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ABSTRACT OF THE THESIS

Goal-Oriented Forecasting: Predicting Soccer Match Outcomes with Deep Learning

by

Sheng Chen

Master of Applied Statistics & Data Science

University of California, Los Angeles, 2024

Professor Guido Montúfar, Chair

Soccer, often referred to as “football” in the heart of Europe, has a deep-rooted cultural

significance that transcends national boundaries. The sport’s appeal extends far beyond the

pitch, encompassing a wide array of enthusiasts, from die-hard fans to data-driven strategists.

In recent years, the fusion of deep learning models with the captivating world of football has

taken center stage, revolutionizing our approach to predicting match outcomes. We delve

into the fusion of state-of-the-art artificial intelligence and machine learning techniques with

the intricacies of a sport that inspires fervent devotion. Our aim is straightforward: to

unearth the potential of deep learning models in enriching our capacity to anticipate which

team will emerge victorious on the hallowed turf.

We will delineate the primary objectives of this research essay, elaborate on the methodol-

ogy employed, and elucidate our anticipated contributions to the existing body of knowledge

in both the realms of deep learning and sports analytics. Finally, we will underscore the sig-

nificance of precise football match outcome prediction as an evolving and multi-dimensional

research domain that holds great promise for aficionados, professionals, and researchers

throughout Europe and beyond.
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CHAPTER 1

Introduction

In the world of soccer, predicting game outcomes and player performances has always been a

challenging task. With the increasing availability of data, including statistics, team lineups,

and player profiles, there is a growing interest in using data analysis and machine learning

techniques to gain insights and make predictions. This document provides a set of strategies

for predicting soccer game outcomes, specifically focusing on matches played in the German

leagues spanning from the 2017-2018 season to the 2021-2022 season. We aim to understand

which team features play the most important role in goal difference, predict future game

outcomes, and explore the possibility of predicting games with different starting lineups.

Modern data analysis methods, including the utilization of Expected Goals (xG), a sta-

tistical tool developed by Opta [1], are becoming increasingly prevalent. xG evaluates a

team’s likelihood of scoring by considering various factors such as the quality and quantity

of scoring opportunities generated. These methods and their applications will be elaborated

upon in Chapter 2 of the study. In the field of betting, where more advanced models have

become popular, among which are Machine Learning algorithms like Random Forests, Gra-

dient Boosting, and deep neural networks. All these methods share the same idea: use past

match data, player performance info, and even factors like weather and injuries to make ac-

curate game predictions. In-play betting has made things more exciting by allowing changes

to betting odds while a game is currently underway. Crucial for accurately predicting the

outcome, specific measurements are taken to quantify how well both teams and individual

players perform. This includes things like where players are on the field, how accurate their

passes are, and factors related to their mindset. Furthermore, the industry closely monitors

market performance, enhancing their ability to comprehend the game’s evolution over time.
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CHAPTER 2

Prior Work

2.1 Expected Goals (xG)

StatsBomb Expected Goals (xG)[1] is a metric created by Opta, used to assess the likelihood

of a soccer shot resulting in a goal. Calculated based on historical data from shots with

similar characteristics, an xG model factors in elements such as distance to goal, angle, body

part used for the shot, and type of assist. This model assigns a continuous value between 0

and 1 to each shot, representing the probability of it leading to a goal. For a more intuitive

understanding, the 2022 update of the StatsBomb xG model gives all penalty kicks a shared

static value of 0.78 xG, meaning out of 100 penalty shots, 78 are expected to be scored. This

is example is simple and intuitive since every penalty kick are taken at precisely the same

spot every time. We can also focus on a single player’s xg across his season. For example,

when we look at Neves and Sanchez’s xG shot maps in Fig. 2.1, despite they have both

made exactly 63 shots that season, the comparison with xG emphasizes the difference in

their preferred shooting position and conversion rate.

Opta’s extensive data, which includes over 4.5 million shots with xG values for more than

100,000 players, enables us to compare and analyze the performances of players and teams

worldwide. According to Lars Maurath’s independent research[7], the correlation between

expected goals (xG) and actual goals for a single season is projected to be in the range of

79% to 93%, within a 95% confidence interval, contingent on the model’s quality.

