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On the Feasibility of Infrastructure Assistance to
Autonomous UAV Systems

Sabur Baidya1 and Marco Levorato1

1Donald Bren School of Information and Computer Science, UC Irvine
e-mail: {sbaidya, levorato}@uci.edu

Abstract—Infrastructure assistance has been proposed as a
viable solution to improve the capabilities of commercial Un-
manned Aerial Vehicles (UAV), especially toward fully au-
tonomous operations. The airborne nature of these devices
imposes constrains limiting the onboard available energy supply
and computing power. The assistance of the surrounding com-
munication and computing infrastructure can mitigate such lim-
itations by extending the communication range and taking over
the execution of compute-intense tasks. However, autonomous
operations impose specific, and rather extreme in some cases,
demands to the infrastructure. Focusing on flight assistance and
task offloading to edge servers, this paper presents an in-depth
evaluation of the ability of the communication infrastructure
to support the necessary flow of information from the UAV to
the infrastructure. The study is based on our recently proposed
FlyNetSim, an open-source UAV-network simulator accurately
modeling both UAV and network operations.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV) have been the center
of significant recent attention from the research community.
The traditional focus on robotics aspects of these interesting
airborne systems, such as flight dynamics, autonomy, naviga-
tion and group coordination [1]–[3], is being complemented
by a growing body of work on innovative communication,
networking and signal processing techniques supporting their
operations [4]–[6].

Along the latter line of inquiry, a recent trend interconnects
the UAVs to the Internet of Things (IoT) infrastructure to
augment their capabilities. For instance, cellular networks can
increase the communication range of the UAVs, and grant them
access to the infrastructure. Edge or cloud servers can take
over the execution of heavy-weight computing tasks, and coor-
dinate the operations of multiple autonomous UAVs operating
in the same area [7]. Finally, through the infrastructure, UAVs
can access data streams from external sensors, thus increasing
their sensing accuracy and range [8].

The objective of this paper is to assess the main challenges
and trends in establishing an effective interconnection between
the UAVs and the infrastructure. Intuitively, the degree of
“trust” the UAV can afford to give to the infrastructure
depends on a number of Quality of Service (QoS) metrics
heavily influenced by network and environment parameters,
such as the used protocol suite and technology, network load,
building density, and UAV motion characteristics. We explore
a wide range of scenarios and identify parameter regions where
remote control or assistance through the IoT infrastructure

is feasible. We focus our investigation on two case-study
applications: (i) The UAVs transmit telemetry to a remote
controller at the network edge to inform navigation control;
(ii) the UAVs offload computing tasks to an edge server.

In the former case, network impairments may impact delay
or loss of telemetry packets, influencing the estimation error
of UAVs’ position or speed. An excessive estimation error
may affect the ability of a remote controller to, for instance,
determine disjoint navigation trajectories for multiple UAVs
operating in the same area.

In the latter case, which refers to edge computing
paradigm [9], the UAVs transfer data to be processed to an
edge server connected to the communication infrastructure.
Clearly, the tolerable delay and delay variations, as well as
the frequency and distribution of trains of data packets to be
delivered to the edge server depend on the level of support the
UAV asks to the infrastructure. For instance, the offloading
of sporadic, although heavy-load, tasks at the application
layer may not impose extremely stringent requirements to
the network. Conversely, the offloading of the processing of
signals used for fine-grain navigation control, may require
a tight distribution of data delivery timing to result in an
effective control.

In order to capture the characteristics and complexity of
infrastructure-assisted UAV systems, we use the FlyNetSim
simulator we presented in [10], [11]. The FlyNetSim simulator
integrates two open source simulators – NS3 [12] and ArduPi-
lot [13], [14] – to create a UAV-network simulator preserving
the control stack and operations of real-world UAVs while
enabling the detailed simulation of the surrounding network
environment.

Our results emphasize how the performance of
infrastructure-assistance are heavily influenced by the
characteristics of the environment, such as the number
of nodes active in the network, the distance, and the
characteristics of the application and its corresponding traffic
emission pattern. We conclude that effective infrastructure-
assistance can be only achieved by enabling UAVs to use
multiple technologies, and by implementing algorithms
capable to switch from one to another during a mission.

