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Entropy of Sounds: Sonnets to Battle Rap

Jordan Ackerman (jackerman2 @ucmerced.edu)
Cognitive and Information Sciences, 5200 Lake Rd
Merced, CA 95343

Abstract

Poetry and lyrics across cultures, from Sonnets to Rap, demon-
strate an obvious human cognitive capacity for the perception
and production of various multi-syllable sound patterns. Here
we use entropy to measure discrete serialized representations
of phones and to explore the complexity of these sound struc-
tures across genres of creative language arts. The present ex-
ploratory analysis has two main objectives. First, our aim is
to broaden the scope of cognitive processes and data that are
considered in statistical learning approaches to phonological
learning and language acquisition. Second, we hope to to pro-
vide a basis for more targeted computational and phonological
investigations of these patterns. We compare the conditional
entropy of sequences of phonological patterns in lyrics and find
that, in general, Battle Rap and Sonnets maintain noticeably
lower entropy than other genres across sequence sizes, while
lyrics from Electronic music and Hip-Hop display relatively
high entropy.

Keywords: Conditional Entropy; Phonology; Learning; Po-
etry; Music; Genres

Introduction
Background

Sound patterns that use stress, rhyme, assonance, and conso-
nance are common in language art practices across cultures.
As genres like Hip-hop, Rap, and improvisational rhyming
trend toward fluent use of larger thyming patterns than their
literary cousins, many questions arise about the perception,
production, and complexity of these structures.

C.E. Shannon estimated the source entropy of English
characters using human guessing to be between 0.6 and 1.3
bits per [orthographic] character (Shannon, 1951). In 1965
Kolmogorov noted that while English characters (at the time)
had an estimated source entropy of 1.9 bits per character, it
is likely that works from artistic disciplines, such as Sonnets,
would have more constraints (predictability) and therefore,
should have a lower source entropy, between 1.0 to 1.2 bits
per character. (Kolmogorov, 1965).

Since then many better estimates of the entropy of English
have been calculated (MacKay, 2005; Cover & King, 1978),
along with numerous linguistically driven information theo-
retic studies (Montemurro & Zanette, 2011). Work focusing
on sequences of vowels and consonants has also been con-
ducted demonstrating the interdependence of = constituent
parts like vowels and consonants (Markov, 2006; Goldsmith
& Riggle, 2012). Furthermore, the cognitive science of learn-
ability has flourished, reinforcing the desire to explore realms

of human patterning in terms of perception, production, and
statistical learning (Saffran, Newport, & Aslin, 1996). Fi-
nally, “it should be noted that the broader problem of measur-
ing the information connected with creative human endeavor
is of the utmost significance.” —Kolmogorov (1965)

Here, we measure the information associated with sound
item sequences in lyrics and poetry as shown in Table 1.
Orthographic representations of texts are collected, but in-
stead of analyzing the serialized orthographic characters of
a phrase like "The Atomic Bomb Designer”, words are seri-
ally encoded into ARPABET form (or some constituent parts:
vowel, stress, consonants) to represent the phonological in-
formation of the text.

Encoding Example

Words THE ATOMIC BOMB DESIGNER
ARPABET DH AHO AHO T AA1 M IHO...
Vowel AH AH AATH AATH AY ER
Stress 00101010

Cons DHTMKBMDZN

Table 1: Categories of phonological items derived from or-
thography. ARPABET encoding, also referred to as ALL in
this text, represents the full and faithful transcription from or-
thography to ARPABET

Purpose

Many are familiar with the rhyme and long range metrical
constraints on language in the domains of poetry or iambic
pentameter (Freeman, 2018). But as various multi-syllabic
constraints have become common in arenas like Hip-Hop and
Battle Rap, an analysis of the relative complexity of sound
sequences across genre is increasingly relevant. Below is an
excerpt from one participant in a rap battle, where two rappers
take turns (1 to 3 minutes each), trying to "out rap’ each other.

The atomic bomb designer

Dr. Robert Oppenheimer

And his squad of top advisors...

-Bender ( 2012)

Notice the multi-syllabic patterning across and within
lines. This, and other non-obvious or even unintentional
sound patterns throughout language arts, often remain unin-
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vestigated as the identification of marked patterns can be diffi-
cult, time consuming, and up to interpretation. Here we pro-
pose a targeted information theoretic approach that isolates
various streams of sound symbols extracted from 14 genres
of verbal art, ranging from sonnets, to musical lyrics, to a
capella Battle Rap. We suspect that evidence of underlying
sound sequences, as in the example above, and other repeated
phonological patterns, will be detectable in their entropy.

