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Abstract

We study the optimal quota sequeuce, iu a stationary environment, where a regulator

and a non-strategic finn have asymmetric information, The regulator is able to learn about

the unknown cost parameter by using a quota that is slack with positive probability, It is

never optimal for the regulator to learn gradually, In the first period, he either ignores the

possibility of learning, or he tries to improve his infonnation, Regardless of the outcome

in the first period, he never experiments in subsequent periods,
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1 Introduction

An extensive literature eompares taxes and quotas when firms and the regulator have asymmet­

rie information about abatement eosts. Following Weitzman (1974), many papers (including

Malcomson (1978), Roberts and Spenee (1976), Stavins (1996), Watson and Ridker (1984) and

Yohe (1977)) eompare the polieies when damages are caused by the flow of pollution. More

recently, a number of papers (Hoel and Karp (1998), Hoel and Karp (2000), Newell and Pizer

(1998), Karp and Zhang (1999), Karp and Zhang (2000» study the case where damages are

caused by the stock rather than the flow of pollution. All of these models assume that the

optimal quota is binding with probability I. When quotas rights are traded efficiently (and

firms are heterogenous, so that trade occurs), this assumption means that the equilibrium quota

price conveys to the regulator the same information about an industry-wide cost shock as does

the aggregate equilibrium response to the tax. If emissions tradiug does not occur - either

because it is forbidden or too costly, or because homogenous firms have no incentive to trade­

the assumption that the quota is always binding means that the regulator learns nothing about

costs. In the latter case, quotas are obviously less informative than taxes.

The assumption that the optimal quota is binding with probability 1 is convenient because

it focuses the model on central issues. In many cases, it is also reasonably descriptive of actual

pollution problems. However, the assumption means that the models cannot be used to ask how

a regulator might choose quotas to learn about abatement eosts. This note shows how quotas

can be used to acquire information about abatement costs in the absence of quota trading.

We use an infinite horizon model of a representative polluting firm. In each period the firm

pollutes at its privately optimal level if this level is less than the quota; otherwise, the quota is

binding. In each period, given his current beliefs about the cost function, the regulator chooses

the quota in order to balance two conflicting ohjectives. He would like to control the amount of

pollution, and simultaneously learn about the true costs so that he can choose a more efficient

quota in the future. We assume that if the regulator uses the quota that would be optimal in

a one period problem (the "myopic quota"), he learns nothing about costs. If he lets the firm

produce at its privately optimal level, he learns everything about costs. We discuss these and

other assumptions in the next section.

In each period, the regulator can use one of three types of quotas. He can use the myopic

quota, in which ease he maximizes welfare in the current period, but learns nothing about costs.

He can use a (possibly infinite) quota which is slack with probability I, in which case welfare



in the current period is low, but the regulator learns the true cost parameter. Finally, he can use

a quota which is binding with probability strictly between 0 and I. In this case, the regulator

learns something about abatement costs, but expected welfare in the current period is lower

than under the myopic quota.

One possibility is for the regulator to proceed cautiously. That is, he might refine his infor­

mation over a number of periods until he eventually learns the value of the unknown parameter,

or decides that further experimentation is too costly. Rob (1991) analyzes a model which has

many of the characteristics of ours, and he finds that this kind of cautious approach is optimal.

In Rob's setting, a social planner is uncertain about the location of the market demand curve.!

The social planner gradually increases production capacity - requiring costly investment - un­

til he learns the true market demand. In general, learning takes place for more than a single

period.

Optimal learning in our setting is qualitatively different. We show that if there is any

learning, it takes place in a single period. In the first period the regulator might decide to use

any of the three types of quotas described above, in which case he either learns nothing with

probability I, he learns everything with probability I, or he refines his information set but might

or might not discover the true cost parameter. Whatever the outcome is in the first period, the

regulator never experiments a second time.

The difference in optimal behavior in our search model and in Rob's is due to the difference

in the costs of searching "cautiously" and "aggressively". A cautious search in Rob's model

involves a slight increase in capacity. The amount of information obtained from such a search

is modest, but so is the cost. Under the quota, however, it is necessary to incur a large cost in

order to acquire even a small amount of information. This fact follows from the assumption

that the myopic quota is binding with probability I. An aggressive search in Rob's model has

a higher expected cost than a more cautious search. For example, if the social planner builds

twice the capacity needed to satisfy the market (in Rob's model), he incurs a greater loss than

if he over-builds by a small amount. The cost of using a large quota, on the other hand, "levels

off". The welfare cost of using a quota that is slack by a large margin equals the welfare cost of

a quota that is slack by a small margin. These two differences make it unattractive (in the quota

model) to use many cautious searches, but make it more attractive to use a single aggressive
.

