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Abstract

Background: Multiple hypothesis testing is a major issue in genome-wide association studies (GWAS), which often
analyze millions of markers. The permutation test is considered to be the gold standard in multiple testing correction
as it accurately takes into account the correlation structure of the genome. Recently, the linear mixed model (LMM)
has become the standard practice in GWAS, addressing issues of population structure and insufficient power.
However, none of the current multiple testing approaches are applicable to LMM.

Results: We were able to estimate per-marker thresholds as accurately as the gold standard approach in real and
simulated datasets, while reducing the time required from months to hours. We applied our approach to mouse,
yeast, and human datasets to demonstrate the accuracy and efficiency of our approach.

Conclusions: We provide an efficient and accurate multiple testing correction approach for linear mixed models. We
further provide an intuition about the relationships between per-marker threshold, genetic relatedness, and
heritability, based on our observations in real data.

Background
Genome-wide association studies (GWAS) have
discovered many variants implicated in complex traits
in studies of both humans [1–8] and model organisms
[9–16]. In GWAS, both genetic information on variants
spread throughout the genome and phenotypic infor-
mation are collected from a population. The correlation
between the genetic information at each variant, referred
to as the genotype, and the phenotypic information is
assessed to identify the set of variants associated with the
trait of interest. GWAS now are routinely performed on
tens of thousands of individuals and millions of genetic
variants.
One of the major challenges in GWAS is multiple

hypothesis testing. Because each GWAS involves comput-
ing up to millions of statistical tests, the p value threshold
for significance, referred to as the per-marker threshold,
must be adjusted to control the overall false positive rate.
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3Department of Convergence Medicine, University of Ulsan College of
Medicine & Asan Institute for Life Sciences, Asan Medical Center, Seoul
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2Computer Science Department, University of California, Los Angeles, CA, USA
4Department of Human Genetics, University of California, Los Angeles, CA, USA
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The Bonferroni correction [17] assumes independence
among the association tests. However, there is a substan-
tial degree of correlation between the association statistics
due to a phenomenon called linkage disequilibrium [18],
which renders the Bonferroni correction too conserva-
tive [19]. The permutation test [20], which samples the
null distribution of statistics by repeatedly permuting the
phenotypes and computing the association statistics for
each permutation, is considered to be the gold standard
because it accurately accounts for the correlation struc-
ture of the genome at the expense of computational cost.
Several strategies aimed at speeding up the computational
cost of the permutation test have recently been developed
[21–24].
Recently, the linear mixed model (LMM) [25–31] has

become the standard practice for performing GWAS. The
LMM can address two important challenges in GWAS:
population structure and insufficient power. Population
structure refers to a complex relatedness structure among
individuals, which can generate false positives or spurious
associations when utilizing traditional association study
techniques [26, 27]. LMM approaches can avoid these
false positives by explicitly modeling these genetic rela-
tionships [26, 27, 29–33]. Moreover, even when there is
no population structure, LMM can increase the statistical
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power of GWAS [31, 34, 35]. Due to these desirable
properties, LMM has become a widely used method in
current GWAS [36–40].
However, the current approaches for multiple hypothe-

sis testing correction cannot be applied to LMM. Even the
gold standard, the permutation test, is not applicable to
LMM, because the underlying idea is that each permuta-
tion represents a sample from the null distribution. This
is not the case in LMM, because the phenotypes have a
covariance structure induced by the complex patterns of
relatedness among the individuals. Unfortunately, to date
no available approach can correct for multiple testing in
LMM, because almost all known multiple testing correc-
tion approaches are based on the permutation test and
aim only to increase the efficiency of the permutation test
[21–24, 41]. By performing simulations, we demonstrated
that the multiple testing burden changes with heritability,
and that the permutation test inaccurately corrects for the
multiple testing when heritability is non-zero.
In this paper, we first set up the gold standard approach

for multiple testing correction in LMM. Our approach is
a bootstrapping resampling approach that is the equiva-
lent of the permutation test for LMM. Specifically, our
parametric bootstrapping approach samples randomized
null phenotypes from the distribution fitted by LMM.
This approach straightforwardly accounts for the effect
of between-individual genetic relatedness on phenotypes.
However, like the permutation test, this approach is com-
putationally expensive due to the large number of resam-
plings, and is therefore only suitable for small datasets.
To address this issue, we developed a new approach

called multiple testing in transformed space (MultiTrans),
which can efficiently correct formultiple testing for LMM.
To approximate the results of parametric bootstrapping
efficiently, we employ a strategy that directly samples
statistics instead of sampling phenotypes. Both sampling
phenotypes in bootstrapping and sampling of statistics
in our new approach involve sampling from a multivari-
ate normal distribution (MVN). However, the sampling of
statistics is much more efficient because the time com-
plexity of the sampling procedure is independent of the
number of individuals. To obtain the covariance matrix
of the MVN for statistics, previous strategies [21–24]
that directly use the genotype correlation structure as
the covariance matrix cannot be applied, because such
a relationship no longer holds under LMM. Therefore,
we developed a new approach to overcome this chal-
lenge, which transforms genotype dosages into a space
where the phenotypic correlation between related indi-
viduals can be accounted for. Finally, to reduce com-
putational cost in GWAS where linkage disequilibrium
is expected to be local, we apply the sliding-window-
based sampling approach [24]. We applied our approach
to the Hybrid Mouse Diversity Panel (HMDP) dataset

[11], a yeast dataset [10] and the HapMap dataset [42];
the results demonstrate that our method can perform
multiple hypothesis correction as accurately as paramet-
ric bootstrapping, while reducing the time required from
months to hours. Applying our approach to a number of
different phenotypes in these real datasets also provided
an intuition that the per-marker threshold depends on
both the heritability of the trait and the genetic related-
ness between individuals. We expect that our method will
be widely used to obtain correct per-marker threshold in
future studies utilizing LMM.

