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Abstract

Forecasting high-dimensional state-spaces
in the presence of model error

by

Linda Ngoc Tran

Doctor of Philosophy in Statistics

University of California, Berkeley

Assistant Professor Cari G. Kaufman, Co-chair

Professor Deborah A. Nolan, Co-chair

Mathematical models are often used to forecast interesting scientific phenom-
ena. These models may provide a good approximation for the system being
studied, but they are rarely perfect. Whether due to scientific misunderstand-
ings or the necessity of numerically approximating the solution to the model,
the mathematical models fail to exactly replicate the true dynamics of the sys-
tem. This “model error” leads to forecast errors and degradation of forecast
skill. The primary goal of this dissertation is to develop methods to correct a
mathematical model with observed data, improving the accuracy of forecasts
generated by the model. Correcting for model error is particularly difficult
when the system is high-dimensional and when the state transition model is
nonlinear. The methods developed in this dissertation are robust to both of
these difficulties.

The problem of estimating model error may be phrased as a parameter
estimation problem within a filtering context. Many parameter estimation
methods have been developed for the particle filter (PF), a filter with strong
theoretical underpinnings and well understood large sample properties. Unfor-
tunately, the PF fails when the state dimension is large. Instead, scientists who
filter high-dimensional state-spaces typically use the ensemble Kalman filter
(EnKF). This algorithm is effective in practice, but its large sample proper-
ties remain to be proven and methods for parameter estimation exist only in
special cases. We make a newfound connection between these two algorithms:
the EnKF is a regularized PF with additional approximations that have yet to
be fully justified from a theoretical standpoint. Building on this connection,
we introduce a novel algorithm that combines the best features of the EnKF
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and the PF. The EnKF is used to filter the high-dimensional state while an
auxiliary PF is used to estimate the low-dimensional parameters; we call this
filter the EnKF-APF. Using the Lorenz 2005 system, we demonstrate that
the true parameter values are better captured with the EnKF-APF algorithm
than with the EnKF.

Having developed a robust method for parameter estimation within a filter-
ing context, we return to the question of model error. Following previous work
in the literature, we focus on a linear correction to the mathematical model.
If the state has dimension d, the number of parameters in the linear correction
is on the order of d2. The EnKF-APF algorithm does not allow for the esti-
mation of such high-dimensional parameters, and even if it did, an enormous
amount of data would be required to provide good estimates. To make the
problem tractable, we assume the problem of interest exhibits a large degree
of spatial structure and exploit this special structure to reduce the dimension-
ality of the linear correction. We propose to correct the model error with a
low-rank linear correction, inspired by methods used to model multivariate
spatial processes in the geostatistics literature. We demonstrate our method
on the Lorenz 2005 system by applying the EnKF-APF algorithm to estimate
the parameters of the low-rank linear correction in both a batch and online
manner. Although the model error in this test is nonlinear, we demonstrate
that the proposed low-rank linear correction provides better forecasts.
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1 Introduction

Mathematical models are often used to forecast interesting scientific phenom-
ena. While these models are good approximations of the systems being stud-
ied, they sometimes miss dynamics of the system—a problem we call model
error—and consequently contribute to forecast error. The main goal in this
dissertation is to use measurements of the scientific phenomena to correct
model error. To better motivate the issues, we introduce state-space models.

1.1 State-space models: an introduction

Suppose we want to learn about the state Xt at time t. Here, we use the
standard convention of denoting random variables with upper-case letters and
fixed values with lower-case letters. We have that the state Xt evolves in time
as follows:

xt = lt(xt−1, ηt) with density f(xt |xt−1). (1.1a)

This evolution of the system is called the state transition model . The function
lt : Rdx → Rdx describes how the state xt of the system propagates forward in
time: it is a function of the previous state xt−1 and state disturbance ηt, where
dx is the dimension1 of the state xt for all t. Typically, the state disturbance
ηt will be additive2 with respect to the previous state, e.g., xt = mt(xt−1) + ηt.
The form in Equation (1.1a) is used for greater generality, allowing ηt be mul-
tiplicative with the previous state, for example. The probability density of the
state transition model is called the state transition density (or transition den-
sity, for short) and is denoted by f(xt |xt−1). The initial state X0 is sometimes
called the initial condition(s). The states {Xt : t = 1, ..., T} are assumed to

1The state dimensions can vary with time. Without loss of generality, we assume that
the dimensions do not change over time.

2For many applications in this dissertation, the state disturbance is zero.
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1.1. STATE-SPACE MODELS: AN INTRODUCTION

form a Markov process : the future state of the system is conditionally inde-
pendent of the past states given the current state:

Xt ⊥⊥ Xt′ |Xt−1 for all t′ < t− 1.

This assumption is called the Markov assumption. To help fix these ideas, we
present an example.

Example 1.1.1 (A simple temperature model). Suppose we are interested
in forecasting temperature at a particular location. A simple state transition
model is to assume that the current day’s temperature is a function of the
previous day’s temperature:

xt = xt−1 + ηt, ηt ∼ N (0, u2t ),

where ηt is a random variable representing our theory that temperature in-
creases or decreases relative to the temperature from the previous day xt−1
with a certain magnitude (its distribution is called a prior). Here N (µ, σ2)
denotes a normal random variable with mean µ and variance σ2. The nor-
mal prior says that we believe that the temperature can increase or decrease
with equal probability (indicated by the mean zero) and with an increase or
decrease by an amount less than 2ut with 95% probability (indicated by the
magnitude of the variance). Notice that our model satisfies the Markov as-
sumption: the current day’s temperature only depends on the previous day’s
temperature and is not a function of other days’ temperatures. The transition
density is:

f(xt |xt−1) = φ(xt;xt−1, u
2
t ),

where φ(x;µ, σ2) is the probability density of a normal random variable, with
mean µ and variance σ2, evaluated at x. C

Usually, the state cannot be measured directly3 and, even if it can be,
the measurement has error. Let Yt be the measurement at time t with the
following model:

yt = ot(xt, εt) with density g(yt |xt). (1.1b)

This is called the measurement model . The function ot : Rdx → Rdy describes
the mapping between the state and what is observed: it is a function of the

3For this reason, the state is sometimes called a latent or hidden variable.
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1.1. STATE-SPACE MODELS: AN INTRODUCTION

X0 X1

...

Xt−1 Xt Xt+1

...

Y1 Yt−1 Yt Yt+1

Figure 1.1: State-space model with no measurements collected: a graphical model. The nodes
{Xt : t ≥ 1} represent the states. The node X0 is the initial condition and is filled in to represent
that it is observed. The nodes {Yt : t ≥ 1} represent the measurements and are not filled in because
they have not yet been collected.

current state xt and measurement error εt, where dy is the dimension4 of the
measurement yt for all t. The probability density of the measurement model is
called the measurement density and denoted by g(yt |xt). The measurements
depend only on the state, i.e., the measurements are conditionally independent
of everything else given the state:

Yt ⊥⊥ (Xt′ , Yt′) |Xt for all t′ 6= t;

we call this the measurement independence assumption. The set of equations
in Equation (1.1) forms a state-space model . Figure 1.1 is a graphical model
that describes the conditional independence relationships in the state-space
model we’ve just outlined.

Example 1.1.1 (A simple temperature model, continued). The temperature
can be measured with a thermometer but not without measurement error:

yt = xt + εt, εt ∼ N (0, v2t ),

where v2t quantifies the accuracy of the thermometer. Then, the observation
density is:

g(yt |xt) = φ(yt;xt, v
2
t ).

C

4As with the state, the dimensions of the measurements can vary in time. Without loss
of generality, we assume that the dimensions do not change over time.
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1.1. STATE-SPACE MODELS: AN INTRODUCTION

Example 1.1.2 (A simple precipitation model). Consider modeling a slightly
more complicated phenomenon: precipitation. Like temperature, a simple
model of precipitation is that today’s precipitation depends on yesterday’s
precipitation. However, unlike temperature, precipitation cannot take any
value on the real line. Two measurements of precipitation are total inches
rained rounded to the nearest tenth:

yt ∼ Pois(λt),

or more simply as whether or not it rained:

yt ∼ Bern(pt),

where Pois(λ) is a Poisson random variable with mean λ and Bern(p) is a
Bernoulli random variable with mean p. These are measurement models and,
unfortunately, do not describe how precipitation evolves over time.

A latent process can be used to describe an abstract notion of precipitation—
a notion that is measured on a continuous scale and can be specified to be
temporally correlated. For example, a latent process for total inches rained is

log(λt) = log(λt−1) + ηt, ηt ∼ N (0, u2t ),

and for whether or not it rained is

log

(
pt

1− pt

)
= log

(
pt−1

1− pt−1

)
+ ηt, ηt ∼ N (0, u2t ),

where ηt is a random variable that describes our theory that the latent state of
precipitation increases or decreases relative to the previous latent state, similar
to the simple temperature model of Example 1.1.1.

Let’s define the state-space model. For total inches rained, let xt ≡ log(λt).
Then, the state-space model is defined as

xt = xt−1 + ηt,

yt ∼ Pois(exp(xt)),

with state transition and observation densities

f(xt |xt−1) = φ(xt;xt−1, u
2
t ),

g(yt |xt) =
exp(xtyt) exp exp(xt)

yt!
,

respectively, where x! is the factorial of x. The state-space model for whether
or not it rained can be similarly defined. C
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1.1. STATE-SPACE MODELS: AN INTRODUCTION

Though the temperature and precipitation models discussed are simple and
easy to understand, it is difficult to believe that weather dynamics are simply
an unbiased random walk. Weather is a complex phenomenon that depends
on many factors, such as the amount of sun that reaches the atmosphere or
the amount of aerosols and carbon dioxides in the system, and often these
relationships are nonlinear. Furthermore, these simple models cannot be used
to describe global, or even local, dynamics: weather is temporally and spatially
related, e.g., the temperature at one location is highly correlated with the
temperature at nearby locations.

Scientists and engineers from a wide variety of fields, including but not
limited to the atmospheric sciences, often describe and test their understand-
ing of scientific phenomena with mathematical models. These mathematical
models describe how scientific phenomena (the state) evolve over time and,
in turn, can be used to predict (or, forecast) the state at a future timepoint.
Even though many mathematical models are deterministic, these determinis-
tic models may not be predictable—a quality called chaos . A system is called
chaotic when two trajectories that started infinitesimally close to each other
diverge quickly over a short amount of time.

The consequence of chaos is that these mathematical models cannot fore-
cast phenomenon far in the future. When initializing mathematical models
with two different, but close, initial conditions that represent reality, chaos
will drive the two trajectories to two very different states. There needs to be a
mechanism to correct the trajectories predicted by the mathematical models
with reality and that mechanism is to update these imperfect forecasts with
measurements. Measurements quantify the scientific phenomena that scien-
tists or engineers are interested in capturing from reality, such as measuring
temperature using thermometers or measuring rainfall with a ruler. Not only
are these measurements subject to measurement error, it is impossible to mea-
sure desired quantities at every spatial location and timepoint that is desired.
For example, the National Oceanic and Atmospheric Administration (NOAA)
ingests meteorological data at approximately 36,000 locations in the contigu-
ous United States (Meteorological Assimilation Data Ingest System (MADIS),
2014)—that is, each station covers more than 80 square miles if the stations
were evenly distributed5! This iterative procedure of forecasting with a math-
ematical model and updating as an observation is collected is called filtering
(or, data assimilation within the atmospheric science community).

The Kalman filter (Bucy and Kalman, 1961; Kalman, 1960) is the first

5Value derived from dividing the area of the contiguous United States by the number of
stations.
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1.1. STATE-SPACE MODELS: AN INTRODUCTION

major contribution to the filtering literature: it is used for linear state tran-
sitions and measurement models with additive Gaussian errors. Since then,
many filtering algorithms have been introduced to solve a wide variety of
state-space models. In particular, to overcome some of the strict assumptions
of linearity and Gaussian errors, linear approximations have been proposed to
extend the usefulness of the Kalman filter. However, these approximations can
introduce large errors that further contribute to the chaos problem when filter-
ing. Thanks to the pioneering work of Gordon et al. (1993) on particle filters
(PFs), the field of sequential Monte Carlo (SMC) was developed in response:
these methods employ importance sampling to approximate interested quan-
tities of the states. Though there are many filtering methods to choose from,
filtering remains difficult for high-dimensional systems, such as the weather
models that atmospheric scientists are interested in studying. For example, a
computationally infeasible amount of samples is required by SMC methods to
properly capture the dynamics of the system.

Not only is filtering with high-dimensional state-spaces difficult, we are
seldom able to perfectly capture the true dynamics of a system, especially
complex systems such as the ones governing the atmosphere. We call this
inability to capture the true dynamics of a system model error . Sometimes,
model error is due to imperfect knowledge of the system. Other times, it comes
from introducing approximations that are not necessarily believed to be true
but are required for computational reasons. Model error is a common problem
that can further contribute to the issues posed by chaos. For example, the
inability to capture certain dynamics of a system can lead to two very different
forecasts. In fact, model error is the problem we initially sought to improve
that led to our other contributions to the filtering literature that are described
in this dissertation.

Before discussing filtering and model error, we introduce a few state-space
models. Although the algorithms discussed and developed in this dissertation
can be applied to any model that satisfy the constraints and assumptions of
the state-space models outlined, we focus on atmospheric science applications.
For this reason, we introduce state transition and measurement models often
used in the atmospheric science literature to motivate the filtering algorithms
introduced in this dissertation. As we discuss these models, we motivate some
of the difficulties of filtering with atmospheric models. In Section 1.4, we sum-
marize these difficulties and introduce how we address them in the dissertation.

6



1.2. STATE TRANSITION MODELS

1.2 State transition models

1.2.1 Examples

Lorenz 1963

Edward Lorenz is widely known across many disciplines as one of the pioneers
of chaos theory. His most well-known contribution is the development of a
simple chaotic model (Lorenz, 1963) often used in textbooks across many dis-
ciplines to illustrate and gain intuition for chaos. The model was derived from
a more complicated model of convection, a scientific phenomenon describing
heat flow. Many atmospheric models include convection, such as those that
describe air or ocean circulation.

The Lorenz model is a set of ordinary differential equations that describes
the rate of change of the state of the system (x(t), y(t), z(t)) at any continuous
timepoint t: ẋ(t)

ẏ(t)
ż(t)

 =

 σ[y(t)− x(t)]
x(t)[ρ− z(t)]− y(t)
x(t)y(t)− βz(t)

 (1.2)

where the dot on top of x represents the first-order time-derivative, e.g., ẋ(t) ≡
dx(t)
dt

and the notation x(t) is to distinguish between the continuous (with t in
parenthesis) and discrete (with t as a subscript) states of the system, explained
later in Section 1.2.2. The parameters of the system are ρ, σ, and β and their
default values are:

ρ = 28, σ = 10, and β = 8/3.

The system is illustrated in Figures 1.2 to 1.4. Figure 1.5 plots the same
trajectory from Figure 1.4 and another trajectory with the same parameters
and very similar initial conditions: the initial condition of the new trajectory is
the same as the other’s initial conditions, but rounded to the 10th digit. Even
though the initial conditions are similar, notice how the system diverges over
time—this is chaos. It is an example of a very realistic problem of round-off
error: two very similar initial conditions that differ only by round-off error lead
to two very different predictions, illustrating the need to update the forecasts
with measurements for the system to better represent reality.

Though the model is not realistic, we, as many others, like this model for
a few reasons. The model is simple and can quickly run on any computer,
yet has interesting dynamics. Furthermore, the three-dimensional nature of

7



1.2. STATE TRANSITION MODELS

Figure 1.2: Lorenz 1963: three-dimensional illustration. Trajectory is generated by numerically
integrating Equation (1.2) with the default parameter values.

x

y

x

z

y

z

Figure 1.3: Lorenz 1963: two-dimensional illustrations. The trajectory is generated by numerically
integrating Equation (1.2) with the default parameter values. The colors represent the missing axis:
blue indicates lower values and purple indicates higher values.
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1.2. STATE TRANSITION MODELS

the model allows for simpler visualization to motivate and explain some of the
intuition behind the methods we introduce.

After the introduction of Lorenz (1963), Lorenz developed a few more mod-
els. (After introducing Lorenz’s model for the first time, we refer to each of
his models by his surname followed by the year of the paper, e.g., Lorenz
1963 model.) Like the Lorenz 1963 model, Lorenz (1984) models a three-
dimensional state space that reflects dynamics that are present in global at-
mospheric circulation models (called Hadley circulation). Lorenz then devel-
oped models to more realistically reflect an atmospheric model. The first was
introduced in Lorenz (1996) (and evaluated further in Lorenz and Emanuel
(1998)) and two more models in Lorenz (2005).

Both the Lorenz 1996 and 2005 models are systems of equations that re-
flect weather dynamics, such as temperature or vorticity, at locations on an
equally-spaced mathematical grid on a latitude band of the globe, where the
latitude band is assumed to be perfectly spherical. Each equation in the system
describes the rate of change of the state at one location on the mathematical
grid. Figure 1.6 illustrates a mathematical grid on a latitude band. Resolution
describes the number of locations on the grid: higher resolution means more
locations. Since its introduction, the Lorenz 1996 model is widely used in the
atmospheric sciences to demonstrate filtering methods.

Lorenz 2005

Recognizing that weather models are subject to model error, Lorenz (2005)
specifically developed two models (Models II and III)—both inspired by the
Lorenz 1996 model6—for scientists to test their ideas and methods on model
error. Model II captures the large-scale dynamics of Model III, but omits the
small-scale dynamics.

Define a new summation operator:

n∑
’

i=1

xi =
x1
2

+
n−1∑
i=2

xi +
xn
2

6Model I in Lorenz (2005) is, in fact, the Lorenz 1996 model.
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x

y

time

z

Figure 1.4: Lorenz 1963: one-dimensional illus-
trations. The trajectory is generated by numeri-
cally integrating Equation (1.2) with the default
parameter values.

x

y

time

z

Figure 1.5: Lorenz 1963: an example of chaos.
The black trajectory is the same as in Fig-
ure 1.4. The red trajectory has the same pa-
rameter values as the black trajectory but with
different initial conditions: the red’s initial con-
dition is the black’s initial condition rounded to
the 10th digit.

r1 r2
r3

r4

r5

rdx−1

rdx

Figure 1.6: Mathematical grid on a latitude band. The circle represents a top-down view of a
latitude band. Let ri be the location of the state corresponding to the ith element of the dx-vector
xn. The locations {ri : 1 ≤ i ≤ dx} in this illustration are equispaced on the latitude band.
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1.2. STATE TRANSITION MODELS

and the Lorenz inner product function7:

[x, y]K,n

=



1

K2

K
2∑

j=−K
2

K
2∑

i=−K
2

(−xn−2K−iyn−K−j + xn−K+j−iyn+K+j) , if K is even,

1

K2

K−1
2∑

’

j=−K−1
2

K−1
2∑

’

i=−K−1
2

(−xn−2K−iyn−K−j + xn−K+j−iyn+K+j) , if K is odd.

(1.3)

Figure 1.7 illustrates the Lorenz inner product function. Then, the two Lorenz
2005 models are as follows:

• Model II: Each component of the state x(t) ≡ (x1(t), ..., xN(t)) is modeled
with an ordinary differential equation:

ẋn(t) = [x(t), x(t)]K,n − xn(t) + F, (1.4)

with parameters N,K, and F . The parameter N controls the resolution
of the mathematical grid on the latitude band, i.e., the dimensions of the
state and the parameter F is a forcing. The parameter K controls the
wavenumber of the dynamical system, where a higher value indicates more
spatial correlation.

• Model III: Each component of the state z(t) ≡ (z1(t), ..., zN(t)) is modeled
with an ordinary differential equation:

żn(t) = [x(t), x(t)]K,n + b2[y(t), y(t)]1,n + c[y(t), x(t)]1,n − xn(t)− byn(t) + F,
(1.5a)

with

xn(t) =
I∑
K

i=−I

(α− β|i|)zn+i(t), yn(t) = zn(t)− xn(t), (1.5b)

α =
3I2 + 3

2I3 + 4I
, β =

2I2 + 1

I4 + 2I2
, (1.5c)

7In this dissertation, brackets [·] are also used to group mathematical terms, represent
matrices/vectors, and indicate the inputs of a function, similar in use to parentheses. This
is distinctly different from brackets with two subscripts separated by a comma [·, ·]K,n,
representing the function stated here.
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(a) K = 2
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(b) K = 4

Figure 1.7: Lorenz 2005: Lorenz inner product function. The circle from Figure 1.6 is used to
illustrate the Lorenz inner product in Equation (1.3) with the left and right circles representing the
first and second products in the sums. The parameter n is set to 1. The lines represent the product
between the x and y located at the indicated spatial locations r. When x and y from the same
spatial locations r are being multiplied together, the line is replaced by a dot. The colors represent
the x and y components in the left and right circles, respectively.
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Figure 1.8: Lorenz 2005-III: large- versus small-scale dynamics. Model III is numerically integrated
with the default parameter values. The left figure illustrates the state {zn : 1 ≤ n ≤ 960}; its largest
magnitude is 15. The right figure illustrates the xn and yn components of the state zn. The yn
component is multiplied by 4 to better illustrate the small-scale dynamics. The middle line is zero.
The x-axis is the index of equispaced locations on a latitude band.

and parameters N,K, F, I, b, and c. The parameters N,K, and F have sim-
ilar effects as in Model II. The xn(t) and yn(t) components represent the
large- and small-scale dynamics of the system, respectively, and the rela-
tionship between them are controlled by the parameters I, b, and c. Fur-
thermore, notice that Model III reduces to Model II when I = 1. Figure 1.8
illustrates the large- versus small-scale dynamics of this system.

In his paper, Lorenz used the following parameter values, where applicable,
for both models:

N = 960, K = 32, F = 15,

I = 12, b = 10, c = 2.5;

we call these the default parameters for both systems. Figure 1.9 illustrates
the effect of the small-scale dynamics on forecasts. In addition to referring to
these models as the Lorenz 2005 systems, we refer to the specific models with
a hyphenation, i.e., Lorenz 2005-II and Lorenz 2005-III for Models II and III,
respectively.

1.2.2 Continuous state transition models

In their present forms, the Lorenz models cannot be directly used as a state
transition model. We have presented mathematical models on the rate of
change of the state of the system and have not yet described the model of the
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Figure 1.9: Lorenz 2005: the effect of small-scale dynamics on forecasts. Both Model II and Model
III are numerically integrated with default parameter values and the same initial conditions. Each
line represents the difference in forecasts between Model II and Model III after the amount of time
indicated to the right of the plot, where the numerical timestep dt = 0.001 represents one hour.
The x-axis is the index of equispaced locations on a latitude band. The gray line represents no
difference. Above the gray line, Model II predicts higher values than Model III. The magnitudes
are relative to each other with the largest percent difference of 30%.

state of the system when measurements are collected. Although the equations
provide models for the system at any continuous timepoint t, the reality is that
measurements are collected at discrete timepoints tn. To update forecasts with
the collected measurements, the state transition model needs to be integrated
to a similar temporal resolution as the measurements. To distinguish between
continuous and discrete time, we adopt the convention of using parentheses to
describe the state that can be evaluated at any continuous timepoint t, e.g.,
x(t), and subscripts to describe the state at a discrete timepoint tn, e.g., xtn .

Let x(t) be the state of the system at the continuous timepoint t and W
be the model of the first time-derivative of the state of the system:

ẋ(t) = W (x(t); θ)

where θ is the parameter of the model and the dot on top of x represents the
first time-derivative, i.e., ẋ(t) ≡ dx(t)

dt
. Because the model describes the system

at any continuous timepoint t, we call this the continuous state transition
model . To help fix this idea, we use the Lorenz systems introduced in the last
section to present examples of continuous state transition models.

Example 1.2.1 (Lorenz 1963: continuous state transition model). Lorenz
1963 is a model of the state (x(t), y(t), z(t)) and its continuous state transition
modelW is defined by the right-hand side of Equation (1.2) with the parameter
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tt0 t1 t2 t3 · · · tN

Figure 1.10: Discrete versus continuous time. The line represents continuous time. The tick marks
at tn for each n = 1, ..., N represent the timepoints at which measurements are collected with the
exception of t0, where t0 represents the timepoint of the initial condition. In this illustration, there
are N discrete timepoints.

θ = (ρ, σ, β), i.e.,ẋ(t)
ẏ(t)
ż(t)

 = W

x(t)
y(t)
z(t)

 ; θ

 =

 σ[y(t)− x(t)]
x(t)[ρ− z(t)]− y(t)
x(t)y(t)− βz(t)

 . (1.6)

C

Example 1.2.2 (Lorenz 2005: continuous state transition model). Let dx be
the number of states on the mathematical grid, corresponding to the parameter
N in Lorenz’s original formulation of the model. With Lorenz 2005-II, the state
x(t) ≡ (x1(t), ..., xdx(t)) has a continuous state transition model W as follows:

ẋ(t) = W (x(t); θ) =

 [x(t), x(t)]K,1
...

[x(t), x(t)]K,dx

− x(t) + F, (1.7)

where θ = (K,F ). C

Figure 1.10 illustrates continuous versus discrete time: the line represents
continuous time, but the system can only be observed at snapshots in time
when measurements are collected, i.e., at discrete timepoints tn. In the at-
mospheric sciences, the time between discrete timepoints is called the forecast
lead time and is denoted by ∆tn ≡ tn − tn−1. Chaotic models are approxi-
mately linear for small forecast lead times and the nonlinearities of the models
increase as the forecast lead time increases8. As the system becomes more non-
linear, updating with data becomes even more critical so that forecasts better
match reality. Furthermore, nonlinearity increases the necessity of complex
filtering algorithms—ones that have less strict assumptions than the Kalman
filter. We focus on reasonably large forecast lead times, so for the purposes of
this dissertation, a chaotic model is synonymous with a nonlinear model.

8The use of the Lyapunov exponent provides one way to quantify what we mean by
“small” versus “large” forecast lead times. Its description is beyond the scope of this dis-
sertation. For more information, we refer the reader to Cvitanović et al. (2015).
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The continuous state transition model must be integrated to obtain the
state at the timepoints when measurements are collected. Specifically, the
state transition model at the discrete timepoint tn is:

xtn = mtn(xtn−1) + ηtn , ηt ∼ N (0, Utn),

where ηt is the state disturbance term with mean zero and dx×dx variance ma-
trix Utn . The state transition density is f(xtn |xtn−1) = φ[xtn ;mtn(xtn−1);Utn ].
As before, N (·, ·) denotes a normally distributed random variable and φ(·; ·, ·)
is its density but generalized to multivariate vectors. The function mtn rep-
resents the integration of the state from time tn−1 to tn using the continuous
state transition model W ; we call it the discrete state transition model . If
the continuous state transition model can be analytically integrated, then the
discrete state transition model is as follows:

mtn(xtn−1 ; θ) = xtn−1 +

∫ tn

tn−1

ẋ(τ)dτ.

Many interesting mathematical models, including the Lorenz systems, cannot
be analytically integrated and must be numerically integrated instead. Nu-
merical integrators are not perfect: they have numerical error and the error
is a function of the numerical timestep dt. Smaller numerical error is achieved
with smaller dt, but also increases computational time. Denote the numerical
integrator by I(·). Then, the discrete state transition model is as follows:

mtn(xtn−1 ; θ) = IW (xtn−1 ; θ) +O(e(dt)),

where e is a function mapping the order of the integrator’s error, e.g., e(x) = x
for forward Euler and e(x) = x4 for fourth-order Runge Kutta, and the sub-
script W on the numerical integrator I is to remind the reader that the inte-
grator depends on the continuous state transition model W . Unless otherwise
stated, we use second-order Runge Kutta with dt = 0.01 to integrate the
Lorenz 1963 model and fourth-order Runge Kutta with dt = 0.001 for the
Lorenz 2005 model. For both models, each dt corresponds to one hour.

Many atmospheric science applications have a deterministic state transition
model, i.e., the state disturbance ηt is zero, and consequently the state transi-
tion density is degenerate. Even when the density is not degenerate, the first
moment, i.e., the discrete state transition model, generally does not have an
analytic form due to the continuous state transition model. Both issues add
to the difficulty of filtering with atmospheric models. Despite these issues,
sampling from the density is easy, thus we are partial to sampling algorithms
for filtering.
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For many parts of the dissertation, there is no need to distinguish between
the continuous and discrete state transition models and thus we drop the sub-
script n from tn for clarity, e.g., call the discrete state xt instead of xtn . With-
out loss of generality, the applications in the dissertation have measurements
with the same forecast lead time for all n, n′ ≥ 1, i.e., ∆tn = ∆tn′ . In reality,
the forecast lead time depends on how often measurements are collected.

1.3 Measurement models

There are a wide variety of measurement models, as simple as the temperature
model from Example 1.1.1 or as complicated as the precipitation model from
Example 1.1.2. In the atmospheric sciences, measurement models tend to be
a linear interpolation from the mathematical grid to the spatial resolution of
the measurements, usually with Gaussian errors. For this reason, we focus on
this particular measurement model in this dissertation.

Suppose that measurements of the systems described in Section 1.2.1 are
collected at discrete timepoints tn. Let ytn be the vector of observations at
timepoint tn. Then, a linear measurement model is

ytn = Htnxtn + εtn , εtn ∼ N (0, Vtn),

where εtn represents the measurement error with mean zero and dy×dy variance
matrix Vtn . The measurement density is then g(ytn |xtn) = φ[ytn ;Htnxtn , Vtn ].
If measurements of the state variable xtn are exactly collected at locations on
the mathematical grid, Htn is simply the dx × dx identity matrix Idx . We call
this system fully observed . This is rarely the case—measurements are collected
where equipment is placed, which has no bearing on the mathematical grid
used to numerically integrate the state transition model. In this case, Htn is
a dy × dx matrix that linearly interpolates the state to the measurements. In
other words, Htn is a weighting matrix that places higher weights to parts of
the state that are spatially closer to the measurement. We call this system
partially observed .

Example 1.3.1 (Lorenz 1963: measurement models). If the state in the
Lorenz 1963 model is fully observed, then all parts of the state, i.e., the x-, y-,
and z-directions, are observed. If only the x- and y-directions are observed,
then the system is partially observed and the linear mapping is:

Htn =

[
1 0 0
0 1 0

]
.
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(b) Partially observed system.

Figure 1.11: Mathematical grid on a latitude band with measurement locations. Similar to Figure 1.6,
let ri and sj be the locations of the state and measurement of the ith and jth elements, respectively,
of the dx-vector xn and dy-vector yn. In this figure, the state has size dx = 10 and the measurement
has sizes dy = 10 in the fully observed system (a) and dy = 5 in the partially observed system
(b). The tick marks represent locations of the state and the dots represent the locations of the
measurements.

If the location at which the measurement is collected is exactly halfway be-
tween the locations of the x- and y-directions by some distance metric, then
this system is also partially observed with the following linear mapping:

Htn =
[
1
2

1
2

0
]
.

C

Example 1.3.2 (Lorenz 2005: measurement models). With the same latitude
band from before, we illustrate fully observed and partially observed systems
in Figure 1.11. In a fully observed system, similar to Figure 1.11a, Htn is the
identity matrix Idx . In a partially observed system, similar to Figure 1.11b,
each row of Htn sums to one with higher weights places on parts of the state
that are closer to the measurement. C

1.4 Problems and outline

In this chapter, we introduced state-space models with examples of state tran-
sition and measurement models often used in the atmospheric sciences. We
also highlighted several difficulties when filtering with atmospheric models; we
summarize them here:
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(1) Atmospheric models are chaotic. For the purposes of this dissertation, a
chaotic model is synonymous with a nonlinear model.

(2) States are high-dimensional. For example, imagine forecasting tempera-
ture for the contiguous United States. We probably want a finer resolution
than 80 square miles for our forecasts, so the dimensions of the state can
be on the order of 10,000s or even 100,000s.

(3) There is generally no analytic expression for the state transition density
f , but it is easy to sample from it.

(4) Mathematical models are subject to model error : the models are not per-
fect because they are only an approximation of the true system.

In Part I, we describe filtering in more detail. We first describe the op-
timal filtering densities and show that they are easily derived when both the
state transition and measurement models are linear and have additive Gaus-
sian noise, i.e., the assumptions of the state-space model for the Kalman filter
to be applicable. When nonlinearities are introduced to the models, the opti-
mal filtering densities rarely have an analytic expression. We review filtering
algorithms to deal with the nonlinearities, paying particular attention to two
sampling algorithms: the ensemble Kalman filter (EnKF) and a PF introduced
by Gordon et al. (1993), the bootstrap filter (BF). We draw a novel connec-
tion between the EnKF and the BF. This connection facilitates the ability
to combine the best qualities of both filters in our proposed methodology for
parameter estimation with high-dimensional state space models.

Many methods with the PF have been developed to estimate parameters,
but atmospheric scientists rarely use PFs in their applications due to the com-
putational infeasibility of applying PFs to high-dimensional state-spaces. On
the other hand, methods with the EnKF have been developed to estimate
specific parameters but these methods cannot be generalized to estimate any
parameter. Since many atmospheric scientists use the EnKF, we develop an
algorithm in Part II to estimate any parameter in state-space models where
EnKF can be appropriately applied. Furthermore, the algorithm can be easily
added to existing implementations of EnKF, such as the Data Assimilation
Research Testbed (DART)9.

As mentioned earlier, we originally embarked on this journey to improve
model error in atmospheric models. In Part III, we address the issue by
introducing a low-rank linear correction to the continuous state transition

9DART is developed at the National Center for Atmospheric Research (NCAR). More
information about DART can be found at https://www.image.ucar.edu/DAReS/DART/.
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1.4. PROBLEMS AND OUTLINE

model so that it is applicable to high-dimensional state-spaces. When model
error is stated in this way, it is a special case of parameter estimation with
state-space models. We apply the parameter estimation algorithm developed
in Part II to improve model error and thus forecasts.
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2 Filtering algorithms: a selected
review

2.1 Optimal filtering

Filtering is an iterative procedure to forecast and then update the forecast
with collected measurements. Though their distributions do not always have
an analytic expression, we describe how the optimal filtering densities are
derived in this section. Interested readers can refer to Doucet et al. (2001)
and Crisan and Doucet (2002) for a similar treatment.

Since the main goal of filtering is to forecast, we first discuss the optimal
forecast distribution. Let y1:t be the set of measurements collected up to time
t, where ym:n ≡ (ym, ..., yn). Figure 2.1 is similar to the graphical model from
Figure 1.1 but with nodes filled in to represent that the measurements y1:t are
observed. By the definition of conditional probability, the forecast distribution

X0 X1

...

Xt−1 Xt Xt+1

...

Y1 Yt−1 Yt Yt+1

Figure 2.1: State-space model with measurements collected up to time t: a graphical model. Observed
values are represented by filled circles.
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is:

p(xt+1 | y1:t, x0) =

∫
p(xt+1 |xt, y1:t, x0)p(xt | y1:t, x0)dxt.

