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Predation is a fundamental interaction between species, yet it is largely

unclear what tactics are successful for the survival or capture of prey. One

challenge in this area comes with how to test theoretical ideas about strategy

with experimental measurements of features such as speed, flush distance

and escape angles. Tactics may be articulated with an analytical model

that predicts the motion of predator or prey as they interact. However, it

may be difficult to recognize how the predictions of such models relate to

behavioural measurements that are inherently variable. Here, we present

an alternative approach for modelling predator–prey interactions that uses

deterministic dynamics, yet incorporates experimental kinematic measure-

ments of natural variation to predict the outcome of biological events.

This technique, called probabilistic analytical modelling (PAM), is illustrated

by the interactions between predator and prey fish in two case studies that

draw on recent experiments. In the first case, we use PAM to model the tac-

tics of predatory bluefish (Pomatomus saltatrix) as they prey upon smaller fish

(Fundulus heteroclitus). We find that bluefish perform deviated pure pursuit

with a variable pursuit angle that is suboptimal for the time to capture. In

the second case, we model the escape tactics of zebrafish larvae (Danio
rerio) when approached by adult predators of the same species. Our

model successfully predicts the measured patterns of survivorship using

measured probability density functions as parameters. As these results

demonstrate, PAM is a data-driven modelling approach that can be predic-

tive, offers analytical transparency, and does not require numerical

simulations of system dynamics. Though predator–prey interactions

demonstrate the use of this technique, PAM is not limited to studying

biological systems and has broad utility that may be applied towards under-

standing a wide variety of natural and engineered dynamical systems where

data-driven modelling is beneficial.
1. Introduction
Predation is critical to the structure of populations and has guided the

evolutionary fate of myriad species. Despite its importance in biology, investi-

gators have struggled to formulate a predictive body of theory for

understanding the behaviours that succeed in the survival or capture of prey.

It is consequently unclear what traits of a predator or prey are most important

to predation. This challenge has been met through the development of analyti-

cal models that articulate tactics and predict the motion of these animals.

However, it is difficult to reconcile these predictions with kinematic measure-

ments due to the highly uncontrolled and coupled nature of behavioural

interactions between predator and prey. The aim of the current study is to

advance our understanding of the behaviour of predation through the introduc-

tion of an analytical approach that incorporates kinematic measurements of

natural variation into analytical models of predator and prey tactics.

The work here is motivated by the importance of predation in the survival

of a species. Rather than studying the growth rate of species, we instead take an

individual-centric approach where we seek to quantify the expected value of a
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metric of success in the predator–prey interaction. We

demonstrate the utility of our approach, called probabilistic

analytical modelling (PAM), by modelling predator–prey

interactions in fishes that have been observed experimentally.

Measurements of kinematic features such as speed, flush dis-

tance (i.e. the escape or alert distance) and escape angles from

experiments combined with dynamical modelling and prob-

abilistic analysis predict the outcomes of biological events in

ways that experiments or modelling alone cannot.

Hypothetical tactics of predators and prey have been pre-

viously formulated with analytical pursuit–evasion models.

These models predict the trajectories of individuals [1–3], or

the swarming behaviour of one target and many pursuers

[4,5], as particles capable of responding to the state of the

opposing animal according to a behavioural algorithm [6–9].

Owing to the transparency of analytical mathematics, it is

possible to resolve the parameters in these algorithms that

optimize a particular aspect of performance. For example,

the classic homicidal chauffeur game model was successfully

used to formulate the direction of the escape response by

prey fish that maximizes the distance from a predator

[10,11]. This model has been invoked in the interpretation of

numerous experimental studies on prey fish [12–16].

However, attempts at reconciling theory with experimen-

tation demonstrate some of the limitations of existing theory.

The homicidal chauffeur model assumes that predator and

prey maintain a fixed heading and velocity and that the prey

senses the predator’s speed and heading with perfect accuracy.

These assumptions seem unlikely to hold true in most piscivor-

ous interactions and it is, therefore, unclear to what extent

measured deviation from predictions may be attributed to

violations of the model’s assumptions, fish using a different

tactic, or other natural variation in behaviour. As a consequence,

it is not clear whether or not prey fish escape optimally with

respect to some metric (e.g. distance from the predator).

The effects of natural variation have been considered by

computational models that include stochasticity. Such data-

driven models include those of fish schools that respond to a

predator [17] and a schooling model that investigates how per-

turbations among a small number of agents affects the

behaviour of the school at large [18]. Certain classes of stochas-

tic pursuit–evasion games have even been solved [19] and the

importance of not using deterministic models in stochastic sys-

tems is highlighted in a model of the growth rate of feeding fish

[20]. In work on specific species, data-driven techniques with

stochastic or probabilistic elements are used to model the

fast-turning dynamics of zebrafish [21], the probability of cap-

ture for suction feeding sunfish [22], the predation by the exotic

shrimp species Dikerogammarus villosus [23], and the dynamics

of the bacterial predation in soil [24]. On a macro-scale, preda-

tor–prey population dynamics in the sense of Lokta–Volterra

[25] are modelled with stochastic components to the birth and

death rate of the species [26] and with data fitting techniques

that generalize the local predator–prey interactions to the

population dynamics as a whole [27].

