
eScholarship
Combinatorial Theory

Title
Self-avoiding walks and multiple context-free languages

Permalink
https://escholarship.org/uc/item/8928m3zx

Journal
Combinatorial Theory, 3(1)

ISSN
2766-1334

Authors
Lehner, Florian
Lindorfer, Christian

Publication Date
2023

DOI
10.5070/C63160431

Supplemental Material
https://escholarship.org/uc/item/8928m3zx#supplemental

Copyright Information
Copyright 2023 by the author(s).This work is made available under the terms of a
Creative Commons Attribution License, available at
https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8928m3zx
https://escholarship.org/uc/item/8928m3zx#supplemental
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

combinatorial theory 3 (1) (2023), #18 combinatorial-theory.org

Self-avoiding walks and
multiple context-free languages

Florian Lehner∗1 and Christian Lindorfer†2

1Department of Mathematics, The University of Auckland, New Zealand
mail@florian-lehner.net

2Institut für Diskrete Mathematik, Technische Universität Graz, Austria
lindorfer@math.tugraz.at

Submitted: May 16, 2022; Accepted: Jan 19, 2023; Published: Mar 15, 2023
© The authors. Released under the CC BY license (International 4.0).

Abstract. Let G be a quasi-transitive, locally finite, connected graph rooted at a vertex o,
and let cn(o) be the number of self-avoiding walks of length n on G starting at o. We show
that if G has only thin ends, then the generating function FSAW,o(z) =

∑
n⩾1 cn(o)z

n is
an algebraic function. In particular, the connective constant of such a graph is an algebraic
number.

If G is deterministically edge-labelled, that is, every (directed) edge carries a label such
that no two edges starting at the same vertex have the same label, then the set of all words
which can be read along the edges of self-avoiding walks starting at o forms a language
denoted by LSAW,o. Assume that the group of label-preserving graph automorphisms acts
quasi-transitively. We show that LSAW,o is a k-multiple context-free language if and only if
the size of all ends of G is at most 2k. Applied to Cayley graphs of finitely generated groups
this says that LSAW,o is multiple context-free if and only if the group is virtually free.
Keywords. Self avoiding walk, formal language, multiple context free language, Cayley
graph, virtually free group
Mathematics Subject Classifications. 20F10, 68Q45, 05C25

1. Introduction

A walk in a graph is an alternating sequence (v0, e1, v1, . . . , en, vn) of vertices vi and edges ei
such that ei starts at vi−1 and ends at vi for every i. It is called self-avoiding (or SAW), if its
vertices are pairwise different. This notion was introduced in 1953 by the chemist Flory [Flo53]
as a model for long-chain polymer molecules and has since attracted considerable interest. A lot

∗F. Lehner was supported by FWF (Austrian Science Fund) projects P31889-N35 and J3850-N32
†C. Lindorfer was partially supported by FWF (Austrian Science Fund) projects P31889-N35 and DK W1230.

https://www.combinatorial-theory.org
mailto:mail@florian-lehner.net
mailto:lindorfer@math.tugraz.at

2 Florian Lehner, Christian Lindorfer

of research has focused on lattices, see for instance the monograph by Madras and Slade [MS96]
and also the lecture notes by Bauerschmidt et al. [BDCGS12], but other graphs have also been
investigated, see for example the survey of Grimmett and Li [GL19].

One of the most fundamental problems related to this model is determining (exactly or
asymptotically) the number of SAWs of a given length. Denote by cn(o) the number of SAWs
with n edges starting at a fixed root vertex o. Hammersley [Ham57] showed that the limit

µ(G) = lim
n→∞

cn(o)
1/n

exists for quasi-transitive graphs, that is, graphs which allow a group action by graph automor-
phisms with finitely many orbits on the vertex set. Moreover, the value of µ(G) is independent
of the choice of o. This number µ(G) is called the connective constant of the graph G. Note
that by the Cauchy–Hadamard theorem, µ(G) is the reciprocal of the radius of convergence of
the SAW-generating function

FSAW,o(z) =
∞∑
n=1

cn(o)z
n.

Explicit computation of µ(G) can be a very challenging task, even in seemingly harmless
instances such as two-dimensional lattices. For example, despite very precise numerical esti-
mates, the precise value of µ(Z2) remains elusive; in fact, it is not even known whether µ(Z2)
is an algebraic number. In light of this, it is not surprising that the celebrated paper [DCS12] by
Duminil-Copin and Smirnov containing the first rigorous calculation of the connective constant
of the hexagonal lattice is considered a milestone in the theory.

The special case of SAWs on one-dimensional lattices turns out to be a lot more manageable.
The reason for this is that the large scale structure of one-dimensional lattices resembles a line:
they can be decomposed into infinitely many pairwise isomorphic finite parts such that each part
only intersects with two others (its predecessor and its successor). By considering restrictions of
SAWs to single parts and analysing how these restrictions fit together, Alm and Janson [AJ90]
showed that SAW-generating functions on these lattices are always rational. While this approach
fails for higher-dimensional lattices, analogous techniques have been successfully applied to
other graph classes, in particular for graphs exhibiting some kind of large scale tree structure,
see for instance [GM17] and [LW20].

Our two main results, Theorems 1.1 and 1.2 below, crucially depend on the rich interplay
between tree like structures, context free languages, and the corresponding generating functions.
Introduced in seminal work by Chomsky and Schützenberger [CS63], the idea to study context
free languages through their generating functions is a useful tool in the investigation of context
free languages [CSW02, Fla87, SS78] and related structures [FS09, Vie85]; the introduction
of [BD15] provides a good overview.

In the present paper, we use formal languages to study SAWs on graphs all of whose ends
are thin. Recall that an end of a graph G is an equivalence class of rays (one-way infinite paths)
inG, where two rays are equivalent if and only ifG contains a third ray intersecting both of them
infinitely often. The size of an end is the maximum number of pairwise disjoint rays it contains;
ends are thin if they have finite size, otherwise they are thick.

Our first main result concerns the SAW-generating function of graphs all of whose ends are
thin.

combinatorial theory 3 (1) (2023), #18 3

Theorem 1.1. Let G be a simple, locally finite, connected, quasi-transitive graph having only
thin ends and let o ∈ V (G). Then FSAW,o is algebraic over Q. In particular the connective
constant µ(G) is an algebraic number.

Our second main result connects SAWs to formal languages. For this purpose consider the
following setup. LetG be deterministically edge-labelled, that is, every (directed) edge e ofG is
assigned a label ℓ(e) from some given alphabet Σ such that different edges with the same initial
vertex have different labels. As before, edge-labelled graphs are assumed to be quasi-transitive,
that is, the group AUT(G, ℓ) of automorphisms of G which preserve ℓ acts with finitely many
orbits on G. Important examples of transitive deterministically edge-labelled graphs are the
Cayley graphs of finitely generated groups.

The edge-labelling is extended to walks p = (v0, e1, v1, . . . , en, vn) by setting

ℓ(p) = ℓ(e1) . . . ℓ(en).

In this way, any set P of walks gives rise to a language L(P) = {ℓ(p) : p ∈ P} thus allowing us
to study properties of P via properties of the corresponding language.

This is particularly fruitful when L(P) belongs to a well understood family of languages.
Besides the well-known classes of regular and context-free languages, the class of multiple
context free languages (MCFLs) plays an important role. These were introduced by Seki et
al. [SMFK91] as a generalisation of context free languages capable of modelling cross-serial
dependencies which occur in some natural languages such as Swiss German. A concise defini-
tion of MCFLs will be given in Section 2; for now we only mention that they share many useful
traits with context-free languages, including polynomial time parsability, semi-linearity and the
closure properties of being a full AFL.

While MCFLs may seem artificial at first, they appear in some natural problems. One of
them is the well known word problem, which is equivalent to recognising closed walks in a
given Cayley graph. Anisimov [Anı71] showed that the arising language is regular if and only if
the underlying group is finite. Muller and Schupp [MS83] showed that it is context-free if and
only if the group is virtually free; they also introduced the class of context free graphs [MS85],
which are precisely the edge-labelled graphs for which the language of words corresponding to
closed walks is context free. It follows from the above results that the word problem on Zd is not
context free, but it was shown to be multiple context-free in seminal work by Salvati [Sal15] for
d = 2, and this result has since been extended by Ho [Ho18] to all positive integers d. We note
that any multiple context free grammar generating these languages must be ambiguous because
the corresponding generating functions are not algebraic.

We are interested in the language of self-avoiding walks defined by

LSAW,o = L(PSAW,o) = {ℓ(p) : p ∈ PSAW,o},

where PSAW,o is the set of all SAWs of length at least 1 on G starting at o. In his computation
of FSAW,o for the infinite ladder graph Zeilberger [Zei96] implicitly used that LSAW,o for this
graph is context free. More generally, Lindorfer and Woess [LW20] showed that LSAW,o on a
locally finite, connected, quasi-transitive deterministically edge-labelled graph G is regular if
and only if all ends of G have size 1, and that it is context-free if and only if all ends have

4 Florian Lehner, Christian Lindorfer

size at most 2. In both of these cases FSAW,o can be computed using an appropriate grammar
generating LSAW,o. Our second main result generalises and completes these results.

Theorem 1.2. Let G be a simple, locally finite, connected, quasi-transitive deterministically
edge-labelled graph and let o ∈ V (G). Then LSAW,o is an MCFL if and only if all ends ofG are
thin.

In fact, what we prove is slightly stronger. Every MCFL can be assigned a rank (see Sec-
tion 2.2 for details); an MCFL is called k-multiple context free if its rank is at most k. It is worth
noting that the families of k-MCFLs form a strictly increasing hierarchy, and that 1-MCFLs are
exactly the context free languages. We show that the maximal size of an end ofG tells us exactly
where LSAW,o lies in this hierarchy.

Theorem 1.3. LetG be a simple, locally finite, connected, deterministically edge-labelled quasi-
transitive graph and let o ∈ V (G). Then LSAW,o is k-multiple context-free if and only if every
end of G has size at most 2k.

Applied to Cayley graphs of groups, Theorem 1.2 implies that the property of having a multi-
ple context-free language of self-avoiding walks is a group invariant and gives a characterisation
of virtually free groups in terms of self-avoiding walks on their Cayley graphs; for various other
characterisations of virtually free groups see for instance the survey [Ant11].

Corollary 1.4. The language of self-avoiding walks on some (⇐⇒ any) Cayley graph of a
group is multiple context-free if and only if the group is virtually free.

As mentioned above, we follow a similar approach as Alm and Janson in [AJ90]. There
are two key ingredients to this approach: firstly, decomposing the graph into finite parts, and
secondly, analysing the restrictions of self-avoiding walks to these parts.

The decomposition into finite parts is formalised by the notion of tree decompositions which
will be the subject of Section 3. Roughly speaking these are decompositions of a graph into parts
which intersect in a tree-like manner. This notion was introduced by Halin [Hal76] in 1976; later
it was rediscovered by Robertson and Seymour [RS84] and plays a central role in the proof of the
celebrated Graph Minor Theorem. For our applications it is crucial that the tree decompositions
are invariant under some quasi-transitive group of automorphisms. Such tree decompositions
have been constructed by Dunwoody and Krön [DK15], inspired by a similar construction based
on edge cuts introduced by Dunwoody in [Dun82].

The restriction of self avoiding walks to the parts of a tree decomposition is captured by the
notion of configurations introduced and studied in Section 4. Among other things we show that
there is a bijection between SAWs and a specific class of configurations called bounded consistent
configurations, in other words, any SAW can be obtained by piecing together configurations in
a feasible way.

This bijection is central to the rest of the paper because it allows us to work with configura-
tions rather than self avoiding walks; this turns out to be beneficial since configurations (unlike
SAWs) carry a recursive structure. In Section 5 we use this recursive structure to show that the
set of bounded consistent configurations is in bijection with a context free language; Theorem 1.1
follows from this fact. In Section 6, again using the recursive structure, we show thatLSAW,o is an

combinatorial theory 3 (1) (2023), #18 5

MCFL, thus proving the first half of Theorem 1.3. Finally, we combine techniques from [LW20]
with a result from [LL21] to complete the proof of Theorem 1.3.

2. Basic background

Throughout this paper, we denote by N the set of natural numbers starting at 1 and by [n] the
set {k ∈ N : k ⩽ n}.

2.1. Graph theory

A graph G consists of a set V (G) of vertices and a set E(G) of edges. Every edge e ∈ E(G)
starts at its initial vertex e− ∈ V (G) and ends at its terminal vertex e+ ∈ V (G). We do not allow
loops, so the two endpoints e− and e+ of every edge e ∈ E(G) are different. Furthermore all
graphs considered are undirected, so all edges appear in pairs e, ē having the same endpoints but
different direction. In other words, for e ∈ E(G) the edge ē ∈ E satisfies ē− = e+ and ē+ = e−

and ¯̄e = e. When drawing a graph, every pair (e, ē) will usually be represented by and thought
of as one undirected edge. A graph is called simple, if it contains no multiple edges, or in other
words, if every edge e is uniquely defined by the pair (e−, e+) of its initial and terminal vertex.
We sometimes abuse notation and write e = e−e+; if G is not simple we still use this notation,
but will include further information needed to identify e among the edges with the same initial
and terminal vertices if necessary. The degree deg(v) of a vertex v is the number of outgoing
edges of v. The graph G is called locally finite, if all vertices have finite degrees.

A walk in a graph is an alternating sequence p = (v0, e1, v1, . . . , en, vn) of vertices vi ∈ V (G)
and edges ei ∈ E(G) such that e−i = vi−1 and e+i = vi for every i ∈ [n]. Its length is the num-
ber n of edges and its initial and terminal vertices are p− = v0 and p+ = vn, respectively. This
comprises the trivial walk (v) of length 0, starting (and ending) at a vertex v and also the empty
walk ∅ consisting of no vertices and no edges. A walk p is called self-avoiding or a SAW, if
the vertices in p are pairwise different. For two vertices v and w of p we write vpw for the
maximal sub-walk of p starting at v and ending at w. If v = v0 or w = vn we omit the corre-
sponding vertex and denote the sub-walk by pw or vp, respectively. We extend this notation even
further and denote for walks p1, . . . , pn and vertices v0, . . . , vn in the respective walks the con-
catenation (v0p1v1)(v1p2v2) . . . (vn−1pnvn) of the sub-walks vi−1pivi by v0p1v1p2 . . . pnvn. If
the terminal vertex v of p1 coincides with the initial vertex of p2, we write p1p2 instead of p1vp2,
and similarly for concatenations of multiple walks. If e is an edge connecting the terminal ver-
tex v1 of p1 to the initial vertex v2 of p2, then we write p1ep2 instead of p1v1(v1, e, v2)v2p2, and
similarly for concatenations with more parts. A walk is closed if its initial and terminal vertex
coincide. A closed walk p of length at least 3 such that v1p is self-avoiding is called cycle.

A multi-walk p is a sequence of vertices and edges obtained by stringing together the se-
quences of vertices and edges corresponding to walks p1, . . . , pk; the pi are called the walk
components of p. In other words, a multi-walk is a sequence of vertices and edges, such that
every edge in the sequence is preceded by its initial vertex and succeeded by its terminal vertex.
Note that each of the walks pi is a sequence starting and ending with a vertex, so that the final
vertex of pi and the initial vertex of pi+1 will appear next to each other in the sequence p. In

6 Florian Lehner, Christian Lindorfer

fact every appearance of two consecutive vertices in a multi-walk marks the start of a new walk
component.

For a (multi-)walk p onG andA ⊂ V (G)∪E(G) we denote by p∩A the sequence obtained
from p by deleting all elements not in A and by p − A the sequence obtained by deleting all
elements of A. For a sub-graph H of G we write p ∩H for the sequence p ∩ (V (H) ∪ E(H)).
In general the sequences p ∩ A and p− A need not be multi-walks, but we note that p− E is a
multi-walk for E ⊆ E(G), as is p ∩H for any sub-graph H of G.

A graph G is connected if any two vertices v, w are the endpoints of some walk p in G.
Components of G are maximal connected sub-graphs.

A tree is a connected and cycle-free graph. A rooted tree is a tree in which one vertex has
been designated the root. For vertices u and v of a rooted tree we say that u is an ancestor of v
and v is a descendant of u if any walk from r to v contains u. The unique ancestor of v which is
a neighbour of v is called its parent and denoted by v↑, descendants of v in the neighbourhood
of v are called its children. The forefather of a set A ⊆ V (T) is the unique common ancestor of
all vertices in A none of whose children are ancestors of all vertices in A. The cone at a vertex v
in a rooted tree, denoted byKv, is the subtree induced by v and its descendants. An ordered tree
is a rooted tree in which an ordering is specified for the children of each vertex; in this case we
will denote the i-th child of a vertex v with respect to this order by v↓

i .
A tree consisting only of vertices of degree at most 2 is called a path. We point out that

unlike walks, paths are graphs and have no direction; a finite path can be seen as the support of
a SAW. Given two disjoint subsets A and B of vertices of a graph G, an A–B-path on G is a
sub-graph of G which is a finite path intersecting A and B only in its two endpoints. A ray is a
one-way infinite path and a double ray is a two-way infinite path.

For any set K ⊆ V (G) we denote by G − K the sub-graph obtained from G by remov-
ing K and all edges incident to K. If removing K disconnects G, then K is called a sep-
arating set. Furthermore, we denote by G[K] the sub-graph of G induced by K, that is the
graph G− (V (G) \K).

Two rays in a graph G are called equivalent, if for every finite set K ⊆ V (G) they end up in
the same component ofG−K, that is, all but finitely many of their vertices are contained in that
component. An end ofG is an equivalence class of rays with respect to this equivalence relation.
We say that two ends ω1 and ω2 of a graph G are separated by K if any two rays R1 ∈ ω1

and R2 ∈ ω2 end up in different components of G − K. Halin [Hal65] showed that an end
containing arbitrarily many disjoint rays must contain an infinite family of disjoint rays, hence
the maximum number of disjoint rays contained in an end ω is well defined and lies in N∪{∞}.
This number is called the size of the end ω. An end of finite size is called thin, an end of infinite
size is called thick.

An automorphism γ of a graph G is a permutation of V (G) preserving the neighbourhood
relation inG. The set of all automorphisms ofG forms a group which is called the automorphism
group ofG and denoted byAUT(G). For a subgroupΓ ⊆ AUT(G)we can define an equivalence
relation on V (G) by u ∼ v ⇐⇒ ∃γ ∈ Γ: u = γv. The equivalence classes with respect to
this relation are called orbits and denoted by Γv. We say that Γ acts transitively, if there is
exactly one orbit, and that it acts quasi-transitively, if there are only finitely many orbits. In
this case the graph G is also called (quasi-)transitive. A sub-graph H of G is called γ-invariant

combinatorial theory 3 (1) (2023), #18 7

for γ ∈ AUT(G) if γ(H) = H .
It is well known, that any infinite, locally finite, connected graph which is quasi-transitive

has either one, two, or infinitely many ends. If it has one end, this end is thick. If it has two ends,
both are thin and must have the same size. Finally, if it has infinitely many ends, then it must
have thin ends. These and many more results were given by Halin in [Hal73].

