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ABSTRACT 

 

Using Video Games to Modulate Functional Connectivity and  

Behavioral Performance in ADHD 

by 

Jacob T. Fisher 

 

Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent cognitive disorder with 

detrimental personal, social, vocational, and academic outcomes. Research paradigms at the 

intersection of media design and neuroimaging enable researchers to build understanding 

regarding the neural and cognitive mechanisms involved in ADHD during naturalistic tasks, 

and to create more effective clinical interventions. Extant work suggests ADHD-related 

cognitive performance differences are magnified under cognitive load, and minimized under 

perceptual load, but the neural mechanisms that undergird these effects have yet to be 

examined. In three studies—two behavioral and one brain imaging—we show that cognitive 

load and perceptual load differentially influence both task performance and functional 

connectivity in an ADHD-specific fashion. Cognitive load was found to result in reduced 

performance, greater reaction time variability (RTV), and reduced global brain network 

efficiency in individuals with ADHD. In contrast, perceptual load led to greater performance 

and reduced RTV in ADHD relative to non-ADHD individuals. Furthermore, results indicate 

that perceptual load eliminates differences in global brain network efficiency between ADHD 

and non-ADHD groups. 
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Foreword 

“Tell me to what you pay attention and I will tell you who you are.” 
 

José Ortega y Gasset 
 

 I have always been fascinated with attention. The project described in this report 

represents an integration of many years of thinking and research into how and why the design 

of digital environments influences our attention, and how we can use this information in 

order to design tools and messages that are better for those whose attention is different from 

the norm —and in doing so create technologies that are better for all of us. Upon completion 

of my undergraduate career at Texas Tech University, I became an academic counselor at the 

TECHniques Center, a unique program providing supplemental academic support for 

students with learning disabilities, ADHD, and Autism Spectrum disorders. In this role, it 

became clear to me that the digital tools that we use to work, learn, and live our daily lives 

are not equally accessible to those with cognitive and learning differences, creating 

disparities in outcomes, and leading to frustration and disappointment among my students.  

Having never quite planned to be a media scholar, I began to investigate how we 

might use principles of media psychology and user interface design to improve our digital 

lives, and to increase our knowledge of attention disorders like ADHD. Eventually, I decided 

to pursue these questions full time, joining the Cognition and Emotion Lab in the College of 

Media and Communication at Texas Tech, wherein I conducted my first project looking at 

how those with ADHD and without ADHD allocate attention differently during online 

learning — a project that later became my master’s thesis. After my master’s, I had the 

opportunity to join the Media Neuroscience Lab at the University of California Santa 

Barbara. In my research training at UCSB, I came across a multitude of theoretical 
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approaches that honed my thinking in relation to attention and media design, including the 

Load Theory of Selective Attention and Cognitive Control (Lavie, 2006), the Limited 

Capacity Model of Motivated Mediated Message Processing (LC4MP; Lang, 2000; 2006), 

the Synchronization Theory of Flow (Weber et al., 2009), the Cognitive Theory of 

Multimedia Learning (Mayer, 2013), and several more. I also greatly benefited from my 

training in neuroscience and brain imaging from Drs. René Weber, Scott Grafton, Michael 

Miller, Barry Giesbrecht, Gregory Ashby, and others, as well as my training in network 

science as a member of the NSF IGERT program in Network Science and Big Data. 

In my first project at UCSB, I began to integrate predictions from these theories with 

my budding understanding of cognitive neuroscience to design a study investigating how 

those with ADHD respond to cognitive load (how much a particular task requires 

maintaining information in mind and protecting it from interference), and perceptual load 

(how difficult a task is to see, hear, or otherwise sense). I used a stimulus developed in the 

Media Neuroscience lab called Asteroid Impact, which I continued to assist in developing 

throughout my graduate training. In this experiment, we found that adding cognitive load 

within the game seemed to more detrimentally impact performance in those with severe 

ADHD than it did in those without symptoms, but that adding perceptual load actually 

improved the performance of those with ADHD. Strikingly, this effect was also observable 

along the continuum of ADHD symptoms. The more severe one’s symptoms, the stronger the 

effects. Encouraged, we further refined the stimulus and conducted a series of additional 

studies, eventually culminating in the first study reported herein.  

Buoyed by the results from this first series of studies, my advisor, René Weber, and I 

applied for a small grant from the Academic Senate at UCSB to conduct a brain imaging 
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study investigating the neural underpinnings of the ADHD-contingent influence of cognitive 

and perceptual load. Having received the funds, along with a generous seed grant from the 

Theodore Fett Foundation, we began collecting the data for the second study of this project in 

the fall of 2018. This collection went slowly, due to the difficulty of recruiting special 

populations for brain imaging research and the busy-ness of all of our academic lives. 

Finally, we ran our last participant in the summer of 2019, and began our plans for analyzing 

the data using a network neuroscience approach. In these analyses, it became clear that 

cognitive and perceptual load produced differing brain network topologies in those with 

severe ADHD symptoms compared to those with mild or nonexistent symptoms of ADHD. 

