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Abstract

Background: Cervical vertebral compressive myelopathy (CVCM) and equine neu-

roaxonal dystrophy/degenerative myeloencephalopathy (eNAD/EDM) are leading

causes of spinal ataxia in horses. The conditions can be difficult to differentiate, and

there is currently no diagnostic modality that offers a definitive antemortem

diagnosis.

Objective: Evaluate novel proteomic techniques and machine learning algorithms to

predict biomarkers that can aid in the antemortem diagnosis of noninfectious spinal

ataxia in horses.

Animals: Banked serum and cerebrospinal fluid (CSF) samples from necropsy-

confirmed adult eNAD/EDM (n = 47) and CVCM (n = 25) horses and neurologically

normal adult horses (n = 45).

Methods: . A subset of serum and CSF samples from eNAD/EDM (n = 5) and normal

(n = 5) horses was used to evaluate the proximity extension assay (PEA). All samples

were assayed by PEA for 368 neurologically relevant proteins. Data were analyzed

using machine learning algorithms to define potential diagnostic biomarkers.

Results: Of the 368 proteins, 84 were detected in CSF and 146 in serum. Eighteen of

84 proteins in CSF and 30/146 in serum were differentially abundant among the 3

groups, after correction for multiple testing. Modeling indicated that a 2-protein test

using CSF had the highest accuracy for discriminating among all 3 groups. Cerebro-

spinal fluid R-spondin 1 (RSPO1) and neurofilament-light (NEFL), in parallel, predicted

normal horses with an accuracy of 87.18%, CVCM with 84.62%, and eNAD/EDM

with 73.5%.

Main Limitations: Cross-species platform. Uneven sample size.

Conclusions and Clinical Importance: Proximity extension assay technology allows

for rapid screening of equine biologic matrices for potential protein biomarkers.

Abbreviations: CALB2, calretinin; COV, coefficient of variation; CSF, cerebrospinal fluid; CVCM, cervical vertebral compressive myelopathy; DKK1, dikkoph-1; eNAD/EDM, equine neuroaxonal

dystrophy/degenerative myeloencephalopathy; NEFL, neurofilament-light; NPX, normalized expression units; PCA, principal component analysis; PEA, proximity extension assay; pNfH,

phosphorylated neurofilament heavy; RSPO1, r-spondin 1; SOD2, superoxide dismutase-2; WFKKN1, WAP, follistatin/kazal, immunoglobulin, kunitz and neutrin domain containing 1.
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Machine learning analysis allows for unbiased selection of highly accurate biomarkers

from high-dimensional data.

K E YWORD S

biomarker, machine learning, neurodegeneration, precision medicine

1 | INTRODUCTION

Spinal ataxia is a frequently encountered neurologic problem in racing

and sport horses. Spinal ataxia has several underlying causes, including

congenital and acquired cervical vertebral compressive myelopathy

(CVCM), equine neuroaxonal dystrophy (eNAD)/equine degenerative

myeloencephalopathy (EDM), and equine protozoal myeloencephalitis

(EPM). Apart from EPM, definitively diagnosing the underlying cause of

spinal ataxia antemortem is challenging.1 Equine protozoal myeloence-

phalitis is an infectious disease that reliably induces antibody produc-

tion in horses, allowing immunologic confirmation of central nervous

system (CNS) infection. Cervical vertebral compressive myelopathy and

eNAD/EDM are noninfectious diseases that result in progressive neu-

rodegeneration, with CVCM the result of structural vertebral column

abnormalities and eNAD/EDM the result of genetic predilection and

contributing factors such as inadequate vitamin E status. Physical

aspects of the horse preclude sensitive imaging techniques such as

magnetic resonance imaging (MRI), with diagnosis relying on radiogra-

phy, myelography, computed tomography, clinical exclusion, or a com-

bination of these. These imaging techniques are used primarily to

exclude CVCM, but the poor sensitivity and presence of nonrelevant

background lesions limit their utility.2 Additionally, no definitive diag-

nostic test is available for the second most common cause of spinal

ataxia, eNAD/EDM.3,4 As such, definitive diagnosis in many cases of

spinal ataxia can only be achieved by necropsy. Inability to accurately

diagnose spinal ataxia antemortem is an important financial burden for

horse owners, trainers, and insurance underwriters.