The action of the automorphism group AUT(G) of a locally finite, connected graph extends
in the obvious way to its ends. An automorphism γ ∈ AUT(G) is called

(i) elliptic, if its fixes a finite subset of V (G),

(ii) parabolic, if it is not elliptic and fixes a unique end of G, and

(iii) hyperbolic, if it is not elliptic and fixes each of a unique pair of ends of G.

Halin [Hal73] showed that any graph automorphism is either elliptic, or parabolic, or hyper-
bolic, and additionally, that these different types of automorphisms have the following properties.
Firstly, γ is elliptic if and only if for some (⇐⇒ every) vertex v ofG the sequence v, γv, γ2v, . . .
contains only finitely many different vertices (and is periodic). Secondly, if γ is hyperbolic then
the two ends fixed by γ have the same finite size k and G contains k disjoint double rays, which
are invariant under γn for some n ∈ N. Finally, if γ is parabolic then the unique end fixed by γ
is thick and G contains infinitely many double rays invariant under γn for some n ∈ N.

Recall that a quasi-isometry between two metric spaces (X, dX) and (Y, dY) is a mapping
φ : X → Y such that there are constants A > 0, and B,B′ ⩾ 0 such that for all x1 , x2 ∈ X
and y ∈ Y ,

A−1dX(x1, x2)−B ⩽ dY (φx1, φx2) ⩽ AdX(x1, x2) +B and dY (y, φX) ⩽ B′.

Two connected graphs G and H are called quasi-isometric if the corresponding metric
spaces (G, dG) and (H, dH) are quasi-isometric, where dG and dH denote the standard graph
distance in G and H , respectively. Every quasi-isometry φ has a quasi-inverse ψ : Y → X ,
which is a quasi-isometry such that ψφ and φψ are at bounded distance from the respective
identity mappings. In particular, being quasi-isometric is an equivalence relation. It is well
known that any quasi-isometry between graphs G and H can be extended to the ends of G and
that this extension is bijective on the set of ends, and maps thick ends to thick ends and thin ends
to thin ends, see for example [Woe00, Lemma 21.4].

An edge-labelled graph is a graph G together with a label function ℓ assigning to every
edge e ∈ E(G) an element of some finite set Σ, called label alphabet. The labelling is called
deterministic, if any two edges e and f starting at the same vertex e− = f− have different labels.
For quasi-transitive graphs, we would like the edge-labelling to be compatible with the action
of a quasi-transitive subgroup of AUT(G). To this end, we denote by AUT(G, ℓ) the group of
label-preserving graph automorphisms; when speaking of a quasi-transitive edge-labelled graph
it will be implicitly assumed that AUT(G, ℓ) acts quasi-transitively. Note that in the case of a
deterministic labelling ℓ, the groupAUT(G, ℓ) acts freely onG, that is, the identity inAUT(G, ℓ)
is the only element fixing a vertex of G.

One well-known class of simple, connected, locally finite, transitive graphs that come with
a natural deterministic edge-labelling are Cayley graphs of finitely generated groups. Starting

8 Florian Lehner, Christian Lindorfer

Figure 2.1: Cayley graph of the group (C2 ∗ C2 ∗ C2)× C3. Different edge colours correspond
to different generators.

with a symmetric generating set S of a group Γ, the Cayley graph G = Cay(Γ, S) has vertex
set V (G) = Γ. We choose Σ = S, and for each γ ∈ Γ and s ∈ S there is a directed edge
from γ to γs with label s. The left regular action of Γ on itself extends to an action on G by
label preserving automorphisms; in fact, it is not hard to see that Γ = AUT(G, ℓ).

We finish this section by giving a simple example of a Cayley graph which will be used as
a running example to demonstrate various constructions throughout this paper. Let Cn denote
the cyclic group of order n and consider the group Γ = (C2 ∗ C2 ∗ C2)× C3, that is, the direct
product of C3 and a free product of three copies of C2. Let a, b and c be the generators of the
copies of C2 and let r be the generator of C3. Then Γ can be presented as

⟨a, b, c, r | a2 = b2 = c2 = r3 = arar−1 = brbr−1 = crcr−1 = 1Γ⟩.

Figure 2.1 shows the Cayley graph G of Γ with respect to the symmetric generating
set S = {a, b, c, r, r−1}.

2.2. Formal languages

For an alphabet (finite set of letters) Σ we denote by

Σ∗ = {w = a1a2 . . . an | n ⩾ 0, ai ∈ Σ}

the set of all words over Σ. The number n of letters in a word w is called the length of w and
denoted by |w|; we write ϵ for the unique word of length 0. A language over Σ is a subset of Σ∗.

Any set of walks on an edge-labelled graphG defines a language in the following way. Extend
the label function ℓ to walks p = (v0, e1, . . . , en, vn) by setting

ℓ(p) = ℓ(e1)ℓ(e2) . . . ℓ(en) ∈ Σ∗.

combinatorial theory 3 (1) (2023), #18 9

Then for any set of walks P on G, the associated language is

L(P) = {ℓ(p) : p ∈ P).

For a given vertex o ofG we denote by PSAW,o the set of SAWs of length at least 1 onG starting
at o and by LSAW,o = L(PSAW,o) the associated language of self-avoiding walks. Note that if the
edge-labelling is deterministic, then ℓ is a bijection between PSAW,o and LSAW,o.

A context-free grammar is a quadruple G = (N,Σ,P, S), where N is a finite set of non-
terminals with N∩Σ = ∅, S ∈ N is the start symbol and P ⊆ N× (N∪Σ)∗ is a finite set of
production rules. We write A ⊢ α for (A,α) ∈ P.

For two strings α, β ∈ (N∪Σ)∗, we say that β is obtained from α in a single step of leftmost
derivation, and write α⇒ β, if α = α1Aα2 and β = α1γα2 for some α1 ∈ Σ∗, α2 ∈ (N∪Σ)∗

and additionally A ⊢ γ ∈ P. Thus, β is a result of using the rule A ⊢ γ to replace the leftmost
non-terminal in α. A leftmost derivation of β from α is a sequence

(α = α0, α1, . . . , αk = β)

such that αi−1 ⇒ αi for every i. We say that β is derived from α and write α ∗
=⇒ β. Each

non-terminal A ∈ N generates a language LA = {α | A ∗
=⇒ α} and the language generated by

the grammar G is L(G) = LS . The grammar is called unambiguous if for every α ∈ L(G)
there is a unique leftmost derivation generating α.

For a given context-free grammar G a derivation tree is an ordered tree D together with a
labelling λ : V (D)→ N ∪Σ∗ such that

(i) internal vertices have labels in N,

(ii) leaves have labels in Σ∗ and

(iii) whenever v1, . . . , vk are the ordered children of u in D,

λ(u) ⊢ λ(v1) . . . λ(vk) ∈ P.

Any ordered tree induces a total order u1, . . . , uk on its leaves and we call D a derivation
tree of w ∈ Σ∗ if w = λ(u1) . . . λ(uk). It is a standard result in formal language theory that
there is a bijection between leftmost derivations of w ∈ Σ∗ from A ∈ N and derivation trees
of w whose roots are labelled A.

The (commutative) language generating function of a given language L over the alphabet
Σ = {a1, . . . , am} is a formal power series in the commuting variables a1, . . . , am over Z

FL(a1, . . . , am) =
∑
w∈L

c(w),

where c(w) =
∏m

i=1 a
li
i for any word w containing exactly li copies of the letter ai.

It follows from a famous result of Chomsky and Schützenberger [CS63] that the commuta-
tive generating function of the language L(G) generated by an unambiguous context-free gram-
mar G is algebraic over Q, meaning that it is the solution to a system of algebraic equations

10 Florian Lehner, Christian Lindorfer

over Q. Elimination theory provides us with an irreducible polynomial P in m + 1 variables
with coefficients in Q such that

P (FL(a1, . . . , am), a1, . . . , am) = 0.

A proof of this fact can for example be found in the book [KS86] of Kuich and Salomaa.
To motivate the upcoming introduction of multiple context-free grammars as a generalisa-

tion of context-free grammars, let us briefly discuss a different notation for context-free gram-
mars G = (N,Σ,P, S). When producing words, one usually starts with the start symbol S and
iteratively replaces non-terminals according to the rules given by P. In terms of derivation trees,
we build the trees starting from the top (root).

There is also an alternative way to build words using production rules. A production
rule A ⊢ x0A1x1 . . . Anxn tells us that we can obtain an element of the language LA gener-
ated by A by sticking together the strings x0, . . . , xn ∈ Σ∗ with strings yi ∈ LAi

, i ∈ [n],
according to the rule. This way of thinking is closely related to predicate logic. We might
say that a word w ∈ Σ∗ has property A ∈ N and write ⊢G A(w) if w ∈ LA. Then the
rule A ⊢ x0A1x1 . . . Anxn is equivalent to the statement

“If ⊢G A1(z1), . . . ,⊢G An(zn), then also ⊢G A(x0z1x1 . . . znxn)”.

In this statement, the zi play the role of variables and it is natural to write the production as

A(x0z1x1 . . . znxn)← A1(z1), . . . , An(zn).

With this in mind, the natural way to generate words is by starting with terminal rules and con-
structing the derivation from bottom to top, starting at its leaves.

Keeping this in mind, we introduce multiple context-free languages. Just like in the defi-
nition of context-free languages, the first two ingredients are an alphabet Σ and a set of non-
terminals N. As noted above we can intuitively view every non-terminal in a context-free lan-
guage as a property applying to all strings it generates. Similarly, a non-terminal of a multiple
context-free language should be viewed as a property applying to tuples of strings. To this end,
every non-terminal is assigned an integer r ⩾ 1 counting the size of the tuples, called rank. In
other words, N is a finite disjoint union N =

⋃
r∈N N

(r) of finite sets N(r), whose elements
are called non-terminals of rank r. Production rules ρ of a multiple context-free grammar with
non-terminals N and alphabet Σ are expressions of the form

ρ = A(α1, . . . , αr)← A1(z1,1, . . . , z1,r1), . . . , An(zn,1, . . . , zn,rn),

where

(i) n ⩾ 0,

(ii) A ∈ N(r) and Ai ∈ N (ri) for all i ∈ [n],

(iii) zi,j are variables,

(iv) α1, . . . , αr are strings over Σ ∪ {zi,j | i ∈ [n], j ∈ [ri]}, such that each zi,j occurs at most
once in α1 . . . αr.

combinatorial theory 3 (1) (2023), #18 11

Production rules with n = 0 are called terminating rules. For convenience we sometimes use
the shortened notation

A(α1, . . . , αr)← (Ai(zi,1, . . . , zi,ri))i∈[n]

for the production rule ρ. For a non-terminalA ∈ N(r) and wordsw1, . . . , wr ∈ Σ∗ an expression
of the formA(w1, . . . , wr) is called a term. The application of the production rule ρ to a sequence
(Ai(wi,1, . . . , wi,ri))i∈[n] of n terms yields the termA(w1, . . . , wr), where wl is obtained from αl

by replacing every variable zi,j by the word wi,j . The non-terminal A is called the head of the
production and the sequence of non-terminals A1, . . . , An are its tail.

A multiple context-free grammar is a quadruple G = (N,Σ,P, S), where N is a finite
ranked set of non-terminals,Σ is a finite alphabet,P is a finite set of production rules over (N,Σ)
and S ∈ N(1) is the start symbol. We call G k-multiple context-free or a k-MCFG, if the rank
of all non-terminals is at most k.

A term τ is called derivable in G and we write ⊢G τ if there is a sequence A of deriv-
able terms such that the application of a rule ρ ∈ P to A yields τ . It is implicit in this
recursive definition that if A(w1, . . . , wr) ← is a terminal rule, then the term A(w1, . . . , wr) is
derivable by letting A be the empty sequence. The language generated by G is the
set L(G) = {w ∈ Σ∗ | ⊢ S(w)}. We call a language k-multiple context-free or an k-MCFL
if it is generated by an k-MCFG.

The following simple example of a 2-MCFG should be beneficial for a better understanding
of the concepts above.

Example 2.1. Consider the MCFG G = (N,Σ,P, S), where N = {S,A}, Σ = {a, b, c} and
the set P consists of the rules ρ1, . . . , ρ5 given as follows:

ρ1 : S(z1z2)← A(z1, z2),

ρ2 : A(az1b, z2c)← A(z1, z2),

ρ3 : A(az1b, z2)← A(z1, z2),

ρ4 : A(az1, z2)← A(z1, z2),

ρ5 : A(ϵ, ϵ)← .

From the production rules it is immediately clear that the rank ofA is 2 asAworks with pairs
of strings. The rank of the start symbol S is 1 by definition, so that G is 2-multiple context-free.
We use the recursive definition above to find all terms derivable in G.

By the terminal rule ρ5, the term A(ϵ, ϵ) is derivable, we write ⊢G A(ϵ, ϵ). Applying the
rule A(az1, z2) ← A(z1, z2) to the term A(ϵ, ϵ), we replace z1 and z2 on the left side of the
rule by the empty word ϵ and obtain the term A(a, ϵ). In a similar way, iterative applica-
tion of ρ4 yields that all terms of the form A(ak, ϵ), k ⩾ 0 are derivable. Making use of
rule ρ3, we obtain ⊢G A(ak+lbl, ϵ) for every k, l ⩾ 0. Analogously, the rule ρ2 provides
⊢G A(ak+l+mbl+m, cm) for k, l,m ⩾ 0. In a final step, we use the rule S(z1z2) ← A(z1, z2)
containing the start symbol S to create words of the language L(G): this rule ρ1 is used to
concatenate the pairs (w1, w2) of strings appearing in derivable terms A(w1, w2) and yields
⊢G S(w1w2). As a conclusion, all terms of the form S(ak+l+mbl+mcm) are derivable.

12 Florian Lehner, Christian Lindorfer

For the converse direction, note that any derivable term S(w) must arise from an application
of ρ1, so that w = w1w2 for some derivable term A(w1, w2). It is not hard to see that in any
such term, w1 = akbl and w2 = cm holds for some k ⩾ l ⩾ m ⩾ 0: as the only term arising
from a terminal rule, A(ϵ, ϵ) satisfies this condition and the rules ρ2, ρ3 and ρ4 preserve it. We
conclude that the language generated by G is

L(G) = {ak+l+mbl+mcm | k, l,m ⩾ 0} = {akblcm | k ⩾ l ⩾ m ⩾ 0}.

Remark 2.2. As one might already guess from the discussion right before the introduction of
MCFGs, the class of context-free languages coincides with the class of 1-multiple context-free
languages. A given context-free grammar G = (N,Σ,P, S) can be easily translated into a
1-MCFG by replacing every production rule

A ⊢ w0A1w1A2 . . . Anwn ∈ P,

where A,A1, . . . , An ∈ N and w1, . . . , wn ∈ Σ∗ with the multiple-context-free production rule

A(w0z1w1z2 . . . znwn)← A1(z1), . . . , An(zn)

over (N,Σ). The resulting 1-MCFGG′=(N,Σ,P′, S) then generates the same languageL(G).
Remark 2.3. Sometimes it will be convenient to work with a slightly different definition of mul-
tiple context-free grammars allowing non-terminals A to have rank r = 0. For such a non-
terminal A of rank 0, the only valid term is A(∅), where ∅ denotes the empty tuple. We point
out that ∅ is different from the 1-tuple (ϵ) containing the empty string. Note that the generative
ability of k-multiple context-free languages does not change and that all properties discussed
here remain valid under this variation.

In the Chomsky-hierarchy of formal languages, multiple context-free languages lie strictly
between context-free languages and the bigger class of context-sensitive languages. MCFLs
share some important properties with context-free languages. They are closed under under ho-
momorphisms, inverse homomorphisms, union, intersection with regular languages and Kleene
closure. Furthermore they are parsable in polynomial time and semilinear.

Derivation trees for MCFLs were first defined by Seki et al [SMFK91]; we use a slight
variation of their definition. Let G = (N,Σ,P, S) be an MCFG. A derivation tree of a term τ
with respect to the grammar G is an ordered tree D whose vertices are labelled with elements
of P satisfying the following conditions:

(i) The root of D has n ⩾ 0 children and is labelled with a rule ρ ∈ P.

(ii) For i ∈ [n] the subtree Di rooted at the i-th child of the root of D is a derivation tree of a
term τi.

(iii) The rule ρ applied to the sequence (τi)i∈[n] yields τ .

It is not hard to see that ⊢ A(w1, . . . , wr) if and only if there is a derivation tree D of
the term A(w1, . . . , wr). However, in general such a derivation tree need not be unique. An

combinatorial theory 3 (1) (2023), #18 13

MCFG G is called unambiguous, if for every term S(w) there is at most one derivation tree
of S(w) with respect to G. An MCFL is called unambiguous if it is generated by an unambigu-
ous MCFG. We denote by w(D) the tuple of strings w1, . . . , wr generated by D.

In some sense derivations trees of MCFGs are more natural than derivation trees of CFGs.
The tree corresponding to the derivation process of a term τ in an MCFG consists of a single
vertex labelled ρ for every rule ρ occurring in the process.

The pumping lemma for k-MCFLs, similarly to the well known pumping lemma for CFLs,
provides a convenient way to show that certain languages are not k-multiple context free.

Lemma 2.4 ([SMFK91, Lemma 3.2]). For every infinite k-MCFL L there is somew ∈ L, which
can be written in the form w = x1y1x2y2 . . . x2ky2kx2k+1 for some xi, yi,∈ Σ∗ such that

• y1y2 . . . y2k ̸= ϵ and

• x1yn1x2yn2 . . . x2kyn2kx2k+1 ∈ L for every n ∈ N0.

Note that this lemma is weaker than the pumping lemma for CFLs: it only provides the
existence of “pumpable” strings whereas the pumping lemma for CFLs states that all words
exceeding a certain length are pumpable. In particular it is not strong enough to imply the
second part of the following result from [LL21], which is a main pillar of Theorem 1.3.

Theorem 2.5 ([LL21, Theorem 1.1]). The language {an1
1 a

n2
2 . . . ank

k | n1 ⩾ n2 ⩾ . . . ⩾ nk ⩾ 0}
is a ⌈k/2⌉-MCFL, but not a (⌈k/2⌉ − 1)-MCFL.