Entropy provides a tool to measure the amount of uncer-
tainty or surprise associated with some message. Information
Theory tells us that sequences of items with lower conditional
entropy (conditioned on some context i.e. n-gram) are indica-
tive of higher predictability of the elements involved. So in-
tuitively, analysis of vowel, stress, or consonant items here
can be approximated to describe the predictability of vary-
ing sizes of sounds sequences. Reductions in entropy can be
understood as ’information gain’.

Approach

A number of linguistic constraints (Semantics, Syntax, Mor-
phology, Articulation, etc... ) guide word choice in the nor-
mal output of natural language. But in verbal art, phonologi-
cal patterning can become paramount, giving rise to a variety
of perceptually interesting patterns (rhyme, assonance, repe-
tition)

In language arts like lyrics and poetry, multi-term sound
patterns do not constrain the entirety of the signal, and au-
thors often maintain commitments to an array of other lin-
guistic constraints. Here our interest in artistic sound patterns
naturally focuses our investigation towards the predictabil-
ity of multi-term sound structures within lyrics, represented
as shown in Table 1. We predict that genres suspected to
have the most formal constraints would contain more phono-
logical regularities, and therefore, should have lower condi-
tional entropy in these domains. So when measuring the con-
ditional entropy of discrete sound items (ARPABET ALL,
stress, vowels, consonants) across genres, we hypothesize
that the statistical regularities of phonological patterns in a
language should be captured together with whatever addi-
tional phonological predictability is specific to a given genre,
artist, or work. Lower relative entropy could point to the pres-
ence of more formal constraints that exist in different streams
of phonological information.

HOO = ) p(x)log,

XEA,

p(x)
Figure 1: Shannon Entropy

Assumptions

Because we are comparing genres, we consider the genre that
each artist produced their work within as part of the process
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that generates sounds with some particular transition proba-
bilities. An author, or even a language itself, is often consid-
ered an approximately ergodic source, satisfying an important
assumption of information theoretic analysis. Here we treat
each genre of expression as an approximately ergodic source
in order to explore the creative sound structures that vary be-
tween them.

Entropy measures can be useful for the comparison of the
broad structural complexities of sounds in language. And
conveniently, we do not need to pre-identify marked pat-
terns by human coders or use unsupervised pattern discovery
(Addanki & Wu, 2013; Reddy & Knight, 2011), although this
second effort could provide a foundation for scaling further
analysis.

Methods

For the scope of this study, we focus on the complexity of
the basic elements of sound patterns across genres. We do
this in order to identify sequence sizes (phonological struc-
tures) that may be interestingly different and merit targeted
investigation. Simple information content or Shannon en-
tropy measures (Figure 1) can be appropriate for exploring
the complexity associated with individual items, or averages
over individual items. This gives a framework for describ-
ing complexity based on the probability distribution of a vari-
able X, comprised of a list of items x from an alphabet A.
Some such studies were recently conducted focusing on the
Shannon entropy and vocabulary of phenomena like impro-
vised jazz (Simon, 2005, 2007) and humpback whale songs
(Suzuki, Buck, & Tyack, 2006).

But here we are largely interested in signals associated with
multi-term sound patterns, so we utilize conditional entropy
measures (Figure 2) and multiple block sizes to explore larger
and larger sequences of sound items upon which to condition
the prediction of the next random variable (sound item). This
is a proxy for asking not just about the predictability of in-
dividual items, but about predictability of individual items in
context, i.e. sequences of items. Following from this, we are
interested in comparing entropy scores by group (genre) and
across sound item types (stress, vowels, consonants, ALL).
We investigate a wide range of literary genres to get a sense
of the differences in entropy across human creative language
endeavors.

Data

We collect text from three sources, one poetry data set mined
from poetryfoundation.org, song lyrics data from lyricsf-
reak.com, and 100 rap battles from battlerap.com. The 100
battle rap texts in question were transcribed to orthography

HXY = ) ) pxy)log,

1
= 5 p(xly)

Figure 2: Conditional Entropy



3.5x

Electronic

N
wn

Sonnets

-
%)) N

Conditional Entropy

Battle Rap

0.5

1 2 3

— genre=Country
- genre=Electronic
genre=Folk

genre=Free Verse
genre=Hip-Hop
genre=Indie
genre=Jazz
genre=Metal
Country genre=Pop
genre=R&B
- genre=Rhymed Stanza
—— genre=Rock
genre=Sonnet
genre=battle-rap

n-gram Block Size

Figure 3: Conditional entropy of vowel sound items by genre: Single 3600 item sample per genre (concatenation of 36 samples

of 100 sound items per genre). Block Sizes 1-6

either by battlerap.com or the performers themselves.

