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Abstract

Epilepsy is a highly heterogeneous neurological disorder with variable etiology, mani-

festation, and response to treatment. It is imperative that new models of epileptiform

brain activity account for this variability, to identify individual needs and allow clini-

cians to curate personalized care. Here, we use a hidden Markov model (HMM) to

create a unique statistical model of interictal brain activity for 10 pediatric patients.

We use magnetoencephalography (MEG) data acquired as part of standard clinical

care for patients at the Children's Hospital of Philadelphia. These data are routinely

analyzed using excess kurtosis mapping (EKM); however, as cases become more com-

plex (extreme multifocal and/or polymorphic activity), they become harder to inter-

pret with EKM. We assessed the performance of the HMM against EKM for three

patient groups, with increasingly complicated presentation. The difference in localiza-

tion of epileptogenic foci for the two methods was 7 ± 2 mm (mean ± SD over all

10 patients); and 94% ± 13% of EKM temporal markers were matched by an HMM

state visit. The HMM localizes epileptogenic areas (in agreement with EKM) and pro-

vides additional information about the relationship between those areas. A key

advantage over current methods is that the HMM is a data-driven model, so the out-

put is tuned to each individual. Finally, the model output is intuitive, allowing a user

(clinician) to review the result and manually select the HMM epileptiform state,
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offering multiple advantages over previous methods and allowing for broader imple-

mentation of MEG epileptiform analysis in surgical decision-making for patients with

intractable epilepsy.

K E YWORD S

epilepsy, hidden Markov model, interictal activity, magnetoencephalography

1 | INTRODUCTION

Epilepsy is a neurological disorder affecting �50 million people world-

wide (Beghi et al., 2019). It is characterized clinically by the occurrence

of seizures which are generated by abnormal electrical cellular discharges

in the brain. Epilepsy falls broadly into two categories: focal or general-

ized: in patients with focal epilepsy, there can be a single focus or multi-

ple discreet foci that generate seizures, whereas for generalized epilepsy,

seizures originate from diffuse areas throughout the cortex and/or deep

brain structures such as the thalamus or hypothalamus. For many

patients, antiepileptic medications can control both the severity and fre-

quency of seizures. However, �30% of patients do not respond

completely to medications (Mohan et al., 2018) and for these patients,

surgical resection of affected brain tissue could be a viable treatment.

However, this necessitates extensive presurgical planning to accurately

locate the affected brain area(s) prior to resection.

Current evaluation of pharmaco-resistant epilepsy is accom-

plished using electroencephalography (EEG; which measures electrical

activity in the brain via assessment of electrical potentials at the scalp)

alongside clinical factors and structural assessment using magnetic

resonance imaging (MRI). This may be augmented by the nuclear med-

icine techniques of positron emission tomography and especially ictal

(during seizure) single photon emission computed tomography. If can-

didate epileptogenic locations are identified via imaging, a more inva-

sive intracranial EEG (iEEG) may be initiated where electrodes are

located on the brain surface or within the grey matter. This allows

electrophysiological assessment with optimal sensitivity and spatial

accuracy, prior to resective surgery. Despite this extensive surgical

planning, fewer than 50% of patients are seizure free 5 years postsur-

gery, with this number dropping to 38% at 10 years postsurgery

(Mohan et al., 2018). It is therefore clear that a greater understanding

of this heterogeneous disease, as well as improvements in clinical

evaluation are required to improve patient outcome.

Magnetoencephalography (MEG) measures the magnetic fields

induced by neuronal current flow. Unlike the electric potentials mea-

sured by EEG, magnetic fields are relatively unaffected by the high

resistivity of the skull, resulting in less spatial distortion of the MEG

compared with the EEG signal, and thus improved resolution. MEG is

used in a growing number of clinical settings, particularly in epilepsy.

Not only does MEG provide additional information about the location

of the epileptogenic zone (Agirre-Arrizubieta et al., 2014; Gofshteyn

et al., 2019; Murakami et al., 2016; Nissen et al., 2016; Stefan

et al., 2011), it can also be used to distinguish epileptogenic regions

from eloquent cortex (Kim et al., 2013), and could be useful in

mapping nonlesional or MRI negative focal epilepsies where there is

no clear structural abnormality. Most importantly, a recent study by

Rampp et al., (2019) showed, in 1000 patients, that presurgical MEG

increases the chances of a patient achieving seizure freedom postsur-

gery when MEG localizations are resected.

MEG therefore has significant promise for assessment of patients

with epilepsy, and the recent introduction of new technologies to cap-

ture the neuromagnetic field offer even higher spatial resolution, bet-

ter sensitivity, and improved practicality, at lower cost (Boto

et al., 2018, 2021; Brookes et al., 2022; Hill et al., 2020). This means

that MEG could become even more established as the technique of

choice for epilepsy evaluation. However, the detection of epilepto-

genic activity in MEG data remains a significant challenge. Recording

data during a seizure is difficult due to uncontrolled patient move-

ment, and for this reason, most MEG recordings are limited to interic-

tal (between seizure) assessment (although see e.g., Tang et al., 2003).

Interictal events—sharply contoured atypical signals (known as epilep-

tiform activity, i.e., spikes, sharps, etc.) are observable in resting MEG

(and EEG) data and are generally assumed to originate from seizure

onset zones, meaning that spatially mapping their origin offers useful

information on the location of epileptogenic cortex. However, detect-

ing interictal discharges can be challenging for two reasons. First, they

are sporadic and unpredictable and, in some patients, rare. Thus, cap-

turing interictal epileptiform activity can sometimes be a challenge

without lengthy recording sessions (which should ideally include natu-

ral sleep because interictal discharges are often enhanced or only pre-

sent in sleep). Even when they do occur, it can take significant time

for a neurophysiologist to identify, mark, and categorize them (manu-

ally) in a MEG recording due to the high channel density relative to

clinical EEG (i.e., >250 channels compared with <30).