2



(a) Rúben Neves’s shot map (b) Alexis Sánchez’s shot map

Figure 2.1: Comparison of two players in their shooting style. Neves clearly has a lower

conversion rate; however, since his shots are mostly outside of the box(penalty area), the

actual goals scored exceeds his XG(Expected Goals), while Sánchez is quite the opposite,

who, as a striker, likes to finish more in the penalty area. Despite the difference in shot

preferences due to positions, both are elite shooters since their resulting goals are above

expected goals.
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2.2 Video and Image Analysis

In the convergence of computer vision and sports analytics, the combined force of Tracking

Data Analysis and Video/Image Analysis emerges as a potent synergy. This integrated

approach, propelled by high-resolution videos and computer vision techniques, combines

precise player movements and object tracking techniques. By leveraging the strengths of

both, these type of research not only advances soccer analytics but also underscores the

potential of a unified model in the broader landscape of machine learning-driven computer

vision research and real-time sports analysis.

Pascal Bauer and Gabriel Anzer[10] has made progress in the realm of soccer analytics,

and notably implemented a Graph Neural Network to automatic detect of tactical patterns

with semi-supervised learning. As shown in Fig. 2.2, their work relies on exact positions of

players on field as their input, which means they either need high-resolution game record-

ings or player tracker that sends real-time location to the data hub. The findings highlights

a dependence on the exact positions of players on the soccer field as crucial input data.

This reliance implies a necessity for either high-resolution game recordings or a real-time

player tracking system that can relay precise location information to a central data hub.

This technological requirement underscores a potential area for future investigation within

the domain of soccer analytics. Subsequent research endeavors could explore the feasibility

and impact of integrating sophisticated player tracking technologies into predictive mod-

els, potentially incorporating advanced deep learning methods such as Convolutional Neural

Networks (CNNs), Recurrent Neural Networks (RNNs), and other methodologies. Further-

more, as datasets continue to grow in size and scope over time, the cumulative effect of

accumulating substantial data can contribute to the refinement and sophistication of predic-

tive models. The interplay of advanced technologies and the utilization of extensive datasets

is promising to the enhancement of the precision and depth of understanding in match pre-

dictions. Future researchers may find value in exploring these avenues to further advance

the sophistication of analytics in the field[10].
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Figure 2.2: Each player’s trajectory is first processed by a recurrent neural network (RNN)

with shared parameters to capture sequential patterns. The results are then refined by a

graph neural network (GNN) to account for the relational dynamics among players (Figures

taken from Bauer and Anzer[10].)
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CHAPTER 3

Data

3.1 Data Collection

The data utilized in this study was sourced from fbref.com and encompassed statistical in-

formation from the five major European football leagues. This dataset covers a span of five

seasons, specifically from the 2017-2018 season to the 2021-2022 season. To compile this

dataset, information was extracted from a total of 20 league tables. Notably, the dataset

comprises detailed information on 380 (or 306 for Bundesliga) matches for each league per

year. This comprehensive dataset serves as a fundamental component of the research con-

ducted in this thesis. We employed BeautifulSoup (bs4) to automatically extract links from

each league page, which allows us to access detailed information about the games. The

data contains 8975 observations, with each game being the unit of each row, and 234 initial

columns, with different game features(eg. successful tackles, possession rate) representing

each column. Each game feature contains the summation of individual performances in each

team and among the 234 columns, the first half(117 columns) represents the home team and

rest represents the away team. The output variable is the single variable goal difference in

each team that we are interested in predicting.

3.2 Objective

We have two main objectives, namely:

1. Which (team) feature plays the most important role in goal difference?
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2. Can we predict the goal difference of future games? Both questions can be considered as

a supervised learning problem since we are using historical data on teams. Supervised

learning is a type of machine learning where the model learns to predict labeled output

data from input data.

Idea for objective 1: This is a classic regression problem with an emphasis on the inter-

pretation of the coefficients, which can give us information on each feature’s impact on the

output variable.

Idea for objective 2: we can calculate a weighted average of team performance over the

past N games to substitute for each row of the model matrix and predict future results. We

can also construct some graph structure to represent team’s relationship and game perfor-

mances, and consequently convert the prediction problem into a node classification task.