Most notably, those with ADHD exhibited much-reduced efficiency in brain network 

topology compared to those without ADHD, but these differences disappeared under 

perceptual load. 

Although these findings were encouraging, a gap remained in our understanding. In 

all of our studies so far in this area, we used ADHD symptom severity as a proxy for actual 

ADHD diagnosis, a practice that (although widely used), is not without its critics. As such, 

we began to build collaborations with local healthcare providers and with Student Health 

Services at UCSB to design a study in which we used an actual ADHD diagnosis to delineate 

between groups rather than self-reported symptom severity. Right around the time we 

planned to launch the study, the world fell into the throes of the COVID-19 pandemic, 

precluding any efforts to collect in-person data, especially within a clinical setting. 

Undeterred, I began to rebuild Asteroid Impact from the ground up so that it could be run in a 

browser rather than being restricted to a local machine, allowing us to collect data in a more 

ecologically valid setting — participants’ own homes. After hundreds of hours of 
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development, we tested and launched our third study in late May, 2020. In this study (study 3 

reported herein), we used a pre-screener to only recruit those who had been clinically 

diagnosed with ADHD (along with a control sample). Results indicate that the same effects 

we observed in study 1 are also observable across diagnostic lines, and in a non-student 

sample.  

The results of these three studies are encouraging for two reasons.  First, these results 

further highlight the utility of video games for conducting neuroscience research (Mathiak & 

Weber, 2006). A recent upwelling of research within communication and the cognitive and 

social neurosciences has begun to realize the potential of naturalistic stimuli for 

understanding the “brain in the real world.” The work presented here leverages the unique 

status of video games as both highly engaging and highly controllable, enabling researchers 

to test precise questions while collecting rich, time-locked neural behavioral, and content-

analytic data. Second, these results suggest that by designing a digital environment in a 

certain way, performance and neural efficiency gaps between ADHD and non-ADHD groups 

could potentially be minimized or even eliminated. For media and human-computer 

interaction scholars, these results point to a number of future research opportunities at the 

intersection of digital media design and neuroscience seeking to develop tools that can 

improve the lives of those with cognitive disorders and that can help all of us direct our 

attention in more effective ways.
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Introduction 

Attention deficit/hyperactivity disorder (ADHD) is a highly prevalent cognitive 

processing disorder conferring long-term, debilitating symptoms of inattention, hyperactivity, 

and impulsivity (Barkley, 1997). Individuals with ADHD experience suboptimal outcomes in 

many areas, including reduced educational and vocational achievement (Biederman et al., 

2004; Loe & Feldman, 2007), higher rates of drug and alcohol abuse (Biederman et al., 1998; 

Lee et al., 2011), lower self-esteem (Harpin et al., 2016) and diminished overall quality of 

life (Danckaerts et al., 2010). The prevalence of ADHD in the United States has increased by 

more than 60 percent in the last twenty years, underscoring the critical importance of 

research to better understand the causes of ADHD and to improve diagnosis and treatment 

strategies (Chung et al., 2019; Xu et al., 2018). 

Naturalistic (e.g., smoothly evolving in time and perceptually engaging; Finn et al., 

2019; Green & Bavelier, 2012; Mathiak & Weber, 2006; Salmi et al., 2019; Vanderwal et al., 

2017; Weber et al., 2018) tasks reveal rich information about how individual brain responses 

relate to behavior (Anguera et al., 2013; Eickhoff et al., 2020; Mishra, Sagar, et al., 2016; 

Vanderwal et al., 2017, 2019). Naturalistic paradigms afford less experimental control than 

traditional cognitive neuroscience paradigms (Nastase, Goldstein, & Hasson, 2020), but the 

use of video games can provide a “happy medium”  — a rich, engaging environment that can 

nonetheless be directly “modded” (Elson & Quandt, 2016; Mathiak & Weber, 2006) to 

incorporate controlled manipulations (Klasen et al., 2012; Mathiak & Weber, 2006). In this 

sense, video games are uniquely suited for bridging the gap between traditional cognitive 

neuroscience approaches to studying ADHD and comparatively more “real-world” 

paradigms. 
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Those with ADHD have been shown to be more susceptible than those without 

ADHD to the detrimental influence of increasing cognitive load on task performance 

(Roberts et al., 2012), but intriguingly this pattern seems to be reversed for perceptual load 

(Forster et al., 2014). Extant work suggests that global brain network efficiency is associated 

with increased performance in cognitive tasks (e.g. working memory or reasoning tasks; 

Bassett et al., 2009; Hearne et al., 2017), but not perceptual tasks (such as tone 

discrimination; Weiss et al., 2011). Those with ADHD have been shown to exhibit decreased 

global brain network efficiency at rest (Konrad & Eickhoff, 2010, Lin et al., 2014, Wang et 

al., 2009), but little is known about functional connectivity patterns in the ADHD brain 

during a task, or how these patterns relate to task performance. 

