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The stationarity paradigm revisited: Hypothesis testing using
diagnostics, summary metrics, and DREAM 3

Mojtaba Sadegh?, Jasper A. Vrugt'-2, Chonggang Xu3, and Elena Volpi4

1Depar‘cment of Civil and Environmental Engineering, University of California, Irvine, California, USA, 2Depar‘fmen‘( of
Earth System Science, University of California, Irvine, California, USA, 3Earth and Environmental Sciences Division,

Los Alamos National Laboratory, Los Alamos, New Mexico, USA, “Department of Engineering, University of Roma Tre,
Rome, Italy

Abstract Many watershed models used within the hydrologic research community assume (by default)
stationary conditions, that is, the key watershed properties that control water flow are considered to be
time invariant. This assumption is rather convenient and pragmatic and opens up the wide arsenal of (multi-
variate) statistical and nonlinear optimization methods for inference of the (temporally fixed) model param-
eters. Several contributions to the hydrologic literature have brought into question the continued
usefulness of this stationary paradigm for hydrologic modeling. This paper builds on the likelihood-free
diagnostics approach of Vrugt and Sadegh (2013) and uses a diverse set of hydrologic summary metrics to
test the stationary hypothesis and detect changes in the watersheds response to hydroclimatic forcing.
Models with fixed parameter values cannot simulate adequately temporal variations in the summary statis-
tics of the observed catchment data, and consequently, the DREAM g, algorithm cannot find solutions
that sufficiently honor the observed metrics. We demonstrate that the presented methodology is able to
differentiate successfully between watersheds that are classified as stationary and those that have under-
gone significant changes in land use, urbanization, and/or hydroclimatic conditions, and thus are deemed
nonstationary.

1. Introduction

The flow of water through watersheds is an incredibly complex process controlled by physical characteris-
tics of the basin and a myriad of highly interrelated, spatially distributed, water, energy, and vegetation
processes. As available measurements lack the resolution and information content required to warrant a
detailed characterization of watershed structure, properties, and processes, relatively simple models are
used to describe (among others) soil moisture flow, groundwater recharge, surface runoff, preferential flow,
root water uptake, and river discharge at different spatial and temporal scales. This includes prediction in
space (interpolation/extrapolation) and prediction in time (forecasting). These models describe spatially dis-
tributed vegetation and subsurface properties with much simpler homogeneous units using transfer func-
tions that describe the flow of water within and between different storage compartments.

Many watershed models used within the hydrologic research community assume (by default) stationary
conditions, that is, the key watershed properties that control water flow are considered to be time invariant.
As a consequence, the watershed behavior as measured in hydrologic states and fluxes (jointly called varia-
bles) is assumed to vary around some constant mean value with fixed variance and serial correlation struc-
ture [Clarke, 2007]. This assumption is rather convenient and opens up the wide arsenal of (multivariate)
statistical and nonlinear optimization methods for inference of the (temporally fixed) model parameters.
Notwithstanding the progress made, several contributions to the hydrologic literature have brought into
question the continued usefulness of this stationary paradigm for hydrologic modeling [Westmacott and
Burn, 1997; Karl and Knight, 1998; Strupczewski et al., 2001; McCabe and Wolock, 2002; Groisman et al., 2004;
Fu et al., 2004; Lins and Slack, 2005; Svensson et al., 2005; Alexander et al., 2006; Hodgkins and Dudley, 2006;
Xu et al., 2006; Leclerc and Ouarda, 2007; Milly et al., 2008; Villarini et al., 2009; Kundzewicz, 2011; Stedinger
and Griffis, 2011; Vogel et al., 2011; Waage and Kaatz, 2011; Ishak et al., 2013; Salas and Obeysekera, 2014].
For example, Strupczewski et al. [2001] showed evidence of nonstationarity in the annual maximum flows of
39 Polish rivers during the period of 1921-1990. Villarini et al. [2009] examined annual peak discharges from
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50 different stations in the continental United States, and demonstrated that almost half of the records
exhibit statistically significant changes in the mean and variance of annual flood peaks. Indeed, Vogel et al.
[2011] report flood magnification factors in excess of 2-5 for many regions of the United States, particularly
those regions with higher population densities. Another study by Ishak et al. [2013] for Australian catch-
ments showed a significant downward trend in the annual maximum streamflow values. Moreover, Leclerc
and Ouarda [2007] demonstrated significant improvements in the flood quantile estimates of ungaged sites
in the southeastern part of Canada and northeastern part of the United States when using nonstationary
regional flood frequency analysis.

Suppose that we have available a multiyear record of data, ?={j71 s, Yn} of some hydroclimatologic vari-
able, n, we would like to test this n year record for stationarity. Under Ho, the null hypothesis, it is typically
assumed that the n year observations of 1 are homogeneous and thus have the same mean. The alternative
hypothesis, H,, assumes 1 to exhibit inhomogeneity, but is often rather vague because of a lack of knowl-
edge about the expected trend in the y’s. Many different statistical tests can be devised to test the null
hypothesis, homogeneity of Y. Examples include the von Neumann ratio, the Kendall, Mann-Kendall,
Spearman, Pearson, and Pettit tests [Buishand, 1982; Lins and Slack, 1999; Douglas et al., 2000; Yue et al.,
2002; Zhang et al., 2009; Bassiouni and Oki, 2013; Rougé et al., 2013; Westra et al., 2013]. Other approaches
include spectral [Ramachandra Rao and Yu, 1986; Joshi and Pandey, 2011; Ni et al., 2011], moving average
[Ramachandra Rao and Yu, 1986; Anghileri et al., 2014], wavelet [Karthikeyan and Nagesh Kumar, 2013],
(flood) frequency and risk analysis [Cunnane, 1988; Jain and Lall, 2001; Cunderlik and Burn, 2003; Cunderlik
and Ouarda, 2006; Leclerc and Ouarda, 2007; Dettinger, 2011; Stedinger and Griffis, 2011; Chebana et al.,
2013], and the use of generalized extreme value (GEV) and max-stable models [Clarke, 2002; El-Adlouni
et al., 2007; Westra and Sisson, 2011; Nasri et al., 2013; Westra et al., 2013].

The work of Lins [1985] is the first study on long-term analysis of hydrologic trends. This analysis showed
that broad, national patterns in streamflow are fairly closely related to annual (continental U.S. average) pre-
cipitation anomalies, especially during the post 1950 period for which the most extensive stream gage net-
work exists. Lettenmaier et al. [1994] analyzed spatial patterns in trends of hydroclimatological variables and
concluded that the observed trends in streamflow are not entirely consistent with the changes in tempera-
ture and precipitation and may be due to a combination of climatic and water management effects. Many
later studies have focused on detection and interpretation of temporal changes in river flow regimes [Zhang
et al,, 2001; Burn and Hag Elnur, 2002; Birsan et al., 2005; Novotny and Stefan, 2007; Petrow and Merz, 2009;
Ishak et al., 2013], among many others. These studies employ a range of parametric and nonparametric
approaches to detect temporal changes in hydrologic time series. Khalig et al. [2009] presented a compre-
hensive review of the methodologies adopted for the identification of hydrologic trends, while Kundzewicz
and Robson [2004] provided general guidelines for the detection of trends in hydrologic data.

In a separate line of research, Renard et al. [2006] proposed a Bayesian framework to explicitly treat the uncer-
tainty associated with the stationarity hypothesis. Several probabilistic models (stationary, step change, and
linear trend) and extreme values distributions were tested for a 93 year record of annual peak discharges of
the Drome River in France. A similar stochastic modeling framework was advocated by North [1980] and used
recently by Westerberg et al. [2011] to assess the uncertainty of the stage-discharge relationship arising from a
nonstationary rating curve. Lima and Lall [2010] analyzed trends of annual and monthly peak streamflows
using hierarchial Bayesian models and spatial scaling. Moreover, Ouarda and El-Adlouni [2011] introduced a
maximum likelihood method to estimate the time-varying parameters of the generalized extreme value (GEV)
distribution for hydrologic frequency analysis, and Nasri et al. [2013] introduced a GEV model with B-spline
functions to estimate the quantiles of synthetic and observed rainfall data.

The term nonstationarity is a convenient way to describe characteristics of hydrologic variables that do not meet
the “constancy” criteria referred to above. Yet this term fails to distinguish between long-term fluctuations (due
to climate) and more gradual/abrupt changes due to human intervention (such as land use alterations and flow
regulation through reservoirs and dams). For instance, the downward trend in the observed annual flood peaks
observed by Ishak et al. [2013] is explained in large part by climate variability and likely not due to changes in
physical characteristics of the watershed. Sudden multiyear changes in catchment behavior (single or multipoint)
are often of anthropogenic origin, whereas decadal variations in streamflow response can be explained by cli-
mate trends and/or variability [Graf, 1977; Pitman, 1978; Potter, 1991; Smith et al., 2002; Zhang and Schilling, 2006;
Milly et al, 2008; Vaze et al, 2010; Villarini and Smith, 2010]. Indeed, the extent to which changes in the
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Figure 1. Clarification of the notion of stationary and nonstationary behavior using a rather simple univariate stochastic process lasting
2000 years (adapted from Koutsoyiannis [2011]). (top) The first 200 years of data on record, and (bottom) the full 2000 year record is dis-
played. The synthetic data are represented with a blue line, whereas the red line signifies the mean 100 year system response. Visual analy-
sis demonstrates a sudden shift in system response after exactly 100 years of observation. This abrupt change of the system response
would seem a textbook example of nonstationary, yet when the behavior of the system is viewed over a much larger, 2000 year data
period, the mean and standard deviation of Y appear rather constant, and thus stationarity is observed. One should therefore be particu-
larly careful proclaiming nonstationarity on the basis of a rather short data record. What is more, visual analysis and or statistical tests can
provide misleading results—in part because these methods have a poor correspondence with underlying hydrologic processes.

watersheds response to rainfall are caused by hydroclimatic variations or by anthropogenic changes to the
catchment characteristics (urbanization, agriculture, irrigation, dams, deforestation, and afforestation) is difficult
to assess, and poses great challenges for hydrologists.