Processing

Sonnets and Battle Rap are our subjects of interest largely
because humans can observe multi-term repeated sequences
within them. However, these genres are also limiting fac-
tors in sampling for two reasons. On the one hand, very few
rap battle performances have a corresponding transcript, so
the number of transcribed works in this category is quite low
(100 to 200 works). On the other hand, although we obtain
thousands of sonnets, they have an average of only 165 sylla-
bles. To put this in perspective, most genres average 220-400
syllables per poem or song, with Hip-Hop coming in at 499
and battle rap at 4311. For the sake of reasonable comparison
across genres, and with the understanding that vastly differ-
ent sample lengths and alphabet sizes impact entropy scores,
we report results below on the basis of data prepared as fol-
lows. We randomly select 36 works (song/poem/rap) from
each of our 14 genres. From each work we extract the first
100 consecutive phone items, and repeat this for each sound
item type (Vowels, Cons, Stress, ALL). We use CMU Pho-
netic Dictionary (Weide R. L, 1998) to transcribe orthogra-
phies to ARPABET representaions. This allows for a simple
comparison of their information across genres within a set
sample size. Limiting ourselves at 100 phone items may not
allow us to capture certain long range patterns relevant to the
structure of some of these genres (Ebeling & Poeschel, 1994).
But this trade-off seems acceptable, as our focus here is on the
predictability of sequences of short and medium length rele-
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vant for perceptually interesting or phonologically patterned
language.

Analysis

We use markov models of lyrics encoded as ARPABET sound
items (stress, vowels, etc...) at many block sizes to extract
transitional probabilities and then calculate their conditional
entropy from the equation in Figure 2. This allows us to
model the complexity of sounds as we increase the sound
‘context’ or sequence size upon which we condition. We
compare the entropy of each genre’s 36 samples of 100 phone
items in two ways. First, as in Figure 3, all 36 samples of 100
items for each genre are concatenated and entropy measures
taken from the resulting 3600 item sample in each of the 14
genres. Alternatively, we individually take the conditional
entropy of each of the 36 samples in each genre and aver-
age them to arrive at a mean conditional entropy per genre.
Finally, we compare genre entropy scores in pairwise fashion
using Tukey HSD pairwise tests and Jensen-Shannon distance
metrics and report representative results.

Results

Due to the fact that we are comparing entropy across three
relatively large dimensions, phone item type, block size, and
genre, we are not able to report the complete results, but relay
representative trends and summaries. Analysis was run up to
block sizes of 20, but only between 3 and 10 are reported
here.



Stress Sequence Entropy

In the case of stress sequences, at low n-gram size (1-3) Son-
nets and Free Verse maintain the highest entropy, and at larger
sequence sizes (n), they display the lowest entropy. This in-
dicates a larger entropy reduction and therefore larger infor-
mation gain in these genres than others. This is consistent
with the notion that when there are larger patterns in a text
than a given n-gram size can account for, entropy tends to be
overestimated (Pierce, John R., 1980). This would explain
why Sonnet stress entropy begins higher, but as ngram sizes
increase towards the size of patterns like iambic pentameter
(blocks of size 10), Sonnet stress patterns are relatively more
predictable, reflected by their lower entropy. It should also be
noted that while the error rates in phone encoding from CMU
Phonetic Dictionary are generally not subject to increased
error through concatenation of words, stress encodings are.
Our phonetic encoding scheme does not take into account the
change in stress (thythm) patterns that occurs when joining
words together.

Phone Sequence Entropy

Figure 3 Shows the decreasing conditional entropy by genre
as block (sequence) size increases for the vowel sound items.
We can see that all genres begin with high entropy at block
size 1, but as blocks increase in size, their entropy is reduced,
i.e. information is gained. The vertical spread between genres
indicates that across some sequence sizes, certain genres have
relatively more predictability and/or information gain relative
to other genres. It is also interesting to note the sigmoid-like
(decreasing function) pattern that all 14 genres follow as a
group. The information gain (entropy reduction or f’(x)) from
sequences of size 1 to 2 is not as great as the reduction from
sequences of sizes 2 to 3 or 3 to 4. However beyond vowel
sequences of 4 items, information gain slows down dramat-
ically. This last point is unsurprising as we tend not to find
strong dependencies between phonological items at large dis-
tances. But traditionally, source entropy plots over block size
tend to follow a strictly decreasing function where f’(x)<0
for all values of x. In other words, strictly decreasing func-
tions have negative slopes that transition from steep to less
steep, rather than from less steep, to more steep, to less steep
again.

