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Abstract. Heavy tailed random variables (rvs) have proven to be an essential element in

modeling a wide variety of natural and human induced processes, and the sums of heavy

tailed rvs represent a particularly important construct in such models. Oriented toward both

geophysical and statistical audiences, this paper discusses the appearance of the Pareto law

in seismology and addresses the problem of the statistical approximation for the sums of

independent rvs with common Pareto distribution F (x) = 1 − x−α for 1/2 < α < 2. Such

variables have infinite second moment which prevents one from using the Central Limit

Theorem to solve the problem. This paper presents five approximation techniques for the

Pareto sums and discusses their respective accuracy. The main focus is on the median and

the upper and lower quantiles of the sum’s distribution. Two of the proposed approximations

are based on the Generalized Central Limit Theorem, which establishes the general limit for

the sums of independent identically distributed rvs in terms of stable distributions; these

approximations work well for large numbers of summands. Another approximation, which

replaces the sum with its maximal summand, has less than 10% relative error for the upper

quantiles when α < 1. A more elaborate approach considers the two largest observations

separately from the rest of the observations, and yields a relative error under 1% for the upper

quantiles and less than 5% for the median. The last approximation is specially tailored for the

lower quantiles, and involves reducing the non-Gaussian problem to its Gaussian equivalent;

it too yields errors less than 1%. Approximation of the observed cumulative seismic moment
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in California illustrates developed methods.

Short running title: Pareto Sums

Key words: Pareto distribution, Pareto truncated distribution, Seismic moment distribu-

tion for earthquakes, Stable distributions, Approximation of Pareto sums
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1 Introduction

Statistical data analysis, a significant part of modern Earth Sciences research, is led by

the intuition of researchers traditionally trained to think in terms of “averages”, “means”,

and “standard deviations”. Curiously, an essential part of relevant natural processes does

not allow such an interpretation, and appropriate statistical models do not have finite values

of these characteristics. Seismology presents a superb example of such a situation with

one of its fundamental laws, describing the distribution of the moment (or energy) released

in earthquakes as a power-law, having both infinite mean and standard deviation. This

paper concerns the problem of the statistical approximation for sums of power-law variables,

which are used to describe the total moment or energy released by multiple earthquakes, for

example.

1.1 Pareto distribution

Many natural and human-induced phenomena exhibit power-law behavior: for instance

the power-law is observed to approximate the distribution of sizes of earthquakes and volcanic

eruptions, solar-flares, lightning strikes, river networks, forest fires, extinctions of biological

species, war casualties, internet traffic, stock returns, insurance pay-offs, and cities (see e.g.

Mandelbrot, 1983; Richardson, 1960; Turcotte, 1997; Barton and La Pointe,

1995; Sornette, 2000; Newman et al., 1994); this list can easily be extended. The power-

law size distribution implies that the number N(x) of objects of size larger than x decreases

as a power of x:

N(x) ∼ x−α, α > 0. (1)

The power-law is scale invariant since the scale change y = ax affects only the normalization

constant in (1). Properly normalized, the law (1) is known as the Pareto distribution, its

cumulative distribution function (cdf) F (x) and probability distribution function (pdf) f(x)

given by

F (x) = 1− x−α,

f(x) = αx−1−α, x > 1, α > 0. (2)
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In many cases, the distribution (2) appears to fit well to the largest observations, x > x0,

but not for the whole sample. We describe such processes, where the survivor function

1 − F (x) ≈ x−α, as having power-law tails. This description is especially useful when

describing and modeling processes with large deviations, a situation where one is primarily

interested in the largest possible observations, and the specific distribution of the smaller

observations may be neglected. A distribution that assigns a non-ignorable probability to

extremely large observations is called heavy tailed. One refers to a random variable (rv)

as heavy tailed if it has an infinite second moment (infinite variation). For Pareto random

variables, this corresponds to the case 0 < α < 2; for α ≤ 1 a Pareto rv has also infinite first

moment (expectation).

1.2 Earthquake size distribution

The distribution of earthquake sizes is described by the well-known Gutenberg-Richter

(GR) magnitude-frequency relation (Gutenberg and Richter, 1941, 1944; Scholz,

2002):

log10 [N(m)] = a− bm, b ≈ 1, (3)

where N(m) is the annual number of earthquakes with magnitude equal or larger than m.

Recalling that earthquake magnitude is related to the scalar seismic moment M via

m =
2

3
log10M + c, (4)

we see that the GR relation is nothing but a power law for the number N(M) of earthquakes

with seismic moment above M :

N(M) ∼M−α, α =
2

3
b. (5)

Introducing the appropriate normalization, one obtains the Pareto pdf for seismic moments:

f(M) = αMα
t M

−1−α, Mt ≤M, (6)

where Mt is a catalog completeness threshold (or observational cutoff) and α ≈ 2
3
is the

index parameter of the distribution. In order for the total seismic moment to be finite, the
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distribution density must decay faster than M−2. Thus, simple considerations of the finite-

ness of the seismic moment flux or deformational energy available for earthquake generation

(Knopoff andKagan, 1977) require the Pareto relation (6) to be modified for large seismic

moments. This can be done, for example, by applying an exponential taper to the survivor

function 1− F (M), so that it takes the form

1− F (M) = (Mt/M)α exp
(
Mt −M

Mc

)
, Mt ≤M <∞. (7)

Here Mc is the maximum or corner magnitude, a parameter that primarily controls the

distribution in the upper ranges of M (Vere-Jones et al., 2001; Kagan and Schoen-

berg, 2001; Kagan, 2002a). To illustrate the above reasoning, Fig. 1 displays cumulative

histograms for the scalar seismic moment of shallow earthquakes in the Harvard catalog

(Dziewonski et al., 2001) during 1977-2002. The curves display a scale-invariant (Pareto)

segment (linear in the log-log plot) for small and moderate values of the seismic moment M .

But for large M , the curve clearly bends downward.

Although the index parameter for the seismic moment distribution appears to have a

universal value α ≈ 2
3
(Kagan, 2002a; 2002b), some geometrical variables which depend

on seismic moments, such as slips during earthquakes, or widths and lengths of earthquake

ruptures, appear to have power-law distributions with varying index values (Kagan, 1994;

Anderson and Luco, 1983; Wells and Coppersmith, 1994). Thus it is relevant to

consider Pareto random variables with a broad range of indices, and in this work we consider

the range 1/2 ≤ α < 2.

For the reasons explained above, for index α ≤ 1 one is often interested in the case of

the Pareto distribution with an upper bound or taper. McCaffrey (1997), Shen-Tu et

al. (1998) and Holt et al. (2000) considered the statistical bounds for the sums of upper-

truncated Pareto rvs, for the case when several earthquakes approaching the maximum size

are observed. In these cases the distribution of the sum can be approximated using the

Central Limit Theorem (see more in Section 5). However, in actual earthquake catalogs

these largest events are very rarely observed, so that bounds on the sums must often be

estimates even when no earthquake of size approximately Mc is registered. Similar problems

are encountered in the estimation of the parameters of the seismic moment-frequency law (7).
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Kagan and Schoenberg (2001) and Kagan (2002a) discuss the difficulty of estimating

the maximum or corner moment with insufficient data.

1.3 Heavy tailed sums

In many situations one is interested in sums of power-law distributed variables. For

example, total deformation of rock materials or of the Earth’s surface due to earthquakes

may be modeled as sum of seismic moment tensors (Kostrov, 1974; Kagan, 2002b),

the latter obeying the Pareto distribution; cumulative economic losses or casualties due

to natural catastrophes are modeled as sums of power-law distributed variables (Kagan,

1997; Pisarenko, 1998; Rodkin and Pisarenko, 2000); the total pay-off of an insurance

company is modeled as the sum of individual pay-offs, each of which is distributed according

to a power law, etc. The Pareto distribution is the simplest of heavy-tailed distributions,

thus the properties of Pareto sums are easier to study.

