
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Bayesian polynomial neural networks and polynomial neural ordinary differential
equations.

Permalink
https://escholarship.org/uc/item/89b5699n

Journal
PLoS Computational Biology, 20(10)

Authors
Fronk, Colby
Yun, Jaewoong
Singh, Prashant
et al.

Publication Date
2024-10-01

DOI
10.1371/journal.pcbi.1012414

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/89b5699n
https://escholarship.org/uc/item/89b5699n#author
https://escholarship.org
http://www.cdlib.org/

RESEARCH ARTICLE

Bayesian polynomial neural networks and

polynomial neural ordinary differential

equations

Colby FronkID
1*, Jaewoong Yun2,3, Prashant Singh4, Linda Petzold5,6

1 Department of Chemical Engineering, University of California, Santa Barbara, California; United States of

America, 2 Department of Statistics and Applied Probability, University of California, Santa Barbara,

California; United States of America, 3 Department of Geography, University of California, Santa Barbara,

California; United States of America, 4 Science for Life Laboratory, Department of Information Technology,

Uppsala University, Uppsala, Sweden, 5 Department of Mechanical Engineering, University of California,

Santa Barbara, California; United States of America, 6 Department of Computer Science, University of

California, Santa Barbara, California; United States of America

* colbyfronk@ucsb.edu

Abstract

Symbolic regression with polynomial neural networks and polynomial neural ordinary differ-

ential equations (ODEs) are two recent and powerful approaches for equation recovery of

many science and engineering problems. However, these methods provide point estimates

for the model parameters and are currently unable to accommodate noisy data. We address

this challenge by developing and validating the following Bayesian inference methods: the

Laplace approximation, Markov Chain Monte Carlo (MCMC) sampling methods, and varia-

tional inference. We have found the Laplace approximation to be the best method for this

class of problems. Our work can be easily extended to the broader class of symbolic neural

networks to which the polynomial neural network belongs.

Author summary

Polynomial neural ordinary differential equations (ODEs) are a recent approach for sym-

bolic regression of dynamical systems governed by polynomials. However, they are lim-

ited in that they provide maximum likelihood point estimates of the model parameters.

The domain expert using system identification often desires a specified level of confidence

or range of parameter values that best fit the data. In this work, we use Bayesian inference

to provide posterior probability distributions of the parameters in polynomial neural

ODEs. To date, there are no studies that attempt to identify the best Bayesian inference

method for neural ODEs and symbolic neural ODEs. To address this need, we explore

and compare three different approaches for estimating the posterior distributions of

weights and biases of the polynomial neural network: the Laplace approximation, Markov

Chain Monte Carlo (MCMC) sampling, and variational inference. We have found the

Laplace approximation to be the best method for this class of problems. We have also

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 1 / 38

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Fronk C, Yun J, Singh P, Petzold L (2024)

Bayesian polynomial neural networks and

polynomial neural ordinary differential equations.

PLoS Comput Biol 20(10): e1012414. https://doi.

org/10.1371/journal.pcbi.1012414

Editor: Feng Fu, Dartmouth College, UNITED

STATES OF AMERICA

Received: December 13, 2023

Accepted: August 14, 2024

Published: October 10, 2024

Copyright: © 2024 Fronk et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data supporting

the findings of this study are available in the GitHub

repository at https://github.com/colbyfronk/

BayesNeuralODE/.

Funding: This research was funded in whole by the

National Institute of Health (grant 2-R01-

EB014877-04A1 to LRP), https://www.nih.gov/.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-5943-1257
https://doi.org/10.1371/journal.pcbi.1012414
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012414&domain=pdf&date_stamp=2024-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012414&domain=pdf&date_stamp=2024-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012414&domain=pdf&date_stamp=2024-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012414&domain=pdf&date_stamp=2024-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012414&domain=pdf&date_stamp=2024-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012414&domain=pdf&date_stamp=2024-10-10
https://doi.org/10.1371/journal.pcbi.1012414
https://doi.org/10.1371/journal.pcbi.1012414
http://creativecommons.org/licenses/by/4.0/
https://github.com/colbyfronk/BayesNeuralODE/
https://github.com/colbyfronk/BayesNeuralODE/
https://www.nih.gov/

developed lightweight JAX code to estimate posterior probability distributions using the

Laplace approximation.

Introduction

The development of a mathematical model is critical to understanding complex chemical, bio-

logical, and mechanical processes. For example, ordinary differential equation (ODE) models

are used in the field of epidemiology to describe the spread of diseases such as flu, measles, and

COVID-19 and in the medical field to describe the population dynamics of CD4 T-cells in the

human body during an HIV infection. Developing a mathematical model with sufficient detail

is important because it can be used to identify potential methods of intervention (such as a

drug) for an undesired outcome (such as the propagation of a disease). Scientists devote years

to the model development cycle, which is the process of finding a model that describes a pro-

cess, using data to fit parameters to the model, analyzing uncertainties in the fitted parameters,

and performing additional experiments to refine and validate the model. However, these

mechanistic models are powerful due to their ability to directly explain the system with known

first principles such as the interaction of forces, conservation of energy in the system (thermo-

dynamics and heat transfer), and conservation of mass (transport processes). Based on the

underlying assumptions of the model, scientists know where the model can and cannot be

applied to make predictions about what will happen under certain scenarios. For these reasons,

mechanistic models are preferred by scientists and engineers. However, since these models

entail a long development time, we need to develop new tools to accelerate and aid the model

development cycle.

A relatively recent development in the system identification field is the method Sparse Iden-

tification of Nonlinear Dynamics (SINDy) [1–3], which is linear regression of time derivatives

estimated from numerical differentiation methods against a list of candidate terms which the

modeler believes could be in the system to determine the terms in an ODE model. SINDy has

been shown to be very successful with recovering ODE equations from various fields including

fluid dynamics [4], plasma physics [5], biological chemical reaction networks [6, 7], and non-

linear optical communication [8]. Like any method, SINDy is not perfect and has its flaws. For

example, it has been shown that SINDy requires its training data to be observed at very close

intervals of time [9].

The internet of things [10, 11] has led to an exponential growth in the amount of data being

generated and stored. We have more data than can be effectively processed. For example, the

emergence of robots that can speedup small-scale lab experiments in chemistry and biology

[12, 13] has led to a substantially larger amount of more accurate experimental data. In the

earth sciences, the growing number of satellites and in situ earth observation equipment sta-

tioned around the world [14] has led to a significant amount of data that must be processed

and understood. The emergence of the GPU, along with more powerful CPUs, has allowed

data-driven models such as deep learning [15] to emerge as a viable way to process and under-

stand large amounts of data quickly.

Neural ordinary differential equations [16–25] (ODEs) are a recent deep learning approach

to data-driven modeling of time-series data and dynamical systems. In Neural ODEs

(NODEs), a neural network learns the right hand side of a system of ODEs. The neural ODE is

integrated forward in time from an initial condition to make a prediction. In contrast to

SINDy, neural ODEs have less stringent requirements on the sampling rate, number of

observed data points, and can handle irregularly spaced data points [9]. A cousin of the neural

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 2 / 38

https://doi.org/10.1371/journal.pcbi.1012414

ODE is the physics-informed neural network [26–29, 29–32] (PINN), which attempts to

accomplish the same thing but with a different approach to loss functions.

Neural differential equations and physics-informed neural networks are two powerful tools

because a large majority of science and engineering models are described in terms of differen-

tial equations. However, these tools suffer from the same major problem as the entire family of

deep learning tools—they are black-box models that are not interpretable and cannot be gener-

alized well to regimes of conditions outside of the region it was trained on. This is an issue for

scientists and engineers who need reliable models.

In response to the need for interpretability and mechanistic models, symbolic neural net-

works have emerged. There has been a recent explosion in the introduction of various sym-

bolic neural network architectures [9, 33–40], which essentially embed mathematical terms

within the architecture. Most of these architectures can be combined with neural differential

equation or physics-informed neural network frameworks to recover interpretable symbolic

equations [9] that the scientist can immediately use. This is referred to as symbolic regression

with neural networks.

Most of these symbolic neural network approaches have been demonstrated on noiseless

data only; however, real data is almost always noisy. Additionally, the scientist using the tool

often requires uncertainty estimates for the inferred model parameters; however, most of these

symbolic neural network approaches recover only point estimates for the model’s parameters.

Bayesian inference is one approach to handle noisy data for symbolic neural networks and

symbolic neural ODEs. There has been a substantial amount of work on Bayesian neural net-

works [41] and some work on Bayesian neural ODEs [18, 42]. However, there is a lack of

approaches attempting to find the optimal Bayesian inference method for symbolic neural net-

works and symbolic neural ODEs. In our work, we explore various Bayesian inference meth-

ods and provide clarity to which Bayesian methods are best suited for this class of problems.

We evaluate the Laplace approximation, Markov Chain Monte Carlo (MCMC) sampling

methods, and variational inference on our previously developed approach for symbolic regres-

sion with polynomial neural networks [9, 33] and polynomial neural ordinary differential

equations [9]. Our code can easily be extended to the various other symbolic neural network

architectures.

Methods

Neural ODEs

Neural Ordinary Differential Equations [16] are neural networks that learn an approximation

to time-series data, y(t), in the form of an ODE system. In many fields of science, the ODE sys-

tem for which we would like to learn an approximation has the form

dyðtÞ
dt
¼ f t; y tð Þ; yð Þ; ð1Þ

where t is time, y(t) is the vector of state variables, θ is the vector of parameters, and f is the

ODE model. Finding the exact system of equations for f is a very difficult and time-consuming

task. With the help of the universal approximation theorem [43], a neural network (NN) is

used to approximate the model f,

dyðtÞ
dt
¼ f � NN t; y tð Þ; yð Þ: ð2Þ

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 3 / 38

https://doi.org/10.1371/journal.pcbi.1012414

Neural ODEs can be treated like standard ODEs. Predictions for the time series data are

obtained by integrating the neural ODE from an initial condition with a discretization scheme

[44–46], in exactly the same way as it is done for a standard ODE.

Learning missing terms from an ODE model with neural ODEs

When one doesn’t know anything about the system’s underlying equations, neural ODEs can

learn the entire model:

dyðtÞ
dt
¼ NN t; y tð Þ; yð Þ: ð3Þ

Often, parts of the model are known, fknown, but the modeler doesn’t know all of the mecha-

nisms and terms that describe the entire model. In this case, we can have the neural ODE learn

the missing terms:

dyðtÞ
dt
¼ fknown t; y tð Þ; yð Þ þ NN t; y tð Þ; yð Þ: ð4Þ

Learning the missing terms does not require significant special treatment, apart from

including the known terms in the training process.

Polynomial neural ODEs

Systems in numerous fields are expressed as differential equations with the right-hand side

functions f as polynomials. Examples include gene regulatory networks [47] and cell signaling

networks [48] in systems biology, chemical kinetics [49], and population models in ecology

[50] and epidemiology [51]. Polynomial neural ODEs are useful for this class of inverse prob-

lems in which it is known a priori that the system is described by polynomials.

Polynomial neural networks [33, 52] are neural network architectures in which the output

is a polynomial transformation of the input layer. Polynomial neural networks belong to the

larger class of symbolic neural network architectures. There are several different types of poly-

nomial neural networks. For more information about these architectures, we refer the curious

reader to Grigorios G. Chrysos’s work. We had the most success with Ref. [33]’s π-net V1,

which is shown in Fig 1. The architecture is centered around Hadamard products [53] of linear

layers without activation functions, Li:

LiðxÞ ¼ x ∗ wi þ bi ð5Þ

to form higher-order polynomials. The architecture must be specified upfront based on the

desired polynomial degree. There are no tuning parameters in the architecture. A π-net can

output any n-degree polynomial for the given state variables. The hidden layers can be larger

or smaller than the input layer as long as the shape matches when the Hadamard product oper-

ation is performed.