By the Markov assumption, the state Xt+1 is conditionally independent of the
past states and their measurements (Xt′ and Yt′ for t′ < t) given its previous
state Xt, thus p(xt+1 |xt, y1:t, x0) = f(xt+1 |xt) and

p(xt+1 | y1:t, x0) =

∫
f(xt+1 |xt)p(xt | y1:t, x0)dxt. (2.1a)

The forecast random variable at time t+ 1 is denoted as Xf
t+1

d
= Xt+1 | y1:t, x0,

where “
d
=” denotes equal in distribution. The first two moments of Xf

t+1 are

denoted as µft+1 and Σf
t+1, where the superscript “f” is to remind the reader

that they are moments of the forecast distribution.
Notice that the forecast distribution requires the posterior distribution of

the previous state, p(xt | y1:t, x0): called the analysis distribution. An applica-
tion of Bayes’ theorem provides the analysis distribution:

p(xt | y1:t, x0) =
g(yt |xt)p(xt | y1:t−1, x0)

p(yt | y1:t−1, x0)
. (2.1b)

The analysis random variable at time t is denoted as Xa
t

d
= Xt | y1:t, x0 and its

mean and variance are µat and Σa
t , respectively. Again, the superscript “a” is

to remind the reader that they are moments of the analysis distribution. The
procedure to find the analysis distribution at time t is called updating and is
performed only after observing yt. The analysis distribution is a function of
the measurement density, the forecast distribution of the previous time, and
the predictive likelihood :

p(yt | y1:t−1, x0) =

∫
p(yt |xt, y1:t−1, x0)p(xt | y1:t−1, x0)dxt.

Since the measurement is conditionally independent of the previous measure-
ments given its state, p(yt |xt, y1:t−1, x0) = g(yt |xt) and thus the predictive
likelihood is

p(yt | y1:t−1, x0) =

∫
g(yt |xt)p(xt | y1:t−1, x0)dxt. (2.2)

Many of the filtering algorithms need not calculate or sample from the pre-
dictive likelihood, but it is an important component to derive or estimate the
likelihood, a crucial component for parameter estimation.
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2.1. OPTIMAL FILTERING

The set of equations in Equation (2.1) is called the optimal filtering den-
sities . There are rarely analytic solutions for the densities. The rest of the
chapter is dedicated to reviewing algorithms that derive or approximate the
filtering densities in Equation (2.1). In preparation for Part II on parameter
estimation, we also derive or approximate the predictive likelihood of Equa-
tion (2.2) when discussing the algorithms.

Section 2.2 discusses the Kalman filter, an algorithm to analytically solve
the filtering densities when both the state transition and measurement models
are linear and have additive and Gaussian errors. Section 2.3 discusses two ex-
tensions of the Kalman filter that loosen the requirement of linearity required
in the Kalman filter: the extended Kalman filter (EKF) and the ensemble
Kalman filter (EnKF). These extensions still require that the state distur-
bances and measurement errors be additive and Gaussian and thus cannot
be used to solve for general state-space models. On the other hand, particle
filters (PFs) are a class of sequential Monte Carlo (SMC) algorithms to ap-
proximately sample from the optimal filtering densities for the general state
space model of Equation (1.1). In Section 2.4, we discuss the simplest PF al-
gorithm: the bootstrap filter (BF). We end the chapter with a short discussion
comparing the EnKF and PFs.

We first end this section by defining some notational conveniences and a
note about the derivation of the algorithms.

2.1.1 Notation

The filtering densities up to time t are all conditionally dependent on the
initial condition x0 and the measurements that have been collected, e.g., either
y1:t−1 or y1:t. For notational succinctness, let Y0 = X0. For example, the
succinct notation y0:t = {x0, y1:t} and the filtering densities p(xt | y1:t−1, x0),
p(xt | y1:t, x0), and p(yt | y1:t−1, x0) are denoted as p(xt | y0:t−1), p(xt | y0:t), and
p(yt | y0:t−1), respectively.

To distinguish the optimal filtering densities from their estimators in the
following sections, we use the following shorthand when convenient:

πs:t(z) ≡ p(z | ys:t),

where z ∈ {x1, x2, ..., y1, y2, ...} and s, t ∈ {1, 2, ...}. For example, the forecast
density, analysis density, and predictive likelihood from Equation (2.1) are
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2.2. KALMAN FILTER

denoted as

π0:t(xt+1) = p(xt+1 | y0:t),
π0:t(xt) = p(xt | y0:t),

π0:t−1(yt) = p(yt | y0:t−1),

respectively. The distribution of the initial state X0 is denoted as π0. For nota-
tional succinctness, the initial state is considered an analysis random variable
when no measurements yt have been collected, thus define π1:0(x0) ≡ p(x0) =
π0(x0) and π1:0(x1) ≡ p(x1 |x0). Let the first two moments of the initial con-
dition be denoted as µa0 = E[X0] and Σa

0 = Var[X0].
When discussing estimators constructed with Monte Carlo samples, such

as the EnKF and the PF, the estimators are denoted with a superscript M
(e.g., πMs:t) to indicate the sample size M to construct the estimator. The

sampling algorithms are initialized with simple random samples x
a(m)
0 ∼ π0 for

m = 1, ...,M . The superscript “(m)” denotes the sample number, e.g., x
f(m)
t

and x
a(m)
t denote the mth sample from the forecast and analysis distributions

at time t, respectively. Let {x(m)}Mm=1 be a shorthand for a sample of size M ,
i.e., {x(1), ..., x(M)}. Furthermore, simple random samples cannot always be
generated, thus each sample may have a nonuniform weight associated with it.
A sample x(m) with weight w(m) may be denoted as the sample (x(m), w(m)).
If the sample does not include a weight, it is assumed to be a simple random
sample is generated with uniform weights w(m) = 1/M for m = 1, ...,M .

2.1.2 Derivation of the estimators: a remark

Due to the inductive nature of the filtering densities, in each following section,
we derive estimators of the filtering densities by beginning with an estimator
of the analysis distribution at time t−1 and plugging that particular estimator
into the filtering densities at time t to derive their estimators. This is true for
all filtering algorithms presented with one exception: the Kalman filter. The
state-space model under the assumptions of the Kalman filter has analytic
expressions for the filtering densities.

2.2 Kalman filter

The state-space model under the assumptions of the Kalman filter is one of
the rare models with analytic solutions to the optimal filtering densities (see
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2.2. KALMAN FILTER

Kalman (1960) and Bucy and Kalman (1961) for the original papers and Sec-
tion 13.2 of Bishop (2006) for a textbook review). We briefly derive the forecast
and analysis distributions because they will be important later in the discus-
sion of extensions of the Kalman filter.

Consider the following state-space model:

xt = Mtxt−1 + ηt, ηt ∼ N (0, Ut),
yt = Htxt + εt, εt ∼ N (0, Vt),

where Mt ∈ Rdx×dx is a dx × dx matrix, Ht ∈ Rdy×dx is a dy × dx matrix. The
transition and observation densities are thus

f(xt |xt−1) = φ(xt;Mtxt−1, Ut),

g(yt |xt) = φ(yt;Htxt, Vt),

respectively. The initial state is also normally distributed with mean µa0 and
variance Σa

0, i.e., X0 ∼ N (µa0,Σ
a
0).

Suppose the analysis random variable at time t− 1 is normally distributed
with mean µat−1 and variance Σa

t−1: Xt−1 | y0:t−1 ∼ N (µat−1,Σ
a
t−1). Since the

convolution of two Gaussian random variables is also a Gaussian random vari-
able, the forecast random variable at time t is normally distributed with mean
and variance equal to

µft = Mtµ
a
t ,

Σf
t = Ut +MtΣ

a
t−1M

T
t ,

respectively. Therefore, the forecast distribution at time t is

π0:t−1(xt) = φ(xt;µ
f
t ,Σ

f
t ). (2.3)

Because normal random variables are defined by their first two moments,
the following joint distribution is derived using the laws of total expectation,
variance, and covariance:[

Xt

Yt

] ∣∣∣∣ y0:t−1 ∼ N ([ µft
Htµ

f
t

]
,

[
Σf
t Σf

tH
T
t

HtΣ
f
t Vt +HtΣ

f
tH

T
t

])
. (2.4)

After observing yt, the predictive likelihood is

π0:t(yt) = φ(yt;Htµ
f
t , Vt +HtΣ

f
tH

T
t ), (2.5)

obtained by marginalizing Xt, Yt | y0:t−1 over Xt. Plugging in Equations (2.3)
and (2.5) into the optimal analysis distribution of Equation (2.1b), we have

π0:t(xt) =
φ(yt;Htxt, Vt)φ(xt;µ

f
t ,Σ

f
t )

φ(yt;Htµ
f
t , Vt +HtΣ

f
tH

T
t )
. (2.6)
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2.3. EXTENSIONS OF THE KALMAN FILTER

The first two moments of the analysis random variable Xt | y0:t (and thus the
analysis distribution) are calculated using the conditioning techniques of mul-
tivariate normal random variables, derived using Schur complements:

µat ≡ E(Xt | y0:t)
= E(Xt | y0:t−1) + Cov(Xt, Yt | y0:t−1)Var(Yt | y0:t−1)−1[yt − E(Yt | y0:t−1)],

Σa
t ≡ Var(Xt | y0:t)

= Var(Xt | y0:t−1)− Cov(Xt, Yt | y0:t−1)Var(Yt | y0:t−1)−1Cov(Yt, Xt | y0:t−1)),

thus Xt | y1:t ∼ N (µat ,Σ
a
t ) and

π1:t(xt) = φ(xt;µ
a
t ,Σ

a
t ) (2.7)

with mean and variance equal to

µat = µft + Σf
tH

T
t (Vt +HtΣ

f
tH

T
t )−1(yt −Htµ

f
t ),

Σa
t = Σf

t − Σf
tH

T
t (Vt +HtΣ

f
tH

T
t )−1︸ ︷︷ ︸

Kalman gain

HtΣ
f
t ,

respectively. The term above the underbrace is called the Kalman gain and is
denoted as

Kt = Cov(Xt, Yt | y0:t−1)Var(Yt | y0:t−1)−1 = Σf
tH

T
t (Vt +HtΣ

f
tH

T
t )−1. (2.8)

The Kalman gain is a crucial component to update the state in the Kalman
filter and its extensions. By induction, the filtering densities in Equations (2.3),
(2.5), and (2.7) are the optimal filtering densities for all t.

2.3 Extensions of the Kalman filter

In this section, we discuss two extensions of the Kalman filter that loosen the
requirement of linearity. Consider the following state-space model:

xt = mt(xt−1) + ηt, ηt ∼ N (0, Ut),
yt = ht(xt) + εt, εt ∼ N (0, Vt),

where mt : Rdx → Rdx and ht : Rdx → Rdy are nonlinear mappings of the
state. The state transition and observation densities are then:

f(xt |xt−1) = φ(xt;mt(xt−1), Ut),

g(yt |xt−1) = φ(yt;ht(xt), Vt).
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2.3. EXTENSIONS OF THE KALMAN FILTER

The initial state is also distributed normally with mean µa0 and variance Σa
0,

i.e., X0 ∼ N (µa0,Σ
a
0). Notice that the state-space model is the same as the

model under the Kalman filter, except that the first moments of both the
state transition and measurement models are nonlinear with respect to the
state because of the mappings mt and ht, respectively.

Even if both the analysis random variable Xa
t−1

d
= Xt−1 | y0:t−1 and the

forecast random variable Xf
t

d
= Xt | y0:t−1 are normally distributed, mt(X

a
t−1)

and ht(X
f
t ) need not be normally distributed and therefore the distributions

of Xt | y0:t−1 and Xt | y0:t, respectively, generally do not have analytic forms.
The idea behind the extensions in this section is to approximate mt(X

a
t−1)

and ht(X
f
t ) with normal random variables, thus allowing the distributions of

Xt | y0:t−1 and Xt | y0:t (and hence the optimal filtering densities) to be approx-
imated with normal distributions as well. Since normally distributed random
variables are defined by their first two moments, these algorithms outline how
to approximate their first two moments.

2.3.1 Extended Kalman filter

The extended Kalman filter circumvents the nonlinearity issue by linearizing
the mappings around the current mean and variance estimates. Specifically,
if mt and ht are sufficiently differentiable, their Taylor expansions are used to
approximate the first two moments of their distributions. In this section, we
outline the first-order extended Kalman filter (EKF), which uses only the first-
order approximation of the Taylor expansion in the estimation of the means
and variances. Interested readers can read more about extended Kalman filters
in Einicke (2012).

Suppose the mean and variance of Xa
t−1 are approximated by µ̃at−1 and

Σ̃a
t−1, respectively. Further suppose mt is at least twice differentiable. Then,

by the multivariate Taylor’s theorem,

mt(x) = mt(µ) +D(1)mt(µ)(x− µ) +O[(x− µ)TD(2)mt(µ)(x− µ)],

where D(1)mt(µ) and D(2)mt(µ) are the Jacobian and Hessian of mt evaluated
at µ, respectively. Let M̃t ≡ D(1)mt(µ̃

a
t−1). Then, the mean and variance of

Xf
t are approximated as

µft ≈ mt(µ̃
a
t−1) ≡ µ̃ft ,

Σf
t ≈ Ut + M̃tΣ̃

a
t M̃

T
t ≡ Σ̃f

t ,

respectively. Notice that the truncation error of µ̃ft and Σ̃f
t are on the order

of the variance and fourth central moment of Xa
t−1, respectively, scaled by the
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2.3. EXTENSIONS OF THE KALMAN FILTER

Hessian evaluated at µat−1. The forecast distribution is then approximated as

π0:t−1(xt) ≈ φ(xt; µ̃
f
t , Σ̃

f
t ). (2.9)

Similarly, suppose ht is at least twice differentiable. Let H̃t be the Ja-
cobian of ht evaluated at µ̃ft . After observing yt, the µft ,Σ

f
t , and Ht terms

that appear in the calculation of the Kalman filter’s predictive likelihood and
analysis distribution (Equations (2.5) and (2.7), respectively) are replaced by
the approximations calculated here. Specifically, the predictive likelihood is
approximated as

π0:t−1(yt) ≈ φ(yt; H̃
T
t µ̃

f
t , Vt + H̃tΣ̃

f
t H̃

T
t ), (2.10)

and the analysis mean and variance are approximated as:

µat ≈ µ̃ft + Σ̃f
t H̃

T
t (Vt + H̃tΣ̃

f
t H̃

T
t )−1[yt − ht(µ̃ft )] ≡ µ̃at ,

Σa
t ≈ Σ̃f

t − Σ̃f
t H̃

T
t (Vt + H̃tΣ̃

f
t H̃

T
t )−1H̃tΣ̃

f
t ≡ Σ̃a

t ,

thus providing an approximation to the analysis distribution:

π0:t(xt) ≈ φ(xt; µ̃
a
t , Σ̃

a
t ). (2.11)

Notice that three approximations are made to derive the filtering densities
for each time t. Two approximations come from the Taylor expansions of
mt and ht used to derive the first two moments of the forecast and analysis
distributions, respectively. The last approximation comes from the estimator
of the analysis distribution at time t−1 used to derive the filtering densities at
time t. This last approximation contains all the errors accumulated from the
Taylor expansions up to time t− 1 and are then propagated into estimations
of future forecast and analysis distributions. The accumulation of errors is a
common theme in all filtering algorithms with the exception of the Kalman
filter.

With the EKF, the accumulation of errors can lead to unbounded error
growth (Evensen, 1994, 2003). This error is part of a filtering problem called
filter divergence, where the filter is no longer able to capture the true dynamics
of the system (Evensen, 1992; Gottwald and Majda, 2013; Harlim and Majda,
2010; Miller et al., 1994). One solution is to use a higher-ordered EKF, which
uses higher order terms in the Taylor expansion of mt and ht and thus provides
better approximations to the means and covariances. An alternative (but
partial) solution is to replace the mean and variance of the forecast with their
sample estimates; this is the idea behind the EnKF in the next section. It
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2.3. EXTENSIONS OF THE KALMAN FILTER

is only a partial solution because the measurement model is required to be
linear in the state, like the Kalman filter: ht(xt) = Htxt. Although solutions
have been developed to overcome this requirement, we will not discuss them
in this dissertation. For more information, interested readers can refer to
Evensen (2009, Section A1), Livings et al. (2008), Luo and Hoteit (2014), and
references therein.

2.3.2 Ensemble Kalman filter

Evensen (1994) developed the EnKF in response to the filter divergence issues
of the EKF. The EnKF uses Monte Carlo samples instead of a Taylor approx-
imation to estimate the first two moments of the forecast distribution. In this
literature, each sample is called an ensemble member and the set of samples
is called the ensemble. For a textbook review of the EnKF, interested readers
can refer to Evensen (2009).

Consider the following state-space model:

xt = mt(xt−1) + ηt, ηt ∼ N (0, Ut),
yt = Htxt + εt, εt ∼ N (0, Vt),

(2.12)

where mt : Rdx → Rdx is a nonlinear mapping of the state. Like the state-
space model under the Kalman filter, the measurement is linear in the state
with a dy × dx matrix Ht that maps the state to the measurements. The state
transition and measurement densities are:

f(xt |xt−1) = φ(xt;mt(xt−1), Ut),

g(yt |xt−1) = φ(yt;Htxt, Vt),

respectively.
Suppose we have random samples from the approximate analysis distribu-

tion, {xa(m)
t−1 }Mm=1

·∼ Xt−1 | y0:t−1, where X ·∼ Y means that X is approximately
distributed as Y . Samples cannot be obtained from the optimal analysis dis-
tribution, so samples are generated from its estimator instead. At time t,
samples from the forecast distribution are generated as follows:

x
f(m)
t ∼ f(xt |xa(m)

t−1 ) = φ(xt;mt(x
a(m)
t−1 ), Ut), (2.13)

for each m = 1, ...,M . The sample mean and variance are calculated from
the samples {xf(m)

t }Mm=1 and are denoted by µ̂ft and Σ̂f
t , respectively. After

observing yt, samples from the analysis distribution are generated as a function
of the forecast samples as follows:

x̃
a(m)
t = x

f(m)
t + Σ̂f

tH
T
t (Vt +HtΣ̂

f
tH

T
t )−1[yt −Htx

f(m)
t ]. (2.14)
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The sample mean and covariance from samples {x̃a(m)
t }Mm=1 should equal

µ̂at = µ̂ft + Σ̂f
tH

T
t (Vt +HtΣ̂

f
tH

T
t )−1[yt −Htµ̂

f
t ], (2.15a)

Σ̂a
t = Σ̂f

t − Σ̂f
tH

T
t (Vt +HtΣ̂

f
tH

T
t )−1HtΣ̂

f
t , (2.15b)

respectively.
Both Houtekamer and Mitchell (1998) and Burgers et al. (1998) discovered

that the sample mean calculated from the samples {x̃a(m)
t }Mm=1 equals to µ̂at ,

but the sample covariance did not equal to Σ̂a
t . To generate samples with a

sample covariance that match Σ̂a
t , they both independently proposed to replace

yt in Equation (2.14) with a closely related perturbed version y
(m)
t = yt + ε

(m)
t

where ε
(m)
t ∼ N (0, Vt), leading to the generation of analysis samples:

x
a(m)
t = x

f(m)
t + Σ̂f

tH
T
t (Vt +HtΣ̂

f
tH

T
t )−1[y

(m)
t −Htx

f(m)
t ]. (2.16)

This algorithm is called EnKF with perturbed observations. An alternative
procedure is to deterministically scale {xf(m)

t }Mm=1 so that the resulting samples

{xa(m)
t }Mm=1 have the proper mean and variance via

x
a(m)
t = µ̂at + Ât[x

f(m)
t − µ̂ft ],

where Ât has the following property: Σ̂a
t = ÂtΣ̂

f
t Ât. There is no unique Ât.

Tippett et al. (2003) summarizes different algorithms to find Ât; this set of
algorithms is called deterministic square-root filters (or square-root filters, for
short). Though rarely used in practice, we call the original formulation of the
EnKF developed by Evensen (2003) with resulting samples

x
a(m)
t = x̃

a(m)
t

the original EnKF to distinguish it from the two other EnKF algorithms.
Due to the EnKF’s close connection with the EKF, the optimal filtering

densities of Equation (2.1) and predictive likelihood of Equation (2.2) are ap-
proximated similarly to the extended Kalman filter: instead of approximating
the moments with their Taylor expansions, the moments are replaced with
sample moments. Specifically, the forecast and analysis distributions are ap-
proximated as

π0:t−1(xt) ≈ φ(xt; µ̂
f
t , Σ̂

f
t ), (2.17a)

π0:t(xt) ≈ φ(xt; µ̂
a
t , Σ̂

a
t ), (2.17b)
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Inputs: {xa(m)
t−1 }Mm=1

·∼ p(xt−1 | y0:t−1)
Output:

• {xf(m)
t }Mm=1

·∼ p(xt | y0:t−1)
• {xa(m)

t }Mm=1
·∼ p(xt | y0:t)

1. Forecast step: Sample x
f(m)
t ∼ f(xt |xa(m)

t−1 ) for each m = 1, ...,M .
2. Observe yt.
3. If performing inflation, calculate sample mean µ̂ft from forecast samples

{xf(m)
t }Mm=1, choose or estimatea inflation factor λt ≥ 1, and set

x̃
f(m)
t = µ̂ft + λt(x

f(m)
t − µ̂ft ).

Otherwise, set x̃
f(m)
t = x

f(m)
t .

4. Update step:

a) Calculate the Kalman gain

K̂t = Σ̂f
tH

T
t (Vt +HtΣ̂

f
tH

T
t )−1,

where Σ̂f
t is the sample covariance calculated from {xf(m)

t }Mm=1, including
tapering if performing localization.

b) Perform initial update:

x̃
a(m)
t = x

f(m)
t + K̂t[yt −Htx̃

f(m)
t ] for each m = 1, ...,M.

c) Perform final update:

• With original EnKF, set x
a(m)
t = x̃

a(m)
t for each m = 1, ...,M .

• With perturbed observationsb, sample ε
(m)
t ∼ N (0, Vt) and calculate

x
a(m)
t = x̃

a(m)
t + K̂tε

(m)
t for each m = 1, ...,M.

• With square-root filtersc, calculate the sample mean of {x̃a(m)
t }Mm=1,

denoted as µ̂at . Find Ât such that Σ̂a
t = ÂtΣ̂

f
t Ât, where Σ̂a

t is the

sample covariance calculated with {x̃a(m)
t }Mm=1. Then,

x
a(m)
t = µ̂at + Ât[x̃

f(m)
t − µ̂ft ] for all m = 1, ...,M.

aSee Anderson (2007, 2009) for more information on how to apply adaptive inflation.
bIn practice, this step is combined with Step 4b for computational efficiency, but we

outline the algorithm in this way to contrast the various EnKF updating algorithms.
cSee Tippett et al. (2003) for more information on finding such an Ât.

Algorithm 2.1: Ensemble Kalman filter.
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respectively (cf. Equations (2.9) and (2.11)). Furthermore, the predictive
likelihood is approximated as

π0:t−1(yt) ≈ φ(yt;H
T
t µ̂

f
t , Vt +HtΣ̂

f
tH

T
t ) (2.17c)

(cf. Equation (2.10)).
Even though the development of the EnKF was inspired by the EKF, unlike

the EKF, the sample mean µ̂at and variance Σ̂a
t are not used to forecast the

next set of samples. In practice, the samples {xa(m)
t }Mm=1 are used in the next

step of the algorithm to generate samples from the forecast distribution at
time t+ 1. Therefore, the errors associated with the generation of the analysis
samples are propagated to the next step of the algorithm, also leading to the
possibility of filter divergence. To overcome filter divergence, the following two
adjustments are highly recommended by EnKF experts:

• Variance inflation. Deterministically scale the forecast samples {xf(m)
t }Mm=1

to increase its sample variance via:

x̃
f(m)
t = µ̂ft + λt(x

f(m)
t − µ̂ft ), (2.18)

where λt > 1 is chosen by the user (Hamill et al., 2001) or estimated with
data (Anderson, 2007, 2009) (called adaptive inflation in the literature).

• Localization. Taper the sample forecast covariance matrix via:

Σ̂f
t ◦ T (d),

where “◦” denotes the Schur product and T (d) is a tapering covariance
matrix that sets covariances to 0 when the distance between two spatial
locations of the state are greater than d. We refer the reader to Bickel and
Levina (2008) for more information on tapering and to Furrer and Bengtsson
(2007) for more information on tapering in the context of EnKF.

In practice, the above two adjustments are crucial to prevent particle collapse
when applying the EnKF to high-dimensional state spaces. For this reason, we
include the two adjustments in Algorithm 2.1, which summarizes the EnKF
algorithm.

2.4 Bootstrap filter: a particle filter

Particle filters (PFs) are a class of algorithms to approximate the filtering
densities of the general state space model outlined in Equation (1.1). This
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state-space model need not have additive and Gaussian errors as with the ex-
tensions of the Kalman filter. The idea behind these methods is similar to the
EnKF: a Monte Carlo sample is used to estimate the optimal filtering distri-
butions (or point estimates of them). The samples are called particles instead
of ensemble members. The sampling mechanism behind the particle filter is
importance sampling applied sequentially in time, hence its other name in the
literature: sequential Monte Carlo (SMC) or sequential importance sampling
and resampling (SISR).

In this section, we present the simplest particle filter: the bootstrap filter.
Most presentations of the BF present it as a SISR algorithm, where the prior
transition density f(xt |xt−1) is used as the proposal distribution for the im-
portance sampling1. Instead, our presentation follows the slight modification
of the bootstrap filter presented in Crisan and Doucet (2002, Section III-A).
This particular presentation is often used in the probabilistic analysis of parti-
cle filters (Cappé et al., 2006; Del Moral, 2004, 2013), where the bootstrap filter
is presented as approximating the optimal filtering densities in Equation (2.1)
with empirical densities2. The reason for choosing this particular presentation
over its usual presentation is to make clear how the EnKF is connected to
the bootstrap filter: EnKF uses a different estimator to the optimal filtering
densities than the bootstrap filter; we elaborate on this further in Section 3.1.

Suppose we have random samples from an approximation of the analysis
distribution, {xa(m)

t−1 }Mm=1
·∼ Xt−1 | y0:t−1. The empirical density

πM0:t−1(xt−1) ≡
1

M

M∑
m=1

δ
x
a(m)
t−1

(xt−1)

is an approximation of π0:t−1(xt−1), the optimal density ofXa
t−1; the superscript

M is to remind the reader that πM0:t−1 is an estimator of π0:t−1 and that it
depends on the sample size M . Plug this approximation into the optimal
forecast distribution of Equation (2.1a) to generate forecast particles at time
t:

x
f(m)
t ∼

∫
f(xt |xt−1)πM0:t−1(xt−1)dxt−1 =

1

M

M∑
m=1

f(xt |xa(m)
t−1 ),

1For a more general overview of particle filtering, we refer interested readers to Cappé
et al. (2007), Doucet and Johansen (2011), and references therein.

2The approximations are referred to as mean field approximations.
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for each m = 1, ...,M . In the usual presentation of the bootstrap filter3,
x
f(m)
t ∼ f(xt |xa(m)

t−1 ) for each m = 1, ...,M . Note that these are not samples
from π0:t−1(xt); they are samples from its estimator, since an estimator of the
analysis distribution πM0:t−1(xt−1) is used to sample from the forecast distribu-
tion instead of the optimal analysis distribution π0:t−1(xt−1). These samples
are used to provide an estimator to the forecast distribution:

πM0:t−1(xt) =
1

M

M∑
m=1

δ
x
f(m)
t

(xt). (2.19)

After observing yt, the state is updated using this estimator of the forecast
distribution.

Recall that the predictive likelihood is required in the calculation of the
analysis distribution. Plugging the approximation of the forecast distribution
(πM0:t−1(xt)) into the optimal predictive likelihood of Equation (2.2) provides
an approximation to the predictive likelihood:

πM0:t−1(yt) ≡
∫
g(yt |xt)πM0:t−1(xt)dxt =

1

M

M∑
m=1

g(yt |xf(m)
t ) =

1

M

M∑
m=1

l
(m)
t ,

(2.20)

where l
(m)
t ≡ g(yt |xf(m)

t ). Now, the analysis distribution is approximated by
plugging the estimators of the forecast distribution and the predictive likeli-
hood into the optimal analysis density of Equation (2.1b):

π̃M0:t(xt) ≡
g(yt |xt)πM0:t−1(xt)

πM0:t−1(yt)

=
M∑
m=1

g(yt |xf(m)
t )∑M

n=1 l
(n)
t

δ
x
f(m)
t

(xt)

=
M∑
m=1

l
(m)
t∑M
n=1 l

(n)
t

δ
x
f(m)
t

(xt).

Let x̃
a(m)
t = x

f(m)
t and w̃

(m)
t = l

(m)
t /

∑M
n=1 l

(n)
t for each m = 1, ...,M . The

weights {w̃(m)
t }Mm=1 are called importance weights . Then,

π̃M0:t(xt) =
M∑
m=1

w̃
(m)
t δ

x̃
a(m)
t

(xt) (2.21)

3This technicality is not important in the mathematical analysis of SISR algorithms,
because SISR is considered to be an equivalent interpretation of Feynman-Kac mean field
Interacting Particle System models. See Del Moral (2013) for a comprehensive review.

36



2.4. BOOTSTRAP FILTER: A PARTICLE FILTER

is an estimator of the analysis distribution π0:t(xt). We make a few remarks
about the update step:

• Technically, the predictive likelihood need not be calculated to sample from
the analysis distribution. Only the measurement density needs to be evalu-
ated with the forecast samples, i.e., l

(m)
t = g(yt |xf(m)

t ), which are normalized
in the calculation of the importance weights without evaluating the estima-
tor of the predictive likelihood.

• The particles x
f(i)
t from the forecast step and x̃

a(i)
t from the analysis step do

not differ; only their weights have changed.

With high probability, samples with low importance weights will become
irrelevant at future filtering steps, causing particle collapse (or particle degen-
eracy), where all samples but one have an importance weight of zero. Re-
sampling helps remove those samples with low probability mass. There are
many resampling algorithms proposed in the literature; see Section 2.4.1 for
a selected review. Let {xa(m)

t }Mm=1 be a simple random sample from π̃M0:t(xt).
These samples provide another estimator of the analysis distribution:

πM0:t(xt) ≡
1

M

M∑
m=1

δ
x
a(m)
t

(xt).

Since resampling increases the Monte Carlo variance, the resampling step is,
in practice, only performed when the effective sample size

ESS =

(
M∑
m=1

(w̃
(m)
t )2

)−1

is below some threshold4. Either estimator of the analysis distribution, π̃M0:t(xt)
or πM0:t(xt), can be used in the next filtering step, repeating the algorithm
outlined in this section. Algorithm 2.2 summarizes the BF algorithm, where
the user chooses whether or not to resample after every time step. Without
loss of generality, we assume that resampling is performed at each time t in
our presentation.

4For more information on effective sample sizes, refer to Doucet and Johansen (2011,
Section 3.5) and references therein.
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Inputs: {xa(m)
t−1 }Mm=1

·∼ p(xt−1 | y0:t−1)
Output:

• {xf(m)
t }Mm=1

·∼ p(xt | y0:t−1)
• {xa(m)

t }Mm=1
·∼ p(xt | y0:t)

1. Forecast step: Sample x
f(m)
t ∼ f(xt |xa(m)

t−1 ) for each m = 1, ...,M .

2. Observe yt.

3. Update step:

a) Calculate

l
(m)
t = w

(m)
t−1g(yt |xf(m)

t )

for each m = 1, ...,M .
b) Calculate

x̃
a(m)
t = x

f(m)
t ,

w̃
(m)
t = l

(m)
t /

∑M
n=1l

(n)
t

for each m = 1, ...,M .

4. Resample step: If resampling,

jm = i with probability w̃
(i)
t ,

x
a(m)
t = x̃

(jm)
t ,

w
(m)
t = 1/M,

for each m = 1, ...,M . Otherwise,

x
a(m)
t = x̃

(m)
t ,

w
(m)
t = w̃

(m)
t ,

for each m = 1, ...,M .

Algorithm 2.2: Bootstrap filter.
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2.4.1 Resampling algorithms

In this section, we discuss resampling broadly, outside of the context of filter-
ing. The goal in this section is to obtain a simple random sample {xm}Mm=1 from
p(x) when we have a random, but not necessarily simple, sample {(x̃m, w̃m)}Mm=1

from the density p(x). Each sample x̃m has a weight w̃m for each m = 1, ...,M
and

∑M
m=1 w̃m = 1. These samples form the empirical density estimator

p̃(x) ≡ ∑M
m=1 w̃mδx̃m(x). Resampling is performed by sampling indices with

weights {w̃m}Mm=1:

jm = i with probability w̃i (2.22)

for each m = 1, ...,M and using the resampled indices {jm}Mm=1 to obtain
simple random samples {xm}Mm=1 from p̃(x):

xm = x̃jm with probability wm = 1/M.

We discuss a few resampling algorithms to sample the indices {jm}Mm=1 as per
Equation (2.22):

• Multinomial sampling: Sampling indices as in Equation (2.22) is per-
formed using an inverse transform sampling algorithm. Sample auxiliary
random variables

um ∼ U(0, 1) for each m = 1, ...,M,

where U(a, b) is the continuous uniform random variable on the interval
[a, b]. These auxiliary random variables are used to select indices as follows:

jm =
M∑
n=1

nI
[
un ∈

[∑n−1
i=1 w̃i,

∑n
i=1w̃i

)]
for each m = 1, ...,M, (2.23)

where I is the indicator function (i.e., I(x ∈ A) = 1 when x ∈ A and zero
otherwise) and

∑0
i=1 w̃i ≡ 0.

• Stratified sampling: Sample ũm ∼ U(0, 1) for each m = 1, ...,M . Calcu-
late auxiliary random variables

um =
(m− 1) + ũm

M
for each m = 1, ...,M

and then select indices according to Equation (2.23).
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• Systematic sampling: Sample ũ ∼ U(0, 1). Calculate

um =
(m− 1) + ũ

M
for each m = 1, ...,M

and then select indices according to Equation (2.23).

According to Doucet and Johansen (2011, Section 3.5), the sampling algo-
rithms in decreasing order of popularity and efficiency are: systematic sam-
pling, residual sampling (not discussed), and multinomial sampling. For a
more thorough discussion of resampling in the context of PFs, we refer the
reader to Doucet and Johansen (2011, Sections 3.4 and 3.5), Douc et al. (2005),
and Hol et al. (2006). We conclude this section with a theorem that will be
important in a later discussion on the connection between the EnKF and the
BF.

Theorem 2.4.1. If w̃m = 1/M for all m = 1, ...,M , stratified and systematic
random sampling returns the simple random samples xm = x̃m.