Next-generation proteomic technologies, coupled with detailed

phenotyping, provide the opportunity to enhance diagnostic modalities.

Spinal ataxia in horses is well-positioned to benefit from these technol-

ogies and improve antemortem diagnosis. The application of such tech-

niques to degenerative neurologic disease in humans already has

yielded several highly sensitive and specific biomarkers.5 Of particular

interest is the use of discovery proteomics to rapidly advance the avail-

ability of diagnostic and prognostic markers such as neurofilament light

chain (NEFL). Neurofilament light chain is a sensitive and specific

marker of neurodegeneration in humans, with serum and cerebrospinal

fluid (CSF) concentrations increased years before the onset of symp-

toms.6 The potential to apply these same discovery approaches to spi-

nal ataxia in horses is now possible. Therefore, our aim was to define

the serum and CSF proteome of horses with CVCM and eNAD/EDM

for a targeted set of proteins curated for neuropathologic conditions.

Our primary hypothesis was that horses with spinal ataxia will have a

unique proteomic profile in serum and CSF that distinguishes them

from neurologically normal horses. We additionally hypothesized that

CVCM and eNAD/EDMwill have distinct proteomic profiles that differ-

entiate each cause of spinal ataxia.

2 | METHODS

2.1 | Pilot study

Samples of CSF and serum from age- and sex-matched American

Quarter Horses were used to validate the Olink proximity extension

assay technology (PEA). Samples were derived from necropsy-

confirmed eNAD (n = 5) and neurologically normal horses (n = 5).

Samples were evaluated using the Olink Target 92 Neuro-Exploratory

assay. This assay simultaneously evaluates the relative concentration

of 92 curated proteins in serum and CSF without the need for addi-

tional sample preparation. Olink selects proteins to encompass both

potential biomarker targets and representative proteins of important

biologic pathways. All assays were performed at Olink (Boston, Mas-

sachusetts), with samples run on a single plate. Internal plate stan-

dardization and quality control were performed by Olink.

2.2 | Study cohort

Previously collected paired serum and CSF samples from neurologi-

cally normal horses (n = 45) formed the control cohort. Paired serum

and CSF samples from CVCM (n = 25) and eNAD/EDM (n = 47)

horses that all were examined for spinal ataxia and later confirmed by

necropsy formed the case populations. All samples were collected as

previously described7 and stored at �80�C until analysis. Samples

used for the study had not previously undergone a freeze-thaw cycle

until the time of analysis.

Sample size was calculated according to the National Cancer

Institute's guidelines for classifier development for high-dimensional

data.8,9 Using a standard fold change of 2, with a protein array of

368 analytes and a training set sample tolerance = 0.1, at least

19 samples per group are required to accurately assign groups based

on the array. Standard prevalence parameters were used because the

prevalence of this group was known.

2.3 | Proximity extension assay analysis

Study samples were quantified using Olink multiplex PEA panels

(Olink Proteomics; www.olink.com) according to the manufacturer's
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instructions and as described previously.10 The basis of PEA is a dual-

recognition immunoassay, where 2 matched antibodies labeled with

unique DNA oligonucleotides simultaneously bind to a target protein

in solution. This process brings the 2 antibodies into proximity, allow-

ing their DNA oligonucleotides to hybridize, serving as template for a

DNA polymerase-dependent extension step. This double-stranded

DNA, which is unique for specific antigens, is amplified using P5/P7

Illumina adapters along with sample indexing, which is quantitatively

proportional to the initial concentration of target protein. Finally,

amplified targets are quantified by Next Generation Sequencing using

Illumina Nova Seq 6000 (Illumina Corporation, San Diego, California).

We used the Explore 384 Neurology panel, which measures 368 pro-

teins using 1 μL of serum and CSF.

2.4 | Data analysis

Relative quantification of protein expression was calculated by read

counts normalized to the internal plate controls, as described previ-

ously.10 Read counts then were converted to normalized protein

expression units (NPX), providing relative quantification on a log2

scale.