To investigate these questions, we conducted three experiments using a custom-

developed arcade-style video game called Asteroid Impact. The primary goal in Asteroid 

Impact is to quickly collect crystals and perform cued button presses while avoiding asteroids 

that bounce around the screen (See Figure 1). In study 1, we collected behavioral data (n = 

230) while participants played Asteroid Impact in a lab setting. In study 2, we collected fMRI 

data from 36 individuals (18 with severe ADHD symptoms and 18 with mild to absent 

symptoms), and examined differences in brain network efficiency between ADHD and non-

ADHD groups. In study 3, we collected behavioral data (n = 100) while participants played 

Asteroid Impact at home on their personal computers.   

Results  

As a first step toward testing the influence of cognitive and perceptual load on task 

performance in ADHD, we conducted a study wherein we recruited 230 individuals from the 

participant pool at the University of California Santa Barbara. Asteroid Impact enables 
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targeted manipulation of both cognitive and perceptual load within a naturalistic environment 

that adapts to the performance of the player, reducing inter-individual variability that results 

from varying skill. Participants played seven rounds of the game: a practice round followed 

by two rounds with added cognitive load, two rounds with added perceptual load, and two 

baseline rounds. Other than the practice round, all rounds were presented in random order. 

Performance in the game was measured as the number of crystals collected within each 30-

second window of gameplay divided by the number of asteroid collisions (see Methods). We 

assessed ADHD symptom severity using the Adult ADHD Self-Report Scale v1.1 (Kessler et 

al., 2005). Since ADHD seems to be best described in terms of both categorical and 

continuous factors (Elton et al., 2014; Silk et al., 2019), we conducted analyses both with 

commonly-used ADHD cutoffs and with the full underlying distribution of ADHD symptom 
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severity values.  

Results from study 1 indicate that cognitive and perceptual load impact attentional 

performance in a manner contingent on ADHD symptoms (F(1,228) = 56.45, p < .001, see 

Figure 2a). Under cognitive load, those with high ADHD symptom severity underperformed 

in the video game task compared to those with mild or nonexistent ADHD symptoms (Mhi = 

23.62, Mlo = 24.13). The opposite pattern was observed for both the perceptual load condition 

(Mhi = 30.86, Mlo = 29.81), and the baseline condition, in which those with severe ADHD 

symptoms outperformed those with mild to no symptoms (Mhi = 37.79, Mlo = 36.93). Under 

high perceptual load, those with severe ADHD symptoms also exhibited lower RTV—an 

indicator of reduced attentional lapses during game play (Mhi = 547.58, Mlo = 603.75). As an 

   

Figure 1: Schematic of Asteroid Impact gameplay. The primary goal of the game is to navigate a 
“spaceship” (A) around the screen to collect as many crystals (B) as possible before time runs out, 
while concurrently avoiding asteroids (C) and responding to intermittent speeded reaction time 
probes (D). Asteroid Impact adapts to the skill level of the player by increasing the quantity, size, 
and speed of asteroids, ensuring that all participants play at a difficulty level that is approximately 
equal to their skill. This serves to minimize differences in performance between players as a result of 
skill.  
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additional test of the relationship between ADHD symptoms and the influence of cognitive 

and perceptual load on performance, we also conducted analyses in which we treated ADHD 

symptom severity as a continuum. This analysis revealed that as ADHD symptom severity 

increased, the relative influence of both cognitive and perceptual load also increased (See 

Figure 2). This interaction was significant both for performance (β = -.04, p = .001), and for 

reaction time variability (β = -.08, p = .036). 

In the second study, we sought to elucidate a candidate neural mechanism for the 

ADHD-specific influence of cognitive and perceptual load we observed in study 1. Of 

primary interest was global brain network efficiency—the inverse of the average shortest path 

length between nodes in the functional connectivity network—as previous studies have 

shown that those with ADHD exhibit lower global efficiency both at rest and during certain 

cognitive tasks (Konrad & Eickhoff, 2010; Lin et al., 2014; Wang et al., 2009). A group of 36 

individuals (18 with severe ADHD symptoms and 18 with mild or no ADHD symptoms) 

played nine rounds of Asteroid Impact (three baseline, three cognitive load, three perceptual 

load) while undergoing functional magnetic resonance imaging (fMRI). Nodes in the 
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functional connectivity network were created using a 264-region parcellation atlas from 

Power et al. (2011), and edge weights were assigned using the correlation of the mean neural 

time series within each of the 264 regions.  

   

Figure 2: Influence of cognitive and perceptual load during game play on: a, c) game performance 
(collecting crystals and avoiding asteroids), and b, d) reaction time variability, as measured using 
the variance in the exponential portion of the reaction time distribution, tau. Bottom row depicts 
performance at baseline and under cognitive and perceptual load as a function of continuous ADHD 
symptom severity 
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Results show that under cognitive load, those in the ADHD group had lower global 

efficiency in functional connectivity networks (M = .195, SD = .014) than the non-ADHD 

group (M = .198, SD = .010), but that there was no difference in global efficiency between 

ADHD and non-ADHD groups during the perceptual load condition (see Figure 3a). 