3. Tree decompositions

A tree decomposition of a graph G is a pair T = (T,V), consisting of a tree T and a function
V : V (T) → 2V (G) assigning a subset of V (G) to every vertex of T , such that the following
three conditions are satisfied:

(T1) V (G) =
⋃

t∈V (T) V(t).

(T2) For every e ∈ E(G) there is a t ∈ V (T) such that V(t) contains both vertices that are
incident with e.

(T3) V(s) ∩ V(t) ⊆ V(r) for every vertex r on the unique s–t-path in T .

The set V(t) is called the part of t. For an edge e = st of T , the intersection V(e) = V(s, t) =
V(s) ∩ V(t) (= V(t, s)) is called the adhesion set of e. A tree decomposition (T,V) of G is
called Γ-invariant for a group Γ ⩽ AUT(G), if every γ ∈ Γ maps parts onto parts and thereby
induces an automorphism of T . More precisely there is an action of Γ on T by automorphisms
such that for every γ ∈ Γ and t ∈ V (T), it holds that γ(V(t)) = V(γt).

The tree decomposition T is said to distinguish two given ends ω1 and ω2 of G if there is
some edge e of T such that the adhesion set V(e) separates ω1 and ω2. Moreover T distinguishes
the two ends efficiently, if one of its adhesion sets has the smallest size of all subsets of vertices

14 Florian Lehner, Christian Lindorfer

of G separating ω1 and ω2. We call T reduced if every adhesion set efficiently distinguishes
some pair of ends of G and no two parts corresponding to adjacent vertices of T coincide.

A graph G is called accessible if there is a natural number k such that any two ends can
be separated by a set of vertices of size at most k. Originally the notion of accessibility comes
from group theory. Stalling’s theorem about ends of groups states that some (every) Cayley
graph a finitely generated group Γ has more than one end if and only if Γ admits a nontrivial
decomposition as an amalgamated free product or an HNN-extension over a finite subgroup.
Γ is called accessible if the process of iterated nontrivial splitting of Γ always terminates in a
finite number of steps. Thomassen and Woess [TW93] showed that accessibility of a group is
equivalent to accessibility of some (and thus all) of its Cayley graphs. The following theorem
is closely related to the work of Dunwoody [Dun82] and is a direct consequence of [HLMR22,
Theorem 6.4].

Theorem 3.1. Let G be a simple, locally finite, connected, accessible graph and let Γ be a
group acting quasi-transitively on G. Then there is a Γ-invariant tree decomposition (T,V)
ofG efficiently distinguishing all ends ofG and an action of Γ on T witnessing the Γ-invariance
of (T,V) with only finitely many Γ-orbits on E(T).

For our purpose, it is necessary for tree decompositions to additionally be reduced. However,
this is not really a restriction, as the following construction shows.

Let T = (T,V) be a tree decomposition of G and F be a subset of edges of T . The con-
traction of F in T is the pair T /F = (T/F,V/F) defined in the following way. The tree T/F
consists of a single vertex for every component of the graph (V (T), F) obtained from T by
only keeping the edges in F ; for a vertex t of T/F let [t]F denote the vertex set of the corre-
sponding component. Two different vertices [s]F and [t]F of T/F are connected by an edge if
and only if there are s′ ∈ [s]F and t′ ∈ [t]F , which are adjacent in T . The part correspond-
ing to [t]F ∈ V (T/F) is (V/F)([t]F) =

⋃
s∈[t]F V(s). It is not hard to see that T /F is a tree

decomposition of G.
Starting from a tree decomposition T = (T,V) provided by the previous theorem, we can

construct a reduced tree decomposition as follows. Let the set F consist of all edges e of T
such that the adhesion set V(e) does not minimally separate any pair of ends of G. It is easy
to check that the contraction T /F is a tree decomposition retaining all properties mentioned
in Theorem 3.1 and additionally every adhesion set minimally separates two ends of G. In a
second step we contract all edges of T/F connecting two vertices whose parts coincide to obtain
a reduced tree decomposition as in the following corollary.

Corollary 3.2. LetG be a simple, locally finite, connected, accessible graph and let Γ be a group
acting quasi-transitively onG. Then there is a reduced Γ-invariant tree decomposition (T,V) of
G efficiently distinguishing all ends ofG such that there are only finitely many Γ-orbits onE(T).

Let us again look at the Cayley graph G of the group Γ = (C2 ∗ C2 ∗ C2) × C3 given in
Figure 2.1. We already mentioned that Γ acts freely on G by left multiplication. A reduced
Γ-invariant tree decomposition (T,V) of G as provided by the previous corollary is shown in
Figure 3.1.

We require the following four important properties of tree decompositions T = (T,V) ob-
tained from this corollary.

combinatorial theory 3 (1) (2023), #18 15

Figure 3.1: Decomposition tree T of the Cayley graph G. The vertex-colouring indicates the
four orbits of the group action on the vertices of T . The subgraphs ofG induced by the different
parts are shown at the right side.

(P1) The size of all adhesion sets is bounded from above by some k ∈ N.

(P2) For every K ⊆ V (G) there are only finitely many edges e of T with K = V(e).

(P3) All parts are finite if and only if all ends of G have finite size.

(P4) If all ends of G have finite size, then T is locally finite.

The remainder of this section is dedicated to the proof of the four properties stated above.

Proof of (P1)–(P4). Firstly, T is reduced, so every adhesion set minimally separates some pair
of ends of G. The graph G is accessible, so (P1) holds.

For the proof of the other properties, we need some notation. A separation of G is a
pair (A,B) of vertex sets such that G[A] ∪ G[B] = G, which means that there are no edges
between A \ B and B \ A. The intersection A ∩ B is called the separator of (A,B). Note that
every edge e of the tree decomposition T corresponds to a separation of G with separator V(e).
Removal of e splits T into two components T1 and T2 and

(⋃
t∈V (T1)

V(t),
⋃

t∈V (T2)
V(t)

)
is the

separation of G induced by e.
Clearly any given finite set K of vertices of a locally finite graph G can occur only finitely

many times as the separator of a separation (A,B) of G. Indeed, G−K has only finitely many
components and each of these components has to be fully contained in either A or B. This
observation together with the following lemma yields property (P2).

Lemma 3.3. Let T = (T,V) be a tree decomposition as in Corollary 3.2. Then every separa-
tion (A,B) of G corresponds to at most two edges of T .

Proof. Let e1, e2 be two edges of T inducing the separation (A,B). We first show that e1 and e2
share a vertex. For i = 1, 2 let TA

i and TB
i be the components of T − ei corresponding to A

and B, respectively. The separation (A,B) is induced by an edge of T and every adhesion set

16 Florian Lehner, Christian Lindorfer

separates two ends of G, so A and B are both infinite sets and V(e1) = V(e2) = A∩B is finite.
We may assume without loss of generality that TA

1 ⊆ TA
2 and TB

2 ⊆ TB
1 . Let s be a vertex on the

unique shortest path P connecting e1 and e2 in T . Property (T3) of tree decompositions yields

A ∩B = V(e1) ∩ V(e2) ⊆ V(s).

Moreover s is a vertex of TB
1 and TA

2 , so in particular

V(s) ⊆
⋃

t∈V (TB
1)

V(t) ∩
⋃

t∈V (TA
2)

V(t) = A ∩B,

implying that the part V(s) is equal to A∩B for every vertex s of P . Reducedness of T implies
that P consists of a single vertex and thus both e1 and e2 contain s.

Let e3 be any edge of T inducing the separation (A,B) and let TA
3 and TB

3 be the compo-
nents of T − e3 corresponding to A and B, respectively. Then e3 intersects e1 and e2 and thus
contains their common vertex r. Finally, if e3 is different from e1 and e2, then either TB

2 ⊆ TA
3

or TA
1 ⊆ TB

3 , leading to a contradiction.

The basis for the proof of (P3) is the following lemma, which is closely related to [HLMR22,
Proposition 4.5].

Lemma 3.4. LetG, Γ and (T,V) be as in Theorem 3.1. Then for every vertex t of T , the induced
sub-graph G[V(t)] is a quasi-transitive graph.

Proof. We show that the set-wise stabiliser ΓV(t) of V(t) in Γ acts quasi-transitively onG[V(t)].
If u ∈ V(t) does not lie in any adhesion set, then neither does any image of u under a graph
automorphism. In particular, any γ ∈ Γ mapping u to some vertex v ∈ V(t) fixes V(t) and thus,
under the action of the stabiliser of V(t) there are only finitely many orbits of vertices in V(t)
not contained in any adhesion set.

Let m be the finite number of Γ-orbits on E(T). Whenever γ ∈ Γ fixes t and maps a
neighbour s of t onto some other neighbour s′, γ lies in ΓV(t) and maps the adhesion set V(s, t)
onto V(s′, t). Therefore the number of orbits of adhesion sets under the action of ΓV(t) is at
most 2m. As every adhesion set contains at most k elements, ΓV(t) acts with at most 2mk orbits
on vertices of V(t), which lie in adhesion sets of the tree decomposition. We conclude that ΓV(t)
acts with finitely many orbits on V(t).

Our goal is to apply the following proposition due to Thomassen [Tho92] to a part V(t), but
in general G[V(t)] need not be connected, so some additional work is necessary.

Proposition 3.5 ([Tho92, Proposition 5.6]). If G is a locally finite, connected, quasi-transitive
graph with only one end, then this end is thick.

In order to prove the first implication of (P3), assume that there is some vertex t of T such
that the part V(t) is infinite. Let H be the sub-graph of G obtained from the induced sub-
graph G[V(t)] in the following way. For every edge e of T incident to t add all shortest paths
between any pair of vertices in the adhesion set V(e). Note that since the stabiliser of V(t) acts
quasi-transitively, the length of these paths is bounded by some constant m ∈ N.

combinatorial theory 3 (1) (2023), #18 17

Any walk on G connecting two vertices of V(t) consists of sub-walks on G[V(t)] and de-
tours leaving V(t) via some adhesion set V(e) and re-entering via the same set. These detours
can be replaced by a shortest detour, which is by definition a walk on H , so H is connected.
Furthermore, ΓV(t) acts quasi-transitively on H because it acts with finitely many orbits on the
edges of T and thus on the adhesion sets contained in V(t).

Assume for a contradiction that H has more than one end. Then there must be a separa-
tion (A,B) of H with finite separator A ∩ B such that both A and B are infinite. Let K be the
union of A ∩B and all adhesion sets V(s, t) containing both a vertex a of A \B and a vertex b
ofB\A. Due to construction ofH it contains an a–b-path of length at mostm and any such path
must intersect the separatorA∩B. Thus any vertex ofK lies at distance at mostm fromA∩B,
implying that K is finite.

It is not hard to see that G −K contains no (A \ B)–(B \ A)-path. Indeed, assume that P
is a (A \ B)–(B \ A)-path in G which does not intersect A ∩ B. Then P is a detour leaving
and re-entering G[V(t)] via some adhesion set V(s, t) intersecting A \ B and B \ A and thus
contains at least one vertex in K.

Finally, let RA and RB be rays in H[A] and H[B], respectively. Then the ends ωA and ωB

ofG containing RA and RB are different, as RA and RB are separated byK. On the other hand,
each of RA and RB contains infinitely many vertices of V(t), so they are not separated by any
adhesion set of the tree decomposition T . This contradicts the fact that T distinguishes all ends
ofG. We conclude that the infinite connected graphH has precisely one end. By Proposition 3.5
the end of the one-ended quasi-transitive graph H is thick. The graph G contains H as a sub-
graph and thus inherits the thick end of H .

On the other hand, it is not hard to see that all ends of G are thin, if all parts of T are finite.
For any set of disjoint rays in the same end of G there must be some adhesion set intersecting
each of the rays. The size of adhesion sets is at most k, so every end of G has size at most k.

Finally (P4) is a consequence of (P2) and (P3). Every edge e incident to a vertex s of T
corresponds to some adhesion set V(e) which is a subset of the part V(t). But the finite part V(t)
has only finitely many different subsets and each of them occurs only finitely often as an adhesion
set in (T,V).

This completes the proof of (P1)–(P4)

3.1. Rooted tree decompositions

Let (G, o) be a simple, locally finite, connected graph rooted at o ∈ V (G). A rooted tree
decomposition T = (T,V , r) of (G, o) consists of a tree decomposition (T,V) of G and a fixed
vertex r of T such that o is contained in V(r); note that there can be multiple valid choices for r
since o can be contained in more than one part. We call r the root of T and V(r) the root part
of the decomposition.

For every t ∈ V (T) we introduce a graph G(t) on the vertex set V(t). Let us start by defining
a map E : V (T)→ 2E(G) by E(r) = E(G[V(r)]) and

E(t) = E(G[V(t)]) \ E(G[V(t↑)]) for t ̸= r,

where t↑ denotes the parent of t in the rooted tree T . Edges in E(t) are called (non-virtual) t-
edges. Property (T2) of tree decompositions implies that for every edge e of G there is

18 Florian Lehner, Christian Lindorfer

some t ∈ V (T) such that e ∈ E(t). Fix some edge e of G and let S be the set of all vertices s
of T such that V(s) contains both endpoints of e. By property (T3) the induced sub-graph T [S]
is connected and thus the forefather t of S is contained in S. It is easy to see that t is the unique
vertex of T with e ∈ E(t), so the edge set of G is the disjoint union E(G) =

⊎
t∈V (T) E(t).

Additionally we introduce for every edge e=st of T a new set of virtual e-edges E(e)=E(st),
such that every pair of vertices of V(e) is connected by an edge in E(e). In other words, the e-
graph G(e) = (V(e), E(e)) is a complete graph. In order to enhance readability, we usually
write E(s, t) instead of E(st) and G(s, t) instead of G(st).

Finally, we assign to every vertex t of T the t-graph

G(t) =

(
V(t) , E(t) ⊎

⊎
e : e−=t

E(e)

)
.

Note that G(t) generally is not a simple graph since E(t) and the various sets E(s, t) potentially
contain edges with the same endpoints.

For convenience we extend the definition of G to subsets S of the vertex set V (T) by taking
the union of all graphs G(t) for t ∈ S and removing all virtual edges corresponding to edges
of T [S], so that only virtual edges corresponding to edges of T with exactly one endpoint in S
remain. In terms of sets,

G(S) =

⋃
t∈S

V(t) ,
⋃
t∈S

E(t) ⊎
⊎

e : e−∈S, e+ /∈S

E(e)

 .

Again, we visualise these concepts using the Cayley graph G from Figure 2.1 and its tree
decomposition (T,V) shown in Figure 3.1. For a given root o of G, denote by r the unique
vertex of T such that the part V(r) has cardinality 3 and contains o. Then (T,V , r) is a rooted
tree decomposition of the rooted graph (G, o). Figure 3.2 shows a portion of the decomposition
tree T and the t-graphs for vertices t contained in it. Compare this to Figure 3.1 and note that
the t-graphs on the parts are generally neither sub-graphs (due to virtual edges) nor super-graphs
(due to some missing non-virtual edges) of the induced graphs on the parts.

3.2. Cones and cone types

Recall that for a rooted tree decomposition (T,V , r) the cone at a vertex s ∈ V (T) of T as the
set Ks containing all descendants of s, that is, all vertices t such that s lies on the t–r-path in T .

Let Γ ⊆ AUT(G) be a group acting on G. We say that two vertices s and t of T different
from r are cone-equivalent and write s ∼K t, if there is a γ ∈ Γ mapping s to t and the
parent s↑ of s to the parent t↑ of t. The root r is only cone-equivalent to itself. Clearly ∼K is an
equivalence relation and we call the equivalence classes of vertices cone types of the rooted tree
decomposition T .

Note that if γ ∈ Γ witnesses the cone equivalence of s and t, then γ maps the cone Ks onto
the cone Kt; in this case we also call the cones Ks and Kt equivalent. The following lemma
tells us that the graphs G(s) and G(t) are isomorphic whenever s and t are cone equivalent.

combinatorial theory 3 (1) (2023), #18 19

r

Figure 3.2: Decomposition tree T of the Cayley graphG and its corresponding t-graphs. Dashed
edges are virtual e-edges; if they are shared by different t-graphs, they have the same shape in
these graphs.

Lemma 3.6. Any γ ∈ Γ witnessing the cone equivalence of two vertices s and t of T can be
extended to a graph isomorphism between the graphs G(s) and G(t).

Proof. Recall that by definition

G(s) =

(
V(s), E(s) ∪

⋃
e : e−=s

E(e)

)
,

where E(s) = E(G[V(s)]) \ E(G[V(s↑)]). Note that e ∈ E(s) if and only if γ(e) ∈ E(t),
because γmaps s↑ onto t↑. We extend γ in the natural way to virtual edges in E(s, u) by mapping e
onto the edge γ(e) ∈ E(t, γ(u)) connecting γ(e−) and γ(e+). The result is a graph isomorphism
between G(s) and G(t).

Lemma 3.7. Let (T,V , r) be a reduced, rooted tree decomposition of a locally finite graph G.
If there is a subgroup Γ ⩽ AUT(G) such that (T,V) is Γ-invariant and the action of Γ on E(T)
has finitely many orbits, then the number of cone types of (T,V , r) is finite.

Proof. Let s ∼K t be two vertices in V (T) \ {r}. Then there is a γ ∈ Γ mapping the edge s↑s
onto t↑t while preserving direction. This implies that the number of cone types can be at most
two times the number of edge orbits of Γ acting on T plus one, where the additional type is the
type of the root r, the only vertex without a parent. In particular the number of cone types is
finite.

20 Florian Lehner, Christian Lindorfer

4. Configurations

Let T = (T,V , r) be a rooted tree decomposition of a simple, locally finite, connected, rooted
graph (G, o). A configuration on S ⊆ V (T) with respect to T is a map C = (P,X) assigning
to each vertex s ∈ S a pair C(s) = (P (s), X(s)), such that for every s ∈ S one of the following
alternatives holds.

(a) X(s) ∈ V (T) is either s or a neighbour of s in T , and P (s) is a self-avoiding walk on
G(s) starting in V(s↑, s), or at o if s = r. If X(s) ̸= s, then P (s) ends in V(s,X(s)).
Moreover, if X(s) = s then the last edge of P (s) is a non-virtual edge.

(b) X(s) = s↑ and P (s) = ∅ is the empty walk; this is called the empty configuration and
can only occur for s ̸= r.

We call X(s) the exit direction of s. A configuration on a vertex s of T is an image pair
C(s) = (P (s), X(s)) of a configuration C = (P,X) on the set S = {s}. Note that by
Lemma 3.6, the sets of configurations on two cone equivalent vertices are the same up to iso-
morphism.