3.3 Organizing Data

We organize raw data into tabular format, with rows being each game and columns being the

team features. To investigate the questions of interest, we need two different matrices. Both

matrices should have the same dimensions. The first matrix we need is the team-performance

matrix, with rows indicating each game, and columns that include all team features. The

columns can also be separated by home and away team features. The second matrix we need

is the past-team-performance matrix, with each row replaced by the weighted average of the

past n performances from the two teams. N can be a hyperparameter to tune later on.

3.4 Exploratory Data Analysis

We investigate the proportion of our output variable, the goal difference, which contains

possible values from −9 to +9 excluding −8. If we look at the value counts in Table 3.1, it

is easy to notice that there are few cases of +9, -9, and other classes of large absolute values,

making it an extremely imbalanced classification problem. We have several ways of dealing

7



−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

1 0 3 4 44 134 351 762 1481 2229 1815 1072 550 236 99 30 6 4 2

Table 3.1: The first row indicates the outcome classes, and the second row are the counts

of observations that falls into each category. Outcome variable comes with skewed class

proportion, with more games end up around with low absolute goal differences, and only 7

games out of 8975 games have results greater than 7 goal differences.

with such problems, including removing outliers, generating data, or using a weighted loss

function.

Examination of specific scatterplots depicting the relationship between the input feature

and the output variable of home goals reveals a conspicuous trend. From Fig 3.1, we can

notice that teams winning straight(as opposed to curved) corner kicks tend to exhibit lower

values in terms of goals. This observation aligns with the judgement that seasoned players

possess the proficiency to manipulate the trajectory of the ball, curving it either inward

or outward. Such nuanced ball control strategies are evidently superior to the straightfor-

ward execution of corner kicks, which, in turn, diminishes the likelihood of scoring. This

delineation underscores a noteworthy correlation, indicative of the team’s proficiency level,

whereas a propensity for straight corner kicks correlates with suboptimal goal-scoring per-

formance, thereby shedding light on specific facets of the game. The analytical framework

employed herein substantiates the premise that certain intricacies of the game can be eluci-

dated through systematic analysis, thereby contributing to a more nuanced understanding

of soccer dynamics.

3.4.1 PCA

Principal Component Analysis utilizes some of the basic facts in linear algebra to apply data

compression and in statistics are often used to extract main features or linear combination of

features. Here, we use PCA to observe the explained variance before we start the modeling.

Explained variance indicates the proportion of the dataset’s total variance that is captured

8



Figure 3.1: Scatterplot of Straight Corners Against Goal Differences
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by each principal component. It helps in understanding how much information or variability

in the data is retained by the principal components. By examining the explained variance,

we can determine the number of principal components needed to adequately represent the

data, ensuring that the essential patterns and structures are preserved while reducing di-

mensions. This step is crucial for identifying the most informative features and improving

the efficiency and performance of subsequent modeling efforts. Assume the data consists of

points {x(1),x(2), ...,x(m)} ∈ Rn. We need some encoding function f and decoding function

g, where c(i) = f(x(i)) lies in the lower-dimensional space Rl. For basic PCA, we use the sim-

plest matrix product for the decoder g(c(i)) = Dc(i) with D ∈ Rm×l. The goal is to minimize

the reconstruction loss:

c∗ = argmin
c∈Rl

∥x− g(c)∥22

After solving the above, we get c = DTx, then reconstruction loss becomes

argmin
D

∥X−DDTX∥F

where X = [x(1) x(2) ...x(m)]T. This optimization problem is solved through eigendecompo-

sition with the optimal D obtained through vertically combining the n eigenvectors of XTX

that corresponds to the n largest eigenvalue.

In kernel PCA, we replace X with function ϕ(X) that is able to operate in high dimen-

sions, without ever computing in that space, but rather the dot product in a low dimension.

If we use PCA with different kernel functions, we get the following logistic regression accuracy

in Table 3.2.

