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Abstract 

A popular ad-hoc approach to conducting SEM with missing data is to obtain a saturated 

ML estimate of the sample covariance matrix (“the EM covariance matrix”) and then to use this 

estimate in the complete data ML fitting function to obtain parameter estimates. This two-stage 

approach is appealing because it minimizes a familiar function while being only marginally less 

efficient than the direct ML approach (Graham, 2003). Importantly also, the two-stage approach 

allows for easy incorporation of auxiliary variables, which can mitigate bias and efficiency 

problems due to missing data (Collins, Schafer, & Kam, 2001). Incorporating auxiliary variables 

with direct ML is not straightforward and requires setting up a special model. However, standard 

errors and test statistics provided by the complete data routine analyzing the EM covariance 

matrix will be incorrect. Empirical approaches to finding the right corrections have failed to 

provide unequivocal solutions (Enders & Peugh, 2004). In this paper, we rely on the results of 

Yuan and Bentler (2000) to develop theoretical formulas for the correct standard errors and test 

statistics for the two-stage approach and its extension to include auxiliary variables. Since these 

accurately reflect the variability of the two-stage estimator, the actual sample size multiplier n 

can be used, and no adjustments are necessary. We study the performance of the two-stage test 

statistics and standard errors in a small simulation study, replicating the conditions studied by 

Enders and Peugh. We find that not only does the new two-stage approach perform well in all 

conditions, but the two-stage residual-based test statistic outperforms the direct ML statistic, 

deemed optimal in the missing data literature. We call for an incorporation of this new missing 

data method into standard SEM software for further study. 
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 The topic of how to properly handle missing data in multivariate statistical analyses has 

received a lot of attention in recent years (e.g., Little & Rubin, 2002; Schafer, 1997). In structural 

equation modeling (SEM), the old ad-hoc approaches, such as listwise and pairwise deletion, hot 

deck imputation, and so on, are no longer deemed acceptable, while the new approaches such as 

ML (also called direct ML, raw ML, or FIML) and multiple imputation (MI) are increasingly 

recommended as most appropriate (Arbuckle, 1996; Enders & Bandalos, 2001; Schafer & 

Graham, 2002). The direct ML approach is implemented in many popular SEM programs, such 

as Amos (Arbuckle, 2007), EQS (Bentler, 2007), LISREL (Joreskog & Sorbom, 1997), and 

Mplus (Muthen & Muthen, 2006), thus making it easy for researchers to handle missing data 

properly. The MI approach, which creates several completed datasets and then conducts 

inferences by averaging across them, requires a bit more thought to implement but has also been 

made available in programs such as LISREL and NORM (Schafer, 1999). The MI approach is 

slightly less efficient than the ML approach if the number of imputations is small, but it has been 

argued to have other advantages. 

An important advantage of the MI approach is that it allows for easy incorporation of 

auxiliary variables, which are additional variables that are not in the model but that are related 

either to the cause of missingness or to the missing values themselves. Including such variables 

can increase efficiency of the estimator when data are missing at random (MAR; see Little & 

Rubin, 2002). Additionally, and perhaps more importantly, including auxiliary variables can 

reduce bias introduced by missing data when the data are missing not at random (MNAR), 

because the presence of auxiliary variables can change the mechanism to MAR (Schafer and 

Olsen, 1998; Collins, Schafer, & Kam, 2001). The direct ML approach can be adapted to include 
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auxiliary variables as well. Graham (2003) proposed several ways of doing so. The “saturated 

correlates” model, which imposes a saturated covariance structure on the auxiliary variables and 

their relationship to other independent variables in the model, including error variables, provided 

the best solution. But several complications remain. First, setting up this model is nontrivial and 

requires following a set of rules (Graham, 2003). Second, if the number of auxiliary variables is 

large, or if the residual variances associated with some of the variables are small, the saturated 

correlates model may run into numerical trouble. Third, the independence model produced 

automatically by the software and required for some fit indices will be incorrect, and a separate 

run is required to estimate it appropriately (Graham, 2003). Until software developers provide a 

way to automate the “saturated correlates” procedure, researchers using direct ML may be 

tempted to follow the “restrictive” (omitting auxiliary variables) rather than the “inclusive” 

strategy (Collins et. al., 2001). Finally, there exist situations when the “saturated correlates” 

model is theoretically inappropriate, as will be illustrated in the discussion, yet inclusion of 

auxiliary variables still makes sense.  

 Alternatives to the “saturated correlates” direct ML estimator exist. The so-called two-

stage method, following Yuan and Bentler (2000), allows for easy incorporation of auxiliary 

variables and does not run into any of the problems associated with the “saturated correlates” 

estimator. This method first obtains the saturated ML estimate of the entire population 

covariance matrix (i.e., “the EM covariance matrix”1) including auxiliary variables if they are 

present; it then uses the (sub)matrix pertaining to the variables in the model in the complete data 

                                                 
1 The most common way to obtain the saturated ML estimate of the population covariance matrix is via the EM 
algorithm—hence the term the “EM covariance matrix.” We dislike this terminology because it confuses the 
estimator with how it was obtained: after all, no one refers to complete data ML estimates as “Newton-Raphson” 
estimates. The ML covariance matrix with missing data can be obtained via other optimization algorithms, and the 
EM algorithm is not restricted to the saturated model and can be used to optimize the structured model (Jamshidian 
& Bentler, 1999). However, rather than changing the accepted terminology, we employ the quotation marks.   



  Two-Stage ML with Missing Data 5 

ML fit function (Brown, 1983; Graham, 2003; Rovine, 1994; Yuan & Bentler, 2000). This 

approach, in its original form, falls somewhere in between the ad-hoc approaches such as 

pairwise deletion and statistically justified approaches such as direct ML. It is better than listwise 

and pairwise approaches because it obtains a proper ML estimate of the covariance matrix that is 

consistent under MCAR and MAR normal data (pairwise/listwise deletion only produces 

consistent estimates under MCAR data) and because it produces more efficient estimates 

(Brown, 1983). It is worse than direct ML because it will produce consistent parameter estimates 

but incorrect standard errors and test statistics (Graham, 2003; Enders & Peugh, 2004). The 

reasons for this are obvious: the uncertainty associated with missing data is never incorporated 

into the standard errors and test statistics because the input matrix is treated as if it were obtained 

from complete data. The goal of this paper is to introduce a new statistically justified version of 

the two-stage approach by providing a way to compute the correct standard errors and 

asymptotically chi-squared test statistics, so that valid inference used two-stage estimates can be 

conducted.  