Proof. By Equation (2.23),

jm =
M∑
n=1

nI
[
un ∈

[
n−1
M
, n
M

)]
for each m = 1, ...,M.

With stratified or systematic sampling,
∫ n/M
(n−1)/M p(uk) = 1 if k = n and zero

otherwise, therefore I[un ∈ [n−1
M
, n
M

)] = 1 if n = m and zero otherwise. There-
fore, jm = m and xm = x̃m.

2.5 Ensemble Kalman filter and particle

filter: large sample asymptotics versus

practicalities

For all algorithms but the Kalman filter, if the derivation of the filtering den-
sities began with the true analysis distribution at time t − 1 instead of its
estimator, it is straightforward to analyze the convergence of the forecast and
analysis distributions for a particular time t with large sample asymptotics.
However, a nontrivial caveat of each algorithm is that estimators are induc-
tively being used to approximate the filtering densities. For example, both
the EnKF and BF use samples from an estimator of the analysis distribution
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at time t − 1 to then derive estimators of the filtering densities at time t.
Inductively applying estimators complicates analyses of large sample asymp-
totics. Even though the error may be small at a particular time, the errors
can accumulate and eventually lead to non-convergence of the estimators at
some future timepoint (see Section IV-A in Crisan and Doucet (2002) for an
example).

Many of the large asymptotic results with the EnKF are analyzed for a
particular time t assuming that one has the true analysis distribution from
the previous timepoint t − 1 (Furrer and Bengtsson, 2007; Lei et al., 2010).
Very few analyze the full algorithm with the accumulation of errors from in-
ductively plugging in estimators to form new estimators at future timepoints.
The few that we have seen are with linear mt, i.e., mt(xt−1) = Mtxt−1, thus
simplifying to the state-space model of the Kalman filter (Le Gland et al.,
2009; Mandel et al., 2009). In fact, Le Gland et al. (2009) mention that the
current formulation of the EnKF needs to account for importance weights, like
the BF, for large asymptotic analyses to apply for nonlinear mt. In addition,
Lei et al. (2010) conclude that the EnKF is not robust to any deviation from
the Gaussianity assumption of the analysis distribution. In practice, however,
the EnKF is widely used to filter atmospheric models, especially for high-
dimensional state-spaces, despite not having large asymptotic results for the
full EnKF algorithm.

On the other hand, the PF has an abundance of large asymptotic results
on the weak convergence of the filtering densities5, i.e., πM0:t−1(xt)→ π0:t−1(xt),
π̃M0:t(xt) → π0:t(xt), and πM0:t(xt) → π0:t(xt) when the number of particles
M → ∞, but the analyses have mostly been proven for fixed state dimen-
sions. In fact, Bengtsson et al. (2008) concludes that the PF is impractical
for high-dimensional state-spaces due to the inevitability of particle collapse,
further deterring many atmospheric scientists from applying the PF to their
applications of interest (Snyder et al., 2008).

5For a short review, see Crisan and Doucet (2002). For textbook reviews, see Del Moral
(2004) and Del Moral (2013).
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3 Ensemble Kalman filter: its
connection to the particle filter

Consider the state-space model under the EnKF from Equation (2.12), re-
peated here for convenience:

xt = mt(xt−1) + ηt, ηt ∼ N (0, Ut),
yt = Htxt + εt, εt ∼ N (0, Vt).

The state transition and measurement densities are:

f(xt |xt−1) = φ(xt;mt(xt−1), Ut),

g(yt |xt−1) = φ(yt;Htxt, Vt),

respectively. In this chapter, we present a novel interpretation of the EnKF
that clearly highlights the relationship between the EnKF and the PF. The
relationship is helpful in the next part of the dissertation on parameter esti-
mation with the EnKF, where we propose a hybrid approach of applying the
EnKF to filter the states and the PF to filter parameters.

To highlight the similarities between the EnKF and PF, we present the
EnKF in a different manner than its usual presentation, i.e., the one previously
presented in Section 2.3.2. Instead, Section 3.1 presents the algorithm similar
to the presentation of the BF in Section 2.4. Throughout the discussion, we
remark on the similarities and differences between the EnKF and BF, which are
summarized in Section 3.1.1. In particular, we point out three main differences:
the choice of estimator for the forecast distribution and two approximations
introduced in the derivation of estimators to the analysis distribution. The
choice of estimator has previously appeared in the kernel density estimation
(KDE) literature and we discuss the connection in Section 3.2.

Not only does the re-interpretation aid the development of novel parameter
estimation methodology, it connects the EnKF to the PF and its abundant
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large sample asymptotic results. We hope that this connection will facilitate
exploration to understand the practical effectiveness of the EnKF in filtering
high-dimensional state-spaces. Section 3.2 is the beginning of this exploration.
In that section, we present the EnKF with only the first approximation, which
uses a different estimator for the forecast distribution than the empirical den-
sity estimator as with the BF. It turns out that this particular filter is a special
case of a pre-regularized particle filter with Gaussian kernels. Special cases of
this particular filter have been applied to high-dimensional state-spaces with
poor results. From this, we conjecture that the practicality of the EnKF lies in
the other approximations, which we discuss in Section 3.3 and leave for future
exploration. Sections 3.2 and 3.3 may be omitted without affecting the rest of
the dissertation.

3.1 Ensemble Kalman filter: a

re-interpretation

Like the BF, we begin with simple random samples from the approximate
analysis distribution, {xa(m)

t−1 }Mm=1
·∼ p(xt−1 | y0:t−1), that form the empirical

density estimator

ψM0:t−1(xt−1) ≡
1

M

M∑
m=1

δ
x
a(m)
t−1

(xt−1).

This estimator is then used to generate samples from the forecast distribution:

x
f(m)
t ∼

∫
f(xt |xt−1)ψM0:t−1(xt−1)dxt−1 =

1

M

M∑
m=1

φ(xt;mt(x
a(m)
t−1 ), Ut).

In the usual presentation of the BF, this last sampling step is instead x
f(m)
t ∼

φ(xt;mt(x
a(m)
t−1 ), Ut), which exactly matches the sampling mechanism in the

original presentation of EnKF (cf. Equation (2.13)). Up to this point, the

EnKF and the BF do not differ: both generate forecast samples {xf(m)
t }Mm=1

in the same way. The difference begins with the choice of estimator to ap-
proximate the forecast distribution, which consequently changes the updating
algorithm.

Recall that the BF uses the empirical density as an estimator of the forecast
distribution (see Equation (2.19)). Instead of the empirical density, the EnKF
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approximates the forecast distribution with a mixture of Gaussian densities:

ψM0:t−1(xt) ≡
1

M

M∑
m=1

φ(xt;x
f(m)
t , Σ̂f

t ). (3.1)

Each Gaussian density is centered at the forecast samples {xf(m)
t }Mm=1 and has

a variance equal to the sample variance calculated from the forecast samples,
denoted by Σ̂f

t . In the KDE literature, a mixture of Gaussian densities, such
as the estimator above, is proposed as an alternative estimator to the empir-
ical density estimator for probability densities. We make this connection and
further elaborate in Section 3.2. We introduce terminology from the KDE
literature to facilitate the rest of our discussion. The Gaussian in the mixture
is a particular choice of a kernel density (or, kernel for short). The mean and

variance of the Gaussian, e.g., x
f(m)
t and Σ̂f

t , respectively, are called the center
and bandwidth of the kernel.

After observing yt, the state is updated using the estimator of the fore-
cast distribution in Equation (2.17a). Plugging the estimator of the forecast
distribution (ψM0:t−1) into the optimal predictive likelihood of Equation (2.2)
provides an estimator to the predictive likelihood:

ψM0:t−1(yt) ≡
∫
g(yt |xt)ψM0:t−1(xt)dxt

=
1

M

M∑
m=1

∫
φ(yt;Htxt, Vt)φ(xt;x

f(m)
t , Σ̂f

t )dxt

=
1

M

M∑
m=1

φ(yt;Htx
f(m)
t , Vt +HtΣ̂

f
tH

T
t ) (3.2)

=
1

M

M∑
m=1

l
(m)
t , (3.3)

where l
(m)
t = φ(yt;Htx

f(m)
t , Vt + HtΣ̂

f
tH

T
t ). The summand in Equation (3.2)

should remind the reader of the predictive likelihood of the Kalman filter (see
Equation (2.5)). The estimator of the analysis distribution is then derived
by plugging approximations of the forecast distribution and the predictive
likelihood (ψM0:t−1(xt) and ψM0:t−1(yt), respectively) into the optimal analysis
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density in Equation (2.1b):

ϑM0:t(xt) ≡
φ(yt;Htxt, Vt)ψ

M
0:t−1(xt)

ψM0:t−1(yt)

=
1
M

∑M
m=1 φ(yt;Htxt, Vt)φ(xt;x

f(m)
t , Σ̂f

t )
1
M

∑M
n=1 l

(n)
t

=
M∑
m=1

l
(m)
t∑M
n=1 l

(n)
t

φ(yt;Htxt, Vt)φ(xt;x
f(m)
t , Σ̂f

t )

l
(m)
t

=
M∑
m=1

l
(m)
t∑M
n=1 l

(n)
t

φ(yt;Htxt, Vt)φ(xt;x
f(m)
t , Σ̂f

t )

φ(yt;Htx
f(m)
t , Vt +HtΣ̂

f
tH

T
t )︸ ︷︷ ︸

The term denoted by the underbrace should remind the reader of the analysis
distribution of the Kalman filter (see Equation (2.6)). Applying the condition-
ing technique of multivariate normal random variables to the term above the
underbrace, an analytic form for the mixture distribution is derived:

ϑM0:t(xt) =
M∑
m=1

w̃
(m)
t φ(xt; x̃

a(m)
t , Σ̂a

t ) (3.4)

with

x̃
a(m)
t = x

f(m)
t + Σ̂f

tH
T
t (Vt +HtΣ̂

f
tH

T
t )−1(yt −Htx

f(m)
t ), (3.5a)

Σ̂a
t = Σ̂f

t − Σ̂f
tH

T
t (Vt +HtΣ̂

f
tH

T
t )−1HtΣ̂

f
t , (3.5b)

and importance weights w̃
(m)
t = l

(m)
t /

∑M
n=1 l

(n)
t for each m = 1, ...,M . Notice

that each kernel in the estimator of the forecast distribution is updated with
the measurement yt and each kernel’s weight is updated with the measurement
density evaluated at the measurement yt consequently changing the uniform
weight to a nonuniform weight w̃

(m)
t . In other words, there are two components

to the update: the kernel itself and its weight. This particular approximation,
however, is not used in the EnKF. Two approximations are introduced: (1) the
importance weights are approximated to be uniform and (2) the bandwidth
Σ̂a
t is replaced by another bandwidth depending on the EnKF algorithm.

We discuss the first approximation. The importance weights are approxi-
mated to be uniform:

w̃
(m)
t ≈ 1/M, (3.6)
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providing another estimator to the analysis distribution (π0:t(xt)):

ϑ̃M0:t(xt) ≡
1

M

M∑
m=1

φ(xt; x̃
a(m)
t , Σ̂a

t ). (3.7)

We make a few remarks about this estimator:

• Notice that this approximation effectively removes one of the two modes to
update the state: the weight.

• Contrast this estimator to the estimator of the bootstrap filter in Equa-
tion (2.21). After a similar step in the bootstrap filter, the estimator is a

mixture of point masses centered at the analysis samples x̃
a(m)
t that do not

differ from the forecast samples x
f(m)
t ; only their weights differ. With the

EnKF, the samples x
f(m)
t and x̃

a(m)
t do differ because of the Kalman gain

term, i.e., Kt ≡ Σ̂f
tH

T
t (Vt + HtΣ̂

f
tH

T
t )−1, but their weights do not change

because of the approximation made in Equation (3.6). Therefore, the up-
dating mechanism of the EnKF solely relies on the Kalman gain when it
should additionally depend on the importance weight. On the other hand,
the updating mechanism of the BF only relies on the importance weights.

• Compare each kernel’s moments x̃
a(m)
t and Σ̂a

t to the analysis samples de-
rived in the initial exposition of EnKF (Section 2.3.2). Specifically, compare
Equation (2.14) with (3.5a) and Equation (2.15b) with (3.5b). Both pairs
of equations are equal.

At a similar point in the BF algorithm, the user chooses whether or not to
resample. If the user chooses not to resample, the estimator with nonuniform
weights, π̃M0:t(xt), is used to sample from the forecast distribution of the next
timestep; otherwise, the estimator with uniform weights, πM0:t(xt), is used. The
same principle does not apply to the EnKF estimator ϑ̃M0:t(xt): the convolution
of the nonlinear mapping of the state transition model, i.e., mt+1, with a
Gaussian density does not have an analytic expression. Specifically, when
using ϑ̃M0:t(xt−1) to generate samples from the forecast distribution at time
t+ 1, we have

x
f(m)
t+1 ∼

∫
f(xt+1 |xt)ϑ̃M0:t(xt−1)dxt

=
1

M

M∑
m=1

∫
φ(xt+1;mt(xt), Ut+1)φ(xt; x̃

a(m)
t , Σ̂a

t )dxt.
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The integral in each summand generally does not have an analytic expression.
A solution is to approximate the integral with a Monte Carlo sample, which is
equivalent to resampling from ϑ̃M0:t(xt−1) to form an empirical density estimator
of the analysis distribution.

Both the original EnKF and EnKF with perturbed observations have a
step that is equivalent to a resampling step, using stratified or systematic
sampling. Since the weights on each Gaussian in the estimator ϑ̃M0:t(xt) are
uniform, Theorem 2.4.1 implies that stratified/systematic sampling generates
one sample from each Gaussian density in the mixture. However, instead of
resampling from each Gaussian density with a variance of Σ̂a

t , the following
approximations to Σ̂a

t are made:

• Original EnKF: The bandwidth is approximated as Σ̂a
t ≈ 0, thus the

estimator of the analysis distribution is approximated as

ϑ̃M0:t(xt) ≈ ψ̃M0:t(xt) ≡
1

M

M∑
m=1

δ
x̃
a(m)
t

(xt).

Stratified or systematic random sampling is used to generate a simple ran-
dom sample from ψ̃M0:t(xt), obtaining the analysis samples x

a(m)
t = x̃

a(m)
t for

each m = 1, ...,M .

• EnKF with perturbed observations: Recall that this particular method
adds noise to the measurement yt (Equation (2.16)), generating analysis
samples:

x
a(m)
t = x

f(m)
t +Kt(yt −Htx

f(m)
t ) +Ktε

(m)
t ,

where ε
(m)
t ∼ N (0, Vt). This is equivalent to stratified or systematic resam-

pling with uniform weights and approximating the analysis bandwidth Σ̂a
t

to be Cov(Ktεt) = KtVtK
T
t (see Equation (2.16)). Therefore, the estimator

of the analysis distribution is approximated as

ϑ̃M0:t(xt) ≈ ψ̃M0:t(xt) ≡
1

M

M∑
m=1

φ(xt; x̃
a(m)
t , KtVtK

T
t ).

Again, stratified or systematic random sampling is used to generate a sim-
ple random sample from ψ̃M0:t(xt), obtaining the analysis samples x

a(m)
t ∼

N (x̃
a(m)
t , KtVtK

T
t ) for each m = 1, ...,M .
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Another estimator of the analysis distribution is constructed from analysis
samples generated from either estimator:

ψM0:t(xt) =
1

M

M∑
m=1

δ
x
a(m)
t

(xt). (3.8)

Since square-root filters deterministically scale the forecast samples {xf(m)
t }Mm=1,

there is no analogous BF interpretation for square-root filters1, but the same
estimator ψM0:t(xt) with point masses centered at the resulting analysis samples

{xa(m)
t }Mm=1 is used to sample from the approximate forecast distribution of

the next timestep2. As mentioned in Section 2.3.2, even though the EnKF
algorithm was inspired by the EKF, the sample mean and variance µ̂at and Σ̂a

t

are not used when filtering the next timestep. Only the samples {xa(m)
t }Mm=1

are used and our re-interpretation makes it clear how.

3.1.1 Connection to the bootstrap filter: a summary

We summarize the similarities and differences between the EnKF and BF:

• Forecast step: Both the BF and EnKF generate forecast samples in the
same way. However, the BF approximates the forecast distribution with an
empirical density, whereas the EnKF approximates with mixture density of
Gaussian densities.

• Update step: In the update step, the BF updates the weight of each fore-
cast sample and does not change the forecast samples, whereas the EnKF
approximates the weight to be uniform and moves the forecast samples to-
wards the measurement. Similar to the forecast distribution, the BF uses
an empirical density estimator and the EnKF uses a mixture density of
Gaussian densities to approximate the analysis distribution.

• Resample step: Unlike the BF, the EnKF requires a resampling step
and specifically stratified or systematic sampling is used. Instead of using
the bandwidth Σ̂a

t , the EnKF approximates the bandwidth with a different

1The update step with the deterministic square-root filter is more closely related to the
update step in sigma-point Kalman filters, where the samples are scaled to have the proper
mean and variance (van der Merwe, 2004).

2We are not the first to recognize that the perturbed observations algorithm use both
ψ̃M
0:t(xt) and ψM

0:t(xt) as estimators of the analysis distribution (Frei and Künsch, 2012, 2013).
We independently discovered these estimators through our probabilistic re-interpretation of
the EnKF.
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(b) Ensemble Kalman filter
(a) Bootstrap filter with perturbed observations

1. Forecast step: Sample

x
f(m)
t ∼ f(xt |xa(m)

t−1 )

for each m = 1, ...,M .

1. Forecast step: Sample

x
f(m)
t ∼ f(xt |xa(m)

t−1 )

for each m = 1, ...,M .

2. Observe yt. 2. Observe yt.

3. Update step: Calculate weights

l
(m)
t = φ(yt;Htx

f(m)
t , Vt)

for each m = 1, ...,M .

Set

x̃
a(m)
t = x

f(m)
t ,

w̃
(m)
t = l

(m)
t /

∑M
n=1 l

(n)
t ,

for each m = 1, ...,M .

3. Update step: Calculate the Kalman
gain:

K̂t = Σ̂f
tH

T
t (Vt +HtΣ̂

f
tH

T
t )−1,

where Σ̂f
t is the (tapered) sample co-

variance calculated from {xf(m)
t }Mm=1.

Set

x̃
a(m)
t = x

f(m)
t + K̂t(yt −Htx

f(m)
t ),

w
(m)
t = 1/M,

for each m = 1, ...,M .

4. Resample step: Sample

jm = i with probability w
(i)
t ,

x
a(m)
t = x̃

a(jm)
t ,

for each m = 1, ...,M .

4. Resample step: Sample

x
a(m)
t ∼ N (x̃

a(m)
t , Ba

t )

for each m = 1, ...,M with Ba
t =

KtVtK
T
t .

Algorithm 3.1: Bootstrap filter versus ensemble Kalman filter: a comparison. For each time t, these

algorithms require samples {xa(m)
t−1 }Mm=1

·∼ p(xt−1 | y0:t−1). To directly compare the two algorithms,
resampling after every filtering step is required of the bootstrap filter and the variance inflation
step has been removed from the ensemble Kalman filter.

bandwidth. Both the BF and EnKF approximate the analysis distribution
with an empirical density after the resampling the particles.

Algorithm 3.1 compares the essential steps of both algorithms side-by-side;
the presentation of the algorithms are slightly different from their initial ex-
positions to allow for direct comparisons, i.e., requiring resampling after every
filtering step in the BF and omitting the variance inflation step in the EnKF.
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3.2 Pre-regularized particle filter with

Gaussian kernels: the bridge between the

ensemble Kalman filter and the

bootstrap filter

The first difference between the BF and the EnKF is the estimators used to
approximate the forecast distribution: the BF uses an empirical density esti-
mator and the EnKF uses a KDE with Gaussian kernels. If the variance of
a Gaussian density is taken to zero, it becomes a point mass centered at the
mean. Therefore, the EnKF estimator for the forecast distribution is equiva-
lent to the BF estimator when the bandwidth is taken to be zero instead of
the sample variance. Considering how well the EnKF performs in practice for
high-dimensional state-spaces, it seems beneficial to have nonzero covariances.

To better understand this benefit, we draw intuition from the KDE litera-
ture (see Silverman (1986) and Wand and Jones (1995) for textbook reviews).
Instead of using an empirical density as an estimator of a probability den-
sity, KDE uses a mixture of kernels centered at independently and identically
distributed (iid) samples x1, ..., xn ∼ p(x):

p̂B(x) ≡ 1

n

n∑
i=1

|B|−1/2K
[
B−1/2(x− xi)

]
,

where B is a smoothing parameter, often called a bandwidth. For p̂B(x) to be
an appropriate estimator of a probability density, the kernel K must satisfy
the following constraints: (1) K(u) ≥ 0 for all u, (2)

∫
K(u)du = 1, and

(3) K(−u) = K(u). It is easy to show that the standard Gaussian density
satisfies the constraints of a kernel.

As the bandwidths approach zero, kernel density estimators (KDEs) are
well-known to be a biased, but asymptotically optimal, estimator of p(x)
(Wand, 1992). Optimality in the KDE literature is often defined in terms
of asymptotic properties of the integrated mean squared error, E[

∫
(p̂B(x) −

p(x))2dx]. If x1, ..., xn are iid samples from N (µ,Σ), the asymptotic integrated
mean squared error is minimized by the following bandwidth:

Bn = cn,dΣ with cn,d =

(
4

n(d+ 2)

) 2
d+4

,

where d is the dimension of xi. Notice that the bandwidth is a function of the
variance of the density, which is not known in reality. The sample variance Σ̂
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is a reasonable estimator and is in fact the suggested bandwidth, after scaling
it by cn,d, for unimodal densities (Wand and Jones, 1995). Furthermore, notice
that the bandwidth is scaled by both the dimension of x (d) and the sample
size n (cn,d). In fact, cn,d → 0 as n → ∞, thus Bn → 0. Therefore, the
bandwidths should be scaled by the sample size in such a way that the kernels
shrink to point masses as the number of samples increases.

With this intuition, it seems reasonable to approximate the forecast distri-
bution with a mixture distribution as the EnKF does. The bandwidth choice
of the sample variance is also reasonable but with one caveat: the bandwidth
should scale with the ensemble size, similar to the scalar cn,d as in the KDE
literature. In fact, the idea of using KDEs with the PF has been proposed
numerous times in the literature to overcome particle collapse; these filters
are known as regularized particle filters (RPFs). When Gordon et al. (1993)
first introduced the BF, they suggested jittering the forecast samples when fil-
tering state-space models with a deterministic state transition model to over-
come particle degeneracy. Hürzeler and Künsch (1998) then suggested a more
principled approach to jittering: use a KDE as an estimator of the forecast
distribution, leading to the introduction of pre-regularized particle filters (pre-
RPF)3. Therefore, using a mixture of Gaussian densities as an estimator to the
forecast distribution, as the EnKF does, is a pre-RPF with Gaussian kernels.

The unique combination of applying pre-RPF with Gaussian kernels to
linear measurement models with Gaussian errors is amenable to closed-form
expressions to the estimators, which is not true for many applications of the
RPF. Like the PF, the RPF was developed for general state-space models such
as the one outlined in Equation (1.1), thus analytic forms could not be derived
for the resulting estimators and rejection sampling is performed instead. In
the special case that we have presented, an analytic solution to the estimator
is easily derived, e.g., ϑM1:t(xt), and thus allows for straightforward and efficient
sampling from the estimator, important for the resampling step.

In this section, we explore the pre-RPF with Gaussian kernels applied to
the state-space model outlined at the beginning of the chapter. Like the EnKF,
the forecast distribution is approximated with a mixture of Gaussian kernels
with a bandwidth that scales by the number of particles. We first present the
estimators of the optimal filtering densities, deferring the bandwidth choice
to Section 3.2.1. The filter does not include the approximations made in the
update and resampling steps of the EnKF. We make some hypotheses regard-
ing the roles of these approximations in the success of the EnKF and discuss

3On the other hand, post-regularized particle filters use a KDE to approximate the
analysis distribution.
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Inputs: {xa(m)
t−1 }Mm=1

·∼ p(xt−1 | y1:t−1)
Output:

• {xf(m)
t }Mm=1

·∼ p(xt | y1:t−1)
• {xa(m)

t }Mm=1
·∼ p(xt | y1:t)

1. Forecast step: Sample x
f(m)
t ∼ f(xt |xa(m)

t−1 ) for each m = 1, ...,M .

2. Update step:

a) Calculate the Kalman gain:

Kt = Bf
t H

T
t (Vt +HtB

f
t H

T
t )−1.

and

l
(m)
t = φ(yt;Htx

f(m)
t , Vt +HtB

f
t H

T
t )

for each m = 1, ...,M .
b) Calculate

x̃
a(m)
t = x

f(m)
t +Kt[yt −Htx

f(m)
t ],

w̃
(m)
t = l

(m)
t /

∑M
n=1l

(n)
t ,

for each m = 1, ...,M .

3. Resampling step:

a) Calculate Ba
t = Bf

t −KtHtB
f
t .

b) Resample

jm = i with probability w̃
(i)
t ,

x
a(m)
t ∼ N (x̃

(jm)
t , Ba

t ),

for each m = 1, ...,M .

Algorithm 3.2: Pre-regularized particle filter with Gaussian kernels.

further exploration in Section 3.3. Since the derivation of the estimators to the
optimal filtering densities is quite similar to the derivations in the last section
on re-interpreting the EnKF, we directly state the estimators without deriving
them; for more detailed derivations, refer to Section 3.1.

Suppose we have generated simple random samples from the approximate
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forecast distribution: {xf(m)
t }Mm=1

·∼ Xt | y1:t−1. As with the EnKF, the forecast
distribution is approximated by a KDE with Gaussian kernels centered at the
forecast samples and forecast bandwidth Bf

t :

νM1:t−1(xt) ≡
1

M

M∑
m=1

φ(xt;x
f(m)
t , Bf

t ).

After observing yt, this estimator is plugged into the optimal predictive like-
lihood and analysis distribution, deriving estimators to those densities. The
estimator to the predictive likelihood is

νM1:t−1(yt) ≡
∫
g(yt |xt)νM1:t−1(xt)dxt =

1

M

M∑
m=1

l
(m)
t

with l
(m)
t ≡ 1

M
φ(yt;Htx

f(m)
t , Vt+HtB

f
t H

T
t ). Then, an estimator of the analysis

distribution is derived:

ν̃M1:t(xt) ≡
φ(yt;Htxt, Vt)ν

M
1:t−1(xt)

νM1:t−1(yt)
=

M∑
m=1

w̃
(m)
t φ(xt; x̃

a(m)
t , Ba

t ), (3.9)

with updated weights w̃
(m)
t = l

(m)
t /

∑M
n=1 l

(n)
t and updated centers and analysis

bandwidths as follows:

x̃
a(m)
t = x

f(m)
t + Σ̂f

tH
T
t (Vt +HtB

f
t H

T
t )−1(yt −Htx

f(m)
t ), (3.10a)

Ba
t = Bf

t −Bf
t H

T
t (Vt +HtB

f
t H

T
t )−1HtB

f
t , (3.10b)

for each m = 1, ...,M .
Like the EnKF, resampling must be performed to obtain an empirical den-

sity estimator required in the next forecast step. In particular, a simple random
sample {xa(m)

t }Mm=1 ∼ ν̃M1:t(xt) is generated via any resampling algorithm out-
lined in Section 2.4.1. These new samples provide another approximation to
the analysis distribution:

νM1:t(xt) =
1

M

M∑
m=1

δ
x
a(m)
t

(xt).

Algorithm 3.2 summarizes the algorithm. In Algorithm 3.3, we repeat Al-
gorithm 3.1 and add the pre-RPF between the BF and EnKF algorithms to
provide a side-by-side comparison of the three algorithms applied to the state-
space model outlined at the beginning of this chapter. Figure 3.1 illustrates
the comparisons.
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3.3. FUTURE EXPLORATION

3.2.1 Bandwidth selection

The choice of the forecast bandwidth Bf
t is crucial to the success of the RPF. If

the bandwidth is too small, the RPF collapses to the PF and particle collapse
becomes an issue—the very problem that the RPF was developed to avoid. If
the bandwidth is too large, the estimator is a poor approximation of the opti-
mal filtering densities. Since the development of the RPF, a few papers have
analyzed large sample properties of the RPF with fixed bandwidths (Crisan
and Miguez, 2014; Le Gland and Oudjane, 2004; Le Gland et al., 1998). The
analyses suggest a forecast bandwidth of

Bf
t = M−1/(dx+4)Σ, (3.11)

where Σ is a fixed covariance matrix. Therefore, as with KDEs, the bandwidth
is dependent on both the dimension of the state xt (dx) and the sample size M .
Unfortunately, because optimality is defined differently in the two literatures,
the method to find an optimal bandwidth in the KDE literature cannot be
applied to find an optimal forecast bandwidth Bf

t , even in specific cases.

3.3 Future exploration

In this section, we introduced a re-interpretation of the EnKF. Not only is
the re-interpretation useful in the development of a new parameter estima-
tion methodology that will be introduced in Part II, it clarifies the connection
between the EnKF and the PF. We believe that the EnKF can be more rigor-
ously studied by borrowing some of the theoretical underpinnings of the PF.
In particular, the pre-RPF with Gaussian kernels is a step in that direction:
like the EnKF, the pre-RPF also uses a mixture of Gaussian kernels as an
estimator of the forecast distribution. We conclude this section with a few
hypotheses that we think are critical to the practical success of the EnKF and
are worth exploring more rigorously in the future.

Two special cases of the pre-RPF with Gaussian kernels have appeared in
the atmospheric science literature: both propose two different forecast band-
widths Bf

t . The kernel filter (Anderson and Anderson, 1999) uses the (ta-

pered) sample variance Σ̂f
t calculated with the forecast samples {xf(m)

t }Mm=1 as
the bandwidth Bf

t . The nonlinear ensemble filter (Bengtsson et al., 2003) uses
a nearest neighbor approach to estimate a different bandwidth for each kernel
in the mixture, again with the forecast samples {xf(m)

t }Mm=1. Neither scaled the
covariance by the ensemble size. Both methods were demonstrated to perform
better than the EnKF when applied to low-dimensional state-spaces (dx ≤ 40)
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3.3. FUTURE EXPLORATION

but had trouble with particle collapse when applied to higher-dimensional
state-spaces (verbal discussion with authors). In our own explorations with
the Lorenz 2005 system with dx = 960, we found somewhat similar results: the
pre-RPF with a simple fixed bandwidth (Equation (3.11) with Σ = Idx and
multiplied by a fixed scalar c) is just as effective as or better than the EnKF
when filtering fully observed systems, but suffered from particle collapse when
filtering partially observed systems.

Our explorations of the forecast bandwidth lead us to believe that the KDE
of the forecast distribution is important but not critical to the success of the
EnKF. Instead, we suspect the critical success comes from the combination
of the variance inflation in the forecast step and the weight approximation
in the update step. Variance inflation increases the variance of the ensemble
to better explore the state space, but this is not enough to prevent particle
collapse—it is actually the weight approximation introduced in the update
step of the EnKF that prevents particle collapse. Recall that the EnKF esti-
mator ϑM0:t(xt) from Equation (3.4)4 has two modes to update the particles: the

weight w̃
(m)
t and the conditional update of the Gaussian kernel with the mea-

surement5 yt. Since the EnKF approximates the weights w̃
(m)
t to be uniform

(see Equation (3.6)), the particles only gets updated through one of the two up-
date modes: the conditional update. It seems that the weight approximation
increases the effective sample size in exchange for the introduction of biased-
ness of the estimator. Without the weight approximation, however, particle
collapse becomes inevitable in high-dimensional state-spaces, thus rendering
variance inflation ineffective. Since large sample asymptotics of the EnKF
with linear state transitions have been previously studied (Le Gland et al.,
2009; Mandel et al., 2009), we have good reason to believe that the weight ap-
proximation may be appropriate for near-linear state transitions and therefore
deviations from linearity should be studied in conjunction with variance infla-
tion and, more importantly, the weight approximation. To our knowledge, no
theoretical analyses of the EnKF acknowledges the weight approximation and
many acknowledge, but leave out, variance inflation, even though it is must
be added whenever the EnKF is applied to high-dimensional state-spaces; we
believe these analyses are missing a crucial part of the puzzle.

For completeness, we discuss one last difference between the pre-RPF and
the EnKF that is not as important in the practical success of the EnKF.
Recall that the analysis bandwidth Ba

t in the pre-RPF algorithm (see Equa-

4This estimator corresponds to the pre-RPF estimator ν̃M0:t(xt) of Equation (3.9).
5This corresponds to the pre-RPF’s Equation (3.10a).
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3.3. FUTURE EXPLORATION

tion (3.10b)) is

Ba
t = Bf

t −Bf
t H

T
t (Vt +HtB

f
t H

T
t )−1HtB

f
t = (I −KtHt)B

f
t ,

where the Kalman gain Kt = Bf
t H

T
t (Vt + HtB

f
t H

T
t )−1 is substituted into the

second equality. When the bandwidth Bf
t is substituted with the sample

variance Σ̂f
t , the analysis bandwidth Ba

t becomes

Ba
t = (I −KtHt)Σ̂

f
t .

The EnKF with perturbed observations uses the following analysis bandwidth
instead of Ba

t :

KtVtK
T
t = Kt(I −KT

t H
T
t )Σ̂f

t ,

where the Woodbury matrix identity is applied to obtain the equality. The
difference between the two expressions is

Ba
t −KtVtK

T
t = [(I −KtHt)−Kt(I −KT

t H
T
t )︸ ︷︷ ︸]Σ̂f

t .

Therefore, the analysis step of the pre-RPF and EnKF are asymptotically
equivalent if the expression above the underbrace is asymptotically zero. It
may be interesting to explore the large sample asymptotics of that particular
term.
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Parameter estimation
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4 Parameter estimation: a short
review and discussion of issues

In the previous part of the dissertation, we examined filtering when the model
and its parameters are known. Though the models may be reasonable for a
variety of situations, there are often unknown parameters governing the sys-
tems. While one can use scientific expertise to set parameter values, it is
better to let the data speak: the parameters can be estimated with collected
measurements. Unfortunately, parameter estimation with state-space models
is not simple: with the exception of the state-space model under the Kalman
filter, the likelihood cannot be evaluated exactly and must be approximated
with filtering algorithms. For this reason, parameter estimation methods that
have been developed for state-space models are algorithm-specific. Many pa-
rameter estimation methods have been developed for the PF, but the methods
developed with the EnKF estimate parameters with specific forms. The novel
re-interpretation of the EnKF outlined in Section 3.1 facilitates connecting
the abundant methods that have been developed for PFs to the EnKF. With
computational expense in mind, we develop a methodology in this part of
the dissertation for parameter estimation with the EnKF that estimate any
parameter of applicable state-space models.

