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Abstract

Structured-grid adaptive mesh refinement (SAMR) is an approach to mesh gen-

eration that supports structured access to data and adaptive mesh refinement

for discretized partial differential equations (PDEs). Solution algorithms often

require that an inverse of an operator be applied, a system of algebraic equations

must be solved, and this process is often the primary computational cost in an

application. SAMR is well suited to geometric multigrid solvers, which can be

effective, but often do not adapt well to complex geometry including material

coefficients. Algebraic multigrid (AMG) is more robust in the face of complex

geometry, in both boundary conditions and internal material interfaces. AMG

requires a stored matrix linearization of the operator. We discuss an approach,

and an implementation in the Chombo block-structured AMR framework, for

constructing composite grid matrices from a SAMR hierarchy of grids for use

in linear solvers in the PETSc numerical library. We consider a case study with

the Chombo-based BISICLES ice sheet modeling application.
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1. Introduction

Geometric multigrid (GMG) is popular in structured-grid adaptive mesh re-

finement (SAMR) applications because coarse grid generation is often natural

and GMG can be very efficient. Some problems, however, such as porous me-

dia flow with complex embedded boundary boundary conditions [1], and ice

sheet modeling with a dynamic and strongly-varying material coefficient struc-

ture [2], can be challenging to solve with GMG. The more flexible and robust

algebraic multigrid (AMG) can be useful in those cases [3]. Additionally, after

SAMR blocks have been coarsened, GMG is often no longer natural to apply

and, again, AMG can be useful. AMG, for all intents and purposes, requires

an explicit stored matrix and a composite grid where cells without any degrees

of freedom (i.e., ghost cells and cells that are fully covered by refinement) are

eliminated and their stencil values are resolved appropriately. The resulting ma-

trix, with only active degrees of freedom, is a composite grid matrix. This paper

describes a matrix construction methodology and implementation for composite

grid construction from a SAMR hierarchy of grids. We use the PETSc library

for the linear algebra and solvers [4], and implement this method in the Chombo

SAMR framework [5]. We demonstrate an implementation of this method in

the ice sheet modeling application BISICLES [2].

At a high level, constructing composite matrices from SAMR grid hierarchies

is the inverse of the operations required to construct discretizations for the ghost

cells employed by the application of the operator in a SAMR method. Methods

that use face quadrature instead of ghost cells have similar demands. We focus

on ghost-cell methods herein. Figure 1 (top left) shows a 2D, 5-point stencil

example of a SAMR mesh with the cell types used in our algorithms.

Applying an operator in Chombo requires preparing several types of ghost

cells: process ghost cells with an “exchange” process in distributed memory,

boundary ghost cells with interpolation from interior cells in the domain, coarse-

fine ghost cells with interpolation from coarse grid cells in the ghosted region

of fine grid domain, and fine-coarse interpolation for cells that have been re-
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Figure 1: Diagram of stencil transformations: generic 5-point stencil (top left); boundary

ghost cell reference removed (top right); coarse-fine ghost cell reference removed (bottom

left); fine-coarse covered cell reference removed (bottom right)

fined. These processes interpolate given data between genuine cells, or degrees

of freedom, and dependent ghost cell values. Constructing a matrix requires a

reverse process of interpolating non-genuine (ghost) cell stencil values to genuine

cell stencil values. Our approach is to decompose this process into its compo-

nents with a series of transformations of a minimal amount of data required

from the application operator – stencils of the operator on a uniform, infinite

grid. We have instantiated some standard forms of these transformations in our

matrix construction object in Chombo, but the object is designed with the un-

derstanding that future users would extend the object with new methods, such

as higher-order interpolation for boundary conditions and new types of bound-

ary conditions. To date, two applications use this technology, Chombo-Crunch

[1] and BISICLES [2].
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2. Methodology

Our approach requires that the developer of an operator provide a method

that generates a stencil, assuming a uniform, infinite grid, at an arbitrary point

in the domain. This is the minimal information needed to generate a matrix

and would be the whole matrix for the operator on a uniform grid without

boundary conditions. This method is called for each genuine cell on each level.

