility. Inventors are a special class of skilled workers that have generally 

been tracked through information linked to patents. The core concern in this research is whether 

mobile inventors, those who move between firms and over space, are more productive than 

immobile inventors. Hoisl (2007), using a matched sample of German inventors and firms, finds 

that inventors who switch firms are more productive, but also that more productive inventors are 

less likely to move between firms. The latter result is echoed by Palomeras and Melero (2010). 

Thus, it is important to be aware of endogeneity that links inventor mobility and performance. 

While Agarwal and Ohyama (2013) also report that the mobility of scientists increases their 
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productivity, Fallah et al. (2012) show that inventors in the U.S. telecom industry who move 

between firms exhibit a reduction in patenting performance compared with inventors who 

remained in the same company. Hoisl and de Rassenfosse (2014) push further to identify the 

mechanism through which mobility influences inventor productivity and suggest it is a matching 

effect driven by the knowledge fit of inventors and their employers. Related research reports that 

highly productive inventors in the U.S. are disproportionately foreign-born (Stephan and Levin, 

2001) and that Russian mathematicians who left the Soviet Union were out-performing their U.S. 

counterparts (Borjas and Doran, 2012). Evidence of no migration effect on innovative output is 

reported by Stephan et al. (2007) and Hunter et al. (2009). Franzoni et al. (2014) review these 

studies and find a positive migration effect in their own studies of scientific output. 

A somewhat broader literature reports on the impact of inventor moves on the innovative 

output of the firms that hire them. Kaiser et al. (2015) report that a new R&D worker coming 

from a firm that patents significantly raises the number of patent applications by the new 

employer. Rahko (2017) does not find significant evidence that inventor mobility raises the 

patenting profile of hiring firms, though it has a positive impact on future inventive efforts. Song 

et al. (2003) and Rosenkopf and Alameida (2003) suggest that learning through new hires is an 

effective way of boosting innovation in distant technology fields. Rahko (2017) reports similar 

results. Maliranta et al. (2009) find that hiring the R&D workers of competing firms into one’s 

own R&D division does not boost firm productivity, perhaps because of a lack of absorptive 

capacity or worker fit. Palomeras and Melero (2010) and Zwick et al. (2017) discuss the many 

factors that shape the relationship between mobility and firm outcomes. 

In general, the broad findings of a positive effect of mobility on firm innovation are used 

to support the claims of Saxenian (1994) and Samila and Sorenson (2011) that high performing 
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regions are characterized by high rates of skilled worker turnover and the sharing of knowledge. 

Further evidence is provided by Almeida and Kogut (1999). Migeulez and Moreno (2013) also 

report the positive effects of spillovers on regional innovation and Cappelli et al. (2018) show 

that inventor mobility raises the productivity of Italian regions. Work by Marx et al. (2009) 

showing how non-compete laws limit labor turnover and patenting supports these general 

findings. A broad review of much of the work above is provided by Maedsley and Somaya 

(2016). 
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3. Data and Methods 
The data used to examine inventor mobility and productivity in this paper draw, in large part, on 

the publicly available HistPat database (Petralia et al., 2016). HistPat contains geographical and 

technological information for historical patents granted by the USPTO between 1790 and 1975. 

However, HistPat only provides information on the first inventor of a patent and does not 

identify possible additional co-inventors. Co-inventor data are recovered using the procedures 

outlined in Van der Wouden (2018), employing searching, matching and machine learning 

algorithms to detect, identify and disambiguate inventors on the HistPat patents and to extend the 

HistPat data in different ways. Identifying all inventors on U.S. patents and disambiguating those 

individuals enables the tracking of inventors over time and space, as long as they generate 

additional patents. Further, identifying assignee information for HistPat patents adds useful 

information about knowledge ownership and the status of inventors. 

 Section 3.1 describes the methods used to extend HistPat, largely through adding 

disambiguated assignee data. Assignees are organizations, typically firms and universities, that 

own, or are given ownership of, patents generated by individual inventors or teams of co-

inventors. In many cases the inventors are employees of these organizations. Identification of 

assignees is critical to examine the mobility of repeat inventors between firms. Inventor mobility 

over space is captured by examining the locational data for inventors identified by Van der 

Wouden (2018). Section 3.2 details construction of a sample of repeating inventors in which 

mobile inventors, those moving between firms, locations or both, are matched to a set of non-

mobile inventors across a series of key variables. Following these inventor samples over time 

permits analysis of the causal effect of mobility on inventor productivity.  
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3.1 Building assignee data 
Following the general approach outlined in Van der Wouden (2018), the raw scraped text files of 

4,125,734 USPTO patents available in HistPat were examined to identify whether a text string in 

the patent document was part of a company name using fuzzy matching algorithms. Only firm 

assignees were identified in the historical data. Universities were not systematic assignees on 

patents much before passage of the Bayh-Dole Act in 1980. The data for the lists of company 

names comes from the digital USPTO patents spanning the period 1975 to 2005 (Lai et al. 2011), 

the assignee data that is explicitly recorded in HistPat files (originating from USPTO and 

EspaceNet), the Business Reference Services of the Library of Congress and several Wikipedia 

pages listing corporations by country
17

. Combined, these data comprise 217,850 unique company 

names and reflect a mix of historical, current, foreign and domestic firms.  

 The words that (fuzzy) match with company names in our historical lists of patents are 

recorded. For these matches four additional characteristics are used for the supervised machine 

learning exercise discussed below. Analysis records to what extent a full match is observed, how 

often the matched word(s) occur in the document, where in the document the matched word(s) 

first occur and if the matched word(s) are close to the terms ‘assigned to’ or a close variation of 

that phrase. These characteristics are used to predict whether the matched firm names are likely 

the assignees of the patent and not a reference to different firms.       

 The next step is to classify each of the observed matches as either an assignee (1) or a 

non-assignee (0). Each observed match on a patent is called an event. Since the outcome variable 

of the matching process takes only two values we use supervised binary classification machine 

learning techniques. 

                                                 
17

 For example, a list of companies in the United States can be found at 

https://en.wikipedia.org/wiki/List_of_companies_of_the_United_States 
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 Supervised machine learning approaches make use of three different types of datasets. 

The base data with known outcomes is randomly split in chunks of 80%, 10% and 10%. The 

largest set is branded the training set and used to train a series of different machine learning 

algorithms. These algorithms learn which combinations of variables in the data can best predict 

the known outcome of events. The validation set (10% of events) is used to tweak the parameters 

of candidate models to improve the performance and prevent the over-fitting the training data. 

Over-fitted candidate models are too sensitive to the structures observed in the training data and 

generalize poorly to other data. The test set (also 10% of events) is used to assess the 

performance of the candidate models on a number of indicators selected by the researcher. 

Finally, the model of best performance is used to predict whether each event on patents with 

unknown assignees is an assignee or not. 

