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Abstract 

 
Fluid intelligence tests, measuring one’s ability to solve novel problems without prior 

knowledge, are increasingly popular as a measure of far transfer from working memory training 

tasks. Creating mobile measurements that can be repeatedly administered with different items is 

crucial to enable more complex investigations of individual differences and cognitive ability 

training. The present study tests the validity of newly generated variants of existing fluid 

intelligence problems. The original 23 problem sets we used came from a recently developed 

mobile test, the University of California Matrix Reasoning Task (UCMRT). We have created a 

test question tool that can be used to manually generate variants of the existing problems with 

alterations to colors, shapes, rotations, and orientations. These newly generated variants will be 

validated to determine whether they are the same difficulty level as the original problems. 

Following validation of these variants, the question generation tool will be developed further to 

allow automated creation of new test problems. Implementation of automated problem 

generation will enable repeated testing of the same individuals to more accurately measure the 

effects of working memory training tasks over time.  
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1. Introduction 

1.1 Brain training 

Brain training refers to the concept that in the same way one can repeatedly perform 

physical activity to improve their strength over time, certain cognitive tasks can be used to 

improve particular aspects of mental fitness. One of the aspects of mental fitness is fluid 

intelligence. Fluid intelligence is the capacity to reason abstractly and solve problems without 

using knowledge acquired through experience (Cattell, 1963). One of the major difficulties of 

developing brain training applications is verifying that they are actually leading to improvements 

in the user’s cognition, rather than just making them better at the game they are using to train. 

For this reason, it is essential that researchers have access to accurate and easy to administer tests 

that can track improvements in mental cognition. One test, the University of California Matrix 

Reasoning Task (UCMRT), was developed in response to this need. The present study aims to 

expand the already existing UCMRT to allow for random generation of new problem variants to 

evaluate fluid intelligence. Currently, we have developed a program that allows a user to 

efficiently create new UCMRT problems but have not implemented full random generation. 

1.2 Measuring fluid intelligence 

 One widely used matrix test for measuring fluid intelligence is Raven’s Advanced 

Progressive Matrices (APM) test (Arthur & Day, 1994). APM consists of 48 matrix reasoning 

problems of increasing difficulty. This test has limitations due to price, difficulty of distribution, 

and time required to administer. APM is only administered in person via answer sheets and test 

question booklets and takes around 40-60 minutes to complete, which may cause fatigue in the 

test taker and lead to less engagement by the test taker (Ackerman & Kanfer, 2009). Since the 

test only contains 48 problems, it is not conducive to repeated testing of the same individuals. In 
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an attempt to address this issue, Sandia National Laboratories developed a program that could 

generate a large quantity of matrix style problems similar to those used in APM (Matzen et al., 

2010). Although this software resolved the issue of quantity, it sometimes produced problems 

that were difficult to discern due to a great number of overlapping shapes (Pahor et al., 2018). 

 
Figure 1.1: A matrix problem produced by the Sandia software. 

UCMRT is a more recently developed test, based on the same matrix style problems as 

APM and Sandia, created to address some of their limitations. The improvements that UCMRT 

made over previous matrix tests include its ability to be administered on tablets and its reduced 

test time of around 15 minutes. It can also be administered without an administrator present. 

Additionally, the problems in UCMRT are more user friendly because although they use the 

same problem type and structure, they are not only grayscale and they do not feature overlapping 

shapes. To further improve UCMRT, this project led to the development of a new tool that 

enables a user to efficiently create new problem variants. 

1.3 Why randomly generate problems? 

Currently, we have replicated the original UCMRT problems using our newly developed 

application. Once these new versions of the original problems are validated to determine their 

similarity in accuracy to the original test, the application will be extended to allow random 
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generation of new problem sets. The randomly generated problems will be constrained in 

features such as colors and positioning of shapes to ensure accessibility and to maintain 

accuracy. Random generation of problems is desirable because previous matrix reasoning tasks 

have been limited in the quantity of their problem sets. With a limited problem set, researchers 

may be unable to effectively test the same individuals many times because they could develop 

recognition of the problems. Since fluid intelligence pertains to problem solving without using 

knowledge from past experiences, this recognition may lead to less accurate measures of fluid 

intelligence. Randomly generating problems allows us to create a nearly unlimited number of 

problem variants that could be used for repeated testing over time. 