The rest of the paper is organized as follows. Section II
summarizes current trends and approaches in UAVs commu-
nications amd infrastructure assistance to UAVs’ operations.
Section III presents the system considered in this paper and
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Fig. 1: Scenario considered in this paper: UAVs connect to
the communication/processing infrastructure to enhance their
capabilities.

illustrates the challenges associated with some case study sce-
narios of infrastructure-assistance. In Section IV, we provide a
brief overview of FlyNetSim, a joint UAV-Network simulator
we proposed in [10]. Section V presents numerical results and
a thorough discussion on the ability of the communication/-
computing infrastructure to support the autonomous operations
of UAVs. Section VI concludes the paper.

II. RELATED WORK

Autonomous UAVs necessitate to execute algorithms ana-
lyzing in real-time information rich signals, and extend their
communication range to interconnect with remote flight coor-
dinators or other UAVs. In the literature, many solutions and
frameworks are available. We summarize the key approaches
by dividing them into three categories: (a) Infrastructure-
assisted communications; (b) Infrastructure-assisted comput-
ing; and (c) Flying ad-hoc networks.

A. Infrastructure-Assisted UAV Communications

Clearly, urban area are at the same time the most chal-
lenging and infrastructure-rich environments. Thus, the UAVs
have the opportunity to obtain help from available base sta-
tions and users, but also face many communication issues at
different layers, including poor and/or unstable signal gain and
contention from other active users.

Several contributions address the problem of interconnect-
ing the UAVs with the infrastructure. [15] proposes to use
properly aligned directional antennas to extend the range of
UAVs communications over WiFi. An experimental evaluation
of UAV communications based on several WiFi standards was
presented in [16]. However, the aforementioned works do not
consider UAV specific applications and the impact of UAV-
specific characteristics on communication performance. In [8],
the authors presented a multi-hop communication strategy with
dynamic make-before-break mechanism. The framework uses
probes to evaluate available paths and select the one providing
performance matching the needs of the UAV.

Cellular infrastructure-based UAV communications were
proposed in [17], where aerial and ground UEs coexist in the
same area. To increase the reliability of the cellular connection

of the UAVs, an interference cancellation approach was used
in [18]. A communication strategy over unlicenced bands
was derived in [19], where a regret function is defined to
learn optimal duty cycle selection and support the coexistence
of WiFi with other active technologies. Different from these
contributions, herein we study the feasibility of using the in-
frastructure for relevant UAV based applications over available
network technologies and different channel conditions.

B. Infrastructure-Assisted Computing

To mitigate the limitations of on-board computation on the
UAVs, the infrastructure can assist by taking over computation
tasks necessary for autonomous UAV operations. By placing
compute-capable devices at one – wireless – hop distance from
mobile devices, edge computing offers low-latency services
compared to traditional cloud computing. Remarkably, offload-
ing to edge servers not only has the potential for improving
computing quality – for instance by executing more complex
algorithms – and/or delay compared to on-board options,
but also is a natural platform to support coordination across
multiple UAVs.

Several contributions address challenges related to edge
computing for UAVs. A framework to determine trajectories
optimal both from the point of view of offloading and mission
was proposed in [20]. The framework also accounts for con-
straints on the speed of the UAV. A hierarchical offloading ap-
proach was presented in [21] with real-world UAV-embedded
setup for a computer vision based computing application.
A framework for UAV-cloud computing for disaster rescue
applications was proposed in [22]. In this paper, we investigate
the impact of the network and network parameters on task
offloading.

C. Flying Ad-Hoc Networks

When the UAV operates beyond the range of ground re-
sources, Flying Adhoc Networks (FANET) [23] are a suitable
technologies to interconnect the UAVs and allow cooperation
and coordination. Importantly, the low latency of direct UAV-
to-UAV communications may improve the ability of a swarm
to coordinate.

Note that due to UAV mobility, frequent reconfiguration
might be needed when ad hoc communications are used for
range extension or relaying of data streams. Despite this issue,
using intermediate relay nodes can improve the communi-
cation quality and range, especially as UAVs can form 3D
topologies to avoid the impairments that characterize urban
environments.