Although perhaps more predictive than a classic analyti-

cal model, the above data-driven models lack the advantages

of analytical analysis for formulating tactics that optimize

some payout. The same disadvantage is apparent in a

Monte Carlo approach to pursuit–evasion models. A

Monte Carlo method yields distributions of numerical results

from batches of deterministic trials that draw parameter

values from random-number generation according to
measured probability distributions [28]. This approach is

similar in concept to the present approach, but its numerical

execution lacks the advantages of an analytical approach.

The proposed approach, PAM, allows for a consideration of

natural variation in a pursuit–evasion model by combining

kinematic measurements with dynamical modelling that

articulates predator or prey tactics. This approach may be

executed in four steps. First, a model of the dynamics of the

predator/prey interaction is either chosen from existing

pursuit–evasion models or developed to more specifically

address the behaviour seen in experiments. Second, for each

of the probabilistic parameters appearing in the model, a prob-

ability density function (PDF) is fit to measurements. Third, the

key metric that measures the success of either the predator or

prey is selected and expressed mathematically. Tools from

probability theory are applied to calculate the expected value

of the key metric as a function of the PDFs of the model par-

ameters. Finally, the means of the PDFs are varied and the

expected value of the key metric is recalculated to determine

the relative influence of each parameter. This procedure reveals

which factors are most important to either predator or prey

survival, taking into account the random distribution of par-

ameter values seen in experimental observations. Though

predator–prey interactions motivated the development of

this technique, PAM is, in fact, applicable to any process that

can be examined by data-driven mathematical modelling.

The paper proceeds as follows. Section 2 provides techni-

cal background in pursuit dynamics and probability theory

and introduces two case studies of fish predator–prey inter-

actions. Section 3 presents the general PAM approach used

to analyse each experimental dataset in order to determine

the most important tactical factors in predator–prey inter-

actions. Section 4 applies PAM to a case study of the pursuit

tactics of bluefish predators and §5 uses the methodology

on a case study on the evasion tactics of zebrafish prey.

Although the primary data analysed in these two cases is

based on two previous experimental studies [28,29], the

results reported here can be verified using the statistical data

provided in this work. Section 6 summarizes the results and

describes ongoing work.
2. Background
2.1. Pursuit dynamics
The literature on pursuit is multi-disciplinary, with works

coming from both the animal behaviour [7,30–32] and mis-

sile guidance [6,33,34] communities. Owing to this mixing

of disciplines and a lack of formalization in the field, there

are many (sometimes conflicting) terms used to describe var-

ious pursuit tactics. In pure pursuit (PP), also sometimes

called tracking or classical pursuit, a pursuer aligns its velocity

vector with the line of sight (LOS), which is the vector from

the pursuer to the target’s current location and is used by

many predators [6,35].

In deviated pure pursuit (DPP) (i.e. constant bearing pursuit or

constant aspect pursuit), the pursuer aligns its velocity vector a

fixed angle away from the LOS such that it leads (or lags) the

target. Certain fish [30], insects [35], dogs [36] and humans

[37] exhibit this tactic in their pursuit trajectories. The special

case where the target is not turning or changing speed and

the pursuer’s lead angle is such that it moves in a straight

line for the entire pursuit phase is sometimes called interception.
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In constant absolute target direction (CATD) pursuit (also

known as motion camouflage, parallel navigation or constant
bearing), the pursuer moves in such a way that the LOS

angle stays fixed with respect to some inertial reference

frame. This tactic has the effect of masking the pursuer’s

transverse movement from the perspective of the target,

because the pursuer appears only to increase in size. Certain

dragonflies [31], bats [32] and falcons [38] use this tactic. In

the case of a non-manoeuvring target, CATD pursuit is

equivalent to constant bearing pursuit, but the converse is

true only in the case of interception. A common technique

to actualize one of these geometrical tactics into a control

law for a physical system with dynamics is proportional

navigation [33], though other techniques exist [6,39].

2.2. Probability theory
Probability theory provides a mechanism to analytically

account for inherently variable behavioural measurements

observed in predator–prey interactions. The probability that

a random variable X has value less than x is described by

the cumulative distribution function FX(x) ¼ P(X � x) [40].

The PDF of the same random variable describes how often

values occur and is given by fX(x) ¼ dFX(x)/dx. Many tech-

niques and toolboxes exist for fitting PDFs to a dataset [41,42].

The expected value of a random variable X with

probability density fX(x) is [40]

E[X] ¼
ð1

�1

xfX(x) d x: (2:1)

The expected value of a function Y ¼ h(X ) of random

variable X with probability density fX(x) is [40]

E[Y] ¼
ð1

�1

h(x)fX(x) d x: (2:2)

Additional results from probability theory necessary for the

work herein and not contained in the references are in the

appendix.