2. Methodology 

2.1 Types of matrix problems 

 UCMRT problems can be broken down into 6 categories. These include one-relation, 

two-relation, logic, and three-relation with one, two, or three transformations (Matzen et al., 

2010). The relations correspond to one or more rules that define the pattern found within a 

problem. The rules used are shape, color, quantity, size, rotation and position. Figure 2.1 shows a 

three-relation problem from the original UCMRT problem set. The 8 squares on the left side of 

the screen show the pattern that the user needs to recognize, with the 9th square in the bottom 

right being the one they need to fill in to complete the pattern. The 8 squares on the right side of 

the screen represent the user’s answer choices. The three relations in this particular problem are 

shape, color, and rotation. There are also three transformations in this problem. The change in 

rotation propagates from the top left square to the bottom right. Specifically, the trapezoid on the 

top left is not rotated at all, the next diagonal row down is rotated by 45° to the right, and the 

middle diagonal row is rotated 90°. These rotation increments of 45° continue down to the 
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bottom right square. The shape changes in this problem can also be split up into diagonal rows, 

but this time propagating out from the top right square. Finally, it can be seen that like shape 

colors are organized into diagonal rows. Figure 2.2 shows an “OR” logic problem. Logic 

problems can be solved by looking at the third square in any given row or column and 

determining its’ relation to the two squares that came before it in that row or column. Looking 

first at the top right square, we can observe that it contains the green circle from the top left and 

top middle squares, and it contains the purple rectangle from the top left square. With this 

information, we can already determine that this is an “OR” problem. If the problem were an 

“XOR” type, the green circle would not be included in the top right square because it is found in 

both of the squares to the left of it. If it were instead an “AND” problem, the purple rectangle 

and two blue triangles would not be included in the top right square because they weren’t present 

in both of the first two squares. Patterns like the ones described in this section make up the basis 

for all UCMRT matrix problems, as well as Raven’s APM problems (Pahor et al., 2018). 

 
Figure 2.1: A three-relation UCMRT problem. 
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Figure 2.2: An “OR” UCMRT logic problem. 

2.2 Using Unity to draw shapes 

 Given that the framework of the problem generation tool had already been created, the 

first task was to write code that could draw each of the shapes to be used in the matrix problems. 

The shapes included circles, squares, triangles and trapezoids. To do this, we used a native Unity 

class called “Texture2D” which enables us to specify the color of each pixel in a square. The 

function within Texture2D that allows us to define the color of each pixel is called SetPixel. The 

SetPixel function takes three parameters. The first two parameters determine which pixel we are 

setting the color of using the standard Cartesian coordinate system. The third parameter specifies 

the color that the pixel will be set to. For example, if I wanted to make a texture with a single 

white dot in the lower left corner, I would call SetPixel(0, 0, Color.white) because the bottom left 

corner of the square we are drawing in is the point (0, 0). To draw an entire shape, we call the 

SetPixel function on every point in the square, assigning its’ color to clear if it is outside the 

shape we’re trying to draw and assigning it to the shape’s specified color otherwise. A unique 

function was required for each shape. As an example, consider how to draw a triangle in code. 

First, we iterate over every pixel using nested for loops. Inside these for loops, we check whether 



9 

 

our x value is less than or equal to the size of our square divided by two. We make this check 

because the left and right sides of a triangle have different slopes, so we need to write different 

code to draw each. If our x value is less than size / 2, we then check whether our current y value 

is less than or equal to 2 multiplied by our x value (y <= 2 * x). We can arrive at this formula by 

starting with the common equation for a line, y = mx + b. Since we’re trying to draw a triangle 

with a height of “size” and a width of “size,” we can determine that the slope of the left line 

making up our triangle is 2 and we can plug this value in for ‘m’ in the equation (y = 2x + b). 