Furthermore, increased global efficiency was associated with higher in-game performance (β 

= .025, p < .001), suggesting that decreased performance during cognitive load in those with 

ADHD may be at least partially attributable to a decrease in network efficiency in the brain. 

These efficiency differences that we observed between ADHD and non-ADHD groups seem 

to be driven by varying patterns of connectivity in attention-related brain networks, including 

the frontoparietal control network, the salience network, and the ventral attention network 

(see Figure 3b-d). 

In the third study, (N = 100) we extended the findings of studies 1 and 2 using a non-

Figure 3: a) Global efficiency (normalized) under baseline, cognitive load, and perceptual load 
conditions. During cognitive load, those with ADHD exhibited much lower efficiency values than 
those without ADHD, but these differences were not observed during perceptual load; b) 
connectivity differences between ADHD and non ADHD in the: b) frontoparietal network; c) salience 
network; and d) ventral attention network. 
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student sample and using clinical diagnosis to delineate between ADHD and non-ADHD 

groups rather than self-reported symptom severity.  The relationship between ADHD 

diagnosis, self-reported symptom severity, and neural/behavioral performance indicators is at 

present still somewhat of an open question. As such, this study was designed to elucidate the 

extent to which ADHD-related individual differences in performance in response to cognitive 

and perceptual load would follow a categorical or dimensional structure. To do so, we 

developed an online version of Asteroid Impact, allowing participants to complete the study 

in a more ecologically valid setting—on their personal computers in their own homes. We 

again observed an ADHD-specific influence of both cognitive and perceptual load (see 

Figure 3). As in study 1, we observed an interaction between load condition and ADHD (F(1, 

98) = 16.81, p < .001) such that those with ADHD slightly underperformed compared to 

those without ADHD during cognitive load (MADHD = 29.40, MN-ADHD = 30.01), and clearly 

outperformed those without ADHD during perceptual load (MADHD = 33.33, MN-ADHD = 

31.73). Replicating study 1, those with ADHD also exhibited lower RTV than those without 

ADHD during perceptual load (MADHD = 660.04, MN-ADHD = 793.45). The opposite pattern 

was observed during cognitive load, in which those with ADHD exhibited higher RTV than 

those without ADHD (MADHD = 973.43, MN-ADHD = 793.76).  
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Discussion 

In the present study, we provide evidence that performance in a naturalistic task is 

contingent on both cognitive and perceptual load. Cognitive load had a detrimental impact on 

performance, reaction time variability, and brain network efficiency in both ADHD and non-

ADHD groups. Cognitive load also widened the gap in performance between non-ADHD 

and ADHD groups, with the ADHD group performing worse under cognitive load than the 

non-ADHD group. In contrast, perceptual load resulted in enhanced performance, reduced 

reaction time variability, and greater brain network efficiency in ADHD relative to the non-

ADHD group. Our results provide evidence for the task-dependent nature of ADHD-related 

neural and behavioral differences and highlight the usefulness of  video game “mods” to 

incorporate controlled manipulations into a naturalistic task . These results reveal rich 

Figure 4: Influence of cognitive and perceptual load in study 3 during game play on: a) game 
performance (collecting crystals and avoiding asteroids), and b) reaction time variability, as 
measured using the variance in the exponential portion of the reaction time distribution, tau.  
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information regarding when and why ADHD individuals may perform less optimally than 

those without ADHD, and how performance in ADHD may be improved by modifying the 

design of a digital environment. 

Cognitive Load Magnifies Behavioral and Neural Indicators of ADHD Symptoms 

 Previous studies have focused on the distraction-magnifying influence of cognitive 

load in attention-demanding tasks (Kelley & Lavie, 2011; Konstantinou et al., 2014), and 

have suggested that differential susceptibility to cognitive load (e.g. via reduced working 

memory capacity) may be linked to suboptimal cognitive performance in those with ADHD 

(Roberts et al., 2012). In the present study, we demonstrate that increased cognitive load has 

a detrimental influence on task performance and reaction time variability in both ADHD and 

non-ADHD individuals, but that those with ADHD are comparatively more affected. We 

show that this relationship is observable both in categorical and continuous treatments of 

ADHD. Under cognitive load, those with ADHD performed worse in the video game task, 

had higher reaction time variability, and had lower brain network efficiency than those 

without ADHD.  

Although lower performance in ADHD has previously been observed in highly controlled 

cognitive tasks (such as dual choice or flanker tasks; Adamo et al., 2014; Roberts et al., 

2012), this study is the first to show an ADHD-specific influence of cognitive load in 

comparatively more “real-world” task performance, and to link differences in performance 

under cognitive load to variation in functional connectivity networks in the brain.  