 An important step is to build known events. HistPat contains two vectors with 

information on the assignee that originates from Google Patents and EspaceNet. These vectors 

have missing values for more than 700,000 patents. These missing values are correct if the patent 

was not assigned or incorrect if the information on an assignee has not been retrieved from the 

document. Patents are typically assigned to companies. When patents are not assigned, they 

generally remain the property of the inventor. The primary objective of this step of the analysis is 

to identify those patents that are unassigned and belong to the inventor(s) and those that are 

assigned to firms. Assignee data for repeat inventors can then be used to infer whether or not an 

inventor moves between firms. Hoisl (2007), using sample data of German patents and the firms 

they work for, confirms that well over 90% of the assignees listed on patents are the 

organizations that employ inventors. 
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 The assignee information in HistPat can be used to construct known events. We merge 

the two assignees vectors and only keep records where the Google and Espace assignee 

information is identical. In this case, both the Google and EspaceNet researchers have 

established the same assignee. We assume this is the true assignee of the patent
18

. A search 

algorithm is deployed to identify non-empty records holding words that are corporate identifiers 

such as ‘Inc.’, ‘Corporation’, ‘Company’, the Dutch ‘Maatschappij’ or German ‘Werke’. The 

events for which the observed words are the same as the vector with known assignees can then 

be used to train candidate models. After tuning the parameters of these models on the validation 

set, the final model is chosen based on performance using the test data set. This final model is 

used to predict which observed names for the patents without a matched assignee in the 

EspaceNet name vector is the assignee or not. In the final data more than 60,000 corporate 

assignees were matched to patents missing in the HistPat data.  

3.2 Variables, matched samples and models 
 

The core research question in this paper asks whether geographical mobility or firm mobility 

affect the productivity of inventors. To disentangle the effects of these different types of mobility 

on productivity, four samples are constructed to estimate a series of related models. Table 3.1 

and Table 3.2 list these samples and the nature of the analysis for which they are used. Note that 

inventors in the treatment group have experienced at least one type of mobility (between firm or 

between location). In analyses 3 and 4, inventors in the control group did not have one specific 

type of treatment but received the other.  

 

                                                 
18

 We have manually removed clear mistakes, but some mistakes might exist. This is not problematic, because 

machine learning algorithms deal rather well with noise in the data.  
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Table 3.1 Types of samples based on mobility of repeating inventors 

  Geographic Mobility 

  Yes No 

F
ir

m
 

M
o
b
il

it
y
 Yes A B 

No C D 

 

 The initial sample consists of all inventors who have applied for more than 1 patent over 

during the period 1836 to 1975. We limit the analysis to inventors who lived in a US 

metropolitan area (MSA) at the time of the patent application. This decision is made because 

rural locations are difficult to identify and disambiguate in the historical data. This sample of 

urban, repeating inventors is called the initial sample and is described in section 4 of the paper. 

 

Table 3.2 Four analyses of the influence of different types of mobility on productivity 

Analyses Treatment Group Control Group 

 Samples Label Samples Label 

1 A + C Geographical mobility 

(ignoring firm mobility) 

B + D  No geographical mobility 

(ignoring firm mobility) 

2 A + B Firm mobility  

(ignoring geog. mobility) 

C + D No firm mobility  

(ignoring geog. mobility) 

3 A Double mobility C Only geographical mobility 

4 A Double mobility B Only firm mobility 

 

 The initial sample of all repeating inventors over the period 1836 to 1975 is resampled 

over time. Starting in 1900 and for every ten years up to 1970, annual focal year samples of 

repeating inventors are taken. Repeat inventors through the nineteenth century are not very 
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numerous and so are ignored here. A repeating inventor is included in the 1900 focal year sample 

if she/he applied for a patent in 1900 and at least one patent in the previous five years (back to 

1896 in this case). For all the repeat inventors in the eight focal year samples, a series of 

variables are constructed (these are outlined below). These variables were subsequently 

employed in the matching procedures and statistical analysis reported below.  

 The first key variable Geographical Mobility takes the value of zero if the listed location 

of the inventor on the patent in the focal year is the same as the location listed on the inventor’s 

previous patent. The mobility variable takes the value of one if inter-urban mobility occurred. If 

the inventor has multiple patents in the previous five years, the most recent pair of patents is used 

to define the mobility variable. Immobile inventors are removed from the focal year sample if 

they become mobile within five years after the focal year. This is done to remove the influence 

of mobility on productivity after the focal year. 

 The second key variable Firm Mobility is constructed in similar fashion as geographical 

mobility but indicates whether the corporate assignee listed on the focal patent is the same as the 

corporate assignee on the inventor’s previous patent. If this is the case, the variable takes the 

value of zero and otherwise one. Repeating inventors who are associated with one unassigned 

and one assigned patent are also considered to have experienced firm mobility. The third key 

variable Double Mobility measures whether an inventor moved between both geographical 

locations and firms between the focal and prior patent.  

 Inventor productivity is the dependent variable of interest in this study. Productivity is a 

count of patents granted to the inventor in the five years after the focal year. We hypothesize that 

mobile inventors produce on average more patents than non-mobile inventors.  
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 An important concern is that productive inventors might also be more mobile because 

they have a higher probability of being recruited by firms than less productive inventors. This 

makes it difficult to disentangle the causal effect of mobility on productivity (see Hoisl, 2007). 

To control for this, a measure of prior productivity is generated that is labelled Previous Patents. 

This variable is the count of patents granted previously to the inventor before a focal year. This 

variable is a critical matching variable linking inventors in treatment and control groups as 

reported below. 

 It is hypothesized that the social networks of inventors impacts their productivity. This is 

a second matching variable defined across treatment and control samples. The Sum of 

Collaborators specifies the number of collaborators an inventor has worked with throughout 

their career up to the date of the focal year patent. This variable measures the size of the 

inventor’s collaborative network and proxies for access to important resources such as 

knowledge, practices and opportunities. Increased access to resources can boost an inventor’s 

future productivity because these resources can be used to produce patents more readily (see 

Owen-Smith and Powell, 2004).  

 The variable Assignor indicates whether an inventor’s focal year patent is assigned to a 

corporate assignee. It takes the value of zero if it is not assigned and one if assigned to a 

corporation. Inventors associated with corporations/firms at the time of patenting are likely to 

have greater financial support than inventors patenting privately. This support might boost the 

productivity of inventors and thus this is used as a third matching variable across samples. 

 In addition to these controls, three variables are recorded and included as fixed effects in 

the statistical models employed. For each inventor, fixed effects include the MSA of location at 
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time of patenting, the focal Year of invention, and the Primary Technology Class in which they 

patent. These fixed effect variables are also used for building the matched samples. 

 To isolate the effect of mobility on productivity, observations in the focal sample years 

are pre-processed by matching mobile inventors to non-mobile inventors using coarsened exact 

matching (CEM) algorithms (Iacus et al., 2012). Mobility is regarded as the ‘treatment’. Each 

inventor is placed in the treatment or control group depending on how they score on the two 

mobility questions. For each of the four types of analyses (see Table 3.2) a treatment and control 

group is selected. The CEM algorithm prunes observations that don’t have close matches on a 

series of covariates in both the treated and control groups. The covariates used for matching are 

Sum of Collaborators, Assignor, Previous Patents, MSA and Technology Class. After matching, 

the resulting annual analytic samples hold observations on mobile and non-mobile inventors that 

have similar features and only differ on their mobility score. This means that the analytic 

samples are balanced, such that there is no connection or bias between the treatment variable 

(Mobility) and the control variables. Note that for each of the four analyses a new matching 

procedure is undertaken because the treatment and control groups are different. 

 Pre-processing the data using CEM has many advantages (see Iacus, King, & Porro, 

2011; Iacus et al., 2012). One of these is that the results of the statistical models are less reliant 

on the model specifications and thus more robust. In addition, matching allows estimation of the 

causal effect of mobility on future productivity – the main aim of this paper. Important to note is 

that this approach has at least two limitations for this research. The sample size of our analysis is 

smaller, because unmatched observations are deleted. In addition, our analysis is representative 

only for inventors with rather common covariates, because inventors that are outliers on the set 

of matching criteria are not likely to be matched.  
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 Four statistical models are utilized to estimate the effect of mobility on productivity. 