One of the main challenges in achieving effective communi-
cations is the distributed nature of flying ad-hoc networks. This
may impair performance especially in dense deployments. To
improve the performance of FANETs, [24] proposes to use
millimeter-wave cellular communications with beamforming.
However, the implementation of such model on real-world
UAV is extremely challenging, especially due to the rapidly
changing topology induced by moving UAVs.



III. INFRASTRUCTURE-ASSISTED UAV SYSTEM

We consider an UAV operating in an urban environment,
where multiple wireless access networks coexist. Specifi-
cally, we focus our attention on widely used communication
technologies, that is, Wi-Fi and Long-Term Evolution (LTE)
networks, which may support the intense transfer of data
necessary to assist UAV operations. We do not assume that
a channel is dedicated to the traffic generated by the UAV
but, instead, include in the environment the activity of wireless
nodes operating on the same channel resource. This will enable
the study of the interactions between data streams induced by
networking protocols at the different layers of the stack.

The UAV is assumed autonomous, meaning that it is not
directly controlled by a human operator. However, some
functionalities can be delegated to the infrastructure, that
is, the UAV might depend on the help of other remote
devices. In general, autonomy requires the acquisition and
processing of signals from the surrounding environment to
inform control. This transformation of the input signals to
the output control has a rather broad meaning. The UAV
can be simply programmed to follow a trajectory through a
series of waypoints, in such case the input signal are GPS
coordinates, and the UAV determines its motion to reach
the next waypoint from its current position. However, in
many practical use-cases, an autonomous UAV may need to
acquire and process complex signals, a task which may impose
a significant burden to the battery-powered UAV in terms
of energy expense. Furthermore, due to weight constraints
UAVs often have weak on-board computing platforms, which
may lead to a large time needed to execute compute-intense
algorithms. Thus, offloading to compute-capable edge servers
may lead to considerable energy consumption reduction as
well as a faster capture to control pipeline for autonomy.

We provide in the following a short summary description
of the class of infrastructure assistance problems we consider
in this paper. The UAV produces a series of bursts of data at
the application layers. We define, then, the series of instants
{τi}i=1,2,3,..., where τi corresponds to the emission time of
the i–th burst. The bursts are characterized by a variable set
Bi that determines the amount of data generated in the i–th
burst. We abstract the communication between the UAV and
the access point – Wi-Fi access point or LTE eNodeB in the
considered environment – through the transformation Φ, which
maps the emission time τi and burst size Bi into the vectors
ti=[ti(1), . . . , ti(Ni)] and ωi=[ωi(1), . . . , ωi(Ni)]. The vec-
tor ti contains the delivery times of the Ni network packets
associated with the burst, the element ωi(n) of ωi is equal to
1 if the packet is delivered and 0 otherwise. For convenience,
we set to ∞ the delivery time of a failed packet. We define
as ∆i the difference between the delivery time of the packet
of burst i delivered the latest and the generation time τi.

Intuitively, the transformation Φ is a function of a number of
variables describing the complex state of the network. Clearly,
analytically modeling the interactions between channel physi-
cal, access, link and transport layer protocols implemented by

all the active nodes, as well as their packet arrival processes,
is an impossible task, and we rely on detailed simulations
to characterize the transformation Φ associated with specific
communication strategies and environmental conditions.

A. Network Environment

In urban network infrastructure, the most commonly used
wireless technologies are WiFi and LTE. WiFi is tradition-
ally operated in unlicensed frequency bands, whereas LTE
primarily operates in licensed spectrum – although recent
propositions extend its usage in the unlicensed spectrum as
well. WiFi is a bidirectional communication technology spec-
ified in the IEEE 802.11 standard. In common infrastructure,
WiFi stations (users) connect to an access point (AP) to
communicate with other users or a remote server. The most
used Medium Access Control (MAC) layer is Distributed
Coordination Function (DCF), where the users contend for
channel access using channel sensing and random backoff.
Recent standards of WiFi support bitrate adaptation to improve
the reliability of communications and Orthogonal Frequency
Division Multiplexing (OFDM) modulation to increase capac-
ity.