Results
Overview of the method
In multiple testing correction, our goal is to find the per-
marker threshold that gives an overall false positive rate of
α. Let us assume the following linear model:

Y = μ1n + Xiβi + e. (1)

Here, n is the number of individuals, μ is the mean of
the phenotypic values, 1n is a vector of n ones, Y is a vec-
tor of length n with the phenotypic values, Xi is a vector
of length n with the genotypic values of the ith marker,
βi is the coefficient of the ith marker, and e is a vector of
length n sampled fromN (0, σ 2I) accounting for the resid-
ual errors. Let Si and Sj be the test statistics for the ith and
jth markers under the linear model, accordingly. Under
the assumption of a linear model (Eq. 1), we can derive
the equality between the covariance of the two statistics,
Cov(Si, Sj), and the correlation of the genotypes, rij, as
follows:

Cov(Si, Sj) = XT
i Xj√

XT
i Xi

√
XT
j Xj

= Cor
(
Xi,Xj

) ≡ rij. (2)

The derivation of this equality is described in detail in
section “Methods”. This property has been reported in
previous studies [24, 43, 44].
Let m be the number of markers and � be the m × m

covariance matrix between the statistics whose (i, j)th ele-
ment is �i,j = Cov(Si, Sj). According to the multivariate
central limit theorem [45], when n is large, the vector of
statistics (S1, . . . , Sm) asymptotically follows a MVN with
mean 0 and variance �. Figure 1a shows a probability
density function of a bivariate normal distribution at two
markers under the null hypothesis. The area outside the
meshed rectangle region shows the critical region under
the null hypothesis in which, if a p value falls within this
region, the null hypothesis is rejected. Figure 1b shows the
image when we project the MVN in Fig. 1a into the xy
space. Let u be the pointwise p value that is shown as each
point in the MVN. The four corners of the shaded rectan-
gle are (�−1(u/2),�−1(u/2)), (�−1(1− u/2),�−1(u/2)),
(�−1(u/2),�−1(1 − u/2)) and (�−1(1 − u/2),�−1(1 −
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(a) (b)

Fig. 1 Probability density function of a bivariate MVN at two markers under the null hypothesis. Image (b) when we project the MVN (a) into the xy
space

u/2)), where � is the cumulative density function of
the standard normal distribution. Let pα be the outside-
rectangle probability in Fig. 1b. Then, given an overall
significance level α, the per-marker threshold is approxi-
mated by searching for the pointwise p value uwhose pα is
α. Utilizing the equality in Eq. 2, the covariance matrix of
the MVN could be estimated as � = {rij} under the linear
model (Eq. 1).
However, in LMM, the properties in Eq. 2 are no longer

valid. Let us assume the following LMM:

Y = μ1n + Xiβ
M
i + g + e. (3)

Here, βM
i are the coefficients of the ith marker under

the LMM. LMM has an extra term g compared to the lin-
ear model (Eq. 1), which is a vector of length n sampled
fromN

(
0, σ 2

g K
)
accounting for the effect of genetic relat-

edness, where K is a n × n kinship matrix that explains
the genetic correlation between individuals. Under the
LMM, Y ∼ N

(
μ1n + Xiβ

M
i , σ 2

g K + σ 2
e I

)
and the equal-

ity between the covariance of statistics and correlation of
genotypes in Eq. 2 is no longer valid. Let SMi and SMj be
the test statistics under the LMM and V̂ = σ̂ 2

g K,+σ̂ 2
e I be

the estimated covariancematrix by fitting the data into the
LMM. Then, the covariance between the statistics in Eq. 2
changes as follows:

Cov
(
SMi , SMj

)
= XT

i V̂−1Xj√
XT
i V̂−1Xi

√
XT
j V̂−1Xj

(4)

= Cor
(
V̂−1/2Xi, V̂−1/2Xj

)
≡ rMij . (5)

That is, the covariance is equivalent to the correlation
of the genotype data that is transformed by V̂−1/2 (which

is why we call our method multiple-testing in trans-
formed space, or MultiTrans). The details of the deriva-
tion are provided in the section “Methods”. Note that the
covariance of statistics of two markers that are in linkage
disequilibrium with each other depends on V̂ , which in
turn depends on the heritability (σ 2

g ) of the trait. Thus,
heritability affects the covariance of the statistics, which
results in different per-marker thresholds. Utilizing Eq. 5,
we can compute �M =

{
rMij

}
directly from genotypes

and sample the test statistics from the MVN with �M

to approximate the true null distribution and find the
correct per-marker threshold. To sample statistics from
the MVN efficiently, we adapt a sliding-window Monte
Carlo approach [24].

Permutation is inaccurate in LMM
LMM has become one of the standard analysis methods
for GWAS [25–31, 34, 35] because it can explicitly model
hidden factors, such as population structure, to avoid
false positives, and can also increase the statistical power
of the study. However, the permutation test, which has
been widely considered to be the gold standard for
multiple testing, is not applicable to LMM.The underlying
assumption of the permutation test is that if we permute
either the genotypes or phenotypes, we can generate the
null distribution of our test statistics. However, under the
LMM, permutation alters correlations between the indi-
viduals specific to LMM, and the correlation is no longer
explained by the permuted genotypes or the phenotypes.
Thus, applying LMMs to permuted data may result in
spurious statistics. Alternatively, we can generate a null
distribution for LMM by utilizing parametric bootstrap-
ping, a resampling method that samples null phenotypes
from MVN based on LMM and uses them to generate
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the null distribution (see section “Methods” for the details
of the parametric bootstrapping). A similar approach was
used in a previous study of power calculation [46], and
it can be thought of as the gold standard approach for
LMM.
To show that the permutation cannot approximate

the true null distribution for LMM, whereas paramet-
ric bootstrapping can do so accurately, we evaluated p
values estimated from the permutation test and those
estimated from the parametric bootstrapping for LMM
under the null hypothesis. Because the HMDP dataset
[11] is known to contain a significant amount of popu-
lation structure [16], we used 100 genotypes and a phe-
notype of low-density lipoprotein (LDL) estimates from
this dataset. For the permutation test, we first permuted
the phenotype 10,000 times. Next, we estimated a p
value for each genotype–phenotype pair by fitting the
data to the LMM (Eq. 3) using a kinship matrix, K, esti-
mated from the whole genome of the HMDP dataset.
For parametric bootstrapping, we first fitted the data to
the LMM and estimated its parameters, σ̂ 2

g = 0.702
and σ̂ 2

e = 0.298. Using these parameters, we sampled
10,000 null phenotypes from MVN with the covariance
matrix, V̂ = σ̂ 2

g K + σ̂ 2
e I. Then, we estimated a p value

for each genotype–phenotype pair by fitting the data to
the LMM using a kinship matrix, K, estimated from the
whole genome of the HMDP dataset. Figure 2 shows
Q–Q plots for the parametric bootstrapping (a) and the
permutation test (b), which demonstrate that paramet-
ric bootstrapping can accurately approximate the null
distribution for LMM. On the other hand, the permu-
tation test yielded inflated p values, which demonstrates
that the distribution generated from the permutation

cannot be used to approximate the true null distribution
for LMM.