These results can be interpreted in light of recurrent observations that those with 

ADHD exhibit decreased efficiency in resting state and task-evoked brain networks (Konrad 

& Eickhoff, 2010; Lin et al., 2014; Wang et al., 2009), as well as aberrant modulation of 
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default mode and frontoparietal attention networks (Castellanos et al., 2008; Uddin et al., 

2008). These modulations have also been linked to trial-to-trial variation in attentional lapses 

(Prado et al., 2011). Increased global efficiency in functional brain networks has been linked 

with greater performance in cognitive tasks (Bassett et al., 2009; Hearne et al., 2017). As 

such, reconfiguration of global brain networks in those with ADHD in response to increasing 

cognitive load could be expected to result in less efficient network topologies—and to result 

in decreased performance in the task.   

 Connecting aberrant patterns of functional connectivity with symptom domains is a  

fundamental question within ADHD research (Castellanos & Proal, 2012). Our observation 

that those with ADHD perform worse and have lower brain network efficiency under 

cognitive load suggests that linking naturalistic task performance with indices of brain 

network topology could provide informative neurobiological signatures distinguishing 

clinically-relevant features of ADHD and predicting both symptoms and responsivity to 

treatment in these individuals (Cai et al., 2018, 2019).  

Perceptual Load Minimizes ADHD-Related Performance Deficits and Behavioral 

Variability 

A growing body of research demonstrates that perceptual load may be beneficial to 

cognitive performance in ADHD when compared to non-ADHD groups (Forster et al., 2014; 

Söderlund et al., 2007). It has remained unclear, though, whether the benefits of increased 

perceptual load for those with ADHD are limited to basic, highly-controlled cognitive tasks, 

or whether they are observable in more “real-world” task performance. Here, we demonstrate 

that perceptual load has a positive influence on both performance and reaction time 

variability in those with ADHD. Whereas those with ADHD underperformed those without 
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ADHD under cognitive load, they outperformed those without ADHD under perceptual load.  

Our results also provide evidence that intra-individual reaction time variability—a 

consistently-observed ADHD phenotype (Kofler et al., 2013; Tamm et al., 2012)—is 

modulated by perceptual load. Individuals with ADHD were found to be more variable than 

those without ADHD during cognitive load but were less variable under perceptual load.  

These findings augment recent work suggesting that perceptual load may act to 

eliminate variability in ADHD attributable to cognitive control deficits (Forster et al., 2014). 

The Load Theory of Selective Attention and Cognitive Control (Lavie et al., 2004) suggests 

that perceptual load shifts the balance of attentional selection mechanisms away from 

executive control and toward more bottom-up filtering and selection. It follows then, that the 

addition of perceptual load may enable those with ADHD to leverage relative strengths in 

sensory integration and perception abilities (Panagiotidi et al., 2017; Rosas et al., 2010) while 

minimizing their reliance on cognitive control mechanisms. Indeed, ADHD is associated with 

increased local efficiency in brain networks (Lin et al., 2014), a topological signature 

associated with increased performance in perceptual discrimination tasks (Weiss et al, 2011). 

Further supporting this conclusion is recent work showing that the addition of conflicting 

dialogue (increasing cognitive load) within a naturalistic, multi-talker conversation 

desynchronizes brain activity between individuals with ADHD, but that introducing white 

noise (perceptual load) does not (Salmi et al., 2019).  

Neurobiologically-informed video games have recently been introduced as potential 

interventions for improving ADHD symptoms (see e.g., Mishra, Sagar, et al., 2016; Ziegler et 

al., 2019), highlighting neural signatures of distractor suppression and interference resolution 

as useful targets for intervention. Related work shows that those who habitually play action 
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video games seem to exhibit increased attention, cognitive control, and working memory 

abilities compared to their peers (Cardoso-Leite et al., 2016; Green & Bavelier, 2003; 

Latham et al., 2013; Spence & Feng, 2010). In contrast, sustained engagement in other media 

is associated with decreased performance in these same domains. Those who frequently 

engage in media multitasking (concurrently doing two or more media tasks) exhibit reduced 

cognitive control, and have higher self-reported symptoms of ADHD (Beyens et al., 2018; 

Nikkelen et al., 2014; Ra et al., 2018; Uncapher et al., 2016, 2017). These findings highlight 

the necessity of developing better understanding regarding how individual differences in 

media habits influence (and are influenced by) cognitive individual differences (Fisher & 

Keene, 2019).  

Conclusions 

In three experiments, we showed that ADHD-specific variation in task performance 

and functional connectivity is modulated by both cognitive load and perceptual load. 