As previously mentioned, an important advantage of the two-stage approach, other than 

its obvious simplicity, is that it allows for easy incorporation of auxiliary variables (Graham, 

2003). These variables are trivially added during the first stage, when the saturated ML estimate 

of the population covariance matrix is obtained, and are ignored in the second stage, when the 

complete data fit function is minimized. The two-stage parameter estimates are also easily 

obtained: programs such as SPSS and EMCOV (Graham & Hofer, 1995) compute the saturated 

ML estimate of the covariance matrix with missing data, and the resulting matrix or portion 

thereof can be fed into any SEM program. The two-stage parameter estimates were studied by 

Graham (2003), who found that they were very similar to direct ML estimates across four 
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different studies, and the theoretical loss of efficiency was in practice minimal: observed 

differences in empirical standard errors were in the third decimal place. Graham did not, 

however, study estimated standard errors or test statistics, which would be incorrect as obtained 

directly from the software. Enders and Peugh (2004) provided such a study. They found that the 

standard errors associated with the two-stage approach were underestimated, but that this bias 

was often minimal, and coverage rarely fell below 90% at .05α = . However, the ML chi-square 

statistic was very adversely affected. Across the studied conditions, the rejection rates ranged 

from 28% to 100% (instead of the nominal 5%), and were worse for higher proportions of 

missing data. As an example, in their Study 1, with n=600 and with 15% of data missing, the 

rejection rate was 92% instead of 5%. The goal of Enders and Peugh’s (2004) work was to also 

study various adjustments to the value of n  that would yield more reasonable confidence 

intervals and rejection rates. However, no one adjustment was found to work well across all 

studied conditions, suggesting that the two-stage method may not be rescued via empirically 

obtained corrections. A suggestion to bootstrap the standard errors for the 2-stage approach has 

also been made (Graham et. al., 1997).  

However, an appropriative statistical development for the two-stage method already 

exists. This earlier development went unnoticed by Graham (2003) and by Enders and Peugh 

(2004). Yuan and Bentler (2000) provided an appropriate way to conduct inference based on 

two-stage estimates with MCAR data. They give the correct formulae for asymptotic standard 

errors and propose scaled and residual-based statistics based on the two-stage estimator. Their 

formulae cover the general case when the data may be nonnormal, but do not cover auxiliary 

variables and do not cover data that are not MCAR (missing completely at random).  
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The present paper proceeds as follows. First, due to its omission from the relevant recent 

literature, we review the existing theory for the two-stage estimator (Yuan & Bentler, 2000). 

Second, we specialize these developments to normally distributed data and extend them to MAR 

data, as current statistical theory establishes consistency of the “EM covariance matrix” with 

both MCAR and MAR data under normality (Little & Rubin, 2002). In particular, we propose a 

normal theory based scaled statistic (a version of the “Satorra-Bentler” scaled chi-square) and a 

residual-based statistic to evaluate model fit. The scaled statistic will have its mean equal to that 

of a chi-square variate, while the residual-based statistic will behave asymptotically as chi-square 

as long as they data are normal. Third, we extend our approach to incorporate auxiliary variables. 

To evaluate the usefulness of these theoretical developments, we conduct a small simulation 

study that replicates the conditions of Enders and Peugh (2004). We summarize the results and 

provide a discussion of the advantages and issues associated with this new approach to missing 

data.  

 

Inference based on the two-stage estimator 

First we develop the two-stage estimator theory for the standard case when there are no 

auxiliary variables. The appropriate way to conduct inference based on this estimator is not fully 

developed even in this case. Yuan and Bentler (2000) give the results for nonnormal MCAR 

data. Here we specialize these results to normal data and extend them to allow for MCAR and 

MAR data. Extensions to nonnormal MAR data are possible once necessary consistency results 

are established (Yuan, 2006), but will be developed and studied elsewhere. 

Let 1,..., nx x  be a random sample from a p-variate normal distribution ( ( ), ( ))N μ θ θΣ , but 

possibly not fully observed. This means that for each 1,...,i n= , the corresponding observation 
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vector ix  is of dimension 1ip × , where ip p≤ . We are interested in the 1q×  parameter vector 

θ .  

 Two-stage estimation proceeds as follows. In stage 1, we obtain the saturated ML 

estimate of the population covariance matrix, by maximizing the log-likelihood: 

1
1

1

1 1( | ,..., ) ( ) log ( ) ' ( )
2 2

n

n i i i i i i i
i i i

l x x l C x xβ β μ μ−

=

= = − Σ − − Σ −∑ ∑ ∑ ,   (1) 

where ( , )vechβ μ′ ′ ′= Σ , ip  is the length of ix , iμ  is the relevant subvector of μ , iΣ  is the 

relevant i ip p×  submatrix of the p p×  model covariance matrix Σ , C  is a constant, and “vech” 

is the operator that picks out the nonredundant elements of a symmetric matrix columnwise 

(Magnus & Neudecker, 1999). Let β̂  be the saturated estimator obtained by maximizing (1). We 

will also write ˆˆ ( )βμ μ β=  and ˆˆ ( )β βΣ = Σ  to represent the saturated ML estimates of means and 

of covariances. These are the “EM means and covariance matrix.” In addition to SEM software 

that does appropriate ML estimation with missing data, these estimates can be obtained using 

programs such as SPSS or Emcov.  A crucial assumption is that the saturated estimates β̂  are 

consistent for the population mean and covariance matrix. This assumption is met for normally 

distributed MCAR and MAR data (Little & Rubin, 2002).  

 In stage 2, we use the saturated ML estimates β̂  in the usual complete data log-

likelihood. In other words, we minimize: 

 1 1 1ˆ ˆ ˆ ˆ( ) { ( )} log{ ( )} ( ( )) ( )( ( ))MLF tr β β β βθ θ θ μ μ θ θ μ μ θ− − −′= Σ Σ − Σ Σ + − Σ − ,   (2)  

where the usual sample estimates x  and S  have been replaced by saturated ML estimates. 