Proteins were analyzed if they were detectable in ≥50% of sam-

ples. Analysis was performed using the OlinkAnalyze package in R

(R project, San Diego, California). Data were first inspected by princi-

pal component analysis (PCA). Analysis of covariance (ANCOVA) was

performed for serum and CSF samples, with phenotype (eNAD/EDM,

CVCM and normal) considered a fixed effect and age, breed, and sex

introduced as covariates. A Bonferroni correction was used to correct

for multiple comparisons. A corrected P-value of <.05 was considered

significant.

Proteins that were significantly differentially abundant in serum

and CSF were used to train random forest models. Random forest

analysis was performed in R using the randomForest package with

default parameters. A randomly selected subset of cases and controls

(80%) was used to train the model. The model subsequently was

tested on the remaining cases and controls (20%). Models were con-

structed for serum alone, CSF alone and a merged serum and CSF

dataset. Results are reported as class error (proportion of incorrect

decisions), mean decrease in accuracy and mean decrease in Gini

index. The Gini index gives the probability of a feature (ie, protein

marker), selected randomly, that is incorrectly classified.

To determine the minimum biomarker set needed to achieve accu-

rate group assignment, conditional inference models were constructed

in R using the Partykit package. Default parameters were used for the

3 classifiers, with the model having the same set of proteins introduced

as the random forest model for serum, CSF and merged data. A P-value

of <.05 was used to define binary classification with accuracy and preci-

sion of prediction for each group reported.

3 | RESULTS

3.1 | Pilot study

All CSF samples and 9/10 serum samples fully passed quality control,

with intra-assay coefficients of variation of 3% and 8%, respectively.

In serum, 36/92 proteins were detected in ≥50% samples and in CSF

15/92 proteins were detected in ≥50% of samples (Supplementary

Table 1). Because of the small sample size, differential abundance

analysis was not performed. Our preliminary data indicate that the

Olink platform performs favorably with equine-derived samples.

3.2 | Serum proteins

Quality control parameters were met for 86% of individual assays, with

an intra-assay coefficient of variation (COV) of 12%. In >50% of samples,

148 of 368 proteins (40%) were detected. Of those proteins detected in

>50% samples, 37 (25%) were differentially abundant among the

3 groups (Supplementary Table 2). Despite the relatively large number

of differentially abundant proteins identified, the PCA for serum did not

indicate clear clustering by group (Supplementary Figure 1).

3.3 | CSF proteins

Quality control parameters were met for 89% of individual assays,

with an intra-assay-COV of 12%. In >50% of samples, 84 of 368 pro-

teins (23%) were detected. Of those proteins detected in >50% sam-

ples, 18 (21%) were differentially abundant among the 3 groups

(Supplementary Table 3). The PCA analysis indicated a clear

F IGURE 1 Principal component plot of CSF proteins showing the
first two components (PC1 and PC2). Using proteins with a missingness
≤50%, values were converted to eigenvectors and plotted. Each dot
represents an individual horse from the CVCM group (n = 25; salmon),
eNAD/EDM (n = 45; green), or normal (n = 43; blue).
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distinction between samples derived from animals with spinal ataxia

compared with neurologically normal horses (Figure 1). However, a

high degree of overlap was observed between the 2 groups of horses

with neurodegenerative disease.

3.4 | Machine learning biomarker selection

Random forest classifier models for serum, CSF and a merged

CSF/serum dataset were constructed. Two-thousand and one trees

were used for each sample matrix. In all 3 datasets, error values

leveled at approximately 500 trees for the training set (Figure 2, Sup-

plementary Figure 2). Testing sets using CSF and merged datasets had

the highest accuracy for correctly classifying animals by group. Both

datasets performed best for normal and eNAD/EDM horses, correctly

classifying them with >80% accuracy for each (Figure 2, Supplemen-

tary Figure 3). Mean decrease accuracy plots indicated a group of pro-

teins that were driving classification in the random forest model.

Conditional inference model selection of biomarkers mirrored the

top-ranking proteins as determined by random forest. In serum, 2 pro-

teins were selected: WAP, follistatin/kazal, immunoglobulin, kunitz

and neutrin domain containing 1 (WFKKN1) and Dickkoph-1 (DKK1).