These models take the form of a Poisson regression because our dependent variable 

(Productivity) is a count variable. The Productivity of inventor i is defined as follows: 

 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖 =  𝛽1 ∗ 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑖 +  𝛽2 ∗ 𝑆𝑢𝑚 𝑜𝑓 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑟𝑠𝑖 +    𝛽3

∗ 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖 +  𝛽4 ∗ 𝐴𝑠𝑠𝑖𝑔𝑛𝑜𝑟𝑖  +   𝛽5 ∗ (𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑖

∗ 𝑆𝑢𝑚 𝑜𝑓 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑟𝑠𝑖)  +  𝛽6 ∗ (𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ∗ 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖)  +  𝛽7

∗ (𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ∗ 𝐴𝑠𝑠𝑖𝑔𝑛𝑜𝑟 𝑖)  + 𝑀𝑆𝐴𝑖 + 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝐶𝑙𝑎𝑠𝑠𝑖 +  𝑌𝑒𝑎𝑟𝑖

+ 𝜀𝑖   

 

in which MSA, Primary Technology Class and Year are fixed effects and 𝜀𝑖 represents the error 

term. Mobility can take the form of geographical, firm or double mobility, depending on the 

analysis. 𝛽5−7 are interaction terms and are interpreted as the change in the effect of the 

interacting variable (i.e. Sum of Collaborators) on Productivity when Mobility takes the value of 

one. This allows the researcher to examine how Mobility mediates the effect of the control 

variables on Productivity. 

 In Analyses 1 and 2 the effect of geographical and firm mobility (respectively) on 

productivity is examined (see Table 3.2). The observations in the treatment group are inventors 

who have been mobile. The control group consists of inventors who did not receive such 

mobility treatment. A positive regression coefficient for mobility indicates that mobile inventors 

are more productive than non-mobile inventors. From the evidence in Analyses 1 and 2 it is 

impossible to say whether firm or geographical mobility impacts productivity more strongly 

because the samples are not comparable. To engage with that issue Analyses 3 and 4 are 
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designed (see Table 3.2). The observations in the treatment group in Analysis 3 and 4 are mobile 

inventors in terms of both geographical and firm movement. The control group for Analysis 3 

only consists of inventors who were mobile in terms of geography but not in terms of firm 

movement. The control group for Analysis 4 consists of inventors who were mobile in terms of 

firm movement but not geography. Note that the observations in the treatment group for Analysis 

3 and 4 are similar, but the observations in the control group are different. This is important 

because the difference in regression coefficients for Mobility in Analysis 3 and 4 indicates 

whether the effect of firm mobility or geographical mobility on productivity is greater.    

 Table 3.3 presents descriptive statistics of the variables in the model for the initial 

sample, encompassing all repeating US urban inventors. Note that productivity is not included in 

Table 3.3 because it is only measured for inventors in the matched analytical samples. Their 

productivity is measured using data from the initial sample.  

  

Table 3.3 Descriptive statistics of variables in the model 

 

 # Obs. Average SD Min Max Rang

e 

Geog. Mobility 1,310,564 0.25 0.43 0 1 1 

Firm Mobility 1,310,564 0.31 0.46 0 1 1 

Double Mobility 1,310,564 0.11 0.32 0 1 1 

Assignor 1,310,564 0.59 0.49 0 1 1 

Collaboration 1,310,564 0.42 0.49 0 1 1 

Prev. patents 1,310,564 9.39 21.73 1 695 694 

Sum of 

Collaborators 

1,310,564 5.48 14.35 0 503 503 

      

 # Obs. # Unique    

MSA 1,310,564 366    

Primary Tech. Class 1,310,564 430    

Year 1,310,564 140    
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4. Description of data 

This section of the paper provides descriptive statistics on trends in mobility, productivity, 

collaboration, corporate patenting and the geography of repeating US inventors in the initial 

sample data between 1836 and 1975.  

 The share of mobile inventors has changed over time. Figure 4.1 shows that throughout 

most of the 19th century the share of mobile inventors increased. It reached a peak in 1876 when 

more than 40 percent of the repeating inventors had moved locations in the last 5 years. After 

this peak the share of mobile inventors declined to around 15 percent during the Great 

Depression and Second World War. Inventor mobility seemed to be reduced by these crises and 

the uncertainties they bring about. The economic revival of the US economy after the Second 

World War witnessed a significant increase in the mobility of inventors. Within 25 years, the 

share of mobile inventors nearly doubled in the post-war period. This likely reflects 

improvements in modes of transportation and the decreased cost of movement.  It also reflects 

the growth of cities in the south and west of the country and the geographical spread of centers of 

invention that marked the rapid economic expansion of the 1950s and 60s. The figure also shows 

a smoothed 5-year rate of inventor mobility. Note that Trajtenberg (2005, 2006) claims inter-

state mobility of inventors in the original NBER post-1975 data of 13%. Combining this with 

intra-state mobility yields mobility rates that are not that dissimilar than those presented here. 

 There is considerable heterogeneity in the productivity of repeat inventors. The heat map 

of Figure 4.2 highlights the annual distribution of inventor productivity. Until the late-1870s 

more than 50 percent of repeating inventors only had one previous patent and none had more 

than 6 previous patents. Over time, this balance gradually shifted towards inventors with larger 

patent portfolios. At the turn of the 20th century repeating inventors with more than 10 patents 
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represented almost 30 percent of the inventors of any focal year, whereas inventors with only 1 

patent only accounted for about 20 percent of the overall inventor pool. This growth in the 

average number of patents per inventor is driven in part by the impact of well-known prolific 

inventors (i.e. Thomas Edison) who acquired great numbers of patents at this time, a period when 

Lamoreaux and Sokoloff (1996) report the emergence of a national market for technology in the 

United States and a deepening division of labor around the process of invention. This trend 

reversed during the 1910s and 1920s, when the size of inventor portfolios declined somewhat. 

Interestingly, during the Great Depression and Second World War, repeat patenting became 

dominated by prolific inventors once more. A relatively small share of inventors had only one or 

two patents in their patent portfolios, while more than 30 percent of inventors had more than 10 

patents. This suggests that during crises, when uncertainty is high, the influx of new repeating 

inventors is relative low. Experienced inventors with multiple patents might be less influenced 

by this uncertainty and continue patenting. In the post-war period repeating inventors with lower 

number of previous patents become dominant once again.  

 Patterns of mobility are different for inventors producing new knowledge individually or 

in teams, and for inventors producing patents for firms (assigned patents) or for themselves. 

Figure 4.3 indicates that repeat inventors working on patents produced through collaboration are 

more likely to be mobile than their non-collaborative counterparts. Although the shares of 

mobility fluctuate over time, collaborative inventors are more mobile across the entire time-

period. However, during the Great Depression and Second World War, when overall mobility is 

low, the gap between collaborative and non-collaborative inventors is relatively small. The 

mobility rate of collaborative inventors is impacted more strongly by these crises than that for 

solo inventors. Mobility rates for both collaborating and solo inventors increase after the 1950s. 
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Figure 4.1 Share of geographically mobile US inventors over time (5-year mobility between 

US counties) 

 

 
Figure 4.2 Annual distribution of the number of previous patents in repeating inventor’s 

portfolios 
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Figure 4.3 Share of mobile inventors by collaboration 

 

 Inventors with patents assigned to corporations tend to be less mobile than inventors with 

unassigned patents. Figure 4.4 demonstrates that only between 1930 and 1950, the mobility of 

both groups of inventors was relatively similar. After the 1950s, inventors with unassigned 

patents tend to be more mobile. This likely indicates the greater independence of inventors who 

are not linked to firms or other organizations. However, the number of independent inventors 

was dropping dramatically at this time. It is important to note that only individuals are allowed to 

apply for patents, but the rights to the patent can be assigned to others, including corporations. 