Although trends can be readily apparent in time series of hydrologic variables, one should be particularly careful
not to erroneously classify this behavior as nonstationarity. For instance, short decadal variations in climate can
induce trends in hydrologic variables [Clarke, 2002; Parey et al.,, 2007; Ishak et al., 2013; Anghileri et al., 2014], but
this apparent nonstationarity might be natural variability when the behavior of the same variables is investigated
over much larger time periods [Kundzewicz et al, 2005; Koutsoyiannis, 2006, 2011; Lins and Cohn, 2011;
Koutsoyiannis, 2013], also referred to as long-term persistency [Hurst, 1951]. These long-term decadal fluctua-
tions have been studied in detail by Hurst [1951], using discharge data from the Nile River in Egypt. Short-term
trends of the streamflow data (up to about 100 years) were explained by long-term persistency of the Nile River
system, rather than nonstationarity.

Without a sufficiently long data record, it is particularly difficult to determine whether temporal changes in water-
shed behavior are due to natural fluctuations in the weather and climate, or whether the physical characteristics
of the watershed itself have experienced changes, the latter which we certainly classify as nonstationarity. To clar-
ify the notion of stationarity and its antithesis nonstationarity, we draw inspiration from Koutsoyiannis [2011] and
create a system response that is made up of 20 stochastic processes each lasting a 100 years and with mean
value drawn from A/ (a, b), a normal distribution with mean a = 3 and standard deviation b = 0.2. The 2000 year
data set is then perturbed with Gaussian noise using b = 0.1, and the resulting observations plotted in Figure 1. If
we interpret the data in the top plot, then we observe a sudden shift in system response at 100 years from one
mode with mean of about 2.70 to another mode with mean of approximately 3.15. At first glance, it is tempting
to classify this rather dramatic shift in system response as evidence of nonstationarity. Yet when the behavior of
this system is viewed over a much longer 2000 year record (bottom plot) then homogeneity is observed. Hence,
one should be particularly careful in proclaiming nonstationarity based on a relatively short data time period.

Many statistical tests (listed above) have been used in the hydrologic literature to address the stationarity
null hypothesis. Without further investigation into the underlying hydroclimatologic processes, such
approaches can lead to spurious conclusions [Koutsoyiannis, 2006, 2011]. For instance, consider Figure 2
which plots (top plot) the cumulative streamflow of the Blackberry Creek basin at Yorkville, IL for the period
of 2002-2012. The dashed lines depict the slope of the cumulative streamflow for the periods of 2002-2007
(black) and 2007-2012 (grey), respectively. There appears to be a sudden increase in the watersheds
streamflow response in 2007. It can be tempting to proclaim this behavior as nonstationarity (as suggested
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Figure 2. (a) Cumulative streamflow and (b) precipitation data record of the Blackberry Creek in Illinois, USA, for the years 2002-2012. The
slope of the cumulative streamflow curve increases noticeably between the years 2007 and 2008. In the hydrologic community, this
behavior is classified as nonstarionary due to growing urbanization (http://non-stationarities.irstea.fr/). Yet the bottom graph demonstrates
noticeably larger precipitation amounts from 2007 onward which coincides perfectly with the increase in streamflow. With the help of
diagnostic model evaluation and temporal analysis of the hydrologic signatures, we classify this watershed as stationary. A single model
structure and fixed parameterization is sufficient to model the rainfall-runoff response.

by http://non-stationarities.irstea.fr/). However, the bottom plot demonstrates that the increase in stream-
flow from 2007 onward coincides exactly with an increase in rainfall. Thus, one should be particularly careful
to proclaim nonstationarity based on the observed discharge data only. Our diagnostic analysis presented
in section 4 of this paper indeed confirms that the behavior of the Blackberry watershed is considered sta-
tionary during the 2002-2012 observational period.

The results of Figure 2 reinforce the need for a detailed look into the underlying processes that drive the
watershed response to hydroclimatic forcing. For instance, Groisman et al. [2001] found a significant relation-
ship between the frequency of heavy precipitation in the eastern half of the United States and the presence
of high streamflow events both annually and during the months of maximum streamflow. Using data from
the Yellow River in China, Cong et al. [2009] demonstrated that streamflow trends were explained by large-
scale decadal variations in climate forcing whereas land use changes were found to have a negligible impact.

In this paper, we introduce the elements of a process-based framework to address the stationarity hypothe-
sis. Our methodology builds on recommendations of Koutsoyiannis [2006] and Koutsoyiannis [2011] and
merges numerical modeling with the likelihood-free diagnostics approach of Vrugt and Sadegh [2013] and a
set of processed-based summary metrics to pinpoint gradual/abrupt changes in watershed behavior. Our
approach builds on the hypothesis (assumption) that nonstationarity catchment behavior should be evident
from analysis of the temporal patterns of the watershed signatures as measured, for instance, by summary
metrics of the discharge data. Such time invariant metrics cannot be properly simulated with a fixed model
structure and temporally invariant parameter values. As a consequence, diagnostic inference with approxi-
mate Bayesian computation (ABC) cannot provide behavioral simulations that honor the observed summary
metrics. On the contrary, for a stationary watershed, one would expect the summary metrics not to vary much
temporally, and hence, a single parameterization would deem sufficient to simulate adequately the observed,
time invariant, rainfall-runoff transformation. Results presented in this paper confirm our assumption—the
presented methodology is able to differentiate successfully between watersheds that are classified as station-
ary in the literature and those that have undergone significant changes in land use, urbanization, and/or
hydroclimatic conditions (forcing), and thus are deemed nonstationary.

The remainder of this paper is organized as follows. Section 2 clarifies the main terminology used in this paper.
In section 3, we shortly describe the watershed data used herein. These basins have been selected after careful
literature review and include stationary and nonstationary watersheds. Then in section 4, we review the basic
elements of the likelihood-free diagnostics methodology of Vrugt and Sadegh [2013], which together with the
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DREAMagq) algorithm [Sadegh and Vrugt, 2014] and a set of hydrologic summary metrics of the observed dis-
charge data is used to address the stationarity null hypothesis. Here we are particularly concerned with the
choice the summary metrics and value of the cutoff threshold, ¢, that can be used to accept/reject the stationar-
ity null hypothesis. Section 5 presents the results of our diagnostic analysis for each of the watersheds consid-
ered herein. Finally, section 6 concludes this paper with a summary of our most important findings.

2. Overview and Terminology

Before we discuss the terminology used in this paper, we first present in Figure 3 a schematic overview of
our stationarity hypothesis testing methodology. The different rectangles signify the different building
blocks of our methodology. The flowchart is made up of two different parts. The left-hand side (“methodol-
ogy”) details the various steps used for hypothesis testing of stationarity and its antithesis nonstationarity.
The right-hand side (“metrics and training”) explains the steps required to determine a suitable value for e.
This value is model and summary metrics dependent and thus needs to be estimated by training against a
suite of watersheds known to exhibit stationary/nonstationary behavior. Each step is explained in full in the
cited section (abbreviated with the letter “S”) next to each block.

We now proceed with a discussion of the most important words used herein in a hope to provide further
clarity on our terminology and avoid possible confusion. Note, the words catchment, basin, and watershed are
assumed to have an equivalent meaning and are thus used interchangeably. Moreover, our analysis is consid-
ered with temporal changes of hydrologic variables—and whether such changes can be classified as stationary
or not. We are not concerned with changes of hydrologic variables in space, that is, within the spatial domain
of the watersheds of interest. This would require the use of spatially distributed hydrologic models.

1. Reality/real world: the natural system, understood here as the study area of the different watersheds.
2. Watershed response: the reaction of the watershed, as evidenced by observations of key hydrologic vari-
ables, to climatic forcing (e.g., rainfall, potential evapotranspiration, PET).

METHODOLOGY METRICS USED AND TRAINING
S3 I Select hydrologic model | Define L summary metrics, S(Y)
‘1’ (a) Rooted in hydrologic theory
$4.2 | (b) Independent
S3 | Select watershed | (c) Insensitive to rainfall data errors
s Calculate summary metrics of the Find minimum values of p(5(Y(8)),5(Y))
observed discharge data, S(Y) S4.3 for model used and suite of stationary
and nonstationary watersheds
v
S4.1 Posterior inference of Equation (5) using -
. MCMC simulation with DREAM g, 543 Derive threshold \{alues & and & that.
‘1’ > | demarcate stationarity and nonstationarity
qe® Yo
sampled values
s5 p(SCY(0)),S(V) < ;2
Accept H, &
stationarity sampled values

p(S(Y(0)),5(Y)) = &2

Accept H, Reject H,
nonstationarity stationarity

Figure 3. Schematic overview of the stationarity hypothesis testing methodology proposed herein. (left) The various steps of our stationar-
ity hypothesis testing methodology(“methodology”). (right) The steps required to determine a suitable value for ¢ (“metrics and training”).
The blue labels refer to the individual sections of our paper that discuss in depth each building block.
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3. Watershed behavior: the overall integrated functioning of the watershed—not necessarily visible and
measurable and in response to climatic forcing.