Following Yuan and Bentler (2000), we denote the minimizer of (2) by θ� . This is the two-stage 
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estimator. For comparison, the direct ML approach would instead proceed by maximizing (1) 

again for the structured model.  

To conduct inference based on the two-stage estimator, we only require the asymptotic 

covariance matrix (ACM) of the saturated estimator β̂ , ˆcov( )a nβ . Under the assumption of 

normality, this is the inverse of the information matrix for the saturated model. Following Yuan 

and Bentler (2000), we write 1ˆcov( )a n Aββ −= , where  

0

2 ( )1lim
'

i

n i

lA
nβ

β β

β
β β→∞

=

∂
= −

∂ ∂∑ .          (3) 

As with complete data, the estimated information matrix in the sample can be “expected” or 

“observed.” To compute the “expected” information would require knowing the limit, or the 

expected value, of the second derivatives of the saturated log-likelihood. This is only possible if 

we make the assumption of homogeneity of means and covariances (HMC) across missing data 

patterns, which is a consequence of the MCAR assumption (Kim & Bentler, 2002). “Observed” 

information, on the other hand, would be computed by dropping the limit notation and simply 

evaluating the matrix of second derivatives at the saturated estimates. When the data are MCAR, 

both “expected” and “observed” information matrices will be consistent, whereas when the data 

are MAR, generally only the “observed” information matrix will be consistent. The use of 

“observed” information with missing data was first advocated on the same theoretical grounds by 

Kenward and Molenberghs (1998). In practice, it is not known how much the additional 

computational complexity of “observed” information will affect its small sample stability.  

The “expected” information is computed as (Yuan & Bentler, 2000): 

1 1
, ,

, 11 ,

ˆ ˆ.5 ( ) 01ˆ
ˆ0

n
i i i i

EXP
i i i i

A
n

β β
β

β

κ κ

τ τ

− −

−=

⎛ ⎞′ Σ ⊗Σ
⎜ ⎟=
⎜ ⎟′Σ⎝ ⎠

∑ ,      (4) 
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where i
i

vecκ
σ

∂ Σ
=

′∂
 and i

i
μτ
μ
∂

=
′∂
 are 0-1 matrices that select only those rows/columns that are 

present for a particular observation i 2. The “observed” information matrix is computed as: 

1 1 1 1
, , , ,

, 1 1 11 , , ,

ˆ ˆ ˆ ˆ[ { ( )( ) .5 }] ( )ˆ
ˆ ˆ ˆ2 [ ( ) ]

n
i i i i i i i i i i

OBS
i i i i i i i i i i

x x sym
A

x
β β β β

β

β β β

κ μ μ κ

τ μ κ τ τ

− − − −

− − −=

⎛ ⎞′ ′Σ ⊗ Σ − − Σ − Σ
⎜ ⎟=
⎜ ⎟′ ′′Σ ⊗ − Σ Σ⎝ ⎠

∑ . (5) 

The complete data formulae for the components of the observed information matrix were given 

in Yuan and Hayashi (2006). Note that if we could make the HMC assumption, i.e., that 

( )i iE x μ=  and that ( )( )i i i i iE x xμ μ ′− − = Σ  for each i , taking expectations of (5) would reduce 

to (4). The formulas for standard errors and test statistics we give next can utilize either the 

“expected” or the “observed” information, depending on the researcher’s beliefs about the nature 

of the missing mechanism, and we will denote both estimators by Âβ .  

 The correct asymptotic covariance matrix of the two-stage estimator θ�  is computed as 

(Ferguson, 1996; Yuan & Bentler, 2000): 

1 1 1 1cov( ) ( ) ( )a n A H HA H Hβθθ β β β β β β− − − −′ ′ ′= =�
� � � � � � � ,     (6) 

where ( )β θβ
θ

∂
=

′∂
�  is the matrix of model derivatives and H  is the complete data information 

matrix 

1 1

1

.5 ( ) 0
0

p pD DH
− −

−

⎛ ⎞′ Σ ⊗Σ= ⎜ ⎟⎜ ⎟Σ⎝ ⎠
,        (7) 

where pD  is the duplication matrix (Magnus & Neudecker, 1999).  Standard errors for the two-

stage estimator can thus be obtained by using sample estimates in (6), computing Âβ  following 

                                                 
2 A useful computational relationship between these matrices is ( )i i i pDκ τ τ= ⊗ , where pD  is the duplication 
matrix (Magnus & Neudecker, 1999). 
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either (4) or (5), Ĥ  by using the model implied covariance matrix Σ̂  in (7), and evaluating the 

matrix of model derivatives at the two-stage estimates. Because (6) gives the correct asymptotic 

variability of the two-stage estimator, no corrections to the sample size value are needed, and the 

diagonal elements of (6) should simply be divided by n  before taking the square root.  

It is worth noting that 1ˆ( )Hβ β −′� �  is the “naïve” covariance matrix estimate, obtained via 

complete data routines. The standard errors obtained from the diagonals of this “naïve” estimate 

will be underestimates of the true standard errors given by (6). On the other hand, the asymptotic 

covariance matrix of the FIML estimator, let us call it θ̂ , is given by 1( )Aββ β −′� � ,  and we 

immediately have the result that the two-stage estimator is less efficient than the FIML estimator 

because the matrix in (6)  is “larger” than this matrix (the difference is positive definite;  

Ferguson, 1996, Corollary to Theorem 23). Graham (2003) found that in practice the loss of 

efficiency of θ�  relative to θ̂  was extremely minor.  

 To evaluate the fit of the model to the data, we can compute a scaled test statistic (Satorra 

& Bentler, 1994; Yuan & Bentler, 2000): 

2 , ( )st NTSB MLT ncF θ= � ,          (8) 

where ( )MLF θ�  is the minimum of the fit function in (2), and the scaling factor is 

* 1 1ˆ ˆ ˆ ˆ ˆ( ) / { ( ( ) )}c p q tr A H H H Hβ β β β β− −′ ′= − − � � � � . The purpose of the scaling correction is to bring 

the mean of the original inflated statistic, ( )MLnF θ� , closer to that of a chi-square variate. The 

asymptotic distribution of (8), however, is not chi-square, so this statistic is only an 

approximation. When similar scaling is used to account for nonnnormality (i.e., the “Satorra-

Bentler scaled chi-square”), the resulting approximation has been found to work quite well 

(Curran, West, & Finch, 1996; Hu, Bentler, & Kano, 1992). However, this is quite a different 
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situation, where (8) still assumes normality like the original statistic, but corrects for the fact that 

complete data routines were used to analyze the “EM covariance matrix.” The performance of 

the scaling correction in this situation needs to be studied.  