MultiTrans accurately approximates covariance between
test statistics
As shown in the previous section, the parametric boot-
strapping closely approximates the true null distribution
for LMM, and can, thus, be used as the gold standard for
multiple testing in LMM. MultiTrans is rooted in the idea
of parametric bootstrapping. However, to approximate
the results of parametric bootstrapping efficiently, Multi-
Trans samples statistics directly fromMVN with a covari-
ance matrix estimated from transformed genotypes. In
this section, we show how accurately MultiTrans approx-
imates the covariance matrix of test statistics using the
transformation strategy (Eq. 5), by testing the difference
between the empirical estimate of covariance of test statis-
tics, Cov

(
SMi , SMj

)
, and the correlation of transformed

genotypes, Cor
(
V̂−1/2Xi, V̂−1/2Xj

)
, utilizing simulated

datasets.
We generated three sets of genotypes, with 100 markers

each from the HMDP dataset, a yeast dataset and the
HapMap dataset. Then, 105 phenotypes were simulated
for four different cases, each with heritability, 0, 0.2, 0.5
and 0.8. (β̂/σ̂ )

√
N was used as the test statistic. We

compared the correlation of the genotypes and covariance
of the test statistics before and after applying the trans-
formation strategy. The term heritability is defined as
σ 2
g /

(
σ 2
g + σ 2

e

)
, which represents the fraction of vari-

ance explained by population structure [47], more pre-
cisely, the fraction of variance explained by all genetic

(a) (b)

Fig. 2 Q–Q plots of p values estimated from parametric bootstrapping and the permutation test for LMM under the null hypothesis. It uses 100
markers and LDL estimates from the HMDP dataset. The x-axis shows the quantiles of − log values of the uniform distribution and the y-axis shows
the quantiles of − log p of parametric bootstrapping (a) and the permutation test (b). The red line is a diagonal
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Fig. 3 Histograms showing the differences between the covariance of statistics and the correlation of genotypes estimated from a simulated HMDP
dataset. Heritability: a 0, b 0.2, c 0.5 and d 0.8. The x-axis represents the difference between the covariance of statistics and the correlation of
genotypes, and the y-axis represents the frequencies. Gray bars represent the differences before applying genotype transformation, and black bars
represent the differences after applying genotype transformation

variants included in calculating the kinship matrix, K.
Figure 3 shows histograms of the differences between
the covariance of test statistics and the correlation of
genotypes, estimated from a simulated dataset of HMDP.
Gray bars represent the differences between the covari-
ance of test statistics and the correlation of untrans-
formed genotypes, rij. Black bars represent the differences
between the covariance of test statistics and the corre-
lation of genotypes transformed by the square root of
V̂−1/2, rMij . As shown in Fig. 3, the difference is centered
at zero when we use transformed genotypes, regardless
of heritability. However, if we do not use transformation,
the difference deviates widely from zero as the heritability
increases, indicating that the naive genotype correlation
cannot effectively approximate the covariance of statistics
well. Figure 4 shows scatter plots of the covariance of test
statistics (x-axis) and the correlation of genotypes (y-axis).
Red and black dots represent cases in which we did or
did not use genotype transformation, respectively. When
heritability is zero (Figs. 3a and 4a), the equality in Eq. 2
holds as expected. However, as the heritability increases
(Figs. 3b–d and 4b–d), the discrepancy between the
covariance of statistics and the correlation of genotypes
increases. After applying our genotype transformation

and using Eq. 5 to approximate the covariance of statistics,
the differences are calibrated back to zero. We applied
the same strategy to simulated datasets from the yeast
data (Figs. 5 and 6) and HapMap data (Figs. 7 and
8), and obtained consistent results across the three
species.

MultiTrans accurately corrects for multiple testing
We examined the accuracy of our method,MultiTrans, for
multiple testing in LMM. We compared MultiTrans with
three different methods: Bonferroni correction; SLIDE
[24], which is one of the MVN-based multiple test-
ing correction method; and the standard parametric
bootstrapping approach.
Due to the computational cost of parametric

bootstrapping, we applied each method only to chro-
mosome 1 of the HMDP dataset. Table 1 shows the
per-marker thresholds of different methods at the 5 %
significance level. We simulated four different situations,
each with heritability 0, 0.2, 0.5 and 0.8. Across the
range of heritabilities, MultiTrans yielded very accurate
per-marker thresholds very close to those of parametric
bootstrapping. On the other hand, the Bonferroni cor-
rection gave very stringent thresholds. Previous studies
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Fig. 4 Scatter plots showing the covariance of statistics and the correlation of genotypes estimated from a simulated HMDP dataset. Heritability: a 0,
b 0.2, c 0.5 and d 0.8. The x-axis represents the covariance of statistics, and the y-axis represents the corresponding correlation of genotypes. Red
and black dots represent cases in which we did or did not use genotype transformation, respectively
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Fig. 5 Histograms showing the differences between the covariance of statistics and the correlation of genotypes estimated from a simulated yeast
dataset. Heritability: a 0, b 0.2, c 0.5 and d 0.8. The x-axis represents the difference between the covariance of statistics and the correlation of
genotypes, and the y-axis represents the frequencies. Gray bars represent the differences before applying genotype transformation, and black bars
represent the differences after applying genotype transformation

showed that SLIDE closely approximates the permutation
test and gives accurate per-marker thresholds for the
standard linear model [24]. When the simulated her-
itability is zero, LMM is equivalent to the standard
linear model. Thus, it is not surprising that SLIDE gives
a per-marker threshold of 6.59E-05, very close to the
threshold obtained from parametric bootstrapping,
6.71E-05. However, SLIDE performed worse as the heri-
tability increased. This is expected based on the results
in the previous section showing that the discrepancy
between the covariance of statistics and the correlation
of genotypes increases as the heritability increases if we
do not account for phenotype correlations specific to
LMM.

Per-marker threshold depends on both heritability and
genetic relatedness
We applied MultiTrans to various datasets from different
species and with different heritabilities to see how heri-
tability affects the per-marker thresholds, as well as how
the per-marker threshold changes in a dataset-specific
manner. Due to the computational cost of parametric
bootstrapping, in the previous section (Table 1) we tested
each method only on chromosome 1, which contains 9629

markers. Taking advantage of the efficiency ofMultiTrans,
in this experiment we were able to applyMultiTrans to the
whole genome in large datasets.
Figure 9 shows the per-marker thresholds of the whole

genome of the HMDP dataset estimated from Multi-
Trans for four simulated situations, each with heritability
0, 0.2, 0.5 and 0.8, over a range of significance lev-
els from 0.1 to 10 %. The red, blue, green and orange
solid lines show the per-marker thresholds of MultiTrans,
and they demonstrate how heritability affected the per-
marker thresholds for the HMDP dataset; as the heri-
tability increased the per-marker thresholds decreased.
However, this was not reflected in the previous meth-
ods, the Bonferroni correction (purple solid line in Fig. 9)
and SLIDE (black dash-dot line in Fig. 9), whose per-
marker thresholds did not change as the heritability
changed.
In addition, we appliedMultiTrans to the whole genome

