UC Berkeley Archaeological X-ray Fluorescence Reports

Title

Source Provenance of Obsidian Artifacts from the Dos Pobres/San Juan Project, Graham County, Arizona

Permalink https://escholarship.org/uc/item/88w2z182

Author Shackley, M. Steven

Publication Date 2006-04-17

Supplemental Material

https://escholarship.org/uc/item/88w2z182#supplemental

Department of

232 Kroeber Hall University of California Berkeley, CA 94720-3710

SOURCE PROVENANCE OF OBSIDIAN ARTIFACTS FROM THE DOS POBRES/SAN JUAN PROJECT, GRAHAM COUNTY, ARIZONA

by

M. Steven Shackley, Ph.D. Director Archaeological XRF Laboratory University of California, Berkeley

Report Prepared for

SWCA Environmental Consultants Tucson, Arizona

INTRODUCTION

The analysis here of 96 obsidian artifacts from Graham County indicates a predictable dominance of local Cow Canyon raw material with some minor Mule Creek source groups. A discussion of these sources is provided relevant to the source assignments.

LABORATORY SAMPLING, ANALYSIS AND INSTRUMENTATION

This assemblage was analyzed on a Spectrace/Thermo *QuanX* energy-dispersive x-ray spectrometer at the Archaeological XRF Laboratory, Department of Earth and Planetary Sciences at the University of California, Berkeley. All samples were analyzed whole with little or no formal preparation. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984).

The spectrometer is equipped with an electronically cooled Cu x-ray target with a 125 micron Be window, an x-ray generator that operates from 4-50 kV/0.02-2.0 mA at 0.02 increments, using an IBM PC based microprocessor and WinTraceTM reduction software. The x-ray tube is operated at 30 kV, 0.14 mA, using a 0.05 mm (medium) Pd primary beam filter in an air path at 200 seconds livetime to generate x-ray intensity K α -line data for elements titanium (Ti), manganese (Mn), iron (as Fe^T), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), and niobium (Nb). Weight percent iron (Fe₂O₃^T) can be derived by multiplying ppm estimates by 1.4297(10-4). Trace element intensities were converted to concentration estimates by employing a least-squares calibration line established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology

(NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Further details concerning the petrological choice of these elements in Southwest obsidians is available in Shackley (1992, 1995, 2003; also Mahood and Stimac 1990; and Hughes and Smith 1993). Specific standards used for the best fit regression calibration for elements Ti through Nb include G-2 (basalt), AGV-1 (andesite), GSP-1, SY-2 (syenite), BHVO-1 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), all US Geological Survey standards, and BR-N (basalt) from the Centre de Recherches Pétrographiques et Géochimiques in France, and JR-1 and JR-2 obsidian standards from the Japan Geological Survey (Govindaraju 1994). In addition to the reported values here, Ni, Cu, Zn, Th, and Ga were measured, but these are rarely useful in discriminating glass sources and are not generally reported.

The data from both systems were translated directly into Excel[™] for Windows software for manipulation and on into SPSS[™] for Windows for statistical analyses. In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run. An analysis of RGM-1 analyzed during each run is included in Table 1. Source nomenclature follows Shackley (1988, 1995, 1998, 2005). Further information on the laboratory instrumentation can be found at: http://www.swxrflab.net/. Trace element data exhibited in Table 1 are reported in parts per million (ppm), a quantitative measure by weight (see also Figures 1 and 2).

DISCUSSION

While the distribution of obsidian source provenance in these sites appears to be entirely local, an understanding of the history of both the primary eruptive events and the secondary

distribution through time of the sources is relevant (Figures 3 and 4). A discussion of the two major sources in the assemblage below elucidates the issues.