 A second statistic that can be used to assess the fit of the model is the residual-based 

statistic, originally proposed to account for nonnormality (Browne, 1984; Yuan & Bentler, 

2000). A normal-theory version of it is given by:  

1
2 ,

ˆ ˆˆ ˆ ˆ ˆ( ( )) ( ( ) )( ( ))st NTresT A A A Aβ β β ββ β θ β β β β β β θ−′ ′ ′= − − −� � � � � �     (9) 

Unlike (8), this statistic is asymptotically chi-square distributed, and thus may perform better. 

Nonnormal versions of the residual-based statistics were found to perform very similarly to the 

ADF test statistics, in that they had very inflated rejection rates at smaller sample sizes (Hu, 

Bentler, & Kano, 1992; Yuan & Bentler, 1998). However, we do not believe the normal-theory 

version of the residual-based statistic given by (9) will suffer from this limitation, because the 

normality assumption stabilizes the computations.  

 We have proposed a statistically justified way to conduct inference based on the two-

staged estimator, using “robust” standard errors and scaled or residual-based test statistics. This 

inference will be valid with normally distributed MCAR or MAR data. We note that these 

developments have not been studied even in the standard case with no auxiliary variables. 

However, the advantage of the two-stage approach is that it allows for easy incorporation of such 

variables, a case we consider next.  

 

Inference based on the two-stage estimator with auxiliary variables 

As before, 1,..., nx x  is a random sample from a p-variate normal distribution 

( ( ), ( ))N μ θ θΣ , possibly not fully observed. But now let the variables 1,...,i ika a  be a set of 
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auxiliary variables observed on each individual, that is, variables that the researcher is not 

interested in modeling but that may relate to or explain missing data. In particular, if these 

additional variables are correlated either with the set of variables ix  or are predictive of their 

missingness, they have the potential to increase efficiency or to reduce bias, respectively. It is not 

necessary to assume that auxiliary variables are themselves fully observed. The two-stage 

approach easily allows for missing data on the main variables and on the auxiliary variables, 

which is probably the case with most real life datasets.  

Let big
a

μ
μ

μ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 and ax
big

ax aa

⎛ ⎞′Σ ΣΣ = ⎜ ⎟⎜ ⎟Σ Σ⎝ ⎠
 be the mean and covariance matrix of the joint 

collection of variables 1 1,..., , ,...,i ip i ikx x a a . Let the vector of saturated model’s parameters be 

( , )big big bigvechβ μ′ ′= Σ . To create a more useful ordering, re-arrange the elements so that the 

parameter vector of interest, ( , )vechβ μ′ ′ ′= Σ , appears first, and the nuisance parameters 

involving auxiliary variables follow. Denote the rearranged version of bigβ  by 

* ( , , , , ) ( , )big ax aa avech vech vechβ μ μ β γ′ ′ ′′ ′ ′ ′ ′ ′= Σ Σ Σ = .  

The two-stage estimation with auxiliary variables proceeds as follows. In stage 1, we 

obtain the saturated estimate of *
bigβ  call it *ˆ ˆ ˆ( , )bigβ β γ′ ′ ′= , by maximizing the saturated log-

likelihood: 

* 1
, , , ,

1 1( ) log ( ) ' ( )
2 2big big i i big i big i i big i

i i

l C x xβ μ μ−= − Σ − − Σ −∑ ∑ .    (10)  

This equation is identical to (1), but it uses the larger covariance matrix and vector of means that 

include the additional variables. Stage 2 is the same as before: we minimize the complete data 

ML fitting function in (2), but with ˆ
βΣ  and ˆβμ  being the appropriate p p×  submatrix and 
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1p × subvector of the larger ( ) ( )p k p k+ × +  covariance matrix and ( ) 1p k+ ×  vector of means 

obtained in (10). In other words, stage 2 does not do anything with auxiliary variables. As before, 

denote the two-stage estimator by θ� .  

There are two ways in which the estimator β̂  is “better” when auxiliary variables are 

included. First, a necessary assumption to conduct any sort of analyses is that β̂  is consistent for 

β . We can never test this assumption, but it is more likely to be met when auxiliary variables are 

included than when they are not. If missingness can be completely explained by the auxiliary 

variables, their inclusion makes the missing mechanism MAR, which insures consistency. A 

more realistic scenario is that auxiliary variables make the missing mechanism “more MAR,” in 

that they can predict which values are missing to some nontrivial degree. This will mean that β̂  

obtained with auxiliary variables in inconsistent, but the bias is less than if no auxiliary variables 

were used. Second, assuming consistency, β̂  may be more efficient (i.e., have smaller 

covariance matrix) when auxiliary variables are included, because the auxiliary variables that are 

correlated with variables that contain missingness will be predictive of the missing values 

themselves, reducing uncertainty due to missing data. These improved properties of the saturated 

estimator β̂  will be inherited by the structured estimator θ� . 

Under the normality assumption, the asymptotic covariance matrix of *ˆ
bigβ  is given by 

* * 1ˆcov( )big biga n Aββ −= , where  

* *
,0

2 *
*

* *

( )1lim
'

big big

i big
big n i big big

l A AA
n A A

β γβ
β

γβ γβ β

β
β β→∞

=

⎛ ⎞′∂
= − = ⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠

∑ .      (11) 
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The asymptotic covariance matrix of the parameter vector of interest, β̂ , is given by 

*11ˆcov( ) biga n Aββ = , where  

*11 1 1( )bigA A A A Aβ β γβ γ γβ
− −′= − ,        (12) 

which is the upper block of the inverse of (11) (e.g., Magnus & Neudecker, 1999, p. 11, eq. 6). 

Note that this equation only involves inverses of p p×  and k k×  matrices.   