2.3. Case study 1: bluefish
Piscivorous interactions may largely be described by two-

dimensional kinematics, but exhibit a diversity of tactics

that have the potential to vary with the habitat and the physi-

ology of a fish species. Bluefish (Pomatomus saltatrix) are

voracious pelagic fish predators that pursue prey at a high

speed. This species exhibits predatory behaviour in an

aquarium with motion that is largely two dimensional and

is therefore conducive to single-camera kinematic measure-

ments. As detailed in a separate study [29], the high-speed

kinematics were measured for bluefish (approx. 30 cm in

length) as they preyed upon smaller prey fish, mummichog

(Fundulus heteroclitus, approx. 5 cm). These experiments intro-

duced an individual prey into the centre of a large cylindrical

aquarium (diameter ¼ 6 m), which contained all of the preda-

tors. Kinematic measurements were performed for the prey

and predator that first struck at the prey. Inherent in this

decision is the assumption that the successful predator’s tra-

jectory is not affected by the presence of other predators in

the area. The validity of this assumption is addressed in §4.

These measurements consisted of a manual frame-by-frame

tracking of the rostrum of each fish from the moment that

both appeared in the camera’s field of view until the preda-

tor’s strike. The mummichog did not attempt an escape
when pursued by bluefish, but rather maintained a relatively

straight path and consistent speed. The trajectories of preda-

tor and prey were recorded for 70 experimental trials. The

dynamical model of bluefish predation presented in §4

takes advantage of the largely non-manoeuvring prey, allow-

ing for a DPP representation with only the LOS range and

angle as state variables.

2.4. Case study 2: zebrafish
Zebrafish adults (approx. 2.5 cm) prey on larvae (approx. 4

mm) of the same species under laboratory conditions [43].

However, unlike the mummichog preyed upon by bluefish,

zebrafish larvae generally remain stationary until initiating

an escape response at a certain point during the predator’s

approach [16]. This response allows for a consideration of

the evasion tactic of a prey fish that can be measured and

modelled. The kinematic data were previously reported

from experiments in a hemispherical aquarium (diameter ¼

8.5 cm), where the predator attempted multiple strikes at

the prey until successful [28]. Within 1 s of initiating an

escape, the prey ceased swimming and were stimulated to

escape again when approached by the predator. The predator

approached the prey at a constant speed, well below the

prey’s maximum escape speed. This approach was consistent

with a PP tactic, such that the predator’s heading was

directed towards the instantaneous position of the prey.

These interactions repeated for as many as 20 approaches in

experiments performed in a relatively small aquarium and

were previously characterized by iterating a model of a

single interaction using a Monte Carlo technique [28].

The dynamic model of the zebrafish interaction presented

in §5 is an example of a hybrid system. A hybrid system is a

dynamical system that has a combination of continuous- and

discrete-time behaviour [44,45]. Hybrid systems often involve

the discrete switching between sets of dynamics, such as a

thermostat, or a discrete jump in states, such as a bouncing

ball. Stochastic hybrid systems are those that have non-

deterministic dynamics or non-deterministic conditions on

the state switching [46]. Here, a hybrid system is needed to

model the switch between freezing and escaping behaviour.
3. Probabilistic analytical modelling general
method

We now present the general PAM procedure used to deter-

mine which parameters in a given predator–prey

interaction are most critical to survival.

1. Choosing a dynamic model. The first step is to analyse the

experimental kinematic data to determine the dynamics of

the system. A catalogue of standard pursuit tactics and

their dynamical models may be useful [6,7], see §2.1. In

more complicated cases, where the prey is highly responsive

to the actions of the predator, a differential-game setting may

be required [47].

The chosen model need not exactly predict the actions of

the predator and prey seen in experiments, but it should cap-

ture the essential attributes of their behaviour. For example,

many of the standard pursuit models assume constant

speed of the predator and prey, which is not the case in a bio-

logical system. This assumption may be tolerable (as with the

bluefish case study in §4) unless either the predator or prey
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exhibit some specific speed-changing behaviour (such as the

starting and stopping of the larvae’s motion in response to

the zebrafish in §5).

If the predator–prey interaction is well modelled by a

dynamical system from the literature (as it is in §4), then

deriving an analytical expression for the key metric may be

trivial or already available. If a more non-traditional model

is required to describe the behaviour (as in §5), then the

development of the model and the derivation of the

expression for the key metric may be an iterative process.

2. Fitting probability densities to the experimental data. Once a

model has been selected, each of the parameters in that model

are fit from the experimentally observed dataset. These par-

ameters may include predator or prey speeds, angles,

capture rates etc. It may be advantageous to model certain

parameters as deterministic and others as probabilistic to

simplify the expression of the expected value of the key

metric. For example, in §4, the predator and prey speeds

are treated as random variables, whereas in §5, they are deter-

ministic because more interesting behaviour in the prey

species arises from variations in sensing range.

Many techniques exist for fitting PDFs to datasets [41,42].

A particular form of the PDF for each parameter is not

required for the following steps (e.g. it need not be normally

distributed) and that fact is a strength of this work. In certain

cases, deterministic functions may be fit to data, like the

success rate of strikes as a function of distance in §5.

3. Choosing a key metric. The key metric will be a measure

of the success of the predator or prey in either the predation

or escape behaviour. In many cases, such as for probability of

capture, the predator’s goal is to maximize the metric and the

prey’s goal is to minimize it.