Polynomial neural Ordinary Differential Equations [9] are polynomial neural networks

embedded in the neural ODE framework [16]. Since the output of a polynomial neural ODE is

a direct mapping of the input in terms of tensor and Hadamard products without nonlinear

activation functions, symbolic math can be used to obtain a symbolic form of the neural net-

work. Due to the presence of nonlinear activation functions in conventional neural networks,

a symbolic equation cannot be directly obtained from conventional neural networks and con-

ventional neural ODEs.

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 4 / 38

https://doi.org/10.1371/journal.pcbi.1012414

Obtaining posterior distributions for weights and biases

We will explore and compare three different approaches for estimating the posterior distribu-

tions of weights and biases of the polynomial neural network. The approaches include the

Laplace approximation, Markov Chain Monte Carlo (MCMC) sampling, and variational infer-

ence. The following text outlines each of them.

Approach #1: Laplace approximation. The Laplace approximation [54] provides Gauss-

ian approximations of the individual posteriors. The Laplace approximation is obtained by

taking the second-order Taylor expansion around the maximum a posteriori (MAP) estimate.

For the polynomial neural network, approximating the log posterior over the parameters (θ),

given some data (D) around a MAP estimate (θ*), yields a normal distribution centered

around θ* with variance equal to the inverse of the Fisher information matrix (I y):

y � N ðy∗; I � 1

y
Þ: ð6Þ

Under certain regularity conditions, the Fisher information matrix can be calculated via

either the Hessian

I yi;j
¼ � E

@
2

@yi @yj
log f ðD; yÞ

" #

ð7Þ

or the gradient

I yi;j
¼ E

@

@yi
log f ðD; yÞ

� �T
@

@yj
log f ðD; yÞ

 !" #

ð8Þ

of the log-joint density function [55]. Both the gradient and Hessian are computed with the

JAX [56, 57] automatic differentiation tool. As expected, we were able to obtain the same

results for both methods. However, we found the calculation of the Hessian to be computa-

tionally expensive and it can only be practical for polynomial neural networks with a small

Fig 1. The neural network architecture of Ref. [33]’s π-net V1 is shown on the left. On the right, we show a worked example of what a 1-dimensional

input layer with variable x symbolically looks like throughout the network architecture. The circles with the * symbol represent a layer that is the

Hadamard product of the layer’s inputs. The boxes labeled L represent standard linear layers without any activation functions. This neural network

architecture has no standard activation functions such as tanh or ReLU, which makes it interpretable.

https://doi.org/10.1371/journal.pcbi.1012414.g001

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 5 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g001
https://doi.org/10.1371/journal.pcbi.1012414

number of parameters. For this reason, we used the gradient to calculate the Fisher

information.

The log-joint density function (log f(D, θ)) is defined by the log-likelihood (log f(D|θ)) and

log-prior (log pr(θ)):

log f ðD; yÞ≐ log fðDjyÞ þ log prðyÞ; ð9Þ

where≐ denotes equality up to an additive constant. When the observed noise (ypred − yknown)

is normally distributed with variance β2, the log-likelihood is given by:

log f ðDjyÞ ¼ �
1

2b
2

X
ðypred � yknownÞ

2
; ð10Þ

where ypred is the predicted value by the polynomial neural network or polynomial neural

ODE and yknown is the observed data. It is important to note that log f(D|θ) depends on the

parameters in the neural ODE (θ). The dependence on θ stems from the integration of the neu-

ral ODE with an ODE solver to obtain ypred. In the case of Gaussian priors on the weights and

biases with covariance α2, the log-prior is given by:

log prðyÞ ¼ �
1

2
y

T
a� 2y: ð11Þ

We assume that we do not know β2. We calculate it via the sample variance of ypred − yknown

at the MAP point estimate.

The workflow for training Bayesian polynomial neural ODEs with the Laplace approxima-

tion is very similar to that for polynomial neural ODEs. Prior to the training process, the archi-

tecture is defined and the parameters in the network are initialized to values that yield initial

coefficient values of the simplified polynomial in the range of 10−5 to 10−10. The following

steps are outlined in Algorithm 1.

The goal of the training process is to fit the neural ODE to the observed data for the state

variables, yknown, as a function of time. The neural ODE is integrated with a differentiable ODE

solver to obtain predictions for yknown, which we call ypred. We used gradient descent [58, 59]

and Adam [60] to optimize the log-joint density defined in Eq 9, with the constant term 1

2b2

dropped.

For the training process, we batch our observed data into Nt batch trajectories consisting of

a certain number of consecutive data points in the time series (yknown). For each iteration

(epoch) of gradient descent, we simultaneously solve Nt initial value problems corresponding

to each of the batch trajectories, to obtain the predictions (ypred).

In theory, one can use any differentiable discretization scheme to integrate the neural

ODE forwards in time. The simpler the integration scheme, the smaller the memory and

compute time costs. One can also obtain gradients for the parameters through the use of the

popular continuous-time sensitivity adjoint method [16]. Direct backpropagation through

complicated integration schemes have high memory costs and numerical stability issues,

therefore continuous-time sensitivity adjoint method is often used for these cases. However,

the adjoint method is very slow. It takes a few hours to train neural ODEs with the adjoint

method, whereas it only takes a few minutes to train a neural ODE with direct backpropoga-

tion through an explicit discretization scheme. It is also important to point out that neither

of these two approaches are perfect and more work needs to be done on developing differen-

tiable ODE solvers for neural ODEs. For example, neither direct backpropogation through

an explicit scheme nor the continuous-time sensitivity adjoint method can handle obtaining

gradients for stiff neural ODEs [61].

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 6 / 38

https://doi.org/10.1371/journal.pcbi.1012414

Since the examples we present are for non-stiff ODEs, we do not require the adjoint or any

advanced integration methods, and are able to use the fourth-order explicit Runge–Kutta–

Fehlberg method [62] to solve the neural ODE. The advantage of using this method is efficient

direct backpropagation through the explicit ODE scheme [9], which is computationally faster

than the continuous-time sensitivity adjoint method. After the training process has converged,

we have obtained the MAP estimate (θ*) via MLE.

After obtaining θ*, we can find the variance of the posterior by calculating the inverse of the

Fisher Information Matrix. For overparameterized neural network models, the Fisher Infor-

mation Matrix is often singular and cannot be inverted. In this case, an approximation to the

inverse can be calculated by either the Moore–Penrose inverse [63] or by dropping the off-

diagonal entries from the matrix [64]. We have had success with both of these methods for

finding an approximation for the inverse of the Fisher information. For the case in which the

matrix is invertible, the approximations have given similar results to the direct matrix inverse.

All of our results calculate the inverse using the Moore–Penrose inverse [63]. We have prior

experience using the Laplace approximation to obtain uncertainties for the output of a neural

network. Based on our experience, the Moore–Penrose inverse can only be used on neural net-

works with less than 50,000 parameters. This is because it becomes too expensive to invert the

singular Fisher information matrix.

Algorithm 1 Laplace Approximation Algorithm
1: Input: Training data D
2: Step 1: Train polynomial neural ODE on data D to find the

parameters θ*
3: Step 2: Calculate the posterior distribution with the Laplace

approximation
4: a. Use the parameter estimates θ* found in step 1 as the mean of

the posterior
5: b. Calculate the Fisher information matrix

I yi;j
¼ E

@

@yi
log f ðD; yÞ

� �T
@

@yj
log f ðD; yÞ

 !" #

ð12Þ

6: c. Invert the Fisher information matrix to find the covariance
7: d. The posterior is given by:

y � N ðy∗; I � 1

y
Þ ð13Þ

Approach #2: Markov Chain Monte Carlo. This approach for obtaining posterior distri-

butions for the weights and biases of the polynomial neural network draws from Markov

Chain Monte Carlo [65–67] (MCMC) methods for training Bayesian neural networks [68]

(BNNs). The two MCMC sampling methods that we explored were Hamiltonian Monte Carlo

(HMC) and The No-U-Turn-Sampler (NUTS).

Hamiltonian Monte Carlo [69, 70] (HMC) is a MCMC method that uses derivatives of the

density function to generate efficient transitions. HMC starts with an initial set of parameter

values. For a set number of iterations, a momentum vector is sampled and integrated following

Hamiltonian dynamics [71] with the leapfrog [44] integrator with a set discretization time (�)

and number of steps (L). Since the leapfrog integrator incurs numerical error [44], it is cor-

rected by use of the Metropolis–Hastings [72–75] acceptance algorithm, which helps to decide

whether to accept or reject the new state predicted from Hamiltonian dynamics.

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 7 / 38

https://doi.org/10.1371/journal.pcbi.1012414

The No-U-Turn-Sampler [76] (NUTS) is an extension of HMC that automatically deter-

mines when the sampler should stop an iteration. The algorithm automatically chooses the dis-

cretization time and number of steps, which avoids the need for the user to specify these

additional parameters. However, we have found this algorithm to be computationally more

expensive than vanilla HMC for this class of problems.

The training process is slightly different than for the Laplace approximation. We still

batched our observed data into Nt batch trajectories and simultaneously solved Nt initial value

problems with the same fourth-order explicit Runge–Kutta–Fehlberg method. We used Black-

JAX [77]’s sampling algorithms to do the MCMC inference. For both of these methods, we

used the log-joint density defined in Eq 9. The workflow is explained in Algorithm 2.

Algorithm 2 MCMC Algorithm
1: Input: Initial state θ0, number of iterations N
2: Step 1: Initialize θ = θ0
3:for i = 1 to N do
4: Step 2: Propose a new state θ0 from a proposal distribution
5: Step 3: Calculate the acceptance probability α
6: Step 4: Accept or reject the new state based on α
7: if the new state θ0 is accepted then
8: θ = θ0

9: end if
10: Step 5: Record the state θ
11: end for
10: Output: Collection of sampled states fyig

N
i¼1

from the posterior
distribution

Approach #3: Variational inference. In variational inference [78–80], we learn an

approximation q(θ) to our posterior p(θ|D). Our approximation is assumed to belong to a cer-

tain family of probability density functions and the parameters of that family are optimized by

minimizing the Kullback–Leibler (KL) divergence:

KLðqðyÞ jj pðyjDÞÞ ¼ EqðyÞ log
qðyÞ

pðyjDÞ

� �

: ð14Þ

We don’t know the analytical form of the posterior so we cannot minimize the KL diver-

gence directly, but we can use a trick called the Evidence Lower Bound (ELBO) [78–80]:

ELBO ¼ EqðyÞ½ log pðDjyÞ� � KLðqðyÞ jj prðyÞÞ: ð15Þ

Maximizing the ELBO is mathematically equivalent to minimizing the KL divergence. The

ELBO only contains the prior pr(θ) and likelihood p(D|θ), which we can numerically calculate.

The methodology is described in Algorithm 3. We wrote our own custom JAX code for var-

iational inference. The neural ODEs are numerically integrated exactly the same way as was

done for the Laplace approximation. We used a multivariate Gaussian distribution for the

approximation q(x) and found it difficult to learn a covariance matrix that remained positive

semidefinite. As a result, we instead made the computation more tractable by using the mean

field approximation for q(x), in which q(x) is the approximation consisting of independent

Gaussian distributions for all of the parameters. We calculated the expectation in Eq 15 by

sampling from the approximation q(x). A sample size of 1000 was sufficient to keep the loss

function fairly noise-free.