For 0 < α < 2 the second moment of a Pareto rv is infinite which renders useless many

of the conventional statistical techniques commonly used since the early 19-th century. The

most prominent of these is the Central Limit Theorem (Feller, 1971, 2, VIII, 4), which

justifies approximating the sum of independent rvs by a Gaussian (normal) distribution.

The sums of heavy tailed rvs cannot be approximated this way. However, such sums, when

suitably normalized, typically approach a well-defined limiting distribution which depends on

α. The entire family of such limits is known as stable probability distributions with parameter

α (Samorodnitsky and Taqqu, 1994; Uchaikin and Zolotarev, 1999; see also Section

2.1 below.) The Gaussian distribution is a special case corresponding to α = 2.

Stable distributions, which (except for the Gaussian case) have power-law tails, recently

became an object of intense mathematical and practical development (Mandelbrot, 1983;

Zolotarev, 1986; Uchaikin and Zolotarev, 1999; Nolan, 2004; Rachev and Mit-

tnik, 2000; Rachev, 2003). Their use is widespread in physics, finance, and other disci-

plines. The sums of large numbers of heavy-tailed rvs are investigated in many publications,

especially in finance, and are well described in terms of stable distributions (Mittnik et al.,

1998; Rachev and Mittnik, 2000; Rachev, 2003; Embrechts et al., 1997.) However,

little is known about the distribution of the sum of an arbitrary (intermediate to small)
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number of Pareto rvs.

1.4 Approximation problem

The aim of this study is to approximate the distribution of Pareto sums with arbitrary

numbers of summands. Formally, let Xi, i = 1, . . . , n be iid rvs with a common Pareto

distribution (2), and let Sn denote their sum

Sn =
n∑

i=1

Xi. (8)

We seek to approximate certain quantiles zq(n) of Sn:

Prob {Sn < zq(n)} = q, 0 ≤ q ≤ 1, n > 1, (9)

where Prob{A} means the probability of event A. The median z1/2 as well as upper and

lower bounds zq, z1−q, for q � 1, are of special interest. As mentioned above, the problem

becomes non-trivial for 0 < α < 2 when Xi have infinite second moments; for 0 < α ≤ 1

these rvs also have infinite expectation.

This paper is organized as follows. In Section 2 we construct two approximations for the

sum (8) by using stable distributions. Stable distributions are discussed in more detail in

Section 2.1; this discussion should help to develop a feeling for these complex distributions

which sometimes display quite counter-intuitive behavior. Section 3 describes a different

approach, involving the use of the distribution of the largest observation to approximate

that of the entire sum (8). It is shown that for α < 1 this seemingly crude replacement may

result in fairly good approximations for the upper (0.98) quantile. The results of Sections

2-3 are asymptotic; they give good approximations for the sums of a large number n of

summands. However, unlike the Gaussian case, when “large” typically means n > 30, the

sum of heavy-tailed variables converge very slowly, so that a sufficient number of summands

allowing one to apply the asymptotics may in some cases be greater than n = 104. To address

this problem, Section 4 describes two techniques specially tailored for approximating the sum

Sn of an arbitrary number n of summands. Section 4.1 introduces an approach based on the

analysis of order statistics to approximate the median and upper quantiles of Sn. Section
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4.2 shows how to transform our non-Gaussian problem to a Gaussian equivalent and use the

Central Limit Theorem to approximate the lower quantile. Approximation for the sum of

truncated Pareto rvs is considered briefly in Section 5. The study’s results are discussed

in Section 6. We keep in the main text only the essential formulae; the more complex

mathematical derivations are placed in Appendices.

2 Approximating by stable distributions

In this section we approximate Pareto sums with stable distributions, which is advocated

by the Generalized Central Limit Theorem discussed in Section 2.2 below. We start with a

brief discussion of stable distributions and their basic properties.

2.1 Univariate stable distributions

Stable distributions are a rich class of probability distributions that allow skewness (asym-

metry) and heavy tails and have many intriguing mathematical properties (Zolotarev,

1986; Samorodnitsky and Taqqu, 1994; Uchaikin and Zolotarev, 1999). A random

variable X is said to have a stable distribution if for any n ≥ 2, there is a positive number

Cn and a real number Dn such that

X1 +X2 + . . .+Xn
d
= CnX +Dn, (10)

where X1, X2, . . . , Xn are independent copies of X, and
d
= means that the variables have

the same distribution. This property makes stable distributions of special importance when

working with sums of rvs. The lack of closed formulas for densities and distribution func-

tions for all but a few stable distributions (Gaussian, Cauchy and Lévy) has been a major

drawback to the use of stable distributions by practitioners. There are now reliable computer

programs to compute stable densities, distribution functions and quantiles (Nolan, 1997;

McCulloch and Panton, 1997; 1998). With these programs, it is possible to use stable

models in a variety of practical problems.

Different authors have provided several quite distinct representations for stable distri-

butions (see Introduction in Zolotarev, 1986; pp. 7-9 in Samorodnitsky and Taqqu,
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1994; Section 3.6 in Uchaikin and Zolotarev, 1999), which complicates the practical use

of these distributions and often leads to confusion (Hall, 1981). Moreover, there are many

misprints and other errors in published formulae for stable distributions (see, for instance,

remark 2.12 in Zolotarev, 1986). Below we use only the expressions which have been

tested by comparing with tabulated values (McCulloch and Panton, 1997; 1998).

Stable distributions have been proposed as a model for many types of physical and

economic systems. There are several reasons for using a stable distribution to describe

a system. The first is the presence of solid theoretical reasons for expecting non-Gaussian

stable behaviour, e.g., reflection of a rotating mirror yielding the Cauchy distribution, hitting

times for a 1D Brownian motion yielding the Lévy distribution, the gravitational field of

stars yielding the Holtsmark 3D distribution, the stress distribution in a solid with defects

following the Cauchy law (see Feller, 1971 and Uchaikin and Zolotarev, 1999 for

other examples). The second reason is the Generalized Central Limit Theorem (see Section

2.2, Eq. 19) which states that the only possible non-trivial limit of normalized sums of

independent identically distributed (iid) terms is a stable law. Some observed quantities are

posited to be the sum of many individual terms — the price movements of a stock, the noise

in a communication system, etc., and hence a stable model may be used to describe such

systems. A third argument for the use of stable distributions in modeling physical systems

is empirical: many large data sets exhibit heavy tails and skewness. The strong empirical

evidence for these features combined with the Generalized Central Limit Theorem is used

by many to justify the use of stable models.

The univariate stable distribution is generally characterized by four parameters: its in-

dex α, the parameter β characterizing the degree of skewness, a scale parameter, and a shift

parameter (Samorodnitsky and Taqqu, 1994). In this work we will consider only nor-

malized stable distributions with the scale parameter equal to 1.0 and the shift parameter

equal zero. Moreover, since the Pareto variables we consider here are positive, the sums of

these variables converge to a maximally asymmetrical (maximally-skewed) stable distribu-

tion, corresponding to β = 1. Thus, the stable variables considered below depend only on

one parameter α, and their pdf and cdf are denoted as fα and Fα respectively.

In Fig. 2 we show an example of the pdf for the stable distribution with index α = 2/3
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(15) and a corresponding Pareto distribution. The stable distributions with α < 1 and β = 1

are concentrated on the positive x-axis, whereas maximally-skewed distributions with α ≥ 1

and β = 1 have support over the whole x-axis.