An analytical expression of the key metric is required to

calculate its expected value. The expression is derived from

the model of the predator/prey interaction and both the

expression itself and the steps to derive the expression may

be unique to each model and metric. Some component of

the system dynamics may need to be directly integrated

and numerical integration may not be sufficient. For this

reason, concurrent or iterative development of the model

and the expression of the key metric may be required to

modify the model into an integrable form.

4. Finding the expected value of the key metric. Depending on

the form of the expression of the key metric, a direct appli-

cation of the multivariate extension of equation (2.2) will

provide the expected value, as is the case in §4. For more

complicated expressions, something akin to what is done

in §5 may be required, where conditional statements are

incorporated into the calculation of the expected value.

5. Parameter perturbation analysis. To study the relative

effect each of the parameters in the model has on the

expected value of the key metric, we employ a scheme similar

to that used in [28], where the expected values of the prob-

abilistic parameters are varied by shifting the terms within

the PDFs. In [28], the varied PDFs were tested in a Monte

Carlo framework to recalculate the expected value of the

key metric from a multitude of simulations. In the work

described here, the expression for the expected value of the

key metric need only be re-evaluted with the varied PDFs,

taking advantage of the inclusion of the system dynamics

in the key metric.

The expected value of the key metric as a function of the

change of each parameter from its nominal value reveals
which parameter most greatly influences the key metric

and, therefore, the survival of either the predator or prey.

Though the PAM technique was developed for predator–

prey interactions, it is applicable to examine metrics for any

dynamical process with natural variation in the parameters.
4. Bluefish case study
This section describes the application of PAM to examine

the predatory behaviour of bluefish as they preyed upon

mummichog [29].

Deviated pure-pursuit dynamics. Figure 1 defines the planar

pursuit geometry used in this case study. The vector of length

r between the predator and the prey is known as the LOS and

is inclined from the inertial reference frame by an angle l. The

predator’s velocity vector vp is inclined from the LOS by the

pursuit (deviation) angle d and likewise the prey’s velocity

vt is inclined by u. The velocity magnitudes (i.e. speeds) are

denoted vp . 0 and vt . 0. The angle of the velocity vectors

from the inertial frame are gp and gt for the predator and

prey, respectively.

To verify that the bluefish are using DPP, we compared

simulations of the DPP dynamics to the experimental trajec-

tories. Comparisons were very favourable even without

accounting for predator–predator interactions. Figure 2 shows

three examples of these comparisons, where the simulated

trajectories obey the following dynamics:

_x p ¼ v p cos g p,

_y p ¼ v p sing p,

_g p ¼ k(lþ d� � g p) ¼ k(d� � d)

and v p(t) ¼ measured predator speed at time t,

9>>>>>>=
>>>>>>;

(4:1)

where (xp, yp) is the predator position, k . 0 is the scalar feed-

back gain, and d� is the desired pursuit angle. With gp as a

control input, these dynamics use only the geometric angle d

as feedback, a value that may be available to the bluefish

from their visual system [30]. In the experimental data, the pre-

dator’s speed vp varies within a pursuit. Thus, in the simulated

trajectories (e.g. figure 2) the DPP tactic is used for the predator

steering, given the experimentally measured values of speed.

The particular pursuit angle d� used in (4.1) is unique to each

trial and was found by sweeping through values

d� [ (�p, p] and choosing the d� that best matched the

experimental trajectories in the least-squares sense.
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Experimental data fitting. Three probabilistic parameters are

needed to calculate the expected value of the time to capture

as seen below in the key metric section. The pursuit angle d as

calculated by the geometry in figure 1 is well represented by a

normal distribution. However, since d [ (2p, p], we use a

von Mises distribution, which is often referred to as the wrapped

normal distribution. Figure 3 shows two PDFs given by

fD(d) ¼ 1

2pI0(kd)
exp (kd cos (d� md)), (4:2)

where I0 is the modified Bessel function of order 0, md is the

mean value and kd � 0 is a term that represents the spread of

the distribution with kd ¼ 0 corresponding to a uniform distri-

bution. The first PDF is fit from the geometrical d(t) at every

time step across all experiments and the second is fit from the

d� value associated with each trial from dynamics (4.1). The

d(t) PDF has much more variance because the bluefish do not

perfectly track the d� values and oscillate about them in each

trial. Values for the d� fit parameters are used in this case

study (the result is nearly identical in either case) and are

given in table 1.

The probability densities for the speed of the predator and

prey are not independent because although the prey is largely

unresponsive to the actions of the predator, it is unclear

whether or not the predator adjusts its speed in response to

the prey. A bivariate lognormal density is fit to the dataset

of (vp, vt) pairs taken at every time step across all
experimental trials. Let L(v p, vt, mv) ¼ [ ln v p, ln vt]
T � mv.

Figure 4 shows the joint PDF

fVp,Vt (vp,vt)¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detSv

p exp �1

2
L(vp,vt,mv)TS

�1
v L(vp,vt,mv)

� �
,

(4:3)

where mv and Sv are given in table 1.

Key metric. In the experimental set-up, many bluefish sim-

ultaneously begin pursuit when the prey fundulus is

dropped into the arena. As the bluefish are nearly always suc-

cessful in capturing the prey once they reach it, the first

predator to reach the prey received the reward. Therefore

we choose the key metric to be the time to capture.