Intuitively, configurations model the behaviour of SAWs on single parts of the tree decom-
position in the following way. Let p be a self-avoiding walk on G starting at the root o. For
any t ∈ V (T) we define a projection pt of p onto the graph G(t). First take all vertices and
edges of p contained in G(t) to obtain the multi-walk p ∩ G(s, t). Every detour of p in some
other part V(s) with s adjacent to t in T corresponds to a virtual edge of E(s, t) connecting the
same endpoints as the detour. By replacing these detours by their “shortcuts”, we end up with a
walk pt on G(t). Note that pt might be the empty walk for many vertices t. Let u be the vertex
of T such that the final edge of p is contained in G(u). Let xu = u and for t ̸= u let xt be the
neighbour of t on the unique t–u-path in T . Then the function C defined by C(t) = (pt, xt)
defines a configuration on V (T) with respect to T . This shows that starting from a SAW, we can
give a configuration describing the behaviour of the walk when restricted to single parts.

In order to be able to reverse the above construction, we would like to combine configurations
on the single parts into SAWs on G. To this end, two more properties are needed. Firstly,
since SAWs are finite, only finitely many parts can make non-trivial contributions. Secondly,
configurations on the parts that contribute non-trivially must fit together in a certain way. These
two properties are implied by the notions of boundedness and consistency of configurations
defined below. In what follows, let C = (P,X) be a configuration on S ⊆ V (T).

The weight ∥C∥ ofC is the total number of non-virtual edges contained in all the walks P (s)
for s ∈ S, so ∥C∥ =

∑
s∈S ∥C(s)∥, where ∥C(s)∥ denotes the number of non-virtual edges

in P (s). The configuration C is called boring on s ∈ S \ {r} (we also say that C(s) is boring)
if X(s) = s↑ and P (s) contains only edges in E(s↑, s). In particular, the empty configuration is
boring and all boring configurations have weight 0. Call a configuration C bounded, if C(s) is
boring for all but finitely many s ∈ S.

Let s, t ∈ S be adjacent vertices; without loss of generality assume s = t↑. The configura-
tions C(s) and C(t) are called compatible, if either P (s) ∩ V(s, t) = ∅ and C(t) is the empty
configuration, or if they satisfy the following four conditions.

combinatorial theory 3 (1) (2023), #18 21

(C1) The ordered sequences of vertices obtained by intersecting the walks P (s) and P (t) with
V(s, t) coincide,

P (s) ∩ V(s, t) = (v1, . . . , vl) = P (t) ∩ V(s, t).

(C2) For every i ∈ {1, . . . , l − 1}

viP (s)vi+1 ∩ E(s, t) = ∅ ⇐⇒ viP (t)vi+1 ∩ E(s, t) ̸= ∅.

(C3) X(s) = t ⇐⇒ X(t) ̸= s.

(C4) If X(s) = t, then P (s) ends in vl, otherwise P (t) ends in vl.

The configuration C is called consistent, if the configurations C(t↑) and C(t) are compatible
whenever both t and t↑ are in S.

Configurations on the complete vertex set V (T) of the tree decomposition T are called con-
figurations on T and the set of all bounded consistent configurations on T will be denoted by CT .
Remark 4.1. By (C3), a consistent configuration C = (P,X) ∈ CT induces an orientation of the
edges of T . Clearly any vertex s ∈ V (T) can be incident to at most one vertex t with X(t) ̸= s,
namely the vertex X(s) in the case X(s) ̸= s. It is not hard to see that if there is a vertex s
withX(s) = s, then for every other vertex t of T ,X(t) lies on the unique t–s-path in T ; in other
words, X(t) points towards s. In particular there can be at most one such vertex s. Also note
that in the case where C is bounded there is exactly one vertex s with X(s) = s. This vertex s
can be found by starting at any vertex of T and following exit directions.

Let us go back to the Cayley graph G from Figure 2.1. Using the decomposition tree T and
the t-graphs from Figure 3.2, an example of a bounded consistent configuration (W,X) on T is
shown in Figure 4.1. Note that there are only 3 vertices carrying non-boring configurations and
that all exit directions point towards the unique vertex s of T with X(s) = s.

The following extension lemma can be seen as the reason why boring configurations are
indeed not interesting to us. More precisely, it shows that a bounded consistent configuration
on T , is uniquely determined by the (finitely many) non-boring configurations. Moreover, it
tells us that under certain conditions a consistent configuration on a finite set S ⊆ V (T) can be
extended to a bounded consistent configuration on T .

Lemma 4.2. Let s, t ∈ V (T) such that s = t↑ and let cs = (ps, xs) be a configuration on s
such that ps ∩ E(s, t) = ∅ and xs ̸= t. Then there is a unique configuration ct on t which is
compatible with cs, and this configuration ct is boring.

Proof. Suppose ct = (pt, xt) is a configuration on t such that ct and cs are compatible.
Then xt = s by (C3) and pt ∩ V(s, t) = (v1, . . . , vl) = ps ∩ V(s, t) by (C1). Property (C2)
implies that the sub-walks viptvi+1 contain only the virtual edge vivi+1 in E(s, t) and by the def-
inition of configurations and (C4) the walk pt starts at v1 and ends at vl. We conclude that the
configuration ct on t is unique and boring. Moreover, the considerations above can be used to
construct such a configuration, and in particular such a configuration exists.

22 Florian Lehner, Christian Lindorfer

Figure 4.1: A bounded consistent configuration (W,X) on the tree decomposition T of the
Cayley graphG. Edges of the walkW (t) on the t-graph G(t) are drawn bold and decorated with
arrows according to their direction. Exit directions of vertices of T are also denoted by arrows
pointing from a vertex t to a vertex s if X(t) = s.

Our goal in this section is to establish a one-to-one correspondence ψr between bounded
consistent configurations C on the rooted tree decomposition T = (T,V , r) and self-avoiding
walks of length at least 1 on the underlying graph G starting at its root o. The main idea is
to contract the sub-tree induced by all vertices of T carrying non-boring configurations to a
single vertex. By also contracting the corresponding configurations, only a single non-boring
configuration remains; its walk is a walk on G and will be denoted ψr(C).

In Section 3 we already discussed how to contract a set F of edges of a tree decomposi-
tion T to obtain a contracted tree decomposition T /F . Let us repeat this process for rooted
tree decompositions and configurations on those tree decompositions. As we are only interested
in contractions of finite sets of edges, we first focus on the special case where a single edge is
contracted.

The following definition of the contraction of a rooted tree decomposition coincides with our
earlier definition of contractions of tree decompositions; the root part of the contraction is simply
the equivalence class of r. We still give a detailed definition since we would like to introduce
some notation.

Let T = (T,V , r) be a rooted tree decomposition of a simple, locally finite, connected,
rooted graph (G, o) and let f ∈E(T). We may without loss of generality, assume that f−=(f+)↑

(if not, use the reversed edge). Define the contraction T /f = (T/f,V/f, r/f) as follows.
The treeT/f is obtained fromT by identifying the two endpoints f− and f+ of f and deleting

the edge f . More precisely, T/f can be described as follows. The vertex set of T/f is obtained

combinatorial theory 3 (1) (2023), #18 23

from the vertex set ofT by replacing f− and f+ by a single vertex tf . Every edge e ∈ E(T) \ {f}
not incident to f corresponds to an edge in T/f with the same endpoints. Every edge e = st
of T where t is an endpoint of f corresponds to an edge connecting s and tf in T/f . We abuse
notation and denote the edge corresponding to e in T/f by e as well. The part V/f(tf) is
defined as V(f−)∪V(f+); for every other vertex of T/f we define V/f(t) = V(t). Finally, if r
is incident to f , then let r/f = tf , otherwise let r/f = r.

Denote the parent of t ∈ V (T/f) by t↑/f . From the assumption f− = (f+)↑ it follows
that (tf)↑/f = (f−)↑, unless f− = r, in this case tf = r/f has no parent. For every other
vertex of T/f we have t↑/f = tf if t↑ ∈ {f−, f+}, and t↑/f = t↑ otherwise. Note that if an
edge e ∈ E(T) \ {f} connects t to t↑ (or f− to (f−)↑), then the corresponding edge in T/f that
is also denoted by e connects t to t↑/f (or tf to (tf)

↑/f).
For e ∈ E(T/f) let V/f(e) and E/f(e) denote the adhesion set corresponding to e and

the set of e-edges with respect to the tree decomposition T /f , respectively. For t ∈ V (T/f)
let E/f(t) and G/f(t) denote the set of t-edges and the t-graph with respect to the tree decom-
position T /f , respectively. Using property (T3) of tree decompositions, it is not hard to see
that V/f(e) = V(e), E/f(e) = E(e), E/f(tf) = E(f−)∪E(f+), and E/f(t) = E(t) for t ̸= tf .
It follows that

G/f(t) =

{
(G(f−) ∪ G(f+))− E(f) if t = tf ,

G(t) otherwise.

Next we define contractions of configurations. Let C = (P,X) be a bounded consistent
configuration on T . For the definition of the contracted configurationC/f , assume again without
loss of generality that f− = (f+)↑, and let P (f−)∩V(f) = (v1, . . . , vl) = P (f+)∩V(f), where
the last equality follows from (C1). Let t0 = f−. For 1 ⩽ j ⩽ l − 1, let tj ∈ {f−, f+} be such
that P (tj) ∩ E(f) = ∅; note that this uniquely defines a vertex by (C2). If X(f−) = f+, then
let tl = f+, otherwise let tl = f−. Define the walk pf as the concatenation

P (t0)v1P (t1)v2 . . . vlP (tl).

In other words, pf is obtained from P (f−) and P (f+) by deleting all edges in E(f) and then
piecing the walk components of the resulting multi-walks together in a consistent manner, see
Figure 4.2.

The contraction C/f = (P/f,X/f) of the configuration C is defined as follows. For the
contracted vertex tf , let

P/f(tf) = pf and X/f(tf) =


X(f−) if X(f−) /∈ {f−, f+},
X(f+) if X(f+) /∈ {f−, f+},
tf otherwise.

Note that by (C3), the conditions in the first two cases in the definition ofX/f cannot be satisfied
simultaneously, and in the third case X(f−) = X(f+) ∈ {f−, f+} holds. For t ̸= tf we define

P/f(t) = P (t) and X/f(t) =

{
X(t) if X(t) /∈ {f−, f+},
tf otherwise.

24 Florian Lehner, Christian Lindorfer

G(f−)
P (f−)

G(f+) P (f+)

G/f(tf)

pf

Figure 4.2: Combining walks P (f−) and P (f+) of compatible configurations on the endpoints
of f into a walk pf on G/f(tf).

Note the similarity between the definition of X/f(t) and our observations about t↑/f above;
clearly, if X(t) = t↑, then X/f(t) = t↑/f .

Lemma 4.3. The walk pf is a self-avoiding walk on G/f(tf) satisfying

pf ∩ G(f−) = P (f−)− E(f) and pf ∩ G(f+) = P (f+)− E(f).

In particular, the set of edges contained in pf consists of the edge sets of P (f−) − E(f)
and P (f+)− E(f).

Proof. If P (f+) is the empty walk, then pf = P (f−) and all claimed properties are trivially
satisfied, so assume that P (f+) ̸= ∅. Since C is a configuration, P (f+) must start in v1, that
is, P (f+)v1 is a trivial walk only consisting of v1. By (C2), if tj = f−, then P (f+) contains
the edge vjvj+1 ∈ E(f), and if tj = f+, then P (f−) contains the edge vjvj+1 ∈ E(f). Proper-
ties (C3) and (C4) imply that if tl = f+, then vlP (t−) is trivial and vice versa. Combining these
observations with the fact that P (f−) can be decomposed as

P (f−) = P (f−)v1P (f
−)v2 . . . vlP (f

−)

we conclude that
pf ∩ G(f−) = P (f−)− E(f),

and similarly for f+. This implies that pf uses no vertex more than once: for vertices inV(f), this
holds by definition, for vertices outside of V(f), this follows from the fact that P (f−) and P (f+)
are self-avoiding. Hence pf is self-avoiding.

The following lemma shows that C/f as defined above is indeed a bounded consistent con-
figuration on T /f .

combinatorial theory 3 (1) (2023), #18 25

Lemma 4.4. Let T = (T,V , r) be a rooted tree decomposition of the simple, locally finite,
connected, rooted graph (G, o), let C ∈ CT , and let f ∈ E(T). Then C/f ∈ CT /f

and ∥C/f∥ = ∥C∥.

Proof. We start by showing that C/f = (P/f,X/f) is a configuration on T /f . First con-
sider t ̸= tf . If C(t) is empty, then P/f(t) = P (t) = ∅ and X(t) = t↑, so by the above
observation X/f(t) = t↑/f . This shows that C/f(t) is the empty configuration. If C(t) is
non-empty, then P (t) = P/f(t) is a non-empty self-avoiding walk on G(t) = G/f(t) starting
in V(t↑, t) = V/f(t↑/f , t), or in o, if t = r, and ending in V(t,X(t)) = V/f(t,X/f(t)). In
case X/f(t) = t, clearly also X(t) = t, so in this case P (t) = P/f(t) ends in a non-virtual
edge. We conclude that C/f(t) = (P/f(t), X/f(t)) is a configuration on t.

Now consider the contracted vertex tf . As before, without loss of generality assume
that f− = (f+)↑. If P/f(tf) = pf is the empty walk, then P (f−) is the empty walk and
thus C(f−) must be the empty configuration. In particular X(f−) = (f−)↑ /∈ {f−, f+}, and
thus X/f(tf) = X(f−) = (tf)

↑/f , showing that C/f(tf) is the empty configuration.
So we may assume that pf is non-empty. By Lemma 4.3, pf is a self-avoiding walk

on G/f(tf); it only remains to show that the first and last vertex of pf lie in the appropriate
adhesion sets. The first vertex of pf is the same as the first vertex of P (f−), consequently it
lies in V((f−)↑, f−) = V/f((tf)↑/f , tf), or it is equal to o if tf = r/f and thus f− = r. The
last vertex of pf is the last vertex of P (tl). If X(f+) /∈ {f−, f+}, then X(f−) = f+, and
thus tl = f+. It follows that the last vertex of pf lies in V(f+, X(f+)) = V/f(tf , X/f(tf)).
If X(f−) /∈ {f−, f+} an analogous argument applies. If both X(f−) and X(f+) are
contained in {f−, f+}, then X/f(tf) = tf ; in this case P (tl) ends with a non-virtual edge, and
consequently pf does not end in a virtual edge if X/f(tf) = tf . We conclude
that C/f(tf) = (P/f(tf), X/f(tf)) is a configuration on tf .

By construction the number of non-boring parts with respect to C/f is at most the number
of non-boring parts with respect to C, so C/f is bounded. Moreover C and C/f use the same
non-virtual edges, so ∥C/f∥ = ∥C∥ holds.

It remains to show that C/f is consistent, or in other words, that C/f(s) and C/f(t) are
compatible for any edge st ∈ E(T/f). If st is not incident with f , then this follows from the
fact that C is consistent, so we may without loss of generality assume that t = tf . We only treat
the case where s is a neighbour of f− in T , the case where s and f+ are neighbours is completely
analogous.

Note that V/f(s, tf) = V(s, f−) ⊆ V (G(f−)). Consequently, Lemma 4.3 implies
that pf∩V/f(s, tf) = P (f−)∩V(s, f−)which in turn implies (C1). Next, note that E/f(s, tf) =
E(s, f−) ⊆ E(G(f−)). By Lemma 4.3 we thus have upfv ∩ E/f(s, tf) = uP (f−)v ∩ E(s, f−)
for any pair of vertices u, v in V/f(s, tf), and (C2) follows. For condition (C3) observe that

X/f(tf) = s ⇐⇒ X(f−) = s ⇐⇒ X(s) ̸= f− ⇐⇒ X/f(s) ̸= tf .

Finally, note that if X/f(tf) = s, then X(f+) = f−, and consequently pf ends in the same
vertex as P (f−), so (C4) is satisfied.

Lemma 4.5. Let T = (T,V , r) be a rooted tree decomposition of the rooted graph (G, o)
and f ∈ E(T). Then the function C 7→ C/f bijectively maps CT to CT /f .

26 Florian Lehner, Christian Lindorfer

Proof. As before, denote by tf the contracted vertex in T/f . Let C ′ = (P ′, X ′) ∈ CT /f . We
show that for any t ∈ V (T), there is a unique choice C(t) = (P (t), X(t)) such that C is a
consistent configuration and C/f = C ′.

First consider t /∈ {f−, f+}. Necessarily P (t) = P ′(t), otherwise P/f(t) ̸= P ′(t) by
the definition of contraction. Similarly, if X ′(t) /∈ {f−, f+}, then X(t) = X ′(t) as other-
wise X/f(t) ̸= X ′(t). If X ′(t) = tf , then X(t) must be either f− or f+. Moreover, for C to be
a configuration,X(t) must be adjacent to t, and since T is a tree, t cannot be adjacent to both f−

and f+. So we have shown that X(t) must be the unique neighbour of t in {f−, f+}.
By Lemma 4.3, we know that if we want C/f = C ′, we have to make sure that

P ′(tf)∩G(f−) = P (f−)−E(f). So P (f−) can only differ from the multi-walk P ′(tf)∩G(f−)
by edges in E(f). Let q1, . . . , ql be the walk components of P ′(tf) ∩ G(f−). Note that each qj
for j > 1 starts in V(f), and each qj for j < l ends in V(f). In particular, it is possible to define
a walk P (f−) = q1e1q2 . . . el−1ql, where ej ∈ E(f) is a virtual edge connecting the last vertex
of qj to the first vertex of qj+1. By the above discussion, this is the only choice of P (f−) for
whichP/f(tf) = P ′(tf) can possibly hold. A completely analogous argument applies toP (f+).

Finally, let us consider the exit directions of f− and f+. If X ′(tf) ̸= tf , then by (C2), there
is a unique neighbour x of tf in T/f such that X ′(x) ̸= tf and thus X ′(x) /∈ {f−, f+}. If x is a
neighbour of f− in T , then necessarily X(f−) = x and X(f+) = f−, otherwise C is not con-
sistent. Similarly, if x is a neighbour of f+ in T , then necessarilyX(f+) = x andX(f−) = f+.
If X ′(tf) = tf , then X(f−) = X(f+) ∈ {f−, f+}, since otherwise either C/f ̸= C ′, or
C is not consistent. Note that in this case P ′(tf) ends in a non-virtual edge e because C ′ is a
configuration. If e ∈ E(f−), then X(f+) = X(f−) = f−, otherwise C is either not a configu-
ration (if both endpoints of e lie in V(f)), or it is inconsistent due to (C4). If e ∈ E(f+), then
analogously X(f+) = X(f−) = f+.