Cognitive load disproportionately degrades performance, reaction time variability, and brain 

network efficiency in ADHD whereas perceptual load has largely opposite effects — 

minimizing observable differences between ADHD and non-ADHD. These results 

demonstrate that performance and neural efficiency gaps between ADHD and non-ADHD 

groups can be minimized or even eliminated when task parameters are changed. This work 

aligns with a growing collection of evidence showing that changes in cognition and attention 

during task performance are reflected in changes in brain network topology and dynamics 

(Gonzalez-Castillo et al., 2015; Kucyi et al., 2017; Rosenberg et al., 2020), and that these 

patterns of variations can reveal information about underlying clinical conditions that is 

largely inaccessible using other methods (Finn et al., 2018; Guo et al., 2015; Salmi et al., 
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2019). Taken together, our findings highlight a number of future research opportunities at the 

intersection of neuroscience and media design that can contribute to greater understanding of 

complex disorders like ADHD and to targeted interventions to improve cognitive 

performance. 

Methods 

General Overview 

All research was conducted in accordance with the University of California Santa 

Barbara Human Subjects Committee (IRB Protocol No. 23-20-0286 & 24-19-0051). In each 

of the three studies, we used Asteroid Impact, an open-source video game stimulus.1 In this 

first two experiments, participants played Asteroid Impact in a lab environment, and in the 

third, participants played a browser-based version on their personal computer. The primary 

goal in Asteroid Impact is to navigate a spaceship around the screen with the mouse, 

collecting valuable crystals while avoiding asteroids (see Figure 4). Previous work has shown 

that cognitive resource availability tends to be high during boredom (ability >> difficulty) 

and frustration (ability << difficulty), and low whenever difficulty and ability are 

approximately matched (Harris et al., 2017; Huskey et al., 2018). As such, we designed the 

game to adapt its difficulty level (the speed, quantity, and size of asteroids) to player 

performance over time, ensuring that all participants are challenged at a level that meets (but 

does not exceed) their abilities. Asteroid Impact has been previously shown to be motivating 

and engaging, and to be usable within both a behavioral and fMRI setting (Huskey, 

Craighead, et al., 2018; Huskey, Wilcox, et al., 2018).  

In each of the three experiments, participants played three different variations of the 

 
1 https://github.com/medianeuroscience/asteroid_impact 
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game: a baseline condition, a cognitive load condition, and a perceptual load condition. 

These conditions were identical across the three experiments. Participants also completed a 

speeded reaction time task during gameplay, in which they were asked to press the “X” key 

on a keyboard when they saw a blue square appear on screen, and to press “Y” when they 

saw a purple triangle. This task was designed to index the speed and variability in 

participants’ response times during each condition. In each experiment, the speeded reaction 

time task was rewarded with in-game points. The triangle was worth 10 points (the 

equivalent of one crystal), and the square was worth 1000 points. In all experiments reported 

herein, we only consider reaction time data from low-reward probes, as reward is known to 

modulate both the speed and variability of response times in ADHD (Tamm et al., 2012; 

Uebel et al., 2010). 

Manipulating Cognitive Load. Cognitive load was introduced into the game using a 

variant of an n-back rule maintenance task. The n-back is a widely used experimental 

paradigm in the fields of neuroscience and cognitive psychology in which individuals must 

perform a particular action—typically pressing a button—whenever a given stimulus matches 

a stimulus that occurred a certain number of trials in the past (Owen et al., 2005). This 

manipulation has been shown to elicit activation in working memory related brain regions 

and to be perceived as cognitively difficult (Eriksson et al., 2015; Veltman et al., 2003). In 

the version of the n-back employed in this study, participants were told that “some of the 

crystals are sabotaged” and that collecting two crystals of the same color in a row would 

result in a loss of 1000 in-game points (the equivalent of ten crystals). This required 

participants to maintain the identity of the most recently collected crystal in working memory 

while collecting the next crystal. A manipulation check included in study 3 revealed that the 
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cognitive load condition was more cognitively difficult than the other two conditions (see 

Supplemental Figure 1).  

Manipulating Perceptual Load. The study of perceptual load has a rather long and 

contentious history within visual perception and cognitive neuroscience research (Fitousi & 

Wenger, 2011), but a recurring finding is that increased perceptual load can improve 

performance in visual perception tasks in people with ADHD (Forster et al., 2014; Forster & 

Lavie, 2007, 2009). Perceptual load has been manipulated in several ways, including 

increasing the number of items that need to be identified at any given time, increasing the 

difficulty of item identification (through blurring, distortion, rotation, etc.), increasing 

auditory or visual background noise, and reducing contrast between the foreground and the 

background (Elliott & Giesbrecht, 2010; Torralbo & Beck, 2008). In this study, we 

manipulated perceptual load by adding an overlay to the gameplay environment that reduces 

the opacity of foreground elements (asteroids and crystals) by 75% relative to the 

background. A manipulation check conducted in study 3 revealed that participants found the 

perceptual load condition more difficult to see than the other conditions (see Supplemental 

Figure 1). 