Despite the application of diverse kernel transformations in the Principal Component

Analysis (PCA) process, the restricted use of 5 principal components (5 is chosen for in-

terpretability, and can be altered in future experiments) for computational efficiency yields

unsatisfactory results, even when employing the best-performing model, which, as will be

detailed subsequently, is XGBoost. This indicates that the limited dimensionality repre-

sented by 5 principal components falls short in adequately encapsulating the richness of

information within the data distribution. In the intricate domain of soccer, where numer-

ous features equally impact the game, each action contributing uniquely to the outcome, it

10



Kernel Function Accuracy

linear 0.26096866

poly 0.25811966

rbf 0.25754986

sigmoid 0.26267806

cosine 0.25868945

Table 3.2: XGBoost Classfier Accuracy after kernel PCA

becomes apparent that a higher-dimensional representation is imperative for a more compre-

hensive understanding of the underlying dynamics. The inadequacy of 5 principal compo-

nents underscores the necessity for a more expansive representation, emphasizing the need

for additional dimensions to capture the nuanced relationships within the dataset. However,

increasing the number of principal components will not be computationally efficient due to

exponentially increased time of exhaustively searching through the possible feature space,

which would significantly hinder the efficiency of the analysis.
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CHAPTER 4

Methodology

The outcome variable, goal difference, is a discrete variable. Thus, the task at hand turns

into a classification problem. Upon obtaining our training data, the initial imperative lies in

addressing the challenge posed by imbalanced classification. Traditionally, there exist two

primary approaches to tackle class imbalance: the first involves employing data augmen-

tation techniques, while the second entails utilizing loss functions with re-weighting terms.

While some resampling techniques offer advantages, it is essential to acknowledge their inher-

ent limitations (there is no free lunch). The most basic approach to over-sampling involves

duplicating random records from the minority class, potentially leading to overfitting. Con-

versely, in under-sampling, the simplest technique entails removing random records from the

majority class, a practice that may result in a loss of valuable information. Here, we choose

to apply several data augmentation techniques, and later compare the results on modeling

testing data with the method without augmentation but with a re-weighting loss function.

4.1 Data Reduction

4.1.1 Tomek links

We start by implementing Tomek links[9], a simple undersampling technique, referring to

pairs of instances that are in close proximity but belong to opposing classes. By eliminating

instances from the majority class within each pair, the separation between the two classes is

enhanced, thereby streamlining the classification process. A Tomek link is identified when

two samples emerge as the nearest neighbors of one another. In leveraging this method for

12



Figure 4.1: Histogram of Goal Differences

undersampling, the objective is to strategically reduce the dominance of the majority class,

fostering a more balanced and discriminative dataset for classification tasks.

4.2 Data Augmentation

To apply some of the techniques below, there is a minimum number of points required

(theoretically we can do augmentation even with only 2 points for a given class, but with

such a lower number of observations, newly generated points would all be near the line

connecting the original two points). For our dataset, which contains some classes with

numbers of observations less than 10, it is reasonable to remove these extreme outliers in

our classification modeling and left us with the outcome distribution shown in Fig. 4.1.

13



4.2.1 SMOTE and its variations (borderline, ADASYN)

The Synthetic Minority Over-sampling Technique (SMOTE) is a technique to generate syn-

thetic tabular data. All variations of this oversampling technique create points by using a

convex combination of points that belong to the selected minority classes, and by repeatedly

applying this method to expand all classes to the same number of counts, which, in our case,

is 2229.

4.2.2 Tabular GAN

For tabular Generative Adversarial Network (GAN)[12] and Conditional GAN[11], both

methods emulate the distribution of the training matrix and outcome vector. Again, we are

attempting to generate data using TGAN so that each outcome class has an equal count.

Therefore, we split the data one by one for each class and generated the required number

for each class.

4.3 Feature Selection

In our case, feature selection is used as a preprocessing step in conjunction with machine

learning models for regression/classification purposes. The purpose is to find the best feature

subset with a determined number of features. Feature selection methods can be classified into

wrapper, embedded, filter methods, or the hybrid of the previous three methods. Wrapper

methods treat the classifier as a black box and select features based on the classification

result using some metric (e.g. forward, backward selection); embedded methods carry out

selection through the classifier algorithm itself (e.g. regularization, tree-based algorithms);

filter methods have the selection process independent of classifier algorithms (e.g. univariate

ANOVA). [4] Typically, filter methods are the fastest, and wrapper the slowest.