However, in early years, inventors frequently licensed the use of their patents to others without 

legally assigning the patent rights. As large corporations began to develop in-house R&D labs 

questions regarding the ownership of patents produced by inventors on corporate pay-rolls 

started to emerge. In the 1930s the US Supreme Court ruled that patents produced by inventors 

on corporate pay-rolls belonged to the firm. These patents were applied for and granted to 
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individual inventors, but assigned to the corporation, on issue. Figure 4.5 shows that the share of 

patents with a corporate assignee increased significantly during the 1930s. By 1975 about 80 

percent of the patents by repeating US inventors were assigned to a corporation, most on issue. 

 

Figure 4.4 Share of inventor mobility by corporate assignee 

 

 The patterns of geographical movement of mobile inventors have shifted over time. The 

most prominent flows of inventors between US cities in consecutive periods of roughly 40 years 

are plotted in Figures 4.6 to 4.8. In the earliest period (Figure 4.6) the movement occurred mostly 

within cities in the North-Eastern part of the United States. Of course, this was the most 

populated area of the US and the region with the highest densities of firms and patents. New 

York, Boston and Philadelphia are the cities with the largest flows of inventors. Figure 4.7 shows 

that Chicago had become the second largest source of and destination for inventors, pushing 

Philadelphia out the top three, in the second period. However, in the third period Philadelphia is 
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back in second place, resulting from the rapid growth of the pharmaceutical industry, followed 

by Chicago. Figure 4.8 demonstrates that New York is still the location with the largest inventor 

flows, followed by Philadelphia and Chicago, between 1930 and 1975. Note that Los Angeles 

became more important than Detroit and Poughkeepsie in terms of the size of inventor flows 

over this period, indicating the rise of California as a font of knowledge creation after the Second 

World War. 

Figure 4.5 Share of US patents with a corporate assignee 
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Figure 4.6 Geographical mobility of repeating US inventors between 1836-1889 
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Figure 4.7 Geographical mobility of repeating US inventors between 1890-1929 
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Figure 4.8 Geographical mobility of repeating US inventors between 1930-1975 
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 The inter-firm mobility of US repeating inventors is dominated by a relatively small 

number of firms. Figure 4.9 plots the inter-firm mobility flows after 1930 of repeating US 

inventors who patented at least twice in a time period of five years.  DuPont and EW Bliss have 

exchanged the most inventors. Other companies with relatively large exchange flows are Bell 

Telephone Laboratories and Western Electric Company. Western Electric was one of the major 

suppliers of Bell Telephone Laboratories. Components of both companies later became part of 

AT&T. The flow between Esso Research and Engineering Company and Standard-Oil 

Development Company is related to the break-up of Standard-Oil. 

Figure 4.9 Inter-firm mobility of inventors between 1930-1975 
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 Figure 4.10 plots the major firm mobility flows of inventors with one unassigned and one 

assigned patent in a five year time-window. General Electric has been granted 540 patents 

granted to inventors whose previous patent was unassigned. Roughly the same number of 

inventors (561) produced an unassigned patent after having been granted a patent assigned to 

General Electric. Although these data don’t tell us whether the incoming inventors are the same 

as the exiting inventors, they do suggest that these inventors are not recruited to patent for 

General Electric. In the case these inventors are recruited, a similar sized group of inventors is 

leaved the company and produced their next patent unassigned. This pattern is not unique to 

General Electric but is observed by all firms in Figure 4.10 and throughout most large firms in 

the data.   
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Figure 4.10 Mobility of inventors with unassigned patents between 1930-1975 
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5. Empirical results 
The key result of this paper is that mobility positively affects US inventor productivity over the 

period 1836 to 1975. Inventors who move between firms, who move between metropolitan areas, 

or who do both, produce significantly more patents than non-movers in the five years after they 

are tracked. However, this treatment effect varies with the control variables in the models. In 

Table 5.1 the main results from the four analyses with matched samples listed in Table 3.2 are 

presented. In Tables 5.2 through Table 5.5 the results are presented for each of the four analyses 

and separated for different time periods. 

 The reader is reminded that the dependent variable in the analysis is the productivity of 

inventors. Because productivity is measured as a count of the patents generated by repeat 

inventors, after a focal year when they are identified, the analysis makes use of a Poisson 

regression model estimated with maximum likelihood techniques. The difference between the 

mean and variance of productivity values was not sufficiently large to call for use of the negative 

binomial model. The coefficients in the Poisson model are estimated on the log scale and so need 

to be exponentiated to be read as those from a standard regression model. 

 In all four models presented in Table 5.1 mobility has a significant and positive impact on 

productivity. In model 1 the coefficient for Geographical Move indicates that repeat inventors 

who change their location, between the time of the patent identified in a focal year and the next 

earlier patent, generate on average 1.27 more patents in the five years after the focal year 

compared to inventors who do not change their location. In model 2, productivity for inventors 

who move between firms is 1.47 patents greater than inventors who do not move between firms 

across the five years after which the focal patents are identified. These results suggest that 

movement between firms has a bigger impact on future patent productivity than geographical 

mobility.  
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 However, it is unlikely that the distribution of covariates in the treatment and control 

samples for model 1 and 2 are comparable. Therefore, it is difficult to establish precisely whether 

geographical or firm mobility has a stronger positive impact on productivity. To answer this 

question, model 3 and model 4 are estimated using samples in which only the control groups 

differ – the treatment groups are the same. When Double Mobility (firm and geographic move) 

takes the value of one, representing the treatment, the coefficient indicates the expected change 

in future patent production compared to the control group. In this case, the control group 

observations in model 3 are inventors who only experienced geographical mobility. In model 4 

the control group consists of inventors who only moved between firms. The larger coefficient in 

model 3 suggests that firm mobility boosts future patent production more than geographical 

mobility, because inventors experiencing both have a greater increase in productivity compared 

to geographical movers (model 3) than to firm movers (model 4).  

 The effect of the control variables varies along the treatment and control groups in the 

different models. The coefficients of the three control variables can be interpreted as the log 

change in the productivity of the control group inventors associated with a one unit increase in 

the variables. In turn, the coefficients of the interacted control variables correspond to the log 

change in the productivity of the treatment group inventors. 
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Table 5.1 Results from statistical models examining the effect of mobility on productivity 

  

Dependent Variable: 
Productivity 

1 2 3 4 

Treatment 
Geographical 
Movement 

Firm 
Movement 

G & F 
Movement 

G & F 
Movement 

Control 
No  
Geographical  
Movement 

No  
Firm  
Movement 

Only G  
Movement  
No F  
Movement  

Only F  
Movement  
No G  
Movement 

Geographical Move (0/1) 0.24*** 
   

 
(0.02) 

   
Firm Move (0/1) 

 
0.39*** 

  

  
(0.02) 

  
Double Move (0/1) 

  
0.36*** 0.29*** 

   
(0.10) (0.08) 

Sum of Collaborators -0.02*** 0.02*** 0.02*** -0.04*** 

 
(0.001) (0.001) (0.01) (0.002) 

Assignor (0/1) 0.50*** 0.04** -0.28*** 0.46*** 

 
(0.02) (0.02) (0.10) (0.06) 