Assume a constant speed for the predator and a non-man-

oeuvring prey, meaning the prey moves with constant speed

and direction. Though this it not strictly the case for the

experimental data, we seek to examine the effect of pursuit

angle d and so we do not study the effect of changing

speed during a pursuit. Additionally, assume that the preda-

tor maintains a constant pursuit angle d throughout its

trajectory. The predator speed, prey speed and pursuit

angle are considered as random variables.

With these assumptions, the dynamics of the DPP system

in terms of the rate of change of the LOS range r and angle l

shown in figure 1 are [6]

_r ¼ vt cos u� v p cos d

and � _l ¼ _u ¼ 1

r
(� vt sin uþ v p sin d),

where _l ¼ � _u, because the prey is non-manoeuvring. Using

these dynamics, the time to capture is [6]

tc(r0, u0, v p, vt, d) ¼ r0
v p þ vt cos (u0 þ d)

(v2
p � v2

t ) cos d
: (4:4)

Expected value of key metric. For two random variables X
and Y and a nonlinear function Z ¼ g(X, Y,) it is not true,

in general, that E[Z] ¼ g(E[X ], E[Y ]) [40]. Since three of

the parameters in (4.4) are random variables, we must

instead calculate the expected value by using the multivariate

extension of (2.2):

E[Tc]¼
ððð1

�1

tc(r0, u0, vp, vt, d)fVp ,Vt (vp, vt)fD(d)dvp dvt dd,

(4:5)

which assumes d is independent from vp and vt.

Parameter perturbation analysis. To determine which par-

ameters have the greatest effect on the time to capture tc,

we use the technique described in §3. Figure 5a shows the



Table 1. Parameters of the bluefish pursuit model. Pursuit angle d has a von Mises distribution with PDF fD(d). The predator speed vp and prey speed vt form
a bivariate lognormal PDF fV p ,Vt (v p, vt ). The given parameters correspond to mean speeds of 1.38 and 0.95 m s21 for the predator and prey, respectively. Initial
conditions are deterministic with nominal values as given.
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u0 prey heading p/2 rad
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axis. (Online version in colour.)
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result of this process, in comparison to a deterministic evalu-

ation of (4.4) directly using E[Vp], E[Vt] and E[D]. Increasing

the prey speed or decreasing the predator speed has a much

less pronounced effect on E[Tc] when compared with the

deterministic technique. This effect is because the determinis-

tic case considers only single values of vp or vt that may

become very close as either is varied, causing tc to become

large. The probabilistic case balances this effect by consider-

ing all possible values of vp and vt according to their

likelihood from (4.3). Even if E[Vp] and E[Vt] are very close,

there are still many other values that are accounted for by

(4.5). The nominal initial conditions used in this plot are

r0 ¼ 1 m and u0 ¼ p/2 rad.

Figure 5b shows an extended variation of the pursuit

angle d from its small nominal value of 4.138. We see that

there exists an optimal pursuit angle much higher than the

pursuit angle most often used by the bluefish. This optimal

angle corresponds to the intercept tactic (see §2.1). Since

the bluefish do not appear to be optimizing this metric, we

discuss alternative explanations below.

Discussion. The deterministic versus probabilistic study of

the effect of varying the parameters yields different, yet quali-

tatively consistent results as seen in figure 5. Though the

unperturbed (0% change from experimental parameters)

value of time to capture is incorrect, the deterministic study

yields the correct trends near the nominal values, but does

not accurately predict time to capture as the parameters are
varied further. For larger deviations, the probabilistic study

shows the expected effect on the time to capture tc.

As seen in the d curve in figure 5a, increasing/decreasing

the pursuit angle d has very little effect on the time to capture,

because the bluefish most often use small, but non-zero, pur-

suit angles (figure 3). Why the bluefish use a DPP tactic over

a PP tactic (the d ¼ 0 case) when it yields such small changes

in capture time is not clear. The analysis shows that a time-

optimal pursuit angle exists (figure 5b), though the bluefish

operate far from its value. DPP may present a tactical

advantage for a more evasive prey than the prey presently con-

sidered. For example, a faster prey might prompt the bluefish

to increase d such that their swimming trajectory more closely

resembles the CATD tactic (see §2.1). Alternatively, DPP may

indicate a constraint or bias on the sensorimotor system of

the bluefish. Bluefish may more quickly process the position

of the prey when it is present in the visual field of a single

eye, which is facilitated by a non-zero value for d. In most

cases, the predator chose to fix the prey in the eye on the side

that leads the prey velocity (d . 0), which does slightly

reduce capture time compared to the negative of that angle.
5. Zebrafish case study
The second PAM case study considers prey evasion tactics in

larval zebrafish pursued by adult zebrafish [28]. The prey, in

this case, attempts to escape by accelerating to a speed that is

faster than the predator, as described in §2.4.

To calculate the key metric for this case study, a one-

dimensional hybrid system model of the dynamics is

formulated. The continuous part of the hybrid system

describes the approach of the predator and the escape behav-

iour of the prey, whereas the discrete part handles the

switching of parameters between repeated approaches and

the onset of escaping behaviour.