Measuring Performance. As the primary goal in Asteroid Impact is to collect 

crystals while avoiding asteroids, we measured in-game performance as the number of 

crystals collected within a thirty-second window divided by one plus the number of asteroid 

collisions within the same window. Mean performance did not significantly vary between 

Study 1 and Study 3 (MS1 = 30.4, MS3 = 31.2), but was significantly lower in the fMRI study 

(MS2 = 18.61). High intra-subject variability in response times is an etiologically important 

characteristic in ADHD (Kofler et al., 2013; Tamm et al., 2012), likely reflecting more 
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frequent lapses in attention. Reaction time variability was measured by fitting an ex-Gaussian 

distribution to each participant’s reaction times within each round and taking the standard 

deviation of reaction times falling within the exponential portion of the distribution (tau; 

Tamm et al., 2012). Overall reaction time variability was higher in study 3 (M = 1241.96) 

than in study 1 (M = 962.26) or study 2 (M = 987.92), potentially due to the online nature of 

the study.  

Study 1 

Participants. Participants in Study 1 were recruited from the subject pool of the 

Communication department at the University of California Santa Barbara. All participants 

provide written informed consent and earned course credit for their participation. In total, 

230 participants completed the study (159 female, 69 male, 2 chose not to answer, Mage = 

19.58). Two participants reported having taken medication for ADHD within the 12-hour 

period before the study, and as such were excluded from the analyses reported herein.  

Experimental Design. Participants were invited into a computer lab with ten 

cubicles, each containing a Dell computer with a 16” x 9” monitor. Each participant was 

given a consent form outlining the purpose of the study and describing the Asteroid Impact 

task. After the participants finished reading and signing the consent forms, a researcher read a 

short prompt reiterating the goal of the game along with its controls. After this, participants 

put on headphones to minimize distraction, and began playing the game. Participants 

completed seven rounds of gameplay in total — a practice round and two rounds in each 

condition. All rounds following the practice round were presented in randomized order. After 

all levels were completed, participants completed the questionnaire items and were dismissed 

and thanked for their participation. 
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ADHD symptom severity was determined using the full version of the Adult ADHD 

Self-Report Scale (ASRS; Kessler et al., 2005). The ASRS has been shown to have 97.9% 

total classification accuracy (sensitivity 68.7%) for clinicians’ ADHD diagnosis, a 𝜅 of .76, 

and a Chronbach's ⍺ in between .63 and .72 in the general population of the United States 

(Hines et al., 2012; Kessler et al., 2007). ASRS scores range from 1 to 4. Participants who 

scored 3.2 or greater were considered as high symptom severity (N = 54), and those who 

scored 2.0 or lower were considered as low symptom severity (N = 48). In addition to the 

ASRS, participants completed a series of self-report questionnaires and provided basic 

demographic data. Data from these additional questionnaires are not reported herein. 

Analyses. All analyses in Study 1 were conducted in R (R Core Team, 2013). Before 

analysis, data were minimally pre-processed, removing RTs that were greater than five 

standard deviations away from the mean within subjects and conditions. All main effects 

predictions were tested using linear mixed-effects models fit using the lmer() function from 

the lme4 package in R. (Bates et al., 2015). Cognitive load, perceptual load, and ADHD 

status were treated as fixed effects, and were coded using effects coding. Random intercepts 

were included for each participant. All reported betas are standardized. As an additional 

check, ASRS scores were used as a continuous variable denoting severity of ADHD 

symptoms.  

Study 2 

Participants. Participants in this study were recruited from the subject pool at the 

University of California Santa Barbara and from the general community. A total of 36 

participants were recruited, 18 participants with high ADHD symptom severity and 18 

participants with low ADHD symptom severity. Participants were assigned to ADHD 
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categories based on a survey pre-screener using the same cut-off points as were used in Study 

1. Those whose ASRS scores were above (below) the high (low) ADHD cutoff were 

contacted by a researcher and invited to schedule a brain imaging appointment. Data from 

two participants were excluded due to equipment malfunction. 

Scanning Parameters and Pre-Processing. All brain imaging data were collected on 

a 3T Siemens Magnetom Prisma located in the Brain Imaging Center at the University of 

California, Santa Barbara (TR = 400ms, TE = 35ms, flip angle = 52°, acquisition matrix = 64 

x 64, in-plane resolution = 3mm3). Upon arriving in the Brain Imaging Center, participants 

provided informed consent, and filled out a metal-screening form. After this, participants 

spent approximately 10 minutes seated at a laptop practicing the video game task that they 

would be performing in the scanner. Upon completing the practice task, participants changed 

into scrubs and a researcher positioned them in the scanner, where they underwent a T1 

structural scan followed by the video game task, a T2 structural scan, and a short gambling 

task which is not reported herein. Functional runs included three 600-volume repetitions 

within each condition (baseline, cognitive load, perceptual load). 

