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Ecological interactions are not uniform across time and can vary with environmental
conditions. Yet, interactions among species are often measured with short-term con-
trolled experiments whose outcomes can depend greatly on the particular environmental
conditions under which they are performed. As an alternative, we use empirical dy-
namic modeling to estimate species interactions across a wide range of environmental
conditions directly from existing long-term monitoring data. In our case study from
a southern California kelp forest, we test whether interactions between multiple kelp
and sea urchin species can be reliably reconstructed from time-series data and whether
those interactions vary predictably in strength and direction across observed fluctuations
in temperature, disturbance, and low-frequency oceanographic regimes. We show that
environmental context greatly alters the strength and direction of species interactions. In
particular, the state of the North Pacific Gyre Oscillation seems to drive the competitive
balance between kelp species, asserting bottom-up control on kelp ecosystem dynamics.
We show the importance of specifically studying variation in interaction strength, rather
than mean interaction outcomes, when trying to understand the dynamics of complex
ecosystems. The significant context dependency in species interactions found in this
study argues for a greater utilization of long-term data and empirical dynamic modeling
in studies of the dynamics of other ecosystems.

species interactions | kelp-forest ecology | empirical dynamic modeling | nonlinear dynamics

Interactions between species drive patterns of diversity, stability, resilience, and produc-
tivity in nature (1–4). In any ecosystem, the collection of species interactions determines
community dynamics. Yet, since environmental conditions can influence these species
interactions and environmental conditions can vary greatly over space or time (5–9),
shifting interspecies dynamics can drive complex ecosystem changes. For example, the
Stress Gradient Hypothesis (10–12) posits that interactions among species within a trophic
level can shift from competitive to facilitative across large gradients of stress (e.g., thermal,
nutrient, or water stress), with important implications for community dynamics. Similar
hypotheses have been posited about shifts in other key species-interaction types, like
parasitism and mutualism (13, 14), and consumer–prey interactions (15).

Although ecologists have long recognized that many important species interactions
may vary greatly over time and space, this context dependency remains very difficult to
effectively measure and describe. Field experiments that measure interactions can generally
be performed at only a few places over a relatively short window of time. They are
therefore inevitably subject to only a subset of potential environmental contexts that may
not encompass the full range of conditions experienced by that ecosystem over longer
time scales or broader geographies (16). The resulting constraints increase the chance that
the profound influence of environmental context on the outcome of species interactions
ranging from keystone predation (8) to competition (6, 17, 18) to protective symbioses
(19–21) will remain underappreciated. Since expanding the temporal and spatial scales of
such experiments to rectify these challenges is a daunting task, we need additional tools.

Moreover, even when context dependency of species interactions has been examined
explicitly, studies commonly focus on estimating mean interaction strengths, rather
than more comprehensive examinations of interaction variance and dynamics (9). This
averaging approach may be appropriate for answering certain questions, but if species
interactions are highly variable in both magnitude and direction—and therefore “weak”
when averaged—key species interactions that are important drivers of community change
may be dismissed as insignificant observational noise (4).

Meeting these significant challenges requires placing interspecific interactions into their
appropriate full environmental contexts. Controlled experiments can sort out the relative
and interactive effects of a few orthogonal environmental drivers at a time; for example,
examination of the effects of ocean warming and acidification on algal competition (22).
But as species-interaction webs and lists of important environmental variables grow in
size, fully factorial experimental designs quickly become unwieldy, if not impossible, to
implement. One potential solution may lie in coupling long-term ecological observations
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that span a large range of environmental contexts with analytical
methods that can directly estimate context-dependent species in-
teractions from those time-series observations of changing abun-
dances. Since long-term records of species abundances exist for a
wide range of ecosystems, such an approach could help to charac-
terize environmental contingencies in species interactions far more
rapidly and could explicitly examine interaction variability in both
strength and direction in a broader array of contexts.

Here, we explore this alternative approach through a case study,
by examining the effects of environmental context on species
interactions using nonlinear time-series analyses applied to long-
term monitoring data from a southern California kelp forest (23).
Kelp forests are diverse and temporally dynamic ecosystems, in
which many important species interactions are well-documented
through decades of experimental and comparative studies
(24–26). The study of kelp forests has been foundational to
ecological theory, especially regarding the relative influence of top-
down and bottom-up structuring forces in ecosystems (27–31).
Recently, however, findings from long-term kelp-forest research
programs have begun to challenge many long-held beliefs about
the drivers of kelp-forest ecosystem dynamics (32). In particular,
a longer-term perspective has led to growing hints about the
critical importance of environmental context—such as the level of
physical disturbance or the current state of El Niño conditions—
for understanding kelp-forest processes (33–37).