Recall that the standard Gaussian (normal) cdf with expectation µ and standard devia-

tion σ is given by

Φ
(
x;µ, σ2

)
=

1

σ
√
2 π

∫ x

−∞
exp

(
− (y − µ)2

2 σ2

)
dy. (11)

The Gaussian stable distribution, α = 2, for which the skewness index β is not defined, is

usually written in a slightly different form: F2(x) = Φ (x; 0, 2) so its pdf becomes

f2(x) =
1

2
√
π
exp

(
− x2

4

)
. (12)

Only one of the stable maximally-skewed distributions, the Lévy, with α = 1/2, can be

expressed through elementary functions. This distribution has density

f1/2(x) =
1

x
√
2πx

exp
(
− 1

2 x

)
, (13)

and cdf

F1/2(x) = 2

[
1− Φ

(
1√
x
; 0, 1

)]
, (14)

where Φ is defined in (11).

Two more maximally-skewed distributions, for α = 2/3 and α = 3/2, can be expressed

through special functions (Zolotarev, 1954):

f2/3(x) =

√
3

x
√
π
exp
(
− 16

27 x2

)
W1/2,1/6

(
32

27 x2

)
for x > 0 , (15)

where W1/2,1/6 is a Whittaker function (Gradshteyn and Ryzhik, 1980, p. 1059).

The Whittaker function Wk,µ(z) can be calculated using the confluent hypergeometric

function U(a, b, z) (Wolfram, 1999, pp. 770-771)

Wk,µ(z) =
z0.5+µU(0.5− k + µ, 1 + 2µ, z)

e0.5 z
. (16)

Similar expressions for f3/2(x) are (Zolotarev, 1954)

f3/2(x) = −
√
3

x
√
π
exp
(
x3

27

)
W1/2,1/6

(
− 2x3

27

)
for x < 0 , (17)
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and

f3/2(x) =
1

2 x
√
3π

exp
(
x3

27

)
W−1/2,1/6

(
2x3

27

)
for x > 0 . (18)

The cumulative functions for distributions (15), and (17, 18) can be obtained by numerical

integration (Wolfram, 1999).

Though stable distributions usually cannot be summarized via elementary functions, their

tails often allow fairly simple approximations given in Appendix A. These approximations

may be useful for q close to 0 or 1.

2.2 Generalized Central Limit Theorem approximation

Statistical inference about the sum (8) can be made using the Generalized Central

Limit Theorem (GCLT) (Samorodnitsky and Taqqu, 1994, p. 50; Uchaikin and

Zolotarev, 1999, p. 62), which states that the properly normalized sum Sn (8) of a large

number n of iid Pareto rvs with common distribution (2) may be approximated by a stable

distribution:

lim
n→∞Prob

{
Sn − bn
n1/αCα

< x

}
= Fα(x), (19)

where Fα(x) is a stable cdf with index α. The normalization and shift coefficients are given

by

Cα =



[Γ(1− α) cos (πα/2)]1/α , α �= 1,

π/2, α = 1,
(20)

bn =




0, 0 < α < 1,

πn2

2

∫∞
1 sin

(
πx
2n

)
dF (x), α = 1,

nα/(α− 1), 1 < α < 2,

(21)

where Γ(x) is the gamma function. The integral in (21) for α = 1 can be expanded as

(Gradshteyn and Ryzhik, 1980, Eqs. 3.761.3, 8.231.2)

bn = n logn + n

[
nπ

2
sin
(
2

nπ

)
− C − log

2

π
−
∫ 2/(nπ)

0

cos t− 1

t
dt

]

∼= n logn + n
[
1− C − log

2

π

]
, (22)
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where

C ≈ 0.5772... (23)

is the Euler constant.

It follows from the GCLT (19) that an arbitrary quantile zq (9) of the sum Sn can be

approximated as

zq ≈ z(1)
q ≡ n1/αxqCα + bn, (24)

where xq solves the equation

Fα(xq) = q. (25)

In some cases, the applicability of the approximation z(1)
q is seriously affected by the low

convergence rate in the GCLT (19); we investigate the quality of this approximation in

detail in Section 2.3 below.

An approximation for upper quantiles zq, q > 0.95, can be obtained by noticing that

the tail 1 − Fα(x) of a stable distribution has a simple asymptotic (Samorodnitsky and

Taqqu, 1994; Uchaikin and Zolotarev, 1999):

lim
x→∞ (1− Fα) = (Cαx)

−α , (26)

where Cα is defined by (20). Applying the GCLT for the tail

lim
n→∞Prob

{
Sn − bn
n1/αCα

> x

}
= 1− Fα(x), (27)

and equalizing the probability in (27) to (1− q), one obtains

z(2)
q ≈ n1/αq−1/α + bn, (28)

where bn is defined in (21), (22).

The approximation z(2)
q is easier to use than z(1)

q since the former is written in a closed

form and does not involve solving the equation (25). This convenience is achieved at a

price: z(2)
q only provides a satisfactory approximation for the upper quantiles, while z(1)

q is

applicable for any value of q.
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2.3 Evaluating approximation quality

The quality of the approximation z(1)
q (Eq. 24) may be evaluated by simulating the sums

of Pareto rvs with different α-values. Note that the result depends essentially on the quality

of the approximation (Eq. 19), so in assessing this approximation, we are simultaneously

evaluating the convergence rate in the GCLT.

Simulation of Pareto rvs is especially easy since a synthetic realization may be constructed

via

Xi = R−1/α, (29)

where R is a rv uniformly distributed in the interval (0, 1]. For each fixed value of n and α

we simulated ≥ 106 realizations of the sum Sn to compute its quantiles zq (9). We define

the approximation relative error as

∆(1)
q = z(1)

q /zq − 1. (30)

To abbreviate the notation, we do not explicitly note the dependence on n and α of the

quantiles and their approximations and errors.

As mentioned previously, the approximation of Sn using the GCLT requires a very large

number of summands. For instance, Figure 3 displays the quality of the approximation z(1)
q

for α = 1/2 and n = 1000. Even for 1000 summands, disagreements between the distribution

of the sum and its approximation are easily discerned. This disagreement is even larger for

smaller values of x (not shown in the figure). Indeed, the relative errors ∆(1)
q for the upper

quantiles approach the limit of 0 rather quickly as the number n of summands increases,

whereas for lower quantiles the convergence is quite slow. This is demonstrated in Figure 4,

which shows the dependence of the relative error ∆(1)
q for q = 0.02 and 0.98 on the number

n of summands for α = 2/3 and α = 1.5. We follow McCulloch and Panton (1997) in

evaluating the quantiles 0.02 and 0.98 rather than the more commonly used 0.025 and 0.975.

Such behavior is easy to understand in light of Fig. 2. The upper tail of the Pareto

distribution decays as x−α, similar to the decay of the upper tail of the stable distribution.

On the other hand, the lower tail of the Pareto distribution has an abrupt truncation at x = 1

(see Eq. 2), whereas the stable distributions are smooth everywhere. Fig. 2 demonstrates
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the similarity of the Pareto and stable distributions at the upper tail and their difference

at the small x-values. Thus, a large number of variables must be summed in order for the

lower quantiles of Sn to be reasonably approximated by those of Fα.

Table 1 collects the simulation results for selected values of α. Synthetic values of the sum

are compared to stable quantiles as tabulated in McCulloch and Panton (1997), except

for α = 2/3 where we calculate Fα by integrating (15). The stable distribution approximates

the Pareto sum upper 0.98 quantile quite well: only for α approaching 1.0 and 2.0 from below

does the number of summands necessary to achieve 10% relative accuracy exceed two. As

mentioned above, the approximation deteriorates substantially for the lower quantile: even

in the best cases several dozens of summands are needed to yield < 10% relative error.