Second, the temporal morphology of epileptogenic activity can

vary markedly between patients; some produce spikes with/or with-

out slow wave activity, which varies dramatically in amplitude. Other

patients generate polymorphic bursts of “sharp wave” activity charac-

terized by high temporal frequency signatures. In some individuals,

the pattern of epileptiform activity repeats (like a template), in others

it differs on each occurrence. This makes automatic detection algo-

rithms challenging to design.

There are two commonly used analysis methods for localization

of interictal activity, equivalent current dipole (ECD) fitting and excess

kurtosis mapping (EKM). In ECD, interictal spikes are inspected visu-

ally (Bagi�c et al., 2011). Once identified at the sensor level, a current

dipole model is used to approximate the measured magnetic field just

prior to, or at the peak of, the spike; by letting the origin of the
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modeled dipole vary spatially, and then selecting the point at which

the model best fits the measured field, it becomes possible to localize

the brain region generating the spike (Ebersole, 1997; Wheless

et al., 1999). This technique works reasonably well in cases where

high amplitude spikes are observed in isolation but is often not useful

in cases where interictal activity includes polymorphic bursts. In addi-

tion, multifocal epilepsies are a challenge since ECD requires a priori

estimation of the number of active regions.

In contrast, EKM (Gaetz et al., 2015; Robinson et al., 2004;

Schwartz et al., 2010) is an automatic method which assumes only

that the epileptiform signals of interest are sharply contoured (relative

to the typically rhythmic background MEG signals). Kurtosis is a mea-

sure of the shape of a statistical distribution; in cases of abnormal

activity (e.g., if a dataset has large spikes), it's statistical distribution

includes a large “tail” and thus begins to look non-Gaussian; this is

quantified by increased kurtosis (also known as the fourth moment of

the distribution). By application of a kurtosis algorithm to MEG signals

extracted from multiple brain locations, it becomes possible to localize

areas generating abnormal activity. EKM does not require a priori esti-

mation of the number of epileptogenic regions; further, it is not lim-

ited to spikes, but can be used to assess any atypical activity, provided

it has high kurtosis. However, EKM also has limitations; it has low sen-

sitivity to low-amplitude polymorphic activity. Also, counterintuitively,

in cases with rapidly occurring high-amplitude spikes, excess kurtosis

has diminished sensitivity, because the kurtotic signals are so common

they begin to represent the mean. For these reasons, neither ECD nor

EKM is a perfect solution to analysis of MEG data in epilepsy, and

other methods, which can accurately and automatically identify epi-

leptiform activity, map its spatial origins, and (in multifocal epilepsy)

characterize relationships between regions, would be useful.

Hidden Markov modeling (HMM) has gained traction in recent

years as a method to elucidate complex neural dynamics in MEG data

(Higgins et al., 2021; Quinn et al., 2018; Vidaurre et al., 2018). The

method works by detection of repeated patterns of activity (known as

states) in MEG data; patterns can be characterized based on a number

of features, including amplitude, channel covariance, and spectral

properties. In this article, we aimed to test the hypothesis that “an
HMM could be used to identify, in time and space, epileptiform activ-

ity in agreement with current state of the art methods”. We further

aimed to show that, “in at least some patients, our method could offer

more information than the established EKM technique”. In what fol-

lows, we describe our data processing pipeline, and its application to

MEG data acquired in multiple different patient groups, ranging from

“simple” cases with focal spike-and-wave epileptiform activity for a

single locus, to more complex cases with multifocal epileptiform activ-

ity exhibiting polymorphic bursts from multiple loci.

2 | METHODS

2.1 | Patient identification and data collection

This study was determined by the IRB to have exempt ethics status as

it constituted secondary analysis of data captured for clinical purposes

under the NIH common rule (January 2019). All research subjects

were scanned as part of clinical care at the Children's Hospital of Phil-

adelphia. Data from 10 pediatric patients undergoing presurgical epi-

lepsy evaluation between the ages of 11 months and 17 years

(median 8.18 years, see Table 1), were utilized in the study. There

were two female and eight male patients. In total, 9 of the 10 had

focal epilepsy with or without impaired awareness, and one (Patient

6) had epilepsy with combined focal and generalized features. Six

patients had right focal epileptiform discharges, whereas 4 had left

focal epileptiform discharges, as identified by clinical features and

multimodal imaging methods including MEG analyzed with EKM.

Most focal discharges were in the frontal or temporal regions with

one patient (Patient 8) with central localization and one patient with

both frontal and posterior temporal discharges (Patient 6). When

known, etiology was primarily confirmed or suspected structural

abnormality (such as focal cortical dysplasia), with one patient (Patient

1) with confirmed genetic etiology and two patients with, as yet

unknown etiology.

Multiple 2-min recordings were acquired using a CTF

275-channel MEG system operating in third-order synthetic gradiom-

eter configuration. By collecting data in relatively short 2-min runs,

the maximum head motion within each dataset was minimized. The

number of acquired datasets per patient ranged from 15 to 29;

mean = 17.8. Data were acquired at a sample rate of 1200 Hz. In all

cases, patients were scanned supine. Of the 10 patients, 7 were

scanned whilst sedated using general anesthesia.

Prior to data acquisition, three head position indicator coils were

attached to fiducial points on the head. During recording, these coils

were energized (at nonphysiological AC frequencies) to allow continu-

ous localization of their position relative to the MEG sensor array. All

MEG scans were followed by an anatomical MRI during which MRI

contrast markers were placed at the same fiducial points on the head.

Coregistration of the MEG and MRI fiducial locations thus enabled

complete spatial mapping of the MEG array relative to individual brain

anatomy. This coregistration, in turn, allowed generation of functional

images showing the cortical origins of epileptiform activity.

Given that the purpose of this work is to act as a feasibility study

to test whether the HMM could be a useful tool in the identification

and localization of epileptiform activity, patients were selected retro-

spectively to fall into three groups of increasing localization difficulty

(see Table 1); four had focal epilepsy generating interictal spike and

wave activity; two had focal epilepsy with only polymorphic bursts,

and the final four had multifocal epilepsy with polymorphic bursts.