LTE is a cellular technology which defines an access net-
work component called Evolved Universal Terrestrial Radio
Access Network (E-UTRAN) and a core network component
called Evolved Packet Core (EPC). The LTE access network
has separate uplink and downlink radio bands, where resource
allocation is controlled by the base station (eNodeB). The
radio resources in LTE is allocated at the granularity of indi-
vidual Physical Resource Block (PRB) which is the minimum
unit that can be assigned to one user. Each PRB corresponds
to one slot in the time domain and contains 12 subcarriers
of 15 kHz each, thus occupying 180 KHz in the frequency
domain. The eNodeB scheduler allocates a subset of PRBs
to each user for each subframe based on a scheduling policy.
In Uplink, the PRBs allocated to a specific user should be
contiguous, whereas in downlink the eNodeB can allocate non-
contiguous PRBs to a user. Additionally, as the transmission
power of the User Equipment (UE) is lower compared to
that of the eNodeB, uplink is performed using Single Carrier
FDMA (SC-FDMA) – also known as DFT pre-coded OFDMA
– which provides a better peak-to-average power ratio. The
instantaneous data transmission rate over the LTE physical
channel is determined by the the transport block size (TBS)
which is a function of the number of PRBs allocated to the
UE and the Modulation and Coding Scheme (MCS) index.
The transmitter receives the Channel Quality Index (CQI)
information through a control channel and, based on the CQI
level, it selects the appropriate MCS index.

In the urban infrastructure, both WiFi and LTE networks are
available to assist the UAV to enable the autonomous mission.
However, the different characteristics of the protocol of the
two technologies introduces different challenges in terms of
protocol overhead, reliability, handling mobility, congestion
and interference.



B. Infrastructure Assistance

Within this general environment, we consider the two spe-
cific infrastructure-assisted models described in the following.

Remote Navigation Assistance: In a scenario where multiple
UAVs share the same space, a remote unit can assist their
navigation to avoid collisions, for instance by creating safe
corridors for each UAV. To this aim, the UAV periodically
transmits telemetry variables – GPS coordinates, altitude,
speed and battery level and other information if enabled on
the UAV – to the remote controller. The telemetry information
are short messages usually contained within the maximum
transmission unit (MTU) size of one network packet. The
packets are usually sent at some update interval based on
the polling request set by the GCS to fetch the telemetry
information. Let’s denote as s(t)=(p(t), v(t), b(t)) the state
of the UAV at time t, where p(t), v(t) and b(t) are position,
speed, and battery level, respectively. In our model, the emis-
sion of telemetry variables corresponds to a small data burst,
that is, burst i contains the state s(τi). Based on the received
telemetry, the remote controller maintains a state estimate
s̃(t). Clearly, as the UAV emits telemetry only at the time
instants {τi}i=1,2,3,..., even in an idealized case where ∆i=0
and ωi=1, ∀i, there is a mismatch between the actual and
estimated state of the UAV due to the evolution of the state
in between telemetry emission. The network transformation
might increase the estimation error by delaying telemetry
delivery and erasing some updates due to packet failure. Intu-
ition may suggest that more frequent updates would decrease
the estimation error. However, frequent updates may increase
network congestion and buffer overload at the source.

Computing Task Offloading: As discussed earlier, the infras-
tructure can provide a deeper degree of assistance by taking
over the execution of complex processing tasks. For instance,
a UAV may capture pictures in pre-set locations to detect
events of interest (e.g., a car accident or suspicious human
activities). In case of a positive detection, the UAV may be
programmed to autonomously alter his course and acquire
more information in that specific area. In a more extreme
example of autonomy, the UAV may be closely pursuing a
specific object based on sensor feed. In this case, as the UAV
uses the outcome of processing to control fine-grain motion,
the frequency of offloading is much higher compared to the
previous example, and the requirements on delay and delay
variations much more stringent. Clearly, the emission of pro-
cessing tasks corresponds to the emission of a burst. The level
of autonomy and the nature of the task (e.g., object detection
on a video stream) determines the burst size distribution, as
well as the delay and reliability requirements on the task
delivery. In a typical use-case scenario, the on-board camera
captures video with 720p HD resolution for video streaming,
that requires a throughput of at least 1.8 Mbps. Depending
on the computation requirement, one can vary the frame rate
or resolution and hence modify the task size. Usually, for
tasks like image classification or object detection an entire

image frame is sent as a burst of data to the server. For
example, if images of average frame size 150KB are captured
with 10 frames per second, and one application packet size
is about 1500 bytes (including all headers) then a burst of
(150000/1500) = 100 packets will be sent over network in
every 100 milliseconds.