To explore the insights that can be gleaned from time-series
data to determine patterns of variation in species interactions
and their relationships to environmental drivers, we use empirical
dynamic modeling [EDM (38)]. EDM uses information from
single or multiple time series to empirically model relationships
between variables through the reconstruction of dynamic attrac-
tors . The general modeling framework for all EDM methods
is readily adaptable to many different sorts of time-series vari-
ables, including environmental variables manifesting at different
scales (39–41). Because the methods are specifically designed for
nonlinear dynamic systems, EDM—in theory—should be able
to illuminate context-dependent patterns across diverse types of
species interactions. Recently developed EDM methods exist for
uncovering dynamic species interactions from time-series data
(38), but these methods have, to date, been applied only to
simulated and planktonic communities. Their utility to the study
of other ecological systems remains untested. We use EDM to
explore how a kelp-forest species-interaction network varies over
time and to establish environmental context dependency in inter-
action strength and direction.

Results

To characterize environmental context dependency in kelp-forest
interactions between species, we take three general steps (Materials
and Methods; a full step-by-step description and reproducible code
used to produce all analyses and figures are available on GitHub
[https://github.com/owenrliu/env context dependency]). First,
we use dynamic inferred causality tests called convergent
cross-mapping (CCM) (42) to construct a kelp-forest species-
interaction network directly from time-series data. In so doing,
we test for all unidirectional inferred causal signals between five
common kelp-forest species, as well as between five exogenous
environmental variables and those species. Second, for each
identified inferred causal link between species, we reconstruct
species interactions over time, using another EDM tool called
multivariate S-maps (sequential locally weighted global linear
maps) (38, 43). Finally, we show how variability in key species

interactions and overall kelp-forest dynamics can be related back
to the environmental context under which they took place.

Our analyses focus on the dynamics of five common southern
California kelp-forest species, whose interactions are thought to
be important in structuring kelp-forest ecosystems (24, 26, 44)
(Fig. 1). Specifically, we analyze time-series monitoring data from
San Nicolas Island, an uninhabited island that is part of the
northern Channel Islands in southern California. Data collected
there (45) have contributed to significant insights on the influence
of environmental and biological drivers of kelp-forest dynamics
(32, 46, 47).

The giant kelp Macrocystis pyrifera is the eponymous foundation
species of kelp forests (48), the primary canopy- and habitat-
forming kelp along most of the central and southern coast of Cal-
ifornia (25). The monitoring data include both adult Macrocystis
and recruits [sporophytes identified as M. pyrifera, but less than
1 m tall (45)]. We include both size classes of Macrocystis to sepa-
rate the effects of herbivory and competition on adult Macrocystis
versus Macrocystis recruitment. We explore Macrocystis dynamics
and its interactions with two presumptive competitors and two
abundant herbivores. The understory kelp species Laminaria far-
lowii and Pterygophora californica compete with Macrocystis for
space, light, and nutrients (49–51). The two herbivores—the pur-
ple sea urchin Strongylocentrotus purpuratus and the red sea urchin
Mesocentrotus franciscanus—are thought in many places to control
Macrocystis density and can sometimes wipe out entire giant kelp
forests, leading to the alternative ecosystem state known as an
urchin barren (46, 52). Finally, although secondary consumers
(among them, California sea otters, California spiny lobsters, and
California sheephead) exist in this system, recent work in the same
system showed no relationship between predator dynamics and
kelp-forest ecosystem state change (47). In light of that finding
and a lack of sufficient temporal resolution in data on predator
abundances, they are excluded from our analyses.

In southern California, Macrocystis population dynamics can
be driven by nutrient availability and physical disturbance (31,
36). The availability of nitrate is inversely related to seawater
temperature (53) and, over longer time scales, is associated with
oscillations in patterns of upwelling and oceanic currents. Ac-
cordingly, we include five environmental variables in our analyses
to test their relationship to kelp-forest species dynamics and
interactions: sea-surface temperature (SST), physical disturbance
(measured by maximum seasonal wave height [SWH]), and three
indices of low-frequency climate modes: the Multivariate El Niño
Index (MEI) (54), the Pacific Decadal Oscillation (PDO) (55),
and the North Pacific Gyre Oscillation (NPGO) (56).