In serum, this modeling offered diagnostic accuracies of 67.5% for

eNAD/EDM, 87.2% for CVCM and 76.9% for normal horses

(Supplementary Figure 4). In CSF, a 2-protein test with R-spondin-1

(RSPO1; Figure 4A) and neurofilament-light (NEFL; Figure 4B) was

selected (Figure 3). Profiling these 2 CSF proteins resulted in a

prediction accuracy of 73.5% for eNAD/EDM, 84.6% for CVCM and

87.2% for normal horses. For the merged data set, 2 CSF proteins

(RSPO1 and NEFL) and 1 serum protein (DKK1; Figure 4C) were

selected, with prediction accuracies of 72.7% for eNAD/EDM, 84.5%

for CVCM and 85.5% for normal horses (Supplementary Figure 5).

4 | DISCUSSION

We demonstrated the effective use of PEA technology for the first

time using equine serum and CSF sample matrices. Use of this plat-

form allowed for the identification of previously unidentified proteins

in equine CSF and serum. Importantly, with the aid of machine learn-

ing algorithms, we found that a limited set of novel CSF proteins can

accurately discriminate between not only neurologically normal and

abnormal horses, but also by neurodegenerative etiology. These find-

ings add to the catalogue of proteins detectable in equine CSF and

serum, while also proposing biomarker candidates that will enhance

diagnostic resolution for equine spinal ataxia.

The equine CSF proteome is a rich, but relatively untapped source

of protein biomarkers. Previous work identified 320 proteins in CSF

from 6 reportedly healthy horses using a 2-dimensional liquid chroma-

tography tandem mass spectroscopy (2D-LC-MS/MS) approach.11

None of the proteins identified in our study were identified in the pre-

vious study. Although both techniques are highly sensitive, LC-MS/

MS is dependent on a high-quality annotation by which to assign pro-

tein identity. Given the limitations of the equine proteome annotation,

F IGURE 2 Random forest analysis of CSF. Testing data set (A) shows classification of the three groups as percentage of correctly assigned
animals. Inset in (A) error plot of the training data set for CVCM (red), eNAD/EDM (green), normal (blue), and overall (black). The x-axis indicates
the error rate for classification and the y-axis the number of trees used in the classification. Accuracy in the testing set was highest for eNAD/
EDM (100%), followed by normal (80%) and CVCM (40%). Importantly, no normal horses were misclassified in the ataxia groups. Mean decrease
in accuracy and Gini plots (B) ranks the proteins and categorical factors (age, breed, and sex) used in decisions by the percentage decrease in
accuracy or Gini if that feature were to be removed from the model.
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highly abundant proteins are often well characterized, whereas rare

proteins may not be identified, even if present.12 Proximity exten-

sion assay technology as a targeted sequencing-based technology is

not reliant on protein annotation, nor affected by the presence of

highly abundant proteins such as albumin and globulins.10 As such, it

is well suited to detect and qualitatively define rare proteins within a

sample matrix. The lack of concordance among studies is likely

caused by the inherent difference between spectroscopy-based pro-

teomics and the sequencing-based approach employed in our study.

Additionally, the former study only included healthy horses and

therefore the repertoire of identifiable proteins may have been nar-

rowed by lack of an active pathologic process. Although PEA tech-

nology allows for identification of proteins with high fidelity, in its

current form, it is still a targeted technology and only detects pro-

teins for which the assay has probes. Therefore, the absence of pro-

teins in 1 study compared to another is an expected finding.

Collectively, both approaches add to the catalogue of known pro-

teins present in equine CSF.

Although the PEA assay has probes for 368 proteins, neither CSF

nor serum approached the total number of possible detectable pro-

teins. This result, in part, may be attributed to the cross-species plat-

form. All probes in this platform were developed for human-derived

proteins. Pilot data generated from our laboratory indicated that

highly conserved proteins (>80% protein-protein identity) performed

well using this platform. The technology has been used previously for

equine synovial samples, where it was able to accurately discriminate

among various cyto- and chemokines.13 Given the dual-antibody

design, the risk of false positive detection of proteins is negligible.

When used in nonhuman species, the technology is likely to underre-

present the number of detectable proteins in a sample. Our findings

support this hypothesis. Additionally, the sample matrix is an

important contributor to the proteins available for detection.