4. Response data: a glossary of all hydrologic variables that can, in principle, be observed and simulated by
a numerical model. This not only includes integrated descriptors of the watershed response to rainfall
(and PET) such as the discharge emanating from the catchment outlet, but also soil moisture dynamics
at a given depth and location interior to the watershed.

5. Time invariant: catchment characteristics (physical properties) or controlling (hydroclimatologic) proc-
esses that do not change over time.

6. Time variant: catchment characteristics (properties) and/or processes that change over time. Antonym of
time invariant.

7. Watershed stationarity: watershed behavior that is time invariant. Main difference between the words
stationarity and time invariance is that stationarity applies typically to the overall functioning (behavior)
of the catchment, as measured in different response variables, whereas time invariance usually applies to
a single individual process of the catchment.

8. Watershed nonstationarity: watershed behavior that is time variant. Climate change and/or alterations to
the physical characteristics of the catchment (e.g., urbanization, deforestation) are main causes that can
induce nonstationarity behavior. Negation of stationarity.

9. True posterior distribution: the distribution of the parameters of a model derived when the model is a
perfect description of reality, the input (forcing) data are observed without error and the output (calibra-
tion) data are corrupted with random errors only (nonsystematic). The “size” of the output measurement
error then determines the width of the posterior distribution.

The word time variant and its antonym time invariant are often used in connection with the parameters
of a hydrologic model. Time invariant parameters are parameters whose values are assumed fixed during
simulation. This is a valid assumption within the stationarity paradigm. The negation of time invariant
parameters, that is, time variant parameters, are parameters whose values are not constant, but rather
change, perhaps abruptly, over time. When incorporated in a numerical model, such time variance of the
parameters provides a means to simulate catchment nonstationarity [see, for instance, Westra et al.,
2014]. Note that time invariant is not synonymous to stationary. Time invariant typically is used to
describe the behavior of a single process/property—whereas stationary usually applies to the behavior of
the system as a whole.

The stationarity hypothesis can be difficult to accept/reject in practice. Indeed, trends in hydrologic
response variables (e.g., streamflow) can be due to multiyear climatic variations. One should therefore be
particularly careful to proclaim behavior as nonstationarity in the absence of a sufficiently long data record.
No statistical method can compensate for insufficient data. The crux is a lack of knowledge about the long-
term persistence of the watershed/climate system. This point was made in Figure 1 and Koutsoyiannis
[2011] and Koutsoyiannis [2013]. Similarly, it is difficult to judge whether a process is time invariant and thus
stationary or not. Nevertheless, the methodology presented herein much better recognizes the role of pro-
cess physics in testing of the stationarity paradigm.

Note that our definition of stationarity/nonstationarity differs somewhat from that of Koutsoyiannis and
Montanari [2014] who base their definitions on a theoretical treatise and state that “stationarity and non-
stationarity apply only to models, not to the real world” since “the laws of nature which hold now are identi-
cal to those holding for any time in the past or future.” We certainly agree with Koutsoyiannis and
Montanari [2014] that the laws of nature hold indefinitely, yet perhaps differ in opinion about the cause
of nonstationarity. The laws of nature might be invariant but if they act on a porous medium (watershed)
that has time variant physical properties (due to, e.g., urbanization, deforestation) or hydroclimatic condi-
tions (e.g., intensifying hydrologic cycle), the catchment behavior can appear nonstationary as evidenced
by some trend in the streamflow response. According to this definition, processes such as erosion and
sedimentation should, per definition, induce a nonstationarity catchment response, as they actively
change the physical properties of the watershed in which they operate. The effect of such structural
changes on the integrated catchment response might not be immediately visible unless the respective
processes act at large spatial scales. What is more, in our definition, a change in land use can also induce
catchment nonstationarity—even if this adaptation is described perfectly in a watershed model of the
rainfall-runoff transformation!
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Table 1. Description of the Watersheds Used Including Name, Region, USGS ID, Drainage Area (km?), Mean Annual Precipitation
(P, mm/d), Mean Annual Evapotranspiration (PET, mm/d), and Mean Annual Runoff Coefficient (MAR, -)*

Area MAP  MAPET  MAR  pun ()

Name City (Region), State, Country USGS ID (km?) (mm) (mm) ) )
Stationary Watersheds
Oostanaula Resaca, GA, USA 02387500 4150 1414 8653 0.42 0.028
Pearl Edinburg, MS, USA 02482000 2341 1284 1052 0.31 0.043
Bogue Chitto Bush, LA, USA 02492000 3141 1441 1068 0.34 0.035
Little Pigeon Sevierville, TN, USA 03470000 914 1357 7981 041 0.036
Tangipahoa Robert, LA, USA 07375500 1673 1459 1071 0.38 0.022
Comite Comite, LA, USA 07378000 735 1382 1076 0.36 0.027
Calcasieu Oberlin, LA, USA 08013500 1950 1452 1094 0.38 0.045
S. Umpqua Tiller, OR, USA 14308000 1162 1351 813 0.63 0.022
French Broad Asheville, NC, USA 03451500 2447 1524 819 0.49 0.016
Leaf River Collins, MS, USA 02472000 1924 1307 1086 0.32 0.022
Nonstationary Watersheds
Axe Creek Longlea, Victoria, Australia N/A 1235 559 1217 0.05 0.171
Wimmera Glenorchy Concrete N/A 2000 571 1153 0.07 0.067
Weir Tail, Victoria, Australia
Wights Collie, Western Australia N/A 0.94 1135 1401 0.24 0.102
Flinders Glendower, Queensland, Australia N/A 1911 572 1726 0.11 0.253
Gilbert Gilberton, South Australia N/A 1906 827 1074 0.17 0.168
Ferson St. Charles, IL, USA 05551200 134 1022 756 0.36 0.031
Blackberry Yorkville, IL, USA 05551700 181 977 773 0.30 0.031
Synthetic Case | (“abrupt”) 1524 819 0.52 0.122
Synthetic Case Il (“gradual”) 1524 819 0.52 0.144

“The first 10 watersheds are taken from the MOPEX data set and are deemed stationary. The other nine watersheds are classified as
nonstationary in the hydrologic literature. Of these, five watersheds are located in Australia and two in the United States. The last two
synthetic data sets involve simulated discharge data from the SAC-SMA model and are used to benchmark our methodology. The last
column lists, for each watershed, the minimum distance, p,i, (), between the observed and simulated summary metrics derived from
equation (5) using the SAC-SMA model. These values are of great importance and will be revisited in later sections of this paper.

The concept of a “true” distribution is somewhat abstract as parameters are modeling constructs that might
have nothing to do with the universal constants of the system. This concept is of use however to compare
in a relative sense the “distance” of the inference results to their desired “truth.” If the system description is
erroneous in some way (as is always the case), then the parameters of the model might not map directly to
their constants of the actual system. This makes regionalization efforts (among others) more difficult but is
beyond the topic of the present paper.

3. Hydrologic Data and Watersheds

In this study, we analyze ten (assumed to be) stationary watersheds from the MOPEX data set [Schaake
et al., 2006] and nine (claimed to be) nonstationary watersheds. Table 1 lists the name of each watershed,
geographical location (state, country), catchment size (km?), the mean annual precipitation (MAP, mm),
potential evapotranspiration (MAPET, mm), and runoff coefficient (MAR, -). The last column will be
addressed in the remainder of this paper. The watersheds are located in the United States and Australia and
range in size between 0.94 and 2447 km?.

The different watersheds listed in Table 1 have been classified as stationary or nonstationary in the hydro-
logic literature based on visual inspection of (multiannual) streamflow data, parametric/nonparametric sta-
tistical tests, time series analysis, and anthropogenic alterations (e.g. urbanization, deforestation). This
assessment is based on a relatively short data record (<50 years) and one should therefore be particularly
careful with hypothesis testing due to lack of knowledge of long-term climatic variations. The 10 MOPEX
watersheds are classified as stationary, whereas the Wights (deforestation after 3 years from commence-
ment of monitoring in 1974 [e.g., Mroczkowski et al., 1997]), Axe Creek, and Wimmera (different rainfall char-
acteristics and much higher temperatures during period of 1997-2008) [Thirel et al., 2015], Flinders and
Gilbert (cyclonic rainfall), and Ferson and Blackberry Creek (urbanization) watersheds are assumed to exhibit
nonstationary behavior. Detailed information about these apparent nonstationary watersheds can be found
at http://non-stationarities.irstea.fr/.

We base our arguments and computations of each watershed on a 10 year record of daily data. This length
of record is sufficient for a robust calculation of the summary metrics, but appears rather short for
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hypothesis testing. The choice of data length is determined by the shortest record on hand of the 19 water-
sheds. To benchmark our diagnostics approach, we also include two artificial catchments. Two 10 year
records of synthetic daily streamflow data were created by driving the Sacramento soil moisture accounting
(SAC-SMA) model of Burnash et al. [1973] using an explicit fixed-step 6 h integration time step with forcing
data from the French Broad River basin in the U.S. The first catchment, coined “abrupt,” experiences after 5
years, and from 1 day to the next, a sudden change in SAC-SMA parameter values. The second synthetic
catchment experiences a similar adjustment of the parameter values but this adaptation takes place linearly
over 365 days between year 5 and 6 of the data record. This catchment is referred to as “gradual” in the
remainder of this paper.