Drivers of Kelp-Forest Species Interactions. The time series of
species densities at San Nicolas Island (Fig. 1) shows evidence
of a number of dynamic ecosystem states, in contrast to other
kelp-forest literature that describes kelp forests as having only two
alternative stable states—a denuded urchin barren or a healthy
kelp forest (52).

More specifically, in Fig. 1, it is clear that, although sea urchins
were abundant early in the time series, they declined in abundance
by the mid-1990s, likely due to predation by reintroduced sea
otters (47). However, for a number of subsequent years, there was
little evidence of the establishment of a mature kelp forest, which
might be expected under the simple assumption of two alternative
kelp-forest states. Instead, kelp-forest succession was not ob-
served until 2001, when, first, the smaller, understory kelp species
P. californica and L. farlowii increased in abundance, followed the
next year by an extreme increase in the density of mature giant
kelp M. pyrifera. However, this high density of Macrocystis was
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Fig. 1. Raw data for species and physical drivers included in the study. Points represent mean values across 10 spatial replicates, while vertical lines represent
± 1 SD. All variables normalized to zero mean and unit variance, with linear time trends removed. Dashed lines distinguish herbivore (sea urchin) time series
from time series of algae species.

short-lived, and although there was a large recruitment of small
Macrocystis sporophytes observed in late 2005, the subsequent
years saw a decline in Macrocystis and the establishment instead
of a Pterygophora- and Laminaria-dominated forest.

The data suggest that kelp-forest ecosystem structure at San
Nicolas Island is more dynamic than a two-state system. The
multiple ecosystem states observed raise important questions.
Why did Macrocystis not flourish after the decline in abundance
of two of its primary herbivores, the red urchin M. franciscanus
and the purple urchin S. purpuratus? Subsequently, when a mature
kelp forest did establish, why was it so short-lived? More generally,
what drives these observed shifts in ecosystem structure?

Typically, the three kelp species considered here are thought
to exhibit a competitive dominance hierarchy, where M. pyrifera
is the dominant competitor for light and nutrients when these
resources are abundant, but Macrocystis is also more susceptible
to physical stress than Pterygophora and Laminaria (49, 51). Ad-
ditionally, laboratory studies suggest that Macrocystis is preferred
to Pterygophora and Laminaria as a food source for the urchin

species, given its greater relative palatability (57, 58). Therefore,
the strength of competition between Macrocystis, Pterygophora,
and Laminaria is likely dependent upon ambient environmental
conditions, as well as the top-down burden of herbivory.

Overall, we seek to uncover whether the dynamic history
of kelp-forest ecosystem states at San Nicolas Island can be
appropriately described through nonstatic species interactions,
which themselves are underpinned by varying environmental
context.

Empirical Interaction Network. To establish significant species
interactions from the monitoring time series, we use CCM (42).
Applying CCM to the set of six biological and five physical
variables, we find a dense interaction network (Fig. 2). Out
of 60 possible unidirectional links among species and between
species and the environmental variables, 52 are significant. Adult
Macrocystis dynamics are driven by three of the five environmental
variables, with the PDO and the NPGO showing the strongest
inferred causal signals. This finding aligns with recent work by
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Fig. 2. Reconstructed interaction web using results of CCM. Each arrow represents a significant inferred causal signal and link width and opacity scale with the
strength of causal forcing (see full results in SI Appendix). Species abbreviations: L. far, L. farlowii; M. fra, M. franciscanus; M. pyr, M. pyrifera; P. cal, P. californica;
S. pur, S. purpuratus. Physical drivers: NPGO, MEI, PDO, SST, and SWH.

others using different methods (36, 59) that found that the
NPGO and mean nitrate concentrations were primary controls
of giant kelp biomass dynamics across the California coast. More
generally, although the included physical variables, except for SST,
show significant links to many of the biological variables, the
NPGO shows the strongest links to almost all of the biological
variables. Our analysis suggests that more attention should be
focused on the effects of the state of the NPGO in southern
California.