Corresponding plots of stress, vowel+stress, as well as
consonant items (in a few genres) also display a simi-
lar sigmodally decreasing function, while all other item
categories (vowel-consonant, consonant-vowel-consonant,
vowel-stress-cons, and ALL individual phone items) show the
expected strictly decreasing source entropy functions.

Pairwise ANOVAs & Tukey HSD

We might continue counting and displaying raw entropy
scores for each genre, and there is much more to consider
in this arena, but here we aim to compare entropic measures
in order to identify significant differences between genres.
For instance, pairwise ANOVA results, as shown in Figure
4, demonstrate a simple group-wise comparison of the aver-
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age conditional entropy of 36 samples (of 100 items) from
each genre. Of these 182 (14x13) pairwise tests conducted
on the ALL phones items category at block size 3, only the 5
shown in Figure 4 were significant.

sum_sq df F PR(>F)

genre 0.106914 13.0 3.51787 0.000028

Residual 1.145531 480.0 MalN NalN

coef t pvalue-hs

battle_rap-Electronic -0.042102 -3.694279 0.021362
Hip_Hop-Free Verse 0.045361 3.880280 0.007029
R&B-Free Verse 0.041507 3.642093 0.025702
battle_rap-Hip_Hop -0.052947 -4.645925 0.000396
battle_rap-R&B -0.049093 -4.307738 0.001793

Figure 4: Significant pairs from genre pairwise ANOVA -
ALL Sound Items - Block Size 3

To avoid the build up of error by repeatedly performing
ANOVA tests of this kind across genre and block sizes, we
transition to the Tukey HSD test which allows us retain statis-
tical soundness while conducting many pairwise significance
tests.

In order to see the quality of these significant relations we
can also represent this pairwise significance information in
network form as in Figure 5. Nodes represent genres that
passed some significance test. A pairwise similarity matrix
lets us visualize the density and quality of significance rela-
tions, where edges indicate specific significant pairs and their
directed edges denote the low-high entropy relation. For ref-
erence, values within nodes convey averages of conditional
entropy across the 36 100-item samples in each genre. Fig-
ure 5 illustrates the significant pairwise differences from these
tests, but only on vowel items of sequence size 4, instead of
ALL individual item sequences of size 3, as shown in Figure
4. This approach can be used to visualize important relations
across sound items types and block sizes. A fully connected
graph with 14 nodes would indicate that the entropy in each
genre is significantly different from every other genre. For
vowel items at block size 4, Electronic and Hip-Hop have
the relatively higher entropy, forming various pairwise differ-
ences with lower entropy genres, Sonnets, Battle Rap, Free
Verse, and Rhymed Stanza.

Stepping back to visualize a broader picture of the range
of differences across vowel sequence length, we run pairwise
Tukey HSD across each genre and block size and report the
counts (by genre) of pairwise significance tests passed in Fig-
ure 6. So then, column 4 of Figure 6 represents the counts of
Tukey HSD pairwise tests passed and displayed in Figure 5.
Each cell in Figure 6 can have a value of up to 13. A score of
13 would mean that a given genre was statistically different



RHYMED
STANZA

0.027

Figure 5: Network of passed mean conditional entropy sig-
nificance tests on vowel sound items, Block Size 4. Edge
origin indicates lower entropy of the significant pair, arrow’s
head indicates the higher entropy. Values in each node show
means of conditional entropy across the 36 samples (each of
100 items) per genre. Connection counts same as column 4
of Figure 6.

from all other 13 genres at that block size (column).

Using this approach, we lose dimensionality about the
valance of specific pairwise relations between genres, but we
are better able to see patterns in the counts of significance
tests passed by each genre as block size increases. This can
provide information about which genres and which sequence
lengths may stand out as interestingly different.

Figure 6 shows the two main groups of genres that emerge
from counts of their pairwise significance tests. In general,
Electronic, Free Verse, Rhymed Stanza, Sonnet, Hip-Hop,
Battle Rap participate in many significant pairs. Electronic,
and Hip-Hop fall on the higher entropy side while Free Verse,
Rhymed Stanza, Sonnets, and Battle Rap display lower en-
tropy. Figure 6 also makes clear that there are block sizes and
genres that do not accommodate many significant cross-genre
relations, notably block sizes of 3 and genres with mostly low
counts. Conditional entropy differences across genres seem
to be described by these two clusters. One where genres find
very few significant differences to any others (Country, Folk,
Indie, Jazz, Metal, Pop, RB, Rock), and one where multiple
pairwise differences occur, because of either high or low en-

tropy.