4.1 State-space models with unknown

parameters

We introduce unknown parameters to the state-space model presented in the
treatment of the EnKF (Equation (2.12)). In particular, we introduce an
unknown state parameter θx ∈ Rdθx to the state transition model:

xt = mt(xt−1, θx) + ηt, ηt ∼ N (0, Ut(θx)) (4.2a)
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4.1. STATE-SPACE MODELS WITH UNKNOWN PARAMETERS

and an unknown measurement parameter θy ∈ Rdθy to the measurement model:

yt = Ht(θy)xt + εt, εt ∼ N (0, Vt(θy)). (4.2b)

Notice that mt : Rdx+dθx → Rdx is a nonlinear mapping of the previous state
xt−1 and state parameter θx and Ht(·) is a dy× dx matrix that depends on the
parameter θy. Furthermore, the variance of the state disturbance, Ut(·), and
measurement noise, Vt(·), also depend on the parameters θx and θy, respec-
tively. Let these two parameters be denoted by θ = (θx, θy) with dimension
dθ = dθx + dθy . The parameter θ is not time-varying and thus it is called a
static parameter. Like the state-space model under the EnKF, the state tran-
sition and measurement densities are Gaussian but are now functions of state
and parameter: the state transition density is

f(xt |xt−1, θx) = φ(xt |mt(xt−1, θx), Ut(θx))

and the measurement density is

g(yt |xt, θy) = φ(yt |Ht(θy)xt, Vt(θx)).

The same assumptions outlined in Chapter 1 apply to this state-space model.
The goal is to estimate the parameter θ, but that cannot be done without
filtering, as the reader will notice from the form of the likelihood.

A crucial component for parameter estimation is the likelihood of the mea-
surements collected up to time T , i.e., p(y1:T | θ). A recursive application of the
axiom of conditional probability provides the following form of the likelihood:

p(y1:T | θ) =
T∏
t=1

p(yt | y0:t−1, θ).

This shows that the likelihood is a function of the predictive likelihoods
p(yt | y0:t−1, θ) up to time T and is thus easily calculated as long as the pre-
dictive likelihood is easily evaluated. However, recall from the discussion of
filtering algorithms in Part I that the predictive likelihood cannot be evalu-
ated exactly with the exception of the Kalman filter and must be approxi-
mated instead. For example, the EKF approximates the predictive likelihood
with Gaussian density (see Equation (2.10)) and both the PF and EnKF ap-
proximate the predictive likelihood with a Monte Carlo estimate (see Equa-
tions (2.20) and (3.3), respectively). Thus, the likelihood is subject to the
approximation errors of the filtering algorithm, which adds to the difficulty
of parameter estimation with state-space models. In particular, with Monte
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METHODS WITH HIGH-DIMENSIONAL STATE-SPACES

Carlo sampling methods, such as the PF and the EnKF, the Monte Carlo
variance of the likelihood approximation is reduced with more samples.

In the next section, we provide a brief review of parameter estimation
algorithms, with a particular focus on those that can be applied with the PF
and EnKF. As the reader will notice, the algorithms are often specific to the
filtering algorithm, and our goal is to bridge the gap using the connection from
Section 3.1.

4.2 Limitations of current parameter

estimation methods with

high-dimensional state-spaces

There are a host of algorithms to estimate static parameters with PFs. The
methods span both maximum likelihood and Bayesian approaches, including
online and offline approaches. However, as with filtering, many methods suf-
fer from particle degeneracy, even for low-dimensional systems1. Therefore,
PFs are impractical for atmospheric science applications, which often have
high-dimensional state-spaces. On the other hand, though the EnKF has been
demonstrated to be effective at filtering high-dimensional state-spaces, param-
eter estimation is less developed than in the PF literature. Since the introduc-
tion of the EnKF, parameter estimation with the EnKF is largely performed
with state augmentation: the parameter is “augmented” to the state to create
a new state variable that gets updated with new data (Anderson, 2001; Dee
and da Silva, 1998; Yang and Delsole, 2009; Zupanski and Zupanski, 2006);
this particular parameter estimation method is called state augmentation. In
fact, Evensen (2009) dedicates a chapter to parameter estimation using state
augmentation with the EnKF.

While state augmentation has worked well in many situations, it is not
sufficient to deal with all parameters. Stroud and Bengtsson (2007) first rec-
ognized this issue when estimating the scale parameter of the measurement
noise, i.e., the parameter σ in εt ∼ N (0, σVt). The authors stressed that state
augmentation cannot be used to estimate this parameter because EnKF is a
linear updating rule: the update of parameters under state augmentation relies
on the correlation between the state and parameters, which can be problematic
when the states and parameters are not linearly correlated (or near linear).
Both Delsole and Yang (2010) and Frei and Künsch (2012) further elaborated

1For a comprehensive review of parameter estimation with PFs and the particle degen-
eracy issues, we refer the reader to Kantas et al. (2015).
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on this limitation of state augmentation and developed algorithms to estimate
parameters other than σ. However, both algorithms cannot be generally ap-
plied to estimate any parameter θ in the state-space model of Equation (4.2):
the algorithm developed by DelSole and Hou estimates a parameter that con-
trols a Wiener process in the continuous state-transition model and the algo-
rithm developed by Frei and Künsch estimates measurement noise parameter ρ
of εt ∼ N (0, Vt(ρ)) but cannot estimate other parameters, such as parameters
of the state transition model or other parameters governing the measurement
model.

Given that the EnKF is effective at filtering many high-dimensional appli-
cations, it is desirable to borrow the abundant parameter estimation techniques
from the PF literature. At first glance, many of the parameter estimation
techniques seem to apply to the EnKF because of its similarities with PFs (as
outlined in Section 3.1) with the added benefit of that particle degeneracy is
less of an issue with the EnKF than with PFs. In fact, this already happens:
state augmentation is a specific case of artificial evolution of parameters, a
parameter estimation technique used with PFs to overcome particle degen-
eracy issues. However, upon closer inspection, there are very few parameter
estimation algorithms from the PF literature that can be directly applied to
the EnKF for a couple of practical reasons.

First, there is often not a closed-form expression for the first moment of the
state transition density. As mentioned in Chapter 1, the EnKF is often applied
to state-space models with mathematical models as state transition models,
thus the first moment and the derivatives of the state transition density are
analytically unattainable. Approximations can be made, but that introduces
error into the already difficult task estimating the likelihood, especially for
high-dimensional state-spaces. For this reason, many parameter estimation
techniques that require the state transition density are eliminated. This in-
cludes many of the maximum likelihood approaches that require evaluations of
the gradient of the state transition density, such as EM algorithms, and many
of the more efficient Markov chain Monte Carlo (MCMC) algorithms devel-
oped for PFs (Andrieu et al., 2010), such as particle Gibbs sampling. To our
knowledge, this leaves two classes of parameter estimation algorithms: par-
ticle marginal Metropolis-Hastings (PMMH) and methods that use artificial
evolution of parameters.

Many atmospheric scientists mainly filter with the EnKF as opposed to
PFs because of its ability to filter high-dimensional state-spaces. Therefore,
any parameter estimation method applied with EnKF must be cognizant of the
computational expense. For this reason, this eliminates PMMH as a reason-
able parameter estimation technique, leaving artificial evolution of parameters
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as the best parameter estimation technique that can be borrowed from the
PF literature. However, as mentioned earlier in the discussion of state aug-
mentation, the technique of artificial evolution of parameters with the EnKF
cannot generally be applied to estimate any parameter, an issue we expound
upon in Section 4.3. Because of these shortcomings, we develop a combined
EnKF and PF approach in Chapter 5 that uses the EnKF to filter the of-
ten high-dimensional states and the PF to filter the lower-dimensional static
parameters. The algorithm can easily be plugged into parameter estimation
algorithms from the PF literature that use artificial evolution of parameters.
Artificial evolution of parameters is used in both Bayesian inference (Kitagawa,
1998; Liu and West, 2001) and estimation of a maximum likelihood estimator
(MLE) (Ionides et al., 2006, 2015).

Before proposing our algorithm, we review the method of artificial evolution
of parameters, elaborate on its inability to estimate any static parameters when
applied with the EnKF, and demonstrate its limitations on the Lorenz 1963
system.

4.3 Artificial evolution of parameters

With artificial evolution of parameters, the parameter θ is replaced with a
closely related time-varying parameter θt ≡ (θt,x, θt,y) and the state transition
and measurement densities are replaced with closely related densities

f(xt |xt−1, θt,x) and g(yt |xt, θt,y)

with θt = (θt,x, θt,y). The parameter Θt is a random walk as follows

θt = θt−1 + ζt with density q(θt | θt−1) (4.3a)

Var(ζ0) = τ 2Ψ and Var(ζt) = σ2Ψ for t > 0 (4.3b)

where τ 2 is a positive scalar and Ψ is a dθ × dθ matrix, both pre-specified by
the user, and θ0 is an initial guess of the parameter. Of course, the static
parameter is not truly time-varying, hence the “artificial” descriptor in its
name2. In fact, σ2 is zero in state augmentation—the idea being that the
parameter is static, thus should be a priori constant in time. When artificial
evolution of parameters is used to estimate an MLE (Ionides et al., 2006, 2015),
σ2 is a scalar that exponentially decreases over multiple iterations of the filter.
If artificial evolution of parameters is used directly, σ2 is a scalar chosen by

2In fact, Kantas et al. (2015) mention that the artificial perturbation may introduce
biases into the estimation of parameters that is difficult to quantify in real-world examples.
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the user. The density is called the perturbation density and is denoted by
q(θt | θt−1). Typically the density q is a multivariate normal distribution, but
any distribution that satisfies the above constraints can be used, such as the
truncated normal distribution. Alternatively, parameters can be transformed
to allow the usage of a multivariate normal distribution.

Since the time-varying parameters are also assumed to follow a Markov
process like the state, we can obtain an equivalent reparametrization of the
state-space model by creating a new state variable Zt that contains both the
state Xt and parameter θt:

zt =

[
xt
θt

]
;

this is called “augmenting” the state. This leads to the augmented state-space
model:

zt =

[
m(xt−1, θt)

θt−1

]
+

[
ηt
ζt

]
,

yt = H̃t(θt)zt + εt,
(4.4)

where H̃t(θt) =
[
Ht(θt) 0dθ

]
, 0dθ is the zero dθ-vector, and ηt, ζt, and εt are

distributed as before. The assumptions behind the state-space model is the
same as the state-space model introduced in the previous part of the disserta-
tion, hence the same graphical model in Figure 1.1 applies after replacing the
nodes with Xt with Zt. For this reason, many developments in the previous
part of the dissertation are directly applicable to the augmented state-space
model—a nice feature called plug-and-play by Ionides et al. (2006, 2011) that
is maintained in our proposed methodology. For completeness, we provide two
graphical models for this state space model in Figure 4.1.

For the augmented state-space model to be complete, we derive the state
transition and measurement densities of the model, which are used to obtain
the optimal filtering densities and predictive likelihood. By the axiom of con-
ditional probability, the state transition density is

f(zt | zt−1) = p(xt, θt |xt−1, θt−1) = p(xt |xt−1, θt, θt−1)p(θt |xt−1, θt−1).

By the Markov assumptions on both the state and parameter,

f(zt | zt−1) = f(xt |xt−1, θt,x)q(θt | θt−1)
= φ[xt;mt(xt−1, θt,x), Ut(θt,x)]q(θt | θt−1).

The measurement density is

g(yt | zt) = g(yt |xt, θt,y) = φ[yt;Ht(θt,y)xt, Vt(θt,y)] (4.5)
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X0 X1

...

Xt−1 Xt Xt+1

...

XT

Y1 Yt−1 Yt Yt+1 YT

θ0 θ1

...

θt−1 θt θt+1

...

θT

(a) Single node for the parameters.

X0 X1

...

Xt−1 Xt Xt+1

...

XT

Y1 Yt−1 Yt Yt+1 YT

θ0,x θ1,x

...

θt−1,x θt,x θt+1,x

...

θT,x

θ0,y θ1,y

...

θt−1,y θt,y θt+1,y

...

θT,y

(b) Two separate nodes for the state and observation parameters.

Figure 4.1: State-space model under artificial evolution of parameters: a graphical model
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Equipped with the state transition and measurement densities, the optimal
filtering densities are easily derived by plugging them into the optimal filtering
densities of Equation (2.1):

p(zt | y0:t−1)

=

∫ ∫
φ[xt;mt(xt−1, θt,x), Ut(θt,x)]q(θt | θt−1)p(xt−1, θt−1 | y0:t−1)dxtdθt,

(4.6a)

p(zt | y0:t)

=
g(yt |xt, θt,y)p(xt, θt | y0:t−1)

p(yt | y0:t−1)
,

=
φ[yt;Ht(θt,y)xt, Vt(θt,y)]p(xt, θt | y0:t−1)

p(yt | y0:t−1)
, (4.6b)

p(yt | y0:t−1)

=

∫ ∫
φ[yt;Ht(θt,y)xt, Vt(θt,y)]p(xt, θt | y0:t−1)dxtdθt. (4.6c)

When convenient, we use a similar shorthand for the optimal filtering densities
as in the previous part of the dissertation:

πs:t(a) ≡ p(a | ys:t),
πs:t(a|b) ≡ p(a | b, ys:t),

where a, b ∈ {x1, ..., xT , y0, ..., yT} and s, t ∈ {0, 1, .., T}. Therefore, the opti-
mal filtering densities from Equation (4.6) are denoted as

π0:t−1(zt) = p(zt | y0:t−1),
π0:t(zt) = p(zt | y0:t),

π0:t−1(yt) = p(yt | y0:t−1),

respectively.
Not only are the optimal filtering densities easily derived for the augmented

state-space model, parameters are estimated using almost any filtering algo-
rithm that can filter the particular state-space model in Equation (4.4). Of the
filtering algorithms presented in the dissertation, the PF is the most flexible
filtering algorithm and can easily be applied to augmented state-space model.
In fact, many parameter estimation algorithms take this approach with the
PF (Ionides et al., 2006, 2011; Liu and West, 2001). At first glance, it seems
that the EnKF is also applicable, but upon closer inspection, θt is not always
updated by measurements for a few reasons described in the next section.
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4.3.1 Parameter estimation with the ensemble Kalman
filter: shortcomings

Before describing the shortcomings, we examine how the EnKF updates the
parameter. Suppose we have samples of the augmented state:

z
a(m)
t−1 ≡ (x

a(m)
t−1 , θ

a(m)
t−1 ) ·∼ p(zt−1 | y0:t−1).

At time t, generate augmented state samples z
f(m)
t ≡ (x

f(m)
t , θ

f(m)
t ) from the

forecast distribution:

θ
f(m)
t ∼ q(θt | θa(m)

t−1 ),

x
f(m)
t ∼ g(xt |xa(m)

t−1 , θ
f(m)
t ).

Calculate the sample covariance with the forecast samples:

Σ̂f
t =

[
Σ̂f
t,xx Σ̂f

t,xθ

Σ̂f
t,θx Σ̂f

t,θθ

]
,

where Σ̂f
t,xx and Σ̂f

t,θθ are the sample variances of the forecast state and pa-

rameter, respectively, and Σ̂f
t,xθ = (Σ̂f

t,θx)
T is the sample covariance between

the forecast state and parameter.
After observing yt, the analysis samples are calculated by applying Equa-

tion (2.14) to the state-space model in Equation (4.4). The particular choice
of EnKF update (i.e., original EnKF, perturbed observations, or square-root
filter) is not important to the discussion, thus for simplicity, we apply the up-
date of the original EnKF (c.f., Equation (2.14)) to each Gaussian kernel with

center z
f(m)
t and bandwidth Σ̂f

t :

z
a(m)
t = z

f(m)
t +Kt[yt −Ht(θ

f(m)
t )z

f(m)
t ], (4.7)

where Kt is the Kalman gain:

Kt ≡ Cov(Zt, Yt | y0:t−1)Var(Yt | y0:t−1)−1, (4.8)

where the expression is taken from Equation (2.8).
Notice that there are three parts to the update: the measurement residual

yt−Ht(θ
f(m)
t )z

f(m)
t ; the conditional variance of the measurement, Var(Yt | y0:t−1);

and the conditional covariance between the measurement and the state,
Cov(Yt, Zt | y0:t−1). While the measurement residual provides important in-
formation about the magnitude that the forecast state sample differs from
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the measurement, the last term Cov(Yt, Zt | y0:t−1) is the most important be-
cause it controls the influence of the measurement residual. For example, if
Cov(Yt, Zt | y1:t−1) is zero, then the state does not get updated. Let’s examine
the term more closely:

Cov(Yt, Zt | y1:t−1) = H̃t(θ
f(m)
t )Σ̂f

t =

[
Ht(θ

f(m)
t )Σ̂f

t,xx

Ht(θ
f(m)
t )Σ̂f

t,xθ

]

The first and second rows of this conditional covariance—and thus the Kalman
gain—updates the state Xt and parameter θt, respectively. This shows us that
there are two important components to the EnKF linear update of the pa-
rameters: the covariance between the state and parameter, Σ̂f

t,θx, as mentioned
by previous authors3, and the observation mapping Ht(·). Therefore, the pa-
rameter gets updated only if there is correlation between the forecasted state
and parameter (Σ̂f

t,θx) and the part of the state that is correlated with the
parameter is observed (Ht(·)). Otherwise, the parameter diverges randomly
or stays the same as its proposed initial state when applying artificial evolu-
tion of parameters or state augmentation, respectively. In the next section, we
demonstrate with the Lorenz 1963 system that the observation mapping Ht(·)
is just as important as the covariance between the parameter and the state,
Σ̂f
t,θx.

Besides the linear update issue, we remark on a few other issues not men-
tioned by previous authors:

• Unbounded update. Often, parameters, especially those governing deter-
ministic atmospheric models, have a range of values in which the dynamics
of the system are realistic and/or numerically stable. Notice that the mea-
surement residual in the update equation in Equation (4.7) is unbounded,
hence a user cannot restrict the parameter update to be within pre-specified
bounds.

• Different Kalman gain for each update. When estimating the mea-
surement parameter θy, the update of the analysis distribution requires
the calculation of a different Kalman gain for each kernel in the mixture
of Gaussian densities—a computationally expensive procedure. Frei and
Künsch (2012) faced this issue in their development of a combined EnKF
and PF algorithm to estimate the parameter ρ in the measurement error
Vt(ρ). They circumvented the problem by replacing the samples Vt(θ

f(m)
t )

3Stroud and Bengtsson (2007), Delsole and Yang (2010) and Frei and Künsch (2012)
are the authors in reference.
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in Equation (4.8) with a point estimator, e.g., Vt(θ̄
f(m)
t ) or Vt(·) (see Algo-

rithm 2 in their paper), where x̄ denotes the sample mean calculated with
the samples {xi}ni=1. While a promising approach, a bias is introduced when
sampling with a point estimator, which they do not correct for in their algo-
rithm. We use a similar approach in our algorithm, but we also add another
step to correct for the bias from using a point estimator.

In Section 4.5, we use these principles to demonstrate that the EnKF can
poorly estimate parameters of interest. Before doing that, we briefly divert
our attention to parametrizing variance inflation, a technique applied with the
EnKF to avoid filter divergence (see Section 2.3.2 for a review).

4.4 Variance inflation: parametrization of

the inflation value

There are two ways to parametrize the inflation value that affects whether it
is a state or measurement parameter. Since the forecast ensemble is inflated,
it is odd to include the inflation parameter in the measurement model—the
measurement model reflects how the measurements are collected and is not a
reflection of the state. Rather, inflation should be considered as model error:
the inflation value is increasing the variance of the state, hence it reflects an
increase in our uncertainty about the state transition model. We briefly outline
our preferred parametrization.

We reparametrize the state transition model from Equation (4.2a) to reflect
an inflation value. Suppose the state transition model is similar:

x̃t = mt(xt−1, θx) + ηt,

where ηt is distributed as before. Here, we have simply replaced the state Xt

in Equation (4.2a) with X̃t. Then, a state transition model that reflects the
inflation value λ is as follows:

xt = µt + λ(x̃t − µt)

where µt is the expected value of the state X̃t. In practice, µt is replaced
with its sample estimate to avoid estimating more parameters. With this
parametrization, λ is part of the state parameter θx.
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4.5 Demonstration of shortcomings with the

Lorenz 1963 system

Delsole and Yang (2010) claim that state augmentation is ineffective for “stochas-
tic” parameters, e.g. a parameter of a Wiener process in the continuous state-
transition model or a parameter in the measurement noise, like the problem
Stroud and Bengtsson (2007) and Frei and Künsch (2012) set out to resolve. In
this section, we show that the issue is a little more nuanced and demonstrate
that artificial evolution of parameters is ineffective, even for non-“stochastic”
parameters, like state parameters. In this section, we use the principles out-
lined in Section 4.3.1 to demonstrate the shortcomings of artificial evolution of
parameters with the EnKF using the Lorenz 1963 system as the state transi-
tion model. To do this, we construct state-space models to estimate the state
parameter σ (see Section 1.2.1 for a review). To examine the range of esti-
mated values, we apply the parameter estimation algorithm multiple times.
All parameter estimation runs have the same underlying data generation pro-
cess. Only samples from the initial condition and the initial parameter values
to start the algorithm are different between runs. The details of the runs are
broken into three sections: one section on the construction of the state-space
model and two sections that describe the settings of the EnKF and parameter
estimation algorithm. We examine the results at the end of the section.

Construction of state-space model and data generation

In Section 4.3.1, we highlighted two important components of the EnKF pa-
rameter update: the conditional covariance between the state and parameter,
Σ̂f
t,θx, and the observation mapping Ht(·). The covariance Σ̂f

t,θx cannot be re-
lied upon to construct a state-space model to demonstrate the shortcomings
of parameter estimation with the EnKF. Unlike the observation parameter
θy, the state parameter θx is both marginally and conditionally dependent on
the state and thus the correlation is zero only for special cases. We take an
alternative route: find where the state and parameters are conditionally corre-
lated and minimize that correlation with a particular measurement mapping
Ht(·). However, the conditional correlation cannot be obtained analytically
and must be estimated by applying a filtering algorithm to the state-space
model with many different parameter values and forecast lead times, which is
computationally expensive. We instead rationalize measurement models that
minimize the conditional correlation between the state and state parameter σ
and explain our thought process in this section.
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Figure 4.2: Lorenz 1963: correlation between the integrated state and the previous state against
integration time ∆tn. The data of previous states, (xtn−1 , ytn−1 , ztn−1), are generated by integrating
the initial condition (xt0 , yt0 , zt0) = (0.01, 0.01, 0.01) for 30,000 timesteps of size 0.01 using an
adaptive timestepping algorithm (LSODE). The first 1,000 integrated states are discarded to ensure
the states are on the attractor. For each ∆tn, 5,000 initial states are randomly chosen from the
set of previous states and then integrated forward with the chosen ∆tn to obtain the integrated
state (xtn , ytn , ztn) using second-order Runge-Kutta. The first row shows the correlations between
pairs of the integrated state (xtn , ytn , ztn), omitting self-correlation. The second row shows the
correlations of the integrated state (xtn , ytn , ztn) with its previous state (xtn−1 , ytn−1 , ztn−1).

Examining the set of equations governing the Lorenz 1963 system (cf.
Equation (1.2)), the x-direction of the Lorenz 1963 system is dependent on
the parameter σ, which seems to indicate that the x-direction would be highly
correlated with σ. Therefore, parameter estimation with the EnKF applied
to a state-space model with little to no information about the x-direction and
any correlated directions would not estimate σ well. To learn more about the
correlation between the states, we integrated the state (xtn−1 , ytn−1 , ztn−1) for-
ward to its integrated state (xtn , ytn , ztn) for different integration times ∆tn;
Figure 4.2 graphs the correlations. We glean a few key pieces of information
from this figure:

• The correlations between pairs of xtn-, ytn-, and ztn-directions (first row of
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Figure 4.2) indicates that the x-direction is strongly correlated with the
y-direction while the z-direction is uncorrelated with both the x- and y-
directions.

• Recall from the discussion in Section 1.2.2 that chaotic models are approx-
imately linear for small forecast lead times ∆tn and the nonlinearities in-
crease as ∆tn increases. This is quantified by the second row of Figure 4.2,
which show correlations of the integrated state with its previous state. The
plots indicate that the state transition model is generally more nonlinear as
∆tn increases. At ∆tn ≈ 0.19, the state transition model in the z-direction
is distinctly nonlinear. Beyond that, the nonlinearities decrease in the x-
and y-directions, but becomes increasingly linear in the the z-direction until
∆tn ≈ 0.38, at which the model becomes decreasingly nonlinear.

Since the y-direction is so highly correlated with the x-direction, the y-direction
may also be correlated with σ and thus should not be measured in addition
to the x-direction. The z-direction can however be measured since it is un-
correlated with both the x- and y-directions. For example, we suspect an
observation mapping of the following form, for small 0 ≤ γ ≤ 1

2
:

Htn =
[
0 0 1

]
or Htn =

[
γ γ 1− 2γ
0 0 1

]
would minimize the conditional correlation between the state of the system
and the parameter σ. A forecast lead time of ∆tn = 0.19 would additionally
eliminate any linearities of the state transition model.

Equipped with this information, we construct a state-space model for the
Lorenz 1963 system in which we suspect EnKF to not estimate σ well. When
not estimating an inflation value, the state transition model isxtnytn

ztn

 = mtn

xtn−1

ytn−1

ztn−1

 ;σ

 ;

when estimating an inflation value, the state transition model isxtnytn
ztn

 = µtn + λ

mtn

xtn−1

ytn−1

ztn−1

 ;σ

− µtn
 .

The discrete state transition model mtn is defined to be

mtn(·;σ, dt) = IW (·;σ) +O(e(dt)),
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where W is the continuous state transition model of Equation (1.6) and e(·)
and dt are defined in Section 1.2.1. Depending on whether the inflation value
is estimated or not, the state parameter is either θx = (σ, λ) or θx = σ,
respectively.

The measurement model is

wtn = H(γi)

xtnytn
ztn

+ εtn , εtn ∼ N (0, U).

The measurement mapping H(γi) depends on a measurement parameter γi
and takes the following form:

H(γi) =

[
γi1 γi2 γi3
0 0 1

]
. (4.9)

This particular measurement mapping measures the z-direction (second row
of matrix) and some linear combination of the state represented by the mea-
surement parameter vector γi (first row of matrix). We fix γi to reflect varying
levels of measuring the directions suspected to be correlated with the state
parameter σ, i.e., the x- and y-directions. Figure 4.3 lists our choices and Fig-
ure 4.4 illustrates the measurement locations when the state is on a spherical
latitude band. We expect to estimate σ well for some γi, but we only need one

γi1 γi2 γi3 direction(s)

0 0 1 z

γ1
1
2

0 1
2

xz

γ2 1 0 0 x

γ3 0 1
2

1
2

yz

γ4 0 1 0 y

γ5
1
2

1
2

0 xy

Figure 4.3: Lorenz 1963: measurement locations
and their corresponding parameter. The mea-
surement mapping H(γi) takes the form listed
in Equation (4.9). The last column represents
the linear combination of the measured direc-
tions, as illustrated in Figure 4.4. For exam-
ple, “xz” represents an average of the x- and
z-directions.

x

yz

xy

yz

xz

Figure 4.4: Lorenz 1963: an illustration of mea-
surement locations. The tick marks of the outer
labels illustrate the state locations on a spheri-
cal latitude band. The tick marks of the inner
labels correspond to the measurement locations
as described in Figure 4.3. The labels corre-
spond to the last column of the aforementioned
table.
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case where σ is not estimated well to demonstrate our point. Though an arti-
ficially constructed example, this measurement model demonstrates a realistic
scenario where measurements are not collected near regions of the parameter
of interest, e.g., the difficulty of measuring ocean temperature in the Arctic.
The variance of the measurement noise is taken to be the identity, i.e., U = I2.

The initial condition (xt0 , yt0 , zt0) is generated by taking a random state
from a uniform distribution and integrating it forward with a large ∆t, making
sure that the initial condition is on the attractor. The states (xtn , ytn , ztn)
are generated by taking the initial condition (xt0 , yt0 , zt0) and integrating it
sequentially N = 300 times with a forecast lead time of ∆tn = 0.19 for all n.
Samples from the initial condition are generated from a standard multivariate
normal distribution with mean (xt0 , yt0 , zt0).

EnKF settings

We apply the square-root filter with localization. The localization halfwidth is
chosen such that the forecast covariance among all directions is zero. Ensemble
sizes are set to be 6, 12, 24, 48, and 96. Parameter estimation is run both with
and without inflation. When inflating, the forecast ensemble is inflated in two
ways: with a fixed inflation of λ = 1.5 and with inflation values estimated by
the parameter estimation procedure, as discussed further in the next section.

Parameter estimation settings

Ionides et al. (2006, 2015) developed iterated filters to estimate MLEs using
artificial evolution of parameters; the authors claim that the methods can be
applied to estimate parameters with any filter, including the EnKF. However,
since it relies on artificial evolution of parameters, this is not quite true, which
we demonstrate by applying the iterated filter from Ionides et al. (2015) with
the EnKF to estimate θx. We first discuss the parameter estimation settings
and then show the results.

Since both the parameter σ and the inflation value λ have positive sup-
port and we did not want unbounded proposals of the parameter, we choose
the perturbation density q(θtn | θtn−1) to be a truncated normal distribution
(or a product of truncated normal distributions, when estimating the inflation
value) with mean θtn−1 . The truncated normal distribution to propose new in-
flation values mimics time-varying adaptive inflation of Anderson (2007) with-
out necessitating a Gaussian approximation since the constraints are enforced
naturally by the truncated normal distribution. Therefore, we choose the stan-
dard deviation and constraints with guidance provided by the documentation
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of Data Assimilation Research Testbed (DART). DART’s documentation rec-
ommends an initial standard deviation of 0.6 and a maximum inflation value
of 100, but there is a conflicting note that mentions “[e]xpected inflation val-
ues are generally in the 1 to 10 range; if values grow much larger than this it
usually indicates a problem with the assimilation,”4 so we choose a maximum
value of 20 instead. For σ, we simply take 0.25 to be the initial standard
deviation and 0 and 50 for the minimum and maximum values, respectively.
Table 4.1 summarizes the settings.

parameter truth initial sd minimum maximum

σ 10 0.25 0 50

λ 1 0.6 1 20

Table 4.1: Lorenz 1963 parameter estimation settings. The perturbation density q(θtn | θtn−1) is (a
product of) truncated normal distribution(s) with the above parameters.

Each run of the iterated filter is initialized with the true value of σ (10)
perturbed by the initial standard deviation multiplied by two and an inflation
value of one. The iterated filter is run with 50 iterations and the MLE is
reported to be the median of the final ensemble.

Results

Figure 4.5 illustrates the distribution of MLEs of σ, i.e., σ̂ = argmaxσ pσ(y1:tN ).
When no inflation is applied (top row of Figure 4.5a), the parameter estimation
algorithm is generally ineffective at capturing the true value for all observa-
tion models, except when sample sizes are large enough for certain observation
models. Since the EnKF is more successful with inflation, we henceforth dis-
cuss the results with inflation. In the construction of the state-space model,
we expected the x-direction to be the important direction to measure when es-
timating σ, but the results do not corroborate our theory. With fixed inflation
(bottom row of Figure 4.5a), the distribution of estimated values shows how
easy it is to capture the true parameter value when the measurement includes
some aspect of the y-direction (i = 3, 4, 5, where i corresponds to the measure-
ment parameter γi as defined in Figure 4.3): as the ensemble size increases, the
estimated values are more tightly centered around the true value. This char-
acterizes what we expect: that the true value is better captured with larger

4Quote taken from “filter.html” of the Kodiak version of DART.
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ensemble sizes. However, when the y-direction is not measured (i = 1, 2), the
algorithm has a much harder time capturing the true value, even with large
ensemble sizes. In fact, a handful of runs estimated values outside of the pa-
rameter constraints specified, illustrating our point about the danger of having
an unbounded update with the EnKF.

The results are no better when estimating the inflation value (top row of
Figure 4.5b). Again, the results show that it is easy to capture the true value of
σ when some aspect of the y-direction is measured and is otherwise impossible.
However, instead of estimating values outside of the pre-specified constraints,
many runs fail to complete the estimation procedure. The failures predictably
occur for the “harder” measurement models (i.e., i = 1, 2). We oddly observe
failures for the “easier” measurement models too; in fact, there are cases when
the number of failures increase with larger ensemble sizes (e.g., i = 3). We
suspected the failures were due to the settings of the perturbation density for
the inflation value, so we tested our hypothesis by running the parameter esti-
mation procedure with different settings than the default. The bottom row of
Figure 4.5b shows the results from changing the default settings to a maximum
value of 5 and initial standard deviation of 0.2. While the results tend to look
better than with the default settings, the overall conclusions do not change:
there are state-space models where the EnKF is ineffective at estimating pa-
rameters. Furthermore, the runs that completely failed demonstrate another
issue with using EnKF for parameter estimation: the EnKF has no mechanism
to check parameter proposals (and hence states) that lead to numerical insta-
bilities and and hence lead to failure in the estimation procedure—an issue we
further discuss when comparing these results with the ones from our proposed
algorithm.
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Figure 4.5: Lorenz 1963: distribution of σ̂ as estimated by EnKF. Each violin plot illustrates the
distribution of σ̂ resulting from 30 runs of the iterated filter varied by ensemble size, observation
model, and inflation setting. Ensemble size is varied across the x-axis of each plot. The measurement
model and inflation settings are varied across columns and rows of plots, respectively. The number
below each violin plot is the percentage of runs (out of 30) that failed to estimate an MLE. The green
horizontal line indicates the true parameter value: σ = 10. The red lines indicate the constraints
of the perturbation density for σ as specified in Table 4.1. A red dot is a jittered value of σ̂ that is
estimated to be outside of the constraint specified.
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5 EnKF-APF: an ensemble Kalman
filter to update states and a particle
filter to update parameters

In the last chapter, we demonstrated on a low-dimensional model that artificial
evolution of parameters with the EnKF algorithm is not generally applicable,
except when the practitioner knows that the parameter being estimated is
conditionally correlated with the state. Outside of fully observed systems,
these situations are not straightforward to analyze a priori, especially with
chaotic systems like the Lorenz 1963 system. For example, when examining
the set of equations governing the Lorenz 1963 system, we thought that the
x-direction is the most important direction to measure when estimating σ,
but the results did not corroborate our theory—it turns out the y-direction is
the most important. Practitioners could alternatively use a PF approach to
estimate the parameters, but the PF has been proven to be impractical for
high-dimensional state-spaces (Snyder et al., 2008).