In turn, adult Macrocystis shows strong inferred causal links to
every other biological variable, suggesting that Macrocystis dynam-
ics affect the dynamics of the other study species. This is despite
the fact that the study site at San Nicolas Island does not have a
stable giant kelp forest (raw time series, Fig. 1); rather, the site has
transitioned from an urchin barren (46) to a Pterygophora- and
Laminaria-dominated state to a Macrocystis forest at various times
throughout the 30-y time series. The implication is that, despite
not maintaining dominance in the typical ecological sense of the
word (large abundance and biomass), Macrocystis remains a key
foundation species in this ecosystem. Its dynamics are fundamen-
tally important in driving the dynamics of all the other kelp-forest
species in this time-series dataset (25). This result is relevant to
other ecosystems that experience great variability in structure over

time. With a sufficient past record of changes in abundance, the
CCM approach can help to propose the most important inferred
causal species in ecosystem-interaction networks. For example,
analyses of this sort could help identify key species for ecosystem-
restoration projects.

CCM analysis confirms that the kelp-forest system studied
represents a complex array of significant interactions between
algal species and their herbivores. However, CCM alone does
not elucidate the direction and magnitude of individual species
interactions. To obtain estimates of the interaction strengths
themselves, we use multivariate S-maps (38, 43) (Materials and
Methods). S-maps reconstruct dynamic “attractors” by casting the
abundances of inferred causally related species or environmental
variables into n-dimensional state space, where n is the number
of inferred causal variables, including the focal species itself. For
a set of inferred causally related species, a point in multivariate
space can be plotted by using each species’ abundance as an
axis. The attractor is then created by tracing this multispecies
trajectory forward in time (see example attractor in SI Appendix).
For each point along the attractor, S-maps compute a Jacobian
matrix, the elements of which are the estimated partial derivatives
between species’ normalized densities. These interaction-matrix el-
ements are our measure of species interactions. Because Jacobians
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are computed sequentially for every point along reconstructed
attractors, we obtain estimates of interaction strength that can vary
nonlinearly with ecosystem state.

There are a few important characteristics of S-maps that deserve
mention. First, the S-map estimation procedure, like all EDM
methods, is specifically designed for nonlinear systems and is
therefore an appropriate tool for investigating ecosystems, like
kelp forests, that exhibit nonlinear dynamics, such as alternative
stable states or hysteresis (38). Secondly, because S-maps utilize
reconstructed multispecies attractors, each estimated interaction
is fundamentally based on observations of similar past ecosystem
states—where each state is represented as a multivariate vector of
species densities—rather than a phenomenological extrapolation
of the most recent dynamics in time. This property distinguishes
S-maps from multivariate autoregressive approaches to time-series
analysis (60, 61). Finally, like all modeling approaches, interaction
strengths derived from S-maps can be sensitive to the specific
embedding (i.e., set of predictors) utilized and limited by available
data. Our models utilize predictor variables that are 1) known
from previous empirical research to be important kelp-forest
interactors; 2) show good out-of-sample predictability in both
univariate and multivariate embeddings (Materials and Methods
and SI Appendix, Table S1); and 3) are confirmed by CCM to
drive interspecies dynamics.

S-map models performed well in out-of-sample prediction
(SI Appendix, Table S1), providing evidence that the dynamics
of the multispecies system are nonlinear, predictable, and able
to be captured with the subset of species available in this study.

All models performed better than simple linear models with no
state-dependence (SI Appendix, Table S1). Interestingly, the
model for red sea urchin M. franciscanus did not perform markedly
better than a simple linear model. This may be because red urchins
at San Nicolas Island are harvested by both a small population
of sea otters and by a commercial fishery, whose dynamics are
not captured in our models. Future work on red urchin dynamics
should consider fishing and predation impacts, in addition to the
ecological processes captured here.

In the case of the San Nicolas kelp forest, we find a striking
prevalence of neutral and positive species interactions (Fig. 3).
After grouping species interactions by type, only herbivory (the
effect of urchins on algal species) is predominantly estimated as
a negative interaction. Conversely, the effects of the algal species
on the urchin species, and the urchin species on each other, are
centered around zero. Likewise, contrary to our expectations,
interactions between the algal species (presumptive competition)
are not always antagonistic. Together, these results suggest that
facilitation—direct or indirect—can arise in kelp forests in
multiple contexts (62). For example, since there is evidence
here of strong herbivory, then there may be indirect facilitation
between algal species because of a shared herbivore: A greater
algal density, in general, could ameliorate the negative effect
of herbivory on any one species. Indeed, ref. 46 suggested a
potential mechanism for this observation. As drift kelp (discarded
algal detritus) becomes more available, urchins can shift their
mode of feeding from active and roving to stationary and
passive and cease their destructive grazing. This type of indirect,
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Fig. 4. Interaction of Macrocystis, Pterygophora, and Laminaria with Macrocystis recruits over time (solid lines). Normalized NPGO index is shown with dashed
line. Boxes zoom in on the interactions in a year with elevated NPGO (2000) and a year with low NPGO (2005). Abbreviations are as in Fig. 2.