Previous Patents 0.05*** 0.01*** 0.04*** 0.06*** 

 
(0.001) (0.0003) (0.004) (0.001) 

Movement * Sum of 
Collaborators 

0.01*** -0.001 -0.02*** 0.02*** 

 
(0.001) (0.001) (0.01) (0.002) 

Movement * Assignor -0.15*** 0.21*** 0.005 -0.28*** 

 
(0.02) (0.02) (0.10) (0.08) 

Movement * Previous Patents -0.01*** -0.0000 0.01*** -0.01*** 

 
(0.001) (0.0004) (0.004) (0.002) 

Fixed effects:     

- MSA     

- Year     

- Primary Tech. Class     

N 29,264 32,026 2,117 7,417 
*p < .1; **p < .05; ***p < .01 
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 Across all four models in Table 5.1, inventors in the control groups are more productive 

if they produced more patents in the past. For these inventors, an increase of one Previous Patent 

is associated with an increase in productivity after the focal year of between 1% and 6%. The 

influence of higher productivity in the past on the treatment groups in models 1-4 is quite 

different.  Only in model 3 for double-movers does higher past patent productivity lead to greater 

productivity gains for the treatment group relative to the control. In all other models, higher past 

productivity does not raise the future productivity of the treatment group over the control group. 

Looked at differently, these results suggest that more experienced inventors do not benefit as 

much from mobility as less experienced inventors.  

 The Sum of Collaborators has a negative impact on productivity for control group 

inventors in models 1 and 4, but a positive effect for the treatment group in these models. These 

control groups are characterized by inventors without geographical mobility. This indicates that 

the productivity of inventors without geographical mobility does not increase as a result of 

having a large number of collaborators, while it does for geographical mobile inventors. 

Interestingly, this effect is the opposite for firm mobility. Models 2 and 3 report that inventors 

without firm mobility benefit from a large number of collaborators, while inventors with firm 

mobility do not. These findings suggest that the benefits of a social network are resilient to 

geographical mobility but not to firm mobility.  

 Control group inventors working on patents with an Assignor in Model 1 and 4 are more 

productive than their counter-parts in the treatment group. The inventors in these control groups 

are characterized by no geographical mobility, suggesting that inventors with no geographical 

mobility benefit (in terms of increased productivity) from patenting for corporations. Corporate 



145 

 

inventors with geographical mobility face decreased productivity. This negative effect is 

strongest for geographically mobile corporate inventors who remained within the same firm. 

 The effects of firm and spatial mobility on productivity have changed over time. In 

Tables 5.2 through Table 5.5 the results are presented for each of the four analyses listed in 

Table 3.2 and separated for different time periods. Note that in Table 5.2 the analysis of 1910 is 

missing. In Table 5.3 the year 1910 and 1970 are missing. These years are missing because the 

Poisson models could not be fit for these samples – there is not enough variation among the 

covariates in these years. 

 Table 5.2 shows that the positive effect of geographical mobility on productivity is 

strongest in the post-World War 2 era. In earlier years there are no significant differences in 

productivity between inventors who changed location and those who did not. On the other hand, 

Table 5.3 indicates that firm mobility has had a significant positive effect on inventor 

productivity throughout the whole time-period, except for the two focal years following the 

Second World War. The benefits of double mobility compared to only geographical mobility are 

reported in Table 5.4. The positive effect of additional firm mobility has been the strongest 

during the early 20
th

 century, save for the Great Depression. Outside this time-window the 

benefits from additional firm mobility are insignificant. Table 5.5 illustrates that the gains in 

productivity experienced by inventors with double mobility compared to inventors with only 

firm mobility is limited to the 1970 sample. This is the only period in which double mobility 

inventors have significantly greater productivity than those inventors who switched between 

firms but not geographical locations. This finding, combined with the evidence reported in Table 

5.2, suggests that the positive effect of geographical mobility on productivity is strongest in later 

years of the analysis.     
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 The number of Previous Patents has a constant and positive effect on patent productivity 

for the inventors in the control groups throughout the entire time-period of this study. Table 5.2 

through Table 5.5 report that the treatment group produced fewer patents when the number of 

Previous Patents increased. This finding suggests, again, that experienced inventors benefit less 

from firm or geographical mobility than inexperienced inventors do.  

 The effect of Sum of Collaborators on the productivity has changed over time. The Sum 

of Collaborators has a mostly negative impact on productivity for control group inventors in 

Table 5.2. The treatment group (geographically mobile) inventors benefit from greater numbers 

of previous collaborators from 1940 onwards. An additional previous collaborator is associated 

with an expected increase in the patent production of mobile inventors of 5 percent in 1970.  In 

Table 5.3 through 5.5 the effect of the Sum of Collaborators on productivity tends to be negative 

for the treatment group, but no clear trends can be observed.  

 Working on an assigned patent has a constant positive effect for inventors without 

geographical mobility throughout the entire time-window. Table 5.2 and Table 5.5 show that 

inventors in the control group significantly benefit from an Assignor on their patents (except for 

year 1900 and 1960 in Table 5.5). In the Tables 5.3 and 5.4 no clear trends over time or across 

groups are discovered.  

 The findings of Table 5.1 broadly sustained two robustness checks. In the first robustness 

check the time-window for mobility to occur was changed from 5-years to 3-years and then to 

10-years. The results were qualitatively the same as those reported above. In the second 

robustness check the matching algorithm is changed from coarsened exact matching to an exact 

matching algorithm. This last robustness check resulted in smaller sample sizes yet the overall 

results were also consistent with those reported. 
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Table 5.2 Results from statistical models examining the effect of geographical mobility on 

productivity 

Dependent variable:  Productivity    

Treatment: Geographical Mobility    

Control: No Geographical Mobility    

 Total 1900 1920 1930 1940 1950 1960 1970 

Geographical Move (0/1) 0.24*** 0.07 -0.07 -0.09 -0.01 1.03*** 0.22*** 1.00*** 

 
(0.02) (0.06) (0.05) (0.07) (0.09) (0.07) (0.07) (0.11) 

Sum of Collaborators -0.02*** -0.02** -0.05*** 0.0004 -0.02*** -0.01*** -0.01** -0.04*** 

 
(0.001) (0.01) (0.01) (0.004) (0.003) (0.002) (0.003) (0.002) 

Assignor (0/1) 0.50*** 0.24*** 0.42*** 0.40*** 0.74*** 0.49*** 0.23*** 0.57*** 

 
(0.02) (0.06) (0.04) (0.05) (0.06) (0.06) (0.06) (0.09) 

Previous Patents 0.05*** 0.07*** 0.07*** 0.04*** 0.06*** 0.04*** 0.05*** 0.08*** 

 
(0.001) (0.004) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) 

Move * Sum of  
Collaborators 

0.01*** -0.01 0.01 -0.01* 0.02*** 0.03*** 0.03*** 0.05*** 

 
(0.001) (0.01) (0.01) (0.01) (0.005) (0.004) (0.004) (0.003) 

Move * Assignor -0.15*** -0.06 0.23*** 0.04 0.01 -0.81*** -0.07 -0.89*** 

 
(0.02) (0.08) (0.06) (0.07) (0.09) (0.07) (0.07) (0.11) 

Move * Previous Patents -0.01*** 0.004 -0.01*** 0.005** -0.02*** -0.02*** -0.02*** -0.05*** 

 
(0.001) (0.01) (0.004) (0.002) (0.003) (0.003) (0.003) (0.003) 

Fixed effects:         