In this chapter, we propose an algorithm that combines the best qualities
of both the EnKF and PF algorithms: a hybrid approach that uses the EnKF
to filter the high-dimensional states and the PF to filter low-dimensional pa-
rameters. There are many ways to combine the two filters, but we choose to
combine the two filters in such a way that allows for plug-and-play into exist-
ing systems such as DART. We fulfill this goal by constructing an updating
algorithm that doesn’t affect the implementation of the EnKF to update the
state. As the reader will learn, our particular approach is reminiscent of the
widely-used PF algorithm: the auxiliary particle filter (APF) proposed by Pitt
and Shephard (1999). For this reason, we name our algorithm EnKF-APF to
remind the reader that the EnKF is applied to the states and a PF approach
similar to the APF is applied to the parameters. We further note that our
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algorithm is specifically developed to be used with artificial evolution of pa-
rameters. There is no need to use our algorithm with parameter estimation
algorithms such as particle MCMC (Andrieu et al., 2010).

Similar to the derivations of the sampling algorithms in Chapter 2, we begin
with an estimator of the analysis distribution at time t− 1 and derive estima-
tors to the filtering densities at time t, which are divided into sections in this
chapter. Suppose we have simple random samples from the approximate anal-
ysis distribution at time t − 1: {(xa(m)

t−1 , θ
a(m)
t−1 )}Mm=1

·∼ p(xt−1, θt−1 | y0:t−1). An
estimator of the joint analysis distribution at time t− 1, i.e., π0:t−1(xt−1, θt−1),
is

πM0:t−1(xt−1, θt−1) ≡
1

M

M∑
m=1

δ
(x
a(m)
t−1 ,θ

a(m)
t−1 )

(xt−1, θt−1).

We now derive estimators of the filtering densities and thus construct the
EnKF-APF algorithm.

5.1 Forecast step

By conditional probability, the joint forecast distribution is factorized as

p(xt, θt | y0:t−1) = p(xt | θt, y0:t−1)p(θt | y0:t−1), (5.1)

Notice that the state is conditionally dependent on the parameter; this suggests
a sequential sampling scheme to first sample from the forecast distribution of
the parameter and then use the newly sampled parameter to then sample
from the state distribution. Algorithm 5.1 outlines the forecasting algorithm.
Not only does the algorithm provide samples from the joint forecast distribu-
tion p(xt, θt | y0:t−1), it also provides samples from the conditional distributions
p(xt | θt, y0:t−1) and p(θt | y0:t−1). Furthermore, this forecasting algorithm is the
same whether the EnKF or PF algorithm is applied; nothing new is proposed
here. The new contribution is the estimators used to approximate the joint
forecast distribution, which consequently affects the construction of the up-
dating algorithms.

Recall that the key defining difference between the EnKF and the PF is
the estimator used to approximate the forecast distribution: the PF uses the
empirical density and the EnKF uses a KDE with Gaussian kernels centered
at each sample with a bandwidth equal to the sample covariance (see discus-
sion in Section 3.1). We use similar estimators for the conditional forecast
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Input: {(xa(m)
t−1 , θ

a(m)
t−1 )}Mm=1

·∼ p(xt−1, θt−1 | y0:t−1)
Output:
• {θf(m)

t }Mm=1
·∼ p(θt | y0:t−1)

• {xf(m)
t }Mm=1

·∼ p(xt | θt, y0:t−1)
• {(xf(m)

t , θ
f(m)
t )}Mm=1

·∼ p(xt, θt | y0:t−1)

For each m = 1, ...,M ,

1. Sample θ
f(m)
t ∼ q(θt | θa(m)

t−1 ).

2. Sample x
f(m)
t ∼ f(xt |xa(m)

t−1 , θ
f(m)
t ).

Algorithm 5.1: EnKF-APF: Forecast step

distributions:

πM0:t(θt) ≡
1

M

M∑
m=1

δ
θ
f(m)
t

(θt), (5.2a)

πM0:t(xt | θt) ≡
1

M

M∑
m=1

φ(xt;x
f(m)
t , Σ̂f

t ), (5.2b)

where Σ̂f
t is the sample covariance calculated from the state samples {xf(m)

t }Mm=1

and the superscript M is to remind the reader that πM0:t is an estimator of π0:t
that depends on the sample size M . These estimators will play a role in the
derivation of the estimator to the analysis distribution in the next section, but
will not be as fundamental as the estimator of the joint forecast distribution.

At first glance, Equation (5.1) seems to indicate that an estimator of the
joint forecast distribution is simply the product of the conditional forecast
distributions of Equation (5.2). However, multiplying the conditional fore-
cast distributions in that way is fundamentally incorrect: this results in an
estimator that implies that the forecast state samples are independent of the
forecast parameter samples and consequently artificially increases the sample
size. Let’s see how that happens. Multiplying the estimators of the conditional
forecast distributions from Equation (5.2) together, we have

1

M2

M∑
n=1

M∑
m=1

φ(xt;x
f(n)
t , Σ̂f

t )δθf(m)
t

(θt),

implying that {xf(n)t }Mn=1 is a simple random sample from π0:t−1(xt | θf(m)
t ) for

each m or, in other words, Xf
t is independent of Θf

t . In actuality, the state
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sample x
f(n)
t is generated by θ

f(m)
t for m = n and together they are a sample

from the joint distribution. With this in mind, we propose a hybrid estimator
of the joint forecast distribution: a mixture distribution where each component
is a product of a Gaussian kernel centered at a state sample and a point mass
at a parameter sample:

πM0:t(xt, θt) ≡
1

M

M∑
m=1

φ(xt;x
f(m)
t , Σ̂f

t )δθf(m)
t

(θt). (5.3)

Equipped with estimators of the conditional and joint forecast distributions,
we now derive an estimator for the analysis distribution.

5.2 Update step: preliminaries

There are a couple ways to derive an estimator for the joint analysis distribu-
tion. The final estimator we derive in this section yields an algorithm that is
amenable to plug-and-play for two reasons: the updating mechanism uses the
same Kalman gain for all state samples and the state samples never have to be
resampled in such a way that causes particle collapse. Recall that the EnKF’s
update step solely relies on the Kalman gain. In this chapter, we denote the
Kalman gain by

Kt(θ,Σ) ≡ ΣHT
t (θ)[Vt(θ) +Ht(θ)ΣH

T
t (θ)]−1. (5.4)

Because each state sample x
f(m)
t has a different parameter sample θ

f(m)
t asso-

ciated with it, each state sample x
f(m)
t is therefore updated with a different

Kalman gain Kt(θ
f(m)
t,y , ·). Not only is the calculation of the Kalman gain

computationally expensive, existing implementations of the EnKF, such as
DART, update each state sample with the same Kalman gain (Step 3 of Al-
gorithm 2.1). Regardless of the EnKF update algorithm used (original, per-
turbed observations, or deterministic square-root filters; see Section 2.3.2 for
a discussion), we want to use an estimator reminiscent of Equation (3.8) as
an estimator1 of the conditional state analysis distribution for one simple rea-
son: the state particles are equally weighted and need not be resampled, thus
avoiding particle collapse.

With these two goals in mind, we derive estimators of the analysis dis-
tribution that yield algorithms ideal for plug-and-play. Before discussing the

1We want to use the estimator from Equation (3.8) as opposed to the intermediary
estimator ψ̃M

1:t(xt) of Equation (3.7). See Section 3.1 for a discussion.
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updating algorithms, we end this section with estimators for the predictive
likelihood, which are important in the development of the algorithms in the
remaining sections. In Section 5.3, we consider the case when Θt,y is fixed:
the measurement density no longer depends on the parameter and therefore
each sample is updated with the same Kalman gain. We then derive two es-
timators based on different factorizations of the joint analysis distribution of
Equation (4.6b). We begin with a direct application of Equation (4.6b), which
suggests a joint update of the state and parameter, and discuss why this partic-
ular approach is not ideal for plug-and-play. We then derive another estimator
based on a different factorization of the joint analysis distribution that sug-
gests a sequential update of the parameter and then the state. Most of the
chapter is dedicated to explaining the sequential updating algorithm in elab-
orate detail because the algorithm to estimate the observation parameter Θt,y

(Section 5.4) is only a slight modification of the sequential updating algorithm
when Θt,y is fixed.

5.2.1 Predictive and conditional predictive likelihoods

Before deriving the estimators of the analysis distribution, we derive estima-
tors of two different forms of the predictive likelihood: one that has been in-
troduced before—the predictive likelihood p(yt | y0:t−1) from Equation (4.6c)—
and one that has not been seen before—the conditional predictive likelihood
p(yt | θt, y0:t−1). These two forms of the predictive likelihood are important in
the construction of the updating algorithms.

The predictive likelihood from Equation (4.6c) is repeated here for conve-
nience:

π0:t−1(yt) ≡ p(yt | y0:t−1) =

∫ ∫
φ[yt;Ht(θt,y)xt, Vt(θt,y)]p(xt, θt | y0:t−1)dxtdθt

An estimator of the predictive likelihood is derived by plugging the estimator
of the joint forecast distribution (Equation (5.3)) into the above equation:

πM0:t−1(yt) ≡
∫ ∫

φ[yt;Ht(θt,y)xt, Vt(θt,y)]π
M
0:t−1(xt, θt)dxtdθt

=
1

M

M∑
m=1

∫
φ[yt;Ht(θ

f(m)
t,y )xt, Vt(θ

f(m)
t,y )]φ(xt;x

f(m)
t , Σ̂f

t )dxt

The summand of the predictive likelihood is important in the derivation of
the estimator to the analysis distribution, so we denote the summand by the
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function

lt(x
f(m)
t , θ

f(m)
t ,Σ) ≡

∫
φ[yt;Ht(θ

f(m)
t )x

f(m)
t , Vt(θ

f(m)
t )]φ(xt;x

f(m)
t ,Σ)dxt

= φ[yt;Ht(θ
f(m)
t )x

f(m)
t , Vt(θ

f(m)
t ) +Ht(θ

f(m)
t )ΣHT

t (θ
f(m)
t )],

(5.5)

where (x
f(m)
t , θ

f(m)
t ) ∼ πM0:t−1(xt, θt). Therefore, the estimator of the predictive

likelihood is

πM0:t−1(yt) =
1

M

M∑
m=1

lt(x
f(m)
t , θ

f(m)
t,y , Σ̂f

t ).

We introduce the conditional predictive likelihood p(yt | θt, y0:t−1) that will
be important in the construction of the sequential updating algorithm. By the
axiom of conditional probability,

π0:t−1(yt | θt) ≡ p(yt | θt, y0:t) =

∫
p(yt |xt, θt, y0:t−1)p(xt | θt, y0:t−1)dxt

=

∫
φ[yt;Ht(θt,y)xt, Vt(θt,y)]p(xt | θt, y0:t−1)dxt,

where the last equality comes from the measurement independence assump-
tion:

p(yt |xt, θt, y0:t−1) = g(yt |xt, θt,y) = φ[yt;Ht(θt,y)xt, Vt(θt,y)]. (5.6)

An estimator of the conditional predictive likelihood is constructed by plugging
in the estimator of the conditional forecast distribution of the state (Equa-
tion (5.2b)):

πM0:t−1(yt | θt) ≡
∫
φ[yt;Ht(θt,y)xt, Vt(θt,y)]π

M
0:t−1(xt | θt)dxt

=
1

M

M∑
m=1

[∫
φ[yt;Ht(θt,y)xt, Vt(θt,y)]φ(xt;x

f(m)
t , Σ̂f

t )dxt

]

=
1

M

M∑
m=1

lt(x
f(m)
t , θt,y, Σ̂

f
t ).
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5.3 Update step: when the measurement

parameter is fixed

Suppose the measurement parameter Θt,y is fixed at some vector θ̄t,y for each t.
Then, the parameter is Θt = (Θt,x, θ̄t,y) and consequently samples from its fore-

cast and analysis distributions are θ
f(m)
t = (θ

f(m)
t,x , θ̄t,y) and θ

a(m)
t = (θ

a(m)
t,x , θ̄t,y),

respectively. Since the difference between the predictive and conditional pre-
dictive likelihoods comes from the observation parameter θt,y, they are equiv-
alent when Θt,y is fixed at θ̄t,y and thus

πM1:t−1(yt) = πM1:t−1(yt | θt) =
1

M

M∑
m=1

lt(x
f(m)
t , θ̄t,y, Σ̂

f
t ).

Because the measurement parameter Θt,y is fixed, the algorithm in this section
only updates the state parameter Θt,x.

5.3.1 Joint update of the state and parameter

The fixed value of the measurement parameter θ̄t,y is plugged into Equa-
tion (4.6b) to derive the joint analysis distribution as follows:

π1:t(xt, θt) ≡ p(xt, θt | y1:t) =
φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y)]p(xt, θt | y1:t−1)

p(yt | y1:t−1)
(5.7)

A direct application of the above factorization suggests a joint update of the
state and parameter by weighting each sample proportionally to the observa-
tion density φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y)]. We show why this particular approach is
not ideal for plug-and-play.

Plugging in the estimator of the joint forecast distribution from Equa-
tion (5.3), we derive an estimator of the joint analysis distribution:

πM1:t(xt, θt) ≡
φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y)]π

M
1:t−1(xt, θt)

πM1:t−1(yt)

=

1
M

∑M
m=1 φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y)]φ(xt;x

f(m)
t , Σ̂f

t )δθf(m)
t

(θt)

1
M

∑M
n=1 lt(x

f(n)
t , θ̄t,y, Σ̂

f
t )
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Multiplying the summands of the numerator by the identity,
lt(x

f(m)
t , θ̄t,y, Σ̂

f
t )/lt(x

f(m)
t , θ̄t,y, Σ̂

f
t ), we have

lt(x
f(m)
t , θ̄t,y, Σ̂

f
t )
φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y)]φ(xt;x

f(m)
t , Σ̂f

t )

lt(x
f(m)
t , θ̄t,y, Σ̂

f
t )

δ
θ
f(m)
t

(θt)

= lt(x
f(m)
t , θ̄t,y, Σ̂

f
t )

φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y)]φ(xt;x
f(m)
t , Σ̂f

t )

φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y) +Ht(θ̄t,y)Σ̂
f
tH

T
t (θ̄t,y)]︸ ︷︷ ︸ δθf(m)

t
(θt).

As in the re-interpretation of the EnKF in Section 3.1, the term above the
underbrace should remind the reader of the analysis distribution of the Kalman
filter (cf. Equation (2.6)) and is thus equal to

φ(xt;x
a(m)
t , Σ̂a

t )

with

x
a(m)
t = x

f(m)
t +Kt(θ̄t,y, Σ̂

f
t )[yt −Ht(θ̄t,y)x

f(m)
t ],

Σ̂a
t = Σ̂f

t −Kt(θ̄t,y, Σ̂
f
t )Σ̂

f
tH

T
t (θ̄t,y).

Therefore, the estimator is

πM1:t(xt, θt) =
M∑
m=1

w
(m)
t φ(xt;x

a(m)
t , Σ̂a

t )δθf(m)
t

(θt),

with importance weights

w
(m)
t =

lt(x
f(m)
t , θ̄t,y, Σ̂

f
t )∑M

n=1 lt(x
f(n)
t , θ̄t,y, Σ̂

f
t )
.

The samples {(xf(m)
t , θ

f(m)
t )}Mm=1 do not generally have uniform weights,

i.e., w
(m)
t 6= 1/M , and, since our goal is to develop an algorithm that more

closely resembles the EnKF, uniform weights are needed. To achieve uniform
weights, there are two ways forward at this point:

1. Resample the samples as pairs: (x
a(m)
t , θ

a(m)
t ) ∼ πM1:t(xt, θt). This particular

approach is akin to updating with a PF and does not fully take advan-
tage of EnKF’s ability of not requiring resampling, thus particle collapse is
inevitable.
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2. Approximate the weights w
(m)
t to be uniform as done with the EnKF (see

Equation (3.6)). Recall from the discussion of the EnKF in Section 3.1
that this approximation consequently does not require resampling and thus
avoids particle collapse. However, since the weights are a crucial compo-
nent of the PF’s updating algorithm, this approach will not update the
parameter.

In fact, these approaches are what is performed when directly artificial evo-
lution of parameters with the PF and EnKF, respectively. These approaches
are unsatisfactory for the reasons discussed in Chapter 4. Since the state and
parameter particles are tightly coupled in this particular estimator, we cannot
separately use PF to update the parameters and EnKF to update the states.
Another approach is required.

5.3.2 Sequential update of the state and parameter

The approach in this section circumvents the tightly coupled update of the
state and parameters by first updating the parameter and then jointly updating
the state and parameter. This approach is based on another factorization of
the joint analysis distribution, derived by the axiom of conditional probability:

π0:t(xt, θt) ≡ p(xt, θt | y0:t) = p(xt | θt, y0:t)p(θt | y0:t). (5.8)

Similar to the factorization of the joint forecast distribution in Section 5.1, the
conditional dependence of the state on the parameter in the above factorization
suggests a two-stage sequential updating algorithm. In this section, we first
summarize the algorithm with a single equation and then elaborate on each
stage of the algorithm further by deriving estimators relevant to that particular
stage.

The single equation that summarizes the algorithm is

π0:t(xt, θt) =
φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y)]

p(yt | θt, y0:t−1)
× p(yt | θt, y0:t−1)

p(yt | y0:t−1)
p(xt, θt | y0:t), (5.9)

which is derived by applying Bayes theorem to the conditional distributions
on the right hand side of Equation (5.8) or, even more simply, multiplying
the joint analysis distribution from Equation (5.7) by the identity constructed
by dividing the conditional predictive likelihood p(yt | θt, y0:t−1) by itself. For
clarity, we have strategically separated parts of the above equation with the
product symbol (“×”) to symbolize the separation of the two stages of the
algorithm:
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1. The first-stage of the algorithm updates the parameter via a PF update with
weights proportional to the conditional predictive likelihood p(yt | θt, y0:t−1),
which is effectively equivalent to deriving a biased estimator of the joint
forecast distribution, i.e., the term to the right of the “×” symbol.

2. The second-stage corrects for the bias introduced in the first-stage via an
EnKF update with weights proportional to the term to the left of the “×”
symbol. Not only does this stage correct for the bias, it also jointly updates
the state and parameter.

As mentioned earlier, our two-stage algorithm is reminiscent of the APF
(Pitt and Shephard, 1999), hence we name our algorithm the EnKF-APF
algorithm. With the APF, the updating and resampling steps of the BF are
interchanged: the first-stage (the resampling step) uses the measurement to
pre-sample particles that are more likely to survive and the second-stage (the
updating step) updates the state samples in a manner that corrects for the
bias introduced by the pre-sampling step in the first-stage. Like the first-
stage of the APF, the first-stage of our algorithm pre-samples pairs of state
and parameter samples with the conditional predictive likelihood, effectively
updating only the parameter. The new samples provide a biased estimator of
the joint forecast distribution. Though biased, it is crucial to avoid resampling
when applying the EnKF update to the pre-sampled particles in the second-
stage of the algorithm. The second-stage then performs an EnKF update,
which serves two purposes: (1) it updates the state particles with existing
implementations of the EnKF and (2) it corrects for the bias introduced in the
first-stage. Consequently, the algorithm provides simple random samples from
an estimator of the joint analysis distribution p(xt, θt | y0:t). The algorithm,
however, requires two evaluations of the state transition per sample, increasing
the computational time of the algorithm, but it is a necessary expense to avoid
the issues faced by applying artificial evolution of parameters with the EnKF.
We further elaborate on each step by deriving the estimators necessary for
each stage of the algorithm.

Let’s begin the development of the first-stage of the algorithm by deriving
an estimator for the conditional distribution of the parameter. Applying Bayes
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theorem, the conditional distribution of the parameter is

π0:t(θt) ≡ p(θt | y0:t)

=
p(yt | θt, y0:t−1)p(θt | y0:t−1)

p(yt | y0:t−1)
(5.10)

=

∫
φ[yt;Ht(θt,y)xt, Vt(θt,y)]p(xt, θt | y0:t−1)dxt

p(yt | y0:t−1)
.

The conditional distribution suggests updating the parameter with weights
proportional to the conditional predictive likelihood p(yt | θt, y0:t−1). Plugging
in our estimators, we derive an estimator of the conditional parameter distri-
bution:

π̃M0:t(θt) ≡
∫
φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y)]π

M
0:t−1(xt, θt)dxt

πM0:t−1(yt)

=

1
M

∑M
m=1

[∫
φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y)]φ(xt;x

f(m)
t , Σ̂f

t )dxt

]
δ
θ
f(m)
t

(θt)

1
M

∑M
n=1 lt(x

f(n)
t , θ̄t,y, Σ̂

f
t )

=

∑M
m=1 lt(x

f(m)
t , θ̄t,y, Σ̂

f
t )δθf(m)

t
(θt)∑M

n=1 lt(x
f(n)
t , θ̄t,y, Σ̂

f
t )

Let w
(m)
t = lt(x

f(m)
t , θ̄t,y, Σ̂

f
t )/
∑M

n=1 lt(x
f(n)
t , θ̄t,y, Σ̂

f
t ). Then,

π̃M0:t(θt) =
M∑
m=1

w
(m)
t δ

θ
f(m)
t

(θt)

Each parameter sample has a nonuniform weight—a weight that is undesir-
able to carry over to the state update in the second-stage of the algorithm.
Therefore, we resample the parameter samples before updating the state:
θ
a(m)
t ∼ π̃M0:t(θt) for each m = 1, ...,M . These samples provide a new esti-

mator of the conditional parameter distribution:

πM0:t(θt) =
1

M

M∑
m=1

δ
θ
a(m)
t

(θt).

Though resampling parameter samples avoids resampling the state samples
in the second-stage of the algorithm, it introduces a new problem: as with
forecasting, the state and parameter samples should be considered as a sample
from the joint forecast distribution as pairs. However, since only the parameter
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samples are resampled, the resampling disentangled the pairings between the
parameter and the state samples. The problem is remedied by sampling from
the conditional forecast distribution of the state again—this time with the
resampled parameter samples:

x̃
f(m)
t ∼ f(xt |xa(m)

t−1 , θ
a(m)
t )

for each m = 1, ...,M . This step is equivalent to sampling from an estimator
of the following distribution:

p(yt | θt, y0:t−1)
p(yt | y0:t−1)

p(xt, θt | y0:t−1),

i.e., the term to the right of the “×” symbol in the single equation that de-
scribes the algorithm (Equation (5.9)). Effectively, the samples are biased
samples from the forecast distribution p(xt, θt | y0:t−1), biased by the weight
p(yt | θt, y0:t−1) used to update the parameter. As in Section 5.1, we construct
a hybrid estimator for the joint forecast distribution with these new samples:

π̃M0:t−1(xt, θt) =
1

M

M∑
m=1

φ(xt; x̃
f(m)
t , ˆ̃Σf

t )δθa(m)
t

(θt), (5.11)

where ˆ̃Σf
t is the sample covariance calculated from the state particles {x̃f(m)

t }Mm=1.
Similarly, a new estimator of the conditional predictive distribution is derived:

π̃M0:t−1(yt | θt) ≡
1

M

M∑
m=1

lt(x̃
f(m)
t , θ̄t,y,

ˆ̃Σf
t ).

In the second-stage of the algorithm, the pairs of state and parameter
samples are jointly updated in a fashion similar to the joint update discussed
in Section 5.3.1. The joint update also corrects for the bias introduced by the
first-stage of the algorithm. Applying Bayes’ theorem to the conditional state
distribution, we have

π0:t(xt | θt) ≡ p(xt | θt, y0:t) =
p(yt |xt, θt, y0:t−1)p(xt | θt, y0:t−1)

p(yt | θt, y0:t−1)

=
φ[yt;Ht(θt,y)xt, Vt(θt,y)]p(xt | θt, y0:t−1)

p(yt | θt, y0:t−1)
, (5.12)

where the last equality comes from the measurement independence assumption
from Equation (5.6). Plugging in estimators of the conditional parameter and
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state distributions from Equations (5.10) and (5.12), respectively, into the joint
analysis distribution of Equation (5.8), Equation (5.9) that summarized our
algorithm is derived. We repeat it here for convenience:

π0:t(xt, θt) =
φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y)]

p(yt | θt, y0:t−1)
× p(yt | θt, y0:t−1)

p(yt | y0:t−1)
p(xt, θt | y0:t).

The estimator in Equation (5.11) is an estimator of the term to the right of
the “×” symbol, thus an estimator for the joint analysis distribution is derived
in a similar manner as in Section 5.3.1:

π̃M0:t(xt, θt) ≡
φ[yt;Ht(θ̄t,y)xt, Vt(θ̄t,y)]π̃

M
0:t−1(xt, θt)

π̃M0:t−1(yt | θ)

=
M∑
m=1

w
(m)
t φ(xt;x

a(m)
t , Σ̂a

t )δθa(m)
t

(θt),

where

x
a(m)
t = x̃

f(m)
t +Kt(θ̄t,y,

ˆ̃Σf
t )[yt −Ht(θ̄t,y)x̃

f(m)
t ] (5.13)

Σ̂a
t = ˆ̃Σf

t −Kt(θ̄t,y,
ˆ̃Σf
t )

ˆ̃Σf
tH

T
t (θ̄t,y),

w
(m)
t =

lt(x̃
f(m)
t , θ̄t,y,

ˆ̃Σf
t )∑M

n=1 lt(x̃
f(n)
t , θ̄t,y,

ˆ̃Σf
t )
.

Like in Section 5.3.1, the pairs of state and parameter samples have unequal
weights and we suggested two ways forward: either jointly update the pairs of
state and parameter samples via a PF or EnKF update. We hesitated to move
forward with either approach because the PF update would lead to particle
collapse and the EnKF update requires approximations that were not ideal
for updating the parameter samples. However, at this stage of the sequential
updating algorithm, we do not share the same hesitation about the EnKF
update as before: the parameter has already been updated in the construction
of the new estimator of the forecast distribution, π̃M0:t−1(xt, θt). Therefore,
introducing the weight approximation from the EnKF at this stage updates
the state in a manner faithful to an EnKF update. Therefore, pairs of state
and parameter samples are jointly updated by directly applying the EnKF
update (Step 3 of Algorithm 2.1). Algorithm 5.2 summarizes the sequential
updating algorithm.
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Input:
• {xa(m)

t−1 }Mm=1
·∼ p(xt−1 | y0:t−1)

• {(xf(m)
t , θ

f(m)
t )}Mm=1

·∼ p(xt, θt | y0:t−1) from Algorithm 5.1

Output: {(xa(m)
t , θ

a(m)
t )}Mm=1

·∼ p(xt, θt | y0:t)

1. Update Θt:

a) Calculate unnormalized weightsa:

w̃
(m)
t = lt(x

f(m)
t , θ̄t,y, Σ̂

f
t )

for each m = 1, ...,M , where Σ̂f
t is the (tapered) sample covari-

ance calculated from {xf(m)
t }Mm=1. Normalize weights: w

(m)
t =

w̃
(m)
t /

∑M
n=1 w̃

(n)
t for each m = 1, ...,M .

b) Sample

θ
a(m)
t ∼

M∑
m=1

w
(m)
t δ

θ
f(m)
t

(θt)

for each m = 1, ...,M .

2. Update (Xt,Θt):

a) Sample x̃
f(m)
t ∼ f(xt |xa(m)

t−1 , θ
a(m)
t ).

b) Sample {xa(m)
t }Mm=1 using Step 3 of Algorithm 2.1 with forecast state

samples {x̃f(m)
t }Mm=1, measurement mapping Ht = Ht(θ̄t,y), and mea-

surement variance Vt = Vt(θ̄t,y).

aThe lt(·) term is defined in Equation (5.5).

Algorithm 5.2: EnKF-APF: Update step when the measurement parameter is fixed
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Another connection: Rao-Blackwellised particle filtering

Up to this point, we only focused on the relationship of the EnKF-APF algo-
rithm to the APF. We make a connection to another filtering algorithm: Rao-
Blackwellised particle filtering. Suppose that the hidden state Xt is divided
into two groupsX

(1)
t andX

(2)
t with p(xt |xt−1) = p(x

(1)
t |x(1)t−1, x(2)t−1:t)p(x(2)t |x(2)t−1).

Further suppose that the posterior distribution p(x
(1)
0:t |x(2)0:t , y1:t) is analytically

tractable for collected measurements y1:t. Rao-Blackwellised particle filtering
is an algorithm to marginalize out the part of the state that is more analyti-
cally tractable, X

(1)
t , and then apply a particle filtering algorithm to sample

and then calculate a lower variance estimator of the state with reduced dimen-
sions, X

(2)
t (Chen, 2003; Doucet et al., 2000). The algorithm is based on the

Rao-Blackwell theorem, which states that the expected value of an unbiased
estimator conditioned on its sufficient statistic has a lower variance than the
original estimator (see Casella and Berger (2002, Theorem 7.3.17) for a formal
statement of the theorem). With the EnKF-APF, there is a natural division
of the hidden variables: the parameter Θt and the state Xt. The first-stage
of the algorithm is Rao-Blackwellised particle filtering of the parameter Θt.
However, unlike Rao-Blackwellised particle filtering, the posterior distribution
of the marginalized hidden variable, the often high-dimensional state Xt, is not
analytically tractable and thus the more practically effective EnKF is used to
sample Xt in the second-stage of the algorithm.

5.4 Update step: when estimating the

measurement parameter

Now that we have an algorithm to update the state parameter Θt,x, it is easy
to construct an algorithm to update both the state and measurement param-
eter. The algorithm constructed in this section is a slight modification of
Algorithm 5.2, which updates Θt,x when Θt,y is fixed. The estimation of the
measurement parameter introduces computational expenses that are undesir-
able, e.g., the calculation of different Kalman gains. We briefly discuss this
situation before constructing an algorithm that reduces that computational
expense.
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5.4.1 With different Kalman gains

Using a similar factorization of the joint analysis distribution as in Equa-
tion (5.9), we have

π0:t(xt, θt) =
φ[yt;Ht(θt,y)xt, Vt(θt,y)]

p(yt | θt, y0:t−1)
× p(yt | θt, y0:t−1)

p(yt | y0:t−1)
p(xt, θt | y0:t). (5.14)

This factorization is quite similar to Equation (5.9) and suggests that Algo-
rithm 5.2 is similarly applicable. However, since the measurement parameter
is being sampled at every timestep, each state sample x

f(m)
t is updated with

a different parameter sample θ
(m)
t,y as opposed to the same parameter θ̄t,y as

in Section 5.3.2. This consequently results in M evaluations of Ht(θ
(m)
t,y ) and

Vt(θ
(m)
t,y ), leading to other computationally expensive modifications to Algo-

rithm 5.2. After deriving estimators in a similar manner as Section 5.3.2,
there are two important changes to the estimators that come with undesirable
modifications to the algorithm:

1. The parameters are resampled with importance weights proportional to
lt(x

f(m)
t , θ

f(m)
t,y , Σ̂f

t ) as opposed to lt(x
f(m)
t , θ̄t,y, Σ̂

f
t ) (see Step 1a of Algo-

rithm 5.2). Examining the equation of lt(·) (Equation (5.5)), the evaluation
of the weight for each parameter sample requires M calculations of the vari-
ance Vt(θ

f(m)
t,y ) +Ht(θ

f(m)
t,y )Σ̂f

tH
T
t (θ

f(m)
t,y ) for each m = 1, ..,M as opposed to

the calculation of one calculation of the variance Vt(θ̄t,y)+Ht(θ̄t,y)Σ̂
f
tH

T
t (θ̄t,y)

for all samples.

2. After resampling the forecast parameter particles to generate analysis pa-
rameter particles {θa(m)

t }Mm=1, each state sample is updated as

x
a(m)
t = x̃

f(m)
t +Kt(θ

a(m)
t,y , ˆ̃Σf

t )[yt −Ht(θ
a(m)
t,y )x̃

f(m)
t ].

Compare this equation with Equation (5.13) from Section 5.3.2: instead of

updating each state sample with the same Kalman gain Kt(θ̄t,y,
ˆ̃Σf
t ), each

sample is updated with a different Kalman gain Kt(θ
a(m)
t,y , ˆ̃Σf

t ), requiring
M calculations of the Kalman gain. Not only is the calculation of the
Kalman gain computationally expensive, it is not ideal for plug-and-play,
since existing implementations of the EnKF use the same Kalman gain for
each state sample.

Frei and Künsch (2012) faced a similar issue in their development of a
hybrid filter that uses the EnKF to filter the states and the PF to estimate a
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measurement noise parameter. They circumvented the problem by replacing
the relevant parts of the Kalman gain with a point estimator. With parameter
samples {(θ(m)

t , w
(m)
t )}Mm=1 from p(θt | ·), they suggested replacing Vt(θ

(m)
t ) of

the Kalman gain Kt(θ
(m)
t , ·) (see Equation (5.4)) with a point estimator2, i.e.,

Vt(θt) ≡ Vt

(
M∑
m=1

w
(m)
t θ

(m)
t

)
or Vt(·) ≡

M∑
m=1

w
(m)
t Vt(θ

(m)
t ).

While a practical solution to the problem, a bias is introduced when updating
with only a point estimator, which they do not correct for in their algorithm.
We do think their approach is promising and develop a similar algorithm that
uses a point estimator, which allows for the usage of the same Kalman gain,
and corrects for the bias in the next section.

5.4.2 With the same Kalman gain

The computational expense is reduced by replacing posterior samples of Θt,y

with a point estimator θ̄ft,y. Consequently, the updated samples are biased
towards the point estimator, so the bias is corrected similar to the sequen-
tial updating algorithm of Section 5.3.2. Let θ̄ft,y denote a point estimator of
p(θt,y | y0:t−1). Before delving into the details, we introduce notation to distin-
guish between when the point estimator is used and when it is not. Denote
the parameter with the point estimator as Θ̃t = (Θt,x, θ̄

f
t,y). Consequently,

θ̃t ≡ (θt,x, θ̄
f
t,y) and the forecast samples are θ̃

f(m)
t ≡ (θ

f(m)
t,x , θ̄ft,y).

As mentioned in Section 5.3.2, one way to view the equation that summa-
rizes the sequential update algorithm is the joint analysis distribution multi-
plied by an special identity. Instead of using the identity based on the con-
ditional predictive likelihood p(yt | θt, y0:t−1) as in Section 5.3.2, the identity is
based on the predictive likelihood conditioned on the point estimator of the
measurement parameter, i.e., p(yt | θ̃t, y0:t−1). Thus, the joint analysis distri-
bution is

π0:t(xt, θt) =
φ[yt;Ht(θt,y)xt, Vt(θt,y)]

p(yt | θ̃t, y0:t−1)
× p(yt | θ̃t, y0:t−1)

p(yt | y0:t−1)
p(xt, θt | y0:t).

However, like the algorithm in Section 5.3.2, updating with an estimator of this
equation will only update the state parameter and not update the measurement
parameter since the predictive likelihood is conditioned on the point estima-
tor θ̄ft,y. To update the measurement parameter, the equation is multiplied by

2See discussion at the end of Section 4b in their paper.
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another identity: an identity constructed with the measurement density condi-
tioned on the point estimator θ̄ft,y, i.e., g(yt |xt, θ̄t,y) = φ[yt;Ht(θ̄

f
t,y)xt, Vt(θ̄

f
t,y)].

There are a couple of ways to reshuffle the identity in a way that is illustrative
to constructing the algorithm.