Additionally, since the left line of the triangle starts at the point (0, 0), we can eliminate the b 

value in our equation (y = 2x). Next, we consider the fact that the bottom of our triangle is at the 

point y = 0, so as long as our (x, y) values are on or below the line we found (y = 2x) they will be 

part of the triangle. This is the thought process that allows us to arrive at the simple statement y 

<= 2 * x, which enables us to draw the left-hand side of our triangle. A similar process is used 

for the right side of the triangle, but it requires a more complicated statement since the intercept 

value is not 0 as in the case of the left side. 

2.3 Drawing stripes over shapes 

 In order to recreate all of the original UCMRT problems using our program, it was not 

enough to simply be able to draw the shapes used. We also needed to add a stripe feature that 

could draw a variety of different stripe patterns on any given shape to replicate problems such as 

the one shown in figure 2.3. Specifically, the stripes had to be drawn using any color specified by 

the user, and could be drawable as horizontal, vertical, tilted 45° to the left, or tilted 45° to the 

right. Additionally, the stripes need to be customizable in their width and distance from each 

other. 
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Figure 2.3: A UCMRT problem including stripes. 

There are three parts to our stripe implementation. First, we draw the specified shape as 

discussed in the previous section. We do this first because the stripes need to be overlaid on top 

of the shape so that they are visible. Next, we determine which direction the stripes are supposed 

to be oriented in and call the function DrawStripe(), passing in an integer parameter that 

represents the midpoint of a particular stripe. Finally, the DrawStripe function iterates through 

the entire length of a stripe centered at the midpoint parameter and changes the color of the 

pixels along it.  

Stripe midpoints are calculated based on the field “stripeDistance.” This field specifies 

how many pixels separate two stripes that are next to each other. We first set the midpoint of the 

center stripe. For horizontal and vertical stripes, the center stripe will be centered on the point 

“size / 2” because we want it to pass through the center of the shape. For stripes angled 45° to the 

right the center stripe will start at the point ‘0’ because we want it to start at the bottom left of the 
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shape. For stripes angled 45° to the left, the center stripe will start at the point “size” so that it 

will start at the top left of the shape. Once we’ve identified our first stripe midpoint, we call 

DrawStripe() to create the first stripe. From there we create two variables “startingPointRight” 

and “startingPointLeft” and assign them with the sum of our midpoint plus stripeDistance and 

the midpoint minus stripeDistance, respectively. These two variables store the midpoints of the 

next two stripes we will draw. Next we call DrawStripe() on the newly created variables and then 

increment and decrement our startingPoint variables again to get the midpoints of the next two 

stripes. This continues until the entire field has been filled with stripes. 

The code described above does not account for the fact that not every shape fills the 

“size” by “size” square that the shapes are drawn in. If implemented exactly as described, stripes 

would span the entire length of the square, beyond the boundaries of each shape. To account for 

this we first draw the shape and then within DrawStripe() we call another function, DrawPixel(), 

to change the color of a particular pixel to the value of our variable stripeColor. In DrawPixel(), 

we check whether the color of the pixel at Cartesian coordinates (x, y) is clear. If the color of the 

pixel is clear, rather than shapeColor, this means that the pixel is not part of the shape and we 

should therefore not change the color of that pixel. If the pixel is not clear, however, that means 

it is a valid stripe location and we update the pixel’s color to stripeColor. 

2.4 Creating matrix problems 

 There are three main steps to using the UCMRT logic problem creation tool. The first 

step simply requires a user to enter a filename, target index, and type of logic problem. The 

target index indicates which of the eight answer choices will be the correct one, and the type of 

problem can be “AND,” “OR,” or “XOR.” The next step in the creation of a logic problem is 

defining all of the shapes that the problem will use. The “Add/Edit Shape” menu provides a great 
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deal of customization, allowing users to specify a shape’s color, x and y ratio, location within a 

problem square, rotation, stripe width and stripe distance. Once these fields are filled in, the 

shape will be added to the “Add or edit shapes” menu where it can be edited or deleted. If a 

necessary field is left empty, a message will be displayed prompting the user to return to the edit 

menu and fill in the field. If a non-essential field is left empty, the field will be auto filled, and 

the user will not be prompted with an error message. For example, if the user types “False” into 

the “Stripes” field, indicating that stripes will not be included on the shape, then the user is not 

required to fill in the stripe color, width, direction or distance fields. 