Table 2 (columns 6, 8, and 10) shows the relative error ∆(1)
q of the approximation z(1)

q

for selected values of α, q, and relatively small values of n. In each case Sn is calculated by

using 107 simulated Pareto summands. The error ∆(2)
q of the approximation z(2)

q is given in

the eleventh column.

3 Replacing the sum with the maximum

Approximation of the sums of Pareto rvs can be obtained by noticing that in many

important cases the largest of n such observations, Mn, has the same order of magnitude as

the entire sum Sn.

To gather some intuition, let us define

rn = Sn/Mn. (31)

In the case of iid Pareto summands, the expectation of the ratio rn takes the form (see

Appendix B)

E(rn) =



[1− nB (n, α−1)] /(1− α), α �= 1∑n

k=1 1/k, α = 1,
(32)

where B(·, ·) is the beta-function (see Appendix B, Eq. 82).
For α = 2/3 this expression can be simplified (Abramowitz and Stegun, 1972,

Eq. 6.1.12) as

E(rn) = 3

[
1− 2nn!

(2n+ 1)!!

]
, (33)
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where we use the standard notation (2n + 1)!! = 1 · 3 · . . . (2n + 1). It is easy to derive the
asymptotics of E(rn) as n→ ∞:

E(rn) ∼=




1/(1− α), α < 1

n1−1/αΓ(1/α)/(α− 1), α > 1

C + log(n), α = 1,

(34)

where C is given by (23). In Fig. 5 we display dependence of E(rn) on the number n of

summands using α = 2/3. The asymptotic value E(rn) = 3 is reached relatively slowly: for

n = 100, E(rn) = 2.73; and even for n = 1000, E(rn) = 2.92.

For α < 1 the coefficient rn is on the order of unity which means that the major contribu-

tion to the sum Sn is made by the maximal observationMn. It is important to note, however,

that the variation of rn may be significant. To illustrate the relation between Sn and Mn we

show their scatterplot in Fig. 6 for α = 2/3, n = 1000. One can see that departures from

the relation Sn ∼ Mn/(1 − α) suggested by (31, 34) are significant, especially at the lower

and upper tails of Sn and Mn. Moreover, for any fixed value of Sn or Mn the ratio rn varies

substantially.

Fig. 6 suggests the possibility of approximating the upper quantiles of Sn with those of

Mn, since one clearly sees that the largest possible values of the sum lie close to the line

Sn =Mn. Using the well-known distribution of the maximum (Feller, 1971):

Prob {Mn < x} = F n(x) =
(
1− x−α

)n
, (35)

one can approximate the distribution of the normalized sum as

Prob
{

Sn

Cαn1/α
< z
}
≈ Prob

{
Mn

Cαn1/α
< z
}
≈ exp

{
− (zCα)

−α
}
. (36)

Equating the probability (36) to q and adding the shift bn (21), which is important for α ≥ 1,

we obtain

z(3)
q = n1/α [log(1/q)]−1/α + bn. (37)

The relative error ∆(3)
q of this approximation is shown in column 12 of Table 2. One sees

that for α < 1 the approximation is quite close, whereas for α > 1 the relative errors are

large.

15



4 More precise techniques

This Section develops techniques that allow one to approximate the sums Sn with a

higher degree of accuracy (relative error < 1%) for an arbitrary number n of summands.

4.1 Approximating the median and upper bound

Here we expand on the idea of using the largest observations to approximate the sum

(8) of Pareto rvs. Our approach is based on considering the variational series

X1,n ≤ X2,n ≤ . . . ≤ Xn,n (38)

formed by the order statistics X1,n = min{X1, . . . , Xn}, ..., Xn,n = max{X1, . . . , Xn}. Intro-
ducing the notations

Sk,n =
k∑

i=1

Xi,n, Tk,n =
n∑

i=k+1

Xi,n, k ≤ n (39)

we may rewrite (8) as

Sn =
p∑

i=1

Xi,n +
n∑

i=p+1

Xi,n = Sp,n + Tp,n. (40)

Essential properties of this representation follow from the following result.

Theorem 1 The m-th moment E (Xn,k)
m of the k-th order statistic from Pareto distribution

(2) is finite for m < α(n− k + 1) and is given by

EXm
k,n =

n! Γ (n− k + 1−m/α)

(n− k)! Γ (n+ 1−m/α)
. (41)

The joint second moment E(Xr,nXs,n), r > s is finite if

min {n− r + 1, (n− s+ 1)/2} > 1/α,

and is given by

E(Xr,nXs,n) =
n! Γ (n− r + 1− 1/α) Γ (n− s+ 1− 2/α)

(n− r)! Γ (n− s+ 1− 1/α) Γ (n+ 1− 2/α)
. (42)

Proof. See Nevzorov, (2001), Assignment 6.2.

An important consequence of Theorem 1 is the following.
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Corollary 1 If p = n − �m/α�, where �x� is the integer nearest to x from below, then all

the summands in Sp,n have finite m-th moment, and all the summands in Tp,n have infinite

m-th moments.

As follows from this corollary, the number nm = �m/α� of order statistics with infinite m-th
moments does not depend on the sample size n. Seemingly counter-intuitive, this fact is well-

known is statistics (see Sen, 1959); its direct proof is given in Appendix C. Importantly,

for 1/2 ≤ α < 1 there are only two (upper) order statistics with infinite mathematical

expectations, and for 2/3 ≤ α < 1 there are only two (upper) order statistics with infinite

second moment.

Below we use the representation (40) with p = n− 2 which gives Tn−2,n = Xn−1,n+Xn,n.

Recalling that order statistics obey the Markov property (Nevzorov, 2001, Remark 4.3.)

Prob{Xk+1,n < x|X1,n, . . . , Xk,n} = Prob{Xk+1,n < x|Xk,n}, (43)

and for the common distribution F (x) of Xi

Prob{Xk+1,n > x|Xk,n = u} =
(
1− F (x)

1− F (u)

)n−k

, (44)

one can prove the following result.

Theorem 2 The sum Tn−2,n of the upper two order statistics of n Pareto rvs has the fol-

lowing distribution:

T (x, α, n) = Prob{Xn−1,n +Xn,n < x} =
= n(n− 1) α2

∫ x

2

∫ z/2

1
y−α−1(z − y)−α−1(1− y−α)n−2dydz (45)

= n(n− 1) α2
n−2∑
k=0

(−1)kCk
n−2

∫ x

2
z−α(k+2)−1B (1/z, 1/2,−α(k + 1),−α) dz, (46)

where B(x0, x1, a, b) is the generalized incomplete beta function (Wolfram, 1999)

B(x0, x1, a, b) =
∫ x1

x0

ta−1(1− t)b−1dt. (47)

Proof is given in Appendix D.
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The Markov property (43) can be used as well to derive the distribution of a larger number

of the upper order statistics. We restrict ourselves with the two upper ones and now proceed

with the sum Sn−2,n of the lower (n − 2) order statistics. Using (41), (42) we find that for

α ≥ 1/2 the sum Sn−2,n has finite expectation

m1(α, n) =
n−2∑
k=1

n! Γ (n− k + 1− 1/α)

(n− k)! Γ (n + 1− 1/α)
. (48)

For α > 2/3 it has also finite second moment

m2(α, n) =
n−2∑
k=1

n! Γ (n− k + 1− 2/α)

(n− k)! Γ (n+ 1− 2/α)
+

+
n−2∑
r=1

r−1∑
s=1

n! Γ (n− r + 1− 1/α) Γ (n− s+ 1− 2/α)