of yeast and HapMap datasets. Table 2 shows the per-
marker thresholds at a significance level of 5 %, esti-
mated fromMultiTrans for the HMDP, yeast and HapMap
datasets. For each dataset, four different heritabilities
(0, 0.2, 0.5 and 0.8) were simulated. For all datasets,
the per-marker threshold decreased as the heritability
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Fig. 6 Scatter plots showing the covariance of statistics and the correlation of genotypes estimated from a simulated yeast dataset. Heritability: a 0,
b 0.2, c 0.5 and d 0.8. The x-axis represents the covariance of statistics, and the y-axis represents the corresponding correlation of genotypes. Red
and black dots represent cases in which we did or did not use genotype transformation, respectively
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Fig. 7 Histograms showing the differences between the covariance of statistics and the correlation of genotypes estimated from a simulated
HapMap dataset. Heritability: a 0, b 0.2, c 0.5 and d 0.8. The x-axis represents the difference between the covariance of statistics and the correlation
of genotypes, and the y-axis represents the frequencies. Gray bars represent the differences before applying genotype transformation, and black
bars represent the differences after applying genotype transformation

increased. However, the amount that heritability affected
the per-marker thresholds differed across the datasets. As
heritability changed, the HMDP and yeast datasets exhib-
ited larger differences in their per-marker thresholds than
the HapMap dataset.
The reason that different datasets show different

changes in per-marker threshold given the same changes
in heritability is that not only the heritability but also the
amount of genetic relatedness in genotypes may affect the
per-marker thresholds. For example, if individuals are less
related in a study, even for a trait that is highly heritable,
the correlation of genotypes, rij (Eq. 2) and the correlation
of transformed genotypes, rMij (Eq. 5), may not show a big
difference. This is because their kinship matrix K may be
similar to the identity matrix I, and V̂ = σ̂ 2

g K + σ̂ 2
e I ≈(

σ̂ 2
g + σ̂ 2

e

)
I, therefore, the transformation with V̂ 1/2 may

not significantly change the correlation between the geno-
types. In this case, the influence of heritability

(
σ̂ 2
g

)
on the

per-marker thresholds may be small. Figure 10 shows heat
maps of genetic relatedness reflected in kinship matrices

for the HMDP, yeast and HapMap datasets. The color
of each pixel represents the strength of the relatedness,
with yellow indicating strong correlation between indi-
viduals and red indicating no relatedness. Compared to
the HDMP and yeast datasets, the HapMap dataset shows
smaller relatedness between the individuals. In addition,
we show histograms of the off-diagonal values of the kin-
ship matrices for the HMDP, yeast and HapMap datasets
(Fig. 11). The figure shows that the individuals in HapMap
are related but less related to each other compared to
those in the HMDP and yeast datasets. These explain that
even though the per-marker thresholds are different for
different heritability cases in HapMap data, their differ-
ences are less dramatic than those of HMDP data.

MultiTrans applied to the real traits
Because MultiTrans is efficient and accurate, we were
able to apply MultiTrans to a large number of real phe-
notypes in the HMDP, yeast and HapMap datasets. As
described above, these datasets have different genetic
relatedness, and the phenotypes in each dataset have
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Fig. 8 Scatter plots showing the covariance of statistics and the correlation of genotypes estimated from a simulated HapMap dataset. Heritability: a
0, b 0.2, c 0.5 and d 0.8. The x-axis represents the covariance of statistics, and the y-axis represents the corresponding correlation of genotypes. Red
and black dots represent cases in which we did or did not use genotype transformation, respectively
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Table 1 Per-marker thresholds at the 5 % significance level for
different simulated heritabilities of 0, 0.2, 0.5 and 0.8, applied to
chromosome 1 of the HMDP dataset

Heritability Bonferroni SLIDE MultiTrans Bootstrapping

0 5.19E-06 6.59E-05 6.59E-05 6.71E-05

0.2 5.19E-06 6.59E-05 5.17E-05 5.29E-05

0.5 5.19E-06 6.59E-05 4.71E-05 4.85E-05

0.8 5.19E-06 6.59E-05 4.54E-05 4.48E-05

different heritabilities; therefore, each phenotype will have
a unique per-marker threshold. Table 3 confirms that
multiple phenotypes in the three datasets have different
per-marker thresholds.

Efficiency of MultiTrans
To demonstrate the efficiency of MultiTrans, we com-
pared the running time of MultiTrans and parametric
bootstrapping, which can accurately correct p values for
multiple testing in LMM. Both MultiTrans and the para-
metric bootstrapping must calculate the inverse square
root of the covariance matrix V̂−1/2 once. However, para-
metric bootstrapping needs to sample null phenotypes
from MVN multiple times and estimate statistics for each
of them, which takes a lot of time [31, 35]. To compare
the running time ofMultiTrans and parametric bootstrap-
ping, we estimated the running time of both methods
utilizing four different datasets; HMDP [11], HapMap
[42], 1000Genomes [48] and NFBC (Northern Finland
Birth Cohorts) [49], which contains 99, 1184, 2504 and
5326 individuals, respectively. MultiTrans assumes local

linkage disequilibrium and that the statistics outside the
range of a window are independent of each other. It applies
a sliding-window approach (see section “Methods” for
the details of the sliding-window approach). The running
time of MultiTrans depends on the size of the window,
so we applied two different window sizes, 100 and 1000.
Figure 12 shows the running times of MultiTrans and
parametric bootstrapping for different numbers of indi-
viduals for 100,000 markers. For both MultiTrans and
the parametric bootstrapping, 10,000 samplings were per-
formed, and the running times were extrapolated from
one chromosome. When the number of individuals was
5326, the parametric bootstrapping took about 5 months,
which is impractical, whereas MultiTrans took only 2.57 h
or 3.71 h using a window size of 100 or 1000,respec-
tively. Even for 99 individuals, parametric bootstrapping
took more than 22 days, whereas MultiTrans took only
13.35 min or 1.45 h using a window size of 100 or 1000,
respectively. The result shows that even for a small study,
MultiTrans is 2421 times faster or 376 times faster than
the parametric bootstrapping using a window size of
100 or 1000, respectively. The discrepancy between the
running times of MultiTrans and parametric bootstrap-
ping will increase not only as the number of individuals
increases, but also as the numbers of samplings ormarkers
increases (data not shown). More details of the running
time are discussed in section “Methods”.

Normality assumption in MultiTrans
Our framework is based on LMM, which assumes the
normality of phenotypes. Moreover, when we derived the

Fig. 9 Per-marker thresholds for different heritabilities applied to the whole genome of the HMDP dataset. The x-axis represents the overall
significance level, α, from 0.1. to 10 %. The y-axis represents the corresponding per-marker thresholds. The gray vertical line shows the significance
level, 5 %. The red, blue, green and orange solid lines show the result of MultiTrans when heritability is 0, 0.2, 0.5 and 0.8. The purple solid line shows the
results of Bonferroni correction for all four heritabilities. The black dash-dot line shows the result of SLIDE for all four heritabilities
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Table 2 Per-marker thresholds at a 5 % significance level
estimated from MultiTrans for different simulated heritabilities of
0, 0.2, 0.5 and 0.8, applied to the whole genome HMDP, yeast and
HapMap datasets

Dataset

Heritability HMDP Yeast HapMap

0 4.03E-06 5.09E-05 7.29E-08

0.2 3.38E-06 4.65E-05 7.08E-08

0.5 3.16E-06 4.24E-05 7.07E-08

0.8 3.10E-06 3.87E-05 7.06E-08

covariance structure of statistics (see section “Methods”),
we used the z score statistic, which will follow a normal
distribution under the normality of phenotypes. However,
if phenotypes do not follow a normal distribution and are
highly skewed or aggregated, first, LMM fitting might not
work well, and second, the statistic might not follow a
normal distribution.
Nevertheless, for many tests assuming normality of phe-

notypes, it is known that even if the phenotypes do not
follow a normal distribution, the p value is approximately
calibrated and therefore the corresponding z score fol-
lows a normal distribution. To show how this normality
assumption affects the results, we computed the standard
z scores (which assumes normality of phenotypes) from
microbiome data, which does not follow a normal distri-
bution. Additional file 1: Figure S1a shows abundances of
a genus-level taxon of microbiome data [50], which appar-
ently is not normal, andAdditional file 1: Figure S1b shows
the Q–Q plot of their test statistics estimated from the
phenotypes. It shows that even if the phenotypes do not
follow a normal distribution, the statistics approximately
follows a normal distribution.

Discussion
Multiple testing correction is a very well-studied problem
in the context of GWAS [20–24, 51, 52], with the most

widely utilized approach being the permutation test. In
most modern GWAS, LMM is applied to account for the
effect of population structure or increase statistical power.
Unfortunately, in these studies, the permutation test is
not only impractical due to the computational cost [23],
but also the assumptions required for permutation test-
ing are not satisfied under LMM and may lead to spurious
associations.
Here, we show that the heritability of a trait affects

the significance threshold, as well how to perform mul-
tiple testing correction in the context of LMM associ-
ation studies. Our proposed method, MultiTrans, accu-
rately corrects for multiple hypothesis testing and is
also efficient, making it applicable to large GWAS.
In addition, we demonstrated the accuracy and effi-
ciency of MultiTrans utilizing mouse, yeast and human
datasets.
In this paper, we proposed a parametric bootstrap-

ping resampling approach to set up the gold standard
approach for multiple testing in LMM. Parametric boot-
strapping is consistent with the assumed model of LMMs.
Some previous methods try to generate the null samples
under LMM by improving the permutation test. Abney
[53] proposed a method, referred to as MVNpermute,
which estimates maximum likelihood estimates for LMM
parameters under the assumption that phenotypes fol-
low MVN then it permutes the residuals to generate the
null samples. This method does not assume normality
of phenotypes when they sample the null phenotypes
by permuting the residuals. However, they estimate the
residuals based on the assumption that phenotypes fol-
low MVN to estimate the LMM parameters. Another
approach was proposed by He et al. [54]. This transforms
the phenotypes with the covariance matrix of pheno-
types, permutes them and then transforms them back.
The advantage of this approach is that it does not assume
the normality of the phenotypes; thus, it is applicable for
data that do not follow a normal distribution. However,

(a) (b) (c)

Fig. 10 Heat maps of genetic relatedness reflected in a kinship matrix for different datasets. a HMDP, b yeast and c HapMap. Individuals are ordered
from left to right on the x-axis, and from bottom to top on the y-axis. Each pixel of the heat map shows the strength of the correlation between the
individuals, with yellow indicating strong correlation and red indicating no correlation
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Fig. 11 Histograms of off-diagonal values of kinship matrix. a HMDP, b yeast and c HapMap

the permutation test is computationally very expensive,
and thus, often no more than 104 permutations are used
in GWAS [24, 53, 54], which is not sufficient for the
significance test for GWAS datasets (Table 3). Thus,
permutation-based methods are impractical for GWAS
datasets.
Instead of sampling phenotypes, MultiTrans samples

statistics directly from a MVN whose covariance matrix
is estimated from transformed genotypes and it applies
a sliding-window Monte Carlo approach to speed up the
sampling procedure. Comparing the running time of Mul-
tiTrans and parametric bootstrapping, which can accu-
rately correct the p values for multiple testing in LMM,
we showed that the parametric bootstrapping approach
is impractical even for a small study, whereas MultiTrans
can dramatically reduce the running time.
Our results show that the heritability changes the

covariance of statistics and per-marker thresholds. In
addition, we made the novel observation that the per-
marker threshold tends to decrease as the heritability
increases for the HMDP, yeast and HapMap datasets. We
also provided an intuition regarding how genetic relat-
edness in datasets affects the per-marker threshold. To
our knowledge, our study is the first study to explain the
relationship between heritability, genetic relatedness and
the per-marker threshold.
The ideas behind our approach extend multivariate nor-

mal approaches for modeling the joint distribution of
GWAS statistics to scenarios in which mixed models
are utilized to compute the association statistics. In this
paper, we demonstrated how this extension can be used
to compute the significance threshold for multiple test-
ing correction; however, this framework can be utilized
for other applications of MVNs as well. For example, sim-
ilar extensions can be applied to fine mapping methods

Table 3 Per-marker thresholds for various real phenotypes of
HMDP, yeast and HapMap datasets estimated from MultiTrans

HMDP

Phenotype Heritability MultiTrans

Thioglycolate treated 0.036 3.80E-06

Free fluid 0.653 3.12E-06

Low-density lipoprotein 0.706 3.11E-06

Yeast

ProbeID Heritability MultiTrans

YMR073C 0.010 5.06E-05

YMR242C 0.111 4.82E-05

YLR447C 0.214 4.63E-05

YDR186C 0.310 4.48E-05

YHL012W 0.409 4.34E-05

YOL144W 0.503 4.23E-05

YFL018C 0.615 4.09E-05

YCR107W 0.700 3.99E-05

YMR312W 0.819 3.85E-05

YNL046W 0.911 3.73E-05

HapMap

ProbeID Heritability MultiTrans

ILMN 1756694 0.013 7.11E-08

ILMN 1851657 0.156 7.06E-08

ILMN 1803219 0.225 7.05E-08

ILMN 1741165 0.401 7.04E-08

ILMN 1704746 0.728 7.02E-08



Joo et al. Genome Biology  (2016) 17:62 Page 11 of 18

Fig. 12 Comparison of running time of MultiTrans and the parametric
bootstrapping. The running times evaluated for 100,000 markers and
10,000 samplings. The x-axis shows the number of individuals, and
the y-axis shows the running time. The blue and red lines show the
running times of MultiTrans using window sizes of 100 and 1000,
respectively, in minutes. The green line shows the running time of
parametric bootstrapping in days

[44, 55, 56], GWAS statistic imputation [57, 58], joint
testing [59], follow-up single-nucleotide polymorphism
(SNP) selection [43], etc. In frameworks utilizing MVN,
one assumes that the test statistic follows a normal dis-
tribution. Since some statistical tests assume normality of
phenotypes, there can be issues relating to this assump-
tion. However, the normality of test statistics is not much
affected by the normality of phenotypes, which is dis-
cussed in section “Results”. In addition, several techniques
can transform the data into a normal distribution such
as inverse normal transformation or WarpedLMM [60],
which are heavily used by many studies [32, 50, 61–64].
Moreover, Sul et al. [65] recently applied the MVN frame-
work to multiple testing correction in eQTL studies where
the Spearman correlation statistic, a non-parametric test,
was used. This study shows that MVN can be applied
beyond parametric settings and can work well indepen-
dently from the normality assumption. Lastly, there are a
number of ways in which MultiTrans could be improved.
One of which is to improve the way it calculates the
kinship matrix, which is an active research area these
days. More precisely, the actual heritability we are using
is the variance explained by genetic variants included in
the kinship matrix; thus, it is important to estimate the

kinship matrix accurately. For example, we can use only
SNPs that are linearly independent of the SNP that we are
testing [29].

Methods
Previous multiple testing correction methods for non-LMM
Permutation test
The permutation test gives a simple way to compute the
null sampling distribution for a test statistic by repeat-
edly permuting either genotypes or phenotypes and com-
puting the association statistic for each permutation.
The permutation test can be thought of as a resam-
pling approach that samples individuals from a uniform
distribution without replacement. The permutation test
accurately accounts for the correlation structure of the
genome, and therefore, has been used as the gold standard
for GWAS. However, it is computationally expensive, and
its running time is linearly dependent on the number of
individuals.

Methods usingmultivariate normal approximation
Several previous studies proposed alternative approaches
to permutation because the permutation test is com-
putationally expensive especially when the number
of individuals is large. The idea underlying these
approaches is sampling of test statistics directly from
MVN, taking advantage of the fact that the statis-
tics over multiple markers asymptotically follows a
MVN [21, 22].
Below, we show how to obtain the covariance

matrix of the MVN. Let m be the number of
markers, Si be a statistic for the ith marker and
� = {Cov(Si, Sj)} be the m × m covariance matrix
between the statistics. Assuming the following linear
model, we can derive the covariance matrix for the
MVN:

Y = μ1n + Xiβi + e.

Here, n is the number of individuals, μ is a mean
of the phenotypic values, 1n is a vector of n ones, Y
is a vector of length n with the phenotypic values, Xi
is a vector of length n with the genotypic values of
the ith marker, βi is their coefficients and e is a vec-
tor of length n sampled from N

(
0, σ 2

e I
)
accounting for

the residual errors. Here, we assume that Y and Xi
are normalized as mean 0 and variance 1. Then, the
phenotype follows a MVN with a mean and variance as
follows:

Y ∼ N
(
μ1n + Xiβi, σ 2

e I
)
.
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The ordinary least-squares solutions of β for the ith and
jth markers are as follows:

β̂i =
(
XT
i Xi

)−1
XT
i Y ∼ N

(
βi,

σ 2
e

XT
i Xi

)

β̂j =
(
XT
j Xj

)−1
XT
j Y ∼ N

(
βj,

σ 2
e

XT
j Xj

)
.

The statistics of the two markers are computed as fol-
lows:

Si = β̂i
σ̂e

√
XT
i Xi ∼ N

⎛
⎜⎝βi

√
XT
i Xi

σe
, 1

⎞
⎟⎠

Sj = β̂j

σ̂e

√
XT
j Xj ∼ N

⎛
⎜⎝βj

√
XT
j Xj

σe
, 1

⎞
⎟⎠ .

Here, the estimated values for μ, e and σ for the ith
marker are as follows:

μ̂ = 1nTXi

XT
i Xi

,

ê = Y − μ̂1n − Xβ̂

and

σ̂ =
√

êT ê
n − 2

.

Then, we can prove that the covariance of the two statis-
tics, Cov(Si, Sj), is equal to the correlation between the
genotypes, rij, as follows [24, 44, 56]:

Cov(Si, Sj) = Cov
(

β̂i
σe

√
XT
i Xi,

β̂j

σe

√
XT
j Xj

)

= 1
σ 2
e
Cov

⎛
⎜⎝ XT

i Y√
XT
i Xi

,
XT
j Y√
XT
j Xj

⎞
⎟⎠

= XT
i Xj√

XT
i Xi

√
XT
j Xj

= Cor
(
Xi,Xj

) ≡ rij.

(6)

Previous studies showed that this relationship between
genotype correlation and MVN covariance holds for
binary traits as well, using different methods of derivation
[22, 24].
Using the properties of Eq. 6, we can sample the statis-

tics directly from theMVNwithmean 0 and variance� =
{rij} instead of permuting phenotypes. In fact, in this sam-

pling, phenotype information is not needed. Specifically,
under the null hypothesis, by the multivariate central limit
theorem [45], if the number of individuals, n, is large, the
vector of statistics (S1, . . . , Sm) asymptotically follows a
MVN with mean 0 and variance �. Given a pointwise
p value u, let R(u) be the m-dimensional rectangle with
corners �−1(u/2)1m and �−1(1 − u/2)1m, where � is
the cumulative density function of the standard normal
distribution and 1m is the vector ofm ones. Then, the sig-
nificance level pα is approximated as the outside-rectangle
probability as shown in Fig. 1,

pα = 1 − 1
(2π)

m
2 |�| 12

∫
R(u)

e− 1
2X

T�−1XdX . (7)

Thus, given an overall significance threshold α, the
per-marker threshold can be approximated by search-
ing for a pointwise p value u whose significance level
pα is α.

Multiple testing correction methods for LMM
Parametric bootstrapping resampling approach
We first set up the gold standard approach of multiple
testing in LMM, which is the equivalent of the per-
mutation test for LMM. We emphasize that the tradi-
tional permutation test and its variations do not work for
LMM. The idea underlying permutation testing is that
each permutation is a sample from the null distribution,
which is not the case in LMM, because the permutation
alters the dependency of the phenotype on the related-
ness structure. If we permute phenotypes, the relatedness
structure between the individuals and its effect on phe-
notype are ignored, which can lead to an inflation of
p values.
We propose a resampling-based multiple hypothesis

testing approach for LMM, which utilizes the parametric
bootstrapping strategy. Figure 13a shows an overview of
the parametric bootstrapping applied to multiple hypoth-
esis testing. It is described as follows. First, by fitting to
LMM, we estimate parameters σ̂g

2 and σ̂ 2
e to generate

a covariance matrix of the data, V̂ = σ̂ 2
g K + σ̂ 2

e I. Sec-
ond, we sample size-n vectors of null phenotypes from
the distribution from MVN with the covariance matrix
V̂ . Third, using each size-n vector of those null phe-
notypes, we compute null statistics (S1, S2, . . . , Sm). This
parametric bootstrapping approach can be thought of as
the permutation-equivalent for LMM. Similar approaches
were used in previous studies [46, 53, 54], some of which
are discussed in Additional file 1. Unfortunately, this para-
metric bootstrapping approach is computationally very
expensive.

