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Summary:

1. Predicting species responses to climate change involves understanding 

both the direct effects of environmental change, as well as indirect effects 

mediated by altered interspecific interactions. Indirect effects may be 

particularly important for understanding native species responses in systems

invaded by highly competitive exotic species. For instance, Mediterranean 

climate regions are predicted to experience more frequent drought, and are 

increasingly invaded by exotic annual plants. For native shrubs in these 

regions, seedling establishment is episodic, and associated with high rainfall 

years. However, exotic annual plants also often increase in abundance with 

high rainfall, suggesting competition from exotic annual species could alter 

the relationship between rainfall and shrub seedling establishment. Theories 

such as the stress-gradient hypothesis predict competition intensity should 

increase with resource supply, but there have been few evaluations of 

competitive interactions across experimental gradients of soil moisture 

availability. 

2. Here we examined how competition from an exotic annual influenced 

native shrub establishment, across an experimental soil moisture gradient. 

Seedlings of two native shrub species (Encelia californica and Eriogonum 

fasciculatum) were grown with and without an exotic grass competitor 

(Avena fatua) across eight water availability levels, and monitored for growth

and survival. These species are common and abundant in the Mediterranean 

2

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

2



climate region of coastal Southern California, where climate change 

projections include long-term drought for the coming decades.

3. Without competition, shrub seedlings achieved higher growth and survival 

at high water availability levels. However, when grown in competition with 

the exotic grass, shrub seedlings had higher growth and/or survival under 

relatively dry conditions, suggesting competition can modify and even 

reverse species responses to changing rainfall patterns, compared to 

predictions made in the absence of competitors. The exotic grass strongly 

reduced soil nitrate and water availability when it was planted with the 

native shrub seedlings, and the exotic grass responded with positive but 

saturating growth with increasing levels of water addition.

Synthesis. This experiment demonstrates that competition from invasive 

species can alter native species responses to climate change; consistent with

ecological theories predicting a positive association between the supply of 

limiting resources and the intensity of competition.

Key-words: Avena fatua, coastal sage scrub, drought tolerance, Encelia 

californica, Eriogonum fasciculatum, global change ecology, invasion, 

Mediterranean-type ecosystems, plant–plant interactions 
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Introduction

As the impacts of climate change become ever more apparent, 

ecologists are being called upon to use ecological theory to forecast species 

responses (Bellard et al. 2012), and predict ramifications for communities 

and ecosystems (Smith, Knapp & Collins 2009). Predictions of future shifts in 

biodiversity need to include not only direct responses to shifting climate, but 

also indirect effects mediated through shifting species interactions (Suttle, 

Thomsen & Power 2007; Tylianakis et al. 2008; Kleinhesselink & Adler 2015; 

Alexander et al. 2016). For instance, invasions by exotic species threaten 

biodiversity worldwide (Butchart et al. 2010), and have been shown to 

reduce native diversity especially at local scales (Powell, Chase & Knight 

2011). Invasive plants also have the potential to alter resident species 

responses to climate change. Water is a key limiting resource for plant 

growth, and many mid-latitude areas are expected to experience reductions 

in precipitation with future climate change, in concert with greater 

interannual variability in precipitation in many regions (Collins et al. 2013). 

Native versus exotic species may vary in their ability to capitalize on 

pulses of soil moisture and to tolerate drought, resulting in the potential for 

shifting community composition as a result of future precipitation changes

(Weltzin et al. 2003). Exotic species have often been hypothesized to benefit 

disproportionately over native species in response to climate change (Dukes 

& Mooney 1999), potentially because exotic species have broader climate 

tolerances than native species (Goodwin, McAllister & Fahrig 1999; Qian & 
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Ricklefs 2006). Or, invading species could benefit from climate change by 

having greater phenotypic plasticity than native species (Davidson, Jennions 

& Nicotra 2011), a key adaptation to variable environmental conditions. 

Recent meta-analyses suggest exotic species benefit more than native 

species from high soil moisture (Sorte et al. 2013; Liu et al. 2017), but with 

significant variation in both native and exotic species responses to variation 

in water availability.

Climate change induced drought may also alter competitive 

interactions between native and exotic species. Species interactions such as 

competition are often shaped by resource availability (Tilman 1982), and 

numerous observational studies have demonstrated complex shifts in 

species interactions along gradients of aridity and soil moisture (Maestre, 

Valladares & Reynolds 2005; Padilla & Pugnaire 2006). The influence of 

environmental context on species interactions has long been a focus of 

ecological theory. Classically, Grime (1973) predicted that dominant species 

were more likely to competitively exclude subdominant species as 

productivity of the environment increased. Similarly, the stress gradient 

hypothesis asserts that species interactions often shift in strength or even 

direction along environmental gradients, with less intense competition in 

environments that are stressful and/or have low resource availability

(Bertness & Callaway 1994; Maestre et al. 2009). In contrast, resource-ratio 

theory predicts that competition will be consistently important across 

environmental gradients (Tilman 1988). Although many experimental and 
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observational studies have evaluated these theories in relation to overall 

community productivity (reviewed by Goldberg et al. 1999; Rees 2013), few 

experimental studies have evaluated variation in species interactions along 

gradients of soil moisture (but see Pickett & Bazzaz 1978; Kadmon 1995).

Several lines of evidence suggest that plant growth should respond in 

a non-linear fashion along moisture gradients. First, classic predictions 

suggest plant growth will increase with precipitation until reaching a 

saturation point (Lieth 1975), after which point another resource or resources

may become limiting or co-limiting (Liebig 1842; van der Ploeg, Bohm & 

Kirkham 1999; Harpole et al. 2011). Optimal allocation theory (Thornley 

1972; Bloom, Chapin & Mooney 1985; Wilson 1988) predicts that plants will 

allocate a greater portion of biomass to roots when below-ground resources 

are limiting (e.g. water or nutrients) and to above-ground structures when 

light is limiting (Gleeson & Tilman 1992; Poorter et al. 2012). Shifting 

allocation to non-photosynthetic tissues below-ground could also contribute 

to a positive saturating water-productivity relationship if nutrients become 

limiting at high levels of soil moisture (e.g. co-limitation, Hooper & Johnson 

1999). Models demonstrate that variation among species in their height

(Goldberg et al. 2017), biomass (Rees 2013), or resource uptake rates

(Everard et al. 2010), can also cause non-linear competition intensities along 

resource gradients. Studies that quantify these non-linear environment-

performance relationships could greatly aid in the ability of ecologists to 
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predict how species are likely to respond to changing environmental 

conditions (Austin & Smith 1989).

Drought is expected to be a significant component of climate change in

mid-latitude regions (Collins et al. 2013), including many Mediterranean – 

type ecosystems (MTEs) worldwide. These semi-arid ecosystems harbor 

exceptional biodiversity, which is under threat from climate change

(Underwood et al. 2009). For example, the California Floristic Province along 

the western coast of North America is predicted to be a regional climate 

change "hot spot" in the coming decades (Diffenbaugh & Giorgi 2012), 

largely due to shifts in the amount and temporal variability of precipitation. 

The region is expected to experience increasingly persistent drought in the 

coming decades (Seager et al. 2007), in concert with higher interannual 

variability in rainfall (Yoon et al. 2015). Hence, plant species in this region 

may experience both extremes of drought or deluge from year to year. 

Despite the importance of soil moisture for community composition 

and ecosystem functionality in Mediterranean systems (Lavorel et al. 1998), 

the impacts of shifting rainfall regimes for species interactions – especially 

during initial establishment periods – are poorly understood. Globally, the 

impact of climate change on initial life stages is seen as a key knowledge 

gap (Parmesan & Hanley 2015). The MTEs of Southern California are 

historically shrub dominated (Cleland, Funk & Allen 2016; Parker, Pratt & 

Keeley 2016). For perennial species, including shrubs, seedling 

establishment is a critical demographic stage determining species 
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distribution and abundance (Grubb 1977). Low soil moisture limits seedling 

survival (Fenner 1987; Harrington 1991) and semi-arid ecosystems (such as 

this MTE) often have pulses of shrub establishment in years of high rainfall

(Nicholls 1991; Brown, Valone & Curtin 1997; DeSimone & Zedler 1999; 

reviewed in Holmgren et al. 2006). The MTE region of California is 

increasingly invaded by exotic annual species (Eliason & Allen 1997; 

Seabloom et al. 2006), as are other MTEs globally (Funk et al. 2016). Exotic 

annual grasses in particular are projected to benefit from the rising 

temperatures associated with climate change (Sandel & Dangremond 2012), 

and often increase in abundance following high rainfall years (Hobbs & 

Mooney 1991; Keeley, Fotheringham & Baer-Keeley 2005; Ashbacher & 

Cleland 2015). High growth of exotic annual species could competitively 

suppress native shrub seedlings in high rainfall years, thereby preventing 

shrub recruitment (Eliason & Allen 1997; Seifan, Tielborger & Kadmon 2010).

Hence in this system and others worldwide, the response of native species to

combined invasion and shifts in precipitation regime is not well understood

(Vilà et al. 2007; Bradley et al. 2010). 

Here we experimentally evaluated how rainfall quantity and 

competition by an exotic annual grass interacted to influence the growth and

survival of native shrub seedlings. We grew these species under eight levels 

of water addition to enable us to discern between linear and curvilinear 

relationships between soil moisture and species performance. We 

hypothesized that native shrub seedlings grown alone would display a 
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positive, saturating relationship between growth and soil moisture 

availability. However, we expected that the focal exotic grass would benefit 

disproportionately from high soil water availability, resulting in competitive 

suppression of shrub seedlings under high rainfall scenarios, and hence a 

reversal of the shrubs' responses observed in the absence of competition. 

 

Materials and methods

The experiment was conducted in a greenhouse at the University of 

California, San Diego Biology Field Station (32N 53’ 7”, -117W 13’ 48”) from 

February to April 2009. Although short-term, this corresponds to the length 

of the growing season documented for the herbaceous community, as well 

as for peak shrub growth, in coastal sage scrub vegetation (Cleland, Funk & 

Allen 2016). Air was continuously circulated with large greenhouse fans, with

no temperature control, so the plants experienced realistic growing season 

temperatures. The study focused on two native shrub species that are 

widespread and abundant in coastal sage scrub communities - Encelia 

californica (Asteraceae, common name “coast sunflower”) and Eriogonum 

fasciculatum (Polygonaceae, common name “California buckwheat”). Both 

species are commonly utilized in restoration efforts (Bowler 2000; Padgett, 

Kee & Allen 2000), where competition from exotic annual grasses often limits

restoration success (Cox & Allen 2008). We planted the native shrubs as 

seedlings either with or without competition from Avena fatua, a widespread 

exotic annual grass invader in coastal sage scrub and other California 
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ecosystems (D’Antonio et al. 2007). The focal shrub species and exotic 

herbaceous species both germinate in the late fall with the onset of the 

winter rainy season in this MTE (Padgett, Kee & Allen 2000; Wainwright, 

Wolkovich & Cleland 2012).

Seedlings of each shrub species (one per pot) were grown from seed 

(RECON Native Plants, San Diego, California) and transplanted into 5-liter 

pots (17 x 17 cm square, 30 cm deep, Stuewe & Sons) containing 

unamended sandy loam topsoil harvested from a local coastal sage scrub 

site (Agriservices, Vista, California). Holes allowed excess water to drain out 

from the bottom of the pots. Seedlings were between 2 and 3 cm tall at the 

time of transplant, and pots were simultaneously seeded with or without A. 

fatua (40 seeds per pot with an approximate 75% germination rate, 

germination occurred within one week of planting). Pots were arranged in 

three blocks. Each block contained eight replicates of all treatments: each of 

the focal shrub species grown with or without competition, at each of the 

eight levels of watering, resulting in 268 pots per block, and a total of 768 

pots. The experiment had high levels of replication to facilitate discerning 

between linear and curvilinear relationships between biomass and watering 

level. Blocks were rotated once during the experiment.

Beginning February 20th, pots were hand watered twice per week at 

eight watering levels: 200, 250, 300, 350, 400, 450, 500 or 550 ml. These 

amounts were chosen to replicate the range of soil moisture observed in the 

nearest coastal sage scrub site in the U.S. Climate Reference Network (Bell 
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et al. 2013; Diamond et al. 2013). Our treatments encompassed the range of

soil moistures documented during the growing season in soils to 5 cm depth 

(compare values in Table S1 and Fig. 1a). Soil water content was measured 

weekly, integrated from the surface to a depth of 7.5 cm with a Spectrum 

Field Scout TDR 100 portable volumetric soil moisture meter (Aurora, IL). 

Data were averaged across weeks to yield an average soil moisture value 

per pot. 

Plant available inorganic nitrogen at the peak of the growing season 

was measured in pots planted with E. californica using anion and cation (AMI-

7001, CMI-7000, Membranes International Inc.) ion exchange membranes

(Subler, Blair & Edwards 1995). Pots with E. fasciculatum were not measured

for inorganic nitrogen availability due to time constraints. Ion exchange 

membrane (IEM) stakes were constructed by first cutting larger sheets into 

1.0 cm x 5.0 cm strips, and then gluing the strips onto plastic greenhouse 

stakes (1.5 cm x 15.5 cm) with epoxy based glue. The IEMs were soaked in 

5M KCl overnight and then rinsed thoroughly in deionized water prior to 

placement in soil. Two IEM stakes (one anion, one cation) were placed 

vertically in the pots on April 22nd. After 5 days of incubation the IEM stakes 

were removed and rinsed with deionized water to remove excess dirt and 

debris. After cleaning each membrane was placed in a test tube with 20 mL 

of 2M KCl, and shaken for two hours. Extracts were analyzed for nitrate

(Doane & Horwáth 2003) and ammonium (Weatherburn 1967) on a Multiscan

FC spectrophotometer. Ammonium captured on the ion exchange resins was 
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too close to the detection limit to be reliable, so only data for nitrate 

availability are presented. The short deployment time (5 days) was meant to 

prevent saturation of the ion exchange membrane sites, but a longer 

deployment time would have been needed to measure ammonium, which 

has lower concentrations than nitrate in coastal sage scrub soils (Vourlitis et 

al. 2007).

Above- and below-ground biomass were harvested 10 weeks after 

planting, at the time of peak A. fatua biomass, and when this exotic species 

had begun to senesce in the lowest soil moisture treatments. The entire soil 

contents of each pot were passed through a 4 mm sieve, with roots collected

and rinsed free of soil to measure belowground biomass. All biomass was 

dried at 40° C until reaching constant weight. Roots could not be sorted to 

species level in the competition pots, therefore only pots containing a single 

species were used for analyses of below-ground production and allocation. 