(n− r)! Γ (n− s+ 1− 1/α) Γ (n+ 1− 2/α)
. (49)

For α = 1/2 and 1 the expressions (48), (49) can be simplified:

m1 (1, n) = n
n−1∑
k=2

1

k
= n(C − 1 + log(n− 1) + o(1)); (50)

m1 (1/2, n) = n(n− 2); (51)

m2 (1, n) = n(n− 2) + 2n(n− 1)×

×

log(n− 2) (C − 1 + log(n− 2))−

n−2∑
j=2

log(j − 1)

j
+ o (log(n))


 . (52)

In particular, it follows that for α = 1, as n→ ∞,

m1(1, n) = n log(n) + o(n log(n)),

m2(1, n)−m2
1(1, n) = Var(Sn−2,n) = n2 log(n)2 + o(n2 log(n)2). (53)

To obtain bounds on the distribution of Sn−2,n, we note that its summands can be

considered iid rvs with the common distribution

Prob {Y < x} = Prob {Xi < x|Xi < Xn−1,n} . (54)

From Theorem 1 it follows that for α > 2/3 they have finite first and second moments, and

one may apply the Central Limit Theorem (Feller, 1971, 2, VIII, 4) to obtain

Corollary 2 For α > 2/3 the sum Sn−2,n of the (n − 2) lower order statistics of n Pareto

rvs converges in probability, as n→ ∞, to a normally distributed rv with first two moments

m1(α, n), m2(α, n) given by (48), (49).
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Thus, to approximate the sum Sn we propose the representation (40) with p = n − 2.

Then the distribution of Tn−2,n is given by Theorem 2, while Sn−2,n allows the normal

approximation of Corollary 2. The median z1/2 and the upper quantile zq, q > 0.95 of Sn

are approximated as

z
(4)
1/2 = m1(α, n) + T

−1(1/2, α, n); (55)

z(4)
q = m1(α, n) + κ(α, n) + T

−1(q, α, n), (56)

where

κ(α, n) =



√
m2(α, n)−m2

1(α, n), α ≥ 2/3,

0, α < 2/3.
(57)

Both of these approximations involve inversion of the distribution T (x, α, n), which must be

done numerically. Numerical integration is more efficient using the representation (45) of

Theorem 2. The relative errors ∆(4)
q of these approximation are shown in columns 9 and 13

of Table 2. The approximations appear to be very close for all values of α < 2, even for

small numbers of summands. For n = 2, m1 and m2 become zero and approximations z
(4)

coincide with theoretical quantiles of the distribution T .

In constructing the approximations z(4) we obtain the exact quantiles for the sum of

the upper two statistics Tn−2,n by inverting its distribution T , and assume that, due to

the normal asymptotic of Corollary 2, the quantiles of Sn−2,n, can be expressed via its first

two moments. For instance, in (55) the median of Sn−2 is naturally approximated by the

mathematical expectation m1(α, n). Indeed, such a construction is seriously affected by the

fact that Sn−2,n and Tn−2,n are statistically dependent rvs, so the direct summation of their

quantiles is a purely heuristic device. We notice though that for α < 1 the major contribution

to the sum Sn is made by the two upper statistics, Tn−2,n, while the contribution from the

rest of the summands (Sn−2,n) becomes negligible, and so does their statistical variation. On

the other hand, for α > 1, the contribution from Tn−2,n becomes less important comparing

to that of the large number of summands in Sp,n. In both cases, the statistical variation of

one of the terms in (40) is negligible compared to the second one, so the direct summation

of their quantiles results in a reasonable approximation.
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4.2 Approximating the lower bound

An approximation for the q-quantile zq (9) of the sum Sn, for small q, may be constructed

based on the following idea. For any value yn,

Prob {Sn < zq} = Prob {Sn < zq|Mn ≤ yn}Prob {Mn ≤ yn}
+ Prob {Sn < zq|Mn > yn}Prob {Mn > yn} . (58)

The term Prob {Sn < zq|Mn ≤ yn} in (58) can be approximated using the Central Limit

Theorem (Feller, 1971, 2, VIII, 4), since the variables being summed are now truncated

and hence have finite moments. The resulting approximation will be close for sufficiently

small values of yn and sufficiently large n. At the same time, for any reasonably large value

of yn, and for small q, the quantity Prob {Sn < zq|Mn > yn} in (58) will be infinitesimal;
hence the entire final term in (58) may be considered negligible. Thus, in approximating zq,

we suggest choosing an appropriate value of yn, and considering the approximation

Prob {Sn < zq} ≈ Prob {Sn < zq|Mn ≤ yn} Prob {Mn ≤ yn}
≈ Φ{(zq − nµyn; 0, 1)/(σyn

√
n)}Prob {Mn ≤ yn} , (59)

where Φ is the standard normal distribution function (11), and

µy = E [X1|X1 ≤ y] =




α
1−α

(y1−α − 1) / (1− y−α) , α �= 1 ,

log(y)/(1− y−1) , α = 1,
(60)

σ2
y = V [X1|X1 ≤ y] =




α
2−α

(y2−α − 1) / (1− y−α)− µ2
y, α �= 2 ,

2 log(y)/ (1− y−2)− µ2
y , α = 2

(61)

are the conditional mean and variance of each summand, given the restriction on the maxi-

mum.

Note that there is a tradeoff in choosing yn in (59): if one selects too small a value of yn,

then the term Prob {Sn < zq|Mn > yn} in (58) is not negligible, so the resulting approxima-
tion may not be satisfactory. On the other hand, if yn is too large, then the approximation

of Prob {Sn < zq|Mn < yn} using the Central Limit Theorem may be unsatisfactory; this is

particularly true for small n.
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One option is to choose some value p∗ to represent the probability Prob {Sn < zq|Mn ≤ yn}
in (59). From (9), one then has q/p∗ = Prob {Mn ≤ yn} = {1− ( 1

yn
)α}n, and solving this for

yn one obtains

yn =
[
1− (q/p∗)1/n

]−1/α
. (62)

One may then obtain an approximation of zq by plugging this value of yn from (62) into

the first term in (59), yielding

z(5)
q = σyn

√
nΦ−1(p∗) + nµyn, (63)

where µyn and σyn are given by (60-62).

A naive choice for p∗ is
√
q; this seems to balance the aforementioned tradeoff, since

then Prob {Sn < zq|Mn ≤ yn} = Prob {Mn ≤ yn} = √
q. A substantial improvement can be

obtained by choosing p∗ in the form

p∗ = 0.136 + 0.235 q + q2 + 0.0066min(n, 10)− 0.05max(a, 1) . (64)

The dotted curve in Figure 7 shows the relative errors, as a function of n, for the resulting

approximation z(5)
q with p∗ given by (64). For comparison, the dashed curve in Figure 7

shows relative errors for the solution to (63) with p∗ =
√
q. Here α = 2/3 and q = 0.02; the

results for other values of α and other small values of q are similar.

The values reported in column 7 of Table 2 reflect the approximation z(5)
q with p∗ as in

(64). One sees that the approximation matches the true quantile quite closely, with relative

errors less consistently less than 1%, even for small n.