Cow Canyon

It appears that the secondary depositional extent of this source is much greater than originally mapped (Shackley 1988). This Tertiary source is eroding east into the Blue River, south into the San Francisco River and west into the Gila River as originally noted, but also erodes in much higher density west into Eagle Creek west of the Blue River, and on south into the Gila River and up to 20 km south into the San Simon River Valley (Figure 4). A number of "pockets" of Cow Canyon glass have been located in the San Simon River Valley in Pliocene/Pleistocene sediments of the 111 Ranch Formation the result of considerably higher sedimentation rates in these periods than currently (Figure 4). The density of nodules at Eagle Creek approximately 15 km west of the primary contexts at Cow Canyon is up to 1 per 10m², and less than 100 times lower in the Gila River (Shackley 1992). Again, these nodules are mixed with the Mule Creek marekanites in the alluvium. Nodules up to 5 cm in diameter have been recovered in the 111 Ranch Formation, as large as those at the primary source to the north, suggesting that the sediment load during the Plio-Pleistocene was very great.

Recent unpublished analyses by the Berkeley Archaeological XRF Lab of over 300 obsidian samples from Late Middle Archaic to Early Agricultural contexts at McEuen Cave (AZ W:13:6 ASM) in the Gila Mountains about 30 km north of the Gila River at Geronimo, indicates that Cow Canyon obsidian comprises over 80% of the assemblage very similar to the results in this study. Most, if not all of the raw nodules were procured from the Gila River alluvium in the Safford and San Carlos Valleys, although Cow Canyon material is more common in the 111 Ranch Formation than the Quaternary alluvium of the Gila River. Cow Canyon obsidian was also the only obsidian source known from the Murray Springs Clovis site in southern Arizona. Two of the fluted points were produced from this glass, likely from nodules around 5 cm in diameter, and probably through bipolar reduction. This is the earliest indication of both obsidian procurement and bipolar technology in the southern Southwest (Shackley 1990:374-388).

The "primary source" is located in Apache National Forest, central Greenlee County, Arizona. This is a relatively small primary source along and east of Arizona Hwy 191 located in a Tertiary rhyolite body. The nodules are found within an eroded rhyolite/ash unit that appears to be a remnant dome structure. Perlite or vitrophyre was not evident. The nodules are common in a rhyolite regolith on top of the dome as well as the rhyolite/ash alluvium at the base of the slopes. Nodules up to 5 cm in diameter are available, but most of the nodules are near or less than 4 cm. The density of nodules is fairly high in places, up to 5 per m². Cortex is mainly a thin gray-black. The interior glass is aphyric and the color is as variable as the mid-Tertiary marekanite sources. The most common color/opacity is a near transparent brown-green sometimes with thin banding. A few specimens exhibit a nearly opaque aphyric gray-green banded megascopic character.

The nodules are eroding and funneled into the Cow Canyon Creek/Turkey Creek system possibly reaching the Blue River 15 km east, and west into the Eagle Creek system and then directly into the Gila River. Reduced nodules and flakes occur everywhere on the regolith and in the alluvium. The pattern of reduction is similar to Vulture with sporadic bipolar reduction throughout the source area. These specific areas may reach 10-20 per m². Overall the rejected core/flake density is less than 1 per 5m². There are no published sources on this locality other than the county geology map (Wilson and Moore 1958), and Shackley (1988, 1995, 2005).

Mule Creek Source Area

One of the most startling recent discoveries is the chemical variability in the Mule Creek obsidian (Shackley 1995, 1998). In the earlier study, I noted two "outliers" collected at Mule Creek with significantly higher rubidium concentration values (Shackley 1988:767). These outliers have now been identified as a distinct chemical group, often mixed in the regional Gila Conglomerate with three other chemical groups. The geology in the area is complex and has been studied by Ratté, and others for some time (Brooks and Ratté 1985; Ratté 1982, 2004; Ratté and Brooks 1983, 1989; Ratté and Hedlund 1981; Rhodes and Smith 1972). Primary in situ perlite localities for three of the chemical groups have been located.