These categories were determined by visual inspection of the MEG

data (using EKM). Patient inclusion was determined first by CHOP

Neurologists (Eric D. Marsh and Caren Armstrong), and visual inspec-

tion of all EKM findings was done by Eric D. Marsh, Caren Armstrong

along with the technical assistance of MEG Scientist William Gaetz.

To assess the efficacy of our HMM MEG method, results from

iEEG and/or surgical outcomes are provided for patients where these

data exist (Patients 2, 5, and 8). A comparison with scalp EEG is also

given in Table 1: The concordance of scalp EEG with EKM MEG

results is given for each patient by comparing anatomical MEG locali-

zations and their nearest 10–20 electrodes (bold typeface indicates

68 SEEDAT ET AL.
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the single most likely electrode), with the electrode positions of

observed EEG discharges. Where our HMM MEG method was subse-

quently found to be concordant with EKM, it would therefore also be

concordant with scalp EEG.

2.2 | Data processing

Following MEG collection, data were visually inspected and any 2-min

runs containing obvious interference or segments where patient

motion exceeded 1 cm were removed from further analysis. Since

some patients have infrequent interictal activity, all data were

checked by a MEG expert (William Gaetz) to ensure they contained

epileptiform activity and runs which did not were subsequently dis-

carded. This left an average of 11 runs per subject. Our HMM-based

method of mapping epileptiform activity comprised a two-step pro-

cess (see Figure 1): In step one, the HMM was applied to channel-

level MEG data to identify time periods in which interictal epilepti-

form activity occurred. In step two, a beamformer was used to localize

the brain regions generating the activity identified by the HMM.

These two steps are described in detail below.

2.2.1 | Hidden Markov modeling

To find spatiotemporal patterns corresponding to epileptogenic activ-

ity, we applied a multivariate, five-state, time delay embedded HMM,

in channel space. An HMM assumes that a series of recurring mutually

exclusive “hidden” states govern the MEG data, such that every point

in time is associated with one of the states. The sequence is assumed

to be Markovian (i.e., the state active at a time point, t, only depends

on that active at time point t � 1). An observation model links the

HMM state to the observed values in the MEG data.

The HMM has been described extensively in previous papers

(Baker et al., 2014; Vidaurre et al., 2018) and a complete mathematical

description will not be repeated here. Briefly, in its simplest form, an

HMM would describe each state using a multivariate distribution; that

is, a mean (for all channels) and covariance (across channels). The five

distributions that best described the data would be derived, and the

probability of each data-point belonging to a specific state would be

calculated. The number of states is defined a priori and model infer-

ence would learn the sequence of states, from the observed data.

Here, we employed a more complex model which also allowed

time-delay embedding (Vidaurre et al., 2018), adding information on

autocovariance (defined over a specified time window [duration

73 ms]). These state autocovariance patterns contain the spectral con-

tent of the signal, consequentially using our HMM, a single state is

defined based upon signal variance, covariance across channels, and

spectral content. This model had the potential to characterize both

spike and wave activity and polymorphic bursts; in the former case

the (typically high) amplitude of a spike, with a full width at half maxi-

mum of �70 ms, coupled with its distinct spectral content would

characterize the state and differentiate it from ongoing “normal”
activity. In the latter case, since polymorphic bursts are associated

with “sharps” (high-frequency activity) we again reasoned that distinct

spectral content would define the state.

Prior to application of the HMM, the data used for the model

inference (comprising 266-channel sensor space MEG data) were

F IGURE 1 Schematic representation of the hidden Markov model (HMM)-based process to identify epileptogenic activity. A multivariate
time delay embedded HMM was used to identify five states, each state characterized by its mean, covariance (across channels), and spectral
content. A beamformer was used, along with temporal state allocations, to generate images of state activity across the cortex and a time course
of activity from the peak voxel. This allowed us to identify an epileptiform state and a map of epileptogenic cortex. LCMV, linearly constrained
minimum variance; MEG, magnetoencephalography
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bandpass filtered between 20 and 70 Hz (to match the standard EKM

pipeline used by the Children's Hospital of Philadelphia—see also

below), notch filtered at 60 Hz (to remove mains frequency artifacts),

temporally down sampled to 150 Hz, time-embedded using 73 ms

lags and a principal component analysis was used to reduce the data

to 50 components (this allowed for faster model inference and helped

to avoid overfitting). A total of fifty principal components were

enough to capture 87% ± 3% of the data variance (mean and SD over

subjects and runs). Note that each 2-min clinical run was considered

separately, just as the EKM data were. The model inference itself was

undertaken using a variational Bayesian method which seeks to mini-

mize the free energy of the system. We computed five-states; for

each state, in addition to an observation model, we obtained a time

course of the probability that the state is active. These time courses

were thresholded at two thirds, so the state was defined as “active”
when the probability exceeded two thirds (Seedat et al., 2020). From

the time courses, we also obtained a state-transition-matrix—a 5 � 5

matrix of probabilities defining the temporal relationship between

states (i.e., element 2,1 in the matrix would represent the probability

that State 1 followed State 2). This approach might offer useful infor-

mation in cases with multifocal epileptiform activity where one source

consistently precedes the other.

To assess the impact of the choice of model parameters used for

the HMM inference, the model inference was computed multiple

times for various lag durations (ranging from 33 to 207 ms) and for

various numbers of states (ranging from 3 to 9). Please see the Sup-

plementary Information S1 for further details.

2.2.2 | Beamforming

Following application of the HMM (in sensor space), a linearly con-

strained minimum variance beamformer (Robinson and Vrba, 1999)

was used to localize the spatial signature of each state in the brain.

The brain was divided into a regular 4 mm grid of voxels, and each

voxel time course was defined as a weighted sum of sensor measures.