Algorithm 3 Variational Inference Algorithm
1: Input: Training data D
2: Step 1: Define the variational family q(θ) with parameters θ
3: Step 2: Initialize variational parameters θ
4: Step 3: Optimize the Evidence Lower Bound (ELBO)

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 8 / 38

https://doi.org/10.1371/journal.pcbi.1012414

5: a. Calculate the ELBO:

ELBO ¼ EqðyÞ½ log pðDjyÞ� � KLðqðyÞ jj prðyÞÞ ð16Þ

6: b. Use gradient-based methods to update θ:

y yþ ZryLðyÞ ð17Þ

7: Step 4: Iterate Step 3 until convergence
8: Step 5: Use the optimized variational distribution q(θ) as an

approximation to the posterior distribution

Obtaining posterior distributions for polynomial coefficients

The polynomial neural network is a factorized form of a polynomial. To obtain a simplified

form of the polynomial we must expand the equation and combine like terms. For the case

where the neural network parameters are scalar point estimates, we have already done this [9]

with the use of SymPy [81]. When our parameters are Bayesian probability distributions, we

must use the rules for the product and sum of probability distributions. These rules depend on

the type of probability distributions that are algebraically combined, which makes it challeng-

ing to compute for even a small number of parameters (weights and biases). We explored

approximating the weights and biases as independent univariate Gaussian probability density

functions (PDFs), for which there are known rules [82] for the mean and variance of the prod-

uct and sum of univariate Gaussian PDFs. However, this approach did not work in all cases

since the weights and biases are dependent on each other.

To avoid multiplying out probability density functions of the weights and biases to obtain

posterior distributions for the polynomial coefficients, we used Monte Carlo sampling. We

drew random samples from the posterior distributions w* P(w|D) and b* P(b|D) for the

weights (w) and biases (b) given the data (D). Both the Laplace approximation and variational

inference give us multivariate normal distributions for the posterior distributions for the

weights (w) and biases (b) of the neural network, which allowed us to use native functions in

JAX, SciPy, and NumPy to directly sample from the multivariate normal posterior distribu-

tions. For MCMC and SMC ABC methods we used the samples obtained directly from these

methods. For each sample, we used the approach of expanding the polynomial neural network

for scalar point estimates [9]. After doing this for enough samples, we have an estimate of the

posterior distribution c* P(c|D) of the polynomial coefficients (c).

Strategies for handling large amounts of noise

Neural ODEs require initial conditions to generate predicted trajectories (ypred) for the training

process. When there is a large amount of observed noise in the training data, the known data

points (yknown) cannot be used as initial conditions. When this is the case, we must use a time-

series filtering or smoothing algorithm to find good initial conditions to use for the neural

ODE training process. Example filtering algorithms include moving average [83] (MA), expo-

nential moving average [84] (EMA), and Kalman filters [85]. Example smoothing algorithms

include smoothing splines [86], local regression [87], kernel smoother [88], Butterworth filter

[89], and exponential smoothing [90]. We applied all of these algorithms on noisy ODE time

series data and found Gaussian process regression (GPR) [91] to be the most accurate

approach. For brevity, we have chosen not to outline in detail the pros and cons of each of the

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 9 / 38

https://doi.org/10.1371/journal.pcbi.1012414

possible algorithms. However, it is important to note that the optimal smoothing algorithm is

dependent on the data and the underlying model that describes it.

Gaussian process regression assumes a Gaussian process prior, which is specified with

mean function m(x) and covariance function or kernel k(x, x0):

f ðxÞ � GPðmðxÞ; kðx; x0ÞÞ: ð18Þ

The rational quadratic, Matérn, Exp-Sine-Squared kernel, and radial basis function kernels

[92–94] were found to perform the best for our considered test problems and settings. We

used the scikit-learn [95] Python library to perform our pre-processing with GPR. The hyper-

parameters of the kernels were optimized using MLE.

Results

We will start by evaluating the methodology outlined on univariate cubic regression with a

polynomial neural network. Starting with this model demonstrates that we can recover accu-

rate Bayesian uncertainties on a standard polynomial without any ODEs. Since this problem

can be posed as a Bayesian linear regression model with a closed form solution, we can directly

test the accuracy of the methods and make sure they work prior to moving on to ODEs.

We then move on to the following ODE models: the Lotka-Volterra deterministic oscillator,

the damped oscillator, and the Lorenz attractor. These models are common toy problems for

dynamical systems and neural ODEs. The Lotka-Volterra model is a fairly easy model to iden-

tify. The damped oscillator is more difficult. In our previous work, we have shown that the

dampening effect makes the vector field hard to learn [9]. Since the Lorenz attractor is chaotic

and has high frequency oscillations, it is the most difficult model to learn. Since it is common

in the sciences to have a partially incomplete model, we also demonstrate learning the missing

terms from a partially known ODE model. For simplicity reasons, we have chosen to use the

Lotka-Volterra model for learning the missing dynamics.

For each of the models outlined, we recover Bayesian posterior distributions for the model

parameters and compare them to the known values. For the univariate cubic regression exam-

ple, we plot the prediction along with credible intervals and confirm that the credible intervals

capture the data well. For the ODE examples, we integrate the Bayesian ODE models from the

known initial condition and compare it to the true trajectory. The criteria for choosing the

best Bayesian inference method are: ease of use, computational cost, and accuracy.

Experiment 1: Univariate cubic regression

Prior to studying dynamical systems with neural ODEs, we tested our Bayesian polynomial

neural network inference method on basic polynomials. For the test case, we used the follow-

ing third order univariate function:

f ðxÞ ¼ b0 þ b1xþ b2x2 þ b3x3: ð19Þ

For our experiment, we chose values of β0 = 1, β1 = 1, β2 = 2, and β3 = 4. The training data

for the x-values consisted of a single data set of 200 uniformly spaced data points in the range

-1.25 to 1.25. The values of f(x) corresponding to the values of x were obtained by directly

substituting the x-values into the function. We then added Gaussian noise with μ = 0 and

σ2 = 9 to the training data. We chose this level of noise to demonstrate our methodology on

data with a high level of noise. For reproducibility and comparison purposes, we used a ran-

dom seed of 989 for all of the results we will show. Figs 2, 3, 4, 5 and 6 will be presented in this

section of the results.

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 10 / 38

https://doi.org/10.1371/journal.pcbi.1012414

The architecture from Ref. [9] was used for the Laplace approximation, the No-U-Turn

Sampler (NUTS) method, and variational inference. The third order polynomial neural net-

work we used had 1x10x10x10x10x1 neurons in each layer (180 total parameters). We experi-

mented with changing the number of neurons in each hidden layer up to 200 and the results

were similar. The extra parameters do not affect the posteriors significantly. For brevity, we do

Fig 2. For the univariate cubic polynomial f(x) = 1 + x + 2x2 + 4x3, a third order Bayesian polynomial neural network was trained with the No-

U-Turn-Sampler (NUTS) algorithm. The kernel density estimates for the posterior distributions of the weights and biases of the polynomial neural

network are shown. The panes are sequentially ordered (left-to-right, top-to-bottom) from the first layer to the last layer in the neural network. There is

no legend associated with the colors in the figure. The colors are only used to distinguish between posterior distributions of the parameters.

https://doi.org/10.1371/journal.pcbi.1012414.g002

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 11 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g002
https://doi.org/10.1371/journal.pcbi.1012414

Fig 3. For the univariate cubic polynomial f(x) = 1 + x + 2x2 + 4x3, a third order Bayesian polynomial neural network was trained

with a) the Laplace approximation, b) Markov Chain Monte Carlo with the No-U-Turn-Sampler (NUTS) algorithm, and c)

Variational Inference. For comparision, d) Bayesian linear regression was also performed on the training data. The kernel density

estimates for the posterior distributions of the polynomial coefficients are shown (left) along with their predictions and credible

intervals (right). For the left column, the true value of the parameters is shown in the legend. Each of the columns share the same

legend.

https://doi.org/10.1371/journal.pcbi.1012414.g003

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 12 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g003
https://doi.org/10.1371/journal.pcbi.1012414

not show these results. We used the Python libraries JAX [56, 57] along with Flax [96] for our

neural networks.

For MCMC with NUTS, we used the Python library BlackJAX [77] to perform sampling.

Since we had no prior knowledge of the weights and biases of the polynomial neural network

but knew they weren’t large values, we used the noninformative Gaussian prior with zero

mean and standard deviation of 100000. We tested the sensitivity of the results with respect to

the prior standard deviation, but found no significant effect. We omit these results for brevity.

For MCMC, the warmup was set to 1000 steps and the number of steps taken following

warmup was 1000. The code can also execute on a CPU within practical timeframes (a few

extra minutes over GPU execution time). The GPU used was 1 core of NVIDIA GeForce RTX

3090 with 8 GB of memory. The CPU used was the Intel i7-8550U CPU 1.80GHz processor

with 8 GB of memory. Since our neural network has a relatively small number of parameters,

we plotted the kernel density estimates for the posterior distributions of the weights and biases

of the polynomial neural network prior to expanding out the terms with Monte Carlo (see

Fig 2). Most of the posterior distributions are close to being unimodal and symmetric. Some of

the distributions have two bells, but the bells are very close together and rarely spaced far

apart, which initially suggests that the Laplace approximation and variational inference with a

Fig 4. For the univariate cubic polynomial f(x) = 1 + x + 2x2 + 4x3, a third order Bayesian polynomial neural network was trained with

Markov Chain Monte Carlo. To access the convergence and mixing of the Markov Chain, we show the trace plot for all of the expanded

polynomial coefficients.

https://doi.org/10.1371/journal.pcbi.1012414.g004

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 13 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g004
https://doi.org/10.1371/journal.pcbi.1012414

multivariate Gaussian should work towards estimating the posteriors. The Laplace approxima-

tion approach takes significantly less time than MCMC—(1 minute vs 30 minutes). Our results

from the section and the following section provide enough evidence to use the Laplace

approximation.

Since this regression problem can also be posed as a Bayesian linear regression problem

with a closed-form solution, we also solved it via simple Bayesian linear regression. For

Bayesian linear regression, we write the model as y = XB. Since we have a Gaussian likeli-

hood function and a conjugate Gaussian prior, the posterior distribution is defined by (see

Fig 5. For the univariate cubic polynomial f(x) = 1 + x + 2x2 + 4x3, a third order Bayesian polynomial neural network was trained with Markov

Chain Monte Carlo. To show sufficient Markov Chain length, we show the results of MCMC for the following sample sizes: a.) 500 samples, b) 1000

samples, and c) 10000 samples.

https://doi.org/10.1371/journal.pcbi.1012414.g005

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 14 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g005
https://doi.org/10.1371/journal.pcbi.1012414

Appendix):

pðBjDÞ ¼ N ðmB;SBÞ; ð20Þ

SB ¼
XTX
b

2
þ

I
a2

� �� 1

; ð21Þ

mB ¼
1

b
2
SBX

Ty; ð22Þ

where the noise of the data (β2) can be approximated by the sample variance of (XB −
yknown). This approach did not use any neural networks as its intended purpose was solely

method validation.

For Markov Chain Monte Carlo, we verified that our chain converged to our stationary dis-

tribution (the posterior) through the construction of a trace plot [67] as well as the calculation

of the Geweke diagnostic number [67] for the expanded polynomial coefficients. The trace

plot is shown in Fig 4. The trace plot shows good convergence as well as an okay level of mix-

ing. We can quantitatively access the convergence of our Markov Chain by calculating the

Fig 6. For the univariate cubic polynomial f(x) = 1 + x + 2x2 + 4x3, a third order Bayesian polynomial neural network was

trained with the Laplace approximation, Markov Chain Monte Carlo with the No-U-Turn-Sampler (NUTS) algorithm, and

Variational Inference. For comparision, Bayesian linear regression was also performed on the training data. We repeated the

inference methods for 100 distinct datasets and calculated the fraction of the datasets in which the 90% and 95% credible intervals

captured the true parameter value. The 90% and 95% confidence intervals for the 90% and 95% coverage fractions are also shown.

https://doi.org/10.1371/journal.pcbi.1012414.g006

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 15 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g006
https://doi.org/10.1371/journal.pcbi.1012414

Geweke diagnostic number, which is given by the following equation:

T ¼
�X1 �

�X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ

s2
2

n2

q ; ð23Þ

where �X1 and �X2 are the means of samples 1 and 2, s2
1

and s2
2

are the sample variances of sam-

ples 1 and 2, and n1 and n2 are the number of samples in samples 1 and 2 respectively [67].

Sample 1 was constructed by discarding the burn-in samples from the Markov Chain and

using the first 10% of the remaining values. Sample 2 was constructed by using the remaining

50% of the values (with the burn-in values also discarded). Eq 23 is a two-sided hypothesis test

that the mean of the first 10% and last 50% of the Markov Chain are the same. For each of the

values of the expanded polynomial coefficients, we calculated the following Geweke diagnostic

numbers: Tb0
¼ � 1:589, Tb1

¼ � 0:942, Tb2
¼ 0:706, and Tb3

¼ 1:269. At the confidence

level of 0.05, the upper and lower tail of the t-distribution is ±1.964. This tells us that the

means of the samples consisting of the first 10% and last 50% of the Markov Chain are statisti-

cally the same at the confidence level of 0.05, which is a good indicator that the Markov Chain

has good convergence.

For Markov Chain Monte Carlo, we also need to justify the chosen Markov Chain length.

We have repeated the MCMC experiment with sample sizes of 500, 1000, and 10000. Fig 5

shows how the results change as a function of the Markov Chain length. It can be seen that

1000 samples is sufficient. In Fig 3, we show the kernel density estimates for the posterior dis-

tributions of the coefficients of the polynomial for the Laplace approximation, MCMC with

NUTS, variational inference, and Bayesian linear regression. Fig 3 also shows the model pre-

dictions corresponding to the posterior distributions found by each of the methods along with

95% and 99.7% credible intervals. Since the posterior distributions are symmetric and not

skewed, all of the credible intervals shown are quantile-based. For skewed posterior distribu-

tions, Highest Posterior Density (HPD) credible intervals are more appropriate to use. The

credible intervals were constructed by sampling from the posterior distribution and then eval-

uating the function for each of the samples obtained. The sample mean was calculated to give

the mean model for the figure. The sample standard deviation was calculated and used to con-

struct quantile-based credible intervals for the model prediction. This approach was also used

for the ODE models in the other experiments.

According to Fig 3, all the methods have very similar results. MCMC predicted slightly nar-

rower posteriors than Bayesian linear regression, whereas the Laplace approximation predicted

slightly wider posteriors; however, MCMC is the most computationally expensive of the meth-

ods and scales the worst as the number of model parameters increases. Variational inference

had the narrowest predictions for the posterior distributions, which resulted in a narrower

credible interval for the function evaluation. Variational inference was also comparatively dif-

ficult to train. A notable amount of trial and error was required in order to guess plausible

mean and covariance values to initialize the multivariate Gaussian approximation. Different

initial mean and covariance matrices worked for each problem and there is no hyperparameter

optimization that can be performed to speed this up. These problems will be addressed in

future work. However, variational inference is still computationally cheaper than MCMC.

Fig 6, shows the coverage performance of the parameter credible intervals for each of the

Bayesian inference methods. We generated 100 distinct datasets of 200 points with random

seeds of 1, 2, 3, . . ., 100 respectively and then independently repeated the Bayesian inference

methods with the same settings for each of the datasets. For each of the methods, we calculated

the fraction of the datasets in which the 90% and 95% credible intervals for the parameters cap-

tured the true parameter value. The coverage performance is a good metric for comparing

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 16 / 38

https://doi.org/10.1371/journal.pcbi.1012414

how consistently each of the Bayesian methods were able to identify the parameters correctly.

Our results show that MCMC is the least consistent method. Variational inference is slightly

better than MCMC. The Laplace approximation has results the most similar to the Bayesian

linear regression control experiment.

Experiment 2: Lotka-Volterra deterministic oscillator

Our first demonstration of Bayesian parameter estimates for polynomial neural ODEs is on

the deterministic Lotka-Volterra ODE model [97, 98], which describes predator-prey popula-

tion dynamics, such as an ecosystem of rabbits and foxes. When written as a set of first order

nonlinear ODEs, the model is given by:

dx
dt
¼ 1:5x � xy; ð24Þ

dy
dt
¼ � 3yþ xy: ð25Þ

We generated our training data by integrating the initial value problem (IVP) with initial

conditions x = 1 and y = 1 at N = 100 points uniformly spaced in time between 0 and 10. Since

the Lotka-Volterra model is non-stiff, we used SciPy [99] and DOPRI5 [100], a fourth order

accurate embedded method in the Runge–Kutta family of ODE solvers. We then generated 10

high-noise trajectories originating from the same initial value by adding zero-centered Gauss-

ian noise with a standard deviation of 2 to the training data. This corresponds to a signal-to-

noise ratio [101] (SNR or S/N) between 0.125 and 3.5. See Fig 7, ignoring the shaded GPR fit,

to see the noisy training data. The architecture from Ref. [9] was used with 160 total parame-

ters. Since we had no prior knowledge of the weights and biases of the polynomial neural net-

work but knew they weren’t large values, we used the noninformative Gaussian prior with zero

mean and standard deviation of 100000. For MCMC, the warmup was set to 1000 steps and

the number of steps taken following warmup was 1000. As discussed in the methods section,

we batched our data into Nt = 89 trajectories of consisting of 12 consecutive data points from

the time series. We simultaneously solved these batch trajectories during each epoch using our

own JAX based differentiable ODE solver for the multistep fourth order explicit Runge–

Kutta–Fehlberg method [62], which allows us to directly perform backpropagation through

the ODE discretization scheme.

All of the Bayesian neural ODE approaches that we explored require integrating the neural

ODE from starting initial conditions and comparing the prediction to the true data; however,

since the data is extremely noisy, we cannot use the observed data points as initial conditions.

To generate good initial guesses, we used Gaussian process regression (GPR) on the noisy data

prior to the model training process. Since the Lotka-Volterra model is oscillatory, we used the

Exp-Sine-Squared kernel [94] (also referred to as the periodic kernel), scaled by a constant ker-

nel, along with the white kernel (Wk):

kðxi; xjÞ ¼ c2exp �
2sin2ðpdðxi; xjÞ=pÞ

l2

 !

þWkðs
2
GPRÞ: ð26Þ

where c2 is the constant for the constant kernel, d is the euclidean distance function, l is the

length-scale, p is the periodicity, and s2
GPR is the variance of the Gaussian noise [94]. We used

MLE to obtain values for all of these unknown hyperparameters. See Fig 7 for the GPR fit on

the observed data.

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 17 / 38

https://doi.org/10.1371/journal.pcbi.1012414

In Fig 8, we show the kernel density estimates for the posterior distributions of the ODE’s

parameters for the Laplace approximation, MCMC, and variational inference with a multivari-

ate Gaussian approximation. For comparison, we also show the inferred parameters obtained

by vanilla Sequential Monte Carlo Approximate Bayesian Computation [102] (SMC ABC), a

standard method used for inference of parameters in ODEs, for the ODE without any neural

networks. We wrote our own JAX based ABC method, but we recommend StochSS [103–105]

for those who’d like to use an existing toolkit. SMC ABC had the worst performance for the

true parameter values. ABC predicted really wide posterior distributions for some of parame-

ters that were far away from the true parameter values. The Laplace approximation, Markov

Chain Monte Carlo, and variational inference predicted more similar posterior distributions

for the ODE parameters. As in the case for the univariate cubic polynomial, variational infer-

ence predicted very narrow posterior distributions. MCMC resulted in very jagged posterior

distributions.

In Fig 9, we show the predictive performance of the inferred parameters. For the parameters

obtained from each of the methods, we integrated the ODE out to a final time 5 times that of

the training data’s time range. The mean predicted model along with 95% and 99.97% credible

intervals is shown along with the training data and true ODE model used to generate the train-

ing data. MCMC had the worst predictive performance; it predicted the oscillations to dampen

over time. Variational inference had reasonable performance with only minor dampening of

the oscillations over time, but its predicted posteriors weren’t ideal. The Laplace

Fig 7. The fitted Gaussian process regression model trained on the noisy Lotka Volterra Oscillator data was used as initial conditions for the

neural ODE’s integration training trajectories.

https://doi.org/10.1371/journal.pcbi.1012414.g007

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 18 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g007
https://doi.org/10.1371/journal.pcbi.1012414

Fig 8. For the Lotka Volterra Oscillator, we show the kernel density estimates for the posterior distributions of the polynomial

coefficients obtained with a.) the Laplace Approximation, b.) Markov Chain Monte Carlo, and c.) Variational Inference. For

comparison purposes, we also show the case for d.) Approximate Bayesian Computation on a normal ODE. The true value of the

coefficients is shown in the legend. The legend is shared for each of the columns.

https://doi.org/10.1371/journal.pcbi.1012414.g008

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 19 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g008
https://doi.org/10.1371/journal.pcbi.1012414

Fig 9. For the Lotka Volterra Oscillator, we show the predictive performance of a Bayesian polynomial neural ODE trained using a)

the Laplace Approximation, b) Markov Chain Monte Carlo, and c) Variational Inference. The solid red and blue dots indicate the

training data, solid green lines indicate the true ODE model, dashed lines indicate the predictive mean model, and shaded regions

indicate 95% and 99.75% credible intervals.

https://doi.org/10.1371/journal.pcbi.1012414.g009

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 20 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g009
https://doi.org/10.1371/journal.pcbi.1012414

approximation had the best predictive performance with only minor dampening and a minor

phase shift, which further highlights its performance and usability since it is also the fastest

and easiest method to train.

For Markov Chain Monte Carlo, we verified that our chain converged to our stationary dis-

tribution (the posterior) through the construction of a trace plot [67] as well as the calculation

of the Geweke diagnostic number [67] for the expanded polynomial coefficients. The trace

plot is shown in Fig 10. The trace plot shows good convergence as well as an okay level of mix-

ing. We can quantitatively access the convergence of our Markov Chain by calculating the

Geweke diagnostic number, which is given by Eq 23. Table 1 shows the Geweke diagnostic

number for each of the expanded polynomial coefficients. At the confidence level of 0.05, the

upper and lower tails of the t-distribution are ±1.964. This tells us that the means of the sam-

ples consisting of the first 10% and last 50% of the Markov Chain are statistically the same at

the confidence level of 0.05, which is a good indicator that the Markov Chain has converged.

Experiment 3: Damped oscillatory system

Our next example is the deterministic damped oscillatory system. This model is a popular toy

model for the field of neural ODEs [16, 106]. Damped oscillations appear in many fields of

biology, physics, and engineering [107, 108]. One version of the damped oscillator model is

given by:

dx
dt
¼ � 0:1x3 � 2y3 ð27Þ

dy
dt
¼ 2x3 � 0:1y3: ð28Þ

We generated our training data by integrating an initial value problem with initial condi-

tions given by (x0, y0) = (1, 1) over the interval t 2 [0, 25] for 500 points uniformly spaced in

time. Since the damped oscillator is also a nonstiff ODE system, we integrated the initial value

problem with the same numerical methods as was done for the Lotka-Volterra model. We

then generated 10 high-noise trajectories originating from the same initial value by adding

zero-centered Gaussian noise with a standard deviation of 0.6 to the training data. This corre-

sponds to an instantaneous signal-to-noise ratio [101] ranging from 0 to 2.1. See Fig 11, ignor-

ing the shaded GPR fit, to see the noisy training data.

The architecture from Ref. [9] was used with 660 total parameters. Since we had no prior

knowledge of the weights and biases of the polynomial neural network but knew they weren’t

large values, we used the noninformative Gaussian prior with zero mean and standard devia-

tion of 100000. For MCMC, the warmup was set to 1000 steps and the number of steps taken

following warmup was 1000. For the training process, we created batches of trajectories con-

sisting of 13 consecutive data points from the time series. The number of consecutive points to

include was determined by trial and error and unfortunately varies from model to model. We

simultaneously solve these batch trajectories during each epoch using our own JAX based dif-

ferentiable ODE solver for the multistep fourth order explicit Runge–Kutta–Fehlberg method

[62], which allows us to directly perform backpropagation through the ODE discretization

scheme. We have previously discussed why we chose this approach in the methods section of

the paper.

Prior to training our neural ODE, we used a smoothing algorithm to generate good initial

values for our batch trajectories. One can use any smoothing/filtering algorithm, but we used

Gaussian process regression (GPR). For this model, we had the best results with the use of a

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 21 / 38

https://doi.org/10.1371/journal.pcbi.1012414

Fig 10. For the Lotka Volterra Oscillator, a second order Bayesian polynomial neural network was trained with Markov

Chain Monte Carlo. To access the convergence and mixing of the Markov Chain, we show the trace plot for all of the

expanded polynomial coefficients.

https://doi.org/10.1371/journal.pcbi.1012414.g010

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 22 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g010
https://doi.org/10.1371/journal.pcbi.1012414

rational quadratic kernel [94] scaled by a constant kernel, along with a white kernel (Wk):

kðxi; xjÞ ¼ c2 1þ
dðxi; xjÞ

2
Þ

2al2

 !� a

þWkðs
2
GPRÞ: ð29Þ

where c2 is the constant for the constant kernel, d is the euclidean distance function, l is the

length-scale, α is the scale mixture parameter, and s2
GPR is the variance of the Gaussian noise

Table 1. To access the convergence of Markov Chain Monte Carlo inference on the Lotka Volterra Oscillator, we

show the Geweke diagnostic number for each of the parameters. The values were calculated with Eq 23. At the confi-

dence level of 0.05, the upper and lower tails of the t distribution are ±1.964.

dx
dt Terms dy

dt Terms

Term Geweke Diagnostic Term Geweke Diagnostic

0 -1.583 0 0.974

0y 1.620 −3y -0.644

0y2 -1.368 0y2 0.580

1.5x 1.692 0x -0.863

−xy 0.340 xy -0.269

0x2 -1.708 0x2 0.831

https://doi.org/10.1371/journal.pcbi.1012414.t001

Fig 11. The fitted Gaussian process regression model trained on the noisy Damped Oscillator data was used as initial conditions for the neural

ODE’s integration training trajectories.

https://doi.org/10.1371/journal.pcbi.1012414.g011

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 23 / 38

https://doi.org/10.1371/journal.pcbi.1012414.t001
https://doi.org/10.1371/journal.pcbi.1012414.g011
https://doi.org/10.1371/journal.pcbi.1012414

[94]. We used MLE to obtain values for all of these unknown hyperparameters. See Fig 11 for

the GPR fit on the observed data. As you can see in the figure, the GPR model fits the noisy

data extremely well.

In Fig 12, we show the kernel density estimates for the posterior distributions of the ODE’s

parameters for a) the Laplace approximation, b) Markov Chain Monte Carlo, and c) varia-

tional inference with a multivariate Gaussian approximation. For comparison, we also show

the inferred parameters obtained by vanilla Sequential Monte Carlo Approximate Bayesian

Computation [102] (SMC ABC), a standard method used for inference of parameters in

ODEs, for the ODE without any neural networks.

In Fig 13, we integrated the final Bayesian models out to a final time 5 times that of the

training data’s time range. The mean predicted model along with 95% and 99.97% credible

intervals is shown along with the training data and true ODE model used to generate the train-

ing data.

Generally speaking, we observed the same behavior for each of these methods as we did pre-

viously for the Lotka Volterra model. Approximate Bayesian computation had the widest pos-

terior distributions. Variational inference had the narrowest posterior distributions and the

credible intervals in the trajectory prediction were too narrow to capture the true trajectory—

the method is too confident about the inferred parameters. This time, Markov Chain Monte

Carlo (MCMC) completely failed to learn an accurate enough model to predict the trajectory

of the system beyond t = 2. We spent a large amount of time playing around with the best set-

tings for MCMC for this model, but the method failed every time. The other methods did not

require nearly as much time to get working results for. Given enough patience, MCMC will

result in somewhat accurate results but the other methods are much easier to use. For this rea-

son, we do not recommend using MCMC for neural ODEs. The Laplace approximation pro-

vided the most accurate parameter estimates as well as predictions for the trajectories of the

system. It is also the fastest and easiest method to use. For these reasons, we recommend using

the Laplace approximation over the other methods.

Experiment 4: Lorenz attractor

The Lorenz attractor [109] is an example of a deterministic chaotic system [110, 111] that

came from a simplified model for atmospheric convection [112]:

dx
dt
¼ sðy � xÞ; ð30Þ

dy
dt
¼ xðr � zÞ � y; ð31Þ

dz
dt
¼ xy � bz: ð32Þ

The equations describe the two-dimensional flow of a fluid with uniform depth between an

upper and lower surface, given a temperature gradient. In the equations, x is proportional to

the intensity of convective motion, y is proportional to the difference in temperature between

the rising and falling currents of fluid, and z is proportional to the amount of non-linearity

within the vertical temperature profile [109, 112]. σ is the Prandtl number, r is the Rayleigh

number, and b is a geometric factor [109, 112]. Typically, σ = 10, r = 28, and b ¼ 8

3
. For our

example, we use these values for the parameters. Since the discovery of the Lorenz model, it

has also been used as a simplified model for various other systems such as: chemical reactions

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 24 / 38

https://doi.org/10.1371/journal.pcbi.1012414

Fig 12. For the Damped Oscillator, we show the kernel density estimates for the posterior distributions of the polynomial

coefficients obtained with a.) the Laplace Approximation, b.) Markov Chain Monte Carlo, and c.) Variational Inference. For

comparison purposes, we also show the case for d.) Approximate Bayesian Computation on a normal ODE. The true value of the

coefficients is shown in the legend. The legend is shared for each of the columns.

https://doi.org/10.1371/journal.pcbi.1012414.g012

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 25 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g012
https://doi.org/10.1371/journal.pcbi.1012414

Fig 13. For the Damped Oscillator, we show the predictive performance of a Bayesian polynomial neural ODE trained using a) the

Laplace Approximation, b) Markov Chain Monte Carlo, and c) Variational Inference. The solid red and blue dots indicate the

training data, solid green lines indicate the true ODE model, dashed lines indicate the predictive mean model, and shaded regions

indicate 95% and 99.75% credible intervals.

https://doi.org/10.1371/journal.pcbi.1012414.g013

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 26 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g013
https://doi.org/10.1371/journal.pcbi.1012414

[113], lasers [114], electric circuits [115], brushless DC motors [116], thermosyphons [117],

and dynamos [117].

Due to the chaotic nature of this system and the high frequency of oscillations, we required

more training data for this example than for the previous examples shown. We generated our

training data from initial conditions (x0, y0, z0) = (1, 1, 1) over time interval t 2 [0, 30] for 900

points uniformly spaced in time. We then generated 10 high-noise trajectories originating

from the same initial value by adding zero-centered Gaussian noise with a standard deviation

of 2 to the training data. The architecture from Ref. [9] was used with 231 total parameters.

Since we had no prior knowledge of the weights and biases of the polynomial neural network

but knew they weren’t large values, we used the noninformative Gaussian prior with zero

mean and standard deviation of 100000. For MCMC, the warmup was set to 1000 steps and

the number of steps taken following warmup was 1000. The training process was exactly the

same as the previous two examples. This time, we batched our data into training trajectories

consisting of two adjacent data points. This number was found through trial and error, but we

hypothesize that the trajectory length needs to be shorter for this example due to the high fre-

quency oscillations. For this example, we used the same GPR kernel as was used for the

damped oscillator (see Eq 29).

Fig 14 shows the kernel density estimates for the various Bayesian inference methods. Since

the level of noise is smaller for this example, the posterior estimates are narrower. There is also

Fig 14. For the Lorenz Attractor, we show the kernel density estimates for the posterior distributions of the polynomial coefficients obtained with a.)

the Laplace Approximation, b.) Markov Chain Monte Carlo, and c.) Variational Inference. The true value of the coefficients is shown in the legend. The

legend is shared for each of the columns.

https://doi.org/10.1371/journal.pcbi.1012414.g014

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 27 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g014
https://doi.org/10.1371/journal.pcbi.1012414

very little difference between the predicted Bayesian uncertainties. Figs 15, 16 and 17 show the

trajectory predictions for the Laplace approximation, Markov Chain Monte Carlo, and varia-

tional inference respectively. All of the methods’ 95% credible intervals were able to capture

the true trajectory. In terms of accuracy, there is no clear winner for the Lorenz attractor.

However, in terms of speed, the Laplace approximation is the best choice.

Example 5: Learning missing terms from a partially known ODE model

It is common for scientists to have an incomplete model of their system—one in which they

are confident about certain processes undergoing the system, but there are mechanisms they

aren’t aware of. Rather than learn the whole system from scratch, we can incorporate the

known parts of our model into the neural ODE and have the neural ODE suggest additional

components of the ODE model given the observed data. Incorporating the known ODE model

into the neural ODE framework is done simply by adding the output of the known equation to

that of the neural ODE output—no special treatment is required aside from that (see Eq 4).

We will use the Lotka Volterra Oscillator to demonstrate the ability of polynomial neural

ODEs to learn missing terms from a partially known ODE model. We also show that Bayesian

Fig 15. For the Lorenz Attractor, we show the predictive performance of a Bayesian polynomial neural ODE trained using the Laplace

Approximation. The solid red, blue, and orange dots indicate the training data, solid green lines indicate the true ODE model, dashed lines indicate the

predictive mean model, and shaded regions indicate 95% and 99.75% credible intervals.

https://doi.org/10.1371/journal.pcbi.1012414.g015

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 28 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g015
https://doi.org/10.1371/journal.pcbi.1012414

uncertainties can be obtained for the parameters in the terms that the neural ODE suggests

including. As a reminder, the Lotka Volterra model is given by:

dx
dt
¼ 1:5 x � xy; ð33Þ

dy
dt
¼ � 3yþ x y: ð34Þ

For this experiment, the bold terms are the ones we do not know. The goal will be to recover

these terms along with posterior distributions for the values of the parameters. We used the

same training data, GPR model for the initial conditions, and training process as was previ-

ously used in the Lotka Volterra example. The only difference was including the known ODE

model (see Eq 4).

Fig 18 shows the posterior distributions recovered for all of the candidate terms to include

in the final ODE model. The neural ODE was able to identify the missing terms with few false

terms. Most of the terms that are not in the true model are predicted to be close to zero. As

was seen in the previous examples, variational inference provides very narrow posterior

Fig 16. For the Lorenz Attractor, we show the predictive performance of a Bayesian polynomial neural ODE trained using Markov Chain Monte

Carlo. The solid red, blue, and orange dots indicate the training data, solid green lines indicate the true ODE model, dashed lines indicate the predictive

mean model, and shaded regions indicate 95% and 99.75% credible intervals.

https://doi.org/10.1371/journal.pcbi.1012414.g016

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 29 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g016
https://doi.org/10.1371/journal.pcbi.1012414

distributions and MCMC provides results between the Laplace approximation and variational

inference.

Discussion

This work addressed the problem of how to handle noisy data and recover uncertainty esti-

mates for: (1) symbolic regression with deep polynomial neural networks and (2) polynomial

neural ODEs. More broadly, we also helped to answer the question of how to handle noisy

data and perform Bayesian inference on the general class of symbolic neural networks and

symbolic neural ODEs.

We compared the following Bayesian inference methods: (a) the Laplace approximation,

(b) Markov Chain Monte Carlo (MCMC) sampling methods, and (c) variational inference.

We do not recommend using Markov Chain Monte Carlo for neural ODEs. Using MCMC for

neural ODEs requires a substantial amount of patience, it is the most computationally expen-

sive method, and we showed that the results are not encouraging. A substantial amount of

development work needs to be devoted towards addressing the challenges of using MCMC for

neural ODEs in an effective manner. Variational inference is also challenging to use—some

Fig 17. For the Lorenz Attractor, we show the predictive performance of a Bayesian polynomial neural ODE trained using variational inference.

The solid red, blue, and orange dots indicate the training data, solid green lines indicate the true ODE model, dashed lines indicate the predictive mean

model, and shaded regions indicate 95% and 99.75% credible intervals.

https://doi.org/10.1371/journal.pcbi.1012414.g017

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 30 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g017
https://doi.org/10.1371/journal.pcbi.1012414

Fig 18. It is common for a domain expert to understand part of the system’s underlying mechanisms, but have in incomplete model. Given an

incomplete model, a neural ODE can learn the missing terms from the ODE model that best fit the observed data. We have removed two of the terms

from the Lotka Volterra model and tested the neural ODE’s ability to learn the missing terms. We show the kernel density estimates for the posterior

distributions of the polynomial coefficients obtained with a.) the Laplace Approximation, b.) Markov Chain Monte Carlo, and c.) Variational Inference.

The true value of the coefficients is shown in the legend. The legend is shared for each of the columns.

https://doi.org/10.1371/journal.pcbi.1012414.g018

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 31 / 38

https://doi.org/10.1371/journal.pcbi.1012414.g018
https://doi.org/10.1371/journal.pcbi.1012414

time is spent deciding the mean and covariance matrix to use for initialization of the parame-

ters. This process can be sped up by first obtaining point estimates for the parameters and

using the values obtained to initialize the mean matrix. Using this approach made variational

inference a viable option to implement. However, the posterior estimates generated by varia-

tional inference’s posterior are consistently too narrow: it is too confident about its estimates.

The Laplace approximation is the easiest to implement and the fastest method. The main

challenge associated with the Laplace approximation for neural networks is inverting the

Fisher information matrix; however, most of the models in this class of problems are small

enough that this is not an issue. Based on our experience, we recommend having no more

than 50,000 parameters if you plan on using the Laplace approximation for a neural network

and want to use the exact or pseudo inverse of the Fisher information matrix. We were initially

skeptical about the Laplace approximation because it makes a Gaussian approximation for all

of the parameters. However, we have shown that this approximation is not problematic when

the polynomials are multiplied out. We have shown that the Laplace approximation has high

accuracy. For these reasons, we recommend using the Laplace approximation for this class of

problems.

It is important to point out that our paper focuses exclusively on additive noise models due

to its clarity and analytical tractability. While understandable for initial exploration, it’s impor-

tant to point out that future work will need to address multiplicative noise. For example, bio-

logical systems and financial markets often experience noise that scales with the signal’s

magnitude, presenting a different set of challenges for Bayesian algorithm development.

Although our approach of using the Laplace approximation around the local minima for

polynomial neural ODE models is understandable and supported by encouraging empirical

evidence, particularly in scenarios where the unimodality of the posterior is apparent, it is

essential to consider and acknowledge potential limitations in more complex scenarios. For

instance, datasets consisting of time-series data from multiple sources or experiments, each

with distinct dynamics or patterns, may present challenges. In such cases, the posterior distri-

bution of the model parameters (weights and biases) could exhibit multimodality, with differ-

ent modes corresponding to different subsets or regimes of the data. By approximating the

posterior with a single Gaussian distribution centered around the MAP estimate, the Laplace

approximation might overlook the multimodal nature of the posterior and the existence of

multiple significant modes. Therefore, while our experiments provide preliminary evidence of

the success of the Laplace approximation, there is substantial future work to be done by statis-

ticians and researchers to explore these nuances and caveats more thoroughly. This additional

research would be invaluable for a deeper understanding and more robust application of the

Laplace approximation in neural networks.

Supporting information

S1 Text. Supplementary figures and tables.

(PDF)

Acknowledgments

This work has benefited from our participation in Dagstuhl Seminar 22332 “Differential Equa-

tions and Continuous-Time Deep Learning [25]”. Many thanks to the organizers of this semi-

nar: David Duvenaud (University of Toronto, CA), Markus Heinonen (Aalto University, FI),

Michael Tiemann (Robert Bosch GmbH—Renningen, DE), and Max Welling (University of

Amsterdam, NL). This work has also benefited from our participation in the University of

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 32 / 38

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012414.s001
https://doi.org/10.1371/journal.pcbi.1012414

Bonn’s Hausdorff School: “Inverse problems for multi-scale models.” Many thanks to the orga-

nizers of this summer school: Lorenzo Contento, Jan Hasenauer, and Yannik Schälte. We’d

like to thank Alexander Franks (UC Santa Barbara) for giving us the idea of using Monte

Carlo for obtaining posterior distributions for the polynomial coefficients. We’d also like to

thank Michael Tiemann and Katharina Ott (Robert Bosch GmbH—Renningen, DE) for rec-

ommending that we try the Laplace approximation on the polynomial neural ODEs. Lastly,

we’d like to thank Patrick Kidger (Google) for recommending that we switch from PyTorch to

JAX and providing resources for making the switch, as JAX has allowed us to do so much

more.

Use was made of computational facilities purchased with funds from the National Science

Foundation (CNS-1725797) and administered by the Center for Scientific Computing (CSC).

The CSC is supported by the California NanoSystems Institute and the Materials Research Sci-

ence and Engineering Center (MRSEC; NSF DMR 2308708) at UC Santa Barbara.

This work was supported in part by National Science Foundation (NSF) awards CNS-

1730158, ACI-1540112, ACI-1541349, OAC-1826967, OAC-2112167, CNS-2100237, CNS-

2120019, the University of California Office of the President, and the University of California

San Diego’s California Institute for Telecommunications and Information Technology/Qual-

comm Institute. Thanks to CENIC for the 100Gbps networks. The content of the information

does not necessarily reflect the position or the policy of the funding agencies, and no official

endorsement should be inferred. The funders had no role in study design, data collection and

analysis, decision to publish, or preparation of the manuscript.

Author Contributions

Conceptualization: Colby Fronk, Linda Petzold.

Formal analysis: Colby Fronk.

Funding acquisition: Prashant Singh, Linda Petzold.

Investigation: Colby Fronk, Jaewoong Yun, Linda Petzold.

Methodology: Colby Fronk, Prashant Singh, Linda Petzold.

Project administration: Prashant Singh, Linda Petzold.

Resources: Colby Fronk, Linda Petzold.

Software: Colby Fronk.

Supervision: Prashant Singh, Linda Petzold.

Validation: Colby Fronk, Jaewoong Yun, Prashant Singh.

Visualization: Colby Fronk.

Writing – original draft: Colby Fronk.

Writing – review & editing: Colby Fronk, Jaewoong Yun, Prashant Singh, Linda Petzold.

References
1. Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse identification of

nonlinear dynamical systems. Proceedings of the National Academy of Sciences. 2016; 113

(15):3932–3937. https://doi.org/10.1073/pnas.1517384113 PMID: 27035946

2. Hirsh S, Barajas-Solano D, Kutz J. Sparsifying priors for Bayesian uncertainty quantification in model

discovery. Royal Society open science. 2022; 9:211823. https://doi.org/10.1098/rsos.211823 PMID:

35223066

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 33 / 38

https://doi.org/10.1073/pnas.1517384113
http://www.ncbi.nlm.nih.gov/pubmed/27035946
https://doi.org/10.1098/rsos.211823
http://www.ncbi.nlm.nih.gov/pubmed/35223066
https://doi.org/10.1371/journal.pcbi.1012414

3. Kaheman K, Kutz JN, Brunton SL. SINDy-PI: a robust algorithm for parallel implicit sparse identifica-

tion of nonlinear dynamics. Proceedings Mathematical, Physical, and Engineering Sciences. 2020;

476. https://doi.org/10.1098/rspa.2020.0279 PMID: 33214760

4. Rudy S, Brunton S, Proctor J, Kutz J. Data-driven discovery of partial differential equations. Science

Advances. 2016; 3.

5. Alves EP, Fiuza F. Robust data-driven discovery of reduced plasma physics models from fully kinetic

simulations. In: APS Division of Plasma Physics Meeting Abstracts. vol. 2020 of APS Meeting

Abstracts; 2020. p. GO10.006.

6. Mangan NM, Brunton SL, Proctor JL, Kutz JN. Inferring Biological Networks by Sparse Identification of

Nonlinear Dynamics. IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

2016; 2(1):52–63. https://doi.org/10.1109/TMBMC.2016.2633265

7. Hoffmann M, Fröhner C, Noé F. Reactive SINDy: Discovering governing reactions from concentration

data. The Journal of Chemical Physics. 2019; 150(2):025101. https://doi.org/10.1063/1.5066099

PMID: 30646700

8. Sorokina M, Sygletos S, Turitsyn S. Sparse identification for nonlinear optical communication systems:

SINO method. Opt Express. 2016; 24(26):30433–30443. https://doi.org/10.1364/OE.24.030433

PMID: 28059391

9. Fronk C, Petzold L. Interpretable polynomial neural ordinary differential equations. Chaos: An Interdis-

ciplinary Journal of Nonlinear Science. 2023; 33(4):043101. https://doi.org/10.1063/5.0130803 PMID:

37097945

10. Li S, Xu LD, Zhao S. The internet of things: a survey. Information systems frontiers. 2015; 17:243–

259. https://doi.org/10.1007/s10796-014-9492-7

11. Rose K, Eldridge S, Chapin L. The internet of things: An overview. The internet society (ISOC). 2015;

80:1–50.

12. Mayr LM, Bojanic D. Novel trends in high-throughput screening. Current opinion in pharmacology.

2009; 9(5):580–588. https://doi.org/10.1016/j.coph.2009.08.004 PMID: 19775937

13. Szymański P, Markowicz M, Mikiciuk-Olasik E. Adaptation of high-throughput screening in drug dis-

covery—toxicological screening tests. International journal of molecular sciences. 2011; 13(1):427–

452. https://doi.org/10.3390/ijms13010427 PMID: 22312262

14. Balsamo G, Agusti-Panareda A, Albergel C, Arduini G, Beljaars A, Bidlot J, et al. Satellite and In Situ

Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sensing. 2018;

10:2038. https://doi.org/10.3390/rs10122038

15. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016.

16. Chen RT, Rubanova Y, Bettencourt J, Duvenaud DK. Neural ordinary differential equations. Advances

in neural information processing systems. 2018; 31. https://doi.org/10.1007/978-3-030-04221-9

17. Rubanova Y, Chen RT, Duvenaud DK. Latent ordinary differential equations for irregularly-sampled

time series. Advances in neural information processing systems. 2019; 32.

18. Dandekar R, Dixit V, Tarek M, Garcia-Valadez A, Rackauckas C. Bayesian Neural Ordinary Differen-

tial Equations. CoRR. 2020;abs/2012.07244.

19. Li X, Wong TKL, Chen RTQ, Duvenaud D. Scalable Gradients for Stochastic Differential Equations. In:

Chiappa S, Calandra R, editors. Proceedings of the Twenty Third International Conference on Artificial

Intelligence and Statistics. vol. 108 of Proceedings of Machine Learning Research. PMLR; 2020.

p. 3870–3882.

20. Kidger P, Morrill J, Foster J, Lyons T. Neural controlled differential equations for irregular time series.

Advances in Neural Information Processing Systems. 2020; 33:6696–6707.

21. Kidger P. On neural differential equations. arXiv preprint arXiv:220202435. 2022;.

22. Morrill J, Salvi C, Kidger P, Foster J. Neural rough differential equations for long time series. In: Inter-

national Conference on Machine Learning. PMLR; 2021. p. 7829–7838.

23. Jia J, Benson AR. Neural jump stochastic differential equations. Advances in Neural Information Pro-

cessing Systems. 2019; 32.

24. Chen RT, Amos B, Nickel M. Learning neural event functions for ordinary differential equations. arXiv

preprint arXiv:201103902. 2020;.

25. Duvenaud D, Heinonen M, Tiemann M, Welling M. Differential Equations and Continuous-Time Deep

Learning. Visualization and Decision Making Design Under Uncertainty. 2023; p. 19.

26. Owhadi H. Bayesian numerical homogenization. Multiscale Modeling & Simulation. 2015; 13(3):812–

828. https://doi.org/10.1137/140974596

27. Raissi M, Karniadakis G. Hidden Physics Models: Machine Learning of Nonlinear Partial Differential

Equations. Journal of Computational Physics. 2017; 357.

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 34 / 38

https://doi.org/10.1098/rspa.2020.0279
http://www.ncbi.nlm.nih.gov/pubmed/33214760
https://doi.org/10.1109/TMBMC.2016.2633265
https://doi.org/10.1063/1.5066099
http://www.ncbi.nlm.nih.gov/pubmed/30646700
https://doi.org/10.1364/OE.24.030433
http://www.ncbi.nlm.nih.gov/pubmed/28059391
https://doi.org/10.1063/5.0130803
http://www.ncbi.nlm.nih.gov/pubmed/37097945
https://doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.1016/j.coph.2009.08.004
http://www.ncbi.nlm.nih.gov/pubmed/19775937
https://doi.org/10.3390/ijms13010427
http://www.ncbi.nlm.nih.gov/pubmed/22312262
https://doi.org/10.3390/rs10122038
https://doi.org/10.1007/978-3-030-04221-9
https://doi.org/10.1137/140974596
https://doi.org/10.1371/journal.pcbi.1012414

28. Raissi M, Perdikaris P, Karniadakis GE. Numerical Gaussian processes for time-dependent and non-

linear partial differential equations. SIAM Journal on Scientific Computing. 2018; 40(1):A172–A198.

https://doi.org/10.1137/17M1120762

29. Raissi M, Perdikaris P, Karniadakis GE. Physics Informed Deep Learning (Part II): Data-driven Discov-

ery of Nonlinear Partial Differential Equations; 2017.

30. Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning frame-

work for solving forward and inverse problems involving nonlinear partial differential equations. Journal

of Computational physics. 2019; 378:686–707. https://doi.org/10.1016/j.jcp.2018.10.045

31. Cuomo S, Di Cola VS, Giampaolo F, Rozza G, Raissi M, Piccialli F. Scientific machine learning

through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Com-

puting. 2022; 92(3):88. https://doi.org/10.1007/s10915-022-01939-z

32. Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE. Physics-informed neural networks (PINNs) for fluid

mechanics: A review. Acta Mechanica Sinica. 2021; 37(12):1727–1738. https://doi.org/10.1007/

s10409-021-01148-1

33. Chrysos GG, Moschoglou S, Bouritsas G, Deng J, Panagakis Y, Zafeiriou S. Deep Polynomial Neural

Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022; 44(8):4021–4034.

PMID: 33571091

34. Kim S, Lu P, Mukherjee S, Gilbert M, Jing L, Ceperic V, et al. Integration of Neural Network-Based

Symbolic Regression in Deep Learning for Scientific Discovery. IEEE Transactions on Neural Net-

works and Learning Systems. 2020;PP:1–12.

35. Kubalı́k J, Derner E, Babuška R. Toward Physically Plausible Data-Driven Models: A Novel Neural

Network Approach to Symbolic Regression. IEEE Access. 2023; 11:61481–61501. https://doi.org/10.

1109/ACCESS.2023.3287397

36. Zhang M, Kim S, Lu PY, SoljačićM. Deep Learning and Symbolic Regression for Discovering

Parametric Equations; 2023.

37. Abdellaoui IA, Mehrkanoon S. Symbolic regression for scientific discovery: an application to wind

speed forecasting. In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI); 2021.

p. 01–08.

38. Su X, Ji W, An J, Ren Z, Deng S, Law CK. Kinetics Parameter Optimization via Neural Ordinary Differ-

ential Equations; 2022.

39. Ji W, Deng S. Autonomous Discovery of Unknown Reaction Pathways from Data by Chemical Reac-

tion Neural Network. The Journal of Physical Chemistry A. 2021; 125(4):1082–1092. https://doi.org/

10.1021/acs.jpca.0c09316 PMID: 33471526

40. Boddupalli N, Matchen T, Moehlis J. Symbolic regression via neural networks. Chaos: An Interdisci-

plinary Journal of Nonlinear Science. 2023; 33(8):083150. https://doi.org/10.1063/5.0134464 PMID:

38060788

41. Jospin LV, Laga H, Boussaid F, Buntine W, Bennamoun M. Hands-On Bayesian Neural Networks—A

Tutorial for Deep Learning Users. IEEE Computational Intelligence Magazine. 2022; 17(2):29–48.

https://doi.org/10.1109/MCI.2022.3155327

42. Ott K, Tiemann M, Hennig P. Uncertainty and Structure in Neural Ordinary Differential Equations.

arXiv preprint arXiv:230513290. 2023;.

43. Hornik K, Stinchcombe MB, White HL. Multilayer feedforward networks are universal approximators.

Neural Networks. 1989; 2:359–366. https://doi.org/10.1016/0893-6080(89)90020-8

44. Ascher UM, Petzold LR. Computer methods for ordinary differential equations and differential-alge-

braic equations. vol. 61. Siam; 1998.

45. Griffiths DF, Higham DJ. Numerical Methods for Ordinary Differential Equations: Initial Value Prob-

lems. Springer Undergraduate Mathematics Series. Springer London; 2010. Available from: https://

books.google.com/books?id=HrrZop_3bacC.

46. Hairer E, Nørsett SP, Wanner G. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer

Series in Computational Mathematics. Springer Berlin Heidelberg; 2008. Available from: https://books.

google.com/books?id=cfZDAAAAQBAJ.

47. Peter IS. Gene Regulatory Networks. Current Topics in Developmental Biology. Elsevier Science;

2020. Available from: https://books.google.com/books?id=ynfnDwAAQBAJ.

48. Gutkind JS. Signaling Networks and Cell Cycle Control: The Molecular Basis of Cancer and Other Dis-

eases. Cancer Drug Discovery and Development. Humana Press; 2000. Available from: https://books.

google.com/books?id=7kKuBgAAQBAJ.

49. Soustelle M. An Introduction to Chemical Kinetics. ISTE. Wiley; 2013. Available from: https://books.

google.com/books?id=rkLSOZCUqqUC.

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 35 / 38

https://doi.org/10.1137/17M1120762
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s10409-021-01148-1
http://www.ncbi.nlm.nih.gov/pubmed/33571091
https://doi.org/10.1109/ACCESS.2023.3287397
https://doi.org/10.1109/ACCESS.2023.3287397
https://doi.org/10.1021/acs.jpca.0c09316
https://doi.org/10.1021/acs.jpca.0c09316
http://www.ncbi.nlm.nih.gov/pubmed/33471526
https://doi.org/10.1063/5.0134464
http://www.ncbi.nlm.nih.gov/pubmed/38060788
https://doi.org/10.1109/MCI.2022.3155327
https://doi.org/10.1016/0893-6080(89)90020-8
https://books.google.com/books?id=HrrZop_3bacC
https://books.google.com/books?id=HrrZop_3bacC
https://books.google.com/books?id=cfZDAAAAQBAJ
https://books.google.com/books?id=cfZDAAAAQBAJ
https://books.google.com/books?id=ynfnDwAAQBAJ
https://books.google.com/books?id=7kKuBgAAQBAJ
https://books.google.com/books?id=7kKuBgAAQBAJ
https://books.google.com/books?id=rkLSOZCUqqUC
https://books.google.com/books?id=rkLSOZCUqqUC
https://doi.org/10.1371/journal.pcbi.1012414

50. McCallum H. Population Parameters: Estimation for Ecological Models. Ecological Methods and Con-

cepts. Wiley; 2008. Available from: https://books.google.com/books?id=e7gk-ocBhqcC.

51. Magal P, Auger P, Ruan S, Ballyk M, de la Parra RB, Fitzgibbon WE, et al. Structured Population Mod-

els in Biology and Epidemiology. Lecture Notes in Mathematics. Springer Berlin Heidelberg; 2008.

Available from: https://books.google.com/books?id=lrxqCQAAQBAJ.

52. Fan F, Xiong J, Wang G. Universal approximation with quadratic deep networks. Neural Networks.

2020; 124:383–392. https://doi.org/10.1016/j.neunet.2020.01.007 PMID: 32062373

53. Horn RA, Horn RA, Johnson CR. Topics in Matrix Analysis. Cambridge University Press; 1994.

54. Kass RE, Tierney L, Kadane JB. Laplace’s method in Bayesian analysis. Contemporary Mathematics.

1991; 115:89–99. https://doi.org/10.1090/conm/115/07

55. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data Analysis, Third Edi-

tion. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis; 2013. Available from: https://

books.google.com/books?id=ZXL6AQAAQBAJ.

56. Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D, et al. JAX: composable transfor-

mations of Python+NumPy programs; 2018. Available from: http://github.com/google/jax.

57. Babuschkin I, Baumli K, Bell A, Bhupatiraju S, Bruce J, Buchlovsky P, et al. The DeepMind JAX Eco-

system; 2020. Available from: http://github.com/deepmind.

58. Lemaréchal C. Cauchy and the gradient method. Doc Math Extra. 2012; 251(254):10.

59. Hadamard J. Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encas-

trées. vol. 33. Imprimerie nationale; 1908.

60. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization; 2017.

61. Kim S, Ji W, Deng S, Ma Y, Rackauckas C. Stiff neural ordinary differential equations. Chaos: An Inter-

disciplinary Journal of Nonlinear Science. 2021; 31(9). PMID: 34598467

62. Fehlberg E. Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize con-

trol. National Aeronautics and Space Administration; 1968.

63. Ben-Israel A, Greville TNE. Generalized Inverses: Theory and Applications. CMS Books in Mathemat-

ics. Springer New York; 2006. Available from: https://books.google.com/books?id=abEPBwAAQBAJ.

64. Bobrovsky BZ, Mayer-Wolf E, Zakai M. Some Classes of Global Cramer-Rao Bounds. The Annals of

Statistics. 1987; 15. https://doi.org/10.1214/aos/1176350602

65. Chen MH, Shao QM, Ibrahim JG. Monte Carlo Methods in Bayesian Computation. Springer Series in

Statistics. Springer New York; 2012. Available from: https://books.google.com/books?id=

4IrbBwAAQBAJ.

66. Liang F, Liu C, Carroll R. Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples.

Wiley Series in Computational Statistics. Wiley; 2011. Available from: https://books.google.com/

books?id=ZmKgUO2PVpIC.

67. McElreath R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Chapman &

Hall/CRC Texts in Statistical Science. CRC Press; 2018. Available from: https://books.google.com/

books?id=T3FQDwAAQBAJ.

68. Jospin LV, Laga H, Boussaid F, Buntine W, Bennamoun M. Hands-On Bayesian Neural Networks—A

Tutorial for Deep Learning Users. IEEE Computational Intelligence Magazine. 2022; 17(2):29–48.

https://doi.org/10.1109/MCI.2022.3155327

69. Duane S, Kennedy AD, Pendleton BJ, Roweth D. Hybrid Monte Carlo. Physics Letters B. 1987; 195

(2):216–222. https://doi.org/10.1016/0370-2693(87)91197-X

70. Neal RM. Bayesian learning for neural networks. vol. 118. Springer Science & Business Media; 2012.

71. Leimkuhler B, Reich S. Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and

Computational Mathematics. Cambridge University Press; 2004. Available from: https://books.google.

com/books?id=tpb-tnsZi5YC.

72. Whitlock PA, Kalos M. Monte Carlo Methods. vol. 1. Wiley; 1986.

73. Tierney L. Markov chains for exploring posterior distributions. the Annals of Statistics. 1994; 22:1701–

1728. https://doi.org/10.1214/aos/1176325755

74. Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika.

1970; 57(1):97–109. https://doi.org/10.1093/biomet/57.1.97

75. Chib S, Greenberg E. Understanding the Metropolis-Hastings Algorithm. The American Statistician.

1995; 49(4):327–335. https://doi.org/10.1080/00031305.1995.10476177

76. Hoffman MD, Gelman A, et al. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian

Monte Carlo. J Mach Learn Res. 2014; 15(1):1593–1623.

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 36 / 38

https://books.google.com/books?id=e7gk-ocBhqcC
https://books.google.com/books?id=lrxqCQAAQBAJ
https://doi.org/10.1016/j.neunet.2020.01.007
http://www.ncbi.nlm.nih.gov/pubmed/32062373
https://doi.org/10.1090/conm/115/07
https://books.google.com/books?id=ZXL6AQAAQBAJ
https://books.google.com/books?id=ZXL6AQAAQBAJ
http://github.com/google/jax
http://github.com/deepmind
http://www.ncbi.nlm.nih.gov/pubmed/34598467
https://books.google.com/books?id=abEPBwAAQBAJ
https://doi.org/10.1214/aos/1176350602
https://books.google.com/books?id=4IrbBwAAQBAJ
https://books.google.com/books?id=4IrbBwAAQBAJ
https://books.google.com/books?id=ZmKgUO2PVpIC
https://books.google.com/books?id=ZmKgUO2PVpIC
https://books.google.com/books?id=T3FQDwAAQBAJ
https://books.google.com/books?id=T3FQDwAAQBAJ
https://doi.org/10.1109/MCI.2022.3155327
https://doi.org/10.1016/0370-2693(87)91197-X
https://books.google.com/books?id=tpb-tnsZi5YC
https://books.google.com/books?id=tpb-tnsZi5YC
https://doi.org/10.1214/aos/1176325755
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1080/00031305.1995.10476177
https://doi.org/10.1371/journal.pcbi.1012414

77. Lao J, Louf R. Blackjax: A sampling library for JAX; 2020. Available from: http://github.com/blackjax-

devs/blackjax.

78. Cinelli LP, Marins MA, da Silva EAB, Netto SL. Variational Methods for Machine Learning with Applica-

tions to Deep Networks. Springer International Publishing; 2021.

79. Nakajima S, Watanabe K, Sugiyama M. Variational Bayesian Learning Theory. Cambridge University

Press; 2019.

80. Šmı́dl V, Quinn A. The Variational Bayes Method in Signal Processing. Signals and Communication

Technology. Springer Berlin Heidelberg; 2006.

81. Meurer A, Smith CP, Paprocki M,Čertı́k O, Kirpichev SB, Rocklin M, et al. SymPy: symbolic computing

in Python. PeerJ Computer Science. 2017; 3:e103. https://doi.org/10.7717/peerj-cs.103

82. Bromiley PA. Products and Convolutions of Gaussian Probability Density Functions; 2013.

83. Smith SW. CHAPTER 15—Moving Average Filters. In: Smith SW, editor. Digital Signal Processing.

Boston: Newnes; 2003. p. 277–284.

84. Haynes D, Corns S, Venayagamoorthy GK. An Exponential Moving Average algorithm. In: 2012 IEEE

Congress on Evolutionary Computation; 2012. p. 1–8.

85. KALMAN R, BUCY R. New Results in Linear Filtering and Prediction Theory1. space. 1961; 15:150–

155.

86. Wang Y. Smoothing splines: methods and applications. CRC press; 2011.

87. Cleveland WS, Loader C. Smoothing by local regression: Principles and methods. In: Statistical The-

ory and Computational Aspects of Smoothing: Proceedings of the COMPSTAT’94 Satellite Meeting

held in Semmering, Austria, 27–28 August 1994. Springer; 1996. p. 10–49.

88. Wand MP, Jones MC. Kernel smoothing. CRC press; 1994.

89. Selesnick IW, Burrus CS. Generalized digital Butterworth filter design. IEEE Transactions on signal

processing. 1998; 46(6):1688–1694. https://doi.org/10.1109/78.678493

90. Vetterli M, Kovačević J, Goyal VK. Foundations of Signal Processing. Cambridge University Press;

2014. Available from: https://books.google.com/books?id=LBZEBAAAQBAJ.

91. Roberts S, Osborne M, Ebden M, Reece S, Gibson N, Aigrain S. Gaussian processes for time-series

modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences. 2013; 371(1984):20110550. https://doi.org/10.1098/rsta.2011.0550 PMID: 23277607

92. Genton MG. Classes of kernels for machine learning: a statistics perspective. Journal of machine

learning research. 2001; 2(Dec):299–312.

93. Kocijan J. Modelling and control of dynamic systems using Gaussian process models. Springer; 2016.

94. Duvenaud D. Automatic model construction with Gaussian processes; 2014.

95. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research. 2011; 12:2825–2830.

96. Heek J, Levskaya A, Oliver A, Ritter M, Rondepierre B, Steiner A, et al. Flax: A neural network library

and ecosystem for JAX; 2023. Available from: http://github.com/google/flax.

97. Lotka A. Elements of physical biology. Williams and Wilkins Company; 1925.

98. Volterra V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Società ano-

nima tipografica “Leonardo da Vinci”; 1926.

99. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: Funda-

mental Algorithms for Scientific Computing in Python. Nature Methods. 2020; 17:261–272. https://doi.

org/10.1038/s41592-019-0686-2 PMID: 32015543

100. Dormand JR, Prince PJ. A family of embedded Runge-Kutta formulae. Journal of Computational and

Applied Mathematics. 1980; 6(1):19–26. https://doi.org/10.1016/0771-050X(80)90013-3

101. Van Etten WC. Introduction to Random Signals and Noise. Wiley; 2006. Available from: https://books.

google.com/books?id=E-i59byYhBUC.

102. Sisson SA, Fan Y, Beaumont M. Handbook of Approximate Bayesian Computation. Chapman & Hall/

CRC Handbooks of Modern Statistical Methods. CRC Press; 2018. Available from: https://books.

google.com/books?id=9QhpDwAAQBAJ.

103. Drawert B, Hellander A, Bales B, Banerjee D, Bellesia G, Daigle BJ Jr, et al. Stochastic Simulation Ser-

vice: Bridging the Gap between the Computational Expert and the Biologist. PLOS Computational Biol-

ogy. 2016; 12(12):1–15. https://doi.org/10.1371/journal.pcbi.1005220

104. Jiang R, Jacob B, Geiger M, Matthew S, Rumsey B, Singh P, et al. Epidemiological modeling in

StochSS Live! Bioinformatics. 2021; 37. https://doi.org/10.1093/bioinformatics/btab061 PMID:

33512399

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 37 / 38

http://github.com/blackjax-devs/blackjax
http://github.com/blackjax-devs/blackjax
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1109/78.678493
https://books.google.com/books?id=LBZEBAAAQBAJ
https://doi.org/10.1098/rsta.2011.0550
http://www.ncbi.nlm.nih.gov/pubmed/23277607
http://github.com/google/flax
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.1016/0771-050X(80)90013-3
https://books.google.com/books?id=E-i59byYhBUC
https://books.google.com/books?id=E-i59byYhBUC
https://books.google.com/books?id=9QhpDwAAQBAJ
https://books.google.com/books?id=9QhpDwAAQBAJ
https://doi.org/10.1371/journal.pcbi.1005220
https://doi.org/10.1093/bioinformatics/btab061
http://www.ncbi.nlm.nih.gov/pubmed/33512399
https://doi.org/10.1371/journal.pcbi.1012414

105. Singh P, Wrede F, Hellander A. Scalable machine learning-assisted model exploration and inference

using Sciope. Bioinformatics. 2020;.

106. Roesch E, Rackauckas C, Stumpf M. Collocation based training of neural ordinary differential equa-

tions. Statistical Applications in Genetics and Molecular Biology. 2021; 20. https://doi.org/10.1515/

sagmb-2020-0025 PMID: 34237805

107. Janson NB. Non-linear dynamics of biological systems. Contemporary Physics. 2012; 53(2):137–168.

https://doi.org/10.1080/00107514.2011.644441

108. Karnopp D, Margolis DL, Rosenberg RC. System dynamics. Wiley New York; 1990.

109. Lorenz EN. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences. 1963; 20:130–141.

https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2

110. Ott E. Chaos in dynamical systems. Cambridge university press; 2002.

111. Hirsch MW, Smale S, Devaney RL. Differential equations, dynamical systems, and an introduction to

chaos. Academic press; 2012.

112. Webster PJ, Moore AM, Loschnigg JP, Leben RR. Coupled ocean–atmosphere dynamics in the Indian

Ocean during 1997–98. Nature. 1999; 401(6751):356–360. https://doi.org/10.1038/43848 PMID:

16862107

113. Poland D. Cooperative catalysis and chemical chaos: a chemical model for the Lorenz equations. Phy-

sica D: Nonlinear Phenomena. 1993; 65:86–99. https://doi.org/10.1016/0167-2789(93)90006-M

114. Haken H. Analogy between higher instabilities in fluids and lasers. Physics Letters A. 1975; 53(1):77–

78. https://doi.org/10.1016/0375-9601(75)90353-9

115. Cuomo KM, Oppenheim AV. Circuit implementation of synchronized chaos with applications to com-

munications. Phys Rev Lett. 1993; 71:65–68. https://doi.org/10.1103/PhysRevLett.71.65 PMID:

10054374

116. Hemati N. Strange attractors in brushless DC motors. IEEE Transactions on Circuits and Systems I:

Fundamental Theory and Applications. 1994; 41(1):40–45. https://doi.org/10.1109/81.260218

117. Knobloch E. Chaos in the segmented disc dynamo. Physics Letters A. 1981; 82(9):439–440. https://

doi.org/10.1016/0375-9601(81)90274-7

PLOS COMPUTATIONAL BIOLOGY Bayesian polynomial neural ODEs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012414 October 10, 2024 38 / 38

https://doi.org/10.1515/sagmb-2020-0025
https://doi.org/10.1515/sagmb-2020-0025
http://www.ncbi.nlm.nih.gov/pubmed/34237805
https://doi.org/10.1080/00107514.2011.644441
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1038/43848
http://www.ncbi.nlm.nih.gov/pubmed/16862107
https://doi.org/10.1016/0167-2789(93)90006-M
https://doi.org/10.1016/0375-9601(75)90353-9
https://doi.org/10.1103/PhysRevLett.71.65
http://www.ncbi.nlm.nih.gov/pubmed/10054374
https://doi.org/10.1109/81.260218
https://doi.org/10.1016/0375-9601(81)90274-7
https://doi.org/10.1016/0375-9601(81)90274-7
https://doi.org/10.1371/journal.pcbi.1012414