MultiTrans
MVN approximation for LMM As described in the
previous section, the parametric bootstrapping strategy
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(a)

(b)

Fig. 13 Overview of the resampling procedures. a Parametric bootstrapping and bMultiTrans, with 104 sampling applied for both parametric
bootstrapping and MultiTrans

is impractical due to its high computational cost. To
make the procedure efficient, we propose a new approach,
MultiTrans. MultiTrans alternatively samples statistics
directly from MVN without needing to generate any
null phenotypes. Figure 13b shows an overview of
MultiTrans. Once we obtain the null samples, we can

obtain the per-marker threshold using Eq. 7. However, the
challenge is to characterize the covariance of MVN for
LMM.

Covariance of MVN in LMM For LMM, Eq. 6 is
no longer valid. That is, we cannot use the genotype
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correlation matrix as the covariance matrix of MVN
for LMM.
To derive the covariance matrix, we assume a LMM

instead of the linear model as follows:

Y = μ1n + Xiβ
M
i + g + e,

where μ is the mean of the phenotypic values, 1n is
a vector of n ones, Y is a vector of length n with the
phenotypic values,Xi is a vector of length nwith the geno-
typic values of the ith marker, βM

i is their coefficients
under the LMM, g is a vector of length n sampled from
N

(
0, σ 2

g K
)
accounting for population structure effects

where K is a n × n matrix that explains the correlation
between the individuals induced by population structure,
and e is a vector of length n sampled from N (0, σ 2I)
accounting for the residual errors. Under this model, the
phenotype follows a MVN with a mean and variance as
follows:

Y ∼ N
(
μ1n + Xiβ

M
i , σ 2

g K + σ 2
e I

)
.

Given the observed data, it is straightforward to
fit LMM and estimate parameters σ 2

g and σ 2
e using

standard strategies, which define the covariance matrix
of phenotypes, Cov(Y ) = V̂ = σ̂ 2

g K,+σ̂ 2
e I. Now we

utilize the fact that after obtaining V̂ , the remaining
regression procedure is equivalent to performing ordinary
least-squares in the transformed space,

V̂−1/2Y ∼ N
(
V̂−1/2μ1n + V̂−1/2Xiβ

M
i , I

)
,

where both genotypes and phenotypes are transformed by
a factor V̂−1/2. Assuming that V̂−1/2Xi and V̂−1/2Y are
normalized as mean 0 and variance 1 (without loss of gen-
erality), the ordinary least-squares solutions of βM

i for the
ith marker and jth marker are as follows:

β̂M
i =

(
XT
i V̂

−1Xi
)−1

XT
i V̂

−1Y ∼ N
(

βM
i ,

(
XT
i V̂

−1Xi
)−1

)

β̂M
j =

(
XT
j V̂

−1Xj
)−1

XT
j V̂

−1Y ∼ N
(

βM
j ,

(
XT
j V̂

−1Xj
)−1

)
.

The statistics are computed as follows:

Si = β̂M
i

√
XT
i V̂−1Xi ∼ N

(
βM
i

√
XT
i V̂−1Xi, 1

)

Sj = β̂M
j

√
XT
j V̂−1Xj ∼ N

(
βM
i

√
XT
j V̂−1Xj, 1

)
.

Accordingly, the correlation between the statistics
changes from Eq. 6 to the following where the correlation
between the statistics are equal to the correlation between

the marker transformed by the inverse square root of V̂ :

Cov
(
SMi , SMj

)
= Cov

⎛
⎜⎝ XT

i V̂−1Y√
XT
i V̂−1Xi

,
XT
j V̂−1Y√
XT
j V̂−1Xj

⎞
⎟⎠

=
XT
i V̂−1/2

(
V̂−1/2

)T
Xj√

XT
i

(
V̂−1/2

)T
V̂−1/2Xi

√
XT
j

(
V̂−1/2

)T
V̂−1/2Xj

= Cor
(
V̂−1/2Xi, V̂−1/2Xj

)
= rMij .

Utilizing the covariance matrix estimated from trans-
formed genotypes, we can generate a large number of
samples, (S1, S2, . . . , Sm), to approximate MVN and cor-
rect p values by integrating over the outside of the rectan-
gle, as in Eq. 7.

Sliding-window approach If m is large, the standard
sampling approach that samples (S1, S2, . . . , Sm) from
MVN using Cholesky decomposition [66] is computation-
ally very expensive. In our approach, we assume that there
is no correlation between statistics at loci that are far apart
in the genome after correcting for population structure.
We term this assumption the local linkage disequilib-
rium assumption. We first note that this is a conservative
assumption and cannot lead to false positives. By ignoring
possible linkage disequilibrium results in possibly more
conservative significance thresholds. Since the driver of
linkage disequilibrium between distant loci and the corre-
lation between statistics at these loci is population struc-
ture itself, it is natural to assume that after correction,
the statistics will no longer be correlated. Thus, it is both
appropriate and conservative to make the local linkage
disequilibrium assumption. Under the local linkage dis-
equilibrium assumption, the statistics at distant markers
are uncorrelated and one can split the region into small
blocks to decrease computational cost dramatically. Many
previous methods [22, 23] used a block-wise strategy;
however, they are known to lead to overly conservative
estimates by ignoring the inter-block correlations [24].
Thus, we perform a sliding-window approach as follows
to incorporate the inter-block correlations to estimate the
p values accurately [24]. Let f (S1, S2, . . . , Sm) be the joint
probability density function of the statistics. Under the
local linkage disequilibrium assumption, the statistics at
distant markers are uncorrelated. Thus, given a window
size w, we can assume that Si is conditionally independent
of S1, S2, . . . , Si−w−1 given Si−w, Si−w+1, . . . , Si−1. Utilizing
the chain rule,

f (S1, S2, . . . , Sm) = f (S1)f (S2|S1)f (S3|S1, S2) . . .