The beamformer weights were defined using a data covariance matrix

calculated in the 20–70 Hz frequency band, and a time window span-

ning the entire recording. To maximize spatial resolution, no regulari-

zation was applied (Brookes et al 2008). The forward field was

calculated using a current dipole approximation and a multiple local

sphere volume conductor model. The beamforming parameters (fre-

quency filters and time windows for covariance estimation and regu-

larization, as well as the choice of forward model) were selected to

match the EKM method.

This resulted in a time course estimate of electrophysiological

activity for each voxel location. To generate a functional map showing

the spatial signature of each state, binary state time courses were

imposed on voxel time courses to determine when each state was

active and inactive. We then calculated the ratio of the variance when

the state was active to the variance when the state was inactive, for

every voxel time course in the brain, to highlight the brain regions

which elicit changes in variance when the state switches on. This

produced a spatial map of state activity. In addition to the spatial

maps, we also used the beamformer to derive a time course of elec-

trophysiological activity at the peak location of the spatial map. Beam-

former weights were defined as above but using covariance calculated

in the 1–150 Hz band, and a single time course showing 1–150 Hz

activity was extracted.

Having derived a spatial map and time course of activity for each

of the five states, these were visually inspected by a single MEG-

epilepsy expert (William Gaetz). Those states whose time courses

showed epileptiform activity when the state was active were identi-

fied, and the spatial localization was noted for each run. These were

termed the “epileptiform state(s).”

2.2.3 | Comparison to existing methods

We compared the results of our HMM, to the more established EKM

technique. We selected EKM for this comparison because of its

advantages over ECD (Hall et al., 2018) and its use in large pediatric

cohorts (Gofshteyn et al., 2019). To ensure that a standard EKM pipe-

line was followed, we used commercial software developed by CTF

(Coquitlam, BC, Canada) known as SAM(g2), and the established pipe-

line used clinically by the epilepsy team at the Children's Hospital of

Philadelphia (Schwartz et al., 2010).

Prior to the application of EKM, all data were filtered 20–70 Hz.

In the SAM(g2) implementation, the brain was divided into a regular

grid of 5 mm voxels and a scalar beamformer (equivalent to that

described above) was used to reconstruct electrophysiological signals

at each voxel. A kurtosis value was then computed for the time course

at every voxel, and voxels with a kurtosis value > 0.5 were marked as

peaks (Gofshteyn et al., 2019; Schwartz et al., 2010). Having found

the spatial locations of interest, 1–150 Hz voxel time courses were

analyzed and temporal markers were placed at any point where the

peak-to-RMS ratio exceeded 6 (Gofshteyn et al., 2019). This auto-

mated algorithm provided an estimate of both the regions and the

time points which were likely generators of epileptiform activity. Fol-

lowing this, data were inspected visually by a single expert experi-

enced in identification of epileptiform activity, to determine whether

the abnormalities found by the algorithm were genuinely related to

epilepsy or were generated by sources of no interest with high kurto-

sis (e.g., ocular or muscle artifact). Temporal markers unrelated to epi-

leptiform activity were disregarded.

Following EKM, two separate measures were derived to quantita-

tively compare the output of the HMM and EKM mapping:

1. Spatial correspondence: Peak locations identified by the HMM

(i.e., those regions whose variance increased when the HMM-

derived epileptiform state was entered) were compared with peak

locations in kurtosis. We measured Euclidean distance between

these peaks.

2. Temporal coincidence: We took all of the time points identified by

our EKM pipeline as containing epileptic activity and determined

the number which were temporally coincident with an occurrence
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of the epileptiform state. Here, temporal coincidence was defined

as within 73 ms of the EKM marker (i.e., the approximate duration

of a single spike, covering 11 points). Note that, the addition of a

small amount of time around the EKM-derived marker can mean

that a single EKM marker is matched by more than one occurrence

of the HMM epileptiform state; consequently, counterintuitively,

values can exceed 100%.

All of the above (HMM, EKM, and their comparison) were applied

to each 2-min run, in each subject, separately. This meant 123 runs in

total over 10 subjects.

The code used for model inference, computation of state-wise

functional maps, and comparison of the HMM method with EKM is

available at https://github.com/ZSeedat/HMM_epilepsy.

3 | RESULTS

Case study results for each of the three patient groups are shown

here. For detailed analysis of all patient rs, please see the Supplemen-

tary Information S1.

3.1 | Case 1: Focal spike and wave

Results for a single representative focal epilepsy patient are shown

in Figure 2. Figure 2a shows the spatial signature of epileptogenic

cortex, identified by the HMM (left) and EKM (right). These data

are taken from a single run. Figure 2b shows example time course

segments taken from the peak voxel in the HMM map (upper trace)

and the EKM map (lower trace) (note the similarity between traces

due to the close spatial correspondence of the peak source loca-

tions identified by each method). In the upper (HMM) trace, the

time points at which the epileptiform state was active are shown in

red. In the lower (EKM) trace, the timepoints identified as contain-

ing epileptiform activity are shown by the dotted line. Note the

close temporal correspondence (at least for this small segment of

data). These results are quantified in Figure 2c; the left-hand bar

chart shows the percentage of manually verified EKM markers that

fell within the occurrence of the epileptiform state (i.e., our tempo-

ral coincidence metric). The right-hand bar chart shows the Euclid-

ean distance between the peak from the HMM, and the peak from

the EKM. In both cases, the separate bars represent different 2-min

runs in the same subject.