Jensen-Shannon Distance

In order to arrive at an entropy based measure of similarity be-
tween genres, we use Jensen-Shannon Divergence (JSD), Fig-
ure 7b. JSD is a symmetric measure based on the asymmet-
ric Kullback-Leibler Divergence (KLD) shown in 7a, which
allows comparison of two probability distributions P and Q.
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Country

Electronic -
Folk

Free Verse
Hip-Hop
Indie

Jazz

Metal

Pop

R&B
Rhymed Stanza
Rock
Sonnet

battle-rap

Figure 6: Counts of significant pairwise Tukey HSD tests -
Vowel sound items - Counts represent number of pairwise
tests passed, columns are block sizes

Symmetry is important here because we want each given en-
tropy metric to be the same when calculating P vs Q and Q
vs P (e.g. Folk vs Country and Country vs Folk). Jensen-
Shannon Divergence smooths and makes symmetric the KLD
where M is (P + Q)/2. Lastly, in 7c the square root of JSD is
taken to arrive at the Jensen-Shannon distance metric.

Applying this measure to all genres in a pairwise fash-
ion, Figure 8 shows the means of Jensen-Shannon Distance
from each genre to all other 13 genres, for a given item type
and block size. For example, if we individually calculate the
Jensen-Shannon Distance of unigram stress items between
Country and each of the other 13 genres, we get 13 dis-
tance measures, averaging them results in a score of 0.038,
as shown in the top left of the figure. This process is repeated
for each genre and for 1-3 grams sequences across both stress
and vowels items. It provides us with an entropy based mea-
sure that allows us to notice which genres are, on average,
more different from other genres.

The yellow highlighted regions of Figure 8 indicate gen-
res with the highest average Jensen-Shannon distance from
other genres. In the realm of 1-3 grams stress sequences, Free
Verse, Rhymed Stanza, and Sonnets are most different from
the other genres, while with respect to 1-3 gram vowel se-
quences, Electronic, Free Verse, Sonnets, Hip-Hop, and Bat-
tle Rap are most differentiated. However, much like in our
pairwise Tukey HSD comparisons, these results demonstrate
that there is a difference, and not the valence of the difference.
For instance, both Electronic and Battle Rap vowel sequences



D (P11 @) = Y- Pl tos( g

b) Jensen-Shannon Divergence
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Figure 7: Expressions for Kullback-Leibler Divergence,
Jensen-Shannon Divergence, & Jensen-Shannon Distance

have a relatively high average Jensen-Shannon distance from
other genres, but for different reasons. As we saw before,
while vowels in Electronic lyrics systematically display rela-
tively high entropy, vowels from Battle Rap reflect relatively
low entropy.

Discussion

The conventions of language place limits on its structure, and
therefore, constrain the space of likely possible messages, re-
sulting in lower entropy. In some genres, explicit constraints
are clearly defined. This suggests that there may be genre
specific sound patterning constraints that are demonstrated in
the predictability of their sound transitions. Although it might
have been expected that sonnets and battle rap have low en-
tropy, it is a surprise that free verse, which traditionally does
not thyme or have a regular meter, would have similarly low
entropy. These trends are also broadly mirrored when consid-
ering consonant and ALL item categories.

We cannot reasonably estimate the source entropy rates in
the limit with samples this small as estimates become deter-
ministic at low values of n. However, the simple perceptually
interesting multi-syllable sound patterns we are interested in
comparing across genres may be reasonably represented at
these low block sizes 1-10. Even relatively large structures
like iambic pentameter (10 syllables per line) seem to be, at
least partially, captured in the relatively lower entropy scores
displayed by sonnet stress.