Hybrid pursuit model. Among pursuit tactics [6–8], PP is

best represented by a one-dimensional model since the pred-

ator always moves directly towards the prey and the distance

between them is of prime importance.

The distance between the predator and prey at time t is

r(t). The predator will attempt a strike if r(t) is less than the

strike distance s. The prey begins its escape if r(t) is less

than its sensing range (flush distance) l. The prey escapes

for h seconds, reaching its maximum speed vt at a fraction

x of its escape time. C(s) is the probability of a successful

strike as a function of strike distance s and is experimentally
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Table 2. Parameters of the model for the zebrafish case study. Probabilistic parameters have lognormal probability density functions fS(s), fL(l ) and fH(h). C(s)
is a sigmoidal function of the form C(s) ¼ [1 þ exp(2r(s 2 r0))] 21.

probabilistic parameters s strike distance of predator ms ¼ 24.980

ss ¼ 0.448

l sensing distance of prey ml ¼ 24.546

sl ¼ 0.587

h escape duration of prey mh ¼ �1:369

sh ¼ 0:552

deterministic parameters vp predator speed 0.13 m s21

vt maximum prey speed 0.4 m s21

x fraction of h when u is reached 0.2

deterministic function C(s) strike success chance r ¼ 20.573

r0 ¼ 5.20
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determined. Table 2 summarizes the parameters used in the

model and includes their values for this case study.

Assume that the predator reaches its maximum speed vp

sufficiently far from the prey so that predator acceleration

may be ignored. The prey remains stationary until it detects

the predator, that is, until r(t) � l, the sensing distance of

the prey. Once the predator is detected, the prey escapes

with a sawtooth velocity profile, as shown in figure 6. This

type of velocity profile is general to many startle responses

seen in nature where the prey quickly flees only to come to

rest again a short time later [28].

Figure 7 illustrates the hybrid dynamics of this non-

deterministic system for one or more approaches. The

approach number an ¼ n counts the number of times the prey
has begun escaping from the predator. The time since obser-

vation begins is t. The time from when approach an begins is

t(n) ¼ t� t(n)
0 , where t(n)

0 is the time when an increments.

Additionally, on approach n, each of the probabilistic par-

ameters s(n), l(n) and h(n) are redrawn from their densities,

fS(s), fL(l ) and fH(h), respectively. Figure 8 shows a sample

trajectory of the dynamics using the case-study data.

Experimental data fitting. All of the parameters in table 2

were experimentally determined or fit in [28]. The probabilistic

parameters have lognormal PDFs with the form

fX(x) ¼ 1

x
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

x

p exp � ( ln x� mx)2

2s2
x

 !
:



0 h
time (t)

ch

pr
ey

 v
el

oc
ity

t

(1 – c)
t

Figure 6. Prey velocity profile (vt) after detecting the predator. The prey
escape duration is h; it reaches its maximum speed at fraction x of the
escape duration.

r(0)�E[l]

r £ s(n) : strike

prey stationary prey accelerating

prey decelerating

otherwise

if r(t) = l(n) and r·(t) < 0,

t(n) ≥ 0

r· (t) = –  p r· (t) = –  p + —— t(n)

t(n) ≥ h(n)

t(n) = t – t0
(n)

ch(n)

t(n) ≥ ch(n)

t

r· (t) = –  p + ——– – ———–— t(n)

1 – c (1 – c)h(n)
t t

a0 = 0

an + 1 =
1 + an,

an,

Figure 7. Non-deterministic hybrid system model of predator – prey inter-
action. The box represents the discrete dynamics and the ellipses represent
continuous dynamics. Probabilistic variables are redrawn from their respective
PDFs each time the approach number an is incremented.
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Figure 8. Sample trajectory of simulated dynamics in figure 7 using the
zebrafish case-study data and model. The prey begins escape three times
before a strike occurs at the black �.
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The strike probability of success has the form C(s) ¼ [1 þ
exp( 2 r(s 2 r0))] 21. Though the experiments showed some

variation in the maximum speed of the predator and prey,

here we treat them as constants because we seek to study

the more interesting fleeing behaviour of the prey.

Key metric. Probability of capture has relevance to both the

predator and prey, one seeking to maximize it and the

other to minimize. The goal is now to analyse the hybrid

system to derive an expression for the expected value of the

probability of capture on approach and the probability of

survival after n approaches.

Expected value of key metric. For the prey to be captured, two

conditions must be met. First, the minimum distance r(n) must

be less than the strike distance. If r(n) is not less than s(n), then no

other point on the trajectory will be. This condition states that a

strike will be attempted, though not where the strike will occur.

Second, the strike must be successful. This condition is given by

the function C(s), which gives the probability of success of a

strike at distance s(n). Thus for the predator–prey interaction

described by the dynamics in figure 7, the probability of

capture on approach is

PCoA ¼ E[C(s)], given r � s:

Critical to this analysis is finding the minimum distance r(n)

between the predator and prey. With the goal to find the mini-

mum distance r on a single approach, we restrict our analysis to

the interval t (n) [ [0, h(n)]. The first of two possibilities where r
may achieve a minimum is r1 during the prey accelerating
phase in figure 7, when _r ¼ 0 at t (n) ¼ vpxh
(n)/vt. The second

possibility is r2 during the prey decelerating phase in figure

7, which occurs at the end of the interval, t (n) ¼ h(n). The

minimum on the interval is then r ¼min(r1, r2).