- MSA         

- Year         

- Primary Tech. Class         

N 29,264 1,388 2,562 2,848 3,201 4,158 5,745 6,447 
*p < .1; **p < .05; ***p < .01 
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Table 5.3 Results from statistical models examining the effect of firm mobility on 

productivity 

  

Dependent variable:  Productivity    

Treatment: Firm Mobility    

Control: No Firm Mobility    

 
Total 1900 1910 1920 1930 1940 1950 1960 1970 

Firm Move (0/1) 0.39*** 0.41*** 0.34*** 0.41*** 0.96*** 0.72*** 0.01 -0.002 0.24** 

 
(0.02) (0.07) (0.10) (0.04) (0.06) (0.06) (0.07) (0.06) (0.10) 

Sum of Collaborators 0.02*** 
-
0.05*** 

-
0.05*** 

-
0.11*** 

-0.01 0.03*** -0.003 
-
0.0003 

0.01*** 

 
(0.001) (0.01) (0.01) (0.01) (0.01) (0.003) (0.003) (0.003) (0.004) 

Assignor (0/1) 0.04** 0.13* 0.52*** -0.09** 0.34*** 0.39*** 0.03 
-
0.26*** 

-
0.88*** 

 
(0.02) (0.07) (0.08) (0.04) (0.05) (0.05) (0.05) (0.05) (0.08) 

Previous Patents 0.01*** 0.12*** 0.05*** 0.07*** 0.07*** 0.01*** 0.03*** 0.05*** 0.02*** 

 
(0.0003) (0.01) (0.002) (0.002) (0.002) (0.001) (0.002) (0.002) (0.005) 

Move * Sum of Collaborators -0.001 -0.003 -0.004 -0.002 
-
0.02*** 

-0.02*** -0.01* 0.02*** 
-
0.06*** 

 
(0.001) (0.01) (0.01) (0.01) (0.01) (0.004) (0.004) (0.003) (0.004) 

Move * Assignor 0.21*** 0.07 -0.21* 0.18*** 
-
0.24*** 

-0.30*** 0.38*** 0.43*** 1.13*** 

 
(0.02) (0.09) (0.11) (0.05) (0.06) (0.07) (0.07) (0.06) (0.10) 

Move * Previous Patents -0.0000 
-
0.03*** 

0.0001 -0.001 -0.004 0.004*** -0.001 -0.002 0.06*** 

 
(0.0004) (0.01) (0.003) (0.001) (0.003) (0.001) (0.003) (0.003) (0.01) 

Fixed effects:          

- MSA          

- Year          

- Primary Tech. Class          

N 32,026 879 3,158 2,448 3,307 4,037 4,901 6,483 6,813 

*
p < .1; 

**
p < .05; 

***
p < .01 



149 

 

Table 5.4 Results from statistical models examining the effect of double mobility on 

productivity  

Dependent variable:  Productivity   

Treatment: Firm and Geographical Mobility  

Control: Only Geographical – No Firm Mobility  

 
Total 1900 1920 1930 1940 1950 1960 

Double Move (0/1) 0.36*** -0.26 0.93*** 0.48 2.37*** 1.07** -0.41 

 
(0.10) (0.56) (0.25) (0.39) (0.54) (0.51) (0.26) 

Sum of Collaborators 0.02*** -0.16 0.18*** 
-
0.13*** 

0.05*** -0.01 -0.03* 

 
(0.01) (0.17) (0.05) (0.05) (0.02) (0.02) (0.02) 

Assignor (0/1) 
-
0.28*** 

-15.83 -35.28 17.24 2.47*** -0.67 -0.30 

 
(0.10) (1,343) (3,398) (1,957) (0.71) (0.69) (0.74) 

Previous Patents 0.04*** 0.08 0.03 0.14*** -0.02* 0.09*** 
0.11**

* 

 
(0.004) (0.09) (0.02) (0.02) (0.01) (0.02) (0.01) 

Move * Sum of Collaborators 
-
0.02*** 

0.05 -0.11 0.11** 
-
0.06*** 

-0.04 0.02 

 
(0.01) (0.27) (0.08) (0.05) (0.02) (0.02) (0.02) 

Move * Assignor 0.005 
-
1.85*** 

-
0.83*** 

0.17 
-
1.81*** 

-0.89* 
0.81**

* 

 
(0.10) (0.69) (0.25) (0.41) (0.55) (0.50) (0.26) 

Move * Previous Patents 0.01*** 0.02 0.06** -0.03* 0.01 0.02 -0.02 

 
(0.004) (0.10) (0.02) (0.02) (0.01) (0.02) (0.02) 

Fixed effects:        

- MSA        

- Year        

- Primary Tech. Class        

N 2,117 43 151 144 196 345 481 

*
p < .1; 

**
p < .05; 

***
p < .01 
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Table 5.5 Results from statistical models examining the effect of double mobility on 

productivity 

Dependent variable:  Productivity    

Treatment: Firm and Geographical Mobility   

Control: Only Firm – No Geographical Mobility   

 
Total 1900 1910 1920 1930 1940 1950 1960 1970 

Double Move (0/1) 0.29*** -0.73 0.21 0.32 -0.16 -0.04 0.08 0.06 0.62** 

 
(0.08) (1.00) (0.48) (0.20) (0.21) (0.20) (0.27) (0.21) (0.28) 

Sum of Collaborators 
-
0.04*** 

-0.02 -0.03 
-
0.06*** 

-0.01 0.003 0.0003 
-
0.02*** 

-
0.08*** 

 
(0.002) (0.08) (0.03) (0.02) (0.01) (0.01) (0.01) (0.01) (0.003) 

Assignor (0/1) 0.46*** 
-
3.54*** 

1.26** 0.58*** 0.44** 0.54*** 0.58** 0.23 0.73*** 

 
(0.06) (1.17) (0.53) (0.21) (0.18) (0.18) (0.24) (0.20) (0.25) 

Previous Patents 0.06*** 0.04 0.05*** 0.09*** 0.05*** 0.06*** 0.03*** 0.08*** 0.12*** 

 
(0.001) (0.03) (0.01) (0.01) (0.004) (0.004) (0.01) (0.01) (0.003) 

Move * Sum of Collaborators 0.02*** 
-
0.29*** 

0.16*** -0.01 0.03*** 0.01 -0.01 0.04*** 0.09*** 

 
(0.002) (0.11) (0.04) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) 

Move * Assignor 
-
0.28*** 

0.84 -0.57 -0.24 -0.10 0.06 -0.07 -0.10 -0.66** 

 
(0.08) (0.92) (0.48) (0.20) (0.21) (0.20) (0.27) (0.21) (0.28) 

Move * Previous Patents 
-
0.01*** 

0.08** 0.03** 0.02* 0.01** 
-
0.04*** 

0.01 -0.01 
-
0.10*** 

 
(0.002) (0.04) (0.01) (0.01) (0.005) (0.01) (0.01) (0.01) (0.01) 

Fixed effects:          

- MSA          

- Year          

- Primary Tech. Class          

N 7,417 100 460 480 952 855 895 1,425 2,250 

*
p < .1; 

**
p < .05; 

***
p < .01 
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Conclusion 
The main objective of this paper was to examine whether inventor mobility influences the 

productivity of inventors. Historical patent data from 1836 to 1975 were used to identify all U.S. 

inventors on patents, the locations of those inventors and whether the patents were assigned on 

issue. Mobile inventors were defined as those who changed assignee or location over time. 