5 Cumulative Pareto sums: Linear vs. non-linear

regimes

As mentioned in Section 1.2, it is important to consider the case of the Pareto distribution

with an upper bound or taper, especially for α ≤ 1.0. An example of such a distribution

is shown in Fig. 1, which demonstrates that an exponential taper applied to the cdf of the

Pareto distribution results in a close approximation to the empirical distribution of seismic
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moments. A commonly employed alternative is to use a Pareto distribution that is simply

truncated at some value y; the corresponding cdf is

F (x) =
1− x−α

1− y−α
, 1 < x ≤ y. (65)

For the truncated Pareto distribution, simulated values may be constructed via

Xi =
{
R
[
1− y−α

]
+ y−α

}−1/α
, (66)

where R is a uniform rv as in (29). The ratio E(rn) = E(Sn/Mn) for the truncated Pareto

distribution and α < 1 can be evaluated as in (32), and is given in Appendix B, Eq. 82.

Fig. 8 displays an example of simulated sums (Sn) for the Pareto distribution truncated at

y = 3.4×104 compared to the stable distribution quantiles. The upper quantiles depart from

the theoretical curve for the stable distribution starting with n = 2, whereas the behavior

of the lower quantile is essentially unaffected by the truncation until n exceeds 103.

When the number of summands is large, the truncation point y dominates the behavior

of the quantiles. The sum is then distributed asymptotically according to the Gaussian law:

lim
n→∞FSn(x) = Φ

(
x− nµy

σy

√
n
; 0, 1

)
, (67)

where Φ is the normal cdf (11), and the parameters µy and σy are given by (60), (61). In

Fig. 8 the Gaussian approximation for the truncated Pareto sums is shown to provide a

satisfactory approximation to to the sum of truncated Pareto rvs, when the number n of

terms being summed exceeds 500.

The median of the distribution of Sn for truncated Pareto rvs increases non-linearly

with n: for n < 100 the median increases at rate proportional to n1/α, (Pisarenko, 1998;

Rodkin and Pisarenko, 2000; Huillet and Raynaud, 2001). This behavior differs

sharply from the linear increase of all quantiles of the distributions of sums of rvs with finite

first moment (i.e., for distributions with α ≥ 1). For larger numbers of summands, quantiles

of sums of truncated Pareto distribution increase linearly.

Rodkin and Pisarenko (2000, their Eqs. 19 and 21) introduce two particular values of

n:

n1 =
1− α

α
× yα log 2 , (68)
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and

n2 =
9 (1− α)2 yα

α (2− α)
. (69)

They argue that if n < n1 the sums behave statistically as if the distribution has not been

truncated, whereas for n > n2 the Gaussian approximation for the sums is appropriate. For

the example displayed in Fig. 8, n1 = 350 and n2 = 1152. The curves in Fig. 8 appear to

confirm the validity of the conclusions of Rodkin and Pisarenko (2000).

6 Discussion

We presented five approximations for the quantiles of the distribution of the sums of Pareto

variables. The approximations z(1,2)
q (Eqs. 24, 28) are based on stable asymptotics for Pareto

sums; z(3)
q (Eq. 37) uses replacing the sum Sn with its maximal summand; z

(4)
q (Eqs. 55-56)

elaborates the latter idea considering separately the sum of the largest two observations and

the rest of the lower terms to approximate the median and the upper quantiles; and z(5)
q

(Eq. 63) approximates the lower quantiles by introducing an upper truncation point on the

maximum observed value. We consider the relative error ∆(k)
q (30) for all our approximations:

Table 2 collects the errors for selected values of α, n, and q.

The accuracy of the figures given in Table 2 is three digits. This accuracy is comparable

with that of our best approximations and therefore is sufficient for this study. We notice

that for n = 2 the approximations z(4) coincide with the theoretical quantiles for the distri-

bution of the sum of the two upper statistics Xn−1,n +Xn,n. Therefore, the errors ∆
(4) for

n = 2 evaluate the precision of our simulated quantiles given in columns 3, 4, and 5 (lines

corresponding to n = 2) of Table 2. These errors are always lower than or equal to 0.003,

the latter upper bound is reached for α = 1.

The lower quantile approximation z(5)
q , q � 1, indeed provides a closer approximation

than z(1)
q . The former uniformly has a relative error less than 1% for any n, while the latter

starts producing reliable approximations only for n > 50. This is due to that fact that the

normal approximation used in z(5)
q is much better suited for the small observations at the

lower tail of the Sn distribution than the stable approximation used in z(1)
q . For large n

(n > 103) the quality of z(1)
q becomes acceptable, as seen in Fig. 4.
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The quality of the median approximation z
(1)
1/2 increases rapidly with n, providing ac-

ceptable results for n ≥ 20. For n < 100 an order of magnitude better approximation is

provided by z
(4)
1/2, whose relative error is less than 1% for α ≥ 1, and less than 10% for

1/2 ≤ α < 1. As discussed in Section 4.1, the quality of this approximation is affected by

the existence of statistical dependence between the highest and lower summands within Sn,

and as a result its accuracy decreases with n for α < 1.

The upper quantile approximations are all quite accurate, unlike the case of medians

and lower quantiles where the choice of approximation appears to be more important. The

most rough approximation z(3)
q which simply replaces the sum Sn with its maximal summand

provides less than 5% error for α ≤ 1. Indeed, for α > 1 its performance deteriorates, since

the largest observation no longer makes an important contribution to the sum Sn. The stable-

law approximations z(1,2)
q demonstrate similar performance for α > 3/2 and α < 2/3, while

for 2/3 ≤ α ≤ 3/2, z(1)
q appears to be preferable. The most accurate approximation, with

less than 1% relative error for all the cases considered, is demonstrated by the approximation

z(4)
q . By comparison z(4)

q with z(3)
q , one observes how important it is to consider more than

just the single largest observation, as well as the importance of the contribution from the

smaller summands, which becomes crucial for α > 1.

In searching for a best approximation among the five proposed above, we observe a trade-

off between the quality and simplicity of the approximations. This is especially prevalent for

the upper quantiles, where the directly calculated approximations z(2,3)
q are clearly inferior

to the more elaborate approximation z(4)
q , which involves solving an integral equation. For

large samples with n ≥ 103 we recommend using z(1)
q . When n is intermediate to small,

n < 103, the upper quantiles can be well approximated by z(2)
q ; for the lower quantiles z(5)

q

appears to perform well. The upper quantile is best approximated by z(4)
q , which can be

replaced in favor of the simpler z(1)
q when α < 1. Generally, the choice of approximation

should be dictated by the range of α, n, and q considered, as well as consideration of the

relative error rate and computational simplicity desired.

To illustrate the application of our results, Fig. 9 shows the cumulative seismic moment

for Californian seismicity, M ≥ 5.5 , during the last two centuries. We use the Toppozada

et al. (2000) earthquake catalog. The total number of events shown in the figure is 163. The
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largest earthquake in the plot is the San Francisco 1906 event (M7.8). Similar displays are

often used in geophysics to study accumulation of seismic moment (Peterson and Seno,

1984; Jaumé and Sykes, 1996; Triep and Sykes, 1997; Rodkin and Pisarenko, 2000).

Fig. 10 shows the same data and approximations in semilogarithmic scale with the number

of earthquakes shown at the x-axis.

If the seismic moment distribution is strictly Pareto, with α = 2/3, the observed cumu-

lative moment would be well described by the statistical bounds for Pareto sums given in

columns 3 − 5 of Table 2 and shown (dashed lines) in Figs. 9 and 10. For comparison, our

approximation by the stable distribution, z(1)
q (dotted lines), is also displayed. As one can

see from Table 2, other approximations work much better than z(1)
q (especially for the lower

quantile and the median) so their respective deviations from the simulated Pareto quantiles

in Figs. 9 and 10 would be even smaller.