This stencil is a row of a sparse matrix. In general these stencils contain non-

genuine cells (columns that are not in the matrix) that must be removed to

generate a matrix with only true degrees of freedom, which is a convenient form

for generic algebraic solvers, but not strictly necessary. Our method iterates

over all the levels and all of the genuine degrees of freedom on each level, and

calls this user-provided stencil method. Chombo provides some instantiations

of some simple operators, but in general this is application-specific and must

be provided by the user. These stencils can be aggregated into a rectangular

matrix, at least conceptually, with more columns than rows. The extra columns

are a result of fact that genuine-cell (row) stencils reference non-genuine cells

(columns) as well as genuine cells.

The philosophy of our approach is to require the user provide the minimal

information necessary to generate the matrix, short of a higher-level PDE lan-

guage to generate stencils (although one could use such an approach in the

user-provided function), and then decompose the operations required to make a

square matrix linearization of the operator for use in generic algebraic solvers.

These operations or transformations remove stencil entries to ghost cells and

interpolate their values into new stencil entries to genuine cells or, in some rare

cases, other ghost cells that will be removed by later transformations.
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3. Example and Details of Methodology

For example, a standard five-point stencil of the 2D Laplacian for cell i, with

mesh spacing h, can be expressed as a list of tuples:{
〈〈i, i〉, 4

h2
〉, 〈〈i, i+ 1〉,− 1

h2
〉, 〈〈i, i− 1〉,− 1

h2
〉, 〈〈i+ 1, i〉,− 1

h2
〉, 〈〈i− 1, i〉,− 1

h2
〉
}
.

The transformations of our method distribute the stencil values (e.g., the − 1
h2

on any cells that are not genuine cells) to genuine cells. One can express these

transformations as matrix operations, and implement them with sparse matri-

ces. We do not use the matrix approach in the implementation, however, it is

useful for defining the transformations.

There are three types of transformation: (1) Boundary ghost cells (B), (2)

coarse-fine ghost cells (C), and (3) fine-coarse covered cells (F1). In matrix

notation, where these cell-level transformations are aggregated into matrices,

given a rectangular input matrix of the stencils A0, the output matrix can

be computed with A = F2A0BCF1. The F2 matrix just removes the covered

coarse cells and is included for completeness of the matrix form. We iterate

over cells and compute all the transformations on each cell. This in effect fuses

the loops of these matrix-matrix products. Figure 1 shows a diagram of these

transformations on a simplified three-level SAMR mesh for a five-point stencil.

The base class of this matrix construction object has virtual function imple-

mentations of each of these transformations, operating on one cell, which can be

overridden if the user wished to add custom implementations. This base class

has only one pure virtual function for the stencil construction (A0). Note, one

could imagine decomposing this stencil method further where divergence and

gradient operators are provided and, for instance, the Laplacian could be imple-

mented with a gradient operator on the cell identity, generating a face-centered

gradient field, a material field could be applied on these faces to get fluxes, and

then a divergence operator could generate the Laplacian stencil. The current

implementation does not provide this level of refinement in the base class, but

could implement a derived class with this approach.
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3.1. Example of cell transformation for coarse-fine interface cell

Consider the stencil above, enriched with a level index l, and dropping h for

clarity (it is implied with the level on a regular grid), and in 1D,

{〈〈〈i〉, l〉, 2〉, 〈〈〈i− 1〉, l〉,−1〉, 〈〈〈i+ 1〉, l〉,−1〉} .

Assume the point 〈〈i+1〉, l〉 is a ghost within the domain, a coarse-fine interface

cell, and it is interpolated to two cells j and k, with interpolation weights α1

and α2 (α1 + α2 = 1.0), on the next coarse level, then the transformed stencil

would be of the form,

{〈〈〈i〉, l〉, 2〉, 〈〈〈i− 1〉, l〉,−1〉, 〈〈〈j〉, l − 1〉,−α1〉, 〈〈〈k〉, l − 1〉,−α2〉} .

3.2. Architecture

Figure 2 shows a diagram of the architecture of the matrix construction

object in Chombo. An application creates a class of the operator, and provides

Figure 2: Class architecture of composite grid matrix class, showing application code (orange),

Chombo code (green), and PETSc library code (blue).

it with any specialized data like material parameters. The application calls a

method to construct and return a PETSc matrix. The application creates a
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PETSc solver with the provided matrix, and solves the system. Utility methods

which take data in a vector of Chombo level data objects and put them on a

PETSc vector, and methods for the reverse of this operation, are provided in

the base class, along with stencil tools useful in creating the stencil as a part

of the stencil construction method (MakeOpStencil). The base class and some

derived classes for specific operators are provided in the Chombo release.

3.3. Refluxing, preconditioning, and matrix-free solvers

The matrix that is constructed with the methods and code described here is

meant to be used as the preconditioner matrix for the true operator. The true

operator is usually implemented with, or wrapped in, a PETSc shell matrix.

PETSc solvers are constructed with two matrices, the operator and precondi-

tioner matrix, for this reason. It is difficult to linearize the operator exactly

and so this shell matrix is usually required. Even the simple operators devel-

oped to date are not consistent for two reasons. First, we do not implement

refluxing [6]. We simply average the fine-grid covered cells to the coarse grid

for the stencil transformations on the coarser grid. While this method is still

second-order accurate, it leads to errors in the discretization because flux is not

conserved across this fine-coarse boundary. Chombo’s finite-volume methods

add a refluxing process to their operators to balance this flux [5], but we have

not implemented this in our matrix construction object.

The second potential inconsistency is that we use the relatively new high-

order coarse-fine interpolation in Chombo [7], while some Chombo operator

implementations do not. This high-order interpolation was critical to achieving

second-order accuracy in uniform refinement of a base SAMR grid. The na-

ture of this high-order interpolation, which is described in the following section,

provides the precise data required for the transformation, unlike simpler meth-

ods that are often composed of several steps, which must each be addressed

individually.
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4. Coarse-fine interfaces

A critical component in the construction of these matrices is the treatment of

the coarse-fine ghost cells, or interpolants for (ghost) cells in the problem domain

that are not refined on the level of the stencil center cell. High (greater than 2nd)

order is required to maintain the second-order convergence of the method. This

section describes, for completeness, the approach used in Chombo and utilized

in the default coarse-fine ghost cell transformation in the base class, following

the presentation in [7]. Ghost-cell values are interpolated from cells at the next

coarser level. The interpolation stencil for a particular ghost cell consists of the

coarser-level cell that contains it, together with other, neighboring coarser-level

cells, as shown in Figure 3.

The stencil for the ghost cells within a particular coarse cell is determined by

whether that coarse cell is on the boundary or is separated from the boundary

by one cell. Modulo translation, reflection, and permutation of axes, the three

stencils shown in Figure 3 are all of the possibilities that can arise in 2D. Note

that every stencil includes coarse cells that are covered by the finer level. The

dashed lines in Figure 3 mark the limit of coarse cells that are used in stencils to

interpolate to any of the fine ghost cells, illustrating the required nesting radius

of 3. In 2D, each such stencil has 13 cells, or 12 if the coarse cell is near the

boundary, and transforms from values on the stencil cells to the 10 coefficients

of a bivariate polynomial of degree 3, using a least-squares approximation with

a conservation constraint. This polynomial is then evaluated to find values

for the ghost cells contained within the coarse cell. The composition of the

two operations of finding the polynomial coefficients and then evaluating the

polynomial is a linear transformation from coarse-cell values to ghost-cell values,

and this transformation depends only on the particular grids. The interpolation

weights computed with this least squares solve are used for the weights α in the

example in §3.1.

The size of the interpolation stencils determines a proper-nesting condition

on the grids: because stencils extend two coarse cells in each dimension beyond
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Figure 3: Stencils for ghost-cell interpolation. In this 2D example, there are two levels,

with a refinement ratio of 2, and the coarser level covers the whole rectangular domain, with

boundary indicated by hatching. The finer level has one layer of ghost cells, which are shown

with dotted outlines. The six shaded ghost cells, two inside each of the coarse cells marked

(a), (b), and (c), are interpolated from stencils consisting of those and neighboring coarse

cells marked with circles. For each of the coarse cells (a), (b), and (c), there is a coarse-fine

interpolation transformation to the ghost cells within the coarse cell from the coarse cells in

the stencil. Note that every stencil includes coarse cells that are covered by the finer level.

each coarse cell containing ghost cells, we require that for every pair of successive

levels, there be at least three cells at the coarser level beyond the finer-level

patches, except where the finer-level patches abut the boundary.
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5. Example application: BISICLES