The above case-study scenarios generate a broad spec-
trum of characteristics of infrastructure assistance in terms
of both generated traffic – frequency and size of bursts –
and requirements. Our simulation study attempts to bridge
the UAV and communication/networking domains to provide
a comprehensive discussion on the feasibility of infrastructure
assistance to UAV operations.

IV. SIMULATION ENVIRONMENT

We briefly summarize the structure and main characteristics
of the FlyNetSim simulator we presented in [10], [11], as
well as the main general settings, used to obtain the results
presented herein.

A. FlyNetSim Simulator

The objectives of FlyNetSim are: (i) accurately model
UAV operations and dynamics using a software-in-the-loop
approach, where the data structures and control pipeline of
UAV software are fully preserved; (ii) accurately model a
multi-scale multi-technology IoT communication environment
and its interactions with the UAVs; (iii) establish a one-to-one
correspondence between UAVs and wireless nodes in NS-3,
where the UAVs implement a full network stack supporting
multiple network interfaces; (iv) preserve individual data paths
from and to UAV sensors and controllers.

To this aim, FlynetSim takes as starting point two open
source simulators – Network Simulator (NS-3) and ArduPilot
– and build a fully open source simulation environment for
academic research. NS-3 [12] is an extremely popular tool,
with a wide community contributing to extend its capabilities.
ArduPilot [13] is a widely used software and hardware-in-
the-loop simulator, capable of modeling a broad range of
unmanned vehicles characteristics in terms of navigation,
control and mission planning.

FlyNetSim includes a middleware layer to interconnect the
two simulators, providing temporal synchronization between
network and UAV operations, and a publish and subscribe
based framework [25] to create end-to-end data-paths across
the simulators. The middleware architecture we developed is
lightweight, and enables FlyNetSim to simulate a large number
of UAVs and support a wide range of IoT infrastructures and
applications.

We refer the interested reader to [10] for a in-depth de-
scription of the simulator and case-studies illustrating its
capabilities.

B. Urban Environment

Based on the discussion presented earlier in this paper,
it is clear that infrastructure assistance is a key enabler
of autonomous UAV technologies. However, the UAVs and



the infrastructure are necessarily connected through volatile
wireless links. Especially in urban environments, parameters
such as network load, signal propagation and mobility may
degrade the ability of these links to reliably support assistance.
In the following, we briefly describe the most salient aspects
we explore in our simulations.

Propagation: In urban environments, high buildings often
induce Non-Line of Sight (NLoS) signal propagation, where
penetration loss and reflection through on building walls can
cause highly varying attenuation. The dimension and location
of the buildings, the thickness and materials of the walls also
contribute to determine the overall amplitude of the received
signals. The reliability of infrastructure assistance can be
greatly impaired by these characteristics.

To model these properties, we adopt a pathloss model for
urban environments built as the combination of the standard
ITU R1411 pathloss model [26] and other variable components
function of salient parameters. Specifically, the path loss is
defined as :

L = Lb + Lew +Gh , (1)
where Lew is the loss through the external walls and Gh is
the gain due to the altitude of the device. The loss Lb is the
basic pathloss function

Lb =

{
Llos , if Line of sight
Lnlos , otherwise (2)

In line of sight, the pathloss term is defined as:

Llos =
∣∣ 20log

( λ2

8πhbshuav
)
∣∣ + C, (3)

where hbs and huav are the altitudes of the base station and
UAV respectively, λ is the wavelength and C is a variable
whose upper and lower bound are a function of distance,
wavelength and altitude of the devices. In LoS, the pathloss
term is defined as:

Lnlos = Lfs + Ldf , (4)
where Lfs is the free space pathloss and Ldf is the total
pathloss due to diffraction, including that generated by the
roof top and from the rows of the buildings. The value of
Ldf depends on the frequency of the signal, distance of
transmitter and receiver, and altitude of the devices. Note that
urban pathloss not only restricts the communication range, but
also has large impact on resource allocation and modulation
schemes in the communication. In our feasibility study, we
consider non-LoS pathloss model.