 
Figure 2.4: The “Add or edit shapes” menu where a user can view the shapes they have defined. 

The final step of creating a logic problem is specifying which shapes will go in each 

square of the matrix. Shape positions can be specified using the “R#C#” buttons on the main 

page of the logic problem builder. The “R” and “C” numbers correspond to a row and column of 

the matrix. When a user clicks on R1C1, the shapes that they choose to add will be placed in the 
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relevant locations of row and column 1 depending on the type of logic problem that was 

specified in the first step. Once the logic problem is ready to export, the “Create JSON” button is 

clicked which exports the problem in a JSON format that can be interpreted by the program later 

to display for a research participant. 

 
Figure 2.5: The main create logic problem page, with a sample “work in progress” logic problem. 

2.5 Edge cases 

 While generating variants of the original UCMRT problems, we occasionally 

encountered edge cases that did not translate well to the new tool. Edge cases are situations that 

would not typically arise through normal use of a program, but that can be produced through a 

particular input or series of inputs. The most common issues were caused by stacked shapes that 

didn’t fit properly within each other. For example, figure 2.6 shows an original UCMRT 

problem, while figure 2.7 shows the problem variant generated using the new program. In the 

newly generated variant, the shapes overlap in such a way that decreases visibility. We 

encountered similar issues in three problems that were translated from the original set. Sandia’s 

problems occasionally sacrificed ease of understanding for the sake of producing a great number 
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of problem variations. Since UCMRT aims to improve on the tests produced by Sandia, the three 

problematic variants were excluded from the final set of problems used in our early pilot testing. 

Over time, as we gain a better sense of what inputs can lead to these edge cases, we will be able 

to refine the code in such a way that avoids them or disallows them altogether. Consideration of 

edge cases also presents a unique challenge in the process of adding random problem generation. 

It will be crucial to account for and avoid problematic edge cases. As discussed in section 1.3, 

special care must be taken to maintain the same level of accessibility that the original problem 

sets demonstrated. If this is not handled properly, testing may reveal that the randomly generated 

problems exhibit reduced accuracy when compared to Raven’s APM and the original UCMRT 

problem set. 

 
Figure 2.6: A sample problem from the original UCMRT problem set. 
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Figure 2.7: A problematic edge case generated using the new UCMRT program. 

2.6 Current pilot study 

 At present, we have completed the program that allows a user to easily generate logic 

problems based on a set of manually defined inputs. We have used the program to generate three 

problem sets based on the original three UCMRT problem sets. Although our newly generated 

problem sets are very similar to the original ones, it is still important to validate that the results 

of the tests have not been altered significantly by the slight changes in appearance. Toward this 

end, we are currently running a small pilot program involving RA’s at the University of 

California, Irvine before moving forward with adding the random generation feature. 

2.7 Post-pilot tasks 

 After the accuracy of our new problem variants is verified by the pilot study, we will be 

able to move forward with adding random generation to the program. The random generation 

code will be based on the guiding principles discussed for each problem type covered in section 

2.1. Essentially, each variation of matrix problems is defined by a certain number of rules. If we 

are trying to generate a two-relation problem, our random generation code will select two rules at 
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random apply a series of shape, color, or location transformations depending on which rules were 

selected. The difficulty in creating the random generation feature will be in ensuring that valid, 

user friendly problems are created. There are many niche cases that must be taken into 

consideration and many scenarios that need to be prohibited by the code. For instance, the code 

cannot allow a problem to be created where a rotation rule is applied to a circle. However, we 

still want to maximize the variety of problems that can be generated. So, if the shape chosen is a 

circle with an x or y ratio change applied, making it an oval, the rotation rule can be applied. 

This brings us back to the conversation of edge cases, which must be thoroughly explored in the 

process of making the randomization feature. 

3. Challenges 

3.1 Learning C# and Unity 

 Before contributing to the UCMRT codebase, I needed to learn two new tools, the 

programming language C# and the game development engine Unity. To accomplish this, I first 

completed a short, guided tutorial in which I created a simple tablet game to familiarize myself 

with the syntax of the C# language. Next, I made an addition to the project independent of the 

tutorial to demonstrate my ability to use C# and Unity in an unguided setting. Familiarizing 

myself with these new tools was difficult because they differ substantially from coding 

languages and tools that I’ve used in the past for coursework and side projects. After completing 

the Brain Game Center onboarding process, however, I was able to learn more about the tools by 

using them while working on the project itself.  