4, Approximate Bayesian Computation

ABC was introduced by Diggle and Gratton [1984] to permit inference of complex models for which the like-
lihood is intractable, computationally too expensive to evaluate, or not explicitly available. The premise
behind ABC (also called likelihood-free inference) is that the parameter vector 0 should be a sample of the
posterior distribution if the distance between observed and simulated summary metrics, p(S(Y(0")), S(Y))
of the data Y, is less than some nominal positive threshold, e [Beaumont et al., 2002; Marjoram et al., 2003;
Sisson et al., 2007; Del Moral et al,, 2012]. The posterior parameter distribution will converge to p(8|Y), in the
limit of ¢ — 0, pending that the summary metrics of the data are sufficient [Pritchard et al., 1999; Beaumont
et al., 2002; Turner and van Zandt, 2012]. Practical experience suggests that complex systems such as water-
sheds hardly admit sufficient statistics. A loss of information is hence expected when projecting the original
streamflow data onto a subspace of summary statistics. This loss introduces an extra degree of approxima-
tion of the posterior distribution. This, however, is not of great concern in the present application of ABC—
where our goal is not the posterior parameter distribution, but rather to analyze temporal variations in the
summary statistics.

The use of summary metrics holds several great promises for diagnostic model evaluation. First, model fit-
ting against summary metrics of the data helps ensure that the simulated response portrays accurately
properties of the observed behavior deemed important to the user. Such a match cannot be guaranteed
when fitting a model using a likelihood function consisting of some convoluted time series of error resid-
uals of the observed and simulated data. Second, if we carefully design each summary metric to be sensi-
tive to only one component (process) of the model, then after inference, it should be relatively easy to
pinpoint which part of the model is malfunctioning. Finally, summary metrics can be designed so that
they are relatively insensitive to forcing data errors (of which more later). This is a particularly desirable
characteristic in the present context—as we want to avoid proclaiming nonstationarity based on errors of
the rainfall data.

Figure 4 schematically depicts, in six different steps, the ABC framework for a simple example involving the
fitting of a model to an observed hydrograph. First, the user defines one or more summary metrics, S(Y)
that summarize the original streamflow data (step 1: dots) in a (much) lower-dimensional space (step 2).
The value of ¢ (size of purple box) defines the behavioral solution space, deemed appropriate by the user.
Then, N samples, {67,...,0y}, are drawn from the prior parameter distribution (step 3). In the absence of
detailed prior information about the individual model parameters, this distribution is often assumed to be
uniform (noninformative) to not favor a priori any parameter values. (Note that Scharnagl et al. [2011] pres-
ent a strategy to assess informative prior distributions in vadose zone modeling.) The N proposals drawn
from the prior distribution are subsequently evaluated by the hydrologic model, H(#;,-)+e (step 4), where
e denotes a n-vector with draws from the (unknown) residual distribution (more of which later). The sum-
mary metrics, S(Y(6;)), of each hydrograph simulation, Y(6;), are then compared to their observed values
(step 5); if p(S(Y(07)),S(Y)) < e then 0} is considered to be a behavioral (posterior) solution. The accepted
samples are finally used to summarize the target distribution, p(8|Y) (step 6). Note, whenever the index i is
used, we mean for each i € {1,...,N}.

Obviously, the degree of approximation of the true posterior distribution depends in large part on the chosen
summary statistics, along with the value of ¢ used to differentiate between behavioral and nonbehavioral solu-
tions. The choice of summary metrics is of imminent importance and should reflect (among others) the purpose
of model application. Section 4.2 of this paper will discuss, in detail, the selection of the summary metrics.
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Figure 4. Schematic overview of likelihood-free inference with approximate Bayesian computation (ABC) for a model with one parameter
and two different summary metrics. The original watershed data, Y is plotted in step 1 and is used to calculate S; and S, the summary
metrics of the measured data (step 2). After the user has defined ¢, step 3 proceeds by drawing N samples from the prior parameter distri-
bution, p(0). In step 4, each of these N samples is evaluated by the model, and used to calculate the simulated values of the summary met-
rics. Step 5 then proceeds with a comparison of the observed and simulated summary metrics. Model realizations whose simulated

summary metrics fall within the purple box, and thus satisfy p(S(Y(6;)),S(Y)) < e are called behavioral and used in step 6 to approximate
the posterior parameter distribution.

4.1. Posterior Sampling: DREAM agc)

Application of likelihood-free inference with ABC requires the availability of a sampling method that can
efficiently search the parameter space in pursuit of behavioral solutions. Commonly used rejection sampling
methods are rather inefficient—the chance that a randomly sampled solution will fall exactly within the
hypercube defined by ¢ (see Figure 4) is disturbingly small, particularly if the prior parameter distribution is
large compared to the behavioral (posterior) solution space and the number of summary metrics is large
[Sadegh and Vrugt, 2013]. We therefore take advantage of the DREAMxgc) algorithm developed by Sadegh
and Vrugt [2014].

In DREAMagc), K (K> 2) different Markov chains are run simultaneously in parallel, and multivariate pro-
posals are generated on the fly from the collection of chain states, ®;—; (matrix of K X d with each chain
state as row vector) using differential evolution [Storn and Price, 1997; Price et al., 2005]. If A is a subset of d*
dimensions of the original parameter space, RY C RY, then a jump, d®¥, in the kth chain, k={1,... K}, at
iteration t={2,...,T} is calculated from the collection of chains ®,_1={0;_,,...,0f } using differential

evolution [Storn and Price, 1997; Price et al., 2005]

5
dOf={y +(14 +hg: )V(J,d*)Z(@:j -0y)
=

j (1

de,=o,

where y=2.38/1/24d* is the jump rate, 6 denotes the number of chain pairs used to generate the jump, and
a and b are vectors consisting of ¢ integers drawn without replacement from {1,...,k—1,k+1,... K}.
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The default value of § =3, and results, in practice, in one third of the proposals being created with 6 =1,
another third with 6 = 2, and the remaining third using é = 3. The values of 4 and { are sampled independ-
ently from Uy (—c, ¢) and N4 (0, c.), respectively, the multivariate uniform and normal distribution with, typi-
cally, c=0.1 and ¢, small compared to the width of the target distribution, c,=10"° say. With a 20%
probability, the value of the jump rate is set equal to unity, y = 1, to enable DREAMagc, to jump between dis-
connected modes of the target distribution [Vrugt et al,, 2008, 2009; Sadegh and Vrugt, 2014].

The candidate point of chain k at iteration t then becomes
0f=0"+de*, (2)

and a modified selection rule is used to determine whether to accept this proposal or not. This selection
rule is defined as

I(f(®F) > f(®Y)) iff(®F) <0

Pacc((')k - @I';)= . « s
1 iff(®,) >0

3)

If Pacc(G)k — @’F‘,)=1, the candidate point is accepted and the kth chain moves to the new position, that is,
0’:=®';, otherwise 8¥=0¢_,.

The function, f(-) is calculated as follows

f(0)=e=p(S(Y(0)),5(Y)), 4)
and the distance function is defined as

p(S(Y(0),S(Y))= max (I5,(¥(0))=S(¥)]), ©

where L signifies the number of summary statistics used. Thus, we accept, Pacc(G)" — (E)’F‘J)=1, if the fitness
of @f, is larger than that of the current state of the kth chain, @ or if the summary metrics of the proposal
are within ¢ of their observed counterparts, f(@’g) > 0, otherwise the candidate point is rejected. After a
burn-in period and acquisition of f(-) > 0, the convergence of DREAMgc) can be monitored with the R
diagnostic of Gelman and Rubin [1992].

For all watersheds, we assume default settings of the algorithmic variables of DREAMgc) and use K = 3 dif-
ferent chains and 100,000 model evaluations. To minimize the burn in, we use a related variant of
DREAMagc) Which uses past states in the jumping distribution of equation (1) [Laloy and Vrugt, 2012; Vrugt,
2015].

4.2, Choice of Summary Metrics

The choice which metrics to use depends on the goal of the diagnostics application. If the main subject of
interest is posterior approximation, then the summary statistics should be sufficient and “convey all relevant
information” of the data (quote of Edwards [1992]). Self-sufficiency is not necessarily a requirement for diag-
nostic model evaluation in which the goal is not to approximate the true posterior distribution but rather to
detect epistemic errors arising from incomplete and/or inadequate process knowledge. The advantage of
summary statistics is that they exhibit a much better diagnostic power than some (purely statistical) likeli-
hood function of a convoluted time series of error residuals, and if properly designed and rooted in the rele-
vant environmental theory, can help to illuminate to what degree a representation of the real world has
been adequately achieved and how the model should be refined.