Matching procedures were used to link mobile inventors to non-mobile inventors with similar 

covariates. Comparisons of the patent productivity among these matched samples of mobile and 

immobile knowledge producers reveals that, in general, firm mobility and geographical mobility 

raise the future number of patents produced by inventors. Firm mobility has a greater impact than 

geographical mobility on inventor productivity. However, the impact of both forms of mobility 

shifts over time. The evidence presented in the paper suggests that geographical mobility raises 

inventor productivity in the later years of the analysis, while firm mobility played a more active 

role in raising inventor productivity in the first half of the 20
th

 century. 

 The main results of this historical analysis of inventor mobility and productivity confirms 

the findings of those like Hoisl (2007) who report a positive association between mobility and 

productivity. This paper contributes to the broader literature on inventors and mobility in two 

ways. First, the analysis describes and examines inventor mobility over a period that has 

previously been undocumented. Analysis of mobility over the long-run yielded new insights. For 

instance, the trends in inventor spatial mobility indicate that during the Great Depression and 

Second World War inventors tended to be less mobile, suggesting that the uncertainties 

surrounding crises influence the behavior of inventors. Although it is well known that 

uncertainty affects human behavior (i.e. Becker, 2013; Deci & Ryan, 1985), it has not been 

documented how uncertainty affects patterns of mobility in U.S. inventors. 
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 Second, using a matched case-control longitudinal sample design, this research presents 

the first long-run systematic evidence on the positive and significant causal relationship between 

U.S. inventor mobility and future patent productivity. The design of the analyses facilitates 

causal claims, because the mobile and non-mobile groups are matched such that there is no 

relationship or bias between the treatment variable (Mobility) and the control variables (Ho et al., 

2007; Iacus et al., 2011, 2012).  

 The presented findings are of relevance to knowledge producers, managers and policy-

makers. Individual knowledge producers might be interested to learn that their productivity may 

rise with mobility. Switching jobs and/or locations has generally boosted the future outputs of 

U.S. inventors between 1900 and 1970.  Managers and other corporate executives might use the 

evidence of this research to motivate decisions or explicitly design recruitment processes to hire 

knowledge workers from outside firm or regional boundaries.  For policy-makers, the significant 

and positive causal link between inventor mobility and productivity, reported in this paper, can 

be used to argue and justify institutional frameworks with liberal migration policies or to 

question the use of non-compete legislation. More research is required to examine how the 

productivity gains associated with mobility are distributed across firms. 

  It is important to note that the findings reported above are subject to a number of 

limitations. The focus of this research has been limited to U.S. urban inventors. Inventors located 

outside current U.S. MSAs are excluded from the analysis. Although current U.S. patenting 

occurs primarily in metropolitan areas, this might not have been the case throughout the 

eighteenth and nineteenth centuries. Lamoreaux & Sokoloff (2000) report that patenting in the 

early U.S. glass industry primarily followed the urbanized locations of production, but there was 

significant variation. 
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 Another limitation originates with the quality of the raw historical patent text files. As 

these files form the input for the searching, matching and machine learning algorithms, 

unreadable texts produce errors in the identification of inventors, geography and firms on 

patents. These errors, in terms of geography or assignee, have immediate consequences for 

designation of the mobility status of inventors. Although the algorithms tasked with identifying 

the geography and assignor on a patent are carefully designed and evaluated, mistakes do occur 

and are likely to inflate the mobility rate. While the mobility rates reported are consistent with 

the findings of Trajtenberg (2005, 2006) in the U.S. NBER patent data files, they are 

considerably higher than those generated for the last thirty years or so of U.S. patenting. It is 

unclear if these differences are the result of recent shifts in inventor mobility or whether they 

reflect errors in the use of different inventor and assignee disambiguation algorithms.  

 The evidence presented in this paper indicates there is a causal relationship between 

inventor mobility and productivity, but does not explain why mobility occurs, which inventors 

are more likely to be mobile and what the pull and push factors of inventor mobility are. These 

issues are obvious directions for future research. The current research could be extended by 

linking the current database to the individual level Census data that cover the first few decades of 

the twentieth century. Matching inventors to the individual records from the U.S. Decennial 

Census would also allow additional controls for inventor age, and to proxy measures of their 

education. 
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Conclusion 
 

This dissertation aimed to shed light on the structures of inventor collaboration in U.S. cities 

between 1836 and 1975. It has examined these structures from different perspectives. The first 

analytical chapter examined the relationships between complexity, collaboration and geography. 

The second of the analytical chapters investigated the mechanisms structuring collaboration 

between US inventors. In the third main chapter of the dissertation, the links between inventor 

mobility were explored. The results from this research have generated a number of novel insights 

into the characteristics of collaboration among metropolitan inventors in the U.S. These findings 

are discussed below before a brief report on the shortcomings of the analysis and some directions 

for future research. 

 

 The research presented in the first core chapter of the dissertation shows increasing rates 

of collaboration on US patents between 1930 and 1975. Before the 1930s, rates of collaboration 

were relatively stable over time. The increasing rates between 1930 and 1975 correspond to the 

rates of collaboration reported for post-1975 US patents by Wuchty et al. (2007). Although this 

dissertation did not investigate why collaboration increased after the 1930s, developments in the 

US economy and legal institutions might explain this trend. In 1933 the US Supreme Court ruled 

that the rights of technologies developed by inventors hired-to-invent should be directly assigned 

to the firm. This provided incentives for firms to recruit inventors and assign them to 

technological issues, instead of purchasing licenses of patented technologies by privately 

operating inventors. As a result, the firm becomes the organizational unit in which most 

inventions are developed and many individual inventors become team scientists collaborating 

within the firm rather than competing in the private market selling their technologies. In addition 
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to these institutional changes, infrastructure and transportation developments throughout the 19
th

 

and 20
th

 century eased the friction of distance. By the 1920s almost all major US cities had 

access to the railroads. In 1930 about 40% of US homes had a telephone connection and 20% of 

Americans had access to an automobile. All these developments fostered collaboration by 

lowering the costs of transport for inventors and for their ideas. 

 

 The observed positive relationship between knowledge complexity and collaboration on 

US patents provides empirical evidence for the theoretical claim that complexity and 

collaboration are significantly correlated. The evidence suggests that the impact of complexity 

on the odds of a patent being generated through collaboration increases markedly after the 1940s. 

This could be interpreted as the shift to ‘big science’ after World War II, in which the complexity 

of knowledge production accelerated. The growing complexity of new knowledge demanded 

rising levels of specialization and a deeper division of labor. Individual inventors did not embody 

all the knowledge required to develop these complex new ideas and inventor collaboration 

increased rapidly. 

 

 Another result of the first analytical chapter concerns the geography of collaboration. 

Although metropolitan collaboration occurs mostly between inventors from the same city, 

increasing complexity decreases the odds of between-city collaboration. This suggests that the 

production of complex knowledge relies more strongly on the geographical co-location of 

inventors than does less complex knowledge. Local collaboration allows spontaneous 

encounters, repeated face-to-face meetings, and other interactions facilitated by the local buzz, 

more easily than non-local collaboration. This local buzz might be particularly important for the 
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production of complex knowledge because it relies on difficult to diffuse tacit knowledge: 

geography matters. 