1Much of Rob's analysis concerns the competitive equilibrium. However, for our purposes, the relevant

material is his treatment of the social planner's problem.
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search.

The next section presents the model and shows this result. We close with a brief discussion

of the result.

2 The model and result

Here we list the assumptions of our model and explain their role. The next subsection uses

an example to illustrate these assumptions and to describe the basic properties of the model.

The following subsection shows, in the general setting, that learning occurs during at most one

period.

We assume that the firm knows its abatement cost function, which is constant over time.

There are neither exogenous nor endogenous (e.g. investment-related) cost changes. This as­

sumption is not descriptive in many important pollution problems. However, it reduces the

complexity of the problem, enabling us to understand how the regulator learns under quotas.

We also assume that the firm does not behave strategically with respect to the regulator. Our

model does not apply if strategic behavior is important. In many circumstances firms are gen­

uinely non-strategic. In addition, we assume that social damages (external to the firm) are

caused by the flow rather than the stock of pollution, and the damage function is constant.

These assumptions eliminate two possible sources of dynamics, enabling us to focus on learn­

mg.

The regulator has full information about the cost function up to an unknown parameter e.
This assumption reduces the dimension of the problem, and is standard in models of asymmetric

information.

We define the myopic quota as the quota that would be optimal if the regulator ignores the

possibility of learning; that is, the myopic quota minimizes the expectation of current dead­

weight loss. In addition to the previous assumptions, we adopt:

Assumption 1 The firm's individually optimal level of emissions in monotonically increasing

in its cost parameter, e.

Assumption 2 The myopic quota is binding with probability 1.

Assumption 3 (a) For quotas that are binding. the current loss in social welfare is a convex

function of the quota. (b) If the quota is not binding, an increase in the quota does not affect
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social welfare. (c) The welfare loss under symmetric information is O.

Assumption I states that the cost parameter affects the firm's individually optimal bchavior.

The regulator can calculate the smallest possible value of I) consistent with a particular quota

being exactly binding. The assumption also implies that if the quota is not binding, the regula­

tor learns the true cost parameter. Thus, the regulator is certain to learn the cost parameter if he

uses a quota that is slack with probability I. (A later footnote gives an example of a situation

where Assumption I is violated.)

If the firm is currently unregulated, then Assumption I means that the regulator knows the

parameter I). In that case, there is obviously no asymmetric information. In most important

cases, however, there exists some degree of regulation. The regulator may want to consider

changing the current quota in order to improve information and to make it possible to use a

more efficient quota in the future.

If the regulator is able to change the quota quickly, his problem is trivial. In that case, he

does not regulate for a short period, learns the value of the unknown parameter, and then sets

the efficient quota. Society may incur a large flow cost in the first period, but since it bears this

cost for a short period it is unimportant. The search problem is interesting only if the regulator

cannot change the quota arbitrarily quickly. We do not model the source of this sluggishness,

but it appears to exist in many important situations.

Assumption 2 implies that under the myopic quota, the regulator never acquires any infor­

mation. This assumption is consistent with the literature cited above, where there can be no

learning under the optimal one-period quota.

Assumption 3 is standard. Part (a) implies that if the regulator ignores the possibility of

learning, there is a unique optimal quota. If a quota is not binding, its value has no effect on

the firm's action. An increase in the non-binding quota has no effect on deadweight loss, as

part (b) states. Part (c) is merely a normalization. The deadweight loss of using a first-best

(full information) policy is O.

We explained in the Introduction that Assumptions 2 and 3b account for the qualitative

difference in optimal searching behavior in this setting, compared to Rob's model, Assumption

2 means that the cost of acquiring a small amount of information is large, making a cautious

search unattractive. Assumption 3b means that the cost of using a high quota levels off as soon

as the quota is slack. The example below illustrates these features.
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Figure 1: The linear example

2.1 The example

Here we illustrate the model for the case where the social marginal damage of pollution and the

private marginal benefits of polluting (i.e., private marginal costs of abating) are linear. The

regulator knows the slope but not the intercept of the marginal benefit curve. The intercept

is distributed over a finite support. Much of the previous literature uses this linear-quadratic

model with additive uncertainty.2

In Figure 1, the (known) marginal cost of pollution curve is Me. The marginal benefit of

pollution (i.e., the negative of the firm's marginal abatement cost) is MB. The horizontal inter­

cept of MB (denoted B) is the level of pollution that the unregulated firm would choose. The

regulator views 0 as an unknown parameter with support [~, OJ and expected value EO. The

dashed line shows the marginal benefit curve associated with EO, With this linear model, the

myopic quota, denoted (2M, occurs at the intersection of the marginal cost and the expected

marginal benefit curve. Consistent with Assumption (2), (2'\1 < fl. Consistent with Assump­

tion (1), the regulator learns the true value of Bif he chooses a quota greater than or equal to (j,

If the true value of ehappens to be Ee, and if for some reason the regulator uses a quota (21,

the deadweight loss in the current period is shown by the shaded area.

2 A modification of the example in this section illustrates a situation that violates Assumption I. Suppose that

the horizontal intercept of the firm's marginal benefit curve, e, is known, but the slope of the curve is private

information. In this case, the use of a quota does not enable the regulator to learn about the cost parameter.
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It is clear from this fi gure that the regulator would never choose a quota between QM and

fl.. Such a quota causes a current loss in expected welfare without offering any possibility of

learning. If the regulator's subjective distribution does not have a mass point at fl. he would not

want to use a quota close to fl., since such a quota provides negligible infonnation but causes a

substantial current welfare loss. If he decides to learn about the cost parameter, he uses a quota

that is slack with probability strictly greater than O.

If, for example, the regulator uses Ql > fl. (Figure 1), then two things can happen. If

e < Ql he learns the true value of e and is able to use the socially optimal quota in the next

period; in this case, the future deadweight loss is O. If e~ Ql he does not learn the true value

of e, but he learns that the lower bound of the support is higher than he previously thought.

He replaces the previous (subjective) lower bound of the support, fl., with Q1' He updates his

subjective probability of eusing Bayes' Rule, improving his ability to use an efficient quota in

the next period.

The next section shows that at most one search is optimal. It might be optimal never to

search, and to always use the myopic quota. Alternatively, the regulator might want to search

one time. In that case, it might be optimal to use a quota that is slack with probability 1.

That strategy insures that the regulator learns the true value of e. The regulator might want to

"search cautiously", i.e. to use a quota that is slack with probability strictly between 0 and 1.

With the cautious search, the regulator improves his information, but might or might not learn

the true value of e.
Figure 2 uses the previous linear example with uniform priors over e to show that any of

these strategies might be optimal. The figure graphs the expected present discounted value of

deadweight loss for different levels of the period t quota. We hold constant the discount rate

(2%), the upper bound of the support (e = 25) and the slope of the firm's marginal benefit of

emissions (1). The figure shows results for three sets of the remaining parameter values, the

slope of the marginal damage function, a, and the lower bound of the support, fl.. These three

sets of value of (a, fl.) are (.05,23) (the dotted curve), (1,23) (the dashed curve) and (.4,14)

(the solid curve).

When marginal damages are low (the dotted curve), the regulator minimizes the expected

loss by setting Qt = e= 25, learning the true value of e in one period. For a larger value of

marginal damages, but the same amount of uneertainty (the dashed curve), the myopic quota

of Q; = 12.1 minimizes losses. For an intermediate level of marginal damages and a much
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Figure 2: Expected loss as a function of the quota

higher level of uncertainty (the solid curve) the loss-minimizing quota equals 17.1, compared

to the myopic quota of 13.9. The probability that the optimal quota is not binding is 0.28.

2.2 The general result

In this section we maintain the assumptions described above, but we allow the cost and benefit

functions to be general. We do not need to specify the manner in which e affects private

costs. However, in view of Assumption 1, we can treat the unknown parameter as the firm's

privately optimal level of emissions (in the absence of regulation). This interpretation of the

unknown parameter simplifies the proof below, and does not entail any loss in generality beyond

Assumption 1. At time t the regulator treats eas an unknown parameter with support [~t, OJ.
We assume that unregulated emissions are always finite, so e< 00.