We now have to decide which summary statistics to use. To facilitate diagnostic inference of watershed
models, it would be highly desirable if the chosen summary statistics are, (a) properly rooted in hydro-
logic theory, (b) independent (uncorrelated), (c) invariant to precipitation data errors, and (d) sensitive
only to one specific component (process/equation) of the model. Criteria (a), (b), and (c) are a necessary
requirement to test the stationarity null hypothesis. Criterion (d) is of secondary importance in the pres-
ent work and detection of epistemic errors will be pursued in other work. If the summary metrics are
designed so that they extract the relevant signatures of catchment behavior, then analysis of their tempo-
ral dynamics can help elucidate subtle changes in the basin response to rainfall. At least, this is the under-
lying premise of our hypothesis testing methodology. If the stationarity assumption is valid then one
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Table 2. Name and Description of Each of the Summary Statistics Used in Our Rainfall Error Analysis®

Name

Description

Reference

Base flow index

Runoff coefficient

FDC

Slope of the FDC

Rising Limb Density (RLD)
Declining Limb Density (DLD)

Mean Daily Flow (DF)
Median DF
Coefficient of variation of DFs

Skewness of DFs
Ranges in DFs

Mean maximum monthly flow
Mean minimum monthly flow
Median maximum monthly flow
Median Minimum Monthly Flow
Low flow pulse count

High flow pulse count

Low flow pulse duration

High flow pulse duration

Flood duration

Flood frequency

Rise rate

Fall rate

Number of zero flow days
Peak distribution

Ratio between the total base flow and streamflow volumes in the
period of study

Ratio between the total streamflow and precipitation volumes in
the period of study

Relationship between the exceedence probability of streamflow
and its magnitude

Slope of the midpart of the FDC (between 33% and 66% exceed-
ance probability rates)

Ratio between the number of peaks and cumulative time of rising
limbs

Ratio between the number of peaks and cumulative time of
declining limbs

Average of daily streamflow values

Median of daily streamflow values

Ratio between the standard deviation and mean of daily stream-
flow values

Skewness of daily streamflow values

Ratio of 10th/90th, 20th/80th,, and 25th/75th, percentiles of
daily streamflow values

Average of the maximum monthly streamflow values

Average of the minimum monthly streamflow values

Median of the maximum monthly streamflow values

Median of the minimum monthly streamflow values

Number of events with streamflow values below 25th percentile

Number of events with streamflow values above 75th percentile

Mean duration of low streamflows

Mean duration of high streamflows

Mean number of days that streamflow magnitude remains above
flood threshold (75th percentile)

Mean number of high flow (flood) events per year

Average rate of positive flow changes from 1 day to the next

Average rate of negative flow changes from 1 day to the next

Number of days with zero streamflow

Average slope between 10th and 50th percentiles of the FDC
from peak flows only

Eckhardt [2005]
Savenije [1996]
Searcy [1959]
Yadav et al. [2007]
Morin et al. [2002]
Shamir et al. [2005]

Clausen and Biggs [2000]
Clausen and Biggs [2000]
Clausen and Biggs [2000]

Clausen and Biggs [2000]
Olden and Poff [2003]

Olden and Poff [2003]
Olden and Poff [2003]
Olden and Poff [2003]
Olden and Poff [2003]
Olden and Poff [2003]
Olden and Poff [2003]
Olden and Poff [2003]
Olden and Poff [2003]
Olden and Poff [2003]

Olden and Poff [2003]
Olden and Poff [2003]
Olden and Poff [2003]
Olden and Poff [2003]
Euser et al. [2013]

“The last column provides a reference for each metric, and can be used as guide for their numerical calculation.

expects the summary metrics to vary around some constant mean, and temporally invariant parameter
values to be sufficient to mimic adequately the observed catchment response. The alternative hypothesis
would involve temporal variant summary statistics, symptomatic for catchments subject to physical alter-
ations (urbanization, deforestation, and/or changes in land use) or changes in hydroclimate (changing
rainfall characteristics).

It is of paramount importance that the summary statistics are independent and rooted in hydrologic theory.
Indeed, we can only verify the stationarity hypothesis if we use metrics that measure directly catchment
behavior. These metrics should be independent to ensure that they each measure different and comple-
mentary parts of catchment functioning. Moreover, it is highly desirable that the summary metrics should
be insensitive to precipitation data errors. We certainly would not want to reject the null hypothesis and
proclaim nonstationarity of catchment response based on the wrong reasons.

The hydrologic literature has brought forward a plethora of summary statistics of a discharge data record
that could potentially be used as signatures of catchment behavior. Table 2 summarizes our initial selection
of the summary metrics potentially deemed adequate for stationarity hypothesis testing. We list the name
of each metric along with a short description and reference which discusses their mathematical calculation.
In summary, we consider the following 25 summary statistics of the observed discharge data: base flow
index, runoff coefficient, slope [Yadav et al., 2007], and two other fitting parameters of the flow duration
curve (FDC) [Vrugt and Sadegh, 2013], rising and declining limb density [Shamir et al., 2005], high and low
flow pulse count and duration, rise and fall rate, mean, median, coefficient of variation, skewness, and the
maximum range of the daily discharge observations, flood duration and frequency, number of zero flow
days [Olden and Poff, 2003], peak distribution [Euser et al., 2013], and the mean and median values of the
minimum and maximum monthly flows, respectively.
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We now need to determine
which of these metrics satisfy the
three criteria (a)-(c) listed previ-

Table 3. Description of the SAC-SMA Model Parameters and Their (Uniform) Prior
Uncertainty Ranges

Parameter Symbol Minimum Maximum Units
Upper zone tension water maxi- UZTWM 1.0 150.0 mm OL{Sly. To Fhl_s er?q’ we first C‘ie’t('i'r-
mum storage mine their individual sensitivity
Upper zone free water maxi- UZFWM 1.0 150.0 mm to precipitation data errors. We
TN devised a simple numerical
Lower zone tension water maxi- LZTWM 1.0 500.0 mm ) . P
mum storage experiment with the SAC-SMA
Lower zone free water primary LZFPM 1.0 1000.0 mm model [Burnash et al., 1973]. Syn_
maximum storage : H
Lower zone free water supple- LZFSM 1.0 1000.0 mm thetlc dally streamflow o'bserva
mental maximum storage tions were created with 10
Additional impervious area ADIMP 0.0 0.4 - different parameter combina-
u fi ter lateral uzK 0.1 05 day ™’ . )
A EEMCIUES I 27 tions, drawn randomly from their
depletion rate . . . :
Lower zone primary free water LZPK 0.0001 0.025 day ! uniform prior ranges specified in
depletion rate : Table 3, using forcing data from
L | tal fi LZSK 0.01 0.25 day~ . .
SIS S NS 27 the French Broad River basin at
water depletion rate .
Maximum percolation rate ZPERC 1.0 250.0 - Asheville, NC. The summary met-
Exponent of the percolation REXP 1.0 5.0 - rics of Table 2 were calculated
equation . .
Impervious fraction of the water- PCTIM 0.0 0.1 - for each of ten simulated dis
shed area charge records and these vectors
Fraction percolating from upper PFREE 0.0 0.6 - of metrics were then considered

to lower zone free water

to be our observed values. Then,
storage

a total of thousand different pre-
cipitation time series were cre-
ated by perturbing the original hyetograph of the French Broad River basin with a 20% (heteroscedastic)
measurement error. On top of this, (systematic) errors in rainfall timing were introduced by moving randomly,
with one day, storm events. The probability of such move was set to 20%. This leaves us with an ensemble of
one thousand different rainfall records. The SAC-SMA model was subsequently executed with each of the ten
different parameterizations and thousand different precipitation data records. Next, the summary metrics of
Table 2 were calculated for the ensemble of 10,000 discharge simulations and compared to their respective
observed values. To investigate the effect of data length on the simulated summary statistics, we consider
daily discharge simulations of 1, 2, 5, and 10 years length. Note that our analysis does not consider temporal
correlation of the rainfall data errors. If such errors were present then detailed prior information is required
about their presence—no method can otherwise provide compelling results.

Figure 5 displays the results of our analysis, and plots histograms of the distance (residual) between the
observed and simulated values of the summary statistics. Figures 5a-5e depict the five metrics that appear
least sensitive to rainfall data errors, whereas the Figures 5f-5j summarize the results of the five most sensi-
tive criteria. The results pertain to a 10 year data period and summarize the outcome of 10 different SAC-
SMA model parameterizations. The base flow index, runoff coefficient, two fitting coefficients of the FDC,
and annual rising limb density (RLD) appear very well defined and almost unaffected by rainfall data errors.
To maximize information retrieval from the observed discharge data, the RLD is defined for each year sepa-
rately equating to a total of 14 different metrics for a 10 year data. Further analysis demonstrates these
L = 14 metrics to be rather uncorrelated—and thus to satisfy the independence criterion (b) as well. The
other metrics of Table 2 show a considerable variation in response to rainfall data errors, and thus are not
deemed particularly useful for stationarity hypothesis testing. A similar selection of summary metrics was
made for shorter simulation periods (not shown herein).

In the present analysis, we discard errors in the streamflow data itself. A simple numerical experiment with
artificial discharge data will show that the selected summary metrics appear rather insensitive to errors in
the discharge data—unless these errors are nonrandom (systematic). In that case, no statistical method
would provide compelling results within the present context. As the watershed response is generally domi-
nated by rainfall events, we ignore PET errors in the current paper, and leave this for future work. It would
not be difficult to devise a similar numerical test as done for rainfall data errors to explore the sensitivity of
each individual summary metric to measurement errors of the potential evapotranspiration.
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Figure 5. Histograms of the residuals between the observed and simulated summary metrics. The observed values of the summary metrics are derived from a synthetic discharge record
simulated with the SAC-SMA model using the rainfall hyetograph of the French Broad River basin. The simulated metrics are derived from the SAC-SMA model but using systematic and
random errors to the rainfall data record. The aggregated results of 10 different SAC-SMA parameterizations with 1000 corrupted rainfall records each are plotted. (a—e) The summary
metrics whose values are least affected by rainfall data errors, and (f-j) their most sensitive counterparts.

4.3. Choice of Cutoff Threshold, ¢

Now our summary statistics have been defined, and we are left with the values of e and ¢ used to differenti-
ate between behavioral and nonbehavioral solutions (simulations). If the main goal of ABC application is to
approximate the true posterior parameter distribution then the value of ¢ should be taken small (e.g.,
€ < 0.025) and e should reflect accurately the probabilistic properties of the remaining error between the
model operator, H(-) and the actual data generating process. This includes possible errors in hydroclimatic
forcing as well. For diagnostic model evaluation, however, the assumption e=0 is sufficient to help address
the stationarity null hypothesis. This leaves us with specification of € only, and as will be shown later, this
scalar delineates stationary from nonstationary watershed behavior.