f (Sm|Sm−w, . . . , Sm−1).
Thus, we can sample Si given Si−w, Si−w+1, . . . , Si−1,

based on the conditional distribution f (Si|Si−w, . . . , Si−1)
and efficiently generate a large number of samples.
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Running time of parametric bootstrapping andMultiTrans
Both parametric bootstrapping and MultiTrans require
fitting the data to LMM to estimate the variance
components of LMM, σg and σe, estimating the inverse
square root of the covariance matrix, V̂−1/2, and trans-
forming the genotypes, which takes O(n3 + n2m) where
n is the number of individuals and m is the number
of markers. The most computationally expensive step
of both of the methods is the sampling process, which
causes the main difference in running time between
the two. For parametric bootstrapping, we need to
sample null phenotypes from MVN with n × n covari-
ance matrix V̂ , which takes O(n3). Then we calculate
the test statistic using LMM. We can reduce the time
for calculating the test statistic by using pre-estimated
V̂−1/2 to transform the sampled phenotypes (O(n2)) and
using pre-computed transformed genotypes, V̂−1/2X.
However, we still need to perform the simple linear
regression on the transformed genotypes and sampled
phenotypes, which takes O(nm). Thus, the total com-
plexity excluding LMM fitting is O(s(n3 + n2 + nm))

where s is the number of repeats. On the other hand,
MultiTrans needs only to estimate the covariance matrix
of the transformed genotypes, which takes O(nm2), and
to sample statistics directly from MVN with m × m
covariance matrix, which can be performed efficiently
using the sliding-window approach described in section
“Sliding-window approach”. This could be done
in O(w3m), where w is the window size used in
the sliding-window approach. As a result, we can
reduce the sampling process of parametric boot-
strapping, O(s(n3 + n2 + nm)), into O(sw3m). We
note that the time complexity of each step could be
reduced using various special mathematical techniques
[27, 29, 31, 67–69].

HMDP dataset
We evaluated our approach using a HMDP (high-
resolution association mapping) mouse dataset [11] that
contains 102,987 SNPs from 99 individuals. SNPs with a
minor allele frequency less than 5 % and missing more
than 10 % are filtered. To test the difference between the
covariance of test statistics and the correlation between
the genotypes, we generated a simulated dataset by
extracting 100 SNPs from chromosome 1. Seven pheno-
types with different heritabilities, which were estimated
from the HMDP dataset [11], were used for section
“MultiTrans applied to the real traits”.

Microbiome dataset
To show how our normality assumption of phenotypes
affects the results of test statistics, we computed test
statistics using a gut microbiome dataset from 592 mice
from 110 HMDP strains, which does not follow a normal

distribution [50]. The study protocol has been described
in detail elsewhere [70]. Bacterial 16S rRNA gene V4
region was sequenced using an Illumina MiSeq plat-
form and the data were analyzed using established guide-
lines [71]. The relative abundance of each taxon was
calculated by dividing the sequences pertaining to a spe-
cific taxon by the total number of bacterial sequences for
that sample. We focused on abundant microbes, oper-
ational taxonomic units with at least 0.01 % relative
abundance and for the GWAS, we used 197,885 SNPs
and a genus-level taxon. Minor allele frequency less than
5 % and missing values more than 10 % were filtered
out.

Yeast dataset
We evaluated our approach utilizing a yeast dataset [10]
that contains 2956 SNPs in 109 segregants. To test the dif-
ference between the covariance of test statistics and the
correlation between the genotypes, we generated a sim-
ulated dataset by extracting 100 consecutive SNPs from
chromosome 4. Ten gene expressions with different her-
itabilities, which were estimated from the yeast dataset
[10], were used for section “MultiTrans applied to the real
traits”.

HapMap dataset
We evaluated our approach utilizing a HapMap Phase 3
dataset [42] that contains 1,070,114 SNPs from 1184 indi-
viduals. SNPs with a minor allele frequency less than 5 %
and missing more than 10 % are filtered. To test the dif-
ference between the covariance of test statistics and the
correlation between the genotypes, we generated a sim-
ulated dataset by extracting 100 consecutive SNPs from
chromosome 22. Five gene expressions with different heri-
tabilities, which were estimated from the HapMap dataset
[42], were used for section “MultiTrans applied to the real
traits”.

Data availability
The HMDP dataset [11] is available from the Gene
expression omnibus (GEO) under accession number
GSE16780, the microbiome dataset [50] is available from
the Sequence Read Archive (SRA) under accession num-
ber SRP059760, the yeast dataset [10] is available from
GEO under accession number GSE9376, and the HapMap
Phase 3 dataset [42] is available at http://hapmap.ncbi.
nlm.nih.gov/.

Implementation
For the MultiTrans results in section “MultiTrans accu-
rately approximates covariance between test statistics”
(Table 1) and section “Per-marker threshold depends on
both heritability and genetic relatedness” (Fig. 9), a win-
dow size of 1000 was used and 107 samplings were

http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
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performed. For the parametric bootstrapping results in
section “MultiTrans accurately approximates covariance
between test statistics” (Table 1), 105 samplings were per-
formed. To evaluate our method for various ranges of
heritabilities, we applied it for four different heritabilities,
0, 0.2, 0.5 and 0.8. The kinship matrix was estimated using
all the SNPs in each dataset. However, several techniques
can estimate a kinship matrix [29] and our approach can
be used for kinship matrices computed in any way and
it will give the multiple testing significance threshold for
a model assuming the corresponding kinship matrix. To
estimate p values and the variance components (σ 2

g and
σ 2
e ) for LMM, an LMM solver, pylmm [72] was used. In

practice, however, other LMM-based methods, such as
EMMA [26], EMMAX [27], FaST-LMM [29], etc., could
be also used.

Ethics approval
No ethics approval was required for the study.

Software availability and license
The software and the source code are available at https://
sourceforge.net/projects/multitrans/files/. The installa-
tion package and instructions are available at http://
genetics.cs.ucla.edu/multiTrans/. MultiTrans is offered
under the GNU Affero GPL, Version 3 (AGPL-3.0). For
details of the license, see https://www.gnu.org/licenses/
why-affero-gpl.html.

Conclusions
Multiple hypothesis testing is an essential step in GWAS
analysis. Although the correct per-marker threshold dif-
fers as a function of species, marker densities, genetic
relatedness, and trait heritability, no previous multiple
testing correction methods can comprehensively account
for these factors. In this paper, we describe MultiTrans,
an efficient and accurate multiple testing correction
approach for linear mixed models. Our method performs
a unique transformation of genotype data to account for
genetic relatedness and heritability under linear mixed
models, as well as to efficiently utilize the multivariate
normal distribution. We were able to estimate per-marker
thresholds as accurately as the gold standard approach
applying to mouse, yeast, and human datasets, while
reducing the time required frommonths to hours.We fur-
ther provide an intuition about the relationships between
per-marker threshold, genetic relatedness, and heritabil-
ity, based on our observations in real data.

Additional file

Additional file 1: Supplementary Figure, Figure S1. Distribution of
phenotypes and corresponding statistics from microbiome data.
(PDF 951 kb)
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