From approximately 1840 onward, the observed cumulative moment appears to be well

within the bounds given by both approximations. The observed values of the cumulative

seismic moment lie close to their approximated median and their variation is within the

prescribed bounds. However, these bounds indicate that seismic moment release for such

data can be estimated only with a great deal of uncertainty: the lower 2% bound is an

order of magnitude smaller than the median, whereas the upper 98% bound exceeds the

median almost by a factor 100. Note that the seismic data prior to 1840 are thought to be

of inferior quality, with significant numbers of events missing and their magnitudes possibly

substantially underestimated; this may explain why the observed cumulative line starts out

of the prescribed statistical bounds.

Several methods can be used to improve the estimate of the total seismic moment release

rate. One can increase the size of the available earthquake dataset and thus include more

large earthquakes, either by using older data or by increasing the spatial size of the region

under consideration. Both of these methods have clear disadvantages: in the former case

the additional data may be of inferior quality; in the latter case the resolution of the study

deteriorates. As another alternative, one can use tectonic and geodetic data to constrain the

moment release rate (Kagan, 2002b) by integrating the moment-frequency relation (7). If

the maximum seismic moment is known or can be estimated (Kagan and Schoenberg,
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2001; Kagan, 2002a, see more in Section 5), we can use the methods developed in that

section to evaluate the bounds.

Figs. 9 and 10 suggest that for seismological applications the quality of the approximation

z(1)
q may be sufficient for an adequate description of the bounds on the distribution of the

total seismic moment release. Indeed, when the quality of the available data subject to

approximation are of such low accuracy and when the variability of the sum Sn is so extreme,

even a relative error in the approximation as large as 10% - 20% may be acceptable.
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Appendices:

A Asymptotic formulas for stable distributions

In comparing the Pareto sums to the appropriately scaled stable distributions, the

upper and lower tails of these distributions are of special relevance to us. For maximally-

skewed distributions, the lower tail is ‘light’, i.e., its density decays faster than any power of

x (Zolotarev, 1986; Samorodnitsky and Taqqu, 1994; Uchaikin and Zolotarev,

1999). On the other hand, the upper tail is governed by a power-law decay with the exponent

α < 2, such tails are called ‘heavy’.
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There exist series expansions for stable distributions that are known to converge relatively

quickly in the tails. One may take the leading term F (0)
α (x) of these series as an approximation

of the distribution at the tails. The form of the leading terms depends on the index α and on

the tail (upper or lower) to be approximated. Below we present three approximations for the

lower quantiles (Eqs. 70-73) and two approximations for the upper quantiles (Eqs. 74-75).

For α < 1 by integrating the pdf from Linnik (1954, Eq. 1) we obtain

F (0)
α (x) =

1√
2α


1− erf



√
1− α

α

(
α

cos (πα/2)

) 1
2(1−α)

x
α

2(1−α)




 , x > 0, (70)

where the error function erf (x) is given by

erf(x) =
2√
π

∫ x

0
exp (−t2) dt . (71)

For α = 1 integrating the pdf from Ibragimov and Linnik (1971, Theorem 2.4.4) yields

F (0)
α (x) =

1√
2


1− erf



√
2

π
exp
(
−1
2
− πx

4

)

 , −∞ < x <∞ (72)

and for α > 1 integrating the pdf from Skorohod (1954, Eq. VI) yields

F (0)
α (x) =

1√
2α


1− erf



√
α− 1

α

( −α
cos (πα/2)

) 1
2(1−α)

(−x) α
2(α−1)




 , −∞ < x <∞.(73)

As Uchaikin and Zolotarev (1999, p. 127) note, equation (70) is exact for α = 0.5 (see

Eq. 14), and (73) corresponds to the Gaussian distribution Φ(x, 0, 2σ) for α = 2.0.

For the upper quantile, x→ ∞, one may use the approximation (Samorodnitsky and

Taqqu, 1994, Eqs. 1.2.8, 1.2.9)

F (0)
α (x) = 1− [ xα Γ(1− α) cos (πα/2) ]−1 , (74)

if α �= 1, and

F (0)
α (x) = 1− 2

π x
, (75)

for α = 1.

In Fig. 11a we display an example of approximating the lower quantiles using the Eq. 70.

In general, the approximations (Eqs. 70–73) work reasonably well, with relative errors of just
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a few percent. For the upper quantiles (Eqs. 74–75) the fit is good only for certain ranges

of α. Fig. 11b demonstrates, for instance, that for the 0.98 quantile the expression (74) is

within 10% of the theoretical values for α < 0.85 and for 1.1 < α < 1.53, whereas for values

of α closer to 2 the fit of the approximation is only satisfactory for very high quantiles such

as 0.999.

B Proof of (34)

Consider the ratio X1/Mn. Its cdf G(z) can be expressed in terms of the conditional

distribution F (x|y) of X1 conditioned on the fixed maximum Mn = y (Pisarenko, 2003,

private communication):

G(z) = Prob
{
X1

Mn
< z
}

=
∫ ∞

0
Prob

{
X1

y
< z|y

}
dF n(y) =

=
∫ ∞

0
Prob {X1 < yz|y}dF n(y) =

=
∫ ∞

0
F (yz|y)dF n(y),

and the density g(z) is obtained by taking the derivative with respect to z:

g(z) =
∫ ∞

0
yf(yz|y)dF n(y) . (76)

The conditional density f(x|y) corresponding to the distribution F (x|y) is given by

f(x|y) = δ(y − x)

n
+
(
1− 1

n

)
f(x)H(y − x)

F (y)
. (77)

Here H(x) = 1 for x > 0 and 0 for x ≤ 0. The first term on the rhs of (77) corresponds to the

case Mn = X1, whose probability is 1/n by symmetry; the complementary event X1 < Mn

occurs with probability (1− 1/n). Substituting the pdf (77) into (76) we obtain

g(z) =
δ(z − 1)

n
+ (n− 1)

∫ ∞

0
yf(yz)f(y)F n−2(y)dy, 1 ≤ z ≤ 1 . (78)

This expression can be used to calculate the expectation of the ratio rn = Sn/Mn:

E(rn) = n
∫ 1

0
zg(z)dz =

= 1 + n(n− 1)
∫ ∞

0
yf(y)F n−2(y)dy

∫ 1

0
zf(yz)dz =
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= 1 + n(n− 1)
∫ ∞

0
yf(y)F n−2(y)dy

(
F (y)

y
− 1

y2

∫ y

0
F (x)dx

)
=

= 1 + n(n− 1)
(∫ ∞

0
f(y)F n−1(y)dy −

∫ ∞

0
T (y)f(y)F n−2(y)dy

)
=

= 1 +
n(n− 1)

n

(∫ ∞

0
dF n(y)−

∫ ∞

0
T (y)dF n−1(y)

)
=

= n
(
1−

∫ ∞

0
T (y)dF n−1(y)

)
, (79)

where T (y) = 1/y
∫ y
0 F (u)du. For the Pareto distribution (2) this becomes

T (y) =
1

y

∫ y

1

(
1− x−α

)
dx = 1− 1

1− α

(
y−α − αy−1

)
, (80)

and plugging (80) into (79) one obtains

E(rn) = E
(
Sn

Mn

)
=




1−nB(n,α−1)
1−α

, α �= 1∑n
k=1

1
k
, α = 1 .

(81)

For the truncated Pareto distribution (65) we have (cf. Pisarenko, 1998, Eq. 12)

E(rn) = n

{
1 − (n− 1)

(
1−X−α

p

)−n [
B (z, 1, 1, n− 1)

− 1

1− α
B (z, 1, 2, n− 1) +

α

1− α
B (z, 1, 1 + 1/α, n− 1)

]}
, (82)

where z = X−α
p and B(·, ·, ·, ·) is defined by (47).