One way to update the measurement parameter is via this particular fac-
torization of the joint analysis distribution:

π0:t(xt, θt) =
φ[yt;Ht(θt,y)xt, Vt(θt,y)]

φ[yt;Ht(θ̄
f
t,y)xt, Vt(θ̄

f
t,y)]︸ ︷︷ ︸

× φ[yt;Ht(θ̄
f
t,y)xt, Vt(θ̄

f
t,y)]

p(yt | θ̃t, y0:t−1)
× p(yt | θ̃t, y0:t−1)

p(yt | y0:t−1)
p(xt, θt | y0:t).

(5.15)

Ignoring the term above the underbrace, notice that the factorization is the
same as Equation (5.9) from the sequential update of the state and parame-
ters when Θt,y is fixed. For this reason, this particular factorization suggests
a three-stage algorithm: the two-stage algorithm of Algorithm 5.2 with an
additional third stage. Specifically, sample pairs of state and parameter sam-
ples via Algorithm 5.2, thus updating only the state and the state parameter,
and then the additional third stage resamples those samples with importance
weights proportional to the term above the underbrace to update the measure-
ment parameter. Although resampling is a necessary step in PF algorithms,
it is an undesirable step that can lead to particle collapse, so adding another
resampling step to the algorithm will only exacerbate the problem. Further-
more, our goal is to avoid resampling the state samples, which this particular
modification of the algorithm fails to achieve.

Let’s examine another factorization of the joint analysis distribution:

π0:t(xt, θt) =
φ[yt;Ht(θ̄

f
t,y)xt, Vt(θ̄

f
t,y)]

p(yt | θ̃t, y0:t−1)

× φ[yt;Ht(θt,y)xt, Vt(θt,y)]

φ[yt;Ht(θ̄
f
t,y)xt, Vt(θ̄

f
t,y)]︸ ︷︷ ︸

p(yt | θ̃t, y0:t−1)
p(yt | y0:t−1)

p(xt, θt | y0:t). (5.16)

Again, ignoring the term above the underbrace, the factorization is the same
as Equation (5.9) when Θt,y is fixed. This particular factorization suggests re-
sampling the parameter particles with weights proportional to the conditional
predictive likelihood p(yt | θ̃t, y0:t−1)—as in the first-stage of Algorithm 5.2—
in addition to the term above the underbrace. Specifically, each parameter
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Input:
• {xa(m)

t−1 }Mm=1
·∼ p(xt−1 | y0:t−1)

• {(xf(m)
t , θ

f(m)
t )}Mm=1

·∼ p(xt, θt | y0:t−1) from Algorithm 5.1

Output: {(xa(m)
t , θ

a(m)
t )}Mm=1

·∼ p(xt, θt | y0:t)

1. Update Θt:

a) Calculate the point estimator θ̄ft,y from samples {θf(m)
t,y }Mm=1.

b) Calculate unnormalized weightsa:

w̃
(m)
t =

φ[yt;Ht(θ
f(m)
t,y )x

f(m)
t , Vt(θ

f(m)
t,y )]

φ[yt;Ht(θ̄
f
t,y)x

f(m)
t , Vt(θ̄

f
t,y)]

lt(x
f(m)
t , θ̄ft,y, Σ̂

f
t ),

for each m = 1, ...,M , where Σ̂f
t is the (tapered) sample covari-

ance calculated from {xf(m)
t }Mm=1. Normalize weights: w

(m)
t =

w̃
(m)
t /

∑M
n=1 w̃

(n)
t for each m = 1, ...,M .

c) Sample

θ
a(m)
t ∼

M∑
m=1

w
(m)
t δ

θ
f(m)
t

(θt)

for each m = 1, ...,M .

2. Update (Xt,Θt):

a) Sample x̃
f(m)
t ∼ f(xt |xa(m)

t−1 , θ
a(m)
t ).

b) Sample {xa(m)
t }Mm=1 using Step 3 of Algorithm 2.1 with forecast state

samples {x̃f(m)
t }Mm=1, measurement mapping Ht = Ht(θ̄

f
t,y), and mea-

surement variance Vt = Vt(θ̄
f
t,y).

aThe lt(·) term is defined in Equation (5.5).

Algorithm 5.3: EnKF-APF: Update step when estimating the measurement parameter
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sample is updated with importance weights

w
(m)
t ∝ φ[yt;Ht(θ

f(m)
t,y )x

f(m)
t , Vt(θ

f(m)
t,y )]

φ[yt;Ht(θ̄
f
t,y)x

f(m)
t , Vt(θ̄

f
t,y)]

lt(x
f(m)
t , θ̄ft,y, Σ̂

f
t ).

Not only does the term above the underbrace update the measurement param-
eter, it allows for the construction of an algorithm that uses the same Kalman
gain Kt(θ̄

f
t,y, ·) in the EnKF update of the state samples, i.e.,

x
a(m)
t = x̃

f(m)
t +Kt(θ̄

f
t,y,

ˆ̃Σf
t )[yt −Ht(θ̄

f
t,y)x̃

f(m)
t ].

We do not derive the estimators of the filtering densities since they are sim-
ilarly derived as in Section 5.3.2. Algorithm 5.3 summarizes the algorithm.
Notice that the algorithm is exactly the same as Algorithm 5.2, except that
the parameters are resampled with different weights (Step 1b).

5.5 Demonstrations

In this section, we apply the EnKF-APF algorithm to estimate static param-
eters. First, we complete the demonstration from Section 4.5 by applying the
EnKF-APF with the same settings outlined in that section. We compare the
results and demonstrate that the EnKF-APF is able to better estimate param-
eters than the EnKF. To demonstrate that EnKF-APF does not suffer from
the dimensionality problem faced by many PFs, we apply the EnKF-APF al-
gorithm to a high-dimensional state-space model—one with the Lorenz 2005-II
as a state transition model.

5.5.1 Lorenz 1963

The EnKF-APF is applied with the same settings as in Section 4.5 to estimate
σ; Figure 5.1 shows the results. In every panel, including without inflation,
we see what we expect: the true value is better captured with larger ensemble
sizes. Like the EnKF, EnKF-APF has a harder time capturing the true value
when some aspect of the y-direction is not measured (i.e., i = 3, 4, 5). How-
ever, unlike the EnKF, any difficulty is remedied with larger ensemble sizes.
While some estimated values are near the bounds of the constraint range,
none fall outside the pre-specified constraints. There are a few runs that failed
to complete the parameter estimation procedure, but they only occur for the
“harder” measurement models (i.e., i = 1, 2) with small ensemble sizes and
the default settings for the inflation values. These are the same situations in
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which the EnKF failed to complete the parameter estimation procedure, even
with larger ensemble sizes! However, the failures are not a problem for the
EnKF-APF with larger ensemble sizes. The resampling step in the first-stage
of the EnKF-APF algorithm is the main reason behind the reduction in failures
between the EnKF-APF and the EnKF. With the EnKF-APF, the proposed
parameters may lead to numerical instabilities but the resampling step from
the first stage of the algorithm removes those parameters and hence reduces
the number of failures in the estimation procedure. Therefore, forecasting the
state twice is worth the extra computational expense.

Figure 5.2 shows selected comparisons between the EnKF and EnKF-APF.
With every inflation setting, including no inflation, the EnKF-APF is able to
capture the true value more effectively than the EnKF for all measurement
models and almost all ensemble sizes. The places where the EnKF-APF is not
as effective as EnKF occur for the “easier” measurement models with small
ensemble sizes, e.g., i = 3, 4, 5 with M = 6, 12, too small for any PF to be
effective.

5.5.2 Lorenz 2005

While the EnKF-APF has performed well for the Lorenz 1963 system, good
results are not observed until an ensemble size of 48 is used for many measure-
ment models—an ensemble size 16 times larger than the state dimensions! If
we extrapolated this to high-dimensional systems, the ensemble size needed for
good results quickly becomes computationally infeasible, thus one may con-
clude that the EnKF-APF is not a practical method for parameter estimation.
In this section, we demonstrate that the extrapolation is unfounded and show
that the EnKF-APF is perfectly capable of capturing true parameter values of
the Lorenz 2005-II system for small ensemble sizes, oftentimes better than the
EnKF. Furthermore, the previous demonstration with the Lorenz 1963 system
only illustrates the ability of EnKF-APF to estimate state parameters, i.e.,
Algorithm 5.2. We additionally estimate a measurement parameter with the
Lorenz 2005 system, thus demonstrating the full capabilities of Algorithm 5.3.

Before discussing the results, we detail the settings used in the parame-
ter estimation algorithm. Like the Lorenz 1963 demonstration, all parameter
estimation runs have the same underlying data generation process; only sam-
ples from the initial condition and the initial parameter values to start the
algorithm are different between runs.
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(b) Estimated inflation.

Figure 5.1: Lorenz 1963: distribution of σ̂ as estimated by EnKF-APF. The settings here are the
same as in Figure 4.5 except parameter estimation is performed with EnKF-APF.
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(b) Estimated inflation with a maximum value of 5 and an initial standard deviation of 0.2.

Figure 5.2: Lorenz 1963: comparison of the distributions of σ̂ as estimated by EnKF-APF and
EnKF. The settings here are the same as in Figure 4.5.
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State-space model and data generation

Examining the Lorenz 2005-II equations (Equation (1.4)), there are three state
parameters, i.e., N , K, and F . The parameter N controls resolution of the
mathematical grid. In practice, the resolution is chosen based on computa-
tional resources. For this reason, we set N to be the default value of 960 (and
thus the state dimension is dx = 960) and aim to estimate the parameters K
and F . Let R = (r1, ..., rdx) be the vector of the state locations equispaced on
a spherical latitude band as illustrated in Figure 1.6, where ri is the location
of the ith state located at an angle of (i−1)

dx
× 2π for all i = 1, ..., dx.

When not estimating an inflation value, the state transition model is

xtn = mtn

(
xtn−1 ;K,F

)
;

and when estimating an inflation value, the state transition model is

xtn = µtn + λ
[
mtn

(
xtn−1 ;K,F

)
− µtn

]
.

The discrete state transition model mtn is defined to be

mtn(·;K,F, dt) = IW (·;K,F ) +O(e(dt))

where W is the continuous state transition model for the Lorenz 2005-II sys-
tem, i.e., Equation (1.7), and e(·) and dt are defined in Section 1.2.1. Depend-
ing on whether the inflation value is estimated or not, the state parameter
being estimated is either θx = (K,F, λ) or θx = (K,F ), respectively.

The measurement model is

wtn = H(Si, γi)xtn + εtn , εtn ∼ N (0, Ui),

where the measurement mapping H(si, γi) depends on the locations Si where
the measurements are collected and the halfwidth parameter γi. Recall that
the linear measurement mapping is a matrix of weights that interpolates the
state values to the measurement values: state locations that are closer to the
measurement location are assigned higher weights than those further away.
The halfwidth parameter γi controls the distance at which the weights are
zero: specifically, the weights are zero for distances beyond 2γi. The weights
of the measurement mappings are constructed with the Gaspari-Cohn function
(Gaspari and Cohn, 1999) with five interpolating points.

We choose three measurement mappings. The first measurement mapping
is the fully observed system, where the measurement mapping is simply the
identity matrix Idx . In this case, the measurement locations exactly match the
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state locations, i.e., S1 = R, and there is no interpolation between the state
and measurement locations, i.e., γ1 = 0. The next two measurement mappings
are partially observed systems. The first partially observed system measures
every other state location, i.e., S2 = (r1, r3, r5, ..., rdx−1), without interpolation,
i.e., γ2 = 0. Specifically, its measurement mapping is a (dx/2)×dx matrix that
takes the following form:

H(s2, γ2) ≡


1 0 0 0 0 · · · 0
0 0 1 0 0 · · · 0
0 0 0 0 1 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 1

 .
The second partially observed model has dx/2 measurement locations ran-
domly chosen on the latitude band via a uniform distribution, i.e., the ith
element of S3 is located at an angle of Ui × 2π where Ui ∼ U(0, 1) for all
i = 1, ..., dx/2, and the halfwidth is chosen to be γ3 = 5

960
× 2π. The vari-

ance of the measurement noise is taken to be the identity, i.e., U1 = Idx and
U2 = U3 = Idx/2.

The initial condition xt0 is generated by taking a random state from a
uniform distribution and integrating it forward with a large ∆t. The state xtn
is generated by taking the initial condition xt0 and integrating it sequentially to
collect the equivalent of one year’s worth of measurements with a measurement
collected once per day, i.e., N = 365 times with a forecast lead time of ∆tn =
0.24 for all n. Samples from the initial condition are generated from a standard
multivariate normal distribution with mean xt0 .

EnKF settings

We apply the square-root filter with localization. The localization halfwidth
is 5

960
× 2π using the Gaspari-Cohn function to construct the tapering matrix.

Ensemble sizes are set to be 51, 101, and 201. Parameter estimation is run
both with and without inflation. When inflating, the forecast ensemble is
inflated in two ways: with a fixed inflation of λ = 1.5 and with inflation values
estimated with the default DART settings as described in Section 4.5.

Parameter estimation settings

We apply the iterated filter from Ionides et al. (2015) with both the EnKF-
APF and EnKF to estimate parameters. We are interested in estimating the
state parameters K and F and the measurement parameter γ3. However, the
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parameter γ3 is only estimated with the EnKF-APF and is fixed with the
EnKF. We choose the perturbation density q(θtn | θtn−1) to be a multivariate
truncated normal distribution with mean θtn−1 . Table 5.1 lists the initial stan-
dard deviations and the constraints. The correlation between the parameters
is set to be zero, thus the multivariate truncated normal distribution is sim-
ply a product of univariate truncated normal distributions. To respect the
integer-valued nature of K, proposals are rounded to the nearest integer.

parameter truth initial sd minimum maximum

K 32 0.5 1 100

F 15 0.5 -50 50

λ 1 0.6 1 20

γ3
5
dx
π 1

dx
π 0 π

Table 5.1: Lorenz 2005-II parameter estimation settings. The perturbation density q(θtn | θtn−1) is
a product of truncated normal distributions with the above parameters.

Each run of the iterated filter is initialized with the true value perturbed
by the initial standard deviation multiplied by two and an inflation value of
one. The iterated filter is run with 25 iterations and the MLE is reported to
be the median of the final ensemble.

Results

The results without inflation are omitted because the parameter estimation
procedure failed to capture the true values with both filters. This is as we
suspected, even before running the parameter estimation algorithm, since the
EnKF requires inflation for good performance when filtering high-dimensional
state-spaces. Figures 5.3 and 5.4 show the results with inflation from both the
EnKF-APF and EnKF, respectively.

With the EnKF-APF, the results show that the EnKF-APF consistently
captures the true parameter values well for all measurement models and en-
semble sizes, including the small ensemble size of 51! The state parameter K
is captured almost perfectly (top rows of both Figure 5.3a and Figure 5.3b):
most MLEs are exactly the true value of 32 with a few MLEs with values of 31,
33, or 34—values very close to the true value. The state parameter F is often
captured well (middle rows of both Figure 5.3a and Figure 5.3b): the range
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of MLEs cover the the true value. The range of estimated values of F tend
to be larger with fixed inflation than with estimated inflation. Similarly, the
measurement parameter γ3 is captured better with estimated inflation than
with fixed inflation (bottom rows of both Figure 5.3a and Figure 5.3b). In
fact, with estimated inflation, the distribution of the estimated values of γ3
show the characteristic decrease in the range of estimated values with larger
ensemble sizes, indicating that parameter estimation for the Lorenz 2005-II
system is better performed when the inflation value is estimated. The ability
of the EnKF-APF to estimate the halfwidth parameter γ3 demonstrates its
full capabilities: the algorithm is able to successfully estimate both state and
measurement parameters.

On the other hand, the results show that the EnKF is generally able to
capture the true parameter values but it does sometimes have trouble. Oddly,
the EnKF is able to better capture the true parameter values in partially
observed systems (measurement models i = 2, 3 in the latter two columns of
Figure 5.4) than the fully observed system (i = 1, first column of Figure 5.4).
We suspect this oddity is due to the sensitivity of the EnKF linear update: the
parameter is updated by the conditional correlations between the state and
the parameter that are perhaps unimportant. While there were no failures in
the parameter estimation procedure, a few runs estimated values of K to be
outside of its pre-specified constraints.

Figure 5.5 compares the results from the EnKF-APF and EnKF. The plots
in this figure are zoomed-in versions of the previously examined figures, i.e.,
Figures 5.3b and 5.4b, omitting the results for the measurement model i = 3.
The last measurement model is omitted because the results are not comparable
between the two filters: γ3 is estimated with the EnKF-APF and is fixed with
the EnKF. For the fully observed system (i = 1, first column of Figure 5.2),
the EnKF-APF clearly captures the true parameter values of K and F better
than the EnKF. For the partially observed system (i = 2, second column of
Figure 5.2), the EnKF-APF better captures the true parameter value of K and
both filters capture F similarly. Overall, the EnKF-APF is better at capturing
the true parameter values than the EnKF.

5.6 Limitations

In this chapter, we combined the best qualities of the EnKF and the PF
to develop methodology for estimating parameters with the method of arti-
ficial evolution of parameters. We have demonstrated that the EnKF-APF
better captures true parameter values than the EnKF in both low- and high-
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dimensional state-spaces. Since the EnKF-APF uses the EnKF algorithm to
update the state, it does not suffer from particle collapse like the PF when
applied to high-dimensional state-spaces. Its versatility and plug-and-play
quality allows it to be easily added to existing implementations of EnKF, such
as DART.

By its combined nature, the EnKF-APF algorithm not only shares the
successes of the EnKF in filtering states and of the PF in filtering parameters,
but it also shares the limitations of both filters. Like the PF, the EnKF-APF
will require an impractically large ensemble size to estimate parameters when
the parameter space is large. For practical reasons, the practitioner is forced to
apply the EnKF to estimate parameters, which assumes that the parameters
are conditionally correlated with the state. As seen with the Lorenz 1963
system (Figure 5.2, measurement models i = 1, 2), that assumption may not be
true and thus the EnKF will have trouble estimating parameters. However, if
the assumption is applicable (Figure 5.2, measurement models i = 3, 4, 5), the
EnKF will be more efficient, in terms of ensemble size required, than the EnKF-
APF, even if the parameter space is not high-dimensional. The ensemble
size required to sufficiently estimate the likelihood and thus the parameters is
answered in the PF literature (Doucet et al., 2014).

Furthermore, like the EnKF, the EnKF-APF will not estimate the state
well when the state transitions are “highly” nonlinear and consequently will
not estimate parameters well. In this case, the PF will perform better than
the EnKF-APF, but there is currently not a good answer to the degree of
nonlinearity when one performs better than the other. The EnKF must be
studied more rigorously to answer such a question and we hope the connec-
tion in Chapter 3 will be helpful in answering those types of questions. With
these caveats in mind, we recommend applying the EnKF-APF when the pa-
rameter space is low-dimensional and when the EnKF has been previously
demonstrated to be effective for the state-space model being studied.
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(a) Fixed inflation, λ = 1.5
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Figure 5.3: Lorenz 2005-II: distribution of MLEs as estimated by EnKF-APF. Each violin plot
illustrates the distribution of the MLEs of the parameters labelled to the right of each row. The
estimated values come from 20 runs of the iterated filter varied by ensemble size and measurement
model. Ensemble size is varied across the x-axis of each plot and the measurement model are varied
across columns of the plots. Each figure has a different inflation setting as indicated by the caption.
The green horizontal line indicates the true parameter value and the red lines, if shown, indicate the
constraints of the perturbation density as specified in Table 5.1. A red dot, if shown, is a jittered
value of an MLE that is estimated to be outside of the constraints specified.
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Figure 5.4: Lorenz 2005-II: distribution of MLEs as estimated by EnKF. The settings here are the
same as in Figure 5.3.
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Figure 5.5: Lorenz 2005-II: comparison of MLEs as estimated by EnKF-APF and EnKF. The plots
are zoomed-in versions of Figures 5.3b and 5.4b (with estimated inflation). Measurement model
i = 3 is omitted because the results are not comparable between filters: γ3 is estimated with
EnKF-APF and is fixed with EnKF.
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6 Model error: an introduction

With the tool developed in the last part of the dissertation, we are finally able
to tackle the original problem we are interested in: model error. In reality, in-
vestigators seldom have the true model that governs the systems that they are
studying; they can only design models based on their educated, but imperfect,
knowledge of the system. Even then, investigators may be unable to implement
the model they wish to design for practical reasons, e.g., computational rea-
sons. In this part of this dissertation, we examine the feasibility of correcting
model error with a linear correction in the continuous state-transition model.
While not a new idea, our contribution is two-fold. First, we demonstrate
that a linear correction improves forecasts even when the model error is not
linear in the Lorenz 1963 and 2005 systems, both of which have characteris-
tics of atmospheric models. Secondly, we introduce a low-rank approximation
to the linear correction that respects the spatial structure prevalent in atmo-
spheric models. This particular parametrization is easily estimated with the
parameter estimation algorithm developed in Chapter 5, even when the state
is high-dimensional.

6.1 Model error: notation and examples

Suppose we are interested in studying the state X. The true model of the
state’s rate of change at time t is:

ẋ(t) = R[x(t); θR], (6.1a)

where θR is the parameter of the system and the dot above x represents the
first time-derivative, i.e., ẋ(t) = dx(t)

dt
. The model is named R to remind the

reader that it is the “right” model. Measurements of the state ytn are collected
at discrete timepoints tn. Let ∆tn be the forecast lead time: the time between
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6.1. MODEL ERROR: NOTATION AND EXAMPLES

the (n − 1)-th and nth measurements, i.e., ∆tn = tn − tn−1. To evaluate the
state at the same temporal resolution as the measurements, the model R is
integrated as follows:

xtn = mtn(xtn−1 ; θR, dt) (6.2)

with

mtn(xtn−1 ; θ) = xtn−1 +

∫ tn

tn−1

ẋ(τ)dτ.

The true model is assumed to be deterministic and thus the state disturbance
ηtn = 0 does not appear in Equation (6.2). The state xtn is interpolated to
the spatial resolution of the measurements as

ytn = Htnxtn + εtn , εtn ∼ N (0, Vtn), (6.3)

with a linear mapping Htn of size dy × dx and measurement noise Vtn , both
assumed to be known. Recall that Equation (6.3) is called the measurement
model.

In reality, the true model R is not known, but there is expert knowledge
of the evolution of the system. Specifically, the following is a model of the
evolution of the approximate state X̂:

˙̂x(t) = W [x(t); θW ] (6.4)

where θW is the parameter of the continuous state transition model W . This
model is denoted W to remind the reader that it is the “wrong” model. The
approximate state X̂ is integrated to the same temporal resolution as the
measurements as follows:

x̂tn = m̂tn(xtn−1 ; θW ) (6.5)

with

m̂tn(xtn−1 ; θ) = xtn−1 +

∫ tn

tn−1

˙̂x(τ)dτ.

Oftentimes, the integral in the above expression does not have an analytic form
and is instead numerically integrated with an appropriate numerical integrator
I:

m̂tn(xtn−1 ; θW , dt) = IW (xtn−1) +O(e(dt)), (6.6)

where dt denotes the timestep used by the numerical integrator and e is a
function mapping the order of the numerical error, e.g., e(x) = x for forward
Euler and e(x) = x4 for fourth-order Runge Kutta. The numerical integrator
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6.1. MODEL ERROR: NOTATION AND EXAMPLES

I has a subscript W to remind the reader that it depends on the continuous
state transition model W . Recall that Equations (6.4) and (6.6) are called the
continuous and discrete state transition models, respectively, and they both
make up the state transition model of Equation (6.5); see Section 1.2.2 for a
detailed discussion.

Since the true model R is not known, the true state cannot be evaluated
via Equation (6.2). Instead, the true state X is approximated with the ap-
proximate state X̂: xtn ≈ x̂tn . This may or may not be a good approximation.
We examine the situation when it is not and aim to improve the model W
with an improved model W̃ . Assume the error between the true model and
the imperfect model is additive:

R[x(t); θR] = W [x(t); θW ] +D[x(t); θD],

where the function D represents the unknown dynamics of the true system
not captured by the model W , i.e., the model error , and θD is the parameter
of the continuous state transition model D. It is possible to integrate just the
continuous state transition model D, i.e.,

dtn(xtn−1 ; θD, dt) = ID(xtn−1) +O(e(dt)),

but the additivity in the continuous state transition model does not necessarily
translate to additivity in the discrete state transition model, i.e.,

mtn(xtn−1 ; θR, dt) 6= m̂tn(xtn−1 ; θW , dt) + dtn(xtn−1 ; θD, dt),

particularly for nonlinear R and W . The discretization error of the integrator
O(e(dt)) is assumed to be negligible with respect to the model error and thus
we henceforth omit the input dt from the state transition models. To fix ideas,
we examine a few examples of model error.

Example 6.1.1 (Lorenz 2005: model error). Recall that Lorenz specifically
constructed the models in his 2005 paper for atmospheric scientists to test
their ideas on model error, thus providing an explicit example of model er-
ror. Let z(t) be the state of the system with a resolution of dz, i.e., z(t) ≡
(z1(t), ..., zdz(t)). The true continuous state transition model R is represented
by Model III (Equation (1.5)), i.e.,

ż(t) = R[z(t); θR]

=

 [x(t), x(t)]KR,1 + b2[y(t), y(t)]1,1 + c[y(t), x(t)]1,1
...

[x(t), x(t)]KR,dz + b2[y(t), y(t)]1,n + c[y(t), x(t)]1,dz

− x(t)− by(t) + FR,
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where x(t) and y(t) are functions of z(t); the parameter I is defined by Equa-
tion (1.5b); and the parameter θR is (KR, FR, I, b, c). Model II (Equation (1.4))
captures the large-scale dynamics of Model III, but misses the small-scale dy-
namics of the system and thus serves as an imperfect, but good, model W :

W (z(t); θW ) =

 [z(t), z(t)]KW ,1
...

[z(t), z(t)]KW ,dz

− z(t) + FW

with θW = (KW , FW ). The imperfect model W is equivalent to R only when
I = 1 and the parameters KW = KR and FW = FR. The model error D is
quadratic in the state. While there is an expression for D, the expression is
not simple and does not provide elucidating information beyond its quadratic
nature, so we do not show it. C

While the Lorenz 2005 system provides an explicit example of model error,
model error could alternatively arise from fixing a parameter to an incorrect
value. We show an example with the Lorenz 1963 system.

Example 6.1.2 (Lorenz 1963: model error). Let (x(t), y(t), z(t)) be the state
of the system. The true continuous state transition model R is represented by
Equation (1.2), i.e.,ẋ(t)

ẏ(t)
ż(t)

 = R

x(t)
y(t)
z(t)

 ; θR

 =

 σR[y(t)− x(t)]
x(t)[ρR − z(t)]− y(t)
x(t)y(t)− βRz(t)

 .
with parameter θR = (σR, ρR, βR). An imperfect model can simply come from
setting a parameter to an incorrect value or getting one of the terms wrong in
the above equation, e.g., accidentally multiplying the interactive term x(t)y(t)
by a value of α:

W

x(t)
y(t)
z(t)

 ; θW

 =

 σW [y(t)− x(t)]
x(t)[ρW − z(t)]− y(t)
αx(t)y(t)− βW z(t)

 .
with θW = (σW , ρW , βW , α). In contrast to the previous example, this model
has a simple expression for the model error:

D

x(t)
y(t)
z(t)

 ; θD

 =

 σD[y(t)− x(t)]
ρDx(t)

(1− α)x(t)y(t)− βDz(t)


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with parameter θD = (σD, ρD, βD, α), where σD = σR − σW , ρD = ρR − ρW ,
and βD = βR − βW . There is no model error when the parameters σD, ρD and
βD are zero and α = 1. Otherwise, the model error is linear in the state when
any of the parameters σD, ρD, or βD is nonzero and quadratic when α 6= 1. C

In this particular example, model error is simply corrected by better esti-
mating the parameters using an algorithm such as the one developed in Chap-
ter 5. However, it is not always known a priori when the parameters are fixed
to incorrect values. Large and complex codes often accompany state transi-
tion models of high-dimensional state-space models, especially those studied
in the atmospheric sciences. A seemingly innocent error, such as incorrectly
modifying a term, could easily be missed, leading to an imperfect model that
produce seemingly realistic results but affect the precision and accuracy of
forecasts due to the chaotic nature of the model.

Without knowing the true model R, there is often no way to discern
whether model error arises from missing the model dynamics, such as Exam-
ple 6.1.1, or from setting incorrect parameter values, such as Example 6.1.2.
Therefore, an investigator may desire to parametrize D in such a way that
reflects her hypothesis of the form of the model error. We continue a line of
work that examines one of the simplest parametrizations of model error: linear
in the state. While simple, the linear correction comes with a complication.
The high-dimensional nature of many atmospheric models mean that the pa-
rameters of the linear correction is also high-dimensional. For this reason, we
formulate a low-rank linear correction by leveraging the spatial correlation of-
ten found in atmospheric models. Furthermore, we emphasize that the main
goal is to improve forecasts and not to learn the form of the model error. While
the linear correction could potentially help locate and diagnose parts of the
model that are wrong, it is only an auxiliary benefit to our main goal.

Before reviewing the linear correction and its low-rank approximation, we
briefly review even simpler ways to correct model error. In the following sec-
tion, the true state X is approximated with an approximate state X̃ with state
transition model

x̃tn = m̃tn(xtn−1 ; θW̃ )

and parameter θW̃ , where m̃tn is some function of the imperfect model m̂tn .
All the improved models m̃tn , except the model with the linear correction,
modify the discrete state transition model and thus an improved continuous
state transition model W̃ is not proposed; only the model with the linear
correction has an improved continuous state transition model W̃ .
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6.2 Correcting model error: a short review

6.2.1 Increasing the variance

If W is believed to be imperfect, more faith should be put into the measure-
ments than the forecasts. Statistically speaking, this is equivalent to increasing
the variance of the state transition model to reflect our uncertainty about the
model. In the EnKF literature, there are two main ways to increase the uncer-
tainty: random and deterministic variance inflation. The latter is previously
discussed in Section 2.3.2. Both inflate the forecasts and are included as op-
tions in DART. Though these methods modify the forecasts, the discrete state
transition model can be re-parametrized to reflect the nature of these modifi-
cations as done with deterministic variance inflation (Section 4.4). We briefly
review both.

Random variance inflation is the method of adding mean-zero perturba-
tions ηtn to the discrete state transition model:

m̃tn(xtn−1 ; θW , Utn) = m̂tn(xtn−1 ; θW ) + ηtn , ηtn ∼ N (0, Utn). (6.7)

with variance Utn . In this model, the approximate state X̃t has the same ex-
pectation as X̂t but with a larger variance: E(X̃tn) = E(X̂tn) and Var(X̃tn) =
Var(X̂tn) + Utn . Though it achieves the purpose of increasing the uncertainty
in the approximate state X̂, this method is not used in practice because it per-
forms poorly with the EnKF. For this reason, deterministic variance inflation
was introduced as an alternative method. In fact, even though DART in-
cludes random variance inflation as an option, its documentation recommends
to “always” use deterministic variance inflation.

Deterministic variance inflation is the method of scaling the state in such
a way that maintains its expectation but increases its variance:

m̃tn(xtn−1 ; θW , λ) = µtn + Λ
1/2
tn [m̂tn(xtn−1 ; θW )− µtn ], (6.8)

where µtn is the expectation of m̂tn(Xtn−1 ; ·), Λtn is a diagonal matrix with
entries (λ2tn,1, ..., λ

2
tn,dx

)] and λi ≥ 1 for all i = 1, ..., dx. If λtn,i = 1 for all i,
then no modification is made to the state transition model arising from the
model W . Otherwise, the expectation stays the same and the variance is scaled
by the factor Λtn . Therefore, this particular method also fulfills the purpose
of increasing the uncertainty of the state transition model. Anderson and
Anderson (1999) and Hamill et al. (2001) both independently proposed fixed
spatially-constant deterministic variance inflation, i.e., fixing λtn,i = λtn,j =
λtn to some fixed value λtn for all 1 ≤ i, j ≤ dx. Adaptive versions, i.e.,
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estimated inflation values, were proposed later by Anderson (2007) (spatially-
constant) and Anderson (2009) (spatially-varying), along with others (Altaf
et al., 2013; Miyoshi, 2011).

6.2.2 State-constant correction

While increasing the uncertainty does help improve forecasts, a potentially
better solution is to estimate the structural form of the model error. The
simplest structural form of model error is to add a state-constant correction
to the model, either in the continuous or discrete state transition model. A
state-constant correction in the continuous state transition model approxi-
mates D(·; θD) with a function that depends on the parameter θD but not
on the state X. This particular model has been previously implemented as a
special case of correcting model error with a linear correction (Danforth and
Kalnay, 2008). Alternatively, a state-constant correction is added to the dis-
crete state transition model (Dee and da Silva, 1998; Friedland, 1969, 1978;
Ignagni, 1981, 1990; Zupanski and Zupanski, 2006) and has the following form:

m̃tn(xtn−1 ; θW , btn , Utn) = m̂tn(xtn−1 ; θW ) + ηtn ,

with ηtn ∼ N (btn , Utn). Unlike the methods from the last section, these meth-
ods modify the expectation of the approximate state X̂, sometimes in addition
to increasing the variance, e.g., when Utn is not the zero matrix. In the litera-
ture, these methods are called model bias . To distinguish them from statistical
bias, we call them state-constant corrections , since the correction does not de-
pend on the state X. Though reasonable, these methods do not address the
very likely scenario that model error is a function of the state.

6.2.3 Linear correction: Leith’s thought experiment

A linear model is the next simplest form for model error that additionally
allows model error to vary with the state. Like the state-constant correction,
the linear model is added either to the continuous or discrete state transition
models. Although it is easier to estimate a linear model in the discrete state
transition model, the linear correction is difficult to interpret. By the assump-
tions of model error laid out in Section 6.1, the continuous modelW is incorrect
and should thus be fixed at the source of that error: in the continuous-time
model. We believe this line of work is the most promising, so we begin by
reviewing the original idea behind this work, first introduced by Leith (1978).

Leith considered approximating the model error D with a linear term and
derived the linear correction under a few assumptions, some of which are im-
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practical. First, he assumed that the true continuous state transition model
R can be evaluated and the true state X(t) can be obtained without measure-
ment error. With these two assumptions, the model error D is evaluated as
follows:

D[x(t); θD] = R[x(t); θR]−W [x(t); θW ].

Then, he considered approximating the model error D with a linear model:

D[x(t); θD] ≈ Lx(t) + b+ ε(t)

where the parameter θD contains the dx × dx matrix L and dx-vector b and
ε(t) is the model error that is not captured by the linear term and assumed to
have mean zero. Then, the least-squares solution is:

L̂ = Cov{D[X(t); ·], X(t)}Var[X(t)]−1, (6.9a)

b̂ = E{D[X(t); ·]} − L̂E[X(t)]. (6.9b)

We call this the optimal linear correction. Though not explicitly stated, he
made one more assumption to derive the least-squares solution: the state and
the model error are temporally independent. These temporal observations
provide the replicates necessary to estimate the implied least-squares solution.