A straight forward check (left to the reader) shows that the above construction indeed gives
a bounded consistent configuration C = (P, T) ∈ CT with C/f = C ′.

Our next goal is to define contraction of finite sets of edges. For this purpose, let
T = (T,V , r) be a rooted tree-decomposition of a simple, locally finite, connected, rooted
graph (G, o) and let F = {f1, . . . , fk} be a finite subset of E(T). Then we define

T /F = T /f1/f2/ . . . /fk.

We note once again that this definition is consistent with the definition of T /F given in Section 3.
If the set F induces a connected sub-graph of T , then there is a unique contracted vertex in T/F ;
we denote it by tF . Analogously, for a configuration C on T , we define C/F = (P/F,X/F) by

C/F = C/f1/f2/ . . . /fk.

We would like these definitions to be independent of the order in which the edge contractions
are carried out. In order to make sense of this statement, we first need to clarify when we con-
sider two tree decompositions and configurations on them to be the same. Let T1 = (T1,V1, r1)
and T2 = (T2,V2, r2) be rooted tree decompositions of the same rooted graph (G, o). We say
that T1 and T2 are isomorphic if there is an isomorphism ι : T1 → T2 such that ι(r1) = r2
and V1 = V2 ◦ ι. We call two configurations C1 = (P1, X1) on T1 and C2 = (P2, X2) on T2

combinatorial theory 3 (1) (2023), #18 27

isomorphic, if there is an isomorphism ι as above additionally satisfying P1 = P2 ◦ ι
and ι ◦X1 = X2 ◦ ι. Since we only care about tree decompositions and configurations up to
isomorphism, we write T1 = T2 and C1 = C2 to denote the fact that the respective tree de-
compositions and configurations are isomorphic. Inductive application of the following lemma
shows that T /F and C/F (up to isomorphism) indeed do not depend on the order in which
edges are contracted.

Lemma 4.6. Let T = (T,V , r) be a rooted tree-decomposition of a simple, locally finite, con-
nected, rooted graph (G, o), let C = (P,X) be a configuration on T let F = {f1, f2} ⊆ E(T).
Then T /f1/f2 = T /f2/f1 and C/f1/f2 = C/f2/f1.

Proof. Before we get started, we need to discuss a notational issue. Recall that when we defined
contractions, we abused notation so that we could refer to vertices and edges of T and T/f by
the same names. When considering contractions of different edges, this is a potential source
of confusion. For example, if there is an edge e connecting f−

1 to f−
2 , then e refers to the edge

connecting tf1 to f−
2 in T/f1, as well as to the edge connecting tf2 to f−

1 in T/f2.
For double contractions as considered in this lemma, however, this abuse of notation works

in our favour, that is, the function mapping every vertex of T/f1/f2 to the vertex of T/f2/f1
with the same name is an isomorphism (which will play the role of ι). More precisely, there
are two cases to consider: if f1 and f2 are not incident, then T/f1/f2 and T/f2/f1 both con-
tain two contracted vertices denoted by tf1 and tf2 . In this case, any edge incident to f−

1 or f+
1

in T is incident to tf1 in T/f1/f2 and T/f2/f1 and any edge incident to f−
2 or f+

2 in T is inci-
dent to tf2 in T/f1/f2 and T/f2/f1. If f1 and f2 are incident, then T/f1/f2 and T/f2/f1 both
contain a unique contracted vertex which we will denote by tF . In this case, any edge incident
to f−

1 , f+
1 , f−

2 , or f+
2 in T is incident to tF in T/f1/f2 and T/f2/f1. The endpoints of all other

edges are the same in T , T/f1/f2, and T/f2/f1 thus giving the desired isomorphism. In light
of the above discussion, we will from now on treat T/f1/f2 and T/f2/f1 as the same tree and
denote it by T/F .

The claim T /f1/f2 = T /f2/f1 now follows directly from the definition of contraction. First
note that by definition, if t /∈ {f−

1 , f
+
1 , f

−
2 , f

+
2 }, then V/f1/f2(t) = V(t) = V/f2/f1(t). If f1

and f2 are not incident, then

V/f1/f2(tf1) = V/f1(tf1) = V(f−
1) ∪ V(f+

1) = V/f2(f−
1) ∪ V/f2(f+

1) = V/f2/f1(tf1),

and analogous arguments show thatV/f1/f2(tf2) = V/f2/f1(tf2). In case f1 and f2 are incident,
the same line of reasoning leads to

V/f1/f2(tF) = V/f2/f1(tF) = V(f−
1) ∪ V(f+

1) ∪ V(f−
2) ∪ V(f+

2),

where two of the sets in the union on the right-hand side are the same. It is also easily verified
that r/f1/f2 = r/f2/f1, thus showing that indeed T /f1/f2 = T /f2/f1.

Our next goal is to show that P/f1/f2 = P/f2/f1. If t /∈ {f−
1 , f

+
1 , f

−
2 , f

+
2 }, then by defini-

tion P/f1/f2(t) = P (t) = P/f2/f1(t), so it only remains to consider the contracted vertices.
If f1 and f2 are not incident, then P/f1/f2(tf1) = P/f1(tf1) and Lemma 4.3 tells us that

this walk contains exactly the edges of P (f−
1)− E(f1) and P (f+

1)− E(f1). On the other hand,

28 Florian Lehner, Christian Lindorfer

P/f2/f1(tf1) contains exactly the edges of P/f2(f−
1) − E/f2(f1) and P/f2(f+

1) − E/f2(f1).
Since P/f2(f

−
1) = P (f−

1), P/f2(f
+
1) = P (f+

1), and E/f2(f1) = E(f1), the two
edge sets coincide, and using that a self avoiding walk is uniquely determined by its set of
edges we conclude that P/f1/f2(tf1) = P/f2/f1(tf1). An analogous argument shows
that P/f1/f2(tf2) = P/f2/f1(tf2).

If f1 and f2 are incident, then we may assume without loss of generality that f−
1 = f−

2 , in
particular the edge f2 connects f+

2 to tf1 in T/f1. By Lemma 4.3, the edge set of P/f1/f2(tF)
consists of the edges ofP/f1(f+

2)−E/f1(f2) = P (f+
2)−E(f2) andP/f1(tf1)−E/f1(f2). Again

by Lemma 4.3, the edge set of the latter multi-walk consists of the edge sets
of P (f−

1)− (E(f1) ∪ E(f2)) and P (f+
1) − (E(f1) ∪ E(f2)). Since f1 is not incident to f+

2 ,
the graph G(f+

2) and thus also the walk P (f+
2) is disjoint from E(f1), and we conclude that

the edge set of the walk P/f1/f2(tF) consists of the edge sets of P (f−
1) − (E(f1) ∪ E(f2)),

P (f+
1) − (E(f1) ∪ E(f2)), and P (f+

2) − (E(f1) ∪ E(f2)). Since f−
1 = f−

2 , this is symmetric
in f1 and f2, and an analogous argument shows that the edge set of P/f2/f1(tF) is the same.
Thus the two walks coincide.

Finally, we need to show that X/f1/f2 = X/f2/f1. By Lemma 4.4, both C/f1/f2
and C/f2/f1 are bounded consistent configurations, thus by Remark 4.1 it suffices to show that
the unique vertex t ∈ T/F with X/f1/f2(t) = t also satisfies X/f2/f1(t) = t. This clearly
follows from the definition of X/f .

Recall that the goal of this section is relating bounded consistent configurations on T to
self-avoiding walks of length at least 1 starting at the root o of G. In this sense the upcoming
Theorem 4.7 is the main result of this section. In preparation of this theorem, for each vertex t, we
define a mapψt mapping bounded consistent configurationsC on T to SAWs on the graph G(Kt)
corresponding to the cone Kt as follows.

First, recall the definition of G(S) for S subset of V (T). In particular, when S = Ks is a
cone,

G(Ks) =

(⋃
t∈Ks

V(t) ,
⋃
t∈Ks

E(t) ⊎ E(s, s↑)

)
.

Let S ⊆ Kt consist of the vertex t and all vertices of Kt carrying non-boring configura-
tions. Note that Lemma 4.2 implies that T [S] is connected and thus a finite subtree of Kt.
Let F = E(T [S]) be the set of its edges. We define

ψt(C) = P/F (tF),

where tF is the unique contracted vertex in T/F . In other words, ψt(C) is the self-avoiding
walk on the finite graph G/F (tF) obtained by contracting all edges of T [Kt] connecting two
vertices carrying non-boring configurations. By (C2) all its virtual edges must be
in E/F (t↑F , tF) = E(t

↑, t), because all other neighbours of tF carry boring configurations. In
particular, ψt(C) is a SAW on G(Kt) as claimed.

Let us illustrate this definition using the bounded consistent configuration depicted in Fig-
ure 4.1. In Figure 4.3 we iteratively contract edges incident to the root vertex r until only a

combinatorial theory 3 (1) (2023), #18 29

Figure 4.3: Contraction of the bounded consistent configuration C on T . The walk ψr(t) is
reached after 2 steps. It contains only non-virtual edges and does not change anymore during
the third contraction.

single vertex carrying a non-boring configuration remains. This only takes two steps. Any fur-
ther contraction, for example the one done in the third step, does not change the walk ψr(C)
anymore.

Theorem 4.7. Let (G, o) be a simple, locally finite, connected graph rooted at o ∈ V (G), and
let T = (T,V , r) be a rooted tree decomposition of (G, o). Then ψr is a bijection between
the set CT and the set of self-avoiding walks of length at least 1 on G starting at o and for
every C ∈ CT , the weight ∥C∥ coincides with the length of ψr(C).

Proof. Let C ∈ CT . As above, let S be the set of all vertices of T carrying non-boring con-
figurations and let F = E(T [S]). Note that the root r is contained in S, and consequently tF
is the root of T/F . By the above discussion, ψr(C) = P/F (tF) is a self-avoiding walk on G
starting at the vertex o. Furthermore, by inductive application of Lemma 4.4, the weight ∥C∥ is
equal to the weight ∥C/F∥, which is the length of the walk ψr(C), because ψr(C) contains no
virtual edges. Finally, note that X/F (tF) = tF and thus P/F (tF) ends with a non-virtual edge,
in particular ψr(C) has length at least 1.

It remains to show that ψr is bijective. We first show that it is injective. For i = 1, 2
let Ci = (Pi, Xi) ∈ CT such that ψr(C1) = ψr(C2). Let S consist of all vertices s of T

30 Florian Lehner, Christian Lindorfer

such that at least one of C1(s) and C2(s) is non-boring and let F = E(T [S]). Then
X1/F (tF) = X2/F (tF) = tF because all neighbours of tF carry boring configurations. While
S could potentially contain some vertices s of T such thatCi(s) is boring, this does not influence
the result of Pi/F (tF). Thus by assumption

P1/F (tF) = ψr(C1) = ψr(C2) = P2/F (tF)

and this walk does not contain virtual edges, so Lemma 4.2 implies that C1/F = C2/F . Induc-
tive application of Lemma 4.5 yields C1 = C2, so ψr is injective.

To prove that ψr is surjective, let p be a SAW of length at least 1 on G starting at o. There
is a finite subset S ⊆ V (T) such that all edges of p are contained in G(S) and T [S] is con-
nected. As before, let F = E(T [S]). Then (p, tF) is a configuration on tF and p does not
contain virtual edges, thus Lemma 4.2 provides a bounded consistent configuration C ∈ CT /F

such that C(tF) = (p, tF). Lemma 4.5 yields a configuration C ∈ CT with ψr(C) = P and
therefore ψr is surjective.

Remark 4.8. While ψt maps bounded consistent configurations on the cone Kt to walks on the
corresponding graph G(Kt), it is (in general) only a bijection in the case t = r. This is due to
the fact that for t ̸= r the exit directionX(t) at vertex t is in general not uniquely determined by
the walk ψt(C); in many cases it can be either t or t↑.

5. A grammar for bounded consistent configurations

Throughout this section let (G, o) be a rooted, simple, locally finite, connected graph all of
whose ends are thin, and let Γ be a group acting quasi-transitively on G. Thomassen and
Woess [TW93] showed that any transitive graph without thick ends is accessible. Using the
fact that any quasi-transitive graph is quasi-isometric to some transitive graph, and additionally
that quasi-isometries preserve accessibility, we obtain that the graph G is accessible.

By Corollary 3.2 there is a reduced, Γ-invariant, rooted tree decomposition T = (T,V , r)
of (G, o) such that there are only finitely many Γ-orbits on E(T). By property (P3) in Section 3
the parts of such a tree decomposition are finite and by (P4) the tree T is locally finite.

Our goal in this section is to reveal a recursive structure in the set of bounded consistent
configurations, which we later use to define a context-free grammar. To this end we first show
that there are only finitely many essentially different configurations on vertices of T . The letters
in Σ will correspond to these different configurations, and the production rules will reflect the
ways in which individual configurations can be combined in a compatible way.

5.1. Choosing representatives of configurations

We would like to define a function ρ which assigns one of finitely many representatives to each
vertex t of T and each configuration c = (p, x) on t. This function ρ is chosen in a way that
for neighbouring vertices s and t of T and configurations cs and ct on them compatibility only
depends on ρ(cs) and ρ(ct).

We start by choosing representatives of the cone equivalence classes of vertices of T .

combinatorial theory 3 (1) (2023), #18 31

Lemma 5.1. There is a finite subsetR of V (T) containing exactly one vertex of every cone type
such that T [R] is connected.

Proof. Choose a subset R of V (T) such that R contains at least one vertex of every cone type,
T [R] is connected, and R has minimal cardinality among all such sets. Clearly R is finite as
there are only finitely many cone types. Assume thatR contains two vertices s and t in the same
cone type and let γ ∈ Γ map Ks onto Kt. Then the set R′ = R ∪ γ(R ∩ Ks) \ (R ∩ Ks)
still satisfies the condition that T [R′] is connected and has smaller cardinality than R, because
t ∈ R ∩ γ(R ∩Ks).

Let us now fix a set of representatives R of the cone types of T as in the previous lemma.
The representative of a vertex t of T is denoted by ρ(t) ∈ R.

For every vertex t of T we define an automorphism δt ∈ Γ mapping Kt to Kρ(t). For t ∈ R
let δt = 1Γ, the neutral element in Γ, which acts as the identity onG. For any vertex t ∈ V (T)\R
with t↑ ∈ R fix some arbitrary automorphism δt ∈ Γ mapping Kt to Kρ(t). Finally for all other
vertices t of T inductively define

δt = δδ
t↑ (t)
◦ δt↑ . (5.1)

This is well defined because δt↑(t) must be a child of a vertex of R for every t; in particular,
if δt↑(t) ∈ R, then δδ

t↑ (t)
= 1Γ. Note that equation (5.1) in fact holds for all vertices t of T

besides the root r.
We use these maps to extend the map ρ to configurations. Let c = (p, x) be a configuration

on a vertex t of T . Then ρ maps c onto a configuration on the representative ρ(t) = δt(t) of t by

ρ(c) = δt(c) = (δt(p), δt(x)).

Additionally for every t ∈ T let t↓1, . . . , t
↓
k(t) be the k(t) children of t ordered in a way such

that
δt(t

↓
i) = δt(t)

↓
i = ρ(t)

↓
i. (5.2)

This can be achieved by fixing any order of the children of vertices in R and then ordering the
children of any vertex t accordingly. From the definition (5.1) of δt it is immediate that

δt↓i = δδt(t↓i) ◦ δt. (5.3)

Note that the representative of the i-th child of t is exactly the representative of the i-th child
of ρ(t):

ρ(t
↓
i) = δt↓i(t

↓
i) = δδt(t↓i)(δt(t

↓
i)) = δρ(t)↓i(ρ(t)

↓
i) = ρ(ρ(t)

↓
i). (5.4)

In the above equation, the first and last equalities use the definition of ρ on t↓i and ρ(t)↓i respec-
tively, the other equalities follow from (5.3) and (5.2).

Moreover we can use δt to map a consistent configuration C on t and its children to a con-
sistent configuration δt ◦ C ◦ δ−1

t on the representative ρ(t) and its children. Note that δ−1
t is

applied to vertices of T whereas δt is applied to configurations on the corresponding parts. Simi-
lar to (5.4), we get that the configuration assigned byC to the i-th child of t and the configuration
assigned by δt ◦C ◦ δ−1

t to the i-th child of the representative of t have the same image under ρ:

ρ(C(t
↓
i)) = δt↓i(C(t

↓
i)) = δδt(t↓i)(δt(C(t

↓
i))) = ρ(δt(C(t

↓
i))) = ρ(δt ◦ C ◦ δ−1

t (ρ(t)
↓
i)). (5.5)

32 Florian Lehner, Christian Lindorfer

r

t3

t2

t1

Figure 5.1: Cone types of the tree decomposition T . The square nodes give one possible valid
choice for the set R. The marked cones rooted at t1, t2 and t3 have the same type.

Similarly to (5.4), the first and second equalities in (5.5) follow from the definition of ρ and equa-
tion (5.3), respectively. For the third equality, we use the definition of ρ and the fact that δt(C(t↓i))
is a configuration on δt(t↓i). The last equality follows from (5.2).

Let us illustrate the above definitions using the tree decomposition (T,V) shown in Fig-
ure 3.1. As before, we choose the central vertex corresponding to a part of cardinality 3 as the
root r. It is not hard to see that Γ acts with six orbits on the set of directed edges of T , so we
obtain seven cone types and the set R has to contain seven vertices (see also Lemma 3.7). Fig-
ure 5.1 shows a valid choice of the set R. Note that we could also have taken the seven vertices
in the first three layers of the rooted tree T as our set R.

Let us sketch the recursive definition of δt using the vertices t1, t2 and t3 in Figure 5.1. First,
note that the vertex t1 is contained inR, so by definition δt1 is the identity map. The parent of t2 is
inR, so we may choose an arbitrary automorphism γ in Γmapping t2 to its representative t1 inR
and set δt2 = γ. Regarding t3, note that the representative of t↑3 in R is t↑2, thus by definition δt↑3
maps the cone Kt↑3

onto Kt↑2
and thus t3 onto t2. The map δt3 is obtained by first applying δt↑3

(which maps t3 to t2), and then applying δδ
t↑3

= δt2 (which maps t2 to t1).

5.2. Construction of the grammar

The goal of this section is to construct a context-free language, whose words are in one-to-one
correspondence with bounded consistent configurations on the rooted tree decomposition T .
Essentially, this language is obtained by going through the vertices of the decomposition tree
carrying non-boring configurations in the order given by depth-first search and noting down the
corresponding representatives of configurations (that is, their images under ρ).