F IGURE 2 Epilepsy Case 1—Patient 2; focal, spike and wave. (a) The left-hand side shows the spatial signature of the epileptiform state as
defined by the hidden Markov model (HMM). The right-hand side shows the spatial profile of excess kurtosis mapping (EKM). Both maps were
thresholded for visualization. (b) Upper plot shows a beamformer-derived time course from the peak location identified by the HMM with red

regions showing occurrences of the HMM-derived epileptiform state. The lower plot shows the equivalent time course from the peak in kurtosis.
Dashed lines in the lower plot show time points of epileptogenic activity identified by EKM. (c) Quantitative analysis over eight runs from this
subject. Left-hand side shows temporal coincidence of EKM identified markers with the epileptiform state. Right-hand side shows spatial
correspondence. Dashed line and blue shading show the mean and SD of the measure over all eight 2-min runs in this subject
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The patient exhibited abundant, large amplitude spikes, with

some slow wave activity. Spatial correspondence between EKM and

HMM was 6 ± 2 mm (mean and standard deviation over eight 2-min

runs) and 102 ± 8% of EKM-identified epileptic events were matched

in time by the occurrence of the epileptiform state. Note that more

than one state visit to a single kurtosis marker will occasionally yield

values >100%. Across all datasets, the HMM epileptiform state was

active for 4% ± 2% of the time.

iEEG and postsurgical outcomes were available for this patient,

with grids over the right lateral frontal, right orbitofrontal, and right

interhemispheric fissure, as well as with a depth electrode in the right

lateral frontal region. Interictal activity was seen in the right lateral

frontal grid and right frontal depth electrode but was also seen

broadly in the other two grids. Seizures arose mainly from the right

lateral frontal grid and depth electrode but also in the other regions

almost simultaneously. The iEEG and MEG are therefore concordant,

especially when considering the broad onset in the intracranial study

and the MEG report. Although motor strip was involved, the patient

had a right frontal lobectomy sparing motor strip which resulted in

diagnosis of focal cortical dysplasia (FCD) type 2B. The patient was

then seizure free for 2 years with recurrence in the motor region but

has been seizure free on adjusted medication for 3 years since then.

Figure 3 shows the MEG localizations (for both the EKM and HMM

methods) and the postoperative MRI. The resected region clearly

matches the area highlighted by MEG analysis.

Three further cases of patients with focal epilepsy with spike and

wave are shown in Figures S3–S5, all with excellent agreement

between the HMM and EKM. In these cases, spatial correspondence

was 4 ± 1, 9 ± 5, and 3.9 ± 0.3 mm, and the temporal correspondence

was 97% ± 4%, 100% ± 1%, and 96% ± 5%. In general, these results

support our hypothesis that the HMM performs similarly to EKM in

enabling the identification of epileptiform activity in time and space,

at least in patients with focal spike and wave epileptiform activity.

Spatiotemporal correspondence was high in all cases and data showed

good correspondence across many runs, for each subject.

3.2 | Case 2: Focal epilepsy with polymorphic
activity

Case 2 (Figure 4) shows MEG data acquired in a patient with focal epi-

lepsy, but without typical spikes in the MEG trace (Figure 4b). The

patient's resting MEG data exhibited abundant polymorphic bursts of

sharply contoured epileptiform activity, which (unlike spikes) change

their temporal morphology on each occurrence. Such data are not

amenable to conventional ECD source analysis; however, here we see

that both the HMM and EKM generate a focal localization of the epi-

leptogenic zone with excellent spatial agreement between the two

methods. On average across fifteen 2-min recordings, the spatial dis-

crepancy between the HMM and EKM peak location was 5 ± 2 mm.

In addition, the temporal coincidence of the epileptiform HMM state

and the EKM-derived markers was 106% ± 7%. The percentage of

time when the HMM epileptiform state was active was 6% ± 3%

(average and SD over all runs).

iEEG for this patient was stereo-EEG. Interictal activity arose

mainly from the mid superior temporal gyrus (STG) electrode, as well

F IGURE 3 Epilepsy Case 1—
magnetoencephalography (MEG)
localizations compared with
resected area for patient 2 (focal
spike wave). Panel (a) The MEG
localizations for the excess
kurtosis mapping method (red
markers) and the hidden Markov
model method (yellow markers).

Panel (b) shows the resected area
in the postoperative magnetic
resonance imaging (MRI). Note
that the postoperative MRI has
different resolutions in the
sagittal, coronal, and axial planes
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as seizures, but there were rare interictal discharges in the angular

gyrus as well. The patient had a focal resection of the posterior STG

which resulted in pathology of FCD 2B. She has been seizure free

since surgery (9 months) and has been able to reduce medication. The

surgery did result in a conductive aphasia, but this has since improved.

MEG was concordant in the post-STG but also had some involvement

in middle temporal gyrus (MTG) and right posterior insula which were

not involved on stereo-EEG. MEG localizations are shown in yellow

and red markers (HMM and EKM, respectively) on the preoperative

MRI alongside the resection zone on the postoperative MRI in

Figure 5. There is close agreement between the identified MEG loca-

tions and the resected area.

A second case of focal epilepsy with polymorphic bursts is given

in Figure S6; results again were similar with a spatial correspondence

of 5 ± 3 mm and temporal correspondence of 113% ± 14%.

3.3 | Case 3: Multifocal epilepsy with polymorphic
activity

The above results show relatively straightforward cases of focal epi-

lepsy, where abnormal epileptiform activity arises from a single

location in the brain. However, in more complex cases, abnormal

activity can occur from more than one location (often simultaneously),

and in such cases, the challenge becomes determining where these

multiple regions are, how they are related, and if possible, which

region serves as the driver of an epileptiform network causing other

areas to exhibit epileptiform activity.

Case 3 is a patient with multifocal epilepsy; in total 15 datasets

were acquired in this individual, results from a single representative

run are shown in Figure 6. This patient exhibited EKM and HMM

peaks in right periorolandic areas. For 11/15 runs, there was just one

epileptiform state describing the activity from these regions, in the

other four runs two epileptiform states were identified. Where more

than one HMM state was identified, there was no obvious temporal

relationship between them.