Unfortunately, the optimal linear correction is only a thought experiment:
the least-squares solution cannot be evaluated because neither does one have
the perfect model R to evaluate D nor can the true state X be measured
exactly. The first problem is intractable: the investigator does not have the
true model R and even if he did, he should use the perfect model R as the
state transition model. The second problem, however, is tractable: while the
true state X cannot be measured exactly, its moments can be approximated
with filtering algorithms. Unfortunately, nonlinear filtering algorithms, such
as the EnKF or PF, were not developed at the time. Once nonlinear filtering
algorithms had been established, DelSole and Hou (1999) proposed several
solutions to overcome the issues that prevented the evaluation of the optimal
linear correction; we elaborate on their methods in the next section.

6.3 The optimal linear correction: past work

and their limitations

Under the same assumptions laid out by Leith, DelSole and Hou (1999) pro-
posed solutions to the problems that prevented the evaluation of the optimal
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linear correction: (1) employ a forward Euler approximation to estimate the
model error D and (2) approximate the state-space model with the imperfect
model W and apply filtering algorithms to estimate the true state.

A forward Euler approximation enables the approximation of the true state
X and the approximate state X̂ as:

x(tn) =
xtn+1 − xtn

∆tn+1

+O(∆tn+1),

x̂(tn) =
x̂tn+1 − xtn

∆tn+1

+O(∆tn+1),

respectively. Subtracting the two expressions provides an approximation of
the model error at tn:

D[x(tn); θD] = x(tn)− x̂(tn) =
xtn+1 − x̂tn+1

∆tn+1

+O(∆tn+1). (6.10)

While the forward Euler approximation provides a seemingly tractable way to
evaluate the model error D at time tn, it is a function of the true state X
that cannot be measured. Not only is it a function of the true state Xtn+1 , it

contains the approximate state X̂tn+1 that is also a function of the true state

X̂tn (see Equation (6.5)). One more approximation is needed to obtain the
model error D, required in the evaluation of the optimal linear correction (see
Equation (6.9)).

The authors additionally proposed approximating the true state X with the
best estimate of the imperfect state X̂ from a filtering algorithm. Specifically,
approximate Xtn+1 with the forecasted state X̂f

tn+1
= m̂tn+1(X̂

a
tn ; ·) and Xtn+1

with the updated state X̂a
tn+1

, where X̂f
tn+1

d
= X̂tn+1 | y0:tn , X̂a

tn

d
= X̂tn | y0:tn , and

X̂a
tn+1

= X̂tn+1 | y0:tn+1 . Plugging these approximations into Equation (6.10)
and assuming that the numerical error from the Euler approximation is negli-
gible, the model error is approximated as

D[x(tn); θD] ≈
x̂atn+1

− x̂ftn+1

∆tn+1

.

and the least-squares solutions in Equation (6.9) is approximated as

L̂ ≈ 1

∆tn+1

Cov(X̂a
tn+1
− X̂f

tn+1
, X̂a

tn+1
)Var(X̂a

tn+1
)−1, (6.11a)

b̂ ≈ 1

∆tn+1

E(X̂a
tn+1
− X̂f

tn+1
)− L̂E(X̂a

tn+1
). (6.11b)
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Of course, the above moments cannot be evaluated analytically and are re-
placed by their sample estimates. The authors demonstrated that the lin-
ear correction improved forecasts for a relatively low-dimensional state-space
(dx = 160).

Though DelSole and Hou provided a tractable solution to approximate the
optimal linear correction, there remains a few limitations to their approach.
The dynamics that are missed by the imperfect model W are often not linear
with the state, as in both examples introduced in Section 6.1. Because the
error is not linear, a linear correction does not truly correct the model error
and could potentially worsen the model error and thus forecasts. For example,
in Example 6.1.2, if α 6= 1 and all other parameters, i.e., σD, ρD, and βD,
are zero, a linear correction does not truly correct the model error since the
error is an interactive effect between two parts of the state. While there is no
general answer, the Lorenz systems introduced in Section 6.1 provide unique
settings to test how a linear correction can improve nonlinear model error; we
do this in the next chapter.

Although DelSole and Hou demonstrated that a linear correction does in-
deed improve forecasts for their particular application, it is not clear that their
solution improved model error or some other error. While it is common to use
the forward Euler method for numerical integration, it is a first-order method
with numerical error proportional to the timestep dt, i.e., O(dt), and thus the
timestep dt is often taken to be small. We give a sense of how small with
the Lorenz systems: when using a higher-order method than forward Euler1,
the timestep is taken to be 0.01 for the Lorenz 1963 system and 0.001 for the
Lorenz 2005 system. Therefore, an even smaller timestep dt should be used
when employing forward Euler to achieve similar accuracy as the higher-order
methods. Unfortunately, practitioners do not have this luxury with DelSole
and Hou’s method: the timestep dt in the approximations cannot be chosen to
be as small as necessary to minimize the numerical error because the timestep
is dictated by how often measurements are collected, which is the forecast lead
time ∆tn (∆tn � dt). Therefore, it is difficult to pinpoint what their linear
correction is improving; the linear correction could be correcting the numeri-
cal error from the forward Euler approximation, the model error, or a mixture
of both errors. Our method eliminates any ambiguities by not making any
numerical approximations to estimate the model error.

1We use second-order and fourth-order Runge Kutta for the Lorenz 1963 and 2005
systems, respectively. As their names suggest, they are second- and fourth-order methods,
i.e., O(dt2) and O(dt4), respectively, and are thus more accurate than forward Euler for the
same timestep dt.
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Even if these limitations are overcame, the linear correction is not easily
estimated when the state is high-dimensional. Notice that the optimal linear
correction in Equation (6.9) requires sample estimates of two matrices: the
variance of the true state Var[X(t)] and the covariance of the model error and
the true state Cov{D[X(t); ·], X(t)}. Furthermore, the evaluation of the linear
correction requires the inverse of Var[X(t)], which means its sample estimate
must be full rank. Since this matrix has dimension dx × dx, where dx is the
dimension of the state, samples on the order of O(d2x) are required for the
sample estimate of Var[X(t)] to be full-rank and thus invertible.

Danforth et al. (2007) addressed the invertibility of Var[X(t)] in high-
dimensional state-spaces. In addition to the approximations introduced by
DelSole and Hou, they introduce two additional approximations to obtain
full-rank estimates of the two matrices required to calculate the optimal lin-
ear correction: tapering and applying singular value decomposition (SVD) to
obtain a pseudoinverse of Var[X(t)]. We do not present their idea exactly and
instead present a cleaner and more interpretable way to effectively accomplish
their idea. In particular, let Σ̂ be an appropriate sample estimate of Var[X(t)]
and UDV T be its SVD, where D is the diagonal matrix with singular values
γ1 ≥ ... ≥ γdx ≥ 0. For a chosen p ∈ [0, 1], let ip be the index such that∑ip

d=1 λd/
∑dx

d=1 λd ≥ p and D−1p be the diagonal matrix with 1/γ1, ..., 1/γip as
the first ip elements and zeroes for the remaining dx − ip elements. Then, the

linear correction L̂ is approximated with

L̃ = Cov{D[X(t); ·], X(t)}V D−195 U
T , (6.12)

where Cov{D[X(t); ·], X(t)} is replaced with an appropriate sample estimate.
This solution is similar to performing least-squares regression with ridge (L2)
regularization2 (Hastie et al., 2009, Section 3.4.1). Although a reasonable
solution to the singular matrix problem, their linear correction face the same
limitations as the method previously proposed by DelSole and Hou because it
employs the same approximations.

We overcome the issues faced by both DelSole and Hou (1999) and Danforth
et al. (2007) by parametrizing the linear correction with only a few parameters,
far fewer than O(d2x). This is possible because the state of the systems studied
by atmospheric scientists are often spatially correlated. With few parameters
required to be estimated, the algorithm developed in Chapter 5 is easily ap-
plied to estimate those parameters. Before introducing our methodology, we

2They are not the same because ridge regression takes the SVD of X(t) instead of its
variance, which affects the Cov{D[X(t); ·], X(t)} term as well.
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introduce a metric often used in the atmospheric sciences to measure forecast
skill, which we use to evaluate our improvements over the imperfect model.

6.4 Energy score: an evaluation metric for

forecast skill

Since the EnKF provides samples from the forecast distribution, it is desirable
to evaluate forecasts on both how close the forecast is to the observation (accu-
racy) and the uncertainty in the forecasts (precision). The continuous ranked
probability score (CRPS), first introduced by Matheson and Winkler (1976)3,
is one such metric for scalar forecasts and is widely used in the atmospheric
sciences. Though the forecasts in our demonstrations are multidimensional,
we first introduce the CRPS and provide some intuition behind how the metric
measures forecast skill before discussing its generalization to multidimensional
forecasts.

Let y be the observed value and P be the predictive distribution. The
CRPS is defined as

CRPS(P, y) =

∫ ∞
−∞

[F (x)− I(y ≥ x)]2dx,

where F is the cumulative distribution function (CDF) of the distribution P
and I is the indicator function. When the predictive distribution comes from

iid samples xi
iid∼ P, i = 1, ..., n, denoted as Pens, the CDF F is either replaced

with the empirical CDF, F̂n(x) = 1
n

∑n
i=1 I(xi ≤ x), or approximated with the

CDF of a Gaussian with the first two moments given by the sample mean and
variance. CRPS is a negatively oriented metric, meaning that a lower value
indicates a better prediction.

Figure 6.1 provides some intuition for the CRPS metric: it illustrates three
different predictions Xi, i = 1, 2, 3, for the observed value y = 0 and their
corresponding CRPS statistic. The distribution of all three predictions are
Gaussian with different means and variances. Let’s examine the first prediction
X1 (first row of plots) with a mean that matches the observation exactly and a
spread of one standard deviation around the observation, i.e., X1 ∼ N (0, 12).
The prediction has a CRPS score is 0.234 and is represented by the shaded
region in the top right figure. The second prediction (green in the second row
of plots) represents a less accurate prediction with equal precision, i.e., the
mean prediction is no longer zero but has the same variance: X2 ∼ N (1, 12).

3See Wilks (2011) for a textbook review.
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As expected, the CRPS score increases to 0.602, penalizing the prediction
for being less accurate. On the other hand, the third prediction (blue in the
second row of plots) represents a prediction with the same accuracy as the
first but with lower precision, i.e., the mean prediction is zero but has a larger
variance of 2.5 times the spread of the original prediction: X3 ∼ N (0, 2.52).
The CRPS score (0.584) also increases in this case, penalizing the prediction
for being less precise.

Gneiting and Raftery (2007) showed that the CRPS is equivalently written
as

CRPS(P, y) = EP |X − y| −
1

2
EP |X −X ′|,

where X ′ is an independent random variable with the same distribution as X.
With this insight, Gneiting et al. (2008) proposed the energy score (ES) as a
generalization of the CRPS for multidimensional vectors:

ES(P, y) = EP‖X − y‖ −
1

2
EP‖X −X ′‖,

where ‖·‖ is the Euclidean norm. When the predictive distribution comes from
a sample of size n, i.e., Pens, the ES reduces to

ES(Pens, y) =
1

n

n∑
j=1

‖xj − x‖ −
1

2n2

n∑
i=1

n∑
j=1

‖xi − xj‖.

We use this particular metric to evaluate the improvement in forecast skill of
the improved model W̃ .
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i Xi legend CRPS(FXi , y)

1 N (0, 12) 0.234

2 N (1, 12) 0.602 less accurate than X1

3 N (0, 2.52) 0.584 less precise than X1
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Figure 6.1: Continuous ranked probability score (CRPS): an illustration. Three different predictions
Xi, i = 1, 2, 3, of the observed value y = 0 and their corresponding CRPS score. The first prediction
X1 has a mean that matches the observation exactly with a spread of one. The other two predictions
perturbs the first prediction’s accuracy (X2) and precision (X3)—both undesirable and is thus
penalized with higher CRPS scores.
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7 Low-rank linear correction

The goal of this section to demonstrate that a linear approach to correcting
model error can improve forecasts even when the error is nonlinear. For real
atmospheric systems, it is usually impossible to obtain realizations of the true
state X and its model error D(X). Fortunately, both the Lorenz 1963 and
2005 systems have characteristics of real atmospheric systems and thus provide
unique settings to obtain realizations of the true state X and its model error
D(X)—elements that are important to calculate the optimal linear correction
(see Equation (6.9)).

In Section 7.1, we examine the situations when the optimal linear correc-
tion improves the imperfect model W of the Lorenz 1963 system. We use this
demonstration and the realizations of the Lorenz 2005 system to motivate the
use of spatial covariance functions to construct low-rank linear corrections.
We provide relevant background on spatial covariance functions and demon-
strate its value in Section 7.2. In Section 7.3, we construct a low-rank linear
correction under the unrealistic assumptions laid out in Leith (1978). This
construction, however, provides a parametrization that is easily carried over
to state-space models and requires fewer assumptions; we elaborate upon this
parametrization in Section 7.4. We demonstrate both low-rank linear cor-
rections on the Lorenz 2005 system. We end the chapter with a discussion
of further explorations of the low-rank linear correction on real atmospheric
systems.
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NONLINEAR MODEL ERROR?

7.1 The optimal linear correction: does it

improve nonlinear model error?

Demonstrating Leith’s method on Lorenz

1963

For the Lorenz 1963 system, the true model R has the default parameter value
θR = (σR, ρR, βR) = (10, 28, 8/3). The imperfect model W has parameter
θW = (σW , ρW , βW , α) with σW = σR, ρW = ρW , and βW = 2 instead of the
default value of 8/3. When α = 1, the model error is linear in the z-direction,
meaning that the optimal linear correction perfectly captures the model error.
Since our goal is to evaluate the viability of a linear correction for nonlinear
model error, the model error is contaminated with a nonlinear perturbation
by changing the parameter α, which controls the interactive effect of the x-
and y-directions. The model error therefore takes the form

D

x(t)
y(t)
z(t)

 ; θD

 =

 0
0

(1− α)x(t)y(t)− 2
3
z(t)

 ,
with θD = (0, 0,−2

3
, α). If α is one, the model error in the z-direction is exactly

−2
3
z(t), which is easily captured by the optimal linear correction. When α is

not one, the linear part of the model error is contaminated by the nonlinear
term (1 − α)x(t)y(t). The nonlinearity in the model error is increased with
larger values of α, overwhelming the linear part of the model error. We exper-
iment with α between 1.1 and 9 to evaluate the performance of optimal linear
correction under varying levels of nonlinearity. We only report the results for
α of values of 1.1, 1.5, 2, and 3; the unreported values have similar trends as
the reported values.

This section begins with a discussion on the generation of the true state
X and the model error D(X) for the Lorenz 1963 system that are required in
the calculation of the optimal linear correction. Then, we discuss the optimal
linear correction used to construct the improved model W̃ under increasingly
nonlinear model error. Finally, we evaluate the forecast skill of the improved
model W̃ .
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7.1.1 Generating realizations of the true state and
model error

Before we evaluate the optimal linear correction, we must first obtain the
different pieces required to calculate the optimal linear correction (see Equa-
tion (6.9)). These are:

• realizations of the true state X and

• the model error D(X) at the realization X.

We first describe the generation of realizations of the true state X. A
randomly chosen initial condition (x(t0), y(t0), z(t0)) is numerically integrated
with the true model R with ∆t1 = 0.01 × 10, 000†, resulting in a state that
is on the attractor of the system, (x(t1), y(t1), z(t1)). Using this state as the
new initial condition, the true states (x(tn), y(tn), z(tn)), n = {1, ..., 302400},
are sequentially generated by numerically integrating the true model R again
with ∆tn = 0.01. This process provides 302,400 realizations of the true state
X.

Realizations of the model error D(X) are easily obtained by evaluating the
time-derivative functions R and W at each realization of the true state X and
taking their difference. For the Lorenz 1963 system, the model error is simply
evaluated at the generated true states (x(tn), y(tn), z(tn)):

D

x(tn)
y(tn)
z(tn)

 ; θD

 = R

x(tn)
y(tn)
z(tn)

 ; θR

−W
x(tn)

y(tn)
z(tn)

 ; θW


=

 0
0

(1− α)x(tn)y(tn)− 2
3
z(tn)

 ,
for n = {1, ..., 302400}. This process provides 302,400 pairs of the true state
(x(tn), y(tn), z(tn)) and its corresponding model error D[·; θD] that are impor-
tant in calculating the optimal linear correction.

7.1.2 Forecast skill of the optimal linear correction

The optimal linear correction is calculated using the pairs of the true state X
and its corresponding model error D[·; θD] using Equation (6.9). We use the

†The notation ∆t1 = 0.01 × 10, 000 indicates that numerical integration is performed
with a timestep of 0.01 for 10,000 timesteps.
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Figure 7.1: Lorenz 1963: coefficients of the linear correction

optimal linear correction to construct the improved model W̃ :

W̃

x(t)
y(t)
z(t)

 ; θW̃

 = W

x(t)
y(t)
z(t)

 ; θW

+ L̂

x(t)
y(t)
z(t)

+ b̂,

where θW̃ = (θW , L̂, b̂). The parameter L̂ is a 3 × 3 matrix and b̂ is a 3-
dimensional vector. Because the model error is only in the z-direction, the
first two rows of L̂ and the first two values in b̂ have entries of zero. For
varying levels of α, Figure 7.1 plots the nonzero values of the optimal linear
correction, i.e., the entries in the third row of L̂ and the third element in b̂.
Notice that L̂33, the coefficient on the linear part of the model error, is close
to the true value −2/3 when the model error is close to linear (small values of
α) and decreases as the model error is increasingly nonlinear (as α increases).
Furthermore, the other components, L̂31, L̂32, and b̂3, are smaller than L̂33.
For larger α, L̂32 increases and b̂3 and L̂31 decreases. This figure suggests that
a linear correction is perhaps unable to properly capture the model error with
increasing nonlinearities of model error (higher α).

Before evaluating the improved model W̃ , we must generate measurements
of the true state X. The state-space model is assumed to be a fully observed
system (all directions of the state are observed) with unit variances for the
measurement noise. Measurements are generated for different forecast lead
times ∆tn to evaluate the optimal linear correction under increasing levels of
nonlinearity. Note that this forecast lead time ∆tn is different from the ∆tn
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Figure 7.2: Lorenz 1963: forecast skill of the true model R, the imperfect model W , and the improved

model W̃ . The median ES score of forecasts in the time period where
∑
n ∆tn is between 17, 520×

0.01 and 26, 280 × 0.01. Each panel represents a different value of α, the parameter that controls
the nonlinearity of the model error: the leftmost panel represents model error that is close to linear
and the rightmost panel has the most nonlinear model error. The x-axis represents the forecast
lead times ∆tn: larger values represent increasing nonlinearities in the state-space model. The true
model R has the default parameter value θR = (σR, ρR, βR) = (10, 28, 8/3) and the imperfect model
W has the default parameter value θW = (σW , ρW , βW , α) = (10, 28, 2, α).

that is used to generate realizations of the true state X and its model error D
in the last section.

To evaluate the improved model W̃ , we generate forecasts by applying the
square-root EnKF with localization on the state-space models with R, W , and
W̃ as the state transition models and the measurements from the true state X.
We choose an ensemble size of 48. The localization halfwidth is chosen such
that the forecast covariance between any pair of directions is zero. Adaptive
inflation is also applied using the method of artificial evolution of parame-
ters with the successful settings as discussed in Section 4.5: the perturbation
density is a truncated normal distribution with a standard deviation of 0.6,
minimum of 1, and maximum of 5.

We now evaluate the improved model W̃ under increasing nonlinearities
in the model error (larger values of α) and state-space model (larger forecast
lead times of ∆tn). Figure 7.2 plots the median ES score of the forecasts in
the time period where

∑
n ∆tn is between 17, 520 × 0.01 and 26, 280 × 0.01.

Each panel represents a different value of α, the parameter that controls the
nonlinearity of the model error: the leftmost panel represents model error
that is close to linear and the rightmost panel represents model error that is
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significantly nonlinear. The x-axis represents the forecast lead time ∆tn: larger
values represent increasing nonlinearities in the state-space model. For all
three models, we see that forecast skill degrades under increasing nonlinearities
of the state-space model: the ES score increases with increasing forecast lead
times. As expected, the imperfect model W never forecasts better than the
true model R: the ES score is always higher for the imperfect model W than
the true model R for all α and forecast lead times ∆tn.

For small values of α (1.1 and 1.5), the improved model W̃ provides better
forecasts than the imperfect model W . For large values of α (2 and 3), the

improved model W̃ generally does better or just as well as the imperfect model
W for small forecast lead times (∆tn < 75). With α = 2 and large forecast
lead times ∆tn, the imperfect model W forecasts better than the improved
model W̃ . For α = 3, a similar trend is seen but the gap between the two
models increases with larger forecast lead times ∆tn until ∆tn = 96× 0.01 at
which the gap decreases. When the forecast lead time is ∆tn = 168 × 0.01,
both models perform similarly. In other words, regardless of the degree of
nonlinearity, a linear model error does indeed improve nonlinear model error for
the Lorenz 1963 system when the forecast lead time is short. With increasing
nonlinearities of the state-space model (longer forecast lead times), the linear
model error can potentially degrade forecasts.

Since the model error is quadratic, a better model for the model error is to
project the state into the quadratic space with the basis functions x2(t), y2(t),
z2(t), x(t)y(t), and other interactions. Though these terms are nonlinear, a
linear model can still be used to estimate the coefficients as long as these basis
functions are chosen ahead of time. Therefore, even though the model error
correction is described as “linear”, it does not necessarily mean linear in the
state because higher-order terms can be added to the correction. However, it
is impossible to choose which basis functions to use without knowing the form
of the model error a priori. Fortunately, when the true state X is assumed
to be a Gaussian process with a particular spatial covariance function, the
choice of the basis functions is formalized without explicitly specifying them
(Rasmussen and Williams, 2006, Chapter 2). In the next section, we motivate
and introduce spatial covariance functions.
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Figure 7.3: Lorenz 2005: sample estimates of the components in L̂. The axes indicate the indices
of the specified matrix with a total of 960 indices. The (co)variances are indicated by the colors.

7.2 Covariance functions for spatial

processes: motivation and background

We use the Lorenz 2005 system from Example 6.1.1 to motivate spatial covari-
ance functions in this section. If the optimal linear correction L̂ is applied to
this example, the covariance and variance components in L̂ both have a dimen-
sion of 960× 960, indicating that samples on the order of O(9602) are needed
to estimate these components well. In reality, that sample size is impossible to
obtain. If the state is measured every 6 hours, then it would take on the order
of hundreds of years to obtain a sufficient amount of samples! Fortunately,
atmospheric models describe phenomena over geographic regions and thus the
states are spatially correlated. This correlation in space is advantageous: cor-
relation can be made to be a function of distance and thus be described by a
few parameters, which is demonstrated at the end of Section 7.2.2.

In a similar manner to the Lorenz 1963 system in the previous chapter,
the true states z(tn) are generated for n = 1, ..., 302400 by integrating the true
model R with a forecast lead time of ∆tn = 0.001. The model error D is
evaluated at the states z(tn): D[z(tn); ·] = R[z(tn); ·]−W [z(tn); ·]. Assuming
temporal independence, the realizations are used to calculate sample estimates
of the components of the linear correction L̂ from Equation (6.9a): Var[Z(tn)]
and Cov{D[Z(tn); ·], Z(tn)}; Figure 7.3 depicts the sample estimates. Notice
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Figure 7.4: Lorenz 2005: sample estimates of the components in L̂ by distance. The covariances
from Figure 7.3 plotted by distance. There are a total of 1,920 light gray lines in each plot with
the mean of those lines represented by the thick gray line. Because the locations of the elements of
the state are equally-spaced on a circle, the distance are functions of the arc length of two nearby
points ∆s.

how both matrices are highly structured: the covariance is largest in mag-
nitude for nearby states and decreases as the spatial distance increases. To
illustrate that the covariance varies by distance, the elements of the matrices
are plotted as a function of distance in Figure 7.4. The figure makes clear
that the covariance is a smooth function of distance that can accurately be
approximated with a few parameters—far less than the number required to
properly estimate the matrices in L̂. In fact, we show that the empirical mean
of the covariance function (thick gray line in the figure) is well approximated
by a function with only four parameters.

Of course, not all distance functions can be used as a covariance function:
the function must be positive semidefinite, a requirement of covariance func-
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tions. This is a well-studied problem in spatial statistics. We provide a short
review that is relevant to our discussion. Our review is principally based on
Gneiting and Guttorp (2010, Chapters 2 and 3) and Rasmussen and Williams
(2006, Chapters 2 and 4); we refer the reader to the original sources for more
comprehensive reviews.

Suppose there is a spatial stochastic process Y that is a function of the
continuous spatial locations s: Y (·) ≡ {Y (s) : s ∈ D} for the spatial domain
D ∈ Rd with d ≥ 1. A model for the spatial stochastic process is

Y (s) = µ(s) + e(s),

where µ(s) = E[Y (s)] is a deterministic mean function and e(s) is the spatial
variation not captured by the mean function. Two examples of the mean
function are simply zero, i.e., µ(s) = 0, and linear in a vector of covariates
X(s), i.e., µ(s) = βX(s), where X(s) is a vector of covariates observed at s and
β is the parameter. When there is measurement error from the data collection
process, the spatial component e(s) is often divided into two independent
components:

e(s) = η(s) + ε(s),

where η(s) is the component describing the spatial variation and ε(s) is an
additive measurement error with no spatial structure. The measurement error
is often assumed to be iid with variance τ 2. The remaining spatial process
η(s) is assumed to be stationary, which we further elaborate upon in the next
section.

The spatial function η is often assumed to be distributed as a Gaussian
process: η(·) ∼ GP(0, C(·, ·; θ)). Any finite subset of a Gaussian process is
distributed as a multivariate normal distribution. In particular, let S denote
a finite subset in D: S = (s1, ..., sn) with si ∈ D for all i = 1, ..., n. Fur-
thermore, let η(S) be the column vector denoting the function η evaluated
at spatial locations S: η(S) = (η(s1), ..., η(sn))T . Then, η(S) has a multi-
variate normal distribution with mean zero and covariance C(S, S; θ), where
C(S, S; θ) denotes the n× n covariance matrix evaluated at all pairs of S:

C(S, S; θ) =


C(s1, s1; θ) C(s1, s2; θ) · · · C(s1, sn; θ)
C(s2, s1; θ) C(s2, s2; θ) · · · C(s2, sn; θ)

...
...

. . .
...

C(sn, s1; θ) C(sn, s2; θ) · · · C(sn, sn; θ)

 .
Similarly, the measurement error ε(S) is often assumed to be distributed as a
multivariate normal distribution. Since the convolution of two normally dis-
tributed random variables is also normally distributed, Y (S) is also distributed

135



7.2. COVARIANCE FUNCTIONS FOR SPATIAL PROCESSES:
MOTIVATION AND BACKGROUND

as a multivariate normal distribution. These assumptions are important in the
construction of the low-rank linear correction that we introduce in Section 7.3.
First, we provide relevant background on the stationarity assumption and co-
variance functions.

7.2.1 Compactly supported, isotropic covariance
functions

One popular stationarity assumption is second-order stationarity : the covari-
ance is a function of the relative locations s− s′:

Cov[η(s), η(s′)] = C(s− s′; θ) for all s, s′ ∈ D

for some covariance function C with parameter θ. For the covariance matrix
of any finite subset of locations to be symmetric, the covariance function must
satisfy an evenness property: C(s − s′; θ) = C(s′ − s; θ) for all s, s′ ∈ D.
Furthermore, for the covariance matrix of any finite subset of locations to be
a symmetric positive semidefinite matrix, the covariance function must be a
positive semidefinite function:

n∑
i=1

n∑
j=1

aiajC(si, sj) ≥ 0 (7.1)

for all finite sets s1, ..., sn ∈ D and constants ai, aj ∈ R. The covariance
function is positive definite when the greater than or equal sign “≥” is replaced
with the greater than “>” in the above expression. The function is called
valid if it satisfies the condition in Equation (7.1). It is generally not easy to
check the validity of a covariance function C. Since validity is preserved under
sums, products, convex mixtures, and convolutions, new covariance functions
are often constructed from existing covariance functions that have already
been proven to be positive (semi)definite. In this section, we use this fact
to construct a symmetric positive definite function to be used in the linear
correction of the Lorenz 2005 system. For this reason, we restrict our attention
to the two covariance functions used in the construction of this new covariance
function.

If the covariance function C is further assumed to be a function of distance
between two spatial locations h = ‖s − s′‖, the random process is assumed
to be second-order isotropic stationary. These functions are reduced to be
dependent only on the distance h: C(s, s′; θ) = C(h; θ). There are a few
features of isotropic covariance functions worth mentioning. The sill is defined
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as C(0; θ) = limh→∞C(h; θ) and is denoted by ν. When the sill ν is one, the
function C is called a correlation function. The range is the smallest h where
C(h; θ) equals the sill. Not all covariance functions have a range and thus a
related notion called the effective range is defined as the the smallest h for
which C(h; θ) is equal to 95% of the sill, which is a function of the range
parameter, denoted by c. For functions with a range, the range parameter is
equal to the range. The two covariance functions used in the construction of
the new covariance function are both isotropic covariance functions.

For computational reasons, it is often desirable to choose models with
compactly supported covariance functions because these types of functions
lead to sparse covariance matrices. Isotropic covariance functions that have
a range are compactly supported and the Wendland function is an example
of such a function for the domain D = Rd, d ∈ {1, 2, 3}. Let the function
a+ ≡ max(a, 0). The Wendland function CW

q is defined as:

CW
q (h; ν, c, τ) =


ν
(
1− h

c

)τ
+

if q = 0

ν
(
1− h

c

)τ
+

[
1 + τ h

c

]
if q = 1

ν
(
1− h

c

)τ
+

[
1 + τ h

c
+ τ2−1

3

(
h
c

)2]
if q = 2

(7.2)

with sill parameter ν, range parameter c > 0, differentiability parameter
q ∈ {0, 1, 2}, and shape parameter τ ≥ 2(q + 1) ≡ τ0. Figure 7.5 plots the
Wendland function against distance h; each panel varies a parameter while
keeping the others fixed. Though not obvious from the figure, the differentia-
bility parameter q controls the smoothness of the spatial process1. To illustrate
the effect of the differentiability parameter, Figure 7.6 plots random functions
sampled from a Gaussian process with the same parameter values used to plot
Figure 7.5c. This figure also illustrates the ability of a Gaussian process to
model complicated phenomena beyond linearity: an idea that we mentioned
earlier.

The Wendland function doesn’t quite capture the form of the covariance
that we seek: since the Wendland function is positive for all distances, it cannot
properly capture the negative covariances present in the Lorenz 2005 system as
seen in Figure 7.4. The hole effect is the presence of fluctuations (or “wiggles”)
in the covariance function that results in negative covariances. Chiles and
Delfiner (1999) advise against modeling hole effects unless there is a physical
explanation. In their setting of modeling one spatial realization, their advice

1In particular, the covariance function is 2q-times continuously differentiable and thus
the random process Y (s) is q-times mean-square differentiable. See both recommended
references for more information.
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(a) Varying sill parameter ν. The values of the
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the parameters ν, q, and τ are 1, 1, and 4, re-
spectively.

0

1
2

1

0 π 8 π 4 3π 8 π 2 5π 8

distance (h)

CW

q = 0

q = 1

q = 2

(c) Varying differentiability parameter q. The
values of the parameters ν, c, and τ are 1, π/2,
and 6, respectively.
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Figure 7.5: Wendland function. The Wendland function plotted against distance h. Each panel
varies the value of a parameter while keeping the others fixed. The Wendland function is defined
in Equation (7.2).

138



7.2. COVARIANCE FUNCTIONS FOR SPATIAL PROCESSES:
MOTIVATION AND BACKGROUND

−2

0

2

0 π 2 π 3π 2 2π
s

Y(s)

q = 0

q = 1

q = 2

Figure 7.6: Effect of the differentiability parameter. Random functions drawn from a Gaussian
process with mean zero and covariance given by the Wendland function (Equation (7.2)): Y (·) ∼
GP(0, CWq (·, ·; 1, π/2, 6)).

should be heeded because statistically insignificant fluctuations may appear
during exploratory data analysis. However, there is good reason to believe
that the states of the Lorenz 2005 system have a strong hole effect for two
reasons: (1) there are prominent spatial waves in the state and (2) Figure 7.4
is constructed with many spatial realizations (302,400 of them).

The exponentially damped cosine function is an example of a valid positive
definite function that allows for negative covariances. It has the domain D =
Rd with integer-values d ≥ 1. The function is defined as:

C̃C(h; ν, c, τ) = ν exp

(
−τ h

c

)
cos

(
h

c

)
with sill parameter ν, range parameter c > 0, and shape parameter τ ≥
1/ tan( π

2d
) ≡ τ1. The cosine component is the part of the function that al-

lows for negative covariances. The exponential component has the effect of
“damping” the cosine component so that C̃C(h; ·) has a limit as h→∞. The
restriction on τ is important to maintain the positive definiteness of the func-
tion (Zastavnyi, 2000). This particular covariance function does not have a
range and thus only has an effective range.

Not only are we interested in covariance functions that allow for nega-
tive covariances, we are interested in having these functions be compactly
supported for computational reasons. One such covariance function is easily
constructed by simply multiplying the exponentially damped cosine function
by the compactly supported Wendland function. Doing this, however, results
in an overparametrized covariance function: it has two sill parameters, two
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range parameters, and two shape parameters. Since the Wendland function
contains all features needed of a compactly supported covariance function ex-
cept for a hole effect, we only desire the exponentially damped cosine function
for its cosine component. Unfortunately, the cosine component in the cur-
rent parametrization of the exponentially damped cosine function is not inter-
pretable. We therefore reparametrize the function to have a parameter that
controls the number of periods in the cosine function. This reparametrized
function is more interpretable and used to construct our compactly supported
covariance function with a hole effect.

Let c = c′/(2πnp), where np controls the number of periods within the
distance c′. Since c is allowed to be any value strictly greater than zero, the
ratio c′/(np) must also be strictly greater than zero. The reason for choos-
ing two parameters to represent the period parameter is explained after we
reparametrize the exponentially damped cosine function. The reparametrized
function is as follows:

CC
n (h; ν, c′, τ, p) = ν exp

(
−τ × 2πnp× h

c′

)
cos

(
2πnp× h

c′

)
with sill parameter ν, range parameter c′ > 0, shape parameter τ ≥ 1/ tan( π

2d
) ≡

τ1, maximum period parameter n, and period fraction parameter p. Though
n and p both take any positive, finite value, it is advantageous to restrict their
ranges to avoid aliasing and thus identifiability issues when estimating these
parameters. Aliasing occurs when two signals are indistinguishable from each
other and is particularly an issue for sinusoidal functions, such as the cosine
function. Specifically, input values that are separated by 2π are evaluated to
the same value: for all x ∈ R and integer values i, cos(x) = cos(x+ 2πi) and,
because cosine is an even function, cos(x) = (2πi−x). For the reparametrized
exponentially damped cosine function, aliasing is avoided by choosing an inte-
ger n ≥ 0 and restricting p ∈ [0, 1] and thus np is interpreted as the maximum
number of periods within a distance of c′.