14



4.3.1 Exhaustive Search

In general, exhaustive search over feature space is often impractical due to combinatorial

explosion. The feature space refers to all the subset of the features, and the number of

such combinations grows exponentially with the number of features. For example, with

20 features, there are 220 possible subsets to consider. The computational cost increases

exponentially with each additional feature, making an exhaustive search over the feature

space quickly unmanageable. Some feasible approaches to get around is to assume a fixed

number of features to select, denote it as k. We can implement a greedy search of
(
n
k

)
number

of possible subsets of size k to find the optimal subset based on the metrics we choose.

The combinatorial explosion is a fundamental challenge in feature selection, and it high-

lights the need for efficient and heuristic methods to identify relevant features without ex-

ploring the entire feature space. Techniques such as greedy algorithms, recursive ffeature

elimination, or optimization methods are often employed to strike a balance between com-

putational complexity and obtaining a good subset of features for predictive modeling. In

this case, to implement a simple exhaustive search, we set the subset size fixed as k = 5 for

the sake of computational efficiency.

4.3.2 Lasso

Lasso[13], or L1 regression, is a common regularization technique based on linear regression.

It adds a weighted L1 norm of the coefficient vector to the least squares function. It is

not hard to notice, once the weight was set large enough, some elements in the coefficient

vector will diminish to zero, and thus performing feature selection while doing regression

(embedded feature selection). However, the downside of using lasso is the its lack of stability

and its natural assumption of a linear relationship, which stems from its fundamental nature

of being a linear regression.

15



4.3.3 Mutual Information

Mutual information (MI)[6] is a measure of the amount of information that one random

variable has about another variable, and in our case, it is used to quantify and compare the

relevance of different feature subsets concerning the output variable. It is defined to be

I(X;Y ) = DKL(P(X,Y ) ||PX ⊗ PY ) (4.1)

where (X, Y ) are pairs from the space X × Y , P(X,Y ) is the joint probability mass function,

and ⊗ indicates outer product, and for an individual point x, simply the scalar product of

the marginal distribution PX(x)× PY (y).

The Kullback-Leibler (KL) divergence measures the difference between two probability

distributions. For discrete probability distributions P andQ, the KL divergence (DKL(P ||Q))

is defined as:

DKL(P ||Q) =
∑
X

∑
Y

P (x) log

(
P (x)

Q(x)

)
dx dy (4.2)

and for continuous variable, integrals instead of summations.

Thus, the mutual information can be written explicitly:

I(X;Y ) =

∫
X

∫
Y
P(X,Y )(x, y) log

(
P(X,Y )(x, y)

PX(x)PY (y)

)
dx dy (4.3)

where P(X,Y )(x, y) is the joint probability distribution of X and Y , and PX(x) and PY (y)

are the marginal distributions.

Since all of our dataset’s features are continuous, we need nonparametric methods based

on entropy estimation from k-nearest neighbors distances as described in [8]. The result is

implemented by the mutual info classif function in scikitlearn.feature selection. We apply

Mutual Information between each feature and output variable to perform this filter method.

In order to empirically elucidate the significance of mutual information among input

features concerning home and away goals, our study adopts home goals as the output variable.

As delineated in Figure 4.2, while the mutual information (MI) values across features do not
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exhibit conspicuous prominence, an analysis reveals that pivotal features, notably attacking

maneuvers from the home side encompassing key passes, touches in the penalty area, and

total shots, alongside errors committed by opponents and penalties awarded to the away

team, exert a discernible influence on home goal outcomes. The observed results align with

our a priori expectations, thereby reinforcing our intuitive understanding. Furthermore, our

findings establish a robust statistical foundation elucidating the salience of these factors

in influencing home goals. This not only enhances our comprehension but also furnishes

statistical validation for the pivotal role played by these factors. Subsequently, scouts or

analysts may leverage these metrics to make informed decisions regarding the identification

of key players on the field or determining the corresponding player’s salary based on their

contribution to the team’s results from a statistical standpoint.

In the context of implementing feature selection using mutual information, the approach

to selecting features, whether sequentially adding them or considering mutual information

with respect to the target variable Y in one go, can yield significant differences in outcomes.

Whether or not to augment the data before feature selection can also lead to a different

result, as shown in Fig. 4.2.