All brain imaging data were preprocessed with fMRIprep, a Nipype based tool 

(Esteban et al., 2019; Gorgolewski et al., 2011), and with xcpEngine, a supplemental pipeline 

for denoising data used in functional connectivity analyses (Ciric et al., 2017, 2018; Lydon-

Staley et al., 2019). Each T1w volume was corrected for intensity non-uniformity using N4 

bias field correction from the ANTs registration suite (Avants et al., 2011), and then skull-

stripped using the OASIS template provided by ANTs. Brain surfaces were reconstructed 

using FreeSurfer (Dale et al., 1999), and spatially normalized to the ICBM 152 nonlinear 

asymmetrical template (version 2009c) using ANTs. Brain tissue segmentation was 
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performed using FSL FAST (Jenkinson et al., 2012). Functional data were slice time 

corrected using the 3dTShift function from the AFNI software package (Cox, 1996; Gold et 

al., 1998) and motion corrected using FSL MCFLIRT. Following this, functional data were 

co-registered to the T1w anatomical image using boundary-based registration with six 

degrees of freedom (Greve & Fischl, 2009). Motion correcting transformations, BOLD to 

T1w transformation, and registration of the T1w to the MNI template were conducted using 

ANTs. ICA-based AROMA was used to generate aggressive noise regressors and to create 

output files that are non-aggressively denoised. Further pre-processing conducted in 

xcpEngine included denoising time series data based on the ICA-AROMA and global signal, 

and white matter confounds generated by fMRIPrep, and conducting temporal band-pass 

filtering (0.01 < f < 0.15 Hz) to reduce the influence of low-frequency drift and high-

frequency physiological noise. 

Network Creation and Analysis. After preprocessing, each run was divided into 8 

non-overlapping segments of 75 TRs, and the mean signal was extracted from the pre-

whitened timeseries in each of 264 regions of interest (ROIs) as defined in Power et. al 

(2011). Edges were constructed pairwise between each node with edge weights assigned as 

the correlation between the timeseries extracted from each pair of regions, resulting in 

264 × 264 matrix of Pearson’s R values (see Figure 5). Network efficiency was calculated 

within each chunk as the inverse of the average shortest path distance between each pair of 

nodes in the whole-brain network (M = .19, SD = .012). Following previous studies (e.g., 

Chan et al., 2014; Finc et al., 2017; Lydon-Staley et al., 2019), we only considered 

positively-weighted edges, setting all negative edges to zero. Efficiency scores between 

ADHD and non-ADHD groups in each condition were compared using a linear mixed-effects 
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model fit using the lmer() function from the lme4 package in R. (Bates et al., 2015).  

Study 3 

Participants. Participants in Study 3 were recruited using an online sample from the 

online service Prolific Academic.2 In total, 825 participants completed the pre-screener for 

the study, for which they earned $5. Participants who self-reported an ADHD diagnosis were 

invited to complete the second half of the study, along with a matched group of those who 

reported: a) having never been diagnosed with ADHD, and b) having very few symptoms of 

 
2 https://www.prolific.co 

   

Figure 5: Conceptual depiction of brain network extraction and analysis. a) Time series data is 
averaged within a 5mm sphere surrounding each of 264 regions of interest (ROIs) as defined in 
the Power et al. (2011) atlas. This atlas is divided into 14 subnetworks as defined by task-based 
functional connectivity. b) Pairwise correlation is calculated between each of the 264 ROIs, 
resulting in a 264 x 264 correlation matrix. c) edge weights in the network are assigned as the 
Pearson’s R value between each node; d) Network efficiency is calculated as the inverse of the 
mean of all pairwise shortest paths. 
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ADHD. 100 participants completed the second half of the study (50 ADHD, 50 Non-ADHD, 

37 female, 67 male, Mage = 29.14). All participants provided informed consent and earned an 

additional $5 for their participation.  

Experimental Design. Participants played a browser-based (WebGL) version of 

Asteroid Impact created using Unity game design software.3 This implementation ensures 

minimal lag in reporting reaction times and other in-game events due to internet speeds and 

ping times, as all game logging is performed on participants’ local machine, and then 

uploaded at the end of each round to a server located at the University of California Santa 

Barbara. Participants were required to complete the game on a personal computer with a 

screen at least 11” in size, and that has a mouse pointer rather than a touchscreen interface. 

Participants completed seven rounds of gameplay in total—a one-minute practice round and 

two three-minute rounds in each condition. All rounds following the practice round were 

presented in randomized order. After each round, participants were presented with three 

survey items indexing the level of cognitive load, perceptual load, and enjoyment that they 

experienced in the previous round. After all levels were completed, participants were thanked 

for their submission and dismissed from the study.  

Analysis. As in study 1, all analyses were conducted in R (R Core Team, 2013), and 

all data were subjected to minimal pre-processing. All main effects predictions were tested 

using linear mixed-effects models fit using lmer() (Bates et al., 2015). Cognitive load, 

perceptual load, and ADHD diagnosis were treated as fixed effects, and were coded using 

effects coding. Random intercepts were included for each participant. All reported betas are 

standardized. 

 
3 https://unity.com/ 
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Supplemental Figures 

 

   

Figure S1: Manipulation check responses from study 3. Error bars represent 95% confidence 
intervals. Participants reported the highest level of enjoyment in the baseline condition, the 
highest level of cognitive difficulty in the cognitive load condition, and the highest level of 
perceptual difficulty in the perceptual load condition. 