F IGURE 4 Violin plots of potential
biomarkers as defined by random forest
and conditional inference models in CSF
and merged data sets; CSF RSPO1 (A),
CSF NEFL (B) and serum DKK1 (C).
Different letters indicate significant
difference between groups based on pair-
wise post hoc ANCOVA with correction
for multiple testing (P < .05). DKK1,
Dickkoph 1; NEFL, neurofilament-light;
RSPO1, R-Spondin 1.

F IGURE 3 Conditional inference tree for CSF. A 2-protein model with RSPO1 and NEFL had the highest accuracy for prediction of normal
horses (87.2%), CVCM (84.6%) and eNAD/EDM (73.5%). NEFL, neurofilament-light; RSPO1, R-Spondin 1.
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The discrepancy between CSF and serum was an expected finding,

similar to previous work published with human cohorts.14,15 It is intui-

tive that a sample matrix with lower amounts of protein (e.g., CSF) will

have a decreased complexity of proteins present.

Machine learning models offer an unbiased and tractable tech-

nique to distill high-dimensional data into useful diagnostic sets. Ran-

dom forest and conditional inference, although similar, have some

fundamental differences. Namely, random forest takes an ensemble

approach, with predictions averaged among the sample parameters.16

Conditional inference selects the feature or features that best distin-

guishes among groups in a more purely binary fashion. As such, ran-

dom forest enables the effect of a feature on prediction to be viewed

relative to each other feature (ie, size of effect of 1 protein compared

to another), whereas conditional inference defines each feature by

binary partition. In our study, random forest helped establish the rank

importance of each relevant protein in classification of disease pheno-

type, whereas conditional inference allowed for the discovery of

potential diagnostic protein sets. Importantly, the conditional infer-

ence sets are informed by the smallest number of proteins to achieve

the most accurate classification based on a statistically significant dif-

ference. This approach has practical significance for future develop-

ment of these biomarkers as diagnostic tests, with fewer markers

aiding clinical interpretation.17 Use of the 2 models resulted in similar

classification accuracies for both eNAD/EDM and normal horses,

whereas conditional inference was far more accurate for CVCM. This

result is a consequence of the smaller sample size of the CVCM group

and the requirement to train the random forest model, further

decreasing the sample size. By comparison, conditional inference does

not introduce a training data set and the sample size is optimized, and

this difference accounts for the improved performance of the CVCM

dataset. Performance of these models suggests that addition of these

biomarkers to existing diagnostic modalities will aid in the accurate

diagnosis of spinal ataxias resulting from eNAD/EDM or CVCM.

Although findings from our are encouraging, further work to validate

these biomarkers in a replication study will be required before using

these biomarkers in clinical practice.