When features are sequentially added, similar to the adapted method shown in greedy

search in Sec. 4.3.1, the selection process involves iteratively adding features based on their

individual mutual information with Y. This method allows for a step-by-step refinement of

feature selection, where each added feature is chosen based on its incremental contribution

to mutual information. On the other hand, considering mutual information with Y in one go

involves evaluating the mutual information for all features collectively. This holistic approach

considers the combined information provided by the entire set of features in relation to the

target variable. To illustrate this process, we generate a barplot where each bar represents

the information gain contributed by an added feature. This step-by-step addition of features

results in a non-decreasing barplot, showcasing the cumulative improvement in information

gain as we progressively incorporate more features into the model. This approach provides

a clear visual representation of the utility of each feature, allowing us to discern trends and
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Figure 4.2: Bar Plot of MI gain of added Input Features shows the top 7 features added

sequentially are shown above.

identify the point at which additional features contribute less substantially.

As we observe the barplot, we eventually reach a saturation point, where the incremental

information gain diminishes, indicating that further addition of features does not significantly

improve predictive performance. At this juncture, we strategically decide on a threshold,

beyond which we cease adding features. This threshold is a crucial determinant in stream-

lining the feature set for optimal performance without unnecessary complexity. The chosen

metrics for evaluating the effectiveness of this feature selection process is the direct result

from XGBoost (XGB) modeling over possible feature set.

The choice between the above two strategies can impact the set of selected features and,
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consequently, the model’s performance. A sequential addition may capture nuanced relation-

ships incrementally, while a simultaneous evaluation may reveal synergies or dependencies

among features that contribute collectively to mutual information with Y.

4.4 Models

4.4.1 Linear Regression

Linear regression is the fundamental statistical method used to model the linear relationship

between an outcome variable with independent variables. Geometrically speaking, the model

helps us find the best fitted line that explains the data points in a way that minimizes

the distance between the predicted and the actual data points. The equation of the line is

commonly expressed as y = Xβ + ϵ, where y is the outcome variable, X is the model matrix,

β is the slope of the line, and ϵ denotes the random noise.

4.4.2 XGBoost

Extreme Gradient Boosting, or XGBoost, is the state-of-the-art ensemble tree algorithm. It

utilizes the concept where weak learners (in this case usually simple decision trees) are used

sequentially to construct a strong learner. XGBoost enhances this process by incorporating

ridge and lasso regularization techniques, enables parallel and distributed computing, and

combines Newton’s method and gradident descent to accelerate optimization speed. This

method is known for its exceptional speed and ability to handle large datasets on tabular

data for both regression and classification tasks.

Softmax Objective Function:

Objective = −
N∑
i=1

K∑
k=1

[yik log(pik) + (1− yik) log(1− pik)] +
K∑
k=1

Ω(fk) (4.4)
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4.4.3 MLP

Multilayer Perceptron (MLP), involves stacking layers of linear regression with activation

function in order for it to learn patterns from data. While its basic structure is straight-

forward, the model’s simplicity conceals its capability to capture complex relationships in

diverse datasets, making it a foundational and accessible entry point into deep learning.

4.4.4 Tabular Transformer

TabTransformer (Huang et al. 2020), utilizes self-attention based Transformers to enhance

predictive accuracy on tabular data. The architecture includes a column embedding layer,

a series of Transformer layers transforming categorical features into contextual embeddings,

and a multi-layer perceptron (MLP). The concatenated contextual embeddings and contin-

uous features are fed into the MLP, and the model is trained end-to-end by minimizing the

loss function to learn all parameters.

4.4.5 Graph Convolution Network

we formulate the problem as a node classification task employing Graph Convolutional Net-

works (GCNs). Each node, denoted as hi, is associated with the label of Goal Differences

and contains relevant feature information. The graph is constructed based on recent games

involving teams and the current opponent of the ongoing match, where edges connect nodes

representing these entities. The Convolutional Layer at the l + 1 iteration updates the

representation of each node using the following formula:

h
(l+1)
i = σ(

∑
j∈Ni

1

cij
W (l)h

(l)
j )

Here, W is the weight matrix of dimensions ∈ R100×7, hi represents the feature vector of node