associative facilitation between algal species may sometimes
outweigh the strength of direct algal competition. Additionally,
Macrocystis forests can mediate wave and current strength and, as a
result, can also help retain reproductive propagules of other species
(25). Indirect facilitation in kelp forests has received comparatively
little attention (63, 64) relative to the strong focus on exploitative
competition between these species for light and nutrients (49,
51), but similar facilitative effects have been documented in
other ecosystems (65). Our analysis does not contradict the
importance of competition in kelp-forest ecosystems. Rather,
it suggests that facilitation, especially indirect facilitation, may be
an additional important structuring force in some environmental
contexts (63). Furthermore, the estimated interactions remain
broadly consistent under two alternative model specifications
for each multispecies model, one with an additional variable-
selection process (SI Appendix, Figs. S9–S12) and one using first-
differenced abundance data (SI Appendix, Figs. S13 and S14).
Together, these alternative specifications provide robust evidence
for state-dependent interspecies interactions in the San Nicolas
Island kelp-forest community.

Effect of Environment on Interactions. The estimated kelp-
forest interactions vary in time. As an example, consider the effects
of Laminaria and Pterygophora on Macrocystis recruitment (in our
analysis, represented by the density of Macrocystis sporophytes
<1 m tall; Fig. 4). Previous research suggests that intact kelp
canopies of Pterygophora and Macrocystis itself can inhibit
Macrocystis recruitment through competition for space and light
(51). During certain periods in the time series, interactions
between the three kelp species are fleetingly strong. Moreover,
the algal species interactions seem to covary with extreme values
of the NPGO, which is a dynamic driver of all of these species,
according to our CCM analysis. For example, during the highest
positive observed NPGO value just after the year 2000, adult
Macrocystis and Laminaria both have strong negative effects on
Macrocystis recruitment, while Pterygophora has a neutral or small
positive effect. Then, in 2005 to 2006, during a low phase of the

NPGO, all three species suppress Macrocystis recruitment (Fig. 4).
Negative values of the NPGO are associated with decreases in
wind-driven upwelling and nutrient availability in the southern
California Current (36, 56), so we can postulate that these
conditions intensify the interspecies suppression of Macrocystis
recruitment—a hypothesis that warrants field tests.

The observed pattern supports the idea that the NPGO, which
we have already established as an important driver of individual
species dynamics, also drives the strengths of their interactions
over time. This may be true of the other environmental drivers
as well. However, one difficulty with assigning direct relationships
between individual environmental variables and particular species
interactions (in any ecosystem) is that all interactions are context-
dependent, and those contexts involve more than one environ-
mental variable and species at a time. For example, in the San
Nicolas case study, we could hypothesize that adult Macrocystis
may be a better competitor with Laminaria and Pterygophora un-
der elevated nutrient levels, indicated by high values of the NPGO
index in the study area (36). Using our models, we can identify
the Macrocystis interactions that occurred under high values of
the NPGO, but these observations may be somewhat confounded
with other elements of the environmental or ecological context at
that particular time (e.g., whether the high NPGO values co-occur
with high versus low SST values). Therefore, we use a state-space
neighborhood-averaging procedure, adapted from ref. 66, to tem-
per the influence of individual observations and determine how
environmental context may affect species interactions (Materials
and Methods).