In this patient, iEEG was grids and strips over the right superior

and inferior frontoparietal region and right subtemporal area. Interictal

activity and seizures arose in the right superior frontoparietal grid

with rare sharps in the inferior grid. Seizures had onset in the superior

frontoparietal grid but also more broadly at times in the superior fron-

toparietal grid and a small area of the inferior parietal grid. The patient

underwent a right frontal and anterior parietal resection which

resulted in a left hemiparesis and visual field cut, but has been seizure

F IGURE 4 Epilepsy Case 2—Patient 5; focal, polymorphic bursts. (a) Left: hidden Markov model (HMM)-derived map. Right: excess kurtosis
mapping (EKM)-derived map. Activity maps were thresholded to aid visual comparison. (b) Upper: Beamformer time course from the HMM peak;
lower: Equivalent time course from the EKM peak. Dashed lines show time points of epileptogenic activity identified by EKM. Red regions show
occurrences of the epileptiform state. (c) Left: Temporal coincidence of EKM markers with the epileptiform state. Right: Spatial correspondence
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free since surgery (5.5 years) and is now off medications. Pathology

was also FCD 2B. MEG was concordant in the right perirolandic

region but also showed something in the right occipital and right hip-

pocampal tail that were not covered by the implant well enough to

establish concordance. Preoperative and postoperative MRIs are

shown in Figure 7 for this patient. MEG localizations are shown for

the HMM and EKM methods (yellow and red markers, respectively).

The postoperative MRI (Figure 7b) shows regions of the brain which

were resected.

3.4 | Case 4: Multifocal epilepsy with polymorphic
activity

Case 4 is another patient with multifocal polymorphic activity aris-

ing from both the left frontal and left temporal lobes. The HMM

consistently separated the activity from these regions out into dis-

tinct states (shown in Figure 8). Interestingly, examination of state

transition probabilities demonstrated that State 1 (left temporal)

had an 85% likelihood of being preceded in time by State 4 (left

frontal); in other words, a polymorphic burst in the frontal lobe was

almost always followed by a polymorphic burst in the temporal

lobe. Potentially, this suggests that the frontal lobe region is the

driving signal and root cause of the epileptiform activity observed

in the temporal lobe.

Across all 15 runs in this same subject, 10/15 allowed identifi-

cation of 2 epileptiform states (including the run shown in

Figure 4); 3/15 runs had 3 epileptiform states, and 2 runs had just

1 epileptiform state. Of the 13 datasets with more than one epilep-

tiform state, 9/13 had a clear transition from the frontal to the tem-

poral locations (transition probability 84% ± 9%; mean and SD

across these 9 runs). The other four had no clear transitions

between states. The percentage of time which the states were

active was 3% ± 1% and 4% ± 1% for the temporal and frontal epi-

leptiform states, respectively.

We also compared the results shown in Figure 8 with the output

of our EKM algorithm. EKM generated a single map which also had

peaks in frontal and temporal lobe. On average (across 15 runs) the

mean spatial correspondence for the frontal lobe peak was 8 ± 3 mm

and the equivalent distance for the temporal lobe peak was 7 ± 4 mm,

once again implying spatial correspondence between the HMM and

EKM. This is impressive given the challenges posed by such a compli-

cated case to each of these methods. It is worth noting that although

the EKM method places temporal markers in the data to help epilep-

tologists assess whether a spike in one part of the brain precedes a

spike in another area, the HMM provides additional information about

the temporal relationship between the two brain locations using the

state transition probabilities. Furthermore, the HMM uses all of the

state data to estimate transitions, something which becomes particu-

larly important in cases without clear spikes. No invasive assessment

data or surgical outcomes are available for this patient.

Two further cases of multifocal epilepsy are presented in

Figures S7 and S8. In both cases, results are similar to those shown in

Figures 6 and 8.

F IGURE 5 Epilepsy Case 2—
magnetoencephalography (MEG)
localizations compared with
resected area for Patient 5 (focal
polymorphic). Panel (a) shows the
MEG localizations (peak virtual
electrode locations) for the
excess kurtosis mapping method
(red markers) and the hidden

Markov model method (yellow
markers). Note that markers may
be overlaid so that red markers
are hidden under yellow ones.
Panel (b) shows the resected area
in the postoperative magnetic
resonance imaging
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3.5 | Group results

For each of the three patient groups, the average spatial and temporal

correspondence between the two methods was found over subjects

and this is shown in Table 2. There was good agreement between the

two methods for all three groups. This is especially encouraging given

the complexity of the multifocal patients, with less than a centimeter

discrepancy between the peak locations. There was more variation in

the temporal coincidence metric which is likely to be because there

were fewer EKM markers in the multifocal polymorphic data because

the amplitude of the virtual electrode data rarely exceeded the thresh-

old needed for marker placement. This meant that if the HMM missed

a single marker, it resulted in a much-reduced percentage coincidence.

4 | DISCUSSION

Epilepsy is a debilitating disorder in which both symptoms and treat-

ments differ markedly across patients. In some cases where pharma-

cological intervention fails to control seizures, patients become

candidates for surgery in which affected brain regions are resected.

For many patients, such intervention offers seizure freedom (and thus

a marked improvement in quality of life). However, success greatly

depends on presurgical planning to accurately identify the epilepto-

genic region(s) and the current clinical pathway (involving multidisci-

plinary team input with interictal and ictal EEG ± iEEG, and MRI) is not

always successful in identifying candidate regions for re-

section (or indeed implantation of the iEEG). Consequently, improve-

ments to this pathway could enable more patients to become eligible

for surgery and might offer improved outcomes for those who do

have surgery.

MEG has a significant and established role in epilepsy, offering

high-precision mapping of epileptogenic and eloquent cortex (Kim

et al., 2013; Rampp et al., 2019; Schwartz et al., 2010). However, the

current methods for analysis of MEG data are limited. ECD—still the

most widely used technique—is unsuited to multifocal epilepsies, and

cases where temporal morphology of interictal events fails to include

isolated high amplitude spikes. Some of the limitations of ECD are

lifted via the use of kurtosis-based techniques; however, these too

offer limited sensitivity; they only respond to activity that is charac-

terized by non-Gaussianity, and in multifocal cases, EKM provides lim-

ited information about the relationship between brain regions. This

F IGURE 6 Epilepsy Case 3—Patient 8; multifocal, polymorphic. There was good agreement between methods for the spatial localization (see
the maps for hidden Markov model [HMM; a, left] and excess kurtosis mapping [EKM; a, right]) with an average distance between HMM and
EKM peaks of 11 ± 2 mm. The virtual depth electrode time courses for each method are shown in (b) with HMM state visits highlighted in red
and EKM markers as dashed lines. The temporal match was also good with 88% ± 15% of EKM markers matched by an HMM state visit. The
HMM state was active for 7% ± 3% of the total time
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means that identified brain areas can be erroneously discarded due to

a lack of evidence that they are involved in an epileptic network. Con-

sequently, there is room for more adaptable processing pipelines to

analyze MEG data in epilepsy patients.

In this work, we have demonstrated that an HMM is a promising

technique to localize epileptiform activity in both time and space. The

HMM has been used increasingly in the analysis of MEG data in

recent years, to elucidate the complex spatiotemporal dynamics of

brain networks (Baker et al., 2014; Seedat et al., 2020; Vidaurre

et al., 2018; Woolrich et al., 2013). Here we show that, by seeking

short segments of data with unique spatiospectral characteristics, the

HMM allows automatic detection of epileptiform activity. Importantly,

the HMM does not rely on a single data characteristic—for example,

high amplitude spikes, or a non-Gaussian statistical distribution. In

addition, activity does not have to repeat in time (like a template).

Rather, the HMM employs features of the data (e.g., sharp contouring)

that can vary on every occurrence of an epileptiform state. Conse-

quently, as we have demonstrated, it can adapt to the heterogeneity

of the disorder; the same algorithm will find spike and waves, sharps,

or polymorphic bursts with equal efficiency. The flexible, data-driven

approach of the HMM lends itself naturally to personalized medicine,

where the output of the model will be specific to each patient.

We compared the output of our HMM to the more established

EKM technique (which is embedded in a number of clinical pathways

for epilepsy across multiple centers). Spatial agreement was within

8 ± 3 mm (mean and SD across all subjects and runs in all three

patient groups), showing that epileptic foci could be identified using

the HMM with high spatial acuity. Temporal agreement was also

good, with 94% ± 13% (mean over all subjects in all patient groups) of

epileptiform events detected by the standard EKM pipeline matched

by the occurrence of the epileptiform state, identified by the HMM.

Importantly, whilst the HMM looks for a specific spatiospectral pat-

tern, the EKM pipeline is only able to find the timing of epileptic

bursts via the use of a threshold: specifically, the EKM threshold is set

by some arbitrary parameter (6) multiplied by the RMS amplitude.

Thus, epileptiform activity with lower amplitude is likely to be missed

by this overly simplified technique. The HMM on the other hand relies

on the occurrence of a specific multivariate spatiospectral pattern.

Consequently, it is less likely to miss epileptiform bursts.

The HMM has demonstrated advantages when looking at multifo-

cal epilepsy cases. In such complex cases, ECD is limited since one

must make an a priori decision on the number of active foci, which is

always unknown. EKM is better, since it allows identification of multi-

ple regions, and the manual comparison of kurtosis markers can iden-

tify whether one sharply contoured event from one location

consistently precedes another. Similarly, the HMM can identify multi-

ple epileptiform foci but provides more information regarding the

temporal relationship between the identified regions. Specifically,

where multiple foci appear within a single state, then those regions

(by definition) are related temporally, that is, the regions are “active”
together. This was seen in Patient 9 (Figure S8) in which (in 6/13

cases) an epileptogenic focus close to an area of resected tissue in the

frontal lobe appeared alongside a second peak in parietal cortex. The

signals from the second peak were not epileptiform and thus had ini-

tially been dismissed; however, the fact that the activity generated

increases in variance in synchrony with the peak close to the resec-

tion, indicates that it is likely a part of the epileptic network. Thus,

simply by virtue of the epileptiform state containing two peaks, we

F IGURE 7 Epilepsy Case 3—
magnetoencephalography (MEG)
localizations compared with
resected area for Patient
8 (multifocal polymorphic). Panel
(a) shows The MEG localizations
for the EKM method (red
markers) and the hidden Markov
model method (yellow markers).

Panel (b) shows the resected area
in the postoperative magnetic
resonance imaging (MRI). Note
that the postoperative MRI has
different resolutions in the
sagittal, coronal, and axial planes
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gain more information than we would with an equivalent image

acquired using EKM. This could be particularly advantageous in

patients with, for example, tuberous sclerosis were identifying a net-

work of epileptiform activity involving multiple tubers could inform

surgical planning.

Similarly in Case 4 (Figure 8), we discovered two states containing

epileptiform activity. In this case, each state contained only one

region. However, the states demonstrated a temporal dependence

according to the transition probability matrix; specifically, a burst of

activity in temporal lobe was almost always preceded by a similar

burst in frontal lobe. This again is an example of how the additional

information afforded by the HMM might be used to provide valuable

information about an epileptic network. A limitation of our study is

that iEEG data were not available for either of these subjects in these

specific locations, making it challenging to verify the MEG results.

Future studies should seek to replicate this result in patients with

iEEG so that the MEG localizations and transitions can be verified

against the current clinical gold standard. However, it should be noted

that iEEG is heavily reliant on the presurgical hypothesis and so is only

reliable if the hypothesis was correct and the electrodes covered the

F IGURE 8 Epilepsy Case 4—Patient 10; multifocal, polymorphic bursts. (a) Upper: hidden Markov model (HMM)-derived map from State
1. Lower: HMM-derived map from State 4. (b) Upper: Beamformer time course from the HMM peak for State 1; lower: Equivalent time course
from the HMM peak for State 4. Note both states show epileptiform activity. (c) State transition matrix. Elements represent the probability of a
transition between states; for example, element (2, 1) would represent the probability of a transition from State 2 to State 1; element (1, 2) would
represent the probability of a transition from State 1 to State 2. Panels (a–c) show the result from a single representative run. The average spatial
and temporal correspondence between methods is shown in (d) with 78% ± 18% of excess kurtosis mapping markers matched by an HMM state
visit and an average Euclidian distance of 8 ± 3 mm between peaks. The amount of time spent in the epileptiform state was 3% ± 1% of the
total time
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epileptogenic zone. Nevertheless, the evidence presented not only

demonstrates localization of epileptiform activity, but also serves as

an interesting example of the how the HMM may offer additional

information—beyond that gained from the existing EKM approach and

warrants further investigation in a larger cohort of patients which

covers a breadth of epilepsy types and includes those who have

undergone either implantation of electrodes for iEEG or surgery so

that postsurgical outcomes can be used as a ground truth to assess

against.