If Qt :s. ~t> the regulator's subjective distribution over e in the subsequent period is un­

changed. If (j > Qt > ~t the regulator refines his information, calculating the subjective

distribution in the subsequent period using Bayes Rule. In this case, ~t+l = Qt. In every

period, the regulator can obtain the current subjective distribution using either the initial dis­

tribution or the previous distribution, together with the current value of the lower bound of the

support. The lower bound summarizes all of the information that the regulator has acquired

since the start of the program: it is the state variable in the regulator's optimal control problem.
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We define L(Q, e) as the actual deadweight loss in the current period when the regulator

uses the quota Q and the true value of the firm's unregulated level of emissions is e. We define

QAf (ftt ) as the myopic quota, i.e. the solution to

The operator E t takes the expectation with respect to the unknown parameter e, given the

regulator's beliefs at time t. Assumption 2 implies

(1)

The expected value of the deadweight loss in the current period when the regulator uses the

myopic quota, given the state variable Elt is l\;[(flt):

Finally, we define P(Q,Elt ) as the subjective probability that the quota Q is binding, given the

value of the state variable, fit.

By definition, any quota less than fit is binding with probability 1. That is

(2)

Assumption (3b) implies

(3)

Equations (2) and (3) imply that a quota in the interval (QI'i4 (Elt), fit] creates a loss in welfare

in the current period without changing the regulator's information. It is never optimal to use a

quota in this interval. If the regulator uses a quota Qt > Elt we say that the regulator "searches

in period to'. The alternative to searching is to use the myopic quota.

A quota in period t, Qb that exceeds Elt may be slack or binding. In the first case the

regulator learns the true value of e and his problem ends. In the second case he knows that

e 2: CJt. In this case, fit+ 1 = Qt. At time t, given the current quota, the regulator knows what

the value of the state variable will be in the next period, conditional upon not having learned

the true value of e.
This characteristic holds for an arbitrary number of periods. Given any quota sequence

{Q8};~t the regulator knows that by time t', (where t < t' S T) either one of the previous
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quotas will have been slack, or none will have been slack. In the former case he will know the

true value of (J. In the latter case, the value of Q" will be equal to the largest quota between

time t and t'. This feature makes our control problem fairly simple to solve.

Providing that the future is discounted, it cannot be optimal to use the myopic quota in one

period and then search in a subsequent period. Information does not change under the myopic

quota. If it is optimal to incur a cost in order to learn, it is better to do it sooner rather than

later.

Rather than looking for an optimal policy function that maps the current state into the cur­

rent control, we can break the problem into two steps. In the first step, the regulator chooses the

number of searches, which we denote 1'. In the second step, the regulator chooses the optimal

conditional quota sequence {Q,} ;~t. This quota sequence is conditional in the following sense:

the regulator follows it unless one of the quotas has been slack. If one quota is slack, he learns

the true value of (J and he switches to the first best (full information) quota. Hereafter, when we

say that a program involves l' searches, we mean that the regulator intends to search l' more

times, conditional upon not learning the true value of (J before the l' searches are completed.

Denote the value of the optimal program, i.e. the minimized expectation of the discounted

stream of deadweight loss, as .I(Q). Denote ]7'(Q) as the value of the optimal program when the

regulator decides to search l' times, From the previous comments, it is clear that minT .IT (Q) =
.I(Q). Our principle result is that it is optimal to search at most one time: the optimal value of

T is either 0 or I.

We begin by showing that the optimal value of T is finite, In order to confirm this fact in

simple manner, we strengthen Assumption 2 slightly, replacing it with

Assumption 4 QM (Q,) < Q, ~ <for some E > 0,

Assumption 2, whieh implies equation (1), does not exelude the possibility that the myopic

quota is arbitrarily close to the lower bound of the support, Q. Assumption 4, on the other hand,

states that the myopic quota is bounded away from Q.

Lemma 1 Suppose that Assumption 3 and 4 hold, that i'J < 'x, and that the regulator's subjec­

tive distribution of(J has finitely many (possibly 0) mass points, Under these assumptions, the

optimal T isfinite.

The appendix contains the proofs of Lemma I and the following proposition, The intuition

for the lemma is straightforward, Since g < x an infinite number of searches involves an
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infinite number of marginal searches. The cost of a marginal search is non-negligible, but

(provided that there is not a mass point at e) the value of information it reveals is negligible.

Thus marginal searches are suboptimal and the optimal value of T is finite.

Our main result is:

Proposition 1 Under Assumptions I and the other assumptions ofLemma I, the optimal value

ofT is 0 or 1.