Neurofilament light (NEFL) was identified as an important protein

for group classification in our study, with relative amounts in CSF and

serum highest for CVCM. Neurofilament light is part of the neurofila-

ment family of proteins important for the cytoskeletal structure of the

axon.6 Increases in this protein, both in serum and CSF, have been

well characterized in neurodegenerative diseases of humans including

Alzheimer's disease, frontotemporal dementia (FTD) and amyotrophic

lateral sclerosis (ALS).6 Similarly, concentrations increase with acute

trauma, including traumatic brain injury (TBI) and spinal cord injury

(SCI).18-20 Neurofilament light has not been evaluated previously in

horses. Phosphorylated neurofilament heavy (pNfH), a polypeptide

from the same family, is the best characterized neurofilament in

horses with neurologic disease.7,21-25 Previous studies found

increases of pNfH in CSF of horses both with CVCM and eNAD/

EDM.7 As such, increases were consistent with neurodegenerative

disease, but did not differentiate etiology. In our study, NEFL differen-

tiated CVCM from both eNAD/EDM and normal horses. However,

before use of NEFL as a diagnostic marker, further work is required

to evaluate the protein quantitatively. Ultrasensitive NEFL quantifica-

tion, such as single molecule analysis (SIMOA), has not yet been

reported in the horse. In dogs, use of this technology allowed for the

quantification of NEFL in serum or plasma and CSF at picogram con-

centrations and showed promise as a diagnostic, prognostic, and

treatment response biomarker.26-29

In addition to NEFL, other proteins that are under evaluation as

biomarkers in neurologic diseases of humans were detected. These

included Dickkoph-1 (DDK1), an important inhibitor of WNT signal-

ing.30 Increases of DKK1 have been identified in SCI and may be

related to severity of injury.31 Additionally, DKK1 is under investiga-

tion as a target for intervention in Alzheimer's disease.32 R-spondin

1 (RSPO1) was the highest ranked marker following random forest

analysis and conditional inference modeling in CSF. R-spondin 1 is a

positive regulator of canonical WNT/β-catenin signaling and has been

shown to increase in presymptomatic and affected human patients

with familial Alzheimer's disease.33,34 Interestingly, in our study, it was

decreased in both CVCM and eNAD/EDM compared to normal

horses. The RSPO1 increase in humans is considered to be a conse-

quence of the pathology associated with Alzheimer's disease, because

spondins have shown protective potential in murine Alzheimer's

models.35 Therefore, despite the difference in trajectory, enrichment

in normal horses may indicate a protective function. Serum WAP, fol-

listatin/kazal, immunoglobulin, kunitz, and neutrin domain containing

1 (WFIKN1) were important predictors in the serum only modeling. In

CSF, decreased abundance of this protein has been associated with

treatment for central nervous system leukemia after acute lympho-

cytic leukemia.36 Using the same Olink panel, increased plasma

WFIKN1 was strongly associated with genetic predisposition to

schizophrenia.37 The role of WFIKN1 in neurologic disease is yet to

be fully defined, but it is a known regulator of TGFβ and this signaling

pathway is intimately associated with neuronal maintenance, function,

and degeneration.38 Collectively, the consistency of protein signals

between our study and those performed in humans and murine

models indicates the conservation of molecular mechanisms underpin-

ning neurodegeneration. This consistency gives additional confidence

in the use of PEA technology for evaluation of samples from horses,

with similar signals detected when compared to human and

murine data.

Additional potential biomarkers of interest were detected our

study, including CSF calretinin (CALB2) and serum superoxide

dismutase-2 (SOD2). Calretinin previously has been used to define

the tracts that undergo degeneration in eNAD/EDM.39 However,

detection of this protein in CSF as a marker of neurodegeneration has

not been demonstrated previously and represents a novel finding.

Increased in SOD2 helped distinguish the CVCM horse serum prote-

ome from the eNAD/EDM horse proteome. Superoxide dismutase-2

is the mitochondrial member of the SOD family and, similar to our

findings, it is decreased in murine models of SCI.40 These findings

again validate the use of Olink technology for biomarker discovery in

nonhuman species, including horses, as it reflects known molecular

components of neurodegeneration in that species.

694 DONNELLY ET AL.



Our findings highlight several potential biomarkers for neurode-

generative disease in horses. However, our study had some limita-

tions. First, unequal distribution of disease groups may have affected

our machine learning algorithms, particularly with the smaller CVCM

sample set. Because of the strict disease category approach that was

taken (ie, necropsy was required), the available pool of samples was

decreased. Despite the smaller size, the effect magnitude was higher

and somewhat more homogeneous compared to both the normal and

eNAD/EDM groups, allowing for partial abrogation of the sample size

deficit. The second limitation is that our study does not include infec-

tious, inflammatory, or traumatic causes of spinal ataxia. Validation of

these potential biomarkers will require evaluation of these additional

causes of spinal ataxia to ensure the diagnostic specificity for the

intended neurodegenerative disease. However, diagnostic tests cur-

rently exist for many of the infectious causes of spinal ataxia in

horses. The final limitation is that our study represents only a snap-

shot in time for both disease groups. Temporal dynamics of these bio-

markers may play a role in their diagnostic value, and therefore

prospective repeated sampling studies evaluating these markers will

be valuable to increase confidence in our current findings.

In conclusion, ours is the first study to report on the use of PEA

proteomic technology for equine serum and CSF samples. This tech-

nology, in tandem with machine learning algorithms, defines highly

accurate dual- and triplex biomarkers for diagnosis of CVCM and

eNAD/EDM in horses. Future studies to validate these markers by

development of quantitative assay panels in larger replication cohorts

are required before clinical adoption of these biomarkers.
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