The HMM method implemented in this study is designed to be a

semiautomated spike-detection algorithm to aid clinicians in quickly

and efficiently identifying epileptiform discharges in temporal data as

well as localizing the regions of the brain in which they arise. We

anticipate that in the clinic, there will be two manual processing steps

required: the first is the visual inspection of data to remove those

datasets with excessive head motion. This could be easily undertaken

by somebody without training in reading clinical MEG data or identify-

ing epileptiform discharges and could potentially be automated

(at least in part). The second step will be to interpret the output of the

HMM to select the epileptiform state(s)—this will likely require the

assistance of a trained epileptologist. This method utilizes both the

power of machine learning (with the HMM) and clinical expertise, but

there is the potential to further automate the pipeline by employing

additional machine learning techniques to learn features of epilepti-

form states for automatic state selection in the future.

There are a number of further extensions to the present method-

ology which should be considered. First, the current version of the

model operates using sensor space data, and localization is achieved

using a beamformer. It is theoretically possible to apply the beamfor-

mer first, and then the HMM, and this may offer advantages: For

example, the beamformer is known to supress fields from non-brain

sources, which would mean a source space HMM is less likely to be

biased by interference. However, it is also significantly more computa-

tionally demanding since the HMM must be run on many thousands

of (voxel-based) signals rather than a few hundred channels. This was

found to be impractical with current computing power, and whilst

brain parcellation (e.g., dividing the brain into a smaller number of ana-

tomically [or functionally] meaningful regions) offers a means to

reduce dimensionality, it also reduces spatial specificity which is of

key importance in this application. Thus, we feel the method pre-

sented is the most practical currently, but the use of better computing

may ultimately enable a source space HMM. In addition, although we

have applied our method to MEG data, application to EEG data or

concurrent EEG/MEG data would also be valuable. In the former case,

the limitations surrounding the spatial resolution of EEG would mean

low spatial specificity, but nevertheless, the HMMmight offer a useful

means to automatically identify time points which contain interictal

events—this could enable a significant saving in time for epileptolo-

gists who review EEG data. For concurrent EEG/MEG, there is some

evidence that the combination increases sensitivity (e.g., to radial

sources) This may offer a significant advantage over MEG alone. It

should also be noted that the data used in this study were from a sin-

gle site and acquired using one type of MEG system (CTF)—future

studies should test the reliability of the HMM optimized with these

data at other sites.

The advent of wearable MEG systems, based on optically pumped

magnetometer detection of the neuromagnetic field (Boto

et al., 2019; Hill et al., 2019) may also offer significant advantages.

OPMs measure magnetic fields much closer to the brain than SQUIDs

(superconducting quantum interference devices), offering greater spa-

tial precision and sensitivity. Likewise, bespoke helmets, which can be

removed and replaced, with sensors going back to the same locations

relative to brain anatomy each time, may offer the opportunity to

record longer datasets. This would undoubtedly create a more accu-

rate model which could help to overcome the variations in HMM out-

put over multiple runs. Wearable MEG would also enable free

movement whilst scanning; one of the key limitations of our study is

that seven of the patients were under general anesthesia to stop them

moving. Unfortunately, anesthesia (even lightly applied) is likely to

reduce all neural activity including epileptiform activity, and so scan-

ning patients whilst conscious is desirable. Working with child life spe-

cialists to prepare patients for MEG scanning, using a mock scanner,

and other methods, including a wearable MEG system, could all be

ways to either get patients to stay still or create a scanning environ-

ment where they no longer have to keep completely still, rendering

anesthesia unnecessary in most cases. Finally, whilst in this article, we

concentrate mainly on spikes, sharps and polymorphic bursts, there

are other forms of atypical signaling (e.g., fast ripples [>200 Hz] and

slowing [1–4 Hz]) which are consistently observed in patients with

epilepsy. Unlike ECD or EKM, the HMM could readily be extended to

focus on these spectral features. It would be interesting to see how

the HMM performs in a larger patient cohort and further studies

should include patients with these atypical waveforms as well as a

wider range of epilepsy types (outside of fronto/temporal epilepsy).

5 | CONCLUSION

The HMM offers an alternative to ECD and EKM for identifying and

localizing epileptiform activity in the human brain. In 10 subjects, we

found good spatial agreement between methods, with the HMM able

to provide localization which matched, within a few mm, that from

EKM. Moreover, we found that the HMM offers more information

about epileptiform activity, particularly in multifocal cases. As the use

TABLE 2 Group results

Average temporal

coincidence
(±SD over
subjects; %)

Average spatial

correspondence
(±SD across
subjects; mm)

Focal spike and

wave

99 ± 3 8 ± 5

Focal polymorphic 110 ± 5 5.45 ± 0.03

Multifocal

polymorphic

80 ± 5 8 ± 2
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of MEG continues to grow in epilepsy, particularly given the advent of

new, cheaper, and more practical MEG systems, clinical pathways

should look to exploit the HMM, and related techniques, as a means

of spatiotemporal mapping of epileptogenic cortex. This would aid

identification of patients suitable for epilepsy surgery with the goal of

subsequent seizure freedom (or significant seizure reduction) resulting

in huge benefit to quality of life.
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