∈ R7, cij is a normalizing constant, and Ni refers to the neighboring nodes of node i. The

convolutional operation is designed to capture and propagate information through the graph

structure. The diagram on the right illustrates the architecture of the Graph Convolutional
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Network, emphasizing the connections between nodes and their respective features. This

approach leverages the relational information encoded in the graph to enhance the predictive

capabilities of the model for node classification, specifically in the context of opponent team

strength and recent performance in soccer matches.
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CHAPTER 5

Result

In our comprehensive experimentation, we investigate various combinations of data augmen-

tation techniques, feature selection methods, machine learning algorithms, and loss functions

to evaluate their impact on predictive modeling. The primary metric for comparison is the

accuracy score, and our objective is to discern optimal configurations for improved perfor-

mance.

5.1 Features Selected

Building on the theoretical foundations outlined above, our experiment delves into the prac-

tical application of feature selection methodologies, specifically focusing on the empirical

results obtained through exhaustive search, Lasso, and Mutual Information (MI). In line

with our approach, we set a fixed subset size to maintain computational efficiency, leverag-

ing the insights gained from the combinatorial challenge associated with the feature space.

Our analysis of goal differences as the output variable reveals that, among numerous fea-

tures, seven key features emerge as empirically selected. These features, identified through a

thoughtful combination of theoretical underpinnings and practical considerations, represent

a subset that effectively captures the essential predictors influencing goal differences.

The observed discrepancy in the features selected by Mutual Information (MI) compared

to Lasso can be attributed to their distinct operational mechanisms. While MI operates in

a sequential manner, sequentially adding features based on their incremental contribution

to mutual information with the output variable, Lasso introduces a regularization term in

the linear regression framework, promoting sparsity in the coefficient vector. The sequential
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Feature id Meaning

Att Pen Touches in Attacking Penalty Area

Cmp%.4 Forward Pass Completion Rate

Clr Clearance

DeadCmp.2 Dead Ball Completed

KP Key Passes

CPA.1 Carries into Penalty Area

Opp.3 Attempted Crosses

Table 5.1: Glossary of Feature Selected by added MI

Feature id Meaning

Att Pen Touches in Attacking Penalty Area

Cmp%.4 Forward Pass Completion Rate

Clr Clearance

DeadCmp.2 Dead Ball Completed

KP Key Passes

Blocks.2 Number of times standing in the ball path

TklW.2 Tackles Won

Table 5.2: Glossary of Additional Features Selected by Lasso
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nature of MI allows it to capture nuanced relationships and dependencies among features,

revealing their collective impact on the output variable. In contrast, Lasso’s regularization

penalty tends to prioritize a subset of features that collectively optimize predictive perfor-

mance. The choice between these approaches hinges on the data’s underlying structure and

the desired emphasis on individual versus collective feature importance. Consequently, the

features selected by MI, through its sequential and cumulative approach, may exhibit supe-

rior performance in scenarios where the synergies among features are pivotal for predictive

modeling precision.

The feature contributions to the model output reveal insightful patterns in the data.

Among the attributes considered, ”Att Pen away” emerges as the most influential factor,

contributing positively to the model’s prediction. This suggests that the number of at-

tempted penalties by the away team significantly impacts the outcome, potentially indicating

a higher likelihood of scoring or affecting the game’s dynamics.

Utilizing a force plot generated by SHAP (SHapley Additive exPlanations) offers a com-

pelling visual representation of the underlying predictive process. This visualization eluci-

dates the individual contributions of each feature towards the model’s output, providing a

comprehensive understanding of the factors shaping the prediction. The force plot shown

in Fig. 5.1 succinctly displays the direction and magnitude of impact for each feature, fa-

cilitating the identification of key drivers influencing goal difference positively or negatively.

Through this graphical depiction, it is easy to discern the most influential variables driving

the model’s predictions, thus enhancing the interpretability and validation of the model’s

performance.