To obtain computational formulas for “expected” and “observed” information, we note that the 

computational formulas for the estimator of 
2 ( )1lim i big

big n
i big big

l
A

nβ

β
β β→∞

∂
= −

′∂ ∂∑  are identical to those 

given by (4) and (5), except that all matrices and vectors involved are now of larger ( )p k+  

dimensions, incorporating auxiliary variables. We thus obtain ˆ
bigAβ , either “expected” or 

“observed.” We then obtain *ˆ
bigAβ  by rearranging the rows and columns of ˆ

bigAβ  to correspond to 

the rearrangement given by *
bigβ . Finally, we partition as in (11) and apply the formula in (12) to 

obtain *11ˆ
bigAβ , again either “expected” or “observed.”  

The asymptotic covariance matrix of the two-stage estimator θ�  is computed as  

1 *11 1cov( ) ( ) ( )biga n H HA H Hβθ β β β β β β− −′ ′ ′=� � � � � � � ,      (13) 

where H  and β�  are defined as before, since the second stage has remained the same. Standard 

errors can be obtained by using sample estimates in (13) and taking roots of the diagonal 

elements. Similarly, the scaled test statistic is computed as in (8) but with 

* *11 1ˆ ˆ ˆ ˆ ˆ( ) / { ( ( ) )}bigc p q tr A H H H Hβ β β β β−′ ′= − − � � � � . The mean of this statistic is that of a chi-square 

variate with *df p q= − . To obtain the residual-based statistic, we first define 
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1
,aux aA A A A Aβ γ β γβ γβ

−′= −i , 

which is just the inverse of (12). The residual based statistic is then computed as: 

1
2 ,

ˆ ˆ( ( )) ( ( ) )( ( ))st NTres a a a aT A A A Aβ β β ββ β θ β β β β β β θ−′ ′ ′= − − −i i i i
� � � � � �    (14) 

This statistic is asymptotically chi-square distributed as long as the data are normal and at least 

MAR. 

Simulation Study 

We investigated the performance of the modified two-stage method in a small simulation 

study. We included both the case of no auxiliary variables and the case when such variables are 

present. Of particular interest was the comparison to the ad-hoc two-stage approach which would 

just compute standard errors and test statistics as if the saturated ML covariance matrix were the 

regular sample covariance matrix obtained from complete data. That is, ad-hoc standard errors 

are obtained from the roots of the diagonal of  

1ˆ( ) /H nβ β −′� � ,          (15)   

and the ad-hoc test statistic is computed as:  

2 ( )st MLT nF θ= � .          (16) 

In contrast, the appropriate standard errors are estimates of (13) and its special case (6). The 

appropriate test statistics are either the scaled or the residual-based test statistics. 

To provide continuity with existing literature, we chose to replicate several of the 

conditions employed by Enders and Peugh (2004). These authors studied the ad-hoc standard 

errors and test statistic given by equations (15) and (16) both with and without auxiliary 

variables (their Studies 1 and 2, respectively). They employed sample sizes of 200, 400, and 600, 

and set proportion of missing of data to be 5%, 15%, or 25%. They also studied various ad-hoc 
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adjustments to (15) and (16), but we do not focus on those here. In study 1, data were generated 

from a 2-factor CFA model with 9 indicators per factor, yielding a total of 18 observed variables 

in the main model of interest. Loadings were set to .6, .65, and .70 (three of each) for each factor. 

The correlation between the factors was set to .4, and the observed variables’ variances were set 

to 1. In Study 2, 6 auxiliary variables were appended to the model, set to correlate with the latent 

factors at .1 and .3, yielding a total of 24 observed variables. Enders and Peugh found that the 

95% confidence interval based on (15) was always too narrow, but the coverage rarely fell below 

90%, except when the proportion of missing data was highest. The standard errors in (15) are 

therefore downward biased, but the bias may often be negligible. In contrast, Enders and Peugh 

found that the rejection rates of the statistic in (16) were very inflated, across all proportions of 

missing data and all sample sizes. Notably, the statistic was seriously inflated even when 5% of 

the data were missing, casting doubt on the popular rule of thumb that 5% missing data can 

safely be ignored.  

We replicated selected conditions from Studies 1 and 2 as follows. We set the proportion 

of missing data to 15%, and used samples sizes of 200, 400, and 600. For the condition with no 

auxiliary variables, we used the same model as in Study 1 of Enders and Peugh. For the 

condition with auxiliary variables, we modified their Study 2 slightly, by setting the correlations 

between auxiliary variables and observed variables (as opposed to latent factors) to .10 and .30 

instead. The reason is that setting correlations with latent factors to those values would set the 

correlations between observed variables lower yet, essentially making auxiliary variables 

uncorrelated with the main variables, which may make it hard to detect any effects. The chosen 

correlations of .1 and .3 are still very low, but on the other hand values in this range are probably 

realistic for most applications. 
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Our procedure was as follows. Normally distributed data on 24 variables were generated 

in EQS6.1, where the first 18 variables conformed to the 2-factor structure described above, and 

the last 6 had the prespecified correlations. Missing data were generated on the first 18 variables 

using random deletion of 15% of the data on each variable. This procedure is automated in EQS, 

and it generates MCAR data. One thousand replications were created at each sample size. A 

saturated model was then fit to the first 18 variables (no auxiliary variables condition), or to all 

24 variables (auxiliary variables condition), and the saturated estimate of the ML covariance 

matrix was saved for each dataset. These data files were then read into Matlab, where all the 

remaining computations were done. That is, the 18 x 18 (submatrix of) the saturated ML 

covariance matrix was used as S  in the complete data ML fitting function of (2), which was then 

minimized in Matlab to obtain the two-stage estimates. We then computed 95% coverage rates 

based on “robust” standard errors for the selected parameters and the rejection rates at .05α =  of 

the scaled chi-square statistic and the residual-based test statistic. The “expected” information 

matrix was used in all computations because data were known to be MCAR.  

Additionally, we computed two comparison statistics: the original ad-hoc chi-square 

value of (16) and the direct ML chi-square based on direct ML estimates. The ad-hoc chi-square 

was computed to make sure our results were accurately replicating those of Enders and Peugh for 

the same conditions. The direct ML chi-square was computed to establish a baseline for optimal 

performance at a given sample size, as it is the best known test statistic for incomplete data. To 

incorporate auxiliary variables, the “saturated correlates” model was estimated in EQS. This 

model is implemented according to the following rules (Graham, 2003): 1) auxiliary variables 

must be correlated with the exogenous manifest variables, 2) auxiliary variables must be 

correlated with residuals of all predicted manifest variables (regardless of whether these residuals 
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are latent or observed), and 3) auxiliary variables must be correlated with one another. EQS 

syntax for setting up the “saturated correlates” model is given in Appendix I. Because we did not 

consider approximate fit indices, modification of the independence model was not necessary.  