C Existence of moments for ordered statistics

The general distribution of the order statistics Xk,n from a sample with a common cdf

F (x) is given by (Nevzorov, 2001, Eq. (2.1)):

Fn−k,n(x) = P {Xn−k,n < x} =
n∑

m=n−k

Cn
m (F (x))

m (1− F (x))n−m . (83)

For the Pareto distribution (2) this gives

Fn−k,n(x) = 1− Cn
n−k−1x

−(k+1)α + o
(
x−(k+1)α

)
, (84)

so the decay rate of the tail

[1− Fn−k,n(x)] ∼ x−(k+1)α
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does not depend on the sample volume n, hence the existence of moments for Xn−k,n is

determined by k only.

In general, the existence of finite moments for order statistics is described by Sen (1959):

Theorem 3 If E (|X|α) < ∞ for some α, then the moment µ
(r)
k,n = E (Xk,n)

r exists for all

k such that
r

α
≤ k ≤ n + 1− r

α
.

D Proof of Theorem 2

Denote by Fn−1,n the distribution of the order statistic Xn−1,n and by F̄n,n(x|u) the
conditional distribution of the upper order statistic Xn,n:

1− F̄n,n(x|u) = Prob{Xn,n > x|Xn−1,n = u} . (85)

Let f̄n,n(x|u) = d
dx
F̄n,n(x|u) and fn−1,n(x) =

d
dx
Fn−1,n(x). Then

fn−1,n(x) =
d

dx

[
n(1− F (x))F n−1(x) + F n(x)

]
= n(n− 1)f(x)F n−2(x)(1− F (x)); (86)

f̄n,n(x|u) =
d

dx

[
1− 1− F (x)

1− F (u)

]
f(x)

1− F (u)
. (87)

The distribution of Tn−2,n = Xn−1,n +Xn,n is calculated using the Markov property (43):

Prob{Xn−1,n +Xn,n < x} =
=
∫ x

2

∫ z/2

1
fn−1,n(y)f̄n,n(z − y)dydz =

= n(n− 1)
∫ x

2

∫ z/2

1
f(y)f(z − y)F n−2(y)dydz . (88)

The internal upper integration limit is z/2 due to the inequality Xn−1,n ≤ Xn,n. For the

Pareto distribution this yields

Prob{Xn−1,n +Xn,n < x} =
= n(n− 1)α2

∫ x

2

∫ z/2

1
y−α−1(z − y)−α−1

(
1− y−α

)n−2
dydz =

= n(n− 1)α2
n−2∑
k=0

(−1)kCk
n−2

∫ x

2

∫ z/2

1
y−α(k+1)−1(z − y)−α−1dy . (89)
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Figure 1: Number of earthquakes with seismic moment larger than or equal to M as a func-

tion of M for the shallow earthquakes in the Harvard catalog during 1977/1/1–2002/12/31.

Power-law approximation (Gutenberg-Richter law, Eq. 5) is shown by dotted line. Tapered

Gutenberg-Richter distribution (Eq. 7) which is the GR law restricted at large magnitudes

by an exponential taper is shown by dashed line. The slope of the linear part of the curve

corresponds to α-value 0.673± 0.011 and the corner moment Mc = 1.6× 1021 Nm.

Figure 2: Probability distributions for the stable (Eq. 15, blue) and Pareto (Eq. 2, red)

distributions, both with α = 2/3.

Figure 3: Quality of approximation z(1)
q , Eq. 24 (stable distribution approximation). Red

line — cdf for simulated Pareto sum, n = 1000, blue line — calculation by (14), magenta

circles — from McCulloch and Panton (1997) tables.

Figure 4: Relative error ∆(1)
q of approximation z(1)

q (Eq. 24, stable distribution approxima-

tion). Blue (dotted) curve is for lower 0.02 quantile, green (solid) curve for the median, and

(red) dashed curve for the 0.98 quantile.

(a) α = 2/3, n = 3× 106, Fα is obtained by integration of expression (15).

(b) α = 1.5, n = 106, Fα is taken from from McCulloch and Panton (1997) tables.

Figure 5: Dependence of E(rn) on the number of summands n for Pareto summands with

α = 2/3.

Figure 6: Value of the sum Sn vs. the maximal summand Mn for the Pareto distribution

with α = 2/3, the number of summands n = 1000. Red line is Sn = Mn, the green line is

Sn =Mn/(1− α).

Figure 7: Relative errors ∆(5)
q for the approximation z(5)

q with p∗ = q1/2 (dashed line) and

p∗ given by (64) (dotted line) as functions of the number of summands n, for α = 2/3 and

q = 0.02.
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Figure 8: Quantiles for the sum Sn of truncated Pareto variables (upper limit y = 3.4× 104,

Eq. 65) and their approximations as functions of the number of summands, n. Two approx-

imations are considered: via the stable distribution, Eq. 24 (dashed lines) and Gaussian,

Eq. 67 (dotted lines). Solid lines represent quantiles of simulated Pareto sums. Red upper

curves are for the 0.98 quantile, green middle curves are for the median, and blue lower

curves are for 0.02 quantile.

Figure 9: Cumulative seismic moment (solid black line) for California as a function of time.

Latitude limits 37.0◦ N — 39.0◦N, magnitude threshold 5.5. Toppozada et al. (2000)

catalog is used. We display quantiles of simulated Pareto (α = 2/3) sums with q = 0.02, 0.5,

and 0.98 (dashed blue, green and red curves, respectively). Bounds obtained using the stable

distribution approximation (z(1)
q , Eq. 24) are shown by dotted curves of respective colors.

Figure 10: Logarithmic cumulative seismic moment (solid black line) for California as a

function of the number of events, n. Latitude limits 37.0◦N – 39.0◦N, magnitude threshold

5.5. Toppozada et al. (2000) catalog is used. We display quantiles of simulated Pareto

(α = 2/3) sums with q = 0.02, 0.5, and 0.98 (dashed blue, green and red curves, respectively).

Bounds obtained using the stable distribution approximation (z(1)
q , Eq. 24) are shown by

dotted curves of respective colors.

Figure 11: Approximations for the tails of stable distributions.

(a) Stable cdf (McCulloch and Panton, 1987) with α = 0.66 (blue) and its approximation

by Eq. 70 (red).

(b) Ratio between theoretical and approximated values of the upper quantiles 0.98 and 0.999

as functions of the α-index.
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Table 1: Number n of summands necessary to approximate the sum

Sn by stable distributions (z
(1)
q ) with error ∆(1)

q < 0.1.

Quantile

α 0.02 0.50 0.98

0.50 20 ↑ 2 ↑ 2 ↓
0.60 25 ↓ 3 ↓ 2 ↓
0.66 270 ↓ 18 ↓ 2 ↓
2/3 320 ↓ 25 ↓ 2 ↓
0.80 > 10000 ↓ 3000 ↓ 2 ↓
0.90 >> 10000 ↓ > 10000 ↓ 8 ↓
0.94 >> 10000 ↓ >> 10000 ↓ 2000 ↓
0.98 >> 10000 ↓ >> 10000 ↓ >> 10000 ↓
1.00 55 ↑ 2 ↓ 2 ↓
1.02 65 ↑ 2 ↓ 2 ↓
1.10 75 ↑ 2 ↓ 2 ↓
1.20 85 ↑ 2 ↓ 2 ↓
1.30 100 ↑ 2 ↓ 2 ↓
1.50 140 ↑ 2 ↓ 3 ↓
1.66 230 ↑ 2 ↓ 8 ↓
1.80 300 ↑ 3 ↓ 30 ↓
1.90 1000 ↑ 6 ↓ 35 ↓
1.94 1800 ↑ 7 ↓ 500 ↓
1.98 6500 ↑ 9 ↓ 4000 ↓
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