3.2 Interfacing during a pandemic 

 Further challenges were introduced by the ongoing global pandemic that began around 

the same time that I began working on the UCMRT project. These challenges were further 
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exacerbated by the fact that two teams at separate universities, the University of California, 

Riverside as well as the University of California, Irvine, were working together on the project. 

The UCR team was responsible for developing the coding tools, whereas the UCI team handled 

planning and creation of the actual UCMRT problems using the application developed by the 

UCR team. With the exception of meetings held every other week, all communication between 

the teams was done through email or Slack messaging. This added a level of difficulty because 

any complicated questions or clarifications needed to be communicated in back-and-forth email 

chains. The challenge of working with the teams digitally persisted throughout the course of the 

project, but it was mitigated by frequent communication and thorough updates in the bi-monthly 

meetings. 

3.3 Contributing to an evolving codebase 

 Another challenge encountered while working on the project was the result of multiple 

team members contributing to the same codebase. At the time that I began working on the 

project, the outline of the codebase for the application had already been established. This meant 

that before contributing any code, I needed to familiarize myself with the structure of the existing 

code, and after doing this, I needed to determine how to work within the framework that had 

been set up before I could add any features. In addition to this, the codebase was frequently 

being updated, occasionally in ways that substantially affected the way the program functioned. 

As an example, while I was working on implementing the stripe feature, the code was changed in 

such a way that previously drawn shapes were stored in a dictionary so that they could be 

quickly used again without redrawing them. This change improved the performance of the 

program, but it also resulted in errors when I attempted to add the stripe code that I had already 

written. To fix this, I needed to restructure my code so that it would function as expected. I was 
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able to overcome the challenge of working in an evolving codebase by checking for updates 

more frequently so that I could make any necessary changes to the features I was adding before 

any compatibility issues could propagate into larger problems. 

4. Future Developments 

4.1 Adapting UCMRT for different populations 

 Currently, the problems generated for UCMRT have been an appropriate level of 

difficulty for healthy young adults (Pahor et al., 2018). In a future study, the UCMRT application 

and the improvements made through this project could be utilized to develop matrix test 

problems for groups outside the healthy young adult population. For instance, new problems of a 

different difficulty level could be developed that would be more appropriate for testing elderly 

populations. This would be beneficial because it would improve the accuracy of fluid 

intelligence evaluation among this population. Accordingly, creating a test that is accurate for 

this population could aid in developing brain training programs directed at the elderly. In 

addition to adapting UCMRT for particular age groups, the random generation feature could be 

altered and utilized to generate tests for more specific groups that fall outside of the normal range 

of cognition. Suppose that a researcher wants to use a matrix test in their study, but they only 

want to use logic type problems. If the researcher were to use Raven’s APM or the original 

UCMRT problem set, they may only be able to generate a very limited test. Having a reduced 

number of problems can reduce the test’s reliability (Matzen et al., 2010). The researcher could, 

of course, produce a logic problem test manually but it would require a great deal of time and 

money to manually create the problems and validate them. Alternatively, the UCMRT random 

problem generation program could produce a nearly unlimited number of valid logic problems, 

enabling repeated testing of the same individuals over time, and saving the researcher a great 
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deal of time and funding. Although a great deal of validation would be required before the 

program gets to this point since randomly generated problems must match or come close to the 

efficacy of manually generated problems, the potential for UCMRT to benefit countless 

researchers is eminently clear. 

5. Conclusion 

5.1 Summary 

The original UCMRT application made substantial improvements over Raven’s APM, 

but it still faced the challenge of a somewhat limited collection of problem sets. Sandia’s tool 

attempted to alleviate this issue, but it sometimes produces variants that are not user friendly. At 

present, we have created a tool that lays the groundwork for random generation of novel problem 

sets, a feature which could help many researchers within the realm of brain training and beyond. 
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