We use these neighborhood-averaged interactions to investigate
the relationship between physical and biological interactions in
the San Nicolas kelp forest. For the sake of consistency, we
continue with our focus on interactions between Macrocystis,
Pterygophora, and Laminaria (Fig. 4), a subset of the overall
CCM interaction network. Fig. 5 shows how each inferred causal
interaction between algae species varies as a function of the effect
of the NPGO. Similar figures investigating the effects of the PDO
and purple urchins are provided in SI Appendix.
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Fig. 5. (A) Variation in the strength of competition between adult Macrocystis,
Laminara, and Pterygophora, relative to the effect of the NPGO on those
species. Shown are all significant inferred causal interactions between algae
species. (B) Variation in the effect of adult Macrocystis, Laminara, and Ptery-
gophora on Macrocystis recruitment, relative to the effect of the NPGO. Points
indicate individual interaction strengths averaged among the 30 nearest state-
space neighbors, as described in Materials and Methods. Solid lines are loess
smooths.

In Fig. 5A, there are clear relationships between the effect of
the NPGO and the strength and direction of interactions between
algal species. As the NPGO’s beneficial effect on Laminaria, Ptery-
gophora, and Macrocystis increases, apparent competition between
the species becomes more likely, particularly in the effects of Ptery-
gophora on Laminaria. Conversely, under the presumably stressful
conditions associated with negative effects of the NPGO on these
species, positive species interactions—apparent facilitation—are
more common. These findings for the mature algae species align
with ecological theory suggesting that facilitation may be more
common under environmentally stressful conditions, supporting
the Stress Gradient Hypothesis (5, 11, 62). However, we stress that
these contextual results are complex—the fundamentally nonlin-
ear relationships between species illuminated in this study warrant
careful consideration when resolving causal linkages, because each
unique context may result in distinct, state-dependent dynamics.

There is evidence in our models that, in some contexts, the
strengths of environmental forcing and species interactions are
positively, rather than negatively, associated. Consider the rela-
tionship between NPGO context and algal effects on Macrocystis
recruitment (Fig. 5B). When NPGO conditions are poor for
Macrocystis sporophytes, we also observe intensified negative im-
pacts of Pterygophora and Laminaria on Macrocystis recruitment
and an increasingly negative intraspecific effect of adult Macro-
cystis. Overall, Fig. 5 suggests that the balance between growth,
competition, and recruitment among the major algal species vary
significantly with environmental context.

The relationships of algal species-interaction strength with
herbivory are less clear-cut. SI Appendix, Fig. S8 shows how algal

species interactions vary with the effects of the purple urchin
S. purpuratus on each algal species. Under an assumption of top-
down control in this kelp forest, we might expect that a greater
negative effect of herbivory would decrease competition and in-
crease facilitation between the algae species as a result of associative
protection from herbivory (67). Instead, while most estimated
algal interactions suggest facilitation on average, we do not observe
many strong associations between the strength of herbivory and
the strength of those interactions (SI Appendix, Fig. S8). One
exception is the estimated effect of Macrocystis on Laminaria,
which becomes more positive when the negative herbivory effect
of S. purpuratus is strong.

Clearly, for many species interactions, there are strong associ-
ations between environmental stress and the strength of species
interactions, but some of these relationships are the opposite of
what we expect from theory. At the same time, it appears that
variations in bottom-up forcing indicated by the NPGO and
PDO may be just as important in driving species-interaction
strength in this kelp forest than the top-down influence of her-
bivory. Such findings show the value of analytical approaches
that can clearly document how species interactions change in
magnitude and direction over time. Further investigations of the
relative dynamic effects of top-down versus bottom-up forcing in
other cases, especially in ecosystems [such as the rocky intertidal
(68)], where important species interactions have been previously
described, would be a worthwhile future endeavor.

Discussion

Ecosystem dynamics are composed of nonlinear species rela-
tionships, played out within shifting environmental contexts. A
significant challenge in the study of ecosystem dynamics has been
the difficulty in appropriately extrapolating experimental results
to real ecosystems, where multiple species–species and species–
environment interactions are operating simultaneously. We have
used this study to illustrate how EDM, in combination with rich
time-series ecosystem data, can help to tackle this challenge. Long-
term time-series data are not uncommon for many ecosystems
and locations. As illustrated here, such monitoring data therefore
provide platforms for identifying inferred causal interaction net-
works and investigating the influence of large-scale environmental
drivers on interaction strengths using existing datasets, rather than
requiring long-term experiments in the future. In this particular
ecosystem, our analyses of time-series data confirmed many results
from previous experimental work regarding the foundation species
M. pyrifera. Perhaps more importantly, they also revealed patterns
of substantial variability in multiple species-interaction strengths
related to variation in underlying environmental conditions that
were previously unobserved.