Using this sampling approach it is clear that some genres
do exhibit lower entropy than others, depending on the cir-
cumstance. This is all the more interesting because they em-
ploy drastically different sound patterning conventions. Son-
nets often have some iambic meter and end rhyme such as
’ABAB’ or ’TAABB’ constraints. While in Battle Rap, pat-
terns may be large and imperfect, they do not follow a stan-
dardized metrical or rhyming structure as sonnet do. How-
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1-3 stress ngrams
genre 1 2 3 1 2 3

1-3 vowel ngrams

Country 0.038 0.064 0.086 | 0.061 0.179 0.489
Electronic 0.043 0.073 0.102 | 0.063 0.200 0.509
Folk 0.033 0.056 0.079 [ 0.058 0.171 0.484

Free Verse 0.075 0.118 0.151 | 0.091 0.207 0.495
Hip-Hop 0.034 0.060 0.083 [ 0.075 0.197 0.500
Indie 0.038 0.065 0.089 [ 0.067 0.183 0.491
Jazz 0.038 0.067 0.092 | 0.060 0.179 0.489
Metal 0.049 0.078 0.102 [ 0.074 0.184 0.481
Pop 0.047 0.076 0.102 [ 0.067 0.182 0.489
R&B 0.035 0.061 0.086 | 0.068 0.185 0.487
Rhymed Stanza 0.061 0.096 0.123 | 0.086 0.192 0.485
Rock 0.036 0.061 0.085 | 0.057 0.169 0.479

Sonnet 0.064 0.101 0.130 | 0.093 0.218 0.514

battle-rap 0.033 0.067 0.092 | 0.069 0.203 0.528

Figure 8: Mean Jensen-Shannon Distances from each genre
to all other genres. Columns represent n-gram block sizes.

ever, Hip-Hop rap lyrics, which one might expect are similar
to Battle Rap, consistently exhibit relatively high entropy in
both vowel and consonant item categories. This could be due
to Hip-Hop’s use of relatively less internal rhyme (within a
line) than Battle Rap, in favor of end-of-line rhyme. Finally,
Electronic lyrics stand out as the genre with highest entropy
in the case of vowels.

It is also noted that most of the genres that participate in
fewer significantly different pairs have similar historical roots
(Blues). This admittedly anecdotal observation may open a
door to exploring sound entropy in terms of genealogy and
the development of lyrical sound patterns diachronically.

Learnability

On the one hand, simple sound patterns (rhyme, repetition)
seem to aid in memory and learning. On the other hand, when
patterns get large or complex, learning to produce or perceive
a pattern may require the acquisition of a specific vocabu-
lary or grammar. This is especially true in arenas that employ
multi-term conditional patterning and where the size and re-
liability of sequences may vary more dramatically than those
set by iambic meter specifications, for example.

Future Directions

Follow-ups to this study should include use of larger datasets
to compare the complexity of literary genres and individual
artists. As we were limited by the volume of previously tran-
scribed content, additional rap battles and improvisational
performances should also be transcribed to enable further
analysis. In the end, some of our qualitative descriptions of



these genre-based differences must be more rigorously estab-
lished with larger samples and more exhaustive modeling.

It should be mentioned that the 100 rap battles considered,
just like the other samples, represent written, and not impro-
vised content. However, it would be of particular interest in
terms of learnability to directly compare findings in the realm
of pre-written lyrics to those in similar spontaneous or im-
provised verbal expression. This could help to tease apart the
complexity of improvised vocabularies of creative language
from those involving large amounts of human engineering
(i.e. explicitly contriving and following some pattern with-
out time constraints).

Many salient questions remain outstanding. For example,
what are these specific phonological constraints, what is their
vocabulary, complexity, and how are they perceived, learned,
and produced? This work should be done in conjunction with
various phonological, behavioral, and computational investi-
gations. It is also important to understand how the constraints
in creative sound sequences interact with other components
of language, like vocabulary, morphology, or phonetic inven-
tory, to produce complex dynamics.

As noted in previous work (Markov, 2006; Goldsmith &
Riggle, 2012), there are interactions between chains of vow-
els, consonants, and presumably stress as well. This leads to
the natural question, how do the patterns presented here hold
when transitioning from simple phonological items (stress,
vowels, consonants) to more complex phonological items
like syllables (consonant-vowel-consonant - CVC), rhymes
(vowel-consonant - VC), or specific variations such as mas-
culine and feminine rhyme.

Conclusion

The present work has described a methodology for systemat-
ically investigating entropy of sound along three dimensions,
source (genre), sequence size (n-gram blocks), and phono-
logical items, vowels, consonants, and stress patterns. We
demonstrated use of this methodology, finding that some de-
compositions of phonological sequences systematically dis-
play strictly decreasing functions, while some do not. In sum,
we have shown that some genres have relatively more pre-
dictable sound sequences (lower entropy) than other genres
at certain n-gram sizes, and other genres, notably Electronic
and Hip-Hop, exhibit markedly less predictability.
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