Mobility: The maximum speed of UAVs can be of the order
of 100 mph and the mobility patterns depend on several fac-
tors including the mission objective and environment. Unlike
MANET, the UAVs move in the network in a 3D space leading
to an increased range of dynamics, and the high speed leads
to a faster change in terms of channel gain. In infrastructure-
based UAV network, UAV may go out of coverage of the
current base station or access point. However, most of the
infrastructures provide handover mechanisms for continued
connectivity.

Fig. 2: Simulation setup: the UAV follows a predefined trajec-
tory, whereas external nodes are fixed and disposed in a circle
centered on the AP or eNodeB.

Exogenous Traffic: In case of infrastructure-assisted UAV
networks, the mission-based application data stream is affected
by the contention of data streams generated by users using
the same access point or base station. The infrastructure
can provide flow control and congestion control, and attempt
to achieve fairness in resource allocation among coexisting
applications and communicating devices.

Note that interference can be generated by coexisting
wireless networks or the presence of local Device-to-Device
(D2D) communications using the same frequency band. The
infrastructure can implement a centralized or distributed co-
ordination in terms of transmission scheduling and power
control to avoid or mitigate the impact of interference. Espe-
cially when heterogeneous network technologies share same
spectrum causing interference, the different technologies can
cooperate through the core backbone network to improve
overall performance.

Network Technology: Technologies and protocols are often
designed under certain assumptions and tailored to specific
scenarios. The technologies in urban environments have dif-
ferent specifications and approaches to data transmission and
channel sharing, e.g., WiFi employs a distributed algorithm for
contention based resource allocation, whereas in LTE resource
allocation is controlled using a centralized policy by the base
station. The technologies also differ in terms of retransmission
strategy, error correction, interference control, security and
many other aspects which advocates to choose appropriate
technology and protocol in different application scenarios and
different network conditions.

V. RESULTS AND DISCUSSION

A. Simulation Setup

We simulate the environment and applications described ear-
lier using the integrated UAV-network simulator FlyNetSim.
The simulated UAV performs a predefined mission, which
corresponds to a navigation plan in an urban environment.
The wireless environment is created using ns-3, the network



Parameters Value
UAV Mobility Constant Speed
WiFi Standard IEEE 802.11a
WiFi Bandwidth 20 MHz
Propagation loss Model ItuR1411 Propagation Loss
Propagation Delay Model Constant Speed
LTE EARFCN 18000
LTE Bandwidth 20 MHz
LTE RLC Mode Acknowledgement (RLC AM)
LTE downlink MAC Scheduler Proportional Fair
LTE uplink MAC Scheduler Round Robin
TCP Congestion Control New Reno

TABLE I: Experiment Parameters used in the simulations.

simulator component of FlyNetSim. The mobility of the ve-
hicle is updated in the network simulator in real time and
network parameters are varied to evaluate the performance in a
range of scenarios. A realistic simulation of motion and control
and control of the UAV is obtained using ArduPilot. The
simulated UAV uses simulated sensors to provide telemetry
information to the GCS over a simulated network. In the
second application, the UAV generates tasks/packet bursts with
different statistics and uses simulated WiFi and LTE networks
to transport them to an edge server.

Ground WiFi/LTE nodes are added with uniform disc posi-
tion allocation close to the GCS node. These nodes produce
data streams directed to the same access point or eNodeB.
The number of external nodes, the datarate and the packet
size of the ground users are tunable parameters. The pathloss
and shadowing parameters are set based on the ItuR1411
Propagation Loss Model. Motion, shadowing and exogenous
traffic all affect the transformation induced by the network on
the packet stream from the UAV. The parameters used in the
simulation are summarized in table I. The UAV moves in a
rectangular trajectory around the AP or base station as shown
in Figure 2.