No guidelines exist what value (or vector of values) of € to select for testing of the stationarity hypothesis in a
diagnostics framework. It seems logical to let our choice of ¢ depend directly on the temporal variability of
each individual summary metric. One would then expect the “width” around the mean value of each summary
metric, or second moment, to relate directly to the “amount” of nonstationarity of Y. Of course, a statistically
significant change in the mean can only be detected if a sufficiently long data record is used (see Figure 1).

The last column of Table 1 lists, for each of the 19 watersheds considered in our analysis, the minimum
value of p(S(Y(0),5(Y))) derived from minimization of equation (5) using the SAC-SMA model and differen-
tial evolution algorithm. Equation (5) is composed of the fourteen different summary metrics selected in
section 4.2. The tabulated values highlight three important findings.

In the first place, the minimized value of p(-) has important diagnostic power to address the stationarity
null hypothesis. Indeed, a value of p(-) < 0.05 demarcates stationary watershed behavior, whereas values
of p(-) > 0.10 support the presence of nonstationary. Second, the Ferson and Blackberry Creek basins in
the U.S. satisfy the stationary test of p(-) < 0.05, but have been classified as nonstationary in the hydrologic
literature due to significant urbanization. We believe that this literature classification is erroneous, and this
finding is supported by the evidence presented in Figure 2 for the Blackberry basin. Third, the Wimmera
River basin is classified in Table 1 as nonstationary, but its value of p(-)=0.067 does not satisfy formally
p(+) > 0.10. For values of p(-) < 0.05, we can declare with a high level of confidence the presence of statio-
narity. For values of p(-) > 0.10, nonstationarity is implied. For values of p(-) € [0.05,0.10], the null
hypothesis (stationarity) is rejected but the evidence is not strong enough to support with high confidence
the nonstationary hypothesis. In principle, this classification can be adapted to support a probabilistic inter-
pretation of the degree of stationarity, Ps, and its antithesis, nonstationarity, P;=1—P,, where P, signifies
the probability of nonstationarity. We leave this for future work. Of course, in theory, every watershed is
nonstationary, to some extent, due to global changes of the hydrologic cycle, geomorphologic and land
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use changes. The presented approach should help ascertain whether change is present in the data, and if
so, how significant this change is (probability of nonstationarity).

Thus, the value of p(-) appears to be a useful proxy for the degree of watershed nonstationarity. In practice,
if the SAC-SMA model cannot find a value of equation (5) smaller than 0.05, the respective watershed under
consideration fails the stationarity null hypothesis. For values of p(-) > 0.10, we can assume the watershed
to have experienced changes to its physical characteristics and/or hydroclimatic conditions. The resulting
behavior is then classified as nonstationary. This binary classification scheme serves to accept/reject the sta-
tionary null hypothesis, nevertheless a probabilistic interpretation of p(-) is preferred statistically. This would
provide, for each watershed, an estimate of its degree of nonstationarity. Based on this analysis, we assume
a value of €=0.05 in all our numerical experiments.

A few remarks are in order. The criteria of p(-) < 0.05 used to demarcate stationarity apply to the L = 14
summary metrics and SAC-SMA model used herein and/or models with similar structural complexity. For
more parsimonious models with fewer calibration parameters, one would expect the reported values of p(-)
to increase due to a reduced ability of the model to describe closely the observed signatures. For instance,
consider a simple linear model that is used to approximate the rainfall-runoff transformation. It will not be a
surprise that this linear model is unable to closely fit the observed values of the summary metrics for each
of the nineteen watersheds considered herein. Indeed, the values of p(-) for this linear model will be
substantially larger than their counterparts of the SAC-SMA model. The largest values of p(-) will still be
observed for the nonstationary watersheds, and hence for this linear model the threshold values of p(-) used
to test for stationarity/nonstationarity simply increases beyond 0.05 and 0.10, respectively. The diagnostic
power of p(-) for hypothesis testing thus remains unaffected. A similar change to these criteria is expected
with the use of another set of summary metrics—pending the assumption that they each satisfy the three cri-
teria listed previously (hydrologic relevance, independent, and insensitive to rainfall data errors).

Now we have defined ¢=0.05 to be appropriate for the SAC-SMA model, we can now use our methodology
to confront the stationarity null hypothesis. In the next section, we illustrate the results of our methodology
for three watersheds deemed stationary in the hydrologic literature, and three basins that are assumed to
exhibit nonstationarity behavior.

5. Results and Discussion

We now illustrate the results of our numerical simulations with the SAC-SMA model using the DREAMagc)
algorithm with the L = 14 summary statistics of section 4.2 derived from 10 years of daily hydrologic data
from the 19 different watersheds listed in Table 1. In our discussion, we focus attention on three stationary
watersheds (Oostanaula, French Broad, and Leaf River) and three nonstationary watersheds (Wights catch-
ment, and two synthetic data sets). The findings for these six basins are representative for the entire collec-
tion of watersheds studied herein, and demonstrate the ability of the proposed diagnostics methodology
to differentiate between stationary and nonstationary watershed behavior.

Figure 6 presents histograms of the marginal posterior distribution of a representative set of five SAC-SMA
parameters including (a) PCTIM, (b) ADIMP, (c) LZTWM, (d) LZPK, and (e) LZSK using the observed values of
the L = 14 different summary metrics of the Oostanaula (top), French Broad (middle), and Leaf (bottom)
River basins and ¢=0.05. These three basins are classified as stationary in the hydrologic literature. The x
axis of each plot matches exactly the ranges of each parameter used in the (uniform) prior distribution
(Table 3). The histograms are created from the last 20% of the joint samples of the Markov chains. The
results in this figure highlight several important findings. First, most of the SAC-SMA parameters are not par-
ticularly well resolved by calibration against the observed summary metrics. The marginal distributions
encompass a large part of the prior distribution. The exception is LZPK which appears reasonably well con-
strained for each of the stationary watersheds. Second, most of the histograms are rather irregular with mul-
tiple modes and poorly described with a traditional probability density function. These results suggest that
the posterior surface is nonsmooth and exhibits many local minima. Similar conclusions were drawn in our
earlier diagnostics work presented in Vrugt and Sadegh [2013]—but then using a model with an implicit
numerical solver. Thus, the rather erratic posterior parameter distributions are likely the consequence of the
metrics used and less likely caused by inferior model numerics. Finally, although the marginal distributions
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Figure 6. Histograms of the marginal posterior distribution of a representative set of five SAC-SMA model parameters (PCTIM, ADIMP, LZTWM, LZPK, and LZSK) derived from DREAM agc)
using historical data from the (top) Oostanaula, (middle) French Broad, and (bottom) Leaf River watershed, respectively. Some of the SAC-SMA parameters are well resolved by calibration
against the observed summary metrics, whereas others exhibit considerable uncertainty.

exhibit considerable scatter—multivariate plots of the behavioral solutions demonstrate that the posterior
samples occupy only a small portion of the uniform prior hypercube (not shown).

To provide better insights into the sampled values of equation (5), Figure 7 plots trace plots of p(-) in each
of the K= 3 Markov chains simulated with DREAMxgc). We illustrate the results for the (a) Oostanaula, (b)
French Broad, and (c) Leaf River watersheds. These three watersheds are deemed stationary in the hydro-
logic literature. Each of the three Markov chains is coded with a different color. The dashed red line signifies
the threshold of ¢=0.05 used to demarcate stationarity. The DREAMagc) algorithm rapidly converges to a
limiting distribution. About 5000 function evaluations are required for each watershed to locate solutions
that satisfy the stationarity assumption. The number of function evaluations with DREAMsgc) is more than
sufficient to generate a large sample of the posterior distribution. Note that the different chains mix rela-
tively well—indeed the acceptance rate varies between 3.24 and 5.54%.

We now move on to the sampled summary statistics. Figure 8 plots histograms of the marginal distribution
of the sampled summary metrics of the SAC-SMA model for the Oostanaula (top), French Broad (middle),
and Leaf River (bottom) basins. The observed values of each summary metric are indicated separately in
each plot with a red cross. The histograms are created from the last 20% of the joint samples of the Markov
chains. As it is particularly difficult to summarize the results of all the L = 14 summary statistics, we plot only
the distributions of S; (Figures 8a, 8f, and 8k) the runoff coefficient, S, (Figures 8b, 8g, and 8l) the base flow
index, S3 (Figures 8¢, 8h, and 8m) and S, (Figures 8d, 8i, and 8n) the two fitting coefficients of the van
Genuchten formulation of the FDC, and S;; (Figures 8e, 8j, and 80) the RLD of year 7 of the simulation
period. The sampled distributions center nicely around the observed values of the summary metrics and
appear rather uniform. The different plots confirm stationarity, that is, the sampled summary metrics reside
within a distance of ¢=0.05 of their observed values. A fixed parameterization of the SAC-SMA model
appears sufficient to mimic adequately close the observed summary statistics.

Figure 9 illustrates how the SAC-SMA posterior parameter uncertainty translates into streamflow simulation
uncertainty. A representative 365 day period of the 10 year data record is used to illustrate our findings. The
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Figure 7. Trace plots of the sampled distance values, p(-), in each of the three Markov chains for the (a) Oostanaula, (b) French Broad, and
(c) Leaf River watersheds. The dashed red line depicts the threshold of ¢=0.05 used to demarcate stationarity.

Oostanaula river

0.42

(B)

0.48 0.61

(D)

X | © % | *
| | :
0.67 6

0.73 1.49 1.5 1.63 2.28 2.29 2.35 0.32

French Broad river

0.38

0.55 0.72

(G) x I
| |
| |
|

0.78

e 3 %
(H) I @ I
| | | |
| | | |
| | | |
|
|
0.84 062  0.68 0.74 3.78 3.84 3.90 0.42
Leaf river

0.48

S1

0.39 0.47

0.53
S Ss Sy

0.59 5.11 523 1.83

1.89

195 0.28

0.34
S

Figure 8. Histograms of the marginal posterior distribution of S;: runoff coefficient, S,: base flow index, S, S4: fitting parameters of the flow duration curve, and Ss: the rising limb density
of year 7 of the calibration data period. We separately display the results for the (top) Oostanaula, (middle) French Broad, and (bottom) Leaf River watersheds. The red cross in each plot
signifies the measured value of each summary metric. The vertical dashed lines delineate the behavioral solution space. A necessary condition for stationarity is that all L = 14 summary
metrics fall within the dashed interval around the observed value of each summary metric.
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Figure 9. The 95% posterior simulation uncertainty ranges of the SAC-SMA model for the (a) Oostanaula, (b) French Broad, and (c) Leaf
River watersheds for a representative 365 days portion of the calibration data period. The simulation uncertainty ranges (grey region)
envelop between 37 and 61% of the streamflow observations (red dots).

top, middle, and bottom plots display the results of the Oostanaula, French Broad, and Leaf River basins,
respectively. The observed discharge data are indicated with red dots. The 95% streamflow uncertainty
ranges appear rather narrow but nicely track the observed discharge data. About 40-60% of the discharge
observations are contained in the 95% simulation intervals. The root-mean-square error (RMSE) of the
ensemble mean simulation ranges between 0.8 and 1.2 mm/d. This value of the RMSE would be substan-
tially lower if the SAC-SMA model was fitted directly against the observed discharge data using a n-variate
Gaussian likelihood function [Schoups and Vrugt, 2010]. Yet this classical approach to model fitting leads to
simulated summary metrics that deviate considerably from their observed counterparts in an effort of the
model to compensate (optimally) for model structural and hydroclimatic forcing data errors (among others)
[see also Vrugt and Sadegh, 2013]. Our diagnostics approach is aimed at correctly representing the signa-
tures of the watershed observed in the discharge data—and hence the parameter values are carefully cho-
sen to represent this behavior with the model.

We now illustrate our findings for three watersheds that are deemed to exhibit nonstationary behavior.
Figure 10 presents trace plots of the sampled values of p(-) (computed from equation (5)) in each of the
K = 3 different Markov chains simulated with DREAMxgc, for the (a) Wights catchment, (b) “abrupt,” and
(c) “gradual” catchment. Each Markov chain is coded with a different color. As a reminder, the watersheds
“abrupt” and “gradual” constitute synthetic streamflow data. “Abrupt” experiences a sudden change in the
SAC-SMA model parameterization half way through its 10 year simulated record of daily discharge values.
The second artificial catchment, called “gradual,” experiences a daily linear adjustment of the SAC-SMA
parameter values during year 5-6 of the 10 year data period. The dashed red line depicts the threshold
value of ¢=0.05 derived from Table 1 and used to demarcate stationarity.

The sampled distance values in each of the three Markov chains are substantially larger than the value of
€=0.05 required to accept the stationarity null hypothesis. The SAC-SMA model is unable to simulate suffi-
ciently close, with time invariant parameter values, the observed values of each of the L = 14 summary met-
rics. In fact, the sampled distance values of p(-) are larger than 0.10 and thus satisfy the nonstationarity
condition. The DREAMapc)-derived samples are therefore considered nonbehavioral and discarded for pos-
terior inference (the posterior distribution is unbounded). If time variant parameter values were used then,
in principle, much lower values of p(-) could be attained, pending the assumption that the temporal trend
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Figure 10. Trace plots of the sampled distance values, p(-), in each of the three Markov chains simulated with DREAM g, for the (a)
Wights, (b) “abrupt,” and (c) “gradual” watersheds. The dashed red line depicts the threshold of ¢=0.05 used to demarcate the stationarity
null hypothesis. For each of the three watersheds, the SAC-SMA model is unable to satisfy the stationary condition, p(-) < 0.05—in fact,
the simulated values of p(-) > 0.10 illuminate the presence of nonstationarity in the observed discharge data records.

of each parameter is described adequately. Altogether, our methodology confirms prior knowledge that the
three watersheds have undergone changes.

Finally, Figure 11 plots histograms of a representative set of summary statistics (Sq, Sy, Ss, S4, and Sy4) simu-
lated with the SAC-SMA model for each of the three nonstationary basins of Figure 10. The plotted distribu-
tions are derived from the last 20% of the samples in each of the three Markov chains simulated with
DREAMagc). The observed summary metrics are indicated separately in each plot with a red cross, whereas
the vertical dotted red lines demarcate the stationarity null hypothesis.

The histograms (in blue) of S;, S5, S3, S4, and S;; are made up of solutions that do not satisfy the stationary
hypothesis, and hence cannot be called posterior marginal (behavioral) distributions. Instead, these distribu-
tions simply plot a frequency distribution of the last 20% of the samples of the K = 3 chain trajectories plot-
ted in Figure 10 and in pursuit of ¢ < 0.05. A particularly poor fit is observed for summary metric R;,, the
RLD of year seven of the discharge data record. For all three watersheds, this metric cannot be simulated
adequately with the SAC-SMA model assuming a single parameterization. In fact, a significant discrepancy
is observed between the observed and fitted RLD (as measured in the remaining nine statistics) in several
other years of the discharge data record (not shown). Thus, we conclude that the RLD is an important sum-
mary metric that can help diagnose watershed nonstationarity in response to urbanization, deforestation,
and changes in hydroclimatic forcing (amongst others).

A value of p(-) > 0.10 satisfies the nonstationarity condition but cannot convey the cause of the inhomoge-
neity observed in the discharge data record. Land use changes, urbanization, deforestation, and hydrocli-
matic variations (among others) can render the catchment response to precipitation (and other forcing
variables) nonstationary. Only one of these driving variables needs to exhibit nonstationarity (can be a
deterministic change) for the watersheds response to rainfall to appear nonstationary. Without further infor-
mation, it is virtually impossible to determine from the present analysis whether the catchment characteris-
tics have altered during the period of observation or whether the climate is time variant. Such separation
requires separate analysis of the forcing data in a pursuit to answer, for each watershed individually,
whether climate change is the culprit of the observed nonstationarity.
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Figure 11. Histograms of the marginal posterior distribution of S;: the runoff coefficient, S,: base flow index, S3, S4: fitting coefficients of the flow duration curve, and Ss: the rising limb
density of the seventh year of the calibration data record. We separately display the results for the (a) Wights, (b) “gradual,” and (c) “abrupt” watersheds. The red cross “x” symbol marks
the measured values of the summary metrics. A time invariant parameterization of the SAC-SMA model is unable to satisfy the stationarity hypothesis (demarcated with the vertically
dashed red lines) for each of the three basins. This suggests that the watershed has experienced changes to its physical characteristics and/or hydroclimatic forcing during the period of

observation.

The diagnostics methodology described herein provides hydrologists with a new methodology for hypothe-
sis testing and analysis of stationarity. We posit that this methodology has several advantages over classical
Frequentist and Bayesian inference methods that use purely statistical metrics to summarize (quantify)

Table 4. Comparison of the Minimum Values of Equation (5) Derived From the
SAC-SMA Model and HYMOD

Name

Prin (1) SAC-SMA

Prin (-) HYMOD

Stationary Watersheds
Oostanaula

Pearl

Bogue Chitto

Little Pigeon

Tangipahoa

Comite

Calcasieu

S. Umpqua

French Broad

Leaf River

Nonstationary Watersheds
Axe Creek

Wimmera

Wights

Flinders

Gilbert

Ferson

Blackberry

Synthetic Case | (“abrupt”)
Synthetic Case Il (“gradual”)

0.028
0.043
0.035
0.036
0.022
0.027
0.045
0.022
0.016
0.022

0.171
0.067
0.102
0.253
0.168
0.031
0.031
0.122
0.144

0.086
0.191
0.059
0.065
0.039
0.184
0.084
0.039
0.046
0.036

0.430
0.275
0.101
0.249
0.188
0.110
0.092
0.152
0.128

model adequacy [e.g., Schoups and
Vrugt, 2010]. Such likelihood based
metrics have little correspondence with
the underlying hydrologic processes
that control watershed behavior [Gupta
et al, 2008; Vrugt and Sadegh, 2013;
Sadegh and Vrugt, 2014]. What is more
these methods act on the error resid-
uals of the observed and simulated dis-
charge data which makes the inference
very sensitive to (among others) forcing
data errors. On the contrary, the sum-
mary statistics we used herein are far
less sensitive to forcing data errors, and
are much better grounded in hydro-
logic theory. What is more, summary
metrics can be carefully designed to
extract different and complementary
parts of watershed behavior. When
such metrics are used within the diag-
nostics framework of Vrugt and Sadegh
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[2013] then DREAMagc) [Sadegh and Vrugt, 2014] can be used for hypothesis testing of the stationary para-
digm. For instance, if nonstationary is present in a discharge data record then one would expect at least
one of the summary metrics to exhibit temporal variations. This behavior cannot be simulated adequately
with temporally invariant model parameters. The minimum achievable distance between the observed and
simulated metrics should therefore be a good proxy for the degree of catchment nonstationarity. For the
SAC-SMA model, this purports to a value of p(-) > 0.10 of equation (5) to satisfy nonstationarity.