 Enders and Peugh’s results for the selected conditions of their Study 1 are reprinted in 

Table 1. They provide the rejection rates of the direct ML statistic for comparison, the ad-hoc 

statistic of (16), and 95% coverage rates for selected factor loadings and the factor correlations, 

but only for sample sizes of 200 and 600. They do not provide results for Study 2 (except for 

coverage rates at N=600) but state that the rejection rates were similar. Since our auxiliary 

variables model was slightly different, we do not reprint the provided coverage rates.   

Our results for the same conditions are given in Table 2. First, we note that our results for 

the direct ML and the ad-hoc chi-squares replicate Enders and Peugh’s results reprinted in Table 

1 very closely. The direct ML test statistic rejects about 15% of models at the smallest sample 

size of N=200, and this overrejection replicates the best currently known performance. At N=400 

and 600, the direct ML statistic does reasonably well. The ad-hoc chi-square performs terribly 

across all sample sizes, and should not be used. The scaled chi-square represents a considerable 

improvement over the ad-hoc chi-square, but does worse than the direct ML chi-square, 

especially in smaller sample sizes. The residual based statistic, however, exhibits surprisingly 

good performance across all conditions. We expected this statistic to do reasonably well given its 

asymptotic chi-squaredness, and to thus be a good choice when the two-stage estimator is used 

instead. However, we did not expect that it would improve on the performance of the direct ML 

chi-square. In smaller samples, this improvement is considerable: for example, at N=200 and 

with no auxiliary variables, the rejection rates for the direct ML and the residual based chi-

squares are 15.6% and 10.6%, respectively. This suggests that the two-stage estimator paired 
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with this statistic may be preferred in smaller samples to the highly popular direct ML estimator 

and test statistic. We also note that the performance of these statistics is generally worse for the 

auxiliary variables conditions, because adding variables necessarily increases model size, and 

thus requires larger samples to achieve asymptotic distributions. Whether introduction of 

auxiliary variables is thus warranted or not will depend on the anticipated gain in efficiency and 

on whether researcher believes these variables can alleviate bias. Regardless, one probably 

should not fit a 24-variable model to a sample of 200. Finally, we note that coverages based on 

correct standard errors are reasonable throughout (see Table 2) but because the coverages based 

on the naïve standard errors (see Table 1) were not too far off, this improvement is less 

noticeable. However, the standard error results are likely a function of the strength of the 

correlations among the variables, and could have been more dramatic in other situation. We do 

not recommend relying on naïve standard errors for this reason. 

   

Discussion 

In this paper we have shown how to properly conduct inference based on two-stage 

parameter estimates, that is, those estimates obtained by using the “EM covariance matrix” and 

the “EM means” in the complete data ML function. This problem is well known, but appropriate 

solutions are not obvious. As Graham and Schafer (1999) state, “It is not clear what sample size 

should be ascribed to a covariance matrix estimated by EM” (p. 3). However, because of the 

intuitive appeal of this method and the ease with which it incorporates auxiliary variables, such 

solutions continue to be sought (e.g., Enders, 2004; Enders & Peugh, 2004) without much 

success. Enders and Peugh concluded that, “Unfortunately, there is no single value of N that is 

appropriate when using an EM covariance matrix as input into an SEM analysis” (p. 18). We 
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believe the theoretical approach to the problem provided here is far more appropriate, as it uses 

the actual number of cases ( n ) in the computation of standard errors and test statistics. That is, 

we have obtained accurate estimates of variability of the two-stage estimates. Our simulation has 

shown our results to be valid. Applications to other statistics, such as two-stage reliability 

estimates (Enders, 2004), can also be developed from our results. 

We would like to point out the versatility of the proposed modified two-stage approach. 

With complete data, many fitting functions are popular and available; for example, ULS 

function, GLS (normal theory generalized least squares) function, and RLS (iteratively 

reweighted least squares). See Bollen (1989) and Bentler (2007). These methods, however, have 

become unavailable with missing data because of the dominance of the direct ML approach, 

which is likelihood based and does not easily allow to minimize a different kind of fit function3. 

The two-stage theory presented here, however, easily allows for other types of fit functions in 

Stage 2. Estimates remain consistent for as long as the saturated estimator in Stage 1 is 

consistent. The computations that follow would only require modification of the H  matrix; e.g., 

it would be set to identity in case of ULS estimation, and it would be obtained by evaluating (7) 

at the saturated “EM covariance matrix” in case of GLS estimation. It is impossible to predict 

how these methods will compare with direct ML, but our results show that they may improve on 

the performance of the direct ML test statistic in small samples. Additionally, ULS estimation is 

often useful when convergence cannot be achieved using ML methods, and our approach gives 

the correct standard errors and test statistic.  

In addition to its surprising superior performance relative to the direct ML method when 

it comes to rejection rates, the two-stage approach may have other advantages over the “saturated 

                                                 
3 A modification of the direct ML approach to allow for this is possible, but this line of research will be developed 
elsewhere. 
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correlates” model. An awkward feature of the “saturated correlates” model is that it does not 

always represent a logical construction. For example, consider a small model with six observed 

variables, two underlying factors that correlate with each other at .4 and have three indicators 

each, with loadings of .7. Suppose there is an additional observed variable, which is auxiliary 

and correlates with all six variables at .3. This seems reasonable enough; however, this simple 

model presents problems for the interpretation of the saturated correlates solution. The 

population covariance matrix for all seven variables is 

 

1
.49 1
.49 .49 1
.196 .196 .196 1
.196 .196 .196 .49 1
.196 .196 .196 .49 .49 1

.3 .3 .3 .3 .3 .3 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟Σ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,      (17) 

which is positive definite. However, the “saturated correlates” approach requires decomposing it 

according to the following model structure:  

 
0

0 0 1
a

a
′ΛΦΛ Ψ⎛ ⎞ ⎛ ⎞

Σ = +⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠
,         (18) 

where ( ).3 .3 .3 .3 .3 .3a′ = , and Ψ  is a diagonal matrix with diagonal elements equal to 

.51. The model for the first six variables is valid. The model for all seven variables, however, is 

no longer valid because the new 7 7×  error variance matrix is not positive definite, i.e., it has a 

negative eigenvalue. In this case, the problem is primarily interpretational, and simply makes the 

“saturated correlates” model less elegant, unless the software of choice insures positive-

definiteness of the estimated matrices. The problem becomes more real if the goal is to generate 

data with this covariance structure. Programs can generate simulated data either directly from the 
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covariance matrix in (17) (e.g, in EQS, POP=MATRIX) or from the underlying structure in (18) 

(POP=MODEL). Often the second approach is easier, but in this case the program will quit with 

an error message, because it cannot generate underlying latent variables with a negative definite 

covariance matrix.  