The original experimental design did not include treatments with A. fatua 

grown alone. However, due to shrub seedling mortality there was a subset of

pots with zero above-ground biomass of the native shrub measured at the 

end of the experiment. We used this subset of pots when the focal species 

was E. fasciculatum, since seedling mortality was constant across watering 

treatments, allowing for a consistent sample size to estimate below-ground 

allocation by A. fatua. While a small amount of shrub root biomass could 

remain from the dead seedling, this quantity was not likely to influence our 

estimate of A. fatua root biomass for two reasons. First, at the time of the 
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biomass harvest dead seedlings were pulled out of the pot, including roots. 

Second, the final above-ground biomass of surviving shrub seedlings in the 

competition treatment was generally less than 1 gram (see Figure 2 b and c);

accordingly, we would also expect very low levels of root biomass for shrub 

seedlings in the competition treatment. 

Statistical analyses were performed separately for the two focal shrub 

species, in R v 3.0.2 (R Core Team 2016). Above- and below-ground biomass 

production, soil moisture, and nitrate availability measures were evaluated 

with linear mixed models using the lmer routine from the package lme4

(Bates et al. 2015b), with maximum likelihood estimation. Block was 

included as a random factor, and water-addition amount (continuous 

variable) and competition (factor) were included as fixed factors, including 

their interactions. To evaluate whether quadratic, as opposed to linear, 

models better fit the data, we compared the models with only water and 

competition as factors to models including a squared term for water, and 

interactions. The fixed effects in the linear model were a nested set of the 

terms in the quadratic model, and hence model fits were compared using 

likelihood ratio tests (Lewis, Butler & Gilbert 2011). If there was not a 

significant difference in the fit of the two models, the simpler model was 

reported. Analyses evaluating the growth and allocation patterns of A. fatua 

did not include competition as a predictor variable, but otherwise followed 

the same procedures as for data analysis of the focal native shrubs. 

Similarly, analyses of below-ground biomass were conducted separately for 
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each species in monoculture, and hence competition was not included in the 

models.

The root mass fraction (RMF) was calculated as the proportion of total 

biomass (above- + below- ground) comprised by roots (Reich 2002). This 

continuous variable was bounded by 0 and 1 hence we assumed a beta-

distribution (Bolker 2008), and RMF was analyzed using a generalized linear 

mixed model in the glmmADMB package (Skaug et al. 2012), using the same

model terms already described. We checked for overdispersion in the 

resulting model residuals using the method and code presented by Valdivia 

et al. (2014), and found there was not significant overdispersion.

Survival of the native shrub seedlings was a binary variable (yes/no) 

and hence was first analyzed using a generalized linear model assuming a 

binomial distribution and a logit link function, again in the glmmADMB 

package. However, models for E. californica did not converge, a common 

occurrence in generalized linear mixed models with a low number of levels 

for random effects (our design had only three blocks), or when these models 

are overparameterized (Bates et al. 2015a). Hence, survival was instead 

analyzed using a general linear model specifying a binomial distribution 

where block was included as a fixed (instead of random) effect.

Factor significance for all tests was evaluated with Type II tests using 

the Anova function in the car package (Fox & Weisberg 2011). Wald chi-

square statistics are presented for both the generalized linear models and 

general linear models.
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Results

Soil moisture and nitrate responses

Soil moisture increased with increasing levels of water addition, as best

described by a curvilinear model containing a quadratic term, and differed 

between competition treatments (Fig. 1a, Table 1). With E. californica grown 

alone, volumetric soil moisture saturated around 25% at the 400 ml water 

treatment. In treatments with E. californica grown with the competitor A. 

fatua, soil moisture was lower and less variable across all watering 

treatments, remaining relatively constant between 11-14% moisture. In pots 

planted with E. fasciculatum both alone and in competition, soil moisture 

remained constant at watering levels of 200 – 450 ml. However, at the 

highest watering levels, soil moisture in pots with E. fasciculatum grown 

alone continued to increase, while the competition treatment’s soil moisture 

rate of increase slowed. 

Soil nitrate availability was significantly lower when E. californica was 

grown in competition with A. fatua than when grown alone, and declined with

increasing water addition, best described by a curvilinear relationship (Fig. 

1b). As a result, there were significant higher order interaction terms (Table 

1). In pots planted with A. fatua, nitrate availability reached a low of 0.05 

ppm per membrane around the 400 ml watering regime, and remained at 

this level under higher watering regimes. In pots without A. fatua, nitrate 
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availability peaked around 0.12 ppm per membrane, between the 250 – 350 

ml watering treatments.

Shrub seedling survival

For both focal species, seedling survival declined in the competition 

treatment, and the response to water treatment varied depending on 

whether the seedling was grown alone or in competition (competition × 

water interaction, Table 1, Fig. 2). Grown alone, E. californica had nearly 

100% survival, and survival was not effected by watering treatment (Fig. 2a).

In competition, survival of E. californica initially declined steeply but then 

leveled off with increasing water (Fig. 2b). In contrast, E. fasciculatum 

survival increased with increasing water addition when grown alone (Fig 2c), 

but survival declined with increasing water addition when in competition (Fig.