At least four distinct chemical groups are evident, distinguished by Rb, Y, Nb, and Ba, and a lesser extent Sr, and Zr elemental concentrations, and are named after the localities where marekanites have been found in perlitic lava: Antelope Creek; Mule Mountains; and Mule Creek/North Sawmill Creek all in New Mexico (see Shackley 1995, 1998). Additionally, during the 1994 field season, a fourth sub-group was discovered in the San Francisco River alluvium near Clifton, Arizona and in older alluvium between Highway 191 and Eagle Creek in western Arizona north of Clifton called provisionally San Francisco River nodules. While in situ nodules have not yet been found they are certainly located somewhere west of Blue River and north and west of the San Francisco River since none of this 'low zirconium' sub-group was discovered in alluvium upstream from the juncture of the Blue and San Francisco Rivers. The genetic relationship between the Mule Creek localities is apparent in the trace element three-dimensional plot (Figure 1), and signifies the very complex nature of the Mule Creek silicic geology, with subsequent depositional mixing in the Gila Conglomerate. Glass at other Tertiary sources in the Southwest, such as Sauceda Mountains and Antelope Wells, also appear to exhibit more than one chemical mode, although not as distinct as Mule Creek or Mount Taylor, discussed below (LeTourneau 1994; Shackley 1988, 1990, 1998, 2005). The Mule Creek case is unusual because the chemical groups are not always spatially discrete and occur together in the extensive Gila Conglomerate which is mainly composed of Mule Creek rhyolite and tuffs in the area where the marekanites do occur (see Ratté and Brooks 1989).

The Mogollon-Datil Province and the Mule Creek area. The Mule Creek Source Region is one of the most geologically explored archaeological sources of obsidian in the American Southwest (Brooks and Ratté 1985; Ratté 1982, 2004; Ratté and Brooks 1983, 1989; Ratté and Hedlund 1981; Rhodes and Smith 1972; Figure 4). Ratté has organized most of the research in the area focusing on mapping and establishing the origin of the volcanics during the Tertiary as originally described by Rhodes and Smith (1972). This region, which is on the boundary between the Basin and Range complex to the west and southwest, and the southeastern edge of the Colorado Plateau, exhibits a silicic geology that is somewhat distinctive; from the decidedly peraluminous glass of Cow Canyon with relatively high strontium values and the distinct chemical variability of the Mule Creek glasses (Ratté et al. 1984; Rhodes and Smith 1972; Shackley 1988, 1990). The province has been named Mogollon-Datil for its location and major floristic association (Elston 1965; Elston et al. 1976). The region is, in part, characterized by pre-caldera andesites and later high-silica alkali rhyolites in association with caldera formation, subsequent collapse and post-caldera volcanism. Most recently, fieldwork and chemical analyses by Ratté and Brooks (1989) lead them to conclude that the Mule Creek Caldera is actually just a graben, although the typical succession from intermediate to silicic volcanism apparently holds.

The obsidian has been directly dated at the Antelope Creek locality (locality 1 in Figure 4 here) to 17.7±0.6 mya by K-Ar, and at the Mule Mountain locality at the same age (17.7±1 mya by K-Ar; Ratté 2004; Ratté and Brooks 1983, 1989). A single obsidian marekanite taken from

the perlitic lava at the Antelope Creek locality was used in the analysis. Unusual in geological descriptions, the obsidian proper was discussed as an integral part of the regional geology.

Rhyolite of Mule Creek (Miocene). Aphyric, high-silica, alkali-rhyolite domal flows from the Harden Cienega eruptive center along southwestern border of quadrangle [Wilson Mountain 1:24,000 Quad, New Mexico; Locality 1 herein]. Unit **ob**, commonly at the base of the flows, consists of brown, pumiceous glass that grades upward into gray to black perlitic obsidian and obsidian breccia. Extensive ledges of partly hydrated, perlitic obsidian contain nonhydrated obsidian nodules (marekenites) which, when released by weathering, become the Apache tears that are widespread on the surface and within the Gila Conglomerate in this region. Age shown in Correlation is from locality about 1 km south of tank in Antelope Creek in Big Lue Mountains quadrangle adjacent to west edge of Wilson Mountain quadrangle. Thickness of flows is as much as 60 m and unit **ob** as much as 25 m (Ratté and Brooks 1989:map text, bold as in original; see also Ratté 2004).

This description adequately characterizes what is found at the other two primary localities (Mule Mountains, and Mule Creek/North Sawmill Creek; see Figure 4). Aphyric, artifact quality marekanites are remnant within perlitic glass lava units. Nodules at all localities are up to 10 cm in diameter although most are under 5 cm. The devitrified perlitic lava, quite friable, erodes easily into the local alluvium. As discussed elsewhere, this is relatively unique in Tertiary sources in the Southwest where most of the obsidian breccia and perlitic lava is often completely eroded away leaving only the rhyolite interior of the dome and a consequent inability to assign the surrounding marekanites to a specific dome structure (Shackley 1988, 1995; see also Bouška 1993; Hughes and Smith 1993). This glass, as well as the Cow Canyon obsidian,

has been found in late period Hohokam and Salado sites west in the Phoenix and Tonto Basins, and in significant quantities at Casa Grande, as well as throughout western New Mexico (Bayman and Shackley 2000; Mitchell and Shackley 1995).

Collections from: USGS Mule Creek 7.5' Quad, Gila National Forest, Grant County, New Mexico; and a road cut at the junction of AZ Hwy 78 and Coal Canyon, Greenlee County, Arizona. 1990s collections: Antelope Creek locality; USGS Harden Cienega New Mexico-Arizona 7.5' Quad, Gila National Forest, Grant County, New Mexico; Mule Mountain locality; USGS Bear Mountain 7.5' Quad, and adjoining Mule Creek 7.5' Quad.

The aphyric glass ranges from opaque black to translucent smoky gray with some gray banding. In over 1000 specimens collected from the Mule Creek/North Sawmill Creek group, three are mahogany-brown and black banded similar to Slate Mountain (Wallace Tank) material. Some of the cortex exhibits a silver sheen, but most is a thin black-brown. The material is a fair medium for tool production, but is very brittle much like Los Vidrios. The pressure reduction potential is, however, very good. The Mule Mountain glass, however, is as good as any in the Southwest, and appears to dominate archaeological assemblages in the western New Mexico region (Shackley 1995, 1998).

The most recent references include Ratté's excellent mapping study and recent paper (Ratté 2004; Ratté and Brooks 1983, 1989), and Shackley's examination of the secondary depositional extent of the source into the Safford and San Carlos Valleys to the west (1992, 1998, 2005).

Specific Comments on the Assemblage

While it is impossible to determine whether the prehistoric knappers in these sites procured the Cow Canyon obsidian from the primary sources north of the project sites, or south in the Gila River alluvium, the distances are so small that it makes little difference (Figure 3). The same can be said for the Mule Creek source material. The one unknown does not match any known and reported source in the Southwest, however the chemistry (200-300 ppm Rb and Zr) is similar to those in the basin and range region of Chihuahua, such as Sierra Fresnal as reported in Shackley (2005). It does not, however, fit the elemental composition of any of these sources specifically.

REFERENCES CITED

Bayman, J. M. and M. S. Shackley

1999 Dynamics of Hohokam Obsidian Circulation in the North American Southwest. *Antiquity* 73:836-845.

Bouška, Vladimír

1993 Natural Glasses. Ellis Horwood, New York.

Brooks, W. E., and Ratté, J. C.

1985 Geologic map of Bear Mountain Quadrangle, Grant County, New Mexico. U.S. Geological Survey Miscellaneous Field Studies Map MF-1782.

Elston, W. E.

1965 Rhyolite ash-flow plateaus, ring-dike complexes, calderas, lopoliths, and Moon craters. *Annals of the New York Academy of Sciences* 124:817-842.

Elston, W., R. Rhodes, P. Coney, and E. Deal

1976 Progress Report on the Mogollon Plateau Volcanic Field Southwestern New Mexico. *New Mexico Geological Society Special Publication* 5:3-18.

Glascock, Michael D.

1991 *Tables for Neutron Activation Analysis* (3rd edition). The University of Missouri Research Reactor Facility.

Glascock, M.D., and M.P. Anderson

1993 Geological Reference Materials for Standardization and Quality Assurance of Instrumental Neutron Activation Analysis. *Journal of Radioanalytical and Nuclear Chemistry* 174(2):229-242.

Govindaraju, K.

1994 1994 Compilation of Working Values and Sample Description for 383 Geostandards. *Geostandards Newsletter* 18 (special issue).

Hampel, Joachim H.

1984 Technical Considerations in X-ray Fluorescence Analysis of Obsidian. In *Obsidian Studies in the Great Basin*, edited by R.E. Hughes, pp. 21-25. Contributions of the University of California Archaeological Research Facility 45. Berkeley. Hildreth, W.

1981 Gradients in Silicic Magma Chambers: Implications for Lithospheric Magmatism. Journal of Geophysical Research 86:10153-10192.

Hughes, Richard E., and Robert L. Smith

1993 Archaeology, Geology, and Geochemistry in Obsidian Provenance Studies. *In Scale on Archaeological and Geoscientific Perspectives*, edited by J.K. Stein and A.R. Linse, pp. 79-91. Geological Society of America Special Paper 283.

LeTourneau, Philippe D.

1994 Geologic Investigations of the Antelope Wells Obsidian Source, Southern Animas Mountains, New Mexico. Paper presented at the 59th Annual Meeting of the Society for American Archaeology, Anaheim, California.

Mahood, Gail A., and James A. Stimac

1990 Trace-Element Partitioning in Pantellerites and Trachytes. *Geochemica et Cosmochimica Acta* 54:2257-2276.

McCarthy, J.J., and F.H. Schamber

1981 Least-Squares Fit with Digital Filter: A Status Report. In *Energy Dispersive X-ray Spectrometry*, edited by K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust, and C.E. Fiori, pp. 273-296. National Bureau of Standards Special Publication 604, Washington, D.C.

Mitchell, Douglas, and M.S. Shackley

1995 Classic Period Hohokam Obsidian Studies in Southern Arizona: A Review and Prospectus. *Journal of Field Archaeology* 22:291-304.

Ratté, J. C.

- 1982 Geologic map of the Lower San Francisco Wilderness Study Area and contiguous roadless area, Greenlee County, Arizona, and Catron and Grant Counties, New Mexico. U.S. Geological Survey Miscellaneous Field Studies Map MF-1463-B.
- 2004 A Guide to the Mule Creek Volcanic Vent, the Rhyolite of Potholes Country, and Obsidian Ledges, Gila National Forest, Southwestern New Mexico. *New Mexico Geology* 26:111-122.

Ratté, J. C., and Brooks, W. E.

- 1983 Geologic map of the Mule Creek Quadrangle, Grant County, New Mexico. U.S. Geological Survey Miscellaneous Studies Map MF-1666.
- 1989 Geologic map of the Wilson Mountain Quadrangle, Catron and Grant Counties, New Mexico. U.S. Geological Survey Geologic Quadrangle Map GQ-1611.

Ratté, J. C., and Hedlund, D.C.

1981 Geologic map of the Hells Hole Further Planning Area (RARE II), Greenlee County, Arizona and Grant County, New Mexico. U.S. Geological Survey Miscellaneous Field Studies Map MF-1344-A.

Rhodes, R. and E. Smith

1972 Geology and Tectonic Setting of the Mule Creek Caldera, New Mexico, USA. *Bulletin* Volcanologíe 36:401-411.

Schamber, F.H.

1977 A Modification of the Linear Least-Squares Fitting Method which Provides Continuum Suppression. In *X-ray Fluorescence Analysis of Environmental Samples*, edited by T.G. Dzubay, pp. 241-257. Ann Arbor Science Publishers.

Shackley, M. Steven

- 1988 Sources of Archaeological Obsidian in the Southwest: An Archaeological, Petrological, and Geochemical Study. *American Antiquity* 53(4):752-772.
- 1990 Early Hunter-Gatherer Procurement Ranges in the Southwest: Evidence from Obsidian Geochemistry and Lithic Technology. Ph.D. dissertation, Arizona State University, Tempe.
- 1992 The Upper Gila River Gravels as an Archaeological Obsidian Source Region: Implications for Models of Exchange and Interaction. *Geoarchaeology* 7:315-326.
- 1995 Sources of Archaeological Obsidian in the Greater American Southwest: An Update and Quantitative Analysis. *American Antiquity* 60(3):531-551.
- 1998 Intrasource Chemical Variability and Secondary Depositional Processes: Lessons from the American Southwest. In Archaeological Obsidian Studies: Method and Theory, edited by M.S. Shackley, pp. 83-102. Advances in Archaeological and Museum Science 3. Springer Publishing, Berlin and New York.
- 2005 *Obsidian: Geology and Archaeology in the North American Southwest*. University of Arizona Press, Tucson.

Wilson, Eldred D., and Richard T. Moore

1958 Geologic Map of Graham and Greenlee Counties, Arizona. Arizona Bureau of Mines, University of Arizona.

Table 1. Elemental concentrations and source assignments for the archaeological specimens.

Sample	Ti	Mn	Fe	Rb	Sr	Y	7r	Nb	Source
159-1-2	960	489	6402	141	84	21	81	20	Cow Canvon
160-1-1	944	514	6658	142	85	17	84	21	Cow Canyon
160-14-1	1136	507	8008	137	132	17	124	17	Cow Canyon
160-16-1	1262	544	8037	139	132	20	126	15	Cow Canyon
160-18-1	1407	655	8525	140	118	30	137	15	Cow Canyon
160-19-1	1376	436	6950	118	120	4	118	10	Cow Canyon
160-20-1	1230	485	8134	136	132	8	124	20	Cow Canyon
168-10-1	830	415	12066	283		91	253	 64	unknown
168-14-1	1154	420	6954	122	122	20	115	17	Cow Canvon
168-31-1	1152	534	7942	134	134	17	127	19	Cow Canyon
168-40-1	1196	530	8028	140	136	16	123	17	Cow Canyon
168-42-1	1266	473	8110	137	139	16	123	16	Cow Canvon
168-5-1	1136	478	7594	130	129	20	120	15	Cow Canyon
168-57-1	1017	449	7329	129	128	13	117	19	Cow Canvon
168-63-1	1122	515	7811	138	135	21	121	14	Cow Canyon
168-67-2	1189	475	7801	140	132	17	119	17	Cow Canvon
168-67-3	1147	428	7427	134	132	16	117	13	Cow Canvon
168-71-1	1218	476	8128	132	132	17	125	19	Cow Canvon
168-79-9	1145	515	7742	132	129	12	127	16	Cow Canvon
168-90-1	1124	497	7714	140	132	12	126	9	Cow Canvon
168-9-1	1380	513	7598	134	130	14	126	12	Cow Canvon
169-100-2	1294	493	8014	137	135	16	114	13	Cow Canvon
169-149-1	939	449	7221	134	127	13	123	14	Cow Canvon
169-151-1	1544	626	7895	138	110	20	116	21	Cow Canvon
169-178-1	1166	532	8049	138	144	22	121	19	Cow Canvon
169-205-1	1186	403	7023	122	118	13	111	15	Cow Canvon
169-232-4	969	393	7941	220	21	41	110	31	Mule Cr/AC-MM
169-255-1	1285	479	10331	109	110	23	89	7	Cow Canyon
169-26-1	1084	630	7847	137	149	19	119	21	Cow Canyon
169-26-2	1107	500	7872	132	138	16	119	4	Cow Canyon
169-26-3	1110	490	7784	131	134	23	117	15	Cow Canyon
169-26-4	1092	479	6929	115	103	22	116	19	Cow Canyon
169-26-5	1336	695	9612	148	145	18	119	15	Cow Canyon
169-26-6	1106	480	7836	120	124	23	115	20	Cow Canyon
169-26-7	1106	475	6924	122	123	15	117	14	Cow Canyon
169-26-8	1218	510	7779	134	139	16	133	11	Cow Canyon
169-28-1	1262	646	8391	138	115	19	134	26	Cow Canyon
169-301-1	1686	479	7620	124	126	5	105	16	Cow Canyon
169-305-3	1543	480	6693	128	116	5	113	20	Cow Canyon
169-3-1	1338	520	7513	127	134	18	122	13	Cow Canyon
169-312-2	1362	634	7376	147	88	21	89	4	Cow Canyon
169-312-3	1112	584	7937	138	116	25	129	14	Cow Canyon
169-330-6	1368	583	8310	132	134	19	122	12	Cow Canyon
169-37-3	987	475	9234	248	20	45	115	33	Mule Cr/AC-MM
169-412-1	1105	535	7682	139	131	18	120	12	Cow Canyon
169-415-3	1485	531	8304	135	139	17	120	19	Cow Canyon
169-415-4	1303	480	8074	136	133	18	121	23	Cow Canyon
169-420-2	1392	611	9138	150	143	19	131	12	Cow Canyon
169-42-4	1178	405	8271	161	94	27	166	16	Cow Canyon
169-432-	1545	543	7765	125	130	13	108	16	Cow Canyon
36									-

Sample	11	Mn	Fe	Rb	Sr	Y	∠r	Nb	Source
169-432-	1106	625	8163	137	110	24	132	18	Cow Canyon
37									
169-432-	1322	566	8150	138	129	10	126	14	Cow Canyon
20	1022	000	0100	100	120	10	120	14	eew earlyen
	4050	000	0440	4.40	40	50	00	404	
169-432-	1353	898	8443	440	10	58	98	121	Mule Cr/N Sawmill
39									
169-432-	1763	609	8916	163	134	14	117	19	Cow Canyon
40									
169-433-1	1319	533	7292	121	123	15	118	16	Cow Canyon
160-/135-	1/02	515	7805	133	133	18	125	17	
103-400-	1402	515	1035	155	100	10	125	17	Cow Callyon
10 400	4040	440	7770	4 4 4		4.0	404	40	0
169-438-	1210	440	1112	141	144	10	124	13	Cow Canyon
13									
169-438-	1011	500	7234	126	133	10	108	25	Cow Canyon
14									
169-438-	1217	484	7669	110	107	22	103	22	Cow Canyon*
15									y
169-442-3	1117	531	7898	141	135	15	132	15	Cow Canyon
100 442 0	1000	551	7000	141	100	10	70	10	
169-442-4	1083	553	6782	144	85	18	78	25	Cow Canyon
169-442-5	1100	655	8223	144	116	19	131	26	Cow Canyon
169-445-2	1144	493	8022	146	138	18	128	11	Cow Canyon
100 110 2	1000	F 4 4	0022	107	04	10	70	24	
169-447-6	1080	541	6819	137	84	19	76	24	Cow Canyon
169-447-7	1069	507	8049	139	143	16	119	21	Cow Canyon
169-450-	1535	490	8120	139	151	20	115	14	Cow Canvon
11					-	-	-		· · · · · · · · · · · · · · · · ·
160-57-3	12/3	500	7580	123	135	16	120	10	
103-57-5	1240	500	7303	125	100	10	120	13	
169-64-1	1081	646	8133	143	116	18	137	19	Cow Canyon
169-71-1	1232	561	7827	135	107	23	124	19	Cow Canyon
169-71-2	1118	477	7495	133	135	14	115	12	Cow Canyon
100 20 1	044	550	6400	1 4 4	04	24	70	24	
100-20-1	941	553	6499	141	04	24	10	24	Cow Canyon?
191-24-2	1065	500	6775	148	86	23	92	12	Cow Canyon
196-1-1	1358	425	6784	122	97	6	115	10	Cow Canyon
203-25-1	947	431	7886	229	14	43	112	25	Mule Cr/AC-MM
	4407	401	7000	405	404	-10	100	20	
210-02-2	1187	465	1132	125	121	20	122	11	Cow Canyon
220-1-1	1235	258	6696	185	20	36	102	24	Mule Cr/AC-MM
269-124-	885	407	7279	207	19	37	101	27	Mule Cr/AC-MM
12		-	-	-	-	-	-		
260-132-1	1023	510	6607	135	88	1/	78	7	
	1020	310	3554	100	00	70	100	101	
269-160-5	850	734	7551	429	9	73	109	131	Mule Cr/N Sawmill