The proof uses the fact that at time t the regulator can determine the optimal conditional se­

quence of quotas {Q,} ;~t. If thc optimal T ::: 2, at some point the regulator wants to search

two more times. Denote Q2 as the penultimate search when T = 2, and Ql > Q2 as the final

search. The proof that this sequence cannot be optimal demonstrates that the regulator could

have done better by skipping the penultimate search (Q2) and immediately setting Ql. By fol­

lowing his original plan (Q2 followed by Qil one of three things will happen: (I) e < Q2,

where, by Assumption 3b the same loss in welfare is realized by setting Ql immediately; (2)

Q2 < e < Ql, where the loss by setting Q2 could have been avoided by first setting Ql; or

(3) Q2 < C2I < e, where the final lower bound on the support, Ql could have been recognized

without incurring the loss associated with first setting Q2.

We briefly deseribe several characteristics of the optimal quota. Given our previous as­

sumptions, it is optimal to use the myopic quota when the support of the unknown parameter

is small. When the support is small, the amount of uncertainty is small, so the expected dead­

weight loss of using the myopic quota is small. The cost of a search may nevertheless be large,

since it might be necessary to use a large quota in order for there to be a possibility that it is not

binding. Without stronger assumptions, we cannot rule out the possibility that for some values

of it. it is optimal to search, and that there exist both larger and smaller values of it. at which it is

optimal not to search.

When the regulator ignores the future <,6 = 0) the myopic quota is obviously optimal. By

continuity, the myopic quota is optimal for small values of ,FJ. When.6 = 1 the optimal quota is

e, provided that the loss under this quota is finite. By continuity, it is optimal to use the quota

efor values of 13 close to 1.3 More generally, the optimal quota is a nondecreasing function of

6.

3The case where /3 ;:::::; 1 and the case where the length of a period is extremely small are equivalent. We

mentioned above that if the length of the period is small, it is optimal to incur (possibly large) costs for a short

period of time in order to avoid future costs.
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3 Conclusion

A firm's response to an emissions tax tells the regulator something about the firm's abatement

cost curve. If a quota is binding with probability I, and quota rights are not traded, the quota

is not informative about costs. This informational difference between taxes and quotas has not

(to our knowledge) previously been explored.

A quota can be used to discover information about abatement costs if there is a positive

probability that it is not binding, and if the firm's unregulated level of emissions is eorrelated

with its abatement eosts. We have shown how quotas ean be used to learn in an environment

where the marginal eost and marginal damage curves are eonstant and firms are non-strategie.

In this situation, the regulator faces what appears to be a standard seareh problem, similar to

the problem of inereasing eapacity to discover the size of a market. Two features of the seareh

problem with quotas alter the characteristies of the optimal seareh. There is a non-negligible

eost of aequiring even a small amount of information, but the eost of using a quota that is slaek

does not inerease as the quota increases. These features mean that gradual search is never

optimal. The regulator mayor may not search in the first period, but whatever the outcome in

that period, he does not search again.
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4 Appendix: Proofs

Proof. (Lemma I) Define

F(fI.,) =E,L(Il, , IJ) - 1vf(Il,).

F(ltt ) is the expected additional cost of using the quota 11, rather than the myopic quota. Only

quotas greater than Ilt have a positive probability of being slack. The regulator learns only by

using a quota greater than 11" so we can regard F (Itt) as a ''fixed cost" of learning. Under

assumptions 3 and 4, F(ltt ) 2: 15 > afor some number 15.

Suppose that at time t, given Ilt , the regulator intends to "search" T times (i.e., he intends to

use quotas greater than the contemporaneous myopic quota T times, conditional on not having

yet learned the value of IJ). In this case, the average, over these T searches, of the difference

between the quota and the contemporaneous lower bound of the support, is no greater than 7J;~(.

(If this were not true, then by the time of the T'th search the quota is greater than the upper

bound e.) If T = 00, the regulator plans to use infinitely many quotas that are arbitrarily close

to the contemporaneous lower bound. We denote such a quota as a "marginal search".

In order to show that T = 00 is not optimal, it is sufficient to show that the program

associated with T = 00 involves at least one action which is not optimal given the current state.

(The existence of such an action violates the Principle of Optimality and therefore cannot be

part of an optimal program.)

The current cost of a marginal search is no less than 15 > O. If the subjective distribution

does not have a mass point at Itt the information provided by a marginal search is negligible. In

that case, the cost of the search must exceed the value of the information it provides, so such a

search cannot be optimal. Since (by assumption) there are a finite number of mass points of the

subjective distribution, the program with T = 00 involves infinitely many marginal searches

where the cost is strictly positive and the benefit is negligible. _

Proof. (Proposition I) By Lemma I we need only consider finite values of T. Suppose,

contrary to the Proposition, that the optimal value is T 2: 2. In this case, there exists a value

of 11 at which it is optimal to search exactly two more times (conditional on not first learning

the true value of IJ). Thus, it is sufficient to show that it cannot be optimal to search two more

times.