Another problem may arise from the fact that the rules used to set up the “saturated 

correlates” model (see previous section) require the auxiliary variables to be correlated with 

residual variables in the model. This may become problematic and lead to unstable inference 

when the residual variances are very small, and it may simply be impossible if the residual 

variances tend to go negative and are held at zero. This happens quite frequently in real life data 

(Anderson & Gerbing, 1984; Chen et. al., 2001; van Driel, 1978). Consider the same model, but 

suppose that one of the indicators perfectly predicts the factor4. In this case, the population 

covariance matrix is still positive definite, and the correlation of the auxiliary variable with the 

perfect indicator can help if there is missing data on that indicator. However, the covariance 

matrix of residual error variances now has zero on the main diagonal. The fact that the auxiliary 

variable is only allowed to influence the perfect indicator via the residual variance means that the 

auxiliary variable will not be able to exert much influence in the “saturated correlates” setup. 

Different programs will do different things here, possibly leading to numerical problems or 

boundary solutions. Finally, the sheer size of the “saturated correlates” model, which always 

works with all p k+  variables, may in some cases make it prohibitive.  

Of course, the “saturated correlates” approach also has advantages over the proposed 

two-stage approach. The most obvious one is that the direct ML estimates are asymptotically 

more efficient than the two-stage estimates. It is not clear when this efficiency gain is most 
                                                 
4 We are considering a zero variance in the population, which will lead to zero or negative sample variances in about 
half the samples from this population. But the same problem will arise when the population value is a small positive 
value, but the sample value happened to be zero/negative.   
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pronounced, but we hypothesize that because the complete data information matrix, the H  

matrix in (7), is block-diagonal, the two-stage approach will lose most efficiency when the true 

incomplete data information matrix, the one in (3), is not block-diagonal, which will happen with 

MAR data. However, in a simulation study of relative efficiency of the two approaches, Graham 

(2003) found that the maximum difference in efficiency between the direct ML and the two-stage 

methods was only 0.0008, which did happen in the condition of MAR data and low factor 

loadings. Thus, limited available evidence suggests efficiency may not be a problem for the two-

stage method, but more research is clearly needed.  

A more comprehensive study that will explore the relative efficiency of the two-stage and 

direct ML parameter estimates, the impact of using “observed” rather than “expected” 

information matrix with incomplete data, and the performance of the new test statistics under 

different complete data estimation methods and conditions is a direction of future research. To 

facilitate this research, it would be desirable to implement the auxiliary variables methods in 

mainstream computer programs. Given the complexity of the proposed computations, we could 

only carry out a limited simulation study using our own Matlab code. As Collins et. al. (2001) 

noted, ML estimation and testing methods as available in existing software tend to favor the 

“restrictive” strategy of omitting auxiliary variables, but expressed hope that “it would be 

possible to revise these programs to make it easy for users to add auxiliary variables” (p. 349). 

So far, this has not been attempted. We urge software developers to implement both the 

“saturated correlates” model and the proposed two-stage methodology so that “inclusive” 

strategies can more easily be studied.  

Finally, all of the results in this paper assume normally distributed data. For a new 

method, this is a good start. However, since data are often nonnormal as well as incomplete, an 
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extension of this method would be necessary. Yuan and Bentler (2000) gave the developments 

for the two-stage approach that allow for nonnormal MCAR data. Extending these to MAR data 

and to auxiliary variables is straight-forward once the necessary consistency results become 

available (Yuan, 2006). In the case of nonnormal data, we predict that the residual based statistic 

that did best in this study will no longer work well, as it becomes similar to the ADF test 

statistic. The scaled statistic may do well, and other statistics, such as F statistics (Yuan & 

Bentler, 1998) are possible. With both normal and nonnormal data, the mean-and-variance 

adjusted chi-square (Satorra & Bentler, 1994) can also be considered, which may improve on the 

inflated performance of the mean-adjusted or “scaled” chi-square considered in this study.    

Finally, the question of whether auxiliary variables are always useful still does not have a 

clear answer and requires more study. Based on one simulation study, Collins et. al. (2001) 

concluded that “the inclusion of these variables is at worst neutral, and at best extremely 

beneficial” (p. 348). However this conclusion was based primarily on bias and root mean square 

error measures, that is, on parameter estimates and standard errors, and not test statistics. Our 

small simulation shows that the test statistics did somewhat worse when auxiliary variables were 

included. We suspect that this is mainly because a bigger set of variables is considered. We thus 

conclude that whatever rule of thumb researchers use to determine whether their sample is large 

enough to conduct SEM analyses, these rules should take into account the auxiliary variables and 

not just the main variables being modeled.   
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Table 1. Results of Enders and Peugh (2004) Study 1 (no auxiliary variables) for the selected 

conditions, proportion of missing data 15%.   

 Direct 
ML* Ad-hoc* SE L1  SE L4 SE L7 SE L10 SEL13 SE16 Fcorr 

No aux          

N=200 15.0% 97.0% 92.4%** 92.2% 93.3% 93.5% 92.6% 94.4% 93.4%

N=400 8.0% 94.0% not reported 

N=600 7.0% 92.0% 92%*** 94.1% 93.6% 93.9% 93.6% 95.2% 95.5%

Note: The first two columns give the rejection rates of the direct ML and the ad-hoc two-stage 

test statistic. The remaining columns give coverage of the 95% confidence interval for selected 

loadings and for factor correlation, based on ad-hoc standard errors (equation (15) in the present 

article).  E&P did not report coverage for the intermediate sample size of 400.  