Instead of constructing a context free grammar for this language, we construct a 1-multiple
context free grammar. Clearly the two notions are equivalent; recall that by Remark 2.2 every
context-free grammar stands in one-to-one correspondence to a 1-multiple context-free grammar
generating the same language. However, in anticipation of Section 6, where a multiple context

combinatorial theory 3 (1) (2023), #18 33

free grammar for SAWs is constructed in a very similar way, it makes more sense to consider
multiple context-free grammars in the present section as well.

The 1-multiple context-free grammar G = (N,Σ,P, Ar) generating our desired language
is defined as follows.

The alphabet is
Σ = {ac | c configuration on some t ∈ R}.

The set of non-terminals is

N = {Ar} ∪ {At,c | t ∈ R, c configuration on t}.

For each t ∈ R and every consistent configuration C on the set {t, t↓1, . . . , t
↓
k(t)}, the set P

contains a production rule as follows. If C(t) is non-boring, then the production

At,C(t)(aC(t)x1 . . . xk(t))←
(
Aρ(t↓i),ρ(C(t↓i))

(xi)
)
i∈[k(t)]

is in P. If C(t) is boring, then P contains the terminal rule

At,C(t)(ϵ)← .

Additionally P contains for every configuration C(r) on r the production

Ar(x)← Ar,C(r)(x).

Note that any production rule of this grammar is uniquely determined by its head and tail.
This means that we do not lose any information by using simplified derivation trees, where every
vertex is labelled by the head of its corresponding rule instead of the complete rule. To shorten
notation, we henceforth work with simplified labels.
Remark 5.2. Observe that for any simplified derivation treeD of G whose root d is labelledAt,c,
the following three conditions hold.

(i) The number of children of d is uniquely given by the pair (t, c); we denote it by k.

(ii) If c is non-boring, the word corresponding to D is w(D) = acw(D1) . . . w(Dk), where
Di is the sub-tree of D rooted at the i-th child of d and k > 0. Otherwise c is boring,
w(D) = ϵ and d is the only vertex of D.

(iii) Let v1(= d), v2, . . . , vn be the vertices of D in DFS-order and let λ(vi) = Ati,ci be their
labels. Then

w(D) = x1 . . . xn, where xi =

{
aci if ci is non-boring
ϵ otherwise

Observations (i) and (ii) are direct consequences of the structure of G. For (iii) we use induction
on the number of vertices n of D. If n = 1, then (ii) implies that c1 is boring and w(D) = ϵ, so
(iii) holds. Let now n > 1 and suppose (iii) holds for every derivation tree with at most n− 1
vertices. Then c1 is non-boring and the claim follows from (ii) by applying the induction hy-
pothesis on the sub-trees D1, . . . , Dk rooted at the k children of v1.

34 Florian Lehner, Christian Lindorfer

r
t3

t2

t1
t6

t5

t4 ϕ
Ar,C(r)

At1,C(t1) Aρ(t2),ρ(C(t2)) At3,C(t3)

At4,C(t4) At6,C(t6)

Figure 5.2: The map ϕ transforms the configuration C on the decomposition tree T into the
derivation tree ϕ(C) over the grammar G. The word generated by this derivation tree is
w(ϕ(C)) = aC(r)aC(t1)aC(t4)aρ(C(t2))aC(t3)aC(t6).

Lemma 5.3. The grammar G is unambiguous 1-multiple context-free.

Proof. Let D and D′ be different non-trivial (consisting of at least 2 vertices) derivation trees.
Then there is a smallest positive numberm, such that them-th vertices u and u′ in the DFS-orders
on D and D′ either have a different number of children or have a different label. Remark 5.2 (i)
implies that in any case λ(u) = At,c ̸= λ(u′) = At′,c′ , so in particular c ̸= c′. By minimal-
ity of m, the parents of u and u′ have the same label, so by Lemma 4.2 the configurations c
and c′ must be non-boring. Thus Remark 5.2 (iii) implies that w(D) ̸= w(D′) and G is unam-
biguous.

Bounded consistent configurations on T are closely related to derivation trees of G. Let us
define a map ϕ assigning to any given C = (P,X) ∈ CT a derivation tree of our grammar G
as follows. Let S ⊆ V (T) consist of all vertices s carrying non-boring configurations C(s)
and their neighbours. Then T [S] is connected and can be seen as an ordered tree with root r,
where the order of the children is inherited from the tree T . We label every vertex s of T [S]
with λ(s) = Aρ(s),ρ(C(s)).

As an example, we provide in Figure 5.2 the derivation tree ϕ(C) of the configuration C
given in Figure 4.1. Note that the vertex t2 is not contained in the set R from Figure 5.1, so we
need to apply ρ to the respective configuration. For all other ti, the map ρ is the identity map
and can be omitted. The vertex t5 is not contained in ϕ(C) because its parent t2 carries a boring
configuration.

Lemma 5.4. The map ϕ is a bijection between the set CT of bounded consistent configurations
on T and the set of derivation trees whose root is labelled by Ar,c for some configuration c on r.

Proof. Observe that an ordered tree labelled with non-terminals of N is a simplified derivation

combinatorial theory 3 (1) (2023), #18 35

tree of G if and only if for every vertex t and its children t1, . . . , tk there is a rule in P with
head λ(t) and tail (λ(t1), . . . , λ(tk)).

Let S be as above and s be a vertex of T [S]. If C(s) is boring, then s is a leaf in T [S]
and Aρ(s),ρ(C(s))(ϵ)← is a rule in P.

Otherwise C(s) is non-boring and we consider the children s↓1, . . . , s
↓
k(s) of s in T , which are

also the children of s in T [S]. Then the production

Aρ(s),ρ(C(s))(aρ(C(s))x1 . . . xk(s))←
(
Aρ(s↓

i),ρ(C(s↓
i))
(xi)

)
i∈[k(s)]

is inP because δs◦C◦δ−1
s is a consistent configuration on {δs(s), δs(s↓i), . . . , δs(s

↓
k(t))} and (5.4)

and (5.5) hold. We conclude that ϕ(C) is a derivation tree of G.
Our next step is to show that ϕ is surjective. Let D be a derivation tree of G whose root d

is labelled Ar,c. We recursively construct an embedding ι of D into T and a bounded consistent
configuration C on T such that every vertex u of D has the label

λ(u) = Aρ(ι(u)),ρ(C(ι(u))). (5.6)

We start the top-down construction by setting ι(d) = r and C(r) = c. Then clearly d satis-
fies (5.6). Suppose now ι(u) = t is already defined for a vertex u of D and that u satisfies (5.6).
Let u1, . . . , uk be the k > 0 children of u in D and λ(ui) = Asi,ci their labels. Then

Aρ(t),ρ(C(t))(aρ(C(t))x1 . . . xk)← (Asi,ci(xi))i∈[k] (5.7)

is a rule in P. This implies that t has precisely k children t↓1, . . . , t
↓
k in T and moreover

that ρ(t↓i) = si holds for every i. We define ι(ui) = t↓i and C(t↓i) = δ−1
ti (ci). Then C(t↓i) is com-

patible with C(t) for every i ∈ [k]; the production rule (5.7) is in P if and only
if ρ(C(t)) = δt(C(t)) and δ−1

ρ(t)↓i
(ci) = δt(δ

−1
ti (ci)) are compatible. In this way we have con-

structed a consistent configuration C on the sub-tree ι(D) of T . Note that by definition of the
set P, configurations on leaves of ι(D) are boring. By Lemma 4.2 the configuration C can be
(uniquely) extended to a bounded consistent configuration on T . Moreover it follows directly
from (5.6) that ϕ(C) = D, so ϕ is surjective.

Finally, it is not hard to see that ϕ is injective. Any two different configurations C1 ̸= C2

have to differ on some vertex t of T ; we pick such a t with minimal distance to the root r.
ThenC1(t

↑) = C2(t
↑), so Lemma 4.2 yields thatC1(t

↑) is non-boring. Thus t is a vertex of ϕ(C1)
and ϕ(C2). For i ∈ {1, 2} the label of t in ϕ(Ci) is Aρ(t),ρ(Ci(t)), so in particular ϕ(C1) ̸= ϕ(C2)
and we conclude that ϕ is injective.

It is clear that ϕ also describes a bijection between the set CT of bounded consistent config-
urations on T and derivation trees of G whose roots are labelled Ar. Moreover, the number of
occurrences of a given letter ac in the word w(ϕ(C)) ∈ L(G) corresponding to ϕ(C) is equal
to the number of vertices t of T with ρ(C(t)) = c.

Combining the previous results, the composition of the bijection ϕ mapping configurations
onto derivation trees and the natural bijectionw between derivation trees and their corresponding
words of an unambiguous 1-multiple context-free grammar G is a bijection between CT and
words in L(G), as stated in the following corollary.

36 Florian Lehner, Christian Lindorfer

Corollary 5.5. There is a bijection θ between the set CT of bounded consistent configurations
on T and the words in the unambiguous 1-multiple context-free language L(G) such that the
number of occurrences of a given letter ac in θ(C) coincides with the number of vertices t of T
with ρ(C(t)) = c.

Further combining Corollary 5.5 with the connection between bounded consistent config-
urations and SAWs established in Theorem 4.7, we obtain the proof of our first main result,
Theorem 1.1. Before we turn to the proof, let us recall the statement of the theorem.

Theorem 5.6. Let G be a locally finite, connected, quasi-transitive graph having only thin ends
and let o ∈ V (G). Then FSAW,o is algebraic over Q. In particular the connective constant µ(G)
is an algebraic number.

Proof. Let Γ be a group acting quasi-transitively on G and T = (T,V , r) be a reduced, Γ-
invariant, rooted tree decomposition of (G, o) such that there are only finitely many Γ-orbits
on E(T). Then by Theorem 4.7 the generating function of self-avoiding walks coincides with
the generating function of the set CT ,

FSAW,o(z) =
∑
C∈CT

z∥C∥.

Let G = (N,Σ,P, S) be the unambiguous 1-MCFG over the alphabet Σ = {ac1 , . . . , acm}
as defined at the start of Section 5.2, where the ci are configurations on vertices in R, and
let FL(G)(ac1 , . . . , acm) be the commutative language generating function of L(G). It is known
(see for instance [KS86]) that commutative language generating functions of unambiguous con-
text-free languages are algebraic over Q, that is, there is an irreducible polynomial P in m + 1
variables with coefficients in Q such that

P (FL(G)(ac1 , . . . , acm), ac1 , . . . , acm) = 0.

Corollary 5.5 yields that the generating function of CT coincides with the generating function
obtained by substituting every variable aci in FL(G) by the monomial z∥ci∥,

FSAW,o(z) = FL(G)

(
z∥c1∥, . . . , z∥cm∥)

In particular FSAW,o(z) is algebraic over Q; it satisfies the equation

Q (FSAW,o(z), z) = 0,

where Q(y, z) = P
(
y, z∥c1∥, . . . , z∥cm∥) is a polynomial with coefficients in Q. The connective

constant µ(G) is the reciprocal of the radius of convergences of the algebraic function FSAW,o(z)
and thus is an algebraic number.

combinatorial theory 3 (1) (2023), #18 37

6. The multiple context-free language of self-avoiding walks

In this section, we prove the second main result of this paper, which we briefly recall for conve-
nience.

Theorem 1.3. LetG be a simple, locally finite, connected, deterministically edge-labelled quasi-
transitive graph and let o ∈ V (G). Then LSAW,o is k-multiple context-free if and only if every
end of G has size at most 2k.

The proofs of the two implications are quite different from one another and will be discussed
separately in the two subsections of this section. In order to show that bounded end size implies
that LSAW,o is a MCFL, we adopt a similar approach as in the previous section and construct a
MCFG which is very closely related to the grammar G defined in Section 5. For the converse
implication we essentially follow the approach of Lindorfer and Woess [LW20]; we note that
this final part does not depend on the other results of this paper and can be read independently.

6.1. Bounded end size implies multiple context-freeness

We use again the assumptions, notation and definition from the previous section. In partic-
ular T = (T,V , r) again denotes a rooted tree decomposition of a rooted graph (G, o) which
will be fixed throughout this section; we also fix a map ρ as constructed in Section 5. Our aim is
proving the following theorem, a stronger version of one of the two implications of Theorem 1.3.

Theorem 6.1. Let G be a simple, locally finite, connected, quasi-transitive edge-labelled graph
having only ends of size at most k and let o be a given vertex of G. Then the language of self-
avoiding walks LSAW,o is ⌈k/2⌉-multiple context-free.

If the edge-labelling is deterministic, then LSAW,o is unambiguous ⌈k/2⌉-multiple context-
free.

To prove the above theorem, we give an MCFGG = (N,Σ,P, Ar) and show that it generates
the language LSAW,o. As mentioned above, G is a refinement of the 1-MCFG from Section 5.

Obviously, the alphabet Σ has to consist of all edge-labels. Note that this is a finite set
since G is locally finite and the group of label preserving automorphisms is assumed to act
quasi-transitively.

Like in Section 5, the set of non-terminals is

N = {Ar} ∪ {At,c | t ∈ R, c configuration on t}.

However, since we are constructing a MCFG, we need to assign a rank to each non-terminal;
to this end some additional definitions are necessary. For a vertex t of T and a configura-
tion c = (p, x) on t let µ(c) denote the number of walk components of p − E(t↑, t) containing
at least two vertices of V(t↑, t). Furthermore let r(c) = µ(c) + 1 if x ̸= t↑ and the final walk
component of p−E(t↑, t) contains only a single vertex of V(t↑, t) and let r(c) = µ(c) otherwise.
Define the rank of the non-terminal At,c to be r(c). Note that r(c) = 0 if and only if c is boring.
For a configuration c = (p, x) on the root part, we define r(c) = 1; note that this is consistent

38 Florian Lehner, Christian Lindorfer

P 1
1

P 2
1

P 3
1

P 4
1

P 5
1

P 1
2

P 2
2

P 3
2

P 4
2 P 5

2

P 6
2

P 7
2

U1
1

U2
1

U2
2 U1

2

U1
3

G(t↑, t)

G(t, t↓1)

G(t, t↓2)

G(t, t↓3)

Figure 6.1: Decomposition of P (t) into subwalks P l
h. For even l, the walk P l

h is equal to
some U j

i ; for instance P 4
2 = U2

1 means that the fourth subwalk in the second walk compo-
nent of P (t)− E(t↑, t) coincides with the second walk component of P (t) ∩ G(t, t↓1).

with the above definition in the sense that the root has no parent and there is exactly one walk
component of p.

Next we turn to the set P of production rules. For every boring configuration c on a ver-
tex t ∈ R, P contains the rule

At,c(∅)← .

For non-boring configurations, we need more involved production rules that require some
preliminary definitions. Let t ∈ R and let C = (P,X) be a consistent configuration
on {t, t↓1, . . . , t

↓
k(t)} such that C(t) is non-boring. Let P1, . . . , Pµ(C(t)) be the walk components

of P (t)− E(t↑, t) containing at least 2 vertices of V(t↑, t), and if r(C(t)) > µ(C(t)) let Pr(C(t))

be the (possibly trivial) final walk component of P (t) − E(t↑, t). Moreover, for each i ∈ [k(t)]
let U1

i , . . . , U
µi

i be the non-trivial walk components of P (t) ∩ G(t, t↓i), that is, the walk compo-
nents that contain more than one vertex. Every Ph admits a unique decomposition into an odd
number of sub-walks Ph = P 1

hP
2
h . . . P

2m+1
h such that P l

h is a (possibly trivial) non-virtual walk
if l is odd and equal to some U j

i if l is even. Observe that P l
h = U j

i means that the l-th part in
the decomposition of Ph is the j-th walk component of P (t) ∩ G(t, t↓i), that is, the notation P l

h

indicates which walk component of P (t) the walk lies in, whereas the notation U j
i tells us which

adhesion set the virtual edges belong to, see Figure 6.1 for an example.
For h < r(C(t)), the string αh corresponding to Ph is

αh = ℓ(P 1
h)z(P

2
h)ℓ(P

3
h)z(P

4
h) . . . ℓ(P

2m+1
h),

where z(P l
h) = zi,j with i, j chosen such thatP l

h = U j
i ; in other words, αh is obtained fromPh by

concatenating labels of non-virtual walks P l
h, and variables zi,j for virtual walks P l

h.

combinatorial theory 3 (1) (2023), #18 39

For h = r(C(t)), we define

αh = ℓ(P 1
h)z(P

2
h)ℓ(P

3
h)z(P

4
h) . . . ℓ(P

2m+1
h)β,

where z(P l
h) = zi,j as above, and β = ϵ unless there is some i ∈ [k(t)] such that X(t) = t↓i

and P (t) does not end with an edge in E(t, t↓i), in which case β is equal to the single vari-
able zi,µi+1.

For every t ∈ R and each configuration C on t and its children such that C(t) is non-boring,
P includes the production rule

At,C(t)(α1, . . . , αr(C(t)))←
(
Aρ(t↓i),ρ(C(t↓i))

(zi,1, . . . , zi,r(C(t↓i))
)
)
i∈[k(t)]

(6.1)

where the strings α1, . . . , αr(C(t)) are defined as above.
Finally, for every configuration c on the root r the production rule

Ar(z)← Ar,c(z)

is in P; this is a well formed production rule since Ar,c has rank 1.
Before showing that this grammar indeed generates the language LSAW,o, let us discuss why

this intuitively should be true.
Let us extend the label function ℓ to walks p on the graph G(Kt) corresponding to the coneKt

in the natural way by mapping p onto the tuple of labels ℓ(p) = (ℓ(p1), . . . , ℓ(pm)) of the non-
trivial walk components p1, . . . , pm of p − E(t↑, t). If p is the empty walk, then ℓ(p) = ∅. For
a bounded consistent configuration C ∈ CT with C(t) = c, we want the term At,c(ℓ(ψt(C)))
to be derivable in G, where ψt(C) is the walk on G(Kt) corresponding to the configuration C
as defined on page 28. This is inductively taken care of by production rules of type (6.1): sub-
walks of Ph consisting of virtual edges correspond to variables zi,j in the string αh which are
subsequently replaced by strings corresponding to walk components of ψs(C)−E(t, s) where s
is some child of t. To see that this intuitively makes sense, recall that by definition ψt(C) is
obtained by contracting all edges vertices carrying non-boring configurations and then taking
the walk P (tF), where tF is the unique contracted vertex. By Lemma 4.6, the order of edge
contractions does not matter, hence we can first contract all edges not incident to t; in particular,
the walk ψt(C) can be obtained by replacing sub-walks consisting of virtual edges in E(t, s)
by appropriate sub-walks of ψs(C), see Figure 6.2. This replacement procedure is essentially
captured by rules of type (6.1).