Suppose to the contrary that for some value of 11 it is optimal to search 2 more times. Using

previous notation, and letting /3 equal the discount factor, the dynamic programming equation

12



for this problem is

J(ft) JZ(tJJ = mJn [Ez {L(Q, B} + /3 {P(Q, ft)Jl(Q) + [1 - P(Q, ft)] o}]

E2{L(Q2' B} + {3 {P(Q2, (ipl(QZ} .

(4)

(5)

We use Ei , i = L 2, to denote the expectation over the unknown parameter e, conditioned on

beliefs at the time when it is optimal to search (at most) i more times; Qi. is the optimal quota

when there are (at most) i remaining searches.

If the quota is not binding (which occurs with probability 1 - P(Q, fl)), the regulator learns

the true value of e, and future losses are 0, by Assumption (3c). If the quota is binding, the

value of the state in the next period is Q. By the hypothesis that we seek to falsify, it is optimal

to search in the next period if the regulator has not learned in the true value of B. Jl (Q) is the

optimal value of the program when it is optimal to search one more time, and the current state

is Q.

At the time of the penultimate search, when the regulator uses Qz, he knows that e is either

greater or less than Q2. Thus, we can write

The expectations on the right side of equation (6) are conditioned on all of the regulator's

infonnation at the time of the penultimate search, in addition to the information contained in

the inequalities in the subscript of E. Thus, for example, EO?:Qz (-) is an abbreviation for

EO?:Qz (Ez (.)).

Using this expression we can rewrite equation (5) as

J2(fl) = [Eo?:Qz {L(QZl e} -, ;3f(Q2)] {P(Q2,f2)} +

[EQso<Qz {L(Q2J.J}] {l- P((J2,fl)}.

(7)

(9)

(8)

The value function in the next period - the final searching period - (assuming that the

regulator has not learned the value of B) is given by

J1(Q2) = rr~~n[El{L(Q,e)}+1~f31V1(Q)P(Q,(h)]
B

EdL(Q],B)} 1~.31\1(Ql)P(Ql,Q2)

Note that the unknown parameter eappears in only the first term on the right side of equation

(9).

13



(13)

Consider an alternative program that involves a single search using Q1 (rather than Q2) in

the "first period", when the state is fl. Denote the expected value of this program as A(Q1, fD.
We write this expected value by conditioning on the two events: e :::: Q2 and e < Q2:

A(Q1,fI) = [Ee2:Q2{L(Q1,e}+ 1~,3M(Q1)P(Ql,Q2)] P(Q2,fI) + (10)

[EQ::;o«d2 {L(Ql,e}] {l- P(Q2,fI)}

Assumption (3b) implies

L(Q,e)=L(Q',e), vQ,Q'::::e

This equation states that if two quotas are slack, they lead to the same loss in current welfare.

The quota used in the last search, Q1, involves learning. Therefore Q1 > Q2' Consequently,

we have

Note that the left and the right side of this equation are, respectively, equal to the last term

in square brackets in equation (7) and the last term in square brackets in equation (10). In

addition we see (using equation (9» that the first term in square brackets in equation (10) is

equal to Jl(Q2)'

Thus, we can write A(Q1, fI) as

Using equations (7) and (11) we write the difference in payoffs as

If P((h, fI) = 0 the regulator learns the true value of f) with probability 1 during the first

search. However, by assumption, the regulator intends to search a second time. Therefore

P(Q2, fl) > O. Consequently, to obtain a contradiction we need to show that the term in square

brackets in equation (12) is positive. This positive value means that expected discounted

stream of costs are higher under the optimal two-search strategy than under an alternative. The

two-search strategy can therefore not be optimal.

In other words, we must show

EO>Q2
1
f!:~h, e} > f(Q2).

14



Note that EO?-Q2 (.) = EO?-Q2 (E2 (.)) = E 1 (.). The first equality is merely a restatement of an

earlier abbreviation, and the second equality states that the only additional information that the

regulator has at the time of the last search. that he did not have at the time of the penultimate

search, is that e "2: Ch. Therefore we can rewrite equation (13) as

(14)

The left side of inequality (14) is the present discounted value of using, in perpetuity, the

previous quota (which the regulator knows will be binding). However, the costs of that policy

exceed the cost of the optimal policy, which requires searching one more time. Consequently

inequality (14) is satisfied, and we have a contradiction. _
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