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Abstract 7 

Mediterranean-climate oak woodlands are prized for their biodiversity, aesthetics, and ecosystem 8 

services. Conservation and maintenance of these landscapes requires accurate observations of 9 

both present and historic conditions capable of spanning millions of hectares. Decameter optical 10 

satellite image time series have the observational coverage to meet this need, with almost 40 11 

years of intercalibrated global observations from the Landsat program alone. Despite this wealth 12 

of data, the optimal approach to leverage these observations for oak ecosystem monitoring 13 

remains elusive. Temporal mixture models (TMMs) may offer a solution. TMMs use a linear 14 

inverse model based on temporal endmembers (tEMs) chosen to optimize both parsimony and 15 

information content by 1) possessing clear biophysical meaning, and 2) accurately representing 16 

the variance structure of the observations as determined by Euclidean position in the temporal 17 

feature space (TFS) composed of low-order Principal Components. We apply this approach to 18 

the California Sierra foothill oak system. Low-order TFS structure across the entire Sierra 19 

Foothill study area is consistently bounded by 4 tEM phenologies: annual grasses, evergreen 20 

perennials, deciduous perennials + shadow, and unvegetated areas. Satellite-based tEM 21 

phenologies correspond to ground-based PhenoCam time series (correlations 0.8 to 0.9). 22 

Systematic temporal decimation is conducted to simulate years with varying numbers of cloud 23 

free measurements. Fractions are observed to scale linearly using as few as 6 images per year 24 

and coarse feature space topology is retained with as few as 4 (well-timed) images per year. The 25 

effect of 10 m versus 30 m pixel resolution is investigated. Linear scaling is observed with 26 

correlations in the 0.78 to 0.95 range. Comparison of 10 m Sentinel-2 fractions to LiDAR-27 

derived tree abundance at San Joaquin Experimental Range shows a correlation of 0.74. Visual 28 

orthophoto validation shows accuracies of annual, deciduous, and evergreen fractions in the 74 29 

to 88% range (n = 102). Multi-year analysis of August imagery at Sequoia National Park to 30 

investigate dynamics associated with the 2011-2017 drought reveals 5 tEMs corresponding to: 31 

steady growth, steady decline, early decline then regrowth, persistent vegetation, and no 32 

vegetation. Validation images are sparse, but where available show accuracies in the 88 to 91% 33 

range for decrease, growth, and persistently vegetated fractions (n = 102). Decreases are 34 

observed in areas noted by a recent field-based study. The results of this analysis suggest the 35 

TMM approach has promise a novel, accurate, explainable, and linearly scalable method for 36 

retrospective analysis and prospective monitoring of Mediterranean-climate oak landscapes.  37 
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Introduction 40 

 41 

Mediterranean-climate oak woodlands and savannas are the focus of considerable 42 

scientific, social, and aesthetic interest. Covering approximately 4 million hectares in California 43 

and 3 million hectares in Spain and Portugal (Marañón et al., 2009), oak systems host thousands 44 

of understory plant and animal species (California Department of Fish and Wildlife (CDFW), 45 

2014; Guisti et al., 1996; Swiecki et al., 1997). As a consequence of their broad spatial extent 46 

and exceptional biodiversity, oak woodlands and savannas are a key component of the 47 

designation of both the California Floristic Province and Mediterranean Basin as global 48 

biodiversity hotspots (Baldwin, 2014; Myers et al., 2000). In addition to their ecological 49 

importance, Mediterranean-climate oak landscapes are also recognized for their intrinsic 50 

aesthetic and historic value (Allen-Diaz et al., 2007; Davis et al., 2016; Pavlik et al., 1993). 51 

Maintaining Mediterranean-climate oak landscapes is challenging given the number of 52 

potential drivers of change. Some agents, such as drought and fire, have existed for millennia and 53 

may be amplifying (Davis and Borchert, 2006; Klausmeyer and Shaw, 2009; Loarie et al., 2008; 54 

Mensing, 2006; Miller et al., 2009). Other processes, like suburban sprawl (Cameron et al., 2014; 55 

Gaman and Firman, 2006) and introduction of nonnative pests (Swiecki et al., 1997), are more 56 

recent threats. The confluence of such factors, including observed low recruitment rates of some 57 

oak species (Tyler et al., 2006), could significantly alter the extent and composition of oak 58 

landscapes. Understanding both past and ongoing effects of these change drivers can both 59 

provide valuable context for predicting future impacts and help guide conservation efforts. 60 

Quantitative evaluation of change at a landscape scale requires accurate and spatially 61 

extensive methods for both retrospective analysis and prospective monitoring. While optical 62 

remote sensing has been used for decades for this purpose, recent advances in data availability 63 

and quality have substantially increased the capability of satellite imaging systems. Many of 64 

these developments are associated with the Landsat program, including the opening of the 65 

Landsat archive (Wulder et al., 2012); rigorous radiometric intercalibration (Chander et al., 66 

2009); subpixel geolocation and terrain correction (Storey et al., 2014); and standardized 67 

atmospheric correction routines (Vermote et al., 2018; Vermote and Saleous, 2007). In addition, 68 

the 2015 and 2016 launches of Sentinel-2a and -2b (Drusch et al., 2012), along with the 69 

European Space Agency’s free data availability policy (Berger et al., 2012), provide increased 70 

spatial resolution and substantially shortened revisit time. Considerable effort has also been 71 

devoted to merging the Landsat and Sentinel-2 data streams, including the development of the 72 

Harmonized Landsat Sentinel-2 (HLS) product (Claverie et al., 2018). Taken together, these 73 

developments have been heralded as a “paradigm shift” in optical remote sensing (Woodcock et 74 

al., 2019), offering new opportunities to improve our understanding of oak landscapes in both 75 

California and the Mediterranean region. 76 

Advances in imaging systems and data availability have been accompanied by a 77 

concomitant increase in research on remote sensing of oak woodlands and Mediterranean-78 

climate ecosystems (Figure 1). A plethora of monitoring and analysis methods have been 79 

proposed for Mediterranean landscapes. Many of these methods are based on change detection 80 
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from image pairs or relatively small numbers of images (e.g. (Berberoglu and Akin, 2009; 81 

Recanatesi et al., 2018)). While useful for mapping changes associated with specific events, 82 

these methods do not fully exploit the dense image time series that are now available. Other 83 

methods focus on aerial orthophoto, imaging spectroscopy, and/or LiDAR surveys (e.g. (Asner et 84 

al., 2016; Bogan et al., 2019; Fricker et al., 2019; Miraglio et al., 2020; Navarro et al., 2019; 85 

Swatantran et al., 2011)). These studies have achieved impressive results, but remain spatially 86 

and temporally limited until data coverage expands considerably – and even then will not allow 87 

for retrospective analysis. Finally, highly generalized approaches to automated operational 88 

monitoring (e.g. (Koltunov et al., 2019; Verbesselt et al., 2010)) are under continuous 89 

development and can be a useful tool for land managers. However, they are intentionally 90 

designed not to be tailored to specific ecosystem types and can rely on algorithms with 91 

considerable complexity. The need still exists for a method that is tailored to oak woodland and 92 

savanna landscapes and can efficiently map and monitor change at regional scales using existing 93 

multispectral satellite image time series. 94 

 95 

Temporal mixture models (TMMs) may offer a parsimonious solution. TMMs (Piwowar 96 

et al., 1998; Quarmby, 1992; Quarmby et al., 1992) represent each pixel time series as a linear 97 

combination of constituent endmember temporal processes. Using spatiotemporal 98 

characterization (Small, 2012) and knowledge of the landscape, the endmember processes can be 99 

chosen to represent straightforward, intuitive landscape components (e.g. distinct vegetation 100 

phenologies). Unlike many commonly used complex, multilayered statistical mapping 101 

algorithms, the TMM approach rates highly on the metric of “explainability” (Gunning, 2017), a 102 

factor deemed increasingly important by data scientists. TMMs are most useful when objects on 103 

the landscape are: 1) spatially mixed at the scale of the pixel, and 2) more distinct temporally 104 

than spectrally. These conditions are met in many Mediterranean-climate oak landscapes where 105 

plant communities may be spatially heterogeneous and spectrally indistinct, but phenologically 106 

variable. Previous studies have implemented TMMs for the mapping of impervious surfaces (Li 107 
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and Wu, 2014; Yang et al., 2012), arctic sea ice (Chi et al., 2016; Piwowar et al., 1998), seasonal 108 

cloud forest/grassland systems (Sousa et al., 2019), agricultural dynamics (Jain et al., 2013; 109 

Lobell and Asner, 2004; Quarmby et al., 1992; Sousa and Small, 2019), and tropical mangrove 110 

forests (Small and Sousa, 2019), with promising results. To our knowledge, however, TMMs 111 

remain untested both for Mediterranean systems in general and for California oak landscapes in 112 

particular. 113 

In this work, we introduce the TMM approach to the mapping and monitoring of 114 

Mediterranean-climate oak landscapes. We focus on the California Sierra foothill oak system for 115 

reasons outlined below. Specifically, this work addresses the following questions:  116 

1) Characterization: What are the dominant spatiotemporal modes of variability in these 117 

landscapes, as captured by decameter multispectral satellite image time series? 118 

Which, and how many, unique phenological signatures can be reliably identified? 119 

How do temporal endmembers derived from satellite image series compare to 120 

independent ground-based phenology measurements?  121 

2) Stability & Scaling: How does this characterization change across the ~500 km extent 122 

of the study area? With decreased temporal sampling frequency? How do mapping 123 

results compare between 10 m (current & future Sentinel-2) and 30 m (historic & 124 

current Landsat) spatial scales? 125 

3) Validation and Comparison: How does single-year mapping accuracy compare 126 

against canopy height models derived from small-footprint airborne LiDAR? How do 127 

estimates of drought-associated defoliation compare to airphotos and meter resolution 128 

satellite images? 129 

Background 130 

A. Study Area 131 

The same landscape complexity that imparts much of the value of oak landscapes also 132 

substantially complicates monitoring efforts. Oak landscapes span a wide range of climate zones, 133 

elevations, soil types, and land ownership regimes. Individual oaks span a broad continuum of 134 

morphologies and sizes: for instance, oak canopies can range from shrublike, < 1 m diameter to 135 

arborescent, > 30 m diameter. Tree heights can also vary at a similar scale. Structurally, oak 136 

landscapes range from open, grass-dominated savannas with sparse tree cover to dense, closed 137 

canopy woodlands and forests. Trees can occur in monospecific or mixed stands. Oak species 138 

can be evergreen, seasonally deciduous, and/or drought-deciduous. Substantial phenologic 139 

variation exists within species and even within canopies of individuals. Any comprehensive 140 

analysis and monitoring approach must contend with this formidable multiscale complexity. 141 

One approach to accommodate this diversity is to decompose the full spatial domain of 142 

oak woodlands and savannas into smaller subregions with more manageable properties. 143 

California’s Sierra Nevada foothills (red outline in Figure 2) are one such subregion. On its own, 144 

the Sierra foothill system is both interesting and important for several reasons. A recent analysis 145 

has identified the Sierra foothills as facing particularly extensive threats from development 146 

(Gaman and Firman, 2006). Recent severe drought has also raised concerns of elevated rates of 147 
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oak mortality in the Sierra foothills due to its hot, dry summers and declining water table. In 148 

addition to its environmental and social importance, the Sierra foothill system also offers 149 

advantages for monitoring with optical remote sensing, featuring relatively straightforward grass 150 

+ shrub + tree biophysical structure, smoothly varying topography, and low soil heterogeneity.  151 

 152 

We specifically focus on the ≈1200 km2 area mapped by the Jepson Flora Project 153 

(Baldwin et al., 2020) as Northern, Central, and Southern Sierra Nevada Foothills: Oak 154 

Woodlands. The study area is comprised of a narrow (~25 km wide) band of relatively low (~200 155 

to 600 m ASL) elevation foothills spanning over 500 km in length. The climate of the study area 156 

is classified as hot summer Mediterranean (Köppen Csa). The San Joaquin Experimental Range 157 

(SJER), a longstanding research station (est. 1934), is chosen as the location of our LiDAR-158 

based validation/comparison on the basis of extensive ancillary data associated with its status as 159 

a Core Terrestrial site of the National Ecological Observatory Network (NEON). A number of 160 

deciduous and evergreen oak species occur throughout the study area, primarily including 161 

Quercus douglasii (blue oak), Q. lobata (valley oak), Q. wislizeni (interior live oak), and Q. 162 

chrysolepis (canyon live oak). Understory floristic composition is variable, with a mixture of 163 

evergreen and deciduous shrubs and annual and perennial grasses. Sequoia National Park (SNP) 164 

is a longstanding federally protected area (est. 1890). Most of the park is characterized by rugged 165 

topography, with an elevation gradient spanning over 4000 m. A diverse set of vegetation 166 

communities exist in the park. We focus on the relatively small spatial subset of SNP which 167 
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hosts blue oak woodlands, found at low elevations near the western park boundary. These 168 

woodlands are dominated by Q. douglasii, and also commonly include Q. wislizeni, Aesculus 169 

californica (California buckeye) and Fraxinus dipetala (California ash). This area was the 170 

subject of a recent study by (Das et al., 2020) which presented field evidence of drought-171 

associated oak mortality. We focus our multi-year demonstration on this region in order to 172 

highlight a use case of potential interest to the ecological and conservation communities. 173 

B. The mixed pixel 174 

Relatively few individual tree canopies in the Sierra foothills have diameters exceeding 175 

the 10 m nominal Ground Instantaneous Field of View (GIFOV) of the Sentinel-2 visible 176 

through near infrared (VNIR) spectral bands, and far fewer exceed the 30 m GIFOV of Landsat-177 

series sensors. Because the spatial scale of the objects of interest on the landscape is finer than 178 

the spatial resolution of the sensor, most pixels in these images are spatially mixed – i.e., they 179 

integrate signal from more than one object on the landscape. This phenomenon is illustrated in 180 

Figure 3. While the 30 cm resolution of the airphoto is sufficient to resolve all individual trees 181 

and most shrubs, the area integrated by most Landsat and Sentinel-2 pixels (gray squares) clearly 182 

extends beyond individual canopies. The mixed pixel is thus a fundamental characteristic of 183 

decameter resolution imagery of the Sierra foothills (and many other landscapes), suggesting the 184 

applicability of L-resolution models – and intrinsic limitations of H-resolution models – as 185 

described by (Strahler et al., 1986). 186 
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 187 

Spectral mixture analysis (SMA; (Adams et al., 1986; Gillespie, 1990; Settle and Drake, 188 

1993)) is one well-understood approach to the mixed pixel problem for single image 189 

acquisitions. SMA optimizes the extraction of information from a multispectral image by 190 

considering the radiance (or reflectance) measured by each pixel as a linear combination of the 191 

radiance (or reflectance) of spectral endmember materials, plus error. The areal abundance of 192 

each endmember within the spatial extent of each pixel can then be estimated accurately using 193 

least squares. A fundamental assumption of spectral mixture analysis is that the landscape is 194 

comprised of a small number of materials with distinct spectral signatures. Linear mixing is also 195 

assumed. This concept is illustrated in Figure 3b (center row), where the reflectance of an 196 
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example mixed pixel (black curve on right) is considered to be a weighted sum of the 197 

reflectances of constituent spectral endmember reflectances (red, green and blue curves on left). 198 

SMA has been shown to accurately estimate vegetation abundance, even in sparse and multiple 199 

scattering environments like semiarid shrublands (Smith et al., 1990), exceeding the accuracy of 200 

spectral indices like NDVI in field validation exercises (Elmore et al., 2000). 201 

In some cases, the concept of subpixel mixing can be profitably extended to the time 202 

domain. Using this approach, a landscape is considered to be comprised of a small number of 203 

“materials” with distinct temporal signatures. Usually, a single variable is first extracted from 204 

each image in the multispectral time series (e.g. subpixel abundance of a single material, like 205 

photosynthetic vegetation, from SMA; or a spectral index). This reduces the dimensionality of 206 

the observation space from (t x b) to t, where t is the number of images in the time series and b is 207 

the number of spectral bands in each multispectral image. The result of this step is a substantial 208 

conceptual simplification and reduction of computational load. Temporal mixing is conceptually 209 

illustrated in Figure 3c (bottom row), where an example vegetation abundance time series of a 210 

mixed pixel (black curve on right) is considered to be a linear sum of endmember vegetation 211 

phenologies (red, green, magenta and blue curves on left). This is the approach investigated in 212 

the present analysis. 213 

Obviously, the implementation of temporal mixture analysis is considerably less 214 

straightforward than spectral mixture analysis. A number of stringent data quality and 215 

standardization requirements must be met in order for this approach to be tractable: e.g. subpixel 216 

coregistration, radiometric calibration, and consistent atmospheric correction. In addition, the 217 

formulation of the temporal mixing inverse problem is generally less well-posed than the spectral 218 

mixing inverse problem because biogeophysical parameters (e.g. vegetation abundance) can 219 

change with time in many more ways than reflectance can change with wavelength. Potential 220 

impacts of this complexity include a much higher dimensional feature space and more poorly 221 

conditioned endmember matrix for the temporal case than the spectral case. Adding to this 222 

complexity, variations in illumination and viewing geometry can introduce systematic artifacts 223 

which confound straightforward interpretation, particularly in savannas where tall trees with 224 

voluminous canopies can cast laterally extensive and seasonally variable shadows. Topography 225 

also compounds these effects. However, while these challenges complicate temporal mixture 226 

analysis, they also impact any method for satellite image time series analysis. Fortunately, 227 

decades of effort in development and implementation of preprocessing routines has succeeded in 228 

mitigating – albeit never truly eliminating – the most severe of these complications. 229 

Materials and Methods 230 

A. Single-year Phenology Mapping 231 

The single-year (phenology) portion of the analysis was based on the time period July 1, 232 

2018 through July 1, 2019. The Harmonized Landsat-Sentinel (HLS) S30 data product was the 233 

source of 30 m data, downloaded from: https://hls.gsfc.nasa.gov/. HLS data are produced free of 234 

charge and have undergone standardized radiometric, atmospheric, terrain, and BRDF correction. 235 

All available HLS images for tiles 10SFH, 10SFJ, 10SGH, 11SKA, 11SKB, 11SLA and 11SLV 236 

over the study period were downloaded and visually inspected. Images with visible cloud cover 237 

https://hls.gsfc.nasa.gov/
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and swath edge images with partial spatial coverage were removed. Linear spectral mixture 238 

analysis was then performed on each remaining image based on standardized global spectral 239 

endmembers from (Small, 2018). A unit sum constraint with a weight of unity was used for all 240 

instances of spectral and temporal mixture analysis. The vegetation fraction images were stacked 241 

to produce a single image time series for each tile. The images used for each tile are listed in 242 

Table S1. The single-year 30 m stacks were used for PhenoCam comparison (Figure 5), single-243 

year example TMM (Figure 6), and investigations of spatial scaling (Figure 9), temporal aliasing 244 

(Figure 10), and cross-tile consistency (Figure 11).  245 

10 m maps used for LiDAR comparison (Figure 8a) and spatial scaling (Figure 9) were 246 

derived from Sentinel-2 data downloaded free of charge from the Copernicus data portal: 247 

https://scihub.copernicus.eu/dhus/. Images were downloaded as Level 1C Top of Atmosphere 248 

(TOA) reflectance and processed to Level 2 Surface Reflectance using the Sen2Cor processing 249 

module available within the ESA SNAP freeware program. 20 m bands were resampled to 10 m 250 

resolution. Surface reflectance images were then unmixed to produce subpixel vegetation 251 

abundance estimates using the same globally standardized spectral endmembers referenced 252 

above. Only tile 11SKB (encompassing the SJER field site) was used for the 10 m maps. The 253 

same image dates (Table S1) were used to make the 10 m and 30 m single-year stacks.  254 

B. Multi-year Change Mapping 255 

The multi-year portion of the analysis was based on the time period from August 2000 256 

through August 2019. 30 m resolution maps for the multi-year analysis were derived from 257 

Landsat 5 and 8 imagery, viewed at: https://glovis.usgs.gov/. All available August images from 258 

Path 42, Row 35 were visually examined. Level-2 surface reflectance images for all visibly 259 

cloud-free acquisitions were ordered from EarthExplorer (https://earthexplorer.usgs.gov/) and 260 

downloaded from the ESPA download hub (https://espa.cr.usgs.gov/). Although the sidelap of 261 

Path 41, Row 35 also includes much of Sequoia National Park, this tile was not included in the 262 

analysis to minimize BRDF-related uncertainty and because spatial coverage of the oak 263 

landscapes of interest is incomplete. August was chosen to optimize viewing & illumination 264 

geometry, maximize the probability that healthy winter-deciduous blue oaks would be leaf-on, 265 

and minimize the probability that summer-deciduous trees like the California Buckeye would be 266 

leaf-on. Linear spectral mixture analysis was then performed on each image based on cross-267 

calibrated global spectral endmembers from (Sousa and Small, 2017). A unit sum constraint with 268 

a weight of unity was again used for all instances of spectral and temporal mixture analysis. The 269 

vegetation fraction images were stacked to produce a single multi-year image time series and 270 

used for the SNP analysis (Figure 7). The images used are listed in Table S2. 271 

C. Ancillary Field and Airborne Observations 272 

PhenoCam data were downloaded free of charge from the PhenoCam webpage: 273 

https://phenocam.sr.unh.edu/. Plots were made using 3-day maximum midday green chromatic 274 

coordinate (GCC) and standard regions of interest available on the PhenoCam website. The 275 

SJER top-of-tower PhenoCam was repositioned partway through the time series, so only images 276 

from after the repositioning (September 28, 2018 onward) were used.  277 

https://scihub.copernicus.eu/dhus/
https://glovis.usgs.gov/
https://earthexplorer.usgs.gov/
https://espa.cr.usgs.gov/
https://phenocam.sr.unh.edu/
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The NEON Airborne Observation Platform (AOP) collected 30 cm resolution 278 

orthophotos and LiDAR at the SJER site in June 2013, and March/April 2017, 2018, and 2019. 279 

These data were downloaded free of charge from the NEON data portal 280 

(https://data.neonscience.org/home). The 1 m 2018 LiDAR canopy height model (CHM) was 281 

converted to tree presence/absence by simple thresholding. A number of thresholds were tested, 282 

and a conservative 3 m threshold was ultimately adopted. The 1 m image was then aggregated to 283 

10 m resolution and convolved with a 9x9 pixel low-pass Gaussian blurring filter to approximate 284 

the point spread function of Sentinel-2 sensor. Because both the “deciduous perennial” and 285 

“evergreen perennial” fractions are associated with trees and shrubs, these two fractions were 286 

summed to form a “tree” fraction in the single-year dataset. 287 

Unfortunately, healthy leaf-off deciduous oaks could not be confidently discriminated 288 

from defoliated/standing dead oaks in the 2017, 2018 and 2019 NEON AOP airphotos due to 289 

flight timing (late March to early April) occurring prior to full greenup of deciduous oaks. 290 

Validation of the single-year TMM was done by comparison to the 2018 and 2019 NEON AOP 291 

(to discriminate among grasslands, evergreen trees, and deciduous/dead trees), then cross-292 

checked against orthophotos and meter-resolution satellite imagery available on Google Earth. 293 

Validation of the multi-year TMM was done by comparison to Google Earth imagery alone. 294 

Availability of summer validation images at SNP were limited (single image pair from 6/27/2010 295 

and 5/31/2014), not allowing for confident assessment of the early decline + revegetation 296 

fraction. 297 

Results 298 

Results are presented in the following sequence. First, we leverage the PhenoCam sites to 299 

visually display the field-based time varying optical properties of representative landscapes in 300 

the study area, qualitatively connect satellite image time series to ground-based phenology 301 

observations, and compare quantitative field-based and satellite-based metrics (Subsection A). 302 

Next, we present an illustrative example of the workflow of characterization and modeling (B), 303 

followed by validation and comparison (C) of both single-year phenology mapping and multi-304 

year change mapping. We then examine the sensitivity (D) of the resulting maps to pixel size, 305 

temporal sampling, and spatial consistency across the Sierra foothill spatial domain. 306 

A. Relating ground and satellite observations 307 

Initial characterization is performed using time lapse field photography from the 308 

PhenoCam program (locations shown in Figure 2). These images provide useful qualitative and 309 

quantitative information for relating time-varying surface biophysical properties to satellite 310 

image time series (Figure 4). Sites include a spatially extensive annual grassland (Forbes Plot at 311 

the Sierra Foothill Experimental Range), a deciduous blue oak woodland (Tonzi Ranch), and a 312 

mixed grassland/evergreen oak/deciduous oak/conifer landscape (SJER) (Figure 4). 313 

https://data.neonscience.org/home
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 314 

Strong seasonality in photosynthetic vegetation abundance is readily apparent at each 315 

location, but with plant types differing widely in amplitude and rate. Spatially averaged estimates 316 

for each location are shown using both ground-based and satellite-based metrics in Figure 5. 317 

Because of the differences in GCC and Fv metrics used across sensors (detailed in Materials and 318 

Methods), each plot is converted into standard scores (z-scores) by subtracting data values by the 319 

time series mean and dividing by the standard deviation. Correlation coefficients of ground-320 

based and satellite-based time series range from 0.8 to 0.9.  321 
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 322 

Clear differences in amplitude and timing exist among the three sites. The grass-323 

dominated, northernmost Forbes site shows a gradual green-up throughout the winter as grass 324 

growth is enabled by winter precipitation but rate-limited by cold winter temperatures. Following 325 

the peak in early spring, the grasses senesce rapidly as water becomes limited, with a brief 326 

plateau in late spring/early summer. The blue oak woodland at the Tonzi site shows a rapid 327 

green-up in late spring as grass growth coincides with abrupt leaf-on of the deciduous oak 328 

canopy. Senescence also begins rapidly as the grass understory dries, but then slows and 329 

continues throughout the summer and into late fall/early winter, as the chlorophylls in blue oak 330 

leaves slowly degrade over the course of several months. Deciduous blue oak leaves then fall to 331 

the ground, resulting in an abrupt drop in greenness toward the end of the calendar year. Finally, 332 

the temporal signature of vegetation abundance in the mixed landscape at SJER shows less 333 

pronounced seasonality as a result of a greater abundance of evergreen oaks and conifers. 334 

In short, the three exemplary PhenoCam sites illustrate three distinct phenologies present 335 

in the Sierra foothill oak woodland study area – annual grasses at Forbes; deciduous trees and 336 

shrubs at Tonzi; and a mixture including evergreen trees and shrubs at SJER. These phenologies 337 

can be quantified with comparable fidelity using both ground-based and satellite-based metrics. 338 

This context is invaluable for TMM implementation and interpretation, presented next. 339 
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B. Spatiotemporal Characterization & Temporal Mixture Modeling 340 

The following methodology is based in two stages: 1) characterization of the dominant 341 

spatiotemporal patterns present in the image time series, and 2) modeling the data as a linear 342 

combination of these endmember patterns. Characterization consists of Empirical Orthogonal 343 

Function (EOF) analysis of the image time series, followed by interrogation of the associated 344 

Temporal Feature Space (TFS) to find bounding temporal endmembers (tEMs) as described by 345 

(Small, 2012). Modeling is performed by least squares. For the sake of brevity, we omit detailed 346 

discussion of the partition of variance, covariability matrices, and higher order dimensions in the 347 

current analysis. Instead we focus on the geometric structure of the low-order (Dimensions 1-3) 348 

projections of the TFS. We also focus the following portion of the analysis (Figures 6-10) on 349 

single tile spatial domains, deferring extension of the results to the remainder of the study area 350 

until Figure 11. In order to illustrate the range of potential uses of the method, both single-year 351 

and multi-year use cases are investigated. 352 

1. Single-Year  353 

We begin by applying a covariance-based Principal Components transform to the single-354 

year time series. The associated low-order TFS with bounding tEM phenology time series (left) 355 

and TMM phenology map (right) are shown in Figure 6. The single-year vegetation abundance 356 

image time series is characterized by four distinct tEM phenologies located in clearly defined 357 

corners of the low-order temporal feature space: annual grasses (Ag), deciduous perennials + 358 

seasonal shadow (D), evergreen perennials (E), and unvegetated surfaces (U). Importantly, the 359 

annual cycle of subpixel photosynthetic vegetation for deciduous trees and shrubs is mimicked 360 

by the annual cycle of shadowing. This fundamental ambiguity reduces the accuracy of the 361 

deciduous fraction. The choice of Ag, D, and E single-year endmembers from the HLS 362 

spatiotemporal characterization is further reinforced by clear correspondence to the PhenoCam 363 

time series (Figure 4). 364 
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 365 

The Ag, D, E and U tEMs bound a roughly tetrahedral mixing space, illustrated by the 366 

white lines drawn on the TFS for conceptual guidance. The TMM constructed from these tEMs 367 

represents the vegetation time series of each pixel as a linear combination of the constituent tEM 368 

phenologies. The contribution of each tEM to a pixel time series can be visualized as the 369 

Euclidean distance of that pixel from the corner of the tetrahedron corresponding to each tEM.  370 

When displayed in geographic space, the relative contribution of each tEM generates a 371 

phenology map. This map represents the Sierra foothill landscape within tile 11SKB in terms of 372 

subpixel spatial abundance of deciduous perennials (red), evergreen perennials (green) and 373 

annual grasses (blue). Plant communities with homogenous phenologies are represented by the 374 

additive primary colors. Plant communities with intermixed phenologies correspond to areally 375 

weighted color combinations of the additive primaries. As noted above, the deciduous signal is 376 

mimicked by seasonal shadow. Despite this fundamental ambiguity, the overall spatial pattern 377 

associated with the single-year TMM is encouraging given knowledge of the landscape. The 378 

validation location (Section C) is indicated by the green box. 379 

2. Multi-year 380 

Another approach to analysis focuses on multi-year change rather than single-year 381 

phenology. To illustrate this analogous approach, we use the 2000-2019 August image time 382 
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series of Sequoia National Park. This time period was chosen to span the duration of the historic 383 

2011-2017 drought as well as provide 10 years preceding the event to understand the pre-drought 384 

baseline. The corresponding TFS with bounding tEM multi-year trajectories (left) and TMM 385 

multi-year change map (right) are shown in Figure 7. A number of fires occurred in the area over 386 

the duration of the time series. Fire perimeters are shown as black vectors. 387 

 388 

In this case, the spatial structure of the TFS is characterized by additional complexity. 389 

Endmembers corresponding to multi-year growth (G), decline during the drought years (D) and 390 

early decline followed by revegetation (R) are observed, as well as tEMs representing 391 

unvegetated locations (U) and locations which maintained persistent August vegetation cover 392 

throughout the drought (P). Again, the TMM bounds the mixing space defined by each tEM, in 393 

this case forming a roughly trigonal dipyramidal structure (white lines).  394 

The spatial pattern of vegetation response to drought suggests a number of hypotheses 395 

regarding the relationship between drought stress and topography. Detailed examination of 396 

landscape-scale patterns of drought response is beyond the scope of this work, but some potential 397 

paths for future work are further elaborated in the Discussion. The locations of example meter-398 

scale validation images (Figure 8b) are shown by yellow boxes (A-C). 399 
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C. Comparison & Validation 400 

Comparison of the single-year TMM to the 2018 NEON AOP LiDAR dataset from SJER 401 

is shown in Figure 8a. The spatial extent of the validation corresponds to the area shown in the 402 

green box in Figure 6. The resulting correlation between the Sentinel-2 derived TMM and the 403 

LiDAR-derived tree map is 0.74. The strength of the relationship is significantly improved by 404 

using the deciduous/shadow + evergreen fraction sum described in the Materials & Methods 405 

section (upper right) as opposed to a single fraction alone (lower right). This is in accord with the 406 

mixture of evergreen and deciduous trees and shrubs at the site.  407 

 408 

Additional validation of the single-year phenology map was performed at SJER by 409 

comparing single-year phenology map fractions against sub-meter resolution airphotos and 410 

meter-resolution commercial satellite imagery. The continuous TMM was converted to a binary 411 

classification by thresholding. Annual grasslands were mapped as > 0.9 Annual tEM fraction; 412 

evergreen oak woodlands were mapped as > 0.9 Evergreen tEM fraction, and deciduous oak 413 

woodlands were mapped as > 0.9 Deciduous + Shadow tEM fraction. 34 points were randomly 414 

selected from each class and manually compared against airphotos. Classification accuracies 415 

were highest for the evergreen woodland (88%) class, with the few observed misclassifications 416 

(4 of 34) all occurring in grassland/shrubland environments near lakes and/or in swales. 417 

Accuracy for the annual grassland (85%) class was comparable, with the misclassifications (5 of 418 

34) occurring in areas with defoliated (likely dead) tree canopies, rock outcrops, or areas with 419 

dense deciduous shrub cover. The lowest accuracy was observed for the deciduous oak class 420 

(74%). As expected, misclassifications (8 of 34) were primarily located in areas in which 421 



  17 

topography generated a seasonal shadow signal that mimicked the deciduous vegetation time 422 

series. Some misclassifications were also observed in areas with deciduous (non-oak) shrubs, 423 

rock outcrops, swales in open grasslands, or near ponds. The associated single-year confusion 424 

matrix is shown in Table S3.  425 

Validation of the multi-year change map was more difficult given the paucity of historic 426 

summer meter-resolution imagery and relatively constrained spatial extent of the oak woodlands 427 

within Sequoia National Park. However, sufficient imagery was available in 2010 and 2014 to 428 

provide some constraints on the Landsat based analysis. Again, the continuous TMM was 429 

converted into a discrete classification though simple thresholding. Winter deciduous and 430 

evergreen systems with no change were mapped using a rule of Persistent Green tEM fraction > 431 

0.9. Systems showing decreased August vegetation abundance through the 2011-2017 drought 432 

were mapped by using a rule of Decrease tEM fraction > 0.9. Systems showing systematically 433 

increasing August vegetation abundance were mapped by using a rule of Decrease tEM fraction 434 

> 0.9. Systems showing early decline followed by regrowth were unable to be validated due to 435 

absence of available summer meter-resolution imagery after 2014. 34 points were randomly 436 

selected and manually investigated for each of the three classes investigated. Spatial extent of 437 

validation points was confined to the oak woodland portion of the park as mapped by (Das et al., 438 

2020). Classification accuracy was highest for the pixels showing increased and decreased 439 

August vegetation abundance through the drought, with 91% of pixels identified correctly in 440 

each case. The misclassified points showed either no definitive change in the validation image 441 

pair or changes clearly associated with anthropogenic activity. Classification accuracy was lower 442 

for the pixels showing persistently high August vegetation abundance, with 88% of pixels 443 

showing no visible change in the validation imagery. The 4 misclassified points all showed 444 

anthropogenic landscape modification. The associated multi-year confusion matrix is shown in 445 

Table S4. Example validation image pairs for the Decrease fraction are shown in Figure 8b. Most 446 

of the observed canopy browning was found to correspond to spatially contiguous clusters (e.g. 447 

panels A and B). In some cases, even browning of individual canopies (e.g. panel C) is detected.  448 

Taken together, the combination of comparison to LiDAR-based tree cover and visual 449 

validation of both single-year and multi-year TMMs is encouraging for the potential utility of 450 

this for retrospective analysis and prospective monitoring of Mediterranean-climate oak 451 

landscapes. However, in order for the results to be maximally generalizable, important questions 452 

of sensitivity to spatial resolution, temporal sampling, and sensitivity to spatial domain must be 453 

investigated. These factors are considered in the following section. 454 
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D. Scaling & consistency 456 

 457 

We first examine the effect of scaling both single-year and dual-year TMMs from 10 m 458 

to 30 m resolution. TFS characterization was done in parallel and tEMs were found to derive 459 

from the same pixels in both cases. Each image time series was unmixed using its respective 460 

temporal endmembers and fractions were compared. Results are shown in Figure 9. 10 to 30 m 461 

scaling of the single-year TMM is generally linear, with best results for deciduous and annual 462 

fractions (correlations 0.95 and 0.91), and worst results for evergreen fraction (correlation 0.78). 463 

Importantly, model misfit also scales linearly and is < 5% for > 99% of pixels. 464 

 465 
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We next investigate the effect of reductions in temporal sampling by systematic 466 

decimation, using the single-year 30 m TMM as our example. Figure 10 shows these results 467 

using a range of 24 images/year (full cloud-free HLS time series) down to 3 images/year. The 468 

effects on low-order TFS (A), tEMs (B), as well as linearity and bias relative to the full time 469 

series (C and D) are documented. While minor differences in the low-order TFS are noticeable in 470 

all cases, the geometric structure of the space as well as number and location of bounding tEMs 471 

are generally consistent with as few as 4 images per year. Fraction estimates show minimal bias 472 

or dispersion when subsampling at the 12 image per year level. Nonlinearity is present in the 473 

Annual fraction at 8 images per year, with even more dispersion at 6 images per year but still 474 

only minor nonlinearity. Severe nonlinearities and dispersions are observed when sampling is 475 

reduced to 4 images per year or fewer. 476 
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Finally, we investigate the consistency of the low-order TFS and tEMs across the extent 478 

of the study area. Comparable vegetation image time series are constructed for each of the 7 HLS 479 

tiles which span the Sierra foothill study area. For consistency, the same number of images in 480 

each tile are used, chosen on the basis of atmospheric clarity and maximally evenly spaced 481 

temporal sampling. The low-order TFS for each tile is rendered and bounding tEMs are selected. 482 

Results for 5 of the 7 tiles are shown in Figure 11. The two tiles not shown also conform to the 483 

pattern and are omitted for display purposes. 484 

 485 

The results of the multi-tile experiment confirm that similar low-order TFS geometry and 486 

tEMs clearly characterize all but one of the tiles. The tile comprising the exception (11SKA) 487 

does not show a clear evergreen tEM. The absence of this tEM is consistent with its relatively 488 

minimal spatial extent within the Sierra foothill zone and nearly complete absence of pixels at 489 

higher elevations which comprise the bulk of the evergreeen corner of the feature space. The 490 

observed consistency in TFS structure, tEM time series, and data dimensionality is taken as 491 

further support for the validity of the inferences made in this work across the 500 km spatial 492 

extent of the Sierra foothill grassland – oak savanna – oak woodland ecosystem. 493 
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Discussion 494 

A. Benefits of the methodology 495 

The methodology presented here possesses a number of benefits for the analysis and 496 

monitoring of Mediterranean-climate oak landscapes. Among the primary features are 497 

conceptual simplicity, explainability, and parsimony. These features arise from the linearity of 498 

the mixing equations and compact geometric interpretation of the TFS and TMM. However, by 499 

explicitly accommodating the structure of the TFS, the approach is designed such that maximum 500 

explanatory power is also retained. Once tEMs are selected, the only tunable parameter is the 501 

weight associated with the unit sum constraint. 502 

In addition, the single-year tEMs have clear biophysical interpretation. The phenology 503 

signatures present in the PhenoCam time series, HLS time series from single pixels in PhenoCam 504 

viewsheds, and independently derived landscape-scale tEMs derived from TFS structure provide 505 

mutually reinforcing signals. We interpret this consistency as strong evidence that: 1) the tEMs 506 

selected here are stable features of the Sierra foothill spatial domain, 2) the tEMs accurately 507 

represent characteristic vegetation phenologies of common plant types, and 3) multispectral 508 

satellite time series of the study area can be well described by these tEMs. Incidentally, while 509 

previous studies have compared PhenoCam spectral indices to MODIS/VIIRS spectral indices 510 

(Liu et al., 2017; Richardson et al., 2018; Zhang et al., 2018), to our knowledge this is the first 511 

published comparison of PhenoCam data against vegetation fraction estimated using spectral 512 

mixture analysis of near-nadir decameter satellite imagery. 513 

At least as important as the features discussed above, however, are the benefits of the 514 

robustness and portability of the approach. Supporting observations include linear 10 to 30 m 515 

scaling (Figure 9), insensitivity to (modest) temporal degradation (Figure 10), and insensitivity to 516 

changes in spatial extent across the study domain (Figure 11). As a further practical 517 

consideration, the approach is not computationally onerous (< 1 min unmixing time per tile on 518 

laptop computer for 4 EM single-year time series) and does not require extensive training data. 519 

The strengths discussed above suggest that the potential for retrospective analysis and 520 

prospective monitoring across the entire range of the California Oak woodland/savanna system 521 

using this approach is considerable. A similar model could also be easily adopted for analysis of 522 

other biophysically similar Mediterranean-climate oak landscapes in the Mediterranean basin. 523 

Finally, the considerations described above are important benefits relative to deep learning 524 

approaches which, while powerful, often lack one or more of these features. Ultimately, the most 525 

effective approach to monitoring oak woodland systems is likely a multifaceted approach using a 526 

combination of TMM analysis of multitemporal decameter imagery, in conjunction with directed 527 

object-oriented and deep learning analyses using aerial surveys and meter resolution satellite 528 

imagery – complemented with extensive field validation. 529 

 530 

B. Limitations 531 

Effects due to observational geometry and atmospheric conditions are fundamental 532 

limitations that must be considered by all satellite image time series analysis approaches. As 533 

noted throughout this analysis, the most prominent way this factors into the model presented here 534 
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is the ambiguity between deciduous vegetation and seasonal shadow. Ongoing improvements in 535 

ancillary observations (e.g. digital elevation models, atmospheric constraints) and preprocessing 536 

algorithms mitigate the severity of these problems, but are unlikely to ever fully eliminate them – 537 

and may introduce additional unintended artifacts. Fortunately, topographic/BRDF effects are 538 

relatively minor in the Sierra foothills due to gentle topography – but are much more severe at 539 

higher elevations, particularly in glacially scoured landscapes and escarpments. Data loss during 540 

times of spatially extensive cloud cover (e.g. winter in the Sierra Foothills) remains an 541 

unavoidable limitation. This is particularly problematic for retrospective studies which are not 542 

able to leverage recent advances capability with respect to shortened revisit time. 543 

Phenology-based studies relying on vegetation abundance (or any “greenness” metric) are 544 

fundamentally limited by the phenomenon of phenological mimicking. Because the operative 545 

signal is derived from temporal variations in photosynthetic vegetation, in many landscapes it is 546 

probable that several plant species may possess annual cycles which are indistinct using this 547 

metric alone. We caution against overinterpretation of the results of such analyses, including the 548 

analysis we demonstrate here. Phenological variation measured in this way may be driven by a 549 

number of factors. Careful consideration and field validation (wherever possible) is necessary 550 

before confident interpretation of such results as supporting or refuting a given ecological 551 

hypothesis. However, we also note that the limitations described above apply to any comparable 552 

analysis approach based on multispectral satellite imagery. 553 

A further set of limitations applies to the TMM methodology in particular. One important 554 

assumption underlying this approach is the linear mixing assumption. While this assumption 555 

holds true for the spectral mixing case in a wide range of terrestrial environments, the testing of 556 

this assumption has been less thorough for the temporal mixing case. Two pieces of supporting 557 

evidence for the validity of linear temporal mixing assumption in this study are: 1) the presence 558 

of corners and edges in the TFS, suggesting binary linear mixing lines, and 2) the linearity of 559 

fraction estimate scaling from 10 to 30 m resolution. However, the observed binary mixing lines 560 

are admittedly more ambiguous in the temporal mixing case than the spectral mixing case, and 561 

some deviation from the 1:1 line is observed in the spatial scaling investigation. This 562 

fundamental question, as well as further considerations about model performance such as the 563 

conditioning of the inversion and higher-order complexity due to large non-noise data 564 

dimensionality, are interesting and potentially informative. We defer detailed investigation of 565 

these factors to a future study. 566 
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C. Directions for future work 567 

One potential avenue to extend this methodology is the incorporation of time series 568 

observations beyond decameter multispectral images. A recent and ongoing surge in 569 

observational capacity provides a number of avenues of potential development. Measurements 570 

with higher spatial resolution and/or shorter revisit time (e.g. Planet) might be used to improve 571 

measurement density – if critical data quality metrics such as subpixel geolocation and science-572 

grade radiometry are capable of consistently being met. In addition, time series provided by 573 

orbital hyperspectral sensors could provide narrowband absorption characteristics at each time 574 

step, allowing for more refined biophysical interpretation of the spectral metric used beyond 575 

areal photosynthetic vegetation abundance. Landscape partitioning and/or object based analysis 576 

using spatially extensive LiDAR could provide further constraints to provide context and 577 

improve a multispectral-only approach for prospective monitoring. In spite of these important 578 

and exciting advances, however, a focus on multispectral observations is still warranted. At 579 

minimum, those workers interested in long-baseline landscape change requiring retrospective 580 

analysis will fundamentally be constrained by past data availability. 581 

Another potential direction for future work is in the application of the methodology to 582 

pressing questions in ecology and land management. For instance, a regional-scale ecological 583 

analysis of the response of oak woodlands to recent climatic events like the 2011-2017 drought 584 

could easily be implemented, and a monitoring system could be developed. Fire agencies, land 585 

managers and fire ecologists could use this approach to observe spatial patterns of vegetation 586 

recovery in burn scars and potentially constrain models of regrowth and post-fire hydrology. 587 

Range managers and rangeland scientists could use the approach to monitor range conditions and 588 

potentially predict spatial patterns of forage abundance. Finally, the question of phenologic 589 

complexity of a mixed pixel and temporal dimensionality of a landscape may ultimately provide 590 

novel insight into the ability to estimate spatial patterns of biodiversity. 591 

Conclusions 592 

The purpose of this work is to introduce Temporal Mixture Modeling (TMM) for the 593 

mapping and monitoring of Mediterranean-climate oak landscapes, focusing on the California 594 

Sierra foothill oak system. On the basis of both PhenoCam time lapse field photography and 595 

Temporal Feature Space (TFS) geometry, the dominant single-year phenologies in these 596 

landscapes are found to be Annual Grasses, Deciduous Perennials, and Evergreen Perennials. 597 

Tree cover fractions were observed to correlate at the 0.74 level to LiDAR-derived tree (>3 m) 598 

estimates from the 2018 NEON AOP aerial survey at San Joaquin Experimental Range. Further 599 

visual validation of the TMM-derived phenology map against orthophotos found the accuracy of 600 

fraction estimates to range from 74% (deciduous perennials) to 88% (evergreen perennials). A 601 

multi-year time series of August imagery (2000 through 2019) was also analyzed to investigate 602 

the effect of the historic 2011-2017 drought. The dominant multi-year phenologies were found to 603 

be: 1) unvegetated, 2) persistently vegetated, 3) growth throughout drought, 4) decrease 604 

throughout drought, and 5) early decrease followed by revegetation. Validation of multi-year 605 

change was challenging due to sparse availability of meter-resolution summer imagery, but a 606 

2010 vs 2014 image pair allowed for assessment of behavior in the first half of the drought. 607 

When continuous fraction estimates were converted to discrete classification using a threshold of 608 



  26 

0.9, Accuracy of the persistent evergreen fraction was 88% and of the drought-associated decline 609 

fraction was 91%. Spatial scaling from 10 m (Sentinel-2 VNIR) to 30 m (HLS and Landsat) was 610 

found to be generally linear with correlations in the 0.78 to 0.95 range. Loss of fidelity due to 611 

diminished temporal sampling was simulated and fractions were found to be scale linearly with 612 

as few as 6 observations per year. TFS and tEM consistency were found to be stable across the 613 

HLS tiles representing the California foothill oak spatial domain. Taken together, these results 614 

suggest that TMMs may provide a parsimonious, accurate, and scalable framework with which 615 

to consider the spatiotemporal analysis of Mediterranean-climate oak woodlands. 616 
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Table S1. Image dates from each of the 7 Harmonized Landsat Sentinel-2 tiles used for the 

single-year 2018-2019 analysis. 

HLS Tile 

 

10SFJ 10SFH 10SGH 11SKB 11SKA 11SLA 11SLV 

       07/04/18 07/04/18 07/04/18 08/05/18 07/06/18 07/06/18 07/06/18 

07/09/18 07/09/18 07/09/18 08/10/18 07/11/18 07/16/18 07/16/18 

07/14/18 07/14/18 07/11/18 08/15/18 07/16/18 07/26/18 07/21/18 

07/19/18 07/24/18 07/14/18 08/18/18 07/21/18 07/31/18 07/26/18 

07/24/18 08/08/18 07/16/18 08/25/18 07/26/18 08/15/18 08/05/18 

08/08/18 08/13/18 07/21/18 09/04/18 07/31/18 08/18/18 08/15/18 

08/13/18 08/18/18 07/24/18 09/09/18 08/05/18 08/25/18 08/18/18 

08/18/18 08/23/18 07/26/18 09/14/18 08/10/18 09/09/18 09/04/18 

08/23/18 08/28/18 08/05/18 09/19/18 08/15/18 09/19/18 09/09/18 

08/28/18 09/02/18 08/08/18 09/24/18 08/18/18 09/29/18 09/14/18 

09/02/18 09/07/18 08/10/18 10/09/18 08/25/18 10/09/18 09/19/18 

09/07/18 09/17/18 08/13/18 10/14/18 09/04/18 10/19/18 10/09/18 

09/17/18 09/22/18 08/15/18 10/19/18 09/09/18 10/24/18 10/14/18 

09/22/18 09/27/18 08/18/18 10/24/18 09/14/18 11/08/18 10/19/18 

09/27/18 10/07/18 08/18/18 11/08/18 09/19/18 12/03/18 10/24/18 

10/07/18 10/12/18 08/23/18 11/18/18 10/09/18 12/13/18 11/03/18 

10/12/18 10/17/18 08/25/18 12/13/18 10/19/18 01/02/19 11/08/18 

10/17/18 10/22/18 08/28/18 01/02/19 11/08/18 01/27/19 12/03/18 

11/01/18 12/06/18 09/02/18 01/27/19 11/18/18 02/11/19 12/13/18 

11/06/18 12/31/18 09/04/18 02/11/19 12/03/18 04/07/19 01/02/19 

12/06/18 01/25/19 09/07/18 03/18/19 12/13/18 07/01/19 03/18/19 

12/26/18 02/19/19 09/09/18 04/22/19 01/02/19 

 

04/07/19 

12/31/18 03/11/19 09/17/18 05/02/19 02/06/19 

 

06/16/19 

01/25/19 03/16/19 09/19/18 06/16/19 02/11/19 

 

06/26/19 

02/19/19 03/31/19 09/22/18 

 

05/02/19 
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03/11/19 05/05/19 09/24/18 
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  03/31/19 

 

10/07/18 
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10/12/18 
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11/06/18 

    

  

11/08/18 

    

  

11/16/18 

    

  

11/18/18 

    

  

12/03/18 

    

  

12/13/18 

    

  

12/28/18 

    

Tables S1 through S4
Click here to download Table: SousaDavis_SierraFoothillOakTMM_Tables.docx

http://ees.elsevier.com/rse/download.aspx?id=1008154&guid=a76519f7-3f56-4927-9ff6-59721b2d11f5&scheme=1


  

12/31/18 

    

  

01/02/19 

    

  

01/25/19 

    

  

01/27/19 

    

  

02/11/19 

    

  

02/19/19 

    

  

02/21/19 

    

  

03/11/19 

    

  

03/13/19 

    

  

03/16/19 

    

  

03/18/19 

    

  

03/31/19 

    

  

04/12/19 

    

  

04/27/19 

    

  

05/02/19 

    

  

06/04/19 

    

  

06/06/19 

    

  

06/11/19 

    

  

06/26/19 

     

Table S2. Image dates from the August image stack used for the multi-year analysis. 

Sensor Year Month Day 

Landsat 5 TM 2000 8 20 

Landsat 5 TM 2001 8 23 

Landsat 5 TM 2003 8 13 

Landsat 5 TM 2004 8 31 

Landsat 5 TM 2006 8 21 

Landsat 5 TM 2007 8 24 

Landsat 5 TM 2008 8 10 

Landsat 5 TM 2009 8 29 

Landsat 5 TM 2010 8 16 

Landsat 8 OLI 2013 8 8 

Landsat 8 OLI 2014 8 27 

Landsat 8 OLI 2015 8 14 

Landsat 8 OLI 2018 8 6 

Landsat 8 OLI 2019 8 9 

 

  



Table S3. Single-year confusion matrix using fraction thresholds of 0.9. 

  Validation (meter-resolution Google Earth imagery) 

 

 

Annual Grass Evergreen Deciduous + Shadow Unvegetated 

P
re

d
ic

ti
o
n

 

(1
0
 m

 S
en

ti
n
el

-2
) Annual Grass 29 0 5 0 

Evergreen 3 30 1 0 

Deciduous + 

Shadow 
6 2 26 0 

Unvegetated 0 0 0 34 

 

Table S4. Multi-year confusion matrix using fraction thresholds of 0.9. 

  Validation (meter-resolution Google Earth imagery) 

 

 

High → High High → low Low → high 

P
re

d
ic

ti
o
n

 

(3
0
 m

 L
an

d
sa

t)
 

Persistent 29 3 2 

Decrease 3 31 0 

Increase 3 0 31 
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