The accumulated evidence suggests that in the San Nicolas
kelp forest, environmental context drives positive-feedback loops
in species interactions that maintain ecosystem states. Consider
the effects of the NPGO on the interactions between Macrocystis,
Pterygophora, and Laminaria (Figs. 4 and 5). Lower values of the
NPGO index in the study area are associated with lower nutrient
availability and reduced upwelling (36). In this nutrient-stressed
context, apparent facilitation between the algae species is com-
mon, and the ability of Macrocystis to compete with the under-
story species declines. Furthermore, there can be strong negative
intraspecies and interspecies effects on Macrocystis recruitment
during low NPGO phases. This creates a self-reinforcing loop
that suppresses Macrocystis abundance and promotes Pterygophora
and Laminaria. Even under low herbivory pressure on Macrocystis,
this positive feedback remains. The implication is that under
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nutrient-stressed conditions, Laminaria and Pterygophora should
be favored over Macrocystis in competition, a result consistent with
previous findings in other kelp forests (49). Importantly, because
of the positive feedback, this ecosystem state—an understory
forest instead of a Macrocystis forest—should be stable as long as
the environmental context does not substantially change (46).

Alternatively, under elevated NPGO values, the nature of
competition shifts among the kelp species. Pterygophora’s effect
on Laminaria and adult Macrocystis becomes more competitive,
but Pterygophora’s ability to suppress Macrocystis recruitment is
reduced. These conditions create an opportunity for successful
Macrocystis recruitment and the potential establishment of a kelp
forest replete with both canopy-forming and understory kelp
species. Considered in a dynamic framework, then, the ultimate
outcome of elevated nutrient availability for kelp-forest relative
species abundances will depend on priority effects. Negative inter-
actions between some algal species means that whichever species is
able to establish first in such a situation should be able to continue
to dominate.

We have shown how environmental context underpins the
strength of species interactions that, in turn, drive ecosystem
dynamics. The effects of large-scale environmental signals like the
NPGO and PDO are clearly related to the strength of species
interactions in the San Nicolas kelp forest. Moreover, the relation-
ship of algal species interactions to increased herbivory pressure
(SI Appendix, Fig. S8) suggests that herbivory may reinforce or
stabilize existing ecosystem states, rather than driving ecosystem
change. This finding echoes other early (46) and recent (47) work
done at San Nicolas Island, showing that nutrient regimes and
available drift algae drive sea urchin feeding behavior, rather than
herbivory driving kelp dynamics directly. Overall, we found that
environmental context determines the balance of facilitation and
competition and conclude that changes in environmental forcing
can alter the likelihood of ecosystem state change. Therefore, we
argue [in agreement with others (34–37, 69)] that bottom-up
control is particularly important in driving kelp-forest ecosystem
dynamics in southern California.

One important implication of our study is that if a research
goal is to understand the dynamics of entire ecosystems, studying
solely the mean outcome of single-species interactions may be
highly misleading. We showed how varying species interactions
in the San Nicolas kelp forest are key to a deep understanding of
ecosystem dynamics. In kelp forests and other ecosystems, indirect
associations between multiple species and shifting environmental
contexts may give rise to rare, critical moments when fleetingly
strong interactions determine ecosystem shifts. Rather than being
viewed as purely stochastic events, our results suggest that we
may be able to understand and perhaps predict the likelihood
of these events through monitoring of large-scale environmental
fluctuations and current ecosystem states. This idea needs further
investigation in multiple systems, but if widely applicable, it
means that context dependency—and its role in mediating vary-
ing species-interaction strengths—deserves more attention than
the identification of mean species-interaction strengths (9).

Furthermore, it is the confluence of multiple species interac-
tions that determines overall ecosystem dynamics, and no one
interaction can necessarily be considered in isolation. It is clear
from our results that when environmental context changes, the
entire balance of species interactions changes as well, potentially
precipitating ecosystem shifts or triggering the types of positive-
feedback loops described above. This is likely the case in every
ecosystem. A lesson from those findings, then, is that when investi-
gating ecosystem shifts, it may be misleading to focus too intently
on single interactions that are determined to be important a priori,

without a careful analysis of how and why other interaction links
may be changing concurrently.