269-160-6	874	663	6562	379	8	74	109	124	Mule Cr/N Sawmill
269-179-	940	500	6567	143	86	17	78	16	Cow Canvon
18									
260-106-	1056	450	6162	130	80	17	83	18	
203-130-	1030	400	0102	150	00	17	05	10	Cow Callyon
10	4000	500	0040	4.40		7	445	47	
269-196-9	1336	520	8218	140	144	1	115	17	Cow Canyon
269-200-9	892	721	7165	399	13	69	96	124	Mule Cr/N Sawmill
269-22-1	1091	459	6364	125	101	17	97	18	Cow Canyon
260 240	007	407	6096	122	01	22	96	17	
209-240-	007	497	0000	155	01	22	00	17	Cow Carryon
10									
269-245-4	948	388	8202	236	22	39	112	21	Mule Cr/AC-MM
269-249-1	1000	485	6538	149	88	22	89	17	Cow Canyon
269-262-1	786	598	6380	360	12	64	98	115	Mule Cr/N Sawmill
	1070	500	7700	404	4 4 4	45	440		Con Conver
209-203-2	0101	500	1190	134	141	15	118	22	Cow Carryon
269-263-3	903	412	8368	233	20	38	114	30	Mule Cr/AC-MM
269-307-1	925	681	6632	382	5	71	99	122	Mule Cr/N Sawmill
269-310-1	122/	501	7001	1/1	100	26	12/	10	Cow Canvon
203-310-1	1224	091	1991	141	109	20	134	10	
269-35-4	970	801	7669	434	6	/5	107	130	IVIUIE Cr/N Sawmill

269-60-3	1080	433	6109	131	84	23	77	10	Cow Canyon
269-77-7	1122	594	7945	129	100	19	130	12	Cow Canyon
RGM1-S3	1557	328	12907	146	110	22	215	10	standard
RGM1-S3	1536	291	13033	152	112	20	224	7	standard
RGM-1-S3	1599	308	12925	146	111	23	216	5	standard
RGM-1-S3	1665	322	12981	150	109	23	221	4	standard
RGM-I-S3	1529	328	12862	151	109	22	225	6	standard

* These samples were slightly below the size limit for EDXRF and fall outside the elemental concentrations for these sources, but still likely from those sources (see Davis et al. 1998).

Figure 1. Rb versus Sr biplot of the elemental concentrations for the archaeological specimens.

Figure 2. Rb versus Zr biplot of the archaeological specimens.

Figure 3. Distribution of obsidian source provenance for all sites combined.

Figure 4. The eastern Arizona/western New Mexico region and sources of archaeological obsidian. Sources = filled triangles; modern towns = filled squares; archaeological sites = filled circles (from Shackley 2005).