However, with either method, the selected features align with our expectations based

on intuition and basic understanding of the game, demonstrating the robustness of our

feature selection process and its potential for enhancing predictive modeling precision. This

empirical validation reinforces the significance of striking a balance between computational

complexity and the attainment of a refined feature subset for optimal model performance.
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Figure 5.1: Force Plot of the Features’ Shapley Value

5.2 Experiments

A crucial consideration in our experimental design is the order of applying data augmenta-

tion and feature selection. We recognize that if feature selection precedes data augmentation,

there is a risk of introducing bias in the generated data. Augmenting the data before feature

selection, however, allows us to capture more information, potentially enhancing the rich-

ness of the dataset and leading to more informed model selection. Table 5.3 encapsulates

key performance metrics for each experimental configuration. The benchmark method we

are comparing to is the betting agency’s odd being converted to the accuracy metrics. Over-

all, betting agencies use a combination of data analysis, statistical modeling, expert input,

market dynamics, and risk management techniques to determine prediction odds that reflect

the probabilities of each outcomes of goal differences.

The combination of TabGAN, Mutual Information, and Graph Neural Network ap-

proaches yielded the highest accuracy in the experiment. However, it’s essential to note

that our benchmark, the betting agency, still outperforms all our combination models. Since
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Step1 Step2 Method Accuaracy

/ MI Logistic Regression 0.2380

SMOTE MI Logistic Regression 0.2093

SMOTE MI KNN 0.1567

SMOTE MI XGB 0.2450

MI SMOTE XGB 0.2344

MI TGAN XGB 0.2621

TGAN MI XGB 0.2767

TGAN MI GNN 0.2890

Betting Agency 0.2977

Table 5.3: Model Result with Combination of Methods

our results are not better, it’s challenging to identify a significant edge where our model

distinctly surpasses the benchmark. Despite this, our experimentation indicates areas for

potential enhancement, such as expanding the feature selection space or exploring ensemble

model techniques, to achieve more competitive outcomes.
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CHAPTER 6

Future Work

The study strategically fused cutting-edge artificial intelligence and machine learning tech-

niques with the intricacies of soccer, focusing on the prediction of match outcomes. As a

potential direction for future researchers, the incorporation of real-time data streams during

matches is suggested, enabling dynamic model adjustments based on evolving game sce-

narios. With technological advancements, the increased computational power afforded by

robust GPUs enables the exloration of a myriad of model architectures. This empowerment

allows researchers to investigate not only the depth and complexity of CNNs but also the se-

quential and temporal dependencies captured by RNNs and the diverse capabilities of other

advanced models like Transformer networks. Furthermore, the synergy between powerful

GPUs and the surge in the volume and precision of data collection across multiple avenues

is pivotal. The amalgamation of meticulously curated datasets, spanning player movements,

team statistics, and contextual factors, establishes a foundation for model training charac-

terized by richness and diversity. This wealth of high-quality data not only reinforces the

resilience of the models but also facilitates the exploration of intricate relationships within

the multifaceted realm of soccer. Advancements in data collection methodologies, includ-

ing real-time player tracking systems and high-resolution game recordings, further elevate

the potential for refining deep learning models. The precision in data acquisition empowers

researchers to capture detailed aspects of player dynamics, fostering a more comprehensive

and accurate representation of the intricate dynamics inherent in soccer matches. In the con-

temporary landscape of burgeoning data, there is an increasingly compelling need for more

extensive Tracking Data Analysis, combining high-resolution videos with advanced computer

vision techniques. The wealth of large-scale datasets available today presents a unique op-
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portunity to delve deeper into the intricacies of player movements and object tracking. As

sports analytics continues to evolve, the demand for richer, more nuanced data becomes

paramount. The integration of high-resolution videos and sophisticated computer vision not

only refines our understanding of player dynamics but also lays the foundation for more

accurate and insightful analyses. This emphasis on leveraging large datasets and advanced

tracking technologies underscores a pivotal direction for future research endeavors, promising

enhanced precision and a deeper comprehension of the multifaceted aspects of sports events.

Another area ripe for improvement involves the exploration of ensemble models, com-

bining predictions from diverse algorithms to enhance overall accuracy. To enhance inter-

pretability, methodologies like SHAP values are recommended to illuminate the significance

of different features in decision-making. The potential integration of human-in-the-loop ap-

proaches, involving expert insights in model training, presents an avenue for refinement.

Transfer learning, the creation of user-friendly interfaces for stakeholders, and ethical con-

siderations in predictive model applications are also critical areas for future exploration. By

delving into these directions, researchers can contribute to the ongoing evolution of goal-

oriented forecasting in soccer analytics.
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