To find r1, from figure 7, we have

_r(t) ¼ �v p þ
vt

xh
t, r(0) ¼ l (5:1)

on the interval t [ [0, xh], where we dropped the super-

scripts on t (n), h(n) and l(n) as we are considering only a

single approach and each approach is an independent

event. Integrating directly and evaluating at t ¼ vp(xh/vt),

the local minimum is

r1(h, l) ¼ �
v2

px

2vt
hþ l: (5:2)

The second possible minimum, r2, occurs at the end of the

entire escape phase shown in figure 6 at t ¼ h. The distance

travelled by the predator and prey during this time are vph

and vth/2, so

r2(h, l) ¼ vt

2
� v p

� �
hþ l, (5:3)

The two possible minima r1 and r2 are each a linear combi-

nation of h and l, so the joint PDF is expressed in terms of

fH(h) and fL(l ) as [48]

fR1R2
(r1, r2) ¼ 1

ad� bc
fH

dr1 � br2

ad� bc

� �
fL
�cr1 þ ar2

ad� bc

� �
, (5:4)

where a ¼ �v2
px=2vt, b ¼ 1, c ¼ vt/2 2 vp and d¼ 1. The PDF

of the minimum of r1 and r2 is found using (see appendix)

(A 2):

fR(r) ¼
ð1

r
(fR1R2 (r, w)þ fR1R2 (w, r)) dw: (5:5)

The joint PDF of r and s is fRS(r, s) ¼ fR(r) fS(s) [40], assuming

the minimum distance and the strike distance are independent.

The probability of capture PCoA ¼ E[Ĉ(r, s)], where Ĉ(r, s) is an

auxiliary function that takes value C(s), if r � s, and 0 other-

wise. From (see appendix) (A 3), we have the probability of

capture on approach

PCoA ¼
ð1

�1

C(s)fS(s)

ðs

�1

fR(r) d r
� �

d s: (5:6)

The above equation provides the probability that the prey is

captured on a given approach of the predator. Applying this

equation to the case-study data yields PCoA ¼ 0.07. As a

check, the dynamics given in figure 7 were simulated until

the result was invariant to the number of simulations and it

was found that PCoA matched the result from (5.6). For each
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trial in the simulation, r(t) was integrated using a first-order

Euler method. To calculate PCoA, the total number of captures

was divided by the total number of trials in the simulation.

Figure 9 shows the result of the Monte Carlo trials, where

100 000 trials were needed to converge to the output of the

single equation (5.6).

Assuming each approach is an independent event, the

probability that the prey survives after n approaches is [40]

PSnA(n) ¼ (1� PCoA)n: (5:7)

Equation (5.7) in conjunction with (5.6) allows experimentally

gathered PDFs of predator–prey parameters to be used to

calculate the odds of prey survival after repeated approaches

by the predator. Note that as n! 1, PSnA(n)! 0 and thus

the prey are always captured eventually.

Parameter perturbation analysis. Equations (5.5) and (5.6)

allow interrogation of experimentally gathered data to find

which parameters are most important in the predator–

prey interaction. By shifting the mean of the probabilistic

parameters (or shifting the values of the deterministic par-

ameters) and recalculating (5.6), the most important

parameters to prey survival become readily apparent.

Figure 10 shows the result of the perturbation analysis.

Increasing sensing range l and maximum escape speed vt

increases the probability of survival of the prey. However,

there is a larger increase seen when the sensing range is

increased rather than escape speed. Increasing escape dur-

ation h decreases probability of survival, likely because it

takes the prey longer to reach its maximum speed (escape

duration and maximum speed determine acceleration). Par-

ameter x, the fraction of the escape time at which the prey

reaches its maximum speed, matches the result of varying h

almost exactly because both terms determine the prey’s

acceleration on the first leg of its velocity profile.

When strike distance s is increased, the probability of sur-

vival also increases. In this case study, the decrease in

probability of capture that results from the condition r � s
is outweighed by the decrease in likelihood of a strike

being successful at the increased range (capture probability

C(s) is much lower when striking from a farther distance).

Decreasing s decreases prey survival only up until a point

where the trend reverses. The probability densities interact

such that the increased odds of a successful strike at a short

distance eventually outweigh the chance that the prey

escapes due to sensing the predator before it can strike.

Discussion. Trend-reversing behaviour such as is seen

here when strike distance is varied cannot be predicted

from the dynamics of the non-deterministic hybrid system
presented in figure 7 alone, as it depends on the particular

parameter PDFs. The ability to predict behaviour of this

type by combining experimentally fit PDFs with a model of

the dynamics is a strength of the data-driven approach. In

this case study, sensing range is pivotal to prey survival.

Especially, in the negative changes in l, there is a much

larger decrease in survivability compared to the other par-

ameters. These results agree with those of a comparable

analysis performed by a Monte Carlo simulation [28], but

was resolved here analytically.

The PAM method gives something more than agreement

with numerical simulations for this case study: it explains

why sensing range is most important. The derivation of the

probability of capture revealed that it is imperative to

increase the minimum distance if the prey wishes to survive.

The analytical expressions (5.2,5.3) for the minimum distance

show that it has a one-to-one correspondence with sensing

range. (Compare this observation to the other parameters

that enter the expressions multiplied by other factors.) To

increase survivorship, natural selection would favour indi-

viduals with greater sensing range more so than greater

speed. However, to account for additional features such as

a requirement of the prey to feed or predators that have dif-

ficulty sensing motionless prey, the model used here is

insufficient. Special consideration would be needed in that

case, which adds complexity to the model formulation.

Figure 10 also includes a curve corresponding to varying

escape angle u from a nominal value of 2p, which corresponds

to when the prey flees directly away from the predator. Since

our dynamics model is one dimensional, a reasonable approxi-

mation to the two-dimensional concept of escape angle is to

reduce the effective escape speed to ueff ¼ ucosu. We see that

in our model any variations away from direct escape result in

lower chances of survival, something not seen in [28]. Our

choice to represent the pursuit in only the one-dimension r
ignores any turning dynamics that may exist in the predators

motion, i.e. it is always heading directly towards the prey.

This choice neglects the potential tactic of the prey of changing

its escape direction unexpectedly after each escape phase,

thereby requiring the predator to change its orientation with

some associated time delay corresponding to its turning

dynamics. Expanding this model to include turning dynamics

of the predator and thereby allowing an investigation of

the benefit of unpredictability in the prey’s escape angle is a

suitable topic for ongoing work.
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6. Conclusion
This study models the tactical behaviour of predator or prey

with a novel combination of analytical mathematics and data-

driven variability called PAM. Experimental measurements

of kinematic features such as speed and flush distance com-

bined with PAM predicts the outcomes of biological events

in ways that experiments or modelling alone cannot. Our

first case study showed that the trajectory of a bluefish pred-

ator may be predicted with a DPP tactic. Analysis of this

tactic revealed no substantial advantage compared to PP,

indicating that the small, non-zero values for the pursuit

angle may indicate a sensorimotor bias or perhaps a tactical

advantage not revealed by the prey species presently con-

sidered. The second case study on zebrafish predicted the

survivorship of prey using a simple evasion algorithm.

Analysis of this model was consistent with previous numeri-

cal results showing that sensing range is most important to

survival among the behavioural parameters of the prey.

In both case studies, PAM demonstrates the utility of a

principled approach for understanding tactics in predation.

Beyond predator–prey interactions, the PAM method

offers advantages for the modelling of a variety of dynamical

systems. These benefits compare well against a Monte Carlo

method, which may similarly incorporate measurements

but requires numerical simulations to formulate its predic-

tions. Unlike Monte Carlo, the predictions of PAM do not

vary with the number of simulations or the tolerances of

the numerical solver [49]. PAM scales well with the number

of probabilistic variables in the model, whereas the number

of Monte Carlo simulations required to formulate a predic-

tion is a multiple of these variables. Models with stochastic

processes additionally challenge the capacity of numerical

solvers to converge or arrive at an accurate solution [50].

Therefore, the capacity of PAM to formulate predictions

through analytical means should become increasingly more

apparent for systems of greater complexity.
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Appendix A
Given random variable Z ¼min(X, Y ), let us compute fZ(z).

We first state that from the definition of a cumulative distri-

bution function FZ(z) ¼ P[min(X, Y ) � z]. The event min(X,

Y ) � z is true if either X � z or Y � z. In set notation,

FZ(z) ¼ P[ min (X, Y) � z]

¼ P[X � z < Y � z]

¼ P[X � z]þ P[Y � z]� P[X � z > Y � z]

¼ FX(z)þ FY(z)� FXY(z, z), (A 1)

where the third line is a direct application of the inclusion–

exclusion principle, which states that, for two events A and

B, P[A < B] ¼ P[A]þ P[B]� P[A > B] [40]. To find the PDF

from the CDF (A 1), we take the derivative with respect to

z, i.e.

fZ(z) ¼ dFz(z)

dz
¼ fX(z)þ fY(z)� d

dz
FXY(z, z)

¼ fX(z)þ fY(z)�
ðz

�1

(fXY(z, w)þ fXY(w, z)) dw

¼
ð1

�1

fXY(z, w) dwþ
ð1

�1

fXY(w, z) dw

�
ðz

�1

(fXY(z, w)þ fXY(w, z)) dw

¼
ð1

z
(fXY(z, w)þ fXY(w, z)) dw: (A 2)

For independent random variables X and Y, the expected

value of

h(X, Y) ¼ g(Y) if X � Y,
0 otherwise

	

is

E[h(X, Y)] ¼
ðð11

�1�1

h(x, y)fXY(x, y) dx dy

¼
ðð11

�1�1

h(x, y)fX(x)fY(y) dx dy

¼

ðð11

�1�1

g(y)fX(x)fY(y) dx dy if X�Y

0 otherwise

8<
:

¼
ðð1y

�1�1

g(y)fX(x)fY(y) dx dy

¼
ð1

�1

g(y)fY(y)

ðy

�1

fX(x) dx
� �

dy:

(A 3)
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