B. Remote Navigation Assistance

Figure 3 shows an example of temporal evolution of error
in position estimation while the UAV performs a mission over
the predefined trajectory. In this experiment, communication
is over WiFi, and the different lines correspond to a different
number of nodes contending the shared channel resource with
the UAV. The contending nodes are placed with uniform
disc position allocation in close distance from the AP/base
station and transmits periodic bursts of packets of size 800
bytes with uniform periodicity based on the traffic rate; e.g.,
for traffic rate of 6 Mbps, the packets are transmitted at
interval of (800 ∗ 8)/6 = 1067µs. It can be seen how not
only the mean of estimation error grows as the number of
contending nodes increases, but also the variance. The line
corresponding to 2 nodes has few sections where the error
doubles, probably caused by TCP timeouts, but otherwise
shows a considerable stability. Note that the error has periodic
low spikes, corresponding to periods of time where the UAV is
stationary. A higher number of nodes contending the wireless
resource further increase average and variations of delay, with
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Fig. 3: Temporal evolution of position error based on the
telemetry emitted by the UAV over WiFi with TCP in an urban
environment with buildings. Each external node transmits
traffic with rate 6 Mbps. The UAV navigates on a rectangular
trajectory where the access point is at the center.

extended sections of the trace where the error significantly
increases with respect to the minimum. This latter effect maps
to a general inability of a remote node to maintain a tight
control over UAV trajectories.

We measure the average performance of telemetry transmis-
sion for navigation and computation task offloading in various
scenarios. For the external traffic, we define two extreme
regimes - no load conditions, where no wireless node other
than the UAV is present, and high load conditions, where
8 contending nodes are present generating 6 Mbps in the
application layer. We also define Low Distance and High
Distance scenarios, where the distance between the UAV and
the access point or base station is 10 and 40 m, respectively.

Figure 4 compares the average position error High and Low
Distance conditions over WiFi and LTE networks as a function
of the number of ground nodes. It can be seen how both
networks maintain a low error as the number of nodes grow,
with WiFi being a slightly better option. At 40 m, WiFi has
an manifestly lower error compared to LTE in mild contention
environments, but presents a sharp degradation as the number
of ground nodes grows. This is due to the inefficiency of DCF
and random access in high-load conditions compared to the
LTE more controlled MAC.

Figure 5 shows the same metric over WiFi and LTE in
High and No Load conditions as a function of distance.
Note that 40 m is the disconnection limit for WiFi, whereas
LTE has a much extended range, although at the price of
a large position error. The effect of distance and load is
apparent in both technologies. However, it can be seen how
in the absence of traffic from other nodes the two options are
essentially equivalent until disconnection. Conversely, in High
Load conditions the difference is marked: WiFi has a much
lower error at moderate distance, and then sharply degrades
as the UAV approaches the maximum range.

We also measure the impact of speed on the position error.
The plot is in High Distance regime. Intuitively, a higher
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Fig. 5: Average position error and variance as a function of
distance between the UAV and the base station for different
communication technologies. The measurements are taken in
no load and high load (8 nodes 6 Mbps each) conditions.

speed of the vehicle would result in a larger error simply due
to the fact that the UAV would have moved farther since a
packet containing the last update was received. Figure 6 shows
the effect of increasing speed of UAV in High and No Load
conditions. As expected, the absolute position error increases
with the vehicle speed. The impact of load is also manifest:
the higher inter-packet delay maps to a faster error increase.

We also measure how the frequency of updates from the the
UAV affects the absolute value of the position estimation error.
Figure 7 shows the variation at distance (20m). Intuitively,
a low update frequency generates a small network load, but
also allows the UAV to travel farther in between updates.
Conversely, frequent updates means a smaller error in idealized
conditions, but impose a larger load to the network. This trend
is shown in the plot, where the error has a minimum which
depends on the technology and external load. Note that the
effect of the additional load introduced by frequent updates
is more pronounced in LTE High Load, due to the smaller
maximum throughput of the network in those conditions.
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Fig. 6: Variation of Average position error with the speed of
the UAV in different network load conditions over LTE and
WiFi.
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Fig. 7: Variation of Average position error with different
update frequency at the UAV for telemetry over WiFi and
LTE. The measurements are taken in two regimes: no traffic
load and UAV is at low distance (10m), and high traffic load
(6 nodes, 6 Mbps each) when UAV is at high distance (40m).

C. Computing Task Offloading

We now focus on evaluation of the performance when the
UAV is transmitting burst of packets with certain characteris-
tics.

Figure 8 shows the variation of task delay as a function of
distance in a scenario where the tasks correspond to small
50 KB data are transmitted from the UAV every second.
Interestingly, it can be observed that in this case load con-
ditions have a small impact on WiFi, whereas LTE suffers a
larger number of nodes using the same channel. LTE clearly
outperforms WiFi in No Load conditions unless the UAVs
is very close to the access point. Conversely, WiFi has a
smaller error compared to LTE in High Load conditions up to
30 m distance, where the smaller range of WiFi penalizes this
choice. These results are strongly influenced by the small size
of the task, which makes the corresponding packets go through
transmissions in the WiFi MAC. In LTE, the round robin
allocation of resources increases the delay in the presence of
other users.
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Fig. 8: Task delay over WiFi and LTE with varying distance
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KB every second. The measurement are taken in two different
external traffic regimes of no load and high load.
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Fig. 9: Task delay over WiFi and LTE with varying distance
of the UAV from the Base Station for task of burst size 200
KB every second. The measurement are taken in two different
external traffic regimes of no load and high load

Figure 9 shows the same plot where tasks are of size
200 KB. It can be observed a general shift of all the delays,
with WiFi being the most penalized by the size increase. One
of the reason for LTE incurring a less perceivable degradation
with respect to WiFi is the RLC buffer, that reduces the
retransmission at the TCP layer [27] compared to WiFi where
the large burst size can cause more back-offs. However, when
the network is congested, resource allocation still penalizes
LTE in uplink as round robin is used.

We give a more clear view of this effect in Figure 10,
where we show delay as a function of task size in No Load
conditions. WiFi suffers a larger delay at high distance, but
provides better performance compared to LTE in the short
range. It can be seen how WiFi has a steeper delay increase
as the task size increases.

Finally, Figure 11 shows that in presence of external traffic
in the network, WiFi has a smaller delay compared to LTE in
closer range for all task sizes. This is due to the fact that the
task is transmitted over LTE uplink which schedules in round

Fig. 10: Task delay over WiFi and LTE with varying task sizes
for low and high distance of the UAV from the Base Station.
The measurement are taken in in absence of any external traffic
load.

Fig. 11: Task delay over WiFi and LTE with varying task sizes
for low and high distance of the UAV from the Base Station.
The measurement are taken in in presence of external traffic
load of 3 nodes transmitting traffic of 1 Mbps each.

robin all the UE nodes data. Also, it adds additional delays
every time it needs to seek transmission opportunity from the
eNodeB for a new chunk of data from any given UE. However,
in longer distance, WiFi deteriorates fast and slightly worsen
the performance compared to LTE.

D. Discussion

Based on the results from two use case scenarios of
infrastructure-assisted UAV, we can see that the choice of
network depends on the network conditions, distance from the
access point or base station, as well as the class of application
that UAV is serving. In remote navigation assistance, the
telemetry data are more suitable to be transmitted over WiFi
when the UAV is close to the AP. In applications such as
task offloading, the size of the task has a great impact on
the network to be used. When large data bursts are to be
transmitted efficiently to the edge with low latency, the LTE
network provides best performance in low-load conditions.
However, if the network is congested, connecting the UAV



over WiFi is still advantageous at short distance from the AP,
whereas LTE is the best option. We conclude that in order to
achieve efficient network infrastructure-assistance, the UAV
should be multi-homed, that is, it should have both WiFi and
LTE interfaces and use a context and application aware policy
to determine which network should be used.

VI. CONCLUSIONS

The main objective of this paper is to provide a comprehen-
sive evaluation of communication strategies for infrastructure
assistance to the operations of autonomous UAVs. Based on
detailed UAV-network simulations, we focus our attention
on remote navigation assistance and offloading of process-
ing tasks to edge servers. Our results, obtained using the
recently proposed UAV-network simulator FlyNetSim, indicate
the need for the UAVs to be equipped with multiple network
interface and be able to switch from one to another during
missions.
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