 

 The second of the core research chapters presents evidence that geographical distance has 

a negative effect on tie-formation between inventors. This finding has already been well 

documented in the literature (Cassi & Plunket, 2015; Crescenzi, Nathan, & Rodríguez-Pose, 

2016; Ter Wal, 2013). However, what is novel is that the evidence presented here shows a large 

decrease in the negative impact of the spatial separation between inventors throughout the 19
th

 

century, but little change in the 20
th

 century. This is surprising because the rapid developments in 

telecommunication and transport technologies during this century should have reduced the 

friction of geographical distance.  Throughout the entire time-window of this study, geographical 

distance negatively affects tie-formation. It is important to note that these transport developments 

were taking place at the same time that new ideas were becoming increasingly complex. Thus, it 

is possible to conclude that advances in communication and transportation developments seem 

not to have been able to match the benefits of geographical proximity at this time of rising 

knowledge complexity (see Audretsch & Feldman, 1996; Feldman & Kogler, 2010; Jaffe et al. 

1993; Storper & Venables, 2004). 

 

 Not all types of social connections between inventors have a positive effect on 

collaboration. Interestingly, only after the 1930s does having second-order connections 

consistently affect collaboration positively. The formation of direct ties between second-order 

connections is referred to as the process of triadic closure and leads to clustering in the inventor 

network. One possible explanation can be found in the rapid increase in US inventor 
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collaboration after the 1930s, reported in the first chapter. This trend generated a large number of 

connections throughout an expanding pool of inventors that slowly becomes more experienced 

with collaboration. This increases the overall likelihood of cooperation across the pool of 

potential collaborators. 

 

 Another finding reported in chapter three is related to technological or cognitive 

proximity. In times of uncertainty, U.S. inventive collaborative behavior is shown to be different 

from other years. Inventors are more likely to collaborate with inventors with similar knowledge 

stocks than in times with less uncertainty. During crises, individuals might be less likely to 

experiment because it is unclear if society will appreciate their experiments. Instead, inventors 

(and their companies) are more likely to make traditional, less risky decisions and collaborate 

with inventors with similar technological skills. Indeed, inventors might choose to exploit 

familiar technologies rather than to experiment with new technologies (Granovetter, 2005; 

March, 1991; Schumpeter, 1934). 

 

 These results are relevant for policymakers and corporate executives concerned with 

innovation policies. Geographical proximity is still an important driver of collaboration. This 

suggests that the significance of agglomerating economic activities in space, even after 

controlling for telecommunication and transportation technologies, social connections and 

technological proximity. However, simply clustering economic activities might not be enough. 

Promoting interactions between inventors, either first- or second-order, significantly increases 

the probability of collaboration. Thus, policy-makers and executives should focus their efforts to 

facilitate stimulating environments that promote dense social networks. Promoting individuals to 
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interact and engage with previous collaborators and their close connections will most likely lead 

to successful future collaborative output, ceteris paribus. Policy-makers can boost 

experimentation and possibly influence the direction of knowledge production by providing 

environments with low degrees of uncertainty. The evidence presented here suggests that in 

situations of low uncertainty, inventors are more risk-taking in terms of experimental 

technological collaborations. Thus, policies reducing the uncertainties of knowledge production 

could result in less path dependent and more diversified outcomes.  

 

 The main result of the fourth chapter of the dissertation, the third of the analytical 

chapters, is that there is a significant positive relationship between inventor mobility and 

productivity. This evidence confirms the findings of those like Hoisl (2007) who report similar 

associations. Analysis of mobility over the long-run showed trends in inventor spatial mobility 

indicating that during the Great Depression and Second World War inventors tended to be less 

mobile. This suggests, again, that the uncertainties surrounding crises influence the behavior of 

inventors. Although it is well known that uncertainty affects human behavior (i.e. Becker, 2013; 

Deci & Ryan, 1985), the evidence presented here is the first showing how uncertainty affects 

patterns of mobility among U.S. inventors. 

 

 Moreover, chapter four presented evidence on a causal relationship between mobility and 

productivity. Using a matched case-control longitudinal sample design, the evidence presented 

reports a positive and significant causal relationship between U.S. inventor mobility and future 

patent productivity. The future knowledge production of individual knowledge producers (i.e. 

inventors) benefits from mobility. Switching jobs and/or locations has generally boosted the 

future outputs of U.S. inventors between 1900 and 1970. Managers and other corporate 
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executives can use this evidence to construct policies motivating decisions or explicitly design 

recruitment processes to hire knowledge workers from outside firm or regional boundaries. The 

significant and positive causal link between inventor mobility and productivity can be used by 

policy-makers to argue for institutional frameworks with liberal migration policies or to question 

the use of non-compete legislation. 

 

 This dissertation has a number of limitations. Perhaps the most important limitation is 

that not all patents granted by the USPTO are included in the new inventor-patent database. In 

some years only 80 percent of the patents have at least one identified inventor. Although this 

likely has no direct effects on the results presented here, for it does not look like the omitted 

patents are significantly different from those examined, the data are still incomplete. There are 

numerous reasons why some patents have missing data, but most common is the quality of the 

raw patent text files. Some of the original patent files are handwritten and difficult to decipher, 

even by the advanced optical character recognition software of Google. As a result, the search 

and (fuzzy) match algorithms are not able to detect names or locations in (parts) of the text files. 

Advances in both OCR and text mining software will most likely overcome these issues in the 

future.  

 

 The focus of this dissertation has been on U.S. metropolitan collaboration. This limitation 

is also related to the poor quality of the input data. It has proven to be more complicated to get 

non-urban geographies correct. The main reason is that are a lot of duplicate geographical 

locations with the same name and sometimes in the same state. To disambiguate address data, 

information on the county is required, but not always present or readable. Urban geographies 

tend to be more uniquely named and easier to correctly identify. The urban focus introduces at 
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least two biases. The first is straightforward – the results can only be generalized to urban 

innovative processes. The second bias is that due to this urban focus, probably more early-year 

than later-year patents are ignored. While current patent production is predominately an urban 

phenomenon, this is not necessarily the case in the 19
th

 century or early 20
th

 century. Work by 

Lamoreaux & Sokoloff (2000) and others suggest that non-urban patenting has been more 

common in early years than it is towards the post-Second World War.     

 

 This dissertation has excluded patents from where at least one inventor resides outside 

the United States. As such, this dissertation focuses solely on patenting and collaboration taking 

place within the United States. In early years, this focus has little impact because international 

collaboration is not likely to occur due to the limited transportation and communication 

technologies. However, these technologies improve considerable over the time-window of this 

study, resulting in an increasing bias over time. At this point it is unclear how the bias against 

patents with some foreign collaboration affects the results of this study. Future research could 

extend this work by including rural and foreign patenting and collaboration to the analysis. 

 

 The disambiguation of inventors has been one of the most challenging tasks of this 

dissertation. The availability of individual level characteristics that can be used to disambiguate 

inventors has been severely limited.  The disambiguation could have been done faster and more 

accurately if more individual level data could have been mined from the patent records. 

Unfortunately, at the time of the completion of this work, no additional inventor data were 

available. Newer work on patent assignment might help improve future disambiguation efforts. 
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 The complex interplay between individual, firm and regional level processes provide 

interesting future research opportunities. While this dissertation has shown that there is a distinct 

geography to urban patenting and collaboration, the role of the firm in urban patenting and 

collaboration has received minimum attention and could be explored further. It is unclear how 

corporations mitigate the mobility of inventors, influence the (geographical) patterns of 

collaboration and steer directions of knowledge production. Although firms are associated with 

roughly 80 percent of the patents in the 1970s their motives, behavior and influence in the 

knowledge production processes remain largely a black-box. Other interesting paths for future 

research could examine the long-run structures and patterns of collaboration in other fields of 

knowledge production. Finally, there is much scope in the data already assembled to explore 

sectoral, geographical and historical changes in the nature of inventor collaboration. 
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