When making the above intuition precise, there are some technical issues that need to be
addressed, leading to the fairly involved definition of r(c) and to the subtle difference between αh

for h < r(C(t)) and αr(C(t)). These are due to the fact that walk components of ψt(C)−E(t↑, t)
come in two different flavours. Recall that the walk ψt(C) starts in V(t↑, t), and so does every
walk component of ψt(C) − E(t↑, t). Call a walk component a U-walk if it returns to V(t↑, t),
and an I-walk if it doesn’t. We now sketch how these two types of walks relate to the definitions
of r(c) and αh.

Firstly, recall that the rank r(C(t)) of At,C(t) should equal the number of walk components
of ψt(C) − E(t↑, t). It is not hard to see that the projection of any U-walk is a non-trivial walk

40 Florian Lehner, Christian Lindorfer

Figure 6.2: Iterated contraction shows that we can obtain ψt(C) by combining walks P (t) and
ψs(C) for all children s of t.

component ofP (t)−E(t↑, t) containing at least two vertices inV(t↑, t). I-walks on the other hand
may or may not use edges of G(t). Note however that if there is an I-walk, then it is necessarily
the last walk component of ψt(C)−E(t↑, t), and it is not hard to see that in this case X(t) ̸= t↑.
In particular, we have r(C(t)) = µ(C(t)) + 1 if and only if there is an I-walk. Since µ(C(t))
clearly counts the number of U-walks, we conclude that r(C(t)) is indeed the number of walk
components.

I-walks are also the reason why we need to include β in the definition of αr(C(t)). If t
has a child t↓i such that ψt↓i

(C) − E(t, t↓i) contains an I-walk, then ψt(C) ends in this I-walk.
Note that this happens if and only if X(t) = t↓i and the last edge of P (t) is not contained
in E(t, t↓i). We would like the production rules to reflect this possibility, but the I-walk only
intersects V(t) in its starting point and thus it does not correspond to any non-trivial walk com-
ponent of P (t) ∩ G(t, t↓i). Adding zi,µi+1 to the end of the string αr(C(t)) allows us to replace the
trivial walk consisting of the last vertex of P (t) by such an I-walk. We once again point out that
an I-walk always sits at the end of ψt(C), so we only have to consider this in the definition of αh

for h = r(C(t)).
With the above intuition and the resulting subtleties in mind, let us start by proving some

basic results about the grammar G.

Lemma 6.2. The grammar G is ⌈k/2⌉-multiple context-free.

Proof. As mentioned in the previous section, R is a finite set and the number of valid config-
urations on a given part is finite, so N and P are finite sets. For the proof of multiple context-
freeness of G, it only remains to verify that every expression (6.1) is a well-formed production
rule over (N,Σ). Compatibility of C(t) and C(t↓i) implies that µi = µ(C(t↓i))) for every i.
Additionally, if X(t) = t↓i for some i ∈ [k(t)] and P (t) does not end with an edge in E(t, t↓i),
then X(t↓i) ̸= t and the final walk component of P (t↓i) − E(t, t

↓
i) contains only a single ver-

tex of V(t, t↓i), so µi + 1 = µ(C(t↓i)) + 1 = r(C(t↓i)). We conclude that every variable zi,j
with j ⩽ r(C(t↓i)) occurs in α1 . . . αr(C(t)) and it follows directly from the construction that
none of them occurs more than once. As a consequence, G is multiple-context-free.

combinatorial theory 3 (1) (2023), #18 41

Let P1, . . . , Pr(C(t)) be the walk components of P (t)−E(t↑, t). Then Pi contains at least two
vertices of V(t↑, t) for i < r(C(t)) and at least one vertex of V(t↑, t) for i = r(C(t)).

The size of V(t↑, t) is at most k, so 2r(c)− 1 ⩽ k holds, which for an integer k is equivalent
to r(c) ⩽ ⌈k/2⌉. We conclude that G is ⌈k/2⌉-multiple-context-free.

While the grammar G may appear more complicated than the 1-multiple context-free gram-
mar of configurations introduced in Section 5, the two grammars share many structural simi-
larities. In particular, production rules are again uniquely determined by their heads and tails,
so we can again work with simplified derivation trees, where every vertex is labelled with the
head of its production rule. In fact we will even show that simplified derivation trees of the two
grammars are the same.

To this end, let us again define a map ϕ mapping bounded consistent configurations C on T
to simplified derivation trees of G. Let the set S consist of all vertices s ∈ V (T) carrying
non-boring configurations C(s) and the neighbours of such vertices. Then T [S] is an ordered
tree with root r, where the order on the children of a vertex s is s↓1, . . . , s

↓
k(t). By labelling every

vertex s of T [S] with Aρ(s),ρ(C(s)), we obtain an ordered tree labelled with elements of N.
The following lemma is analogous to Lemma 5.4, the proof is exactly the same and is thus

omitted.

Lemma 6.3. The map ϕ is a bijection between the set CT of bounded consistent configurations
on T and the set of derivation trees whose root is labelled by Ar,c for some configuration c on r.

It remains to show that for any configuration C ∈ CT , the word ℓ(ψr(C)) given by the
SAW ψr(C) on G coincides with the word corresponding to the derivation tree ϕ(C).

Lemma 6.4. Let C ∈ CT be a bounded consistent configuration on T . Then

ℓ(ψr(C)) = w(ϕ(C)).

Proof. LetC ∈ CT . During the proof we denote for t ∈ V (T) by ϕt(C) the cone of ϕ(C) rooted
at t. We prove that whenever C(t↑) is non-boring it holds that

ℓ(ψt(C)) = w(ϕt(C)). (6.2)

We proceed by induction on the number of vertices s ∈ Kt carrying non-boring configura-
tions C(s).

Let t ∈ V (T) be such that C(s) is boring for every s ∈ Kt. Then ψt(C) is the empty
walk, so ℓ(ψt(C)) = ∅. Furthermore ϕt(C) consists only of the vertex t labelled Aρ(t),ρ(C(t))

and ρ(C(t)) is boring, so w(ϕt(C)) = ∅.
For the induction step we first set up some notation. Let r be the number of walk components

of ψt(C)−E(t↑, t). For h ∈ [r], letQh denote the h-th walk component of ψt(C)−E(t↑, t), and
let wh = ℓ(Qh). By definition ℓ(ψt(C)) = (w1, . . . , wr). Analogously, for each child t↓i of t, we
define ri as the number of walk components of ψt↓i

(C)−E(t, t↓i). For j ∈ [ri], let Qj
i be the j-th

walk component of ψt↓i
(C)− E(t, t↓i) and let wj

i be the label of Qj
i . The definition of ℓ together

with the induction hypothesis imply that

w(ϕt↓i
(C)) = ℓ(ψt↓i

(C)) = (w1
i , . . . , w

ri
i),

42 Florian Lehner, Christian Lindorfer

in particular ri = r(C(t↓i)). We examine the left-hand side and right-hand side of (6.2) indepen-
dently, and show that they yield the same tuple of words.

For the left-hand side first recall that for any vertex s of T we have that ψs(C) = P/F (tF)
where F is the set of edges in Ks incident to vertices with non-boring configurations. By
Lemma 4.6 the order of edge contractions does not play a role, in particular ψt(C) can be
obtained by first contracting all such edges not incident to t, and then contracting the edges
connecting t to t↑i one by one.

This means that we can constructψt(C) fromP (t) by performing the following modifications
for each i ∈ [k(t)]. For every virtual edge uv ∈ P (t) ∩ E(t, t↓i), the walk ψt↓i

(C) contains a
sub-walk with the same endpoints consisting entirely of non-virtual edges. Replace every such
virtual edge in P (t) by the corresponding walk in ψt↓i

(C). If X(t) = t↓i, then append the sub-
walk of ψt↓i

(C) after the last vertex in V(t, t↓i) to the resulting walk. Note that equivalently, we
can let U1

i , . . . , U
µi

i be the sequence of non-trivial walk components of P (t) ∩ G(t, t↓i), replace
every U j

i by the respective Qj
i , and append Qri

i in case X(t) = t↓i and P (t) does not end in a
virtual edge in E(t, t↓i).

Let P1, . . . , Pr(C(t)) be the walk components of P (t) − E(t↑, t) and for every h ∈ [r(C(t))]
let Ph = P 1

hP
2
hP

2
h . . . P

2m+1
h be the unique decomposition into sub-walks such that P l

h is a
possibly trivial non-virtual walk if l is odd and equal to some U j

i if l is even. By the above
discussion, for h < r(C(t)) we thus have

ℓ(Qh) = ℓ(P 1
h)ℓ̃(P

2
h)ℓ(P

3
h)ℓ̃(P

4
h) . . . ℓ(P

2m+1
h),

where ℓ̃(P l
h) = ℓ(Qj

i) = wj
i for the unique indices i, j satisfying P l

h = U j
i . For the final walk

component, that is, h = r(C(t)), we analogously obtain

ℓ(Qh) = ℓ(P 1
h)ℓ̃(P

2
h)ℓ(P

3
h)ℓ̃(P

4
h) . . . ℓ(P

2m+1
h)β,

where ℓ̃(P l
h) = wj

i as above and β = ϵ, unless X(t) = t↓i and P (t) does not end with an edge
in E(t, t↓i), in which case β = ℓ(Qµi+1

i) = wµi+1
i .

We now turn to the right-hand side of (6.2). For every i ∈ [k(t)], the induction hypothesis
implies that ϕt↓i

(C) is a derivation tree of the term

τi := Aρ(t↓i),ρ(C(t↓i))

(
w1

i , . . . , w
ri
i

)
.

Moreover the root t of ϕt(C) has label Aρ(t),ρ(C(t)), so ϕt(C) is a derivation tree of the term
obtained by application of the rule

Aρ(t),ρ(C(t))(α1, . . . , αr(C(t)))←
(
Aρ(t↓i),ρ(C(t↓i))

(zi,1, . . . , zi,r(C(t↓i))
)
)
i∈[r(C(t))]

to (τi)i∈[k(t)]. By definition of αh, the h-th entry of this term is obtained from the wj
i in the exact

same way as ℓ(Qh) and we conclude that ℓ(ψt(C)) = w(ϕt(C)) as claimed.

We are now able to prove the main result of this section by combining the previous results.

combinatorial theory 3 (1) (2023), #18 43

Proof of Theorem 6.1. Theorem 4.7 yields that the language of self-avoiding walks of the
graph G satisfies

LSAW,o = {ℓ(ψr(C)) : C ∈ CT }.

Furthermore Lemma 6.3 implies that the language generated by the grammar G is given by

LG = {w(ϕ(C)) : C ∈ CT }.

But by Lemma 6.4 these two sets are equal and G is a ⌈k/2⌉-multiple-context-free grammar
generating LSAW,o.

Finally, if the edge-labelling of G is deterministic, then ℓ is a bijection between the set of
self-avoiding walks on G and LSAW,o. Lemma 6.4 provides equality of the maps w ◦ϕ = ℓ ◦ψr,
so in particular w ◦ ϕ is also a bijection. We conclude that w bijectively maps derivation trees
with respect to G onto words in L(G), so G is unambiguous.

6.2. Multiple context-freeness implies bounded end size

In this section we prove the second part of our main result, namely

Theorem 6.5. Let G be a simple, locally finite, connected, quasi-transitive deterministically
edge-labelled graph such that LSAW,o is k-multiple context-free for some o ∈ V (G). Then every
end of G has size at most 2k.

As mentioned before, the proof of this statement will mostly follow the approach of Lindorfer
and Woess [LW20].

Recall that any graph automorphism is either elliptic, parabolic or hyperbolic, depending on
whether it fixes a finite subset of vertices, a unique end or a unique pair of ends. In what follows,
elliptic automorphisms are useless, so as a first step we will eliminate the possibility that all
label-preserving automorphisms are elliptic.

We remark that there are numerous examples of infinite graphs admitting a transitive group
action by only elliptic automorphisms. To see this, note that any non-elliptic automorphism
must have infinite order because it cannot fix a finite set of vertices. Therefore some interesting
examples arise from the study of the famous Burnside Problem from 1902, asking whether every
finitely generated torsion group, that is a group in which every element has finite order, must be
finite. While this question remained unsolved for more than 60 years, nowadays various examples
of infinite torsion groups are known. Any such group acts transitively on its Cayley graph by
only elliptic automorphisms.

However, if LSAW,o(G) is multiple context-free, then there are always non-elliptic automor-
phisms. The following lemma extends [LW20, Lemma 4.3] to multiple context-free languages;
the proof is essentially the same.

Lemma 6.6. Let G be a connected, infinite, locally finite and deterministically edge-labelled
graph and let Γ ⩽ AUT(G, ℓ) act quasi-transitively on G. If LSAW,o is multiple context-free for
some vertex o of G, then Γ contains a non-elliptic element.

44 Florian Lehner, Christian Lindorfer

Proof. The graph G is infinite and connected, so LSAW,o is an infinite language. By Lemma 2.4
the k-multiple context-free language LSAW,o contains some word w = x1y1x2 . . . y2kx2k+1 such
that at least one of y1, . . . , y2k is not the empty word ϵ, and x1yn1x2 . . . yn2kx2k+1 ∈ LSAW,o for
every n ∈ N0. Let m = min{i ∈ [2k] : yi ̸= ϵ}. Then for every n ∈ N0, the word x1 . . . xmynm
is a prefix of some word in LSAW,o and thus itself contained in LSAW,o. Let v0 be the end-vertex
of the unique walk p on G starting at o and having label ℓ(p) = x1 . . . xm. Then for every n ⩾ 0
there is a unique self-avoiding walk pn of length n |ym| starting at v0 and having label ynm. We
denote by vn the endpoint of the walk pn. Using the fact that Γ acts quasi-transitively on G,
there must be some τ ∈ Γ and some 0 ⩽ i < j ⩽ n such that τvi = vj . Since τ is label
preserving, τ lvi = vj+(l−1)(j−i) ̸= vi for every l > 0 and [Hal73, Proposition 12] yields that τ is
non-elliptic.

A locally finite, connected graph S is called a strip if it is quasi-transitive and has precisely
two ends. Note that both ends of a strip have the same finite size k which we call the size of S.
It is known that any strip S of size k has an automorphism τ such that the cyclic group ⟨τ⟩
generated by τ acts quasi-transitively on S. By [Hal73, Theorem 9], there is n ∈ N such that S
contains k disjoint τn-invariant double rays. Let us call S a τ -strip for τ ∈ AUT(S), if the last
statement holds with n = 1. We use the same notation if S is a sub-graph of a graphG invariant
under τ ∈ AUT(G).

The following lemma is a combination of [LW20, Lemmas 3.3 and 3.4] and provides the ex-
istence of τ -strips in certain types of graphs. In particular, it implies that τ -strips exist whenever
there is a non-elliptic automorphism.

Lemma 6.7. Let G be a locally finite connected graph and let Γ act quasi-transitively on G.

1. If G has a thin end of size k, then it contains a τ -strip of size k for some τ ∈ Γ.

2. If Γ contains a parabolic element, then for every k ⩾ 1, the graph G contains a τ -strip of
size k for some τ ∈ Γ.

With these existence results for τ -strips in a graphG in mind, we turn to the relation between
strips in a graph G and its language of SAWs. A combination of the previous lemma and the
upcoming lemma is already sufficient to treat graphs G without thick ends.

Lemma 6.8. Let G be a connected, infinite, deterministically edge-labelled graph on
which Γ = AUT(G, ℓ) acts quasi-transitively, let o be a vertex ofG and let k ∈ N. IfG contains
a τ -strip of size 2k + 1 for some τ ∈ Γ, then LSAW,o is not k-multiple context-free.

Proof. The proof can be outlined as follows. We start by defining an infinite set P of walks such
that firstly, the language ℓ(P) is regular, and secondly, the language ℓ(PSAW) of the subset PSAW

consisting of all self-avoiding walks in P is not k-multiple context-free. It then follows from the
closure properties of k-multiple context free languages that LSAW,o is not k-multiple context-
free.

The set P essentially consists of spiral-shaped walks on the strip S, see Figure 6.3. For a
concise definition, first recall that the strip S contains 2k + 1 τ -invariant rays R1, . . . , R2k+1 by
the definition of a τ -strip, and that the subgroup ⟨τ⟩ of Γ generated by τ acts quasi-transitively

combinatorial theory 3 (1) (2023), #18 45

on S. Let K be a set of orbit representatives of the action of ⟨τ⟩ on S such that the induced
sub-graphs S[K] and Ri[K] (for every i ∈ [2k + 1]) are connected.

Let TK be a spanning tree of S[K] containing all edges of the pathsRi[K]. Such a tree exists
because S[K] is connected and the rays Ri are disjoint and acyclic. For j ∈ [2k] let TK(j) be
the smallest sub-tree of TK containing the pathsRj[K], . . . , R2k+1[K]. We call a rayRi pendant
in TK(j) if TK(j) contains precisely one edge connecting a vertex of Ri to a vertex not in Ri.
Clearly TK(j) contains at least two pendant rays and we may relabel the rays in a way such that
for every i ∈ [2k], the rays Ri and Ri+1 are pendant in the tree TK(i).

For i, j ∈ [2k + 1] with i ̸= j let Wi,j be the path connecting Ri to Rj in TK . Furthermore
let W0,2 consist of a shortest walk connecting o to some v0 ∈ τn(TK), followed by a walk
connecting v0 and R2 on τn(TK).

It will be convenient to slightly abuse notation and define concatenations of walks whose
endpoint and starting point do not coincide, but for which the endpoint of the first walk can be
mapped onto onto the starting point by a suitable power of τ . More precisely, let P and Q be
two walks on S, let u be the endpoint of P and let v be the starting point of Q. If v = τ i(u), we
write PQ for the concatenation of P and τ iQ.

Using this notation, for each i ∈ [2k] let us define a walk

Xi = Wi−1,i+1QWi+1,i,

whereQ is the path connecting the endpoint ofWi−1,i+1 to the starting point of τ(Wi+1,i) on the
rayRi+1 if i is odd and the endpoint of τ(Wi−1,i+1) to the starting point ofWi+1,i if i is even. Note
that we apply the notation defined above, so Xi consists of the paths Wi−1,i+1, Q and τ(Wi+1,i).
Moreover, let X2k+1 = W2k,2k+1Q, where Q connects the endpoint of W2k,2k+1 with its image
under τ on the ray R2k+1. Note that Xi is self-avoiding because Wi−1,i+1 and Wi+1,i are fully
contained in S[K]. Furthermore observe thatXi is contained in TK(i−1) and meetsRi−1 andRi

only in its endpoints.
Next, for every i ∈ [2k + 1] let ri be the terminal vertex of Xi. Note that ri is a vertex

of Ri. Moreover for i ⩽ 2k it lies in the same orbit as the initial vertex of Xi+1 because the
raysRi andRi+1 are pendant in the tree TK(i). Finally let Yi be the sub-path ofRi connecting ri
with τ 2(ri) if i is odd and let Yi be the sub-path of Ri connecting τ 2(ri) with ri if i is even.

Let P be the infinite set of walks of the form

X1Y
n1
1 X2Y

n2
2 . . . X2k+1Y

n2k+1

2k+1 , (6.3)

where n1, . . . , n2k+1 ∈ N. See Figure 6.3 for an illustration of an element of P .
The language L(P) has the form

L(P) = {x1yn1
1 x2y

n2
2 . . . x2k+1y

n2k+1

2k+1 : n1, . . . , n2k+1 ∈ N} (6.4)

where the words xi and yi are the labels of the walks Xi and Yi, respectively. Clearly, L(P) is a
regular language.

We claim that a walk of type (6.3) is self-avoiding if and only if ni+1 < ni for every i ∈ [2k].
Fix a walk W = X1Y

n1
1 X2Y

n2
2 . . . X2k+1Y

n2k+1

2k+1 ∈ P and denote by X̃i the sub-walk of W
corresponding to Xi and by Ỹi the sub-walk of W corresponding to the concatenated walk Y ni

i .

46 Florian Lehner, Christian Lindorfer

o

v0

X̃1 X̃2X̃3

Ỹ1

Ỹ2

Ỹ3

R1

R2

R3

R4
...

K τ(K) τ 2(K) τ 3(K) τ 2n1(K)τ 2n1+1(K)

Figure 6.3: Spiral shaped walks in P . The dashed rectangles contain the setK and its respective
translates under τ i.

In the example shown in Figure 6.3 we have n2 = n1 − 1. Observe that n2 ⩾ n1 would yield a
self-intersection on R2.

We say that a vertex v ∈ S lies on level l ∈ Z, if v ∈ τ 2l(K) ∪ τ 2l+1(K). First note that
the walk X̃1 does not contain vertices on level l ⩾ 1. Moreover, it follows inductively that X̃i

contains only vertices on level li =
∑i−1

j=1(−1)j−1nj and that Ỹi starts on level li and ends on
level li+1.

Assume that the walk W is not self-avoiding. Then there is some index i ∈ [2k + 1] such
that X̃i intersects either X̃j for j > i or contains an interior point of Ỹj for some j ∈ [2k + 1].
For j < i − 1, the walk X̃i does not intersect Ỹj because Rj does not intersect TK(i − 1).
For j ∈ {i− 1, i}, the walk X̃i contains only a single vertex of Rj , which is an endpoint of Ỹj .
Therefore j > i, and in particular Ỹj contains a vertex on level li. Without loss of generality
assume that j is odd, the other case is symmetric. Since Ỹj connects levels lj to lj+1 > lj we
conclude that lj+1 ⩾ li ⩾ lj . If i is odd, then

0 ⩾ lj − li =
j−1∑
l=i

(−1)l−1nl = (ni − ni+1) + · · ·+ (nj−2 − nj−1),

so there is some index l such that nl−1 ⩽ nl. Otherwise i is even and an analogous argument
using 0 ⩽ lj+1 − li leads to the same conclusion.

For the converse implication assume that there is i ∈ [2k] such that ni+1 ⩾ ni. We claim
that the sub-walk X̃iỸiX̃i+1Ỹi+1 of W is not self-avoiding. Assume without loss of generality
that i is odd, the other case is symmetric. Since ni − ni+1 ⩽ 0 we know that li+2 ⩽ li < li+1.
In particular, both X̃i and Ỹi+1 contain vertices on level li. Moreover, by definition of Xi the
walk X̃i contains a vertex v of Ri+1 ∩ τ 2li+1(K). Finally the sub-path Ỹi+1 of Ri+1 starts at a
vertex in τ 2li+1(K) and ends at a vertex in τ 2li+2(K) and thus must contain the vertex v. We
conclude that W is not self-avoiding.

Let us now assume that the language LSAW,o is k-multiple context-free. Recall that the class
of k-multiple context-free languages is closed under homomorphisms, inverse homomorphisms,
and intersection with regular languages. Using these properties and Theorem 2.5, we derive a
contradiction. First, note that the language

L(PSAW) = {x1yn1
1 x2y

n2
2 . . . x2k+1y

n2k+1

2k+1 : n1 > n2 > · · · > n2k+1 > 0}

combinatorial theory 3 (1) (2023), #18 47

is the intersection of the regular language L(P) and the k-multiple context-free language LSAW,o

and thus must be k-multiple context-free. We define a language homomorphism

ϕ : {a1, b1, . . . , a2k+1, b2k+1}∗ → Σ∗

by setting ϕ(ai) = xiy
2k+2−i
i and ϕ(bi) = yi for every i ∈ [2k + 1]; we point out that ai and bi

are single letters, whereas xi and yi are labels of walks and thus may consist of multiple letters.
The language

L1 = {a1bn1
1 . . . a2k+1b

n2k+1

2k+1 : n1 ⩾ n2 ⩾ . . . ⩾ n2k+1 ⩾ 0}

is k-multiple context-free because

L1 = ϕ−1(L(PSAW)) ∩ {a1bn1
1 . . . a2k+1b

n2k+1

2k+1 : n1, . . . , n2k+1 ∈ N0}.

Note that this statement strongly relies on the fact that the edge-labelling ℓ is deterministic: the
image ϕ(w) of any word w ∈ {a1bn1

1 . . . a2k+1b
n2k+1

2k+1 : n1, . . . , n2k+1 ∈ N0} is the label of a
unique walk in P and thus has a unique representation of the form (6.4), which lies in L(PSAW)
if and only if n1 ⩾ n2 ⩾ . . . ⩾ n2k+1 ⩾ 0.

Finally, the language L2 = {cn1
1 . . . c

n2k+1

2k+1 : n1 ⩾ n2 ⩾ . . . ⩾ n2k+1 ⩾ 0} is the image
of L1 under the obvious homomorphism mapping ai to ϵ and bi to ci and thus must be k-multiple
context-free, a contradiction to Theorem 2.5.

The property of having a k-multiple context-free language of SAWs is closed under taking
certain sub-graphs. The following lemma extends [LW20, Lemma 4.2] to MCFLs; the proof
works exactly the same and is thus omitted.

Lemma 6.9. Let H be a sub-graph of G which is invariant under a subgroup Γ of AUT(G, ℓ)
acting quasi-transitively on H . If LSAW,o(G) is k-multiple context-free, then there is a ver-
tex o′ ∈ V (H) such that LSAW,o′(H) is also k-multiple context-free.

Knowing that k-multiple context-freeness of the language of self-avoiding walks forbids τ -
strips of size at least 2k + 1, we are able to prove the main result of this section. Note that the
case of thin ends is already taken care of, so we mainly need to deal with thick ends in the proof.

Proof of Theorem 6.5. By Lemma 6.8 there is no τ ∈ Γ = AUT(G, ℓ) such that the graph G
contains a τ -strip of size 2k + 1. Lemma 6.7 yields that all thin ends of G have size at most 2k,
thus G is accessible.

Assume for a contradiction that G contains a thick end. By Theorem 3.1 there is a tree
decomposition (T,V) ofG efficiently distinguishing all ends ofG such that there are only finitely
many Γ-orbits onE(T). We have seen in Section 3 thatG having a thick end implies that there is
a vertex t of T such that the part V(t) is infinite. By Lemma 3.4 the set-wise stabiliser ΓV(t) ⩽ Γ
of V(t) acts quasi-transitively on this part.

Let H be the sub-graph of G obtained from the induced sub-graph G[V(t)] in the following
way. For every edge e of T incident to t add for every pair of vertices in the adhesion set V(e) all
shortest walks connecting these vertices. Then H is connected and ΓV(t) acts quasi-transitively

48 Florian Lehner, Christian Lindorfer

on H because it acts with finitely many orbits on the edges of T and thus on the adhesion sets
contained in V(t). By Lemma 6.9 there exists a vertex o′ ofH such that the languageLSAW,o′(H)
is k-multiple context-free and by Lemma 6.6 the subgroup ΓV(t) contains a non-elliptic graph
automorphism γ. As H has only a single (thick) end, γ fixes this end and is parabolic. By
Lemma 6.7, the graph H contains a τ -strip S of size 2k + 1 for some τ ∈ ΓV(t). But S is also
a τ -strip in the original graph G, contradicting Lemma 6.8. We conclude that all ends of G are
thin.

Acknowledgements

The authors express their gratitude to Wolfgang Woess for introducing them to each other and
to the research problems discussed in this paper.

References

[AJ90] Sven Erick Alm and Svante Janson. Random self-avoiding walks on one-
dimensional lattices. Comm. Statist. Stochastic Models, 6(2):169–212, 1990.
doi:10.1080/15326349908807144.

[Anı71] Anatoly V. Anısımov. The group languages. Kibernetika (Kiev), 4:18–24, 1971.
[Ant11] Yago Antolı́n. On Cayley graphs of virtually free groups. Groups Complex. Cryp-

tol., 3(2):301–327, 2011. doi:10.1515/gcc.2011.012.
[BD15] Cyril Banderier and Michael Drmota. Formulae and asymptotics for coefficients

of algebraic functions. Combin. Probab. Comput., 24(1):1–53, 2015. doi:10.

1017/S0963548314000728.
[BDCGS12] Roland Bauerschmidt, Hugo Duminil-Copin, Jesse Goodman, and Gordon Slade.

Lectures on self-avoiding walks. In Probability and statistical physics in two and
more dimensions, volume 15 of Clay Math. Proc., pages 395–467. Amer. Math.
Soc., Providence, RI, 2012.

[CS63] Noam Chomsky and Marcel-Paul Schützenberger. The algebraic theory of context-
free languages. In Computer programming and formal systems, pages 118–161.
North-Holland, Amsterdam, 1963. doi:10.1016/S0049-237X(08)72023-8.

[CSW02] Tullio Ceccherini-Silberstein and Wolfgang Woess. Growth and ergodicity of
context-free languages. Trans. Amer. Math. Soc., 354(11):4597–4625, 2002.
doi:10.1090/S0002-9947-02-03048-9.

[DCS12] Hugo Duminil-Copin and Stanislav Smirnov. The connective constant of the hon-
eycomb lattice equals

√
2 +
√
2. Ann. of Math. (2), 175(3):1653–1665, 2012.

doi:10.4007/annals.2012.175.3.14.
[DK15] Martin J. Dunwoody and Bernhard Krön. Vertex cuts. J. Graph Theory,

80(2):136–171, 2015. doi:10.1002/jgt.21844.

https://doi.org/10.1080/15326349908807144
https://doi.org/10.1515/gcc.2011.012
https://doi.org/10.1017/S0963548314000728
https://doi.org/10.1017/S0963548314000728
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1090/S0002-9947-02-03048-9
https://doi.org/10.4007/annals.2012.175.3.14
https://doi.org/10.1002/jgt.21844

combinatorial theory 3 (1) (2023), #18 49

[Dun82] Martin J. Dunwoody. Cutting up graphs. Combinatorica, 2(1):15–23, 1982. doi:
10.1007/BF02579278.

[Fla87] Philippe Flajolet. Analytic models and ambiguity of context-free languages. The-
oret. Comput. Sci., 49(2-3):283–309, 1987. Twelfth international colloquium
on automata, languages and programming (Nafplion, 1985). doi:10.1016/

0304-3975(87)90011-9.
[Flo53] Paul J. Flory. Principles of Polymer Chemistry. Cornell University Press, 1953.
[FS09] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge Uni-

versity Press, Cambridge, 2009. doi:10.1017/CBO9780511801655.
[GL19] Geoffrey R. Grimmett and Zhongyang Li. Self-avoiding walks and connective

constants. In Sojourns in probability theory and statistical physics. III. Interacting
particle systems and random walks, a festschrift for Charles M. Newman, pages
215–241. Singapore: Springer; Shanghai: NYU Shanghai, 2019. doi:10.1007/
978-981-15-0302-3_8.

[GM17] Lorenz A. Gilch and Sebastian Müller. Counting self-avoiding walks on free prod-
ucts of graphs. Discrete Math., 340(3):325–332, 2017. doi:10.1016/j.disc.

2016.08.018.
[Hal65] Rudolf Halin. Über die Maximalzahl fremder unendlicher Wege in Graphen.

Math. Nachr., 30:63–85, 1965. doi:10.1002/mana.19650300106.
[Hal73] Rudolf Halin. Automorphisms and endomorphisms of infinite locally finite graphs.

Abh. Math. Sem. Univ. Hamburg, 39:251–283, 1973. doi:10.1007/BF02992834.
[Hal76] Rudolf Halin. S-functions for graphs. J. Geom., 8(1-2):171–186, 1976. doi:

10.1007/BF01917434.
[Ham57] John M. Hammersley. Percolation processes. II. The connective con-

stant. Proc. Cambridge Philos. Soc., 53:642–645, 1957. doi:10.1017/

S0305004100032692.
[HLMR22] Matthias Hamann, Florian Lehner, Babak Miraftab, and Tim Rühmann. A

Stallings type theorem for quasi-transitive graphs. J. Combin. Theory Ser. B,
157:40–69, 2022. doi:10.1016/j.jctb.2022.05.008.

[Ho18] Meng-Che Ho. The word problem of Zn is a multiple context-free language.
Groups Complex. Cryptol., 10(1):9–15, 2018. doi:10.1515/gcc-2018-0003.

[KS86] Werner Kuich and Arto Salomaa. Semirings, automata, languages, volume 5 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin,
1986. doi:10.1007/978-3-642-69959-7.

[LL21] Florian Lehner and Christian Lindorfer. Comparing consecutive letter counts in
multiple context-free languages. Theoret. Comput. Sci., 868:1–5, 2021. doi:

10.1016/j.tcs.2021.03.034.
[LW20] Christian Lindorfer and Wolfgang Woess. The language of self-avoiding walks.

Combinatorica, 40(5):691–720, 2020. doi:10.1007/s00493-020-4184-z.

https://doi.org/10.1007/BF02579278
https://doi.org/10.1007/BF02579278
https://doi.org/10.1016/0304-3975(87)90011-9
https://doi.org/10.1016/0304-3975(87)90011-9
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1007/978-981-15-0302-3_8
https://doi.org/10.1007/978-981-15-0302-3_8
https://doi.org/10.1016/j.disc.2016.08.018
https://doi.org/10.1016/j.disc.2016.08.018
https://doi.org/10.1002/mana.19650300106
https://doi.org/10.1007/BF02992834
https://doi.org/10.1007/BF01917434
https://doi.org/10.1007/BF01917434
https://doi.org/10.1017/S0305004100032692
https://doi.org/10.1017/S0305004100032692
https://doi.org/10.1016/j.jctb.2022.05.008
https://doi.org/10.1515/gcc-2018-0003
https://doi.org/10.1007/978-3-642-69959-7
https://doi.org/10.1016/j.tcs.2021.03.034
https://doi.org/10.1016/j.tcs.2021.03.034
https://doi.org/10.1007/s00493-020-4184-z

50 Florian Lehner, Christian Lindorfer

[MS83] David E. Muller and Paul E. Schupp. Groups, the theory of ends, and context-
free languages. J. Comput. System Sci., 26(3):295–310, 1983. doi:10.1016/

0022-0000(83)90003-X.
[MS85] David E. Muller and Paul E. Schupp. The theory of ends, pushdown automata, and

second-order logic. Theoret. Comput. Sci., 37(1):51–75, 1985. doi:10.1016/

0304-3975(85)90087-8.
[MS96] Neal Madras and Gordon Slade. The self-avoiding walk. Modern Birkhäuser

Classics. Birkhäuser/Springer, New York, 1996. Reprint 2013. doi:10.1007/

978-1-4612-4132-4.
[RS84] Neil Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J. Com-

bin. Theory Ser. B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.
[Sal15] Sylvain Salvati. MIX is a 2-MCFL and the word problem in Z2 is captured by

the IO and the OI hierarchies. J. Comput. System Sci., 81(7):1252–1277, 2015.
doi:10.1016/j.jcss.2015.03.004.

[SMFK91] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On mul-
tiple context-free grammars. Theoret. Comput. Sci., 88(2):191–229, 1991. doi:

10.1016/0304-3975(91)90374-B.
[SS78] Arto Salomaa and Matti Soittola. Automata-theoretic aspects of formal power

series. Texts and Monographs in Computer Science. Springer-Verlag, New York-
Heidelberg, 1978. doi:10.1007/978-1-4612-6264-0.

[Tho92] Carsten Thomassen. The Hadwiger number of infinite vertex-transitive graphs.
Combinatorica, 12(4):481–491, 1992. doi:10.1007/BF01305240.

[TW93] Carsten Thomassen and Wolfgang Woess. Vertex-transitive graphs and accessibil-
ity. J. Combin. Theory Ser. B, 58(2):248–268, 1993. doi:10.1006/jctb.1993.
1042.

[Vie85] Gérard Viennot. Enumerative combinatorics and algebraic languages. In
Fundamentals of computation theory (Cottbus, 1985), volume 199 of Lecture
Notes in Comput. Sci., pages 450–464. Springer, Berlin, 1985. doi:10.1007/

BFb0028829.
[Woe00] Wolfgang Woess. Random walks on infinite graphs and groups, volume 138 of

Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2000.
doi:10.1017/CBO9780511470967.

[Zei96] Doron Zeilberger. Self-avoiding walks, the language of science, and Fibonacci
numbers. J. Statist. Plann. Inference, 54(1):135–138, 1996. doi:10.1016/

0378-3758(95)00162-X.

https://doi.org/10.1016/0022-0000(83)90003-X
https://doi.org/10.1016/0022-0000(83)90003-X
https://doi.org/10.1016/0304-3975(85)90087-8
https://doi.org/10.1016/0304-3975(85)90087-8
https://doi.org/10.1007/978-1-4612-4132-4
https://doi.org/10.1007/978-1-4612-4132-4
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/j.jcss.2015.03.004
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1007/978-1-4612-6264-0
https://doi.org/10.1007/BF01305240
https://doi.org/10.1006/jctb.1993.1042
https://doi.org/10.1006/jctb.1993.1042
https://doi.org/10.1007/BFb0028829
https://doi.org/10.1007/BFb0028829
https://doi.org/10.1017/CBO9780511470967
https://doi.org/10.1016/0378-3758(95)00162-X
https://doi.org/10.1016/0378-3758(95)00162-X

	Introduction
	Basic background
	Graph theory
	Formal languages

	Tree decompositions
	Rooted tree decompositions
	Cones and cone types

	Configurations
	A grammar for bounded consistent configurations
	Choosing representatives of configurations
	Construction of the grammar

	The multiple context-free language of self-avoiding walks
	Bounded end size implies multiple context-freeness
	Multiple context-freeness implies bounded end size