To verify the main conclusions of this paper, we repeat the analysis but now using a more parsimonious
watershed model. This model, called HYMOD, was developed by Boyle [2001] and has a much lower struc-
tural complexity (five parameters) than the SAC-SMA model to simulate the catchment response to rainfall.
The results of our analysis are presented in Table 4 which lists the minimum values of equation (5) for each
of the watersheds used herein. For completeness, we also summarize separately the SAC-SMA values of
Pmin () of Table 1. The main conclusions are as follows.

1. The minimum values of p(-) of HYMOD are substantially larger than their counterparts of the SAC-SMA
model. This confirms our earlier hypothesis that watershed models with lower structural complexity
(fewer parameters) than SAC-SMA will generally have a larger discrepancy to the observed summary sta-
tistics of the discharge data. The exception to this are the Wights and Flinders watersheds in Australia for
which both watersheds models receive similar values of p(-) of about 0.10 and 0.25, respectively. The
HYMOD model appears to be of sufficient complexity for these two watersheds.

2. Watersheds classified as nonstationary exhibit the largest HYMOD values of p(-). This confirms another
of our hypotheses that the value of p(-) is a useful proxy for catchment stationarity/nonstationarity. For
values of HYMOD of p(-) < 0.09, we can designate the behavior of the watershed as stationary, whereas
values of p(-) > 0.12 suggest the presence of nonstationarity in the observed discharge data. For values
of p(+) €[0.09,0.12], the null hypothesis is rejected but the level of nonstationarity is insufficient to
accept the alternative hypothesis.

3. The Ferson and Blackberry River basins in lllinois, USA, are classified as stationary watersheds with the
SAC-SMA model, whereas HYMOD proclaims these two watersheds to exhibit some level of nonstationar-
ity, but insufficient enough to reject formally the stationarity null hypothesis.

4. The HYMOD model designates the Pearl and Comite watersheds in the U.S. as nonstationary. This classifi-
cation is erroneous, and explained by an inability of the model to represent adequately the observed dis-
charge dynamics. Stationarity hypothesis testing thus requires the use of a model that can mimic
sufficiently close the observed watershed behavior.

The results of HYMOD substantiate the main findings of this paper, and provide further support for our
claims. The value of p(-) is a useful proxy for catchment stationarity. The larger the value of this diagnostic,
the more likely that the watershed has experienced changes during the period of observation. Note the use
of an ensemble of models can have several practical advantages for stationarity hypothesis testing. If all the
different watershed models are in agreement in their assessment of stationarity (nonstationarity) then this
is very strong evidence that the discharge record is indeed homogenous (inhomogeneous). Those data
records for which the different watershed models of the ensemble differ in their assessment deserve careful
further analysis. In all this work, it is of importance that the watershed model (or ensemble of models) is
able to mimic reasonably well the observed response, otherwise epistemic errors play too large of a role
and the inference becomes rather meaningless. For instance, a stationary basin may be erroneously classi-
fied as nonstationary if processes such as snowmelt are not adequately described.

A few final remarks are appropriate. In this work, we have assumed a single value of ¢ that is used for each
different summary metric. This approach is defensible in the present context as the summary metrics have
a somewhat similar magnitude and variation. Care should be exercised if metrics are used with disparate
scales. Hence, it would seem logical to use a different value of ¢ for each individual summary metric. Tempo-
ral analysis of each summary metric can help to discern suitable values of ¢ for each individual metric. Alter-
natively, one could analyze the variability of each summary metric for watersheds with similar climate, soil,
and topographic properties. We leave this for future work.

The summary metrics used herein have shown to exhibit the necessary diagnostic power to help detect
catchment nonstationarity. The analysis of catchment nonstationarity would be much more difficult if a for-
mal prior distribution and likelihood function were used. The model residuals would not only be diluted but
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also lack obvious patterns and/or shifts that are easy to pinpoint to process nonstationarity. More work is
required to provide further support for some of our claims made regarding the advantages of summary
metrics for hypothesis testing and inference of epistemic errors. Whatever the verdict, formal likelihoods
will always play a key role in statistical inference.

Lastly, most catchments will exhibit some level of nonstationarity. Climate change has modified the hydro-
logical cycle globally, and in the Anthropocene, most catchments have experienced some level of change.
The inference methodology we have presented not only helps to detect nonstationarity in the data, but
also provides guidance on whether this nonstationarity is small or large. The p(-) value of equation (5) con-
veys the “size” of the nonstationarity. Of course, the analysis of change requires the use of a very long
record of discharge data, certainly longer than used herein.

6. Summary and Conclusions

Many watershed models used within the hydrologic research community assume (by default) stationary
conditions, that is, the key watershed properties that control water flow are considered to be time invariant.
This assumption is rather convenient and pragmatic and opens up the wide arsenal of (multivariate) statisti-
cal and nonlinear optimization methods for inference of the (temporally fixed) model parameters from (for
instance) a historical record of discharge data emanating from the catchment outlet. Evidence of an intensi-
fying hydrologic cycle and the presence of trends (shift points) in long-term records of discharge data have
brought into question the continued usefulness of this stationary paradigm for hydrologic modeling. The
alternative hypothesis or negation of stationarity, i.e.,, nonstationarity, assumes the presence of trends in
hydroclimatic variables. Several authors cast doubt on the validity of claims of nonstationarity, in particular,
because climate change and other long-term atmospheric disturbances can explain a large part of the
observed trends and variations in multidecadal streamflow observations. This long-term persistency of the
climate and weather is not readily apparent in short hydrologic data sets that span only 10-20 years. It
would be highly desirable to have available a methodology that can determine whether the observed
catchment behavior is considered stationary or nonstationary. Ideally, such approach would also distinguish
between the reasons of catchment nonstationarity, and determine whether the trends in streamflow
dynamics are explained by decadal variations in hydroclimate or whether the physical characteristics of the
catchment have changed as a result of (among others) anthropogenic influences.

This paper has built on the likelihood-free diagnostics approach of Vrugt and Sadegh [2013] and has intro-
duced a methodology for stationarity hypothesis testing. This methodology uses a diverse set of hydrologic
summary metrics to detect gradual/abrupt changes in the watersheds response to rainfall. If the stationarity
assumption is valid then one expects the summary metrics to vary around some constant mean, and tem-
porally invariant parameter values to be sufficient to mimic adequately the observed catchment response.
The alternative hypothesis would involve temporal variant summary statistics, symptomatic for catchments
subject to physical alterations (urbanization, deforestation, and/or changes in land use) or changes in hydro-
climate (changing rainfall characteristics).

Numerical simulations with artificial discharge data of the SAC-SMA model have identified the runoff coeffi-
cient, base flow index, two fitting coefficients of the flow duration curve, and annual rising limb density to
be most suitable for testing of the stationarity hypothesis. These summary statistics of the discharge data
were selected from a large group of hydrologic metrics and appear independent and relatively insensitive
to rainfall data errors. These constitute two important criteria to avoid, among others, proclaiming nonsta-
tionarity based on the wrong reasons.

The analysis and findings presented in this paper confirm our hypothesis that summary metrics of catch-
ment behavior convey important information about hydrologic functioning, and that temporal variations of
these fingerprints elucidates the presence of nonstationarity. Based on a suite of 19 different watersheds,
10 of which are classified in the hydrologic literature as stationary, and 9 of which are deemed nonstation-
ary, we demonstrate that a value of p(-) < 0.05 is a necessary condition for stationarity when the SAC-SMA
model is used to simulate the rainfall-runoff transformation. On the contrary, a SAC-SMA value of
p(-) > 0.10 is required to proclaim nonstationarity. This simple distance criterion cannot convey the cause of
the inhomogeneity observed in the discharge data record. Land use changes, urbanization, deforestation, and
hydroclimatic variations (@among others) can render the catchment response to precipitation (and other forcing
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variables) nonstationary. For values of p(-) € [0.05,0.10], the null hypothesis (stationarity) is rejected but the evi-
dence is not strong enough to support with high confidence the nonstationary hypothesis.

The suggestion made in the hydrologic community that the Ferson and Blackberry Creek basins in the U.S.
exhibit nonstationary behavior is not confirmed by our diagnostic analysis with DREAMagc). The summary
metrics of these watersheds appear rather constant over the duration of the 10 year data period, and the
observed trends in streamflow after 2006 is due to an increase in precipitation. From all summary metrics, the
annual rising limb density (RLD) appears to be most sensitive to changes to the physical characteristics of the
watershed and/or hydroclimatic variations. Thus, the RLD is a good proxy for watershed nonstationarity.

In summary, the diagnostics methodology described herein provides hydrologists with a new methodol-
ogy for hypothesis testing and analysis of stationarity. This framework is easy to use in practice and read-
ily employs a wide variety of process-based metrics to capture different signatures of watershed
behavior. Of course, additional testing of the proposed methodology against a much larger set of water-
sheds is required to further benchmark and refine our findings. Moreover, our binary classification of
(non)stationarity should be replaced with a probabilistic interpretation of p(-). This would provide an esti-
mate of the degree of nonstationarity of each watershed. Also, it would seem logical to use a different
value of ¢ for each individual summary metric. In all this work, it is of importance that the watershed
model (or ensemble of models) is able to mimic reasonably well the observed response, otherwise episte-
mic errors play too large of a role and the inference becomes rather meaningless. Finally, due to a lack of
data for some watersheds, we base our arguments and computations in this paper on a rather short 10
year record of daily streamflow observations. We would strongly advise to use a longer period of data in
future studies. We have made some suggestions how to tackle some of these problems and leave this for
future work.
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