*First and last columns of Table 2 of E&P; **Table 3, row 14, of E&P; *** Table 4, row 14, of 

E&P. 
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Table 2. Replication of Enders and Peugh (2004) for the selected conditions with new standard 

errors and test statistics, proportion of missing data 15%.   

 Direct 
ML Ad-hoc Scld Res SE L1 SE L4 SE L7 SE L10 SEL13 SE16 Fcorr

No aux            

N=200 15.6% 97.1% 25.7% 10.6% 95.1% 93.4% 93.3% 93.6% 95.4% 93.1% 93.3%

N=400 8.7% 94.3% 11.9% 8.1% 95.3% 94.4% 93.2% 94.9% 94.3% 94.0% 94.5%

N=600 8.7% 92.6% 11.7% 7.7% 96.0% 95.3% 93.9% 96.7% 94.8% 94.6% 94.8%

       

Aux       

N=200 19.5% 97.9% 35.8% 17.6% 96.0% 94.8% 95.0% 96.2% 95.4% 93.4% 93.7%

N=400 10.2% 94.6% 14.7% 8.9% 96.2% 95.7% 95.8% 96.5% 95.7% 94.5% 93.2%

N=600 8.1% 93.2% 10.9% 7.6% 96.0% 95.3% 95.1% 94.5% 96.0% 95.0% 93.4%
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Appendix I. Sample syntax for setting up “saturated correlates” model in EQS.  

/TITLE 
 Replicating Study 1 of Enders & Peugh; includes 6 aux vars 
 
/SPECIFICATIONS 
VARIABLES=24; CASES=200; LOOP=1000; MATRIX=RAW; 
DATA='n200aux.dat'; 
METHOD=ML; MISSING=ML; ANALYSIS=MOMENT;  
 
/EQUATIONS 
 V1=0*V999+.6F1+E1; V2=0*V999+.6*F1+E2; V3=0*V999+.6*F1+E3;  
 V4=0*V999+.65*F1+E4; V5=0*V999+.65*F1+E5; V6=0*V999+.65*F1+E6;   
 V7=0*V999+.7*F1+E7; V8=0*V999+.7*F1+E8; V9=0*V999+.7*F1+E9;   
 V10=0*V999+.6F2+E10; V11=0*V999+.6*F2+E11; V12=0*V999+.6*F2+E12;  
 V13=0*V999+.65*F2+E13; V14=0*V999+.65*F2+E14; V15=0*V999+.65*F2+E15;   
 V16=0*V999+.7*F2+E16; V17=0*V999+.7*F2+E17; V18=0*V999+.7*F2+E18;   
 V19=0*V999+E19; V20=0*V999+E20; V21=0*V999+E21; V22=0*V999+E22; 
 V23=0*V999+E23; V24=*V999+E24; 
  
/VARIANCES 
 V999=1; 
 F1=1*; F2=1*;  
 E1 to E3=.64*; E4 to E6=.5775*; E7 to E9=.51*; 
 E10 to E12=.64*; E13 to E15=.5775*; E16 to E18=.51*; 
 E19 TO E24=1*; 
 
/COVARIANCES 
 F1,F2=.4*; 
E19 TO E24=.3*; E19,E1=.2*; E19,E2=.2*; E19,E3=.2*; E19,E4=.2*; E19,E5=.2*;    
E19,E6=.2*; E19,E7=.2*; E19,E8=.2*; E19,E9=.2*; E19,E10=.2*; E19,E11=.2*; 
E19,E12=.2*; E19,E13=.2*; E19,E14=.2*; E19,E15=.2*; E19,E16=.2*; E19,E17=.2*; 
E19,E18=.2*; E20,E1=.2*; E20,E2=.2*; E20,E3=.2*; E20,E4=.2*; E20,E5=.2*; 
E20,E6=.2*; E20,E7=.2*; E20,E8=.2*; E20,E9=.2*; E20,E10=.2*; E20,E11=.2*; 
E20,E12=.2*; E20,E13=.2*; E20,E14=.2*; E20,E15=.2*; E20,E16=.2*; E20,E17=.2*; 
E20,E18=.2*; E21,E1=.2*; E21,E2=.2*; E21,E3=.2*; E21,E4=.2*; E21,E5=.2*; 
E21,E6=.2*; E21,E7=.2*; E21,E8=.2*; E21,E9=.2*; E21,E10=.2*; E21,E11=.2*; 
E21,E12=.2*; E21,E13=.2*; E21,E14=.2*; E21,E15=.2*; E21,E16=.2*; E21,E17=.2*; 
E21,E18=.2*; E22,E1=.2*; E22,E2=.2*; E22,E3=.2*; E22,E4=.2*; E22,E5=.2*; 
E22,E6=.2*; E22,E7=.2*; E22,E8=.2*; E22,E9=.2*; E22,E10=.2*; E22,E11=.2*; 
E22,E12=.2*; E22,E13=.2*; E22,E14=.2*; E22,E15=.2*; E22,E16=.2*; E22,E17=.2*; 
E22,E18=.2*; E23,E1=.2*; E23,E2=.2*; E23,E3=.2*; E23,E4=.2*; E23,E5=.2*; 
E23,E6=.2*; E23,E7=.2*; E23,E8=.2*; E23,E9=.2*; E23,E10=.2*; E23,E11=.2*; 
E23,E12=.2*; E23,E13=.2*; E23,E14=.2*; E23,E15=.2*; E23,E16=.2*; E23,E17=.2*; 
E23,E18=.2*; E24,E1=.2*; E24,E2=.2*; E24,E3=.2*; E24,E4=.2*; E24,E5=.2*; 
E24,E6=.2*; E24,E7=.2*; E24,E8=.2*; E24,E9=.2*; E24,E10=.2*; E24,E11=.2*; 
E24,E12=.2*; E24,E13=.2*; E24,E14=.2*; E24,E15=.2*; E24,E16=.2*; E24,E17=.2*; 
E24,E18=.2*; 
 
/OUTPUT 
 data='n200aux.ets'; 
 Parameter Estimates; 
 Standard Errors; 
 
/END 