With this new reparametrization, we can now construct a compactly sup-
ported covariance function that allows for negative covariances by simply mul-
tiplying it by the Wendland function:

CWC
q,n (h; θ) = CW

q (h; ν, c, τ)CC
n (h; 1, c, τ1, p). (7.3)

To avoid overparametrization and identifiability issues, we fix a few parameters
in the reparametrized exponentially damped cosine function portion: there is
no need for two sill parameters, so the sill parameter ν is set to one; the shape
parameter τ is set be the minimum value τ1 that makes it a valid positive
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Figure 7.7: Wendland exponentially damped cosine function. Since Figure 7.5 already provides
intuition for most of the function’s parameters, this figure only depicts the variation in the maximum
period parameter n. The values of the parameters ν, c, q, τ , p, and d are 1, π/2, 1, 4, 1, and 1,
respectively. The function is defined in Equation (7.3).

definite function; and since the Wendland function naturally has a maximum
distance, i.e., the range, the range parameter c′ is set to equal the range param-
eter of the Wendland function. We call this function the Wendland exponen-
tially damped cosine function. The function has a differentiability parameter
q ∈ {0, 1, 2}, maximum period parameter n ∈ {1, 2, ...}, and parameter vector
θ ≡ (ν, c, τ, p) containing the sill parameter ν, range parameter c > 0, shape
parameter τ ≥ 2(q + 1), and period fraction parameter p ∈ [0, 1]. Because
of the restriction imposed by the Wendland function, the function is valid for
the domain D = Rd with d ∈ {1, 2, 3}. When p = 0, the CC

n component is
exactly one and thus the Wendland exponentially damped cosine function is
equal to the Wendland function. Since Figure 7.5 already provides intuition
for many of the parameters, Figure 7.7 shows how the function varies with
different period parameter values.

7.2.2 Covariance functions on spherical domains:
validity and computational gains in efficiency

Not all covariance functions are valid for spherical domains, like the domain
of the Lorenz 2005 system. Gneiting (2013) reviews necessary and sufficient
conditions for positive definite functions on spherical domains. Before dis-
cussing how to make our newly constructed covariance function valid for
spherical domains, we describe notation necessary for spherical domains. Let
Sd = {s ∈ Rd+1 : ‖s‖ = 1} denote the unit sphere in Rd+1 for integer-valued
d ≥ 1. Define the distance function θ(s, s′) = arccos(〈s, s′〉) to be the great cir-
cle, spherical, or geodesic distance on Sd where 〈s, s′〉 denotes the inner prod-
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Figure 7.8: Lorenz 2005: fitting the Wendland exponentially damped cosine function to the compo-

nents of L̂. The Wendland exponentially damped cosine function CWC
1,20 is fit to the empirical mean

covariance functions of Figure 7.4.

uct in Rd+1. The covariance function now depends on h = θ(s, s′) ∈ [0, π].
For example, the domain of the Lorenz 2005 system is S1 and one distance
metric is the shortest arc length between two spatial locations. To make the
Wendland exponentially damped cosine function of Equation (7.3) valid for
spherical domains, one can simply restrict the range parameter c to be in
(0, π] by Theorem 3 in Gneiting (2013). Similar to how the Wendland expo-
nentially damped cosine function on D ∈ Rd is valid only for d ∈ {1, 2, 3}, the
Wendland exponentially damped cosine function on D ∈ Sd is also valid only
for d ∈ {1, 2, 3}.

Now that the new constructed covariance function is guaranteed to be
valid on spherical domains, we fit the Wendland exponentially damped cosine
function to the empirical mean covariance functions represented by thick gray
lines in Figure 7.4; Figure 7.8 plots the results. Notice how well the fitted
functions match the empirical mean functions. Though the fits are not perfect,
the fitted function has only four parameters, which is sufficiently estimated
with far fewer samples than the number required to estimate the full variance
or covariance matrix. We exploit this spatial structure in the construction of a
low-rank linear correction in Section 7.3. Before we do that, we first introduce
notation useful for the construction of the model and discuss computational
gains that can be exploited for random processes on spherical domains.

With Gaussian processes, the largest computational expense is the inver-
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sion of the covariance matrix at the spatial locations S = (s1, ..., sn) ∈ D: this
is an O(n3) operation. When a random process is assumed to be second-order
isotropic stationary, the variance of the equispaced observations on a spherical
domain is a circulant matrix . For these types of matrices, fast Fourier trans-
forms (FFTs) can be used to quickly invert the matrix in O(n log n) time. Rue
and Held (2005, Section 2.6.1) is a great resource on computational gains to
be exploited with circulant matrices. To illustrate the circulant nature of the
matrices, we use the Lorenz 2005 system as an example. We first generalize
the notation used to describe model error, which is useful in the construction
of a low-rank linear correction. In addition to indexing the state by time t as
previously done, i.e., X(t), let the state also be indexed by space: X(t, s) for
a spatial location s ∈ Sd. Furthermore, we similarly index the model error D
by space and further introduce a shorthand: D(t, s) ≡ D[X(t, s); ·].

Recall that the state of the Lorenz 2005 system is denoted by Z instead
of by X. Let dz denote the resolution of the system, where dz = 960 in our
demonstrations. Suppose the states are observed at si = i−1

dz
× 2π for each

i ∈ {1, ..., dz}. Then, the distance between two nearby locations si and sj
for |i − j| = 1 is ∆s ≡ 2π

dz
. If the true state Z(t, ·) for a particular time

t is assumed to be a second-order isotropic stationary random process with
covariance function C(·; θz), then the variance of Z(t, S) is a dz × dz circulant
matrix with the following form:

Var[Z(t, S)]

=


C(0; θz) C(∆s; θz) C(2∆s; θz) · · · C(2∆s; θz) C(∆s; θz)
C(∆s; θz) C(0; θz) C(∆s; θz) · · · C(3∆s; θz) C(2∆s; θz)

...
...

...
. . .

...
...

C(∆s; θz) C(2∆s; θz) C(3∆s; θz) · · · C(∆s; θz) C(0; θz)

 .
Similarly, if the covariance between the model error D(t, ·) and the state Z(t, ·)
for a particular time t is assumed to be second-order isotropic with covariance
function C(·; θdz), then the covariance is also a dz × dz circulant matrix with
the following form:

Cov[D(t, S), Z(t, S)]

=


C(0; θdz) C(∆s; θdz) C(2∆s; θdz) · · · C(2∆s; θdz) C(∆s; θdz)
C(∆s; θdz) C(0; θdz) C(∆s; θdz) · · · C(3∆s; θdz) C(2∆s; θdz)

...
...

...
. . .

...
...

C(∆s; θdz) C(2∆s; θdz) C(3∆s; θdz) · · · C(∆s; θdz) C(0; θdz)

 .
One more computationally advantageous feature is that a circulant matrix is
uniquely defined by its first row (called the base of the matrix). Therefore,
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only dz-vectors are computed and stored instead of dz × dz matrices. If the
random process is modeled with a compactly supported covariance function,
the base vector is sparse, providing another computational gain.

7.3 Low-rank linear correction under

unrealistic assumptions

Under the same assumptions made in Leith (1978), we construct a low-rank
linear model for the model error D. Recall from our discussion in Section 6.3
that these assumptions are quite restrictive: they require the ability to eval-
uate the true state X and model error D(X). Therefore, the model that we
construct in this section is impractical for state-space models, but it does pro-
vide some intuition for building a similar model that requires less assumptions
than Leith (1978). In fact, the model easily carries over to state-space models
with few modifications.

Suppose the model error D at time t is a random process that is a function
of the continuous spatial locations s ∈ D. Further suppose it is a linear
function of another spatial random process X:

D(t, s) = L(s, ·)X(t, ·) + e(t, s), (7.4)

where L(s, ·) is a function that maps the state X to the model error D and
e(t, s) is the model error not captured by the mean model L(s, ·)X(t, ·). If the
joint distribution of the model error D and state X is assumed to be a Gaussian
process, the linear model is easily derived as the conditional distribution of D
given X. We detail the assumptions that lead to this derivation.

Suppose that the model error D and the true state X are both second-order
stationary with covariances

Cov[D(t, s), D(t, s′)] = σ2
dC(s, s′; θd),

Cov[X(t, s), X(t, s′)] = σ2
xC(s, s′; θx).

The function C is a correlation function2 with parameters θd and θx for the
model error and state processes, respectively. Similarly, the sill parameters
are σ2

d and σ2
x, respectively. There is no need to assume isotropy, so we do

not make that assumption here. The mean of both processes is assumed to

2Recall from the previous section that correlation functions are covariance functions
with a sill parameter of one.
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be zero. Further assume that their relationship is also second-order stationary
with covariance

Cov[D(t, s), X(t, s′)] = ρσxσdC(s, s′; θdx)

with correlation function C with parameter θdx. The sill parameter is a func-
tion of the square root of the sill parameters from both processes (σ2

x and σ2
d)

and a correlation parameter ρ ∈ [−1, 1]. Lastly, assume that the two processes
are jointly distributed as a Gaussian process:[

D(t, ·)
X(t, ·)

]
∼ GP

([
0
0

]
,

[
σ2
dC(·, ·; θd) ρσdσxC(·, ·; θdx)

ρσdσxC(·, ·; θdx) σ2
xC(·, ·; θx)

])
.

Let θ contain all parameters of the model: θ = (σ2
x, σ

2
d, ρ, θx, θd, θdx). We first

derive the components of Equation (7.4) and then its likelihood.
The model is easily derived by examining the conditional distribution of

the model error D. Suppose the model error process D is observed at finite
spatial locations Sd ∈ D and the state process X is observed at finite spatial
locations Sx ∈ D. Let the number of components in Sd and Sx be denoted by
dd and dx, respectively. Then, the joint distribution of the observed processes
is [

D(t, Sd)
X(t, Sx)

]
∼ N

([
0
0

]
,

[
σ2
dC(Sd, Sd; θd) ρσdσxC(Sd, Sx; θdx)

ρσdσxC(Sx, Sd; θdx) σ2
xC(Sx, Sx; θx)

])
.

The conditional distribution of the model error D is also distributed as a
multivariate normal distribution with moments

E[D(t, Sd) |X(t, Sx)]

= ρ
σd
σx
C(Sd, Sx; θdx)C(Sx, Sx; θx)

−1X(t, Sx),

Var[D(t, Sd) |X(t, Sx)]

= σ2
dC(Sd, Sd; θd)− ρ2σ2

dC(Sd, Sx; θdx)C(Sx, Sx; θx)
−1C(Sx, Sd; θdx). (7.5)

These moments of the conditional distribution provide the components in
Equation (7.4).

The first moment provides the form of the linear mapping L:

L(Sd, Sx; θL) = ρ
σd
σx
C(Sd, Sx; θdx)C(Sx, Sx; θx)

−1 (7.6)

with parameter θL = (ρ, σd, σx, θx, θdx). The linear mapping is a dd × dx ma-
trix that is a function of the covariance between the model error D(t, Sd) and
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the state X(t, Sx) (C(Sd, Sx; θdx)) standardized by the variance of the state
(C(Sx, Sx; θx)). Notice that the form is very similar to the linear mapping
derived by Leith (see Equation (6.9a)): it is a function of the variance of the
state X (Var(X)) and its covariance with the model error D (Cov[D(X), X]).
However, because of the considerable structure imposed on the random pro-
cesses, the linear mapping is parametrized by a few parameters and hence we
call it a low-rank linear correction. This particular form of the linear map-
ping is important later when we construct the low-rank linear correction for
state-space models.

The second moment provides the distribution for the error e(t, S) that is
not captured by the state X:

e(t, Sd) ∼ N (0, C(Sd, Sd; θd|x)),

with variance equal to the expression in Equation (7.5) with parameter θd|x =
(ρ, σ2

d, θd, θx, θdx):

variance unexplained︷ ︸︸ ︷
C(Sd, Sd; θd|x)

= σ2
dC(Sd, Sd; θd)︸ ︷︷ ︸
total variance

− ρ2σ2
dC(Sd, Sx; θdx)C(Sx, Sx; θx)

−1C(Sx, Sd; θdx)︸ ︷︷ ︸
variance explained

.

This is exactly the variance of the model error that is not captured by the
mean model L(s, ·)X(t, ·). The first term is the total variance of the model
error D(t, Sd) and the second term is the variance of the model error D(t, Sd)
explained by the state X(t, Sx). The difference between the two terms is the
remaining variance in the model error unexplained by the state X(t, Sx).

The model we have presented is often used to model multivariate spatial
processes in the spatial statistics literature (Gelfand and Banerjee, 2010). The
underlying assumption we made about the relationship between the two spatial
processes X(t, ·) and D(t, ·) that we have presented here is called separable and
is the most simplifying assumption for these types of models. The model is
called separable because it separates the local covariance from the correlation
based on distance. Specifically, for all s, s′ ∈ D, the local covariance is[

D(t, s)
X(t, s)

]
∼ N

([
0
0

]
,

[
σ2
d ρσdσx

ρσdσx σ2
x

])
and the correlation based on distance is[

D(t, s)
X(t, s′)

]
∼ N

([
0
0

]
,

[
σ2
d ρσdσxC(s, s′; θdx)

ρσdσxC(s′, s; θdx) σ2
x

])
.
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This is a strict assumption that assumes that the relationship between two
spatial processes is the same for all locations in the domain. Furthermore,
because of the spatial structure imposed on the variances and covariance of
the random processes, this model is equivalent to a linear regression with
regularization similar to the SVD method proposed by Danforth et al. (2007)
(see Equation (6.12)). Unlike SVD, however, this particular regularization
respects the spatial structure of the random processes.

To complete the model, the likelihood is derived for Equation (7.4). Let
the mean of D(t, Sd) be denoted as D(t, Sd) = L(Sd, Sx; θ)X(t, Sx). Then, the
log likelihood at time t is

log p[D(t, Sd), X(t, Sx) | θ] = log p[D(t, Sd) |X(t, Sx), θ] + log p[X(t, Sx) | θ],

with

log p[D(t, Sd) |X(t, Sx), θ]

= −dd
2

log(2π)− 1

2
log |C(Sd, Sd; θd|x)|

− 1

2

[
D(t, Sd)−D(t, Sd)

]T
C(Sd, Sd; θd|x)

−1
[
D(t, Sd)−D(t, Sd)

]
and

log p[X(t, Sx) | θ]

= −dx
2

log(2π)− 1

2
log |C(Sx, Sx; θx)| −

1

2
X(t, Sx)

TC(Sx, Sx; θx)
−1X(t, Sx).

Since the model error D and the state X is assumed to be temporally inde-
pendent, the log likelihood for all observations evaluated at times t = 1, ..., T
is

log p(data | θ) =
T∑
t=1

log p[D(t, Sd) |X(t, Sx), θ] +
T∑
t=1

log p[X(t, Sx) | θ]. (7.7)

With the log likelihood, any applicable optimization method can be used to
estimate the parameters of the model. We end this section by demonstrating
the effectiveness in the low-rank linear correction in improving the imperfect
model W of the Lorenz 2005 system from Example 6.1.1.

7.3.1 Demonstration: Lorenz 2005

So far, we have introduced three different linear corrections under the assump-
tions made in Leith (1978):
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• the least-squares solution L̂ from Equation (6.9a);

• the regularized linear correction L̃ from Equation (6.12);

• the low-rank linear correction L(·, ·; θ̂L), where θ̂L is the subset of the vector
θ that maximizes the likelihood in Equation (7.7).

In this section, we plug these linear corrections into the improved model

W̃ (z(t); θW̃ ) = W (z(t); θW ) + Lz(t)

and evaluate their forecast skill on the Lorenz 2005 system presented in Ex-
ample 6.1.1. We emphasize that the linear corrections are not estimated while
filtering the state-space model, as done in Section 5.5. For that to happen, we
need to make modifications to the linear correction presented in Equation (7.4),
which we present in the next section.

Under the assumptions made by Leith, realizations of the true state Z and
the model error D must be generated to estimate the above linear corrections.
The process to generate the realizations is described at the beginning of Sec-
tion 7.2: this generated 302,400 realizations from the Lorenz 2005 system.
This is a sufficient number of samples to estimate all three linear corrections.
In particular, this was enough to obtain a full-rank sample estimate of Var[Z]
to calculate L̂. Furthermore, the realizations are sufficient to directly calculate
the regularized linear correction L̃. Before estimating the optimal θ̂L for the
low-rank linear correction, we must make a few assumptions regarding the cor-
relation structure of the true state Z and the model error D and the correlation
between them. In the section labeled “Estimating parameters of the low-rank
linear correction”, we discuss these assumptions and describe the estimation
procedure to find θ̂L to be plugged into the low-rank linear correction.

All three of these linear corrections are then plugged into W̃ and, with
measurements generated from the true model R, we filter the state-space model
with the improved model W̃ as its state transition. Similarly, we also filter
with the true model R and the imperfect model W as the state transition
models and compare the forecast skills of all models at the end of the section.

Estimating parameters of the low-rank linear correction

In addition to the assumptions of the model used to construct the low-rank
linear correction (Equation (7.4)), we further assume that the model error
D, the true state Z, and their correlation are isotropic. The exploratory data
analysis in Figure 7.4 indicated strong hole effects in both the covariance of the
true state Z and the covariance between the true state Z and model error D,
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so we choose the form of their covariances to be the Wendland exponentially
damped cosine function:

Cov[Z(t, s), Z(t, s′)] = σ2
zC

WC
qz ,n (s, s′; θz),

Cov[D(t, s), Z(t, s′)] = ρσzσdC
WC
qdz ,n

(s, s′; θdz),

where θz = (cz, τz, pz), and θdz = (cdz, τdz, pdz). The covariance of the model
error D is not observed to have a hole effect and is simply chosen to be the
Wendland function:

Cov[D(t, s), D(t, s′)] = σ2
dC

W
qd,n

(s, s′; θd),

where θd = (cd, τd). The parameters q·, n, c·, τ·, and p· are the differen-
tiability, maximum wavelength, range, shape, and period fraction parame-
ters, respectively. The model error is evaluated at the locations of the state:
S ≡ Sd = Sz = (0, 1

dz
× 2π, 2

dz
× 2π, 3

dz
× 2π, ..., dz−1

dz
× 2π).

Since a few of the parameters are integer-valued, such as q· and n, we
cannot directly employ off-the-shelf optimization algorithms to find the pa-
rameter values that maximize the likelihood from Equation (7.7). Therefore,
we enumerate over a reasonable range of values for the integer-valued parame-
ters, employ Nelder-Mead constrained optimization to estimate the remaining
continuous-valued parameters, and report on two sets of parameter values,
θ̂EDAL and θ̂CVL .

Our exploratory data analysis indicated that the state Z is a smooth spatial
process, so we fix the differentiability parameter of the state Z to be qz =
2. The model error D was not very smooth and similarly we fix qd = 0.
Furthermore, both plots in Figure 7.4 showed the presence of at most four
“wiggles” and thus a reasonable n is 10. We also explored n = 0 and 20. We
report on the following parameter values that gave the best overall forecast
skill (ES):

qz = qdz = 2, qd = 0, n = 0,

σ̂2
d = 142.58, θ̂d = (31.00

960
× 2π, 46.82).

σ̂2
z = 16.03, θ̂z = (87.00

960
× 2π, 49.98), and

ρ̂ = −0.30, θ̂dz = (7.63
960
× 2π, 6.00),

which we denote as θ̂EDAL .
For the other set of reported parameter values, we used five-fold cross-

validation to choose the differentiability parameters qd, qz, and qdz (varied as
0, 1, and 2) and the maximum period parameter n (varied as multiples of 10
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between 0 and 100, inclusive). The following set of parameter values minimized
the out-of-sample root-mean-square error (RMSE):

qz = qdz = 0, qd = 2, n = 0,

σ̂2
d = 133.09, θ̂d = (11.97

960
× 2π, 49.99).

σ̂2
z = 2.34, θ̂z = (480.00

960
× 2π, 19.81), and

ρ̂ = −0.068, θ̂dz = (478.13
960
× 2π, 50.00);

which we denote as θ̂CVL .
The out-of-sample RMSE is the smallest for the optimal linear correction

given by L̂, followed by L̃, and then L(S, S; ·) for all combinations of settings.
Oddly, even though a strong hole effect is observed (see Figure 7.4), both sets
of parameter values do not include the exponentially damped cosine part, i.e.,
n = 0. Upon closer inspection, this result is explained by the results from
Figure 7.8: both have the same fitted period parameter value of 0.18 when n
is chosen to be 20. Extrapolating this result to the calculation of L(S, S; ·),
the same fitted value is effectively canceling out the cosine components present
in both correlation functions, since the inverse of CWC

qz ,n is multiplied by CWC
qdz ,n

.

Figure 7.9 plots the values of the linear corrections L̂, L̃, L(S, S; θ̂EDAL ),

and L(S, S; θ̂CVL ); the linear corrections are 960× 960 matrices and the figure
only shows the first 50 × 50 elements. Compared to L̃, the low-rank linear
correction L(S, S; ·) better captures the general shape and magnitude of L̂.
Further comparing L(S, S; ·) to L̃, notice that L(S, S; ·) better captures the
structure of L̂. The difference is explained by the choice of regularization:
the regularization to obtain L(S, S; ·) is cognizant of the spatial structure of
the underlying processes and therefore correctly puts higher weights on parts
of the state-space that are more important in predicting the model error D.
In particular, the correlation between the model error D(t, s) and Z(t, s′) is
large for nearby spatial locations s, s′ and therefore nearby states have a larger
influence in predicting model error. On the other hand, the regularization to
obtain L̃ is oblivious to the spatial structure of the correlation, diluting the
weights to all parts of the space. The low-rank linear correction L(S, S; ·),
however, does not quite correctly capture the sign of the weights in L̂, whose
superdiagonal entries have large positive weights while the subdiagonal entries
have large negative weights. This is not captured by L(S, S; ·) because the
correlation is assumed to be isotropic and hence depends only on distance,
i.e., ‖s− s′‖ as opposed to s− s′.
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Figure 7.9: Lorenz 2005: first 50× 50 elements of the linear corrections
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Figure 7.10: Lorenz 2005: forecast skill of the linear corrections under unrealistic assumptions.
The median ES score of forecasts in the time period where

∑
n ∆tn is between 13, 140× 0.001 and

17, 520×0.01. The x-axis represents the forecast lead times ∆tn: larger values represent increasing
nonlinearities in the state-space model.

Forecast skill of the linear corrections

We evaluate the forecast skills of the following state transition models: the
true model R, the wrong model W , and the improved model W̃ with linear
corrections L̂, L̃, L(S, S; θ̂EDAL ), and L(S, S; θ̂CVL ). Before we do that, we first
describe the state-space model and filtering process. We generated measure-
ments from a partially observed system in which every other state location
is observed with a standard deviation of one. The forecast lead time ∆tn is
varied between 6× 0.001 and 120× 0.001 to observe the model improvements
as a function of increasing nonlinearities of the state transition model. We
apply the deterministic square-root EnKF with localization halfwidth 5

960
× π

and tapering with the Gaspari-Cohn function. The ensemble size is chosen
to be M = 200. We also estimated an inflation parameter with the method
of artificial evolution of parameters; we used the default DART settings as
described in Section 5.5.2.

Figure 7.10 reports the median ES for the time period where
∑

n ∆tn is

between 13, 140 × 0.001 and 17, 520 × 0.01. All improved models W̃ perform
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better than the imperfect model W for all forecast lead times ∆tn. For al-
most all forecast lead times, Leith’s linear correction L̂ performed the best,
Danforth et al.’s linear correction L̃ performed the worst, and the low-rank
linear correction L(S, S; ·) performed somewhere in between. This is surprising
since the low-rank linear corrections L(S, S; ·) had larger out-of-sample RMSE
than L̃. Even more surprisingly, the low-rank linear correction with param-
eter values θ̂EDAL performed better the one chosen via cross-validation (θ̂CVL )
for all forecast lead times and better than L̂ for forecast lead times 6× 0.001,
12× 0.001, and 18× 0.001.

There are many possible reasons for the conflicting result. The out-of-
sample RMSE is calculated under the assumption of temporal independence,
which is an assumption that need not apply to state-space models. Therefore,
the best model for prediction under the assumptions made by Leith (1978)
does not necessarily mean that it is also the model with the best forecast skill.
Furthermore, the parameter value found could be a local maxima instead of
a global maxima since the existence of a unique maximum likelihood estima-
tor is not guaranteed for stationary Gaussian processes (Zimmerman, 2010)).
Another possibility is the choice of the maximization procedure used: the
Nelder-Mead method is known to converge to a non-stationary point (McKin-
non, 1998).

The forecasts from the low-rank linear correction are not sensitive to the
choice of the integer-valued parameters, i.e., differentiability parameter q and
the maximum period parameter n. To test our hypothesis, we filtered the
model with other estimated parameters θ̂L fixed at different values of q and n.
Provided that the value of n is “reasonable”, i.e., had values of up to 50, many
of these low-rank linear corrections have better forecast skill (lower ES values)
than the model with the linear correction L̃ and many more are better than the
imperfect model W . This is reassuring: the massive effort that we employed in
this section to choose the integer-valued parameters is not required to improve
forecast skill over the imperfect model W .

7.4 Low-rank linear correction for

state-space models

In the last section, we demonstrated the effectiveness of the low-rank linear
correction in improving nonlinear model error. Unfortunately, that low-rank
linear correction cannot be directly applied due to the unrealistic assumptions
made in Leith (1978): the true state cannot measured without error and the
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model error cannot be obtained because it is impossible to evaluate the true
model R. The form of the low-rank linear correction from the last section does,
however, provide guidance on how to construct a low-rank linear correction
that is applicable to state-space models.

Instead of approximating the continuous state transition modelR[x(t); θR] ≈
W [x(t); θW ], suppose that a better approximation can be made with a linear
correction:

R[x(t); θR] ≈ W [x(t); θW ] + L(θt)x(t),

where L(·) is a dx×dx matrix that depends on the parameter θt. Unlike in the
last section, the parameter of the linear mapping is allowed to vary in time
and thus temporal independence is not assumed. It is possible to assume
temporal independence by replacing the time-varying parameter θt with a
static parameter θ, but that assumption is not made here for more flexibility.
To parametrize a low-rank linear correction L(·), let’s examine the form of the
low-rank linear correction from the previous section (see Equation (7.6)). In a
state-space model, the model error is to be corrected at the same locations of
the state, so Sd = Sx can be replaced with a single vector of spatial locations
S. Equation (7.6) provides one possible form for L(·):

L(θt) = ρt
σt,d
σt,x

C(S, S; θt,dx)C(S, S; θt,x)
−1

with parameter θt = (ρt, σt,d, σt,x, θt,x, θt,dx). The problem with this particular
linear correction is identifiability of the three parameters ρt, σt,d, and σt,x. This
is easily remedied by replacing the scalar term ρt

σt,d
σt,x

with one parameter βt,

providing another form for L(·):
L(θt) = βtC(S, S; θt,dx)C(S, S; θt,x)

−1

with parameter θt = (βt, θt,x, θt,dx). Not only does this form eliminate identi-
fiability issues, it also reduces the number of parameters to be estimated. We
end this section by demonstrating the effectiveness in the low-rank linear cor-
rection in improving the imperfect model W of the Lorenz 2005 system from
Example 6.1.1. Unlike the previous section, the parameters of the low-rank
linear correction are estimated while filtering the state-space model with the
improved model W̃ as the state transition model.

7.4.1 Demonstration: Lorenz 2005

For the same reasons discussed in Section 7.3.1, the state and its relationship
to model error are assumed to be second-order isotropic stationary. The forms
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of their covariances are both chosen to be the Wendland exponentially damped
cosine function. These choices lead to the following linear correction:

L(θt) = βtC
WC
qt,dx,n

(S, S; θt,dx)C
WC
qt,x,n(S, S; θt,x)

−1, (7.8)

where θt = (βt, θt,dx, θt,x), θt,dx = (ct,dx, τt,dx, pt,dx), and θt,x = (ct,x, τt,x, pt,x).
The parameters qt,·, n, ct,·, τt,·, and pt,· are the differentiability, maximum
wavelength, range, shape, and period fraction parameters, respectively. If n is
fixed to a value greater than zero, the maximum number of parameters to be
estimated is 9. If n is fixed to zero, there is no need to estimate the period
fraction parameters pt,·, this reduces the number of parameters to be estimated
to 6. This number can be further reduced by fixing the differentiability pa-
rameters qt,· or shape parameters τt,·. No matter which values are fixed, the
number of parameters to be estimated for this low-rank linear correction is far
fewer than O(d2z) required by Leith’s linear correction.

The same state-space model settings are used as outlined in Section 7.3.1.
The parameters of the linear correction are estimated with and without the
assumption of temporal independence; the latter assumes that the parameters
are static. In both cases, we apply the EnKF-APF algorithm developed in
Chapter 5 to estimate the parameters. When not assuming temporal indepen-
dence, the parameters are estimated in an online manner by simply applying
artificial evolution of parameters. When assuming that the parameters are
static, the parameters are estimated with 25 runs of the iterated filter (IF)
(Ionides et al., 2015).

We use different parameter settings to test the robustness of the low-rank
linear correction. The maximum period parameter n is fixed and varied among
values of 0, 10, and 20, and 100. The differentiability parameters qt,· are both
estimated and fixed to the values guided by the results from Section 7.3.1. In
the last section, the shape parameters τt,· were generally difficult to estimate
and thus we test both estimating them and fixing them to be the minimum
value that maintains the validity of the Wendland exponentially damped cosine
function. The rest of the parameters, including the inflation parameter λt, are
estimated with the EnKF-APF algorithm and artificial evolution of parameters
or IF, depending on the assumptions of the model. The perturbation density is
chosen to be a product of truncated normal distributions with initial standard
deviations and constraints as listed in Table 7.1.

Figure 7.11 reports the median ES during the time period
∑

n ∆tn between
13, 140 × 0.001 and 17, 520 × 0.01 under the best parameter settings. Allow-
ing the parameters to vary with time, the best performing set of parameters
(denoted as θ̂t) has values n = 0, qdz = qz = 0, and fixed τdz and τz. When as-
suming temporal stationarity, the best performing set of parameters (denoted
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parameter initial sd minimum maximum

βt 0.1 -50 50

ct,dz, ct,z
1
dz
π 0 π

τt,dz, τt,z 0.1 2(qt,· + 1) 10

qt,dz, qt,z 0.1 0 2

pt,dz, pt,z 0.01 0 1

λt 0.6 1 20

Table 7.1: Lorenz 2005 parameter estimation settings. The perturbation density q(θtn | θtn−1) is a
product of truncated normal distributions with the above parameters.

as θ̂) has values n = 0 and qdz = qz = 0. Notice that both sets have similar
fixed values. The figure also includes Leith’s optimal linear correction L̂ from
Figure 7.10 for comparison.

The improved models W̃ have better forecast skill than the imperfect model
W for all forecast lead times ∆tn. In fact, both improved models, L(θ̂t) and
L(θ̂), have similar skill to each other and to Leith’s optimal linear correction
L̂. Since the model error comes from missing the small-scale dynamics of the
system, we suspect the comparable performance is due to the insensitivity of
the forecasts to relatively small changes in the values of the parameters that
govern the model error. This suspicion is corroborated by our preliminary
studies on the EnKF-APF: when estimating the parameters of the Lorenz 2005-
III system, the parameters that govern the large-scale dynamics of the system
(i.e., K and F ) showed clear convergence while the ones that govern the small-
scale dynamics (i.e., I, b, and c) did not. Therefore, for this particular example
and similar atmospheric models, a practitioner can reduce the computational
expense of estimating parameters by assuming temporal independence: the
parameters can be estimated with collected measurements and these estimated
parameters can subsequently be plugged into the improved model for future
forecasts.

When parameters are fixed by our exploratory data analysis, we obtain
poor results. For example, when we fix the differentiability parameters qdz
and qz to be 2, the forecast skill deteriorated: the “improved” model W̃ con-
sistently has higher ES values than the imperfect model W for all forecast
lead times. Since the cross-validation procedure fixed the differentiability pa-
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Figure 7.11: Lorenz 2005: forecast skill of the linear corrections for state-space models. The median
ES score of forecasts in the time period where

∑
n ∆tn is between 13, 140×0.001 and 17, 520×0.01.

The x-axis represents the forecast lead times ∆tn: larger values represent increasing nonlinearities
in the state-space model.

rameters at zero, perhaps our exploratory data analysis from the last section
was misguided. Though this is the case, the low-rank linear correction is effec-
tive at improving nonlinear model error with a caveat: the practitioner should
be careful about how the parameter values are fixed—it is generally safer to
estimate the parameters.

7.5 Future work

In this section, we developed a method to correct for nonlinear model error
for high-dimensional state spaces. Even though the correction is linear, the
correction has the ability to capture more complicated phenomenon such as
the quadratic nature of the model error of the Lorenz 2005 system. However,
even though the Lorenz 2005 system has characteristics of real atmospheric
models, it is not clear that the principles learned from the Lorenz 2005 system
directly carry over to real high-dimensional applications. In particular, the
parametrization of the low-rank linear correction in Equation (7.8) is guided
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by our exploratory data analysis of the true state and the model error, both
of which are impossible to obtain in practice. Nevertheless, because of the
flexibility of the Wendland exponentially cosine function, we believe that the
parametrization is applicable to many real atmospheric models. To be sure,
it is worth applying this particular parametrization of the low-rank linear
correction to a real atmospheric model.

If it turns out that the parametrization is not flexible enough, it is worth
further exploring the set of approximations introduced by DelSole and Hou
(1999) (discussed in Section 6.3) as a tool for exploratory data analysis. If
their approximations reflect the structure of the true state and model error,
these approximations can be used to investigate the correlation structure of
the true state and the model error, which can then be used to parametrize the
low-rank linear correction. Furthermore, the tool may also help understand
the extent of the model error and if it is worthwhile endeavour to correct it.
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Edward L Ionides, C Bretó, and Aaron A King. Inference for nonlinear dy-
namical systems. Proceedings of the National Academy of Sciences, 103
(49):18438–43, dec 2006. ISSN 0027-8424. doi: 10.1073/pnas.0603181103.
URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3020138{&}tool=pmcentrez{&}rendertype=abstract.

Edward L Ionides, Anindya Bhadra, Yves Atchadé, and Aaron A King. Iter-
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