The BISICLES ice sheet model [2] solves a 2D nonlinear coupled viscous

tensor equation on an AMR hierarchy for the ice velocity field at the base of

the ice ~ub:

β2(ub) ~ub + ~∇ · [hµ(ε̇2, T )(~∇+ ~∇T ) ~ub − 2µ(ε̇2, T )(~∇ · ~ub)] = −ρgh~∇s, (1)

where β2 is the basal friction coefficient, h is ice thickness, g is gravity, ρ is the

ice density, and s is the vertical elevation of the ice surface. The viscosity µ

varies as an inverse power law relationship with the strain rate,

µ(ε̇2, T ) = A(T )(ε̇2)
(1−n)

2 (2)

where ε̇2 is the strain rate invariant and A(T ) is the temperature-dependence

of ice viscosity. As a result, µ can vary over orders of magnitude, while the

nonlinearity tends to concentrate velocity gradients (and thus changes in µ)

into relatively narrow shear bands. Standard geometric multigrid can struggle

to represent the resulting sharp coefficient gradients on coarse levels, slowing

or even preventing convergence. The nonlinear solver in BISICLES is a hybrid

of Picard and Newton. The solver starts with Picard and when convergence of

the nonlinear residual slows (or after a specified number of iterations) switches

to Newton. We use a Jacobian-Free Newton-Krylov (JFNK) nonlinear solver

[8] with the boomeramg solver in the hypre library [9], which is supported by

PETSc.

As a demonstration of our approach, we first present a case where the stan-

dard geometric multigrid approach fails. We then follow with a demonstration

of the AMG solver on a full-scale problem.

The Amundsen Sea Embayment glaciers of the Antarctic Ice Sheet present a

typical BISICLES problem, with fast sliding ice streams flowing into ice shelves.

The basal drag coefficient β is low or zero across much of the domain. Although

the standard geometric multigrid often works adequately in this region, real

world applications involve an optimization problem, where (1) must be solved
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Figure 4: Convergence history of a typical real-world BISICLES application, to the Amundsen

Sea Embayment glaciers, using GMG (left) and AMG (right) approaches. Thick red and black

lines show nonlinear residuals for GMG and AMG, respectively, thinner green and blue lines

show linear-solver convergence.

across a range of β(x, y) and µ(x, y). It is common to find cases where the

standard approach fails, or at least performs poorly, but the AMG approach

is more robust. Figure 4 shows the progress of the nonlinear solver for one

such example: the notable feature is that while the GMG linear solver works

well enough to reduce the residual of (1) by some orders of magnitude, the

AMG solver allows the problem to be solved to machine-precision and with the

growing-rate convergence expected of Newton’s method.

To demonstrate the effectiveness of this approach on a full-scale problem,

we solve a benchmark problem similar to that presented in [10], advancing the

Antarctic ice sheet for 6 timesteps, entailing 6 nonlinear solves. A representa-

tive velocity field and AMR mesh configuration are shown in Figure 5a. The

resulting solver convergence history is shown in Figure 6, and demonstrates the

effectiveness of the composite-grid AMG approach, even on a fairly complex

AMR hierarchy with strongly varying material coefficients.

6. Conclusion

We have outlined a process of building a composite matrix linearization of

a semi-structured adaptive mesh grid hierarchy and described an instantiation
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(a) (b)

Figure 5: Problem setup for BISICLES Antarctic example: (a) initial computed Antarctic

ice-velocity field (b) Mesh resolution distribution. The coarsest mesh is 8 km and spans the

entire domain. There are 4 levels of refinement, each a factor 2 finer, resolving down to 500m

resolution on the finest mesh.

of this approach in the Chombo framework. The advanced high-order accurate

fine-coarse cell interpolation methods in Chombo proved to simplify this work

considerably. We have demonstrated the use of this approach for use in nonlinear

solvers with the PETSc numerical library in the BISICLES ice sheet model.
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Figure 6: Convergence history of a benchmark BISICLES AMR Antarctic run using the

hypre solver (accessed through PETSc) over 8 timesteps, including 6 nonlinear multilevel

viscous-tensor solves. Black lines show nonlinear residuals, magenta lines show linear-solver

convergence. Iteration number on x-axis is the nonlinear iteration number. Each iteration for

the linear solver is 0.1 on this scale.
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