2d). The survival responses of E. fasciculatum were best described by a 

linear model, without the quadratic term. As described in the Methods, block 

was included as a fixed effect for this analysis and was marginally significant 

(E. californica p = 0.06, E. fasciculatum p = 0.08).

Above-ground biomass responses

Above-ground biomass of both shrub species was significantly 

suppressed by competition, but the response to watering treatment 

depended on competitive context (Fig. 2, Table 1). In the absence of 

competition, shrub biomass increased in a positive, saturating relationship 
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with increasing water supply (Fig. 2 a,c). In contrast, when grown with A. 

fatua, shrub biomass had either a negative or non-significant relationship 

with increasing watering supply (Fig. 2b,d). The two focal shrub species 

varied, however, in the magnitude of these responses. 

Grown alone, E. fasciculatum biomass responded more positively to 

high water addition than E. californica, increasing nearly ten-fold in biomass 

production from the 200 ml watering treatment to the 450 ml water 

treatment (average of 3.16 g to 12.99 g, Fig. 2a). In contrast, E. californica 

biomass only experienced a two-fold increase from the least to most 

productive treatments (average of 1.67 g at 200 ml to 3.51 g at the 350 ml 

treatment), and an earlier point of biomass saturation (Fig. 2a). When grown 

with A. fatua, E. fasciculatum was more strongly competitively suppressed 

than E. californica. In the presence of the competitor, E. fasciculatum 

seedlings had a mean above-ground biomass production of 0.02 g, and did 

not vary significantly with watering treatment (Fig 2d). In contrast, E. 

californica seedling biomass averaged 0.56 grams at the lowest level of 

watering when grown with A. fatua, and declined more than 10-fold as water 

addition increased, to an average of 0.04 g above 400 ml of water addition 

(Fig 2b). 

Biomass production of the exotic grass, A. fatua, had a strongly 

positive, though saturating, growth response to increasing water treatments 

(Fig. 2 b,c, Table 1). This represents a steeper response slope for increased 

biomass production with greater water availability than was observed for 
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either of the focal shrub species when they were grown alone (Fig. 2 a,b). 

The amount of A. fatua biomass on a per area basis (~170 – 700 g/m2) was 

similar to estimates of herbaceous biomass production at field sites 

dominated by exotic annual grasses. For instance, unmanipulated plots 

associated with the Nutrient Network in southern California observed 

between 100 and 500 g/m2 of herbaceous biomass across five years which 

varied in annual rainfall (e.g. Elliott Chaparral Reserve, Sedgewick Reserve, 

in (Fay et al. 2015)).

Below-ground biomass and fractional root allocation

Belowground production increased with watering treatment (Table 2) 

for both shrub species and for A. fatua (Fig. 3a). The RMF of E. californica 

biomass was less sensitive to watering treatment and remained nearly 

constant at 25%. In contrast, the RMF of both E. fasciculatum and A. fatua 

declined with increasing watering treatment until reaching a saturation point 

at the 450 ml water treatment (Fig. 3b). For root production, the quadratic 

model fits were not significantly better than the linear modes (Table 2). For 

RMF, the quadratic models fit better than the linear models (Table 2).

 

Discussion

The findings of this study demonstrate that interactions with 

competitors can alter species’ responses to changing environmental 

conditions. Grown alone, high water availability increased aboveground 
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biomass of both focal shrub species, and E. fasciculatum had increased 

survival, consistent with previous work showing the importance of high soil 

moisture for shrub establishment in this system (Kummerow, Ellis & Mills 

1985; DeSimone & Zedler 1999). Conversely, in competition with an invasive

grass, shrubs were nearly competitively excluded at high levels of water 

addition. Instead, both species had greater survival at low levels of water 

availability, and seedlings of E. californica were more than ten times larger 

at low than high levels of water availability.

Some field studies have similarly found greater competitive intensities 

with increasing site fertility (e.g. Wilson & Keddy 1986), but others have 

found constant levels of competitive intensity across soil fertility gradients

(Wilson & Tilman 1991; Peltzer, Wilson & Gerry 1998), and a meta-analysis of

competition experiments found that average competitive intensity as 

measured by biomass actually declined with increasing productivity of the 

habitat (assumed to correlate with high resource supply), while competitive 

intensity measured by survival increased positively with productivity

(Goldberg et al. 1999). Some of these disparate findings can be explained by

differences in metrics and their interpretation (Grace 1991). To clarify, 

Welden & Slauson (1986) proposed a distinction between the importance 

and intensity of competition, where importance is defined through 

comparison with the relative influences of other factors (stress, disturbance) 

while intensity refers specifically to the reduction in performance due to the 

presence of neighbors. Using this framework to interpret the results of this 
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study, competition was more important than water limitation, because 

competition suppressed native shrub seedling biomass to a greater degree 

than soil moisture stress, and because the exotic grasses competitively 

suppressed the native shrub seedlings at all points along the soil moisture 

gradient. However, competitive intensity was lowest under low soil moisture, 

when biomass of the exotic grass competitor was suppressed by soil 

moisture limitation. 

Globally invasive species have statistically higher growth rates than 

non-invasive species (van Kleunen, Weber & Fischer 2010), and also more 

traits associated with high water demand (Cavaleri & Sack 2010). Hence, 

exotic species often expected to benefit disproportionately over native 

species from high soil moisture (e.g. Daehler 2003). However, a large meta-

analysis found that while exotic species tended to be favored under 

enhanced rainfall, and native species under drought, the trend was non-

significant and characterized by substantial variation (Sorte et al. 2013). The 

results of the present study, and others, suggest that some of this variation 

may be explained by competitive context. Consistent with our findings, 

experiments in both Northern California grasslands (Eskelinen & Harrison 

2015a) and Mongolian steppe (Liancourt et al. 2013), found native species 

only benefited from enhanced rainfall in the absence of competitors. Other 

experiments, however, have found that added precipitation had little 

influence on the relative abundances of native versus exotic species (Pfeifer-

Meister et al. 2016), found variation among native species in their response 
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to competition and increasing rainfall (Levine, McEachern & Cowan 2010), or 

that native species’ growth was similarly suppressed by exotic competitors 

regardless of water supply (Maron & Marler 2008). 

Many other aspects of the environment likely modify the influence of 

neighbors on species responses to variation in water availability. For 

instance, Richardson et al. (2012) found that competition from exotic species

suppressed native cover in northern sites (cooler, wetter), but facilitated 

native cover in southern sites (drier, warmer). Similarly, in arid sites grasses 

have been shown to facilitate shrub establishment (Mazzola et al. 2011). One

mechanism by which grasses could facilitate shrub establishment in dry sites

is by reducing herbivory on seedlings (Soliveres et al. 2011). Soil depth has 

important influences on the total water holding capacity of soil accessible by 

roots, and influences the identity of interacting species along soil depth 

gradients (Bernard-Verdier et al. 2012). Indeed, variation in the identity of 

interacting species is one of the most important factors influencing 

competitive intensity (Goldberg et al. 1999); hence, progress in predicting 

variation in competitive intensity along environmental gradients will require 

a greater understanding of how species traits interact with resource supply 

to influence competitive outcomes. 

While both shrub species in this experiment showed greater biomass 

accumulation with increasing water availability when grown alone, and 

strong declines when grown in competition, the functional form of these 

relationships differed. In particular, when in competition with the exotic 
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annual grass, E. californica achieved higher biomass at low soil moisture 

levels, while E. fasciculatum was competitively suppressed to a similar 

magnitude at all soil moisture levels. Variation between the two focal shrub 

species in their responses to water availability and competition from exotic 

species could be explained by a trade-off between stress tolerance and 

competitive ability (Liancourt, Callaway & Michalet 2005). E. californica is 

restricted to cooler coastal areas while E. fasciculatum is distributed along 

the coast and into more arid inland areas (S2), suggesting that E. 

fasciculatum can tolerate a greater range of moisture stress. In keeping with 

the predicted trade-off in stress tolerance and competitive ability, E. 

fasciculatum was also competitively suppressed to a greater degree than E. 

californica when grown with the exotic grass competitor. However, our 

estimates of survival do not support this hypothesis, because E. fasciculatum

survival declined at low soil moisture, while E. californica had nearly %100 

survival regardless of water treatment.

Alternatively, these differing responses to soil moisture and 

competition are potentially explained by different nutrient demand and 

strategies for drought adaptation in the two species. E. californica is a 

drought deciduous species that loses nearly all photosynthetically active 

biomass during the prolonged summer drought in this MTE. In contrast, E. 

fasciculatum is a drought tolerant evergreen species which retains a large 

proportion of photosynthetically active biomass throughout the year. 

Deciduous species tend to have higher nutrient demand than evergreen 
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species (Lambers & Poorter 1992), and studies from this region support the 

idea that deciduous species are restricted to areas with higher nutrient 

supply (Mooney & Dunn 1970). Increasing soil moisture in this experiment 

was associated with declining soil nitrate levels, potentially due to a 

combination of increased plant uptake and increased loss rates through 

leaching. When in competition with the exotic grass, the biomass of E. 

californica seedlings declined steeply from low to medium water supply 

rates, and then leveled off with similar biomass from medium to high water 

supply rate. This pattern was similar to soil nitrate levels (compare Figs. 1b 

and 2b), consistent with nutrient limitation as a mechanism for the 

saturating growth response of this species with increasing water supply. E. 

californica also allocated a greater portion of biomass to roots (RMF) 

compared to E. fasciculatum, suggesting E. californica was allocating more 

biomass to roots in order to obtain limiting soil resources (Gleeson & Tilman 

1992). However, there are important caveats for these analyses of allocation.

Plants can respond to nutrient limitation through changes in uptake rates, 

such as via greater specific root length, instead of through changes in 

proportional root or shoot allocation (Poorter et al. 2012). Further, we only 

estimated root allocation in the absence of competition, and allocation can 

change in competitive contexts (McNickle & Dybzinski 2013, but see Cahill 

2003).

A key finding of this study was the frequency of curvilinear 

relationships between water supply and growth, both with and without 
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competition. For instance, in the absence of competition we saw a positive, 

saturating relationship between biomass and water supply for all three focal 

species. While many modeling studies of species interactions along gradients

assume one limiting resource, this is likely an unrealistic assumption

(discussed in Rees 2013). The curvilinear relationship we observed could be 

caused by co-limited by nitrogen and water, such that nitrogen limitation is 

more severe more under wet than dry conditions (Hooper & Johnson 1999; 

Harpole, Potts & Suding 2007; Eskelinen & Harrison 2015b). Patterns of 

allocation were also consistent with this interpretation, as well as the 

predictions of optimal allocation theory; both A. fatua and E. fasciculatum 

reduced root allocation with increasing levels of water addition until reaching

a saturation point. 

Austin & Smith (1989) reviewed theories of species growth and 

abundance responses along resource gradients and conclude that complex 

functional relationships are likely due to variation in competitive interactions,

but also predictable on the basis of species' responses to the resource 

gradients when grown in monoculture. Everard et al. (2010) developed 

model for nitrogen competition predicting dominance of exotic annual 

species in dry sites and native perennial species in wet sites, parameterized 

with data from Southern California species. This was the result of both 

biomass and water uptake rates of native versus exotic species - their 

parameters assumed exotic species water uptake rate declined as soil 

moisture increased, while native species uptake rate increased. In our 
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experiment, we saw the opposite pattern where biomass of the exotic annual

grass increased faster than biomass of the native shrubs with increasing soil 

water supply, and there was greater competitive suppression of the native 

shrubs by exotic grasses at high soil water supply. However, the modeling 

study (Everard et al. 2010) and our experiment concur with Austin and Smith

(1989) in that the dynamics of species growth in monoculture predict the 

nature of competitive dynamics along a resource gradient. Our findings join 

the few experiments that provide empirical evidence for these theoretical 

expectations (Pickett & Bazzaz 1978; Kadmon 1995), and demonstrate the 

insights that can be gained from conducting experiments along controlled 

environmental gradients.

This study focused on the first growing season following shrub seedling

germination; drought-deciduous shrubs in coastal sage scrub will lose their 

leaves during the summer drought, hence the time of sensitivity to soil 

moisture is likely to be greatest during this first growing season (DeSimone &

Zedler 1999). Competition from exotic annual species often suppresses 

shrub seedling growth in coastal sage scrub communities (Eliason & Allen 

1997; Cione, Padgett & Allen 2002). However, in subsequent years following 

establishment native shrubs can tolerate and even competitively suppress 

co-occurring exotic annual grasses (Goldstein & Suding 2014), and grass 

litter can promote adult shrub growth by maintaining soil moisture

(Wolkovich et al. 2010). In this system, there is strong phenological overlap 

in the growing seasons of both native and herbaceous species, but 
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differences in seasonal phenology between native and exotic species could 

also influence competitive interactions (Wolkovich & Cleland 2011). For 

instance, DeFalco et al. (2007) found that the exotic annual grass Bromus 

rubens competitively suppressed growth of perennials with overlapping 

growing season phenology, but not with the shrub Larea tridentata, which 

continued to grow after B. rubens had senesced. Hence the relationship 

between resource supply and competition intensity is likely to vary with 

ontogenetic stage as well as species' phenology, and the present study can 

only conclude that high water supply increases competitive suppression of 

shrubs by exotic grasses at the seedling stage. However, because shrub 

survival was strongly impacted by grasses, the effect of competition on 

mortality in the first year would be likely to continue to impact the 

community in subsequent years.

Although this study focused on shrub seedling survival growth during 

only the first growing season, it has important implications for restoration of 

semi-arid shrublands. High soil moisture is well known to promote shrub 

establishment in drylands (Holmgren et al. 2006). However, our results 

suggest that when there is an abundant seedbank of exotic species, high soil

moisture could prevent native shrub establishment due to strong competitive

suppression by exotic species. Our study was in a greenhouse, but similar 

findings have been found in field experiments. Consistent with our findings, a

restoration study in coastal sage scrub found that while supplemental 

watering increased shrub seedling growth, it did not increase shrub seedling 
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survival for most species (including E. californica), and even decreased 

seedling survivorship of some species (notably E. fasciculatum; (Padgett, Kee

& Allen 2000)). In a restoration experiment involving seeding over 20 years 

in a sagebrush system in the U.S. Great Plains, high rainfall years resulted in 

increased grass cover and decreased shrub cover (Rinella et al. 2015). And in

the Mediterranean, studies along natural rainfall gradients have found that in

drier sites shrubs can have higher performance than in wet sites (Seifan, 

Tielborger & Kadmon 2010), because grasses have less of a competitive 

impact on shrub seedling survival (Rysavy et al. 2014). Together these 

studies suggest that when dryland restorations use supplemental watering, 

additional techniques may need to be employed to avoid competitive effects 

of exotic species. Options include herbicide (Cione, Padgett & Allen 2002), 

carbon additions to lower nitrogen (Blumenthal 2009; but see James et al. 

2011), or planting under nurse shrubs to facilitate woody plant establishment

(Gómez-Aparicio 2009).

The results from this experiment add to a growing literature 

highlighting the importance of indirect effects for predicting species 

responses to climate change (Suttle, Thomsen & Power 2007; Tylianakis et 

al. 2008; Kleinhesselink & Adler 2015; Alexander et al. 2016). These results 

also have relevance for understanding the potential for native shrub-

dominated ecosystems to reestablish during the critical first few months 

following disturbances such as fire. Invasion by exotic annual grasses has 

increased fire frequency in the Western United States (Balch et al. 2013). 
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This acceleration of the disturbance regime in concert with climate change

(Bradley 2009) could facilitate a type-conversion from native shrublands to 

persistent exotic-annual grasslands (Cione, Padgett & Allen 2002). With 

climate change, the conditions for successful regeneration for woody species

in drylands are predicted to become less frequent (Petrie et al. 2017). This 

study shows that while native shrub seedlings have higher potential for 

growth and survival under conditions of high soil moisture, and traditionally 

high rainfall years have been opportunities for shrub establishment, 

invasions by exotic annuals in this other MTEs (Sandel & Dangremond 2012; 

Funk et al. 2016) could be "changing the rules," by restricting native shrub 

establishment in high rainfall years.
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Tables

Table 1. Summary of effects of competition (C), watering amount (W), and a

quadratic term for watering amount (W2) on measured responses using type 

II tests, separated by focal shrub species. Dashes “-” indicate that the term 

was not used in the best model. ‘NA’ indicates that the factor was not 

included in the experimental design for that test. Bold p -values indicate 

significance at p < 0.05.
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Table 2. Summary of effects of watering amount (W) and the inclusion of a 

quadratic term for watering amount (W2) term on belowground responses, 

separated by each species. Dashes “-” indicate that the term was not used in

the best model. Bold p – values indicate significance at p < 0.05.
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or X2 p X2 p 

A. fatua
W

11.1
<0.00

1
19.9

<0.00
1

W2  -  - 14.0
<0.00

1
E. 
californic
a

W
14.2

<0.00
1

5.6 0.018

W2  -  - 5.3 0.021

E. 
fasciculat
um

W
22.9

<0.00
1

15.4
<0.00

1

W2  -  - 11.8
<0.00

1
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Figure legends

Figure 1. Relationship between percent soil moisture (a) and available nitrate

captured by ion exchange membranes (b). Lines represent the best fit with 

quadratic functions. Error bars represent ±1SE. 

Figure 2. Aboveground biomass responses (points) and survival (grey bars) 

of focal shrubs to water and competition treatments (grown alone a, c; grown

in competition b, d). Lines represent the best fit linear or quadratic model for

the aboveground biomass responses. 

Figure 3. Belowground biomass responses to water treatments for root 

production (a) and root mass fraction (b) when each species was grown 

alone. Lines represent the significant, best fit linear models.
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Supporting Information, Esch et al. 2018 " Competition reverses the 

response of shrub seedling mortality and growth along a soil 

moisture gradient"

Table S1. Monthly average soil moistures

Monthly average soil moisture (m3/m3) at a 5 cm soil depth measured at the 

U.S. Climate Reference Network southern California station Fallbrook 5 NE 

located in Fallbrook, CA.

Year
Mont

h 2010 2011 2012 2013 2014 2015 2016

Jan.  
22.8

6
18.4

5
22.2

5
12.7

1
20.9

2
21.0

5

Feb.  
22.9

1
19.0

3
22.0

0
15.1

3
17.2

2
17.7

3
Marc

h  
24.4

5
21.6

7
18.5

5
19.9

7
17.6

5
17.7

0

April
24.2

5
19.0

8
20.0

8
12.9

9
15.6

0
11.6

6
12.9

8

May
15.8

7
16.0

3
14.4

4
13.8

7
11.6

6
16.1

0
12.2

6

June
12.4

1
13.1

4
11.6

4
11.1

0
10.6

4
12.0

8
11.0

1

July
11.4

8
11.7

6
10.8

0
10.4

8
10.3

5
15.1

9
10.4

5

Aug.
10.8

2
11.2

5
10.9

1
10.0

9
14.0

1
11.9

5
10.0

5

Sept.
10.2

1
10.6

5
10.0

3 9.67
10.5

5
13.7

5
10.4

3

Oct.
18.6

2
15.8

4
11.3

1
10.1

3 9.50
14.6

5
10.7

1

Nov.
21.3

3
21.3

9
11.3

7
14.6

9
11.5

6
11.8

6  

Dec.
24.9

0
19.2

7
21.8

4
20.0

7
22.9

0
16.3

8  
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Figure S2. Distribution of focal species

The following maps show the distributions of our three focal species within 

California; data were drawn from Calflora (www.calflora.org) for A. fatua (a), 

E. californica (b), and E. fasciculatum (c).
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