We began in this study with a complex set of dynamics observed
directly in long-term monitoring data. From those data, we es-
tablished causation, built interaction networks, and investigated
the influence of large-scale environmental drivers on species-
interaction strengths. As a result, we were able to better understand
why ecosystem shifts occurred, in relation to the environmental
context at the time of those shifts. There is rich dynamic infor-
mation contained in seemingly simple records of species densities
over time, information that can and should be uncovered in
ecosystems with existing long-term monitoring data to advance
our understanding of key species, interactions, and environmental
drivers.

Our study and others using EDM state-space reconstruction
do not take the place of experimentation. Appropriate application
of EDM requires relatively lengthy time series, which may not
be available in many ecosystems. The San Nicolas Island dataset
includes more than 30 y of data, a time-series length that could
be considered a luxury in many systems. Moreover, there are
detailed biological and ecological mechanisms and fine spatial-
and temporal-scale dynamics that we cannot capture solely from
such data analytics. That being said, the reverse is also true—even
the most rigorous field experiments of ecosystem dynamics can be
compromised by context dependencies, like we observed in this
system. Multivariate EDM can help to both contextualize and
guide insights from short-term experiments. Our analyses are a
proof of concept: We started with time-series data from a monitor-
ing dataset in a well-studied, but complex, ecosystem and showed
how previous experimental results play out over a longer time
period in a variable environment. The consistency of our findings
with other kelp-forest studies and ecological theories, such as
the Stress Gradient Hypothesis, argues for the potential of this
approach to provide credible insights into other ecosystems, where
time-series data exist, but where important interactions may not
be nearly as well-established. Where important interactions are
known, EDM can help to explore whether environmental context
matters in interaction variance. Where ecosystem interactions are
not as well-known, EDM may be a helpful first step in identifica-
tion of ecosystem links, whose mechanisms can then be further es-
tablished through other experimental and observational methods.

Materials and Methods

Data Standardization. San Nicolas Island is a small, remote island situated
about 100 km offshore from southern California. The data in the analysis are
from a sampling station on the western end of San Nicolas Island. The benthic
monitoring data herein have been collected more or less every 6 mo for more
than 35 y by the US Geological Survey (USGS) and its Western Ecological Research
Center (45). The monitoring site consists of 10 permanent transects (see ref. 45
for full monitoring protocols). Data from the 10 transects were manually stitched
together to produce single long time series, leveraging spatial replication to
create denser manifolds, a technique called dewdrop regression (70, 71). Each
species’ time series therefore consisted of 630 total observations (63 monitoring
periods across 10 replicates).

Physical data included historical SST from the National Oceanic and
Atmospheric Administration’s Optimally Interpolated Sea Surface Temperature
(https://www.ncei.noaa.gov/products/optimum-interpolation-sst), the MEI (54),
the PDO (55), and the NPGO (56). The actual measures included in analyses
for these four indices were the average values for the 4 mo preceding each
period in the benthic monitoring data. This metric was chosen to approximate
the general environmental conditions under which species interactions were
occurring. The measure for maximum SWH combined modeled wave-height data
from the USGS Geophysical Fluid Dynamics Laboratory (https://cmgwindwave.
usgsportals.net/) with updated modeled data from the California Coastal Data
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Information Program [CDIP MOPv1.1 (72)], both based on data from an array of
buoys distributed across the Southern California Bight. Significant wave height
is here defined as the average height, in meters, of the one-third highest waves
in the same 4 mo preceding each benthic monitoring period. This is meant
to capture any large storm events and provide a general measure of physical
disturbance. Unlike the biological data, where there are unique spatial replicates,
the physical data have only 1 value for each of the 63 monitoring periods. Hence,
the time series for the physical drivers are identical for each of the 10 spatial
replicates. Missing data in the time series (about 15% of data points) were linearly
interpolated between available observations. It is worth noting that, although
there are other approaches to the handling of datasets with missing data in EDM,
simple linear interpolation is expected to perform adequately for our situation, in
which there are few missing points and those missing observations are irregular,
never occurring more than twice in a row (73).

For attractor reconstruction, all time series were standardized to zero mean
and unit variance, common practice in EDM (40). Additionally, the time series
were detrended, removing any linear time trend from the biological variables’
time series.

CCM. We used CCM to infer causal relationships between variables (42). CCM is
described in detail elsewhere (40, 42), but is introduced here.

All EDM analyses, including the CCM and multispecies S-map algorithms
used in this study, are based on extensions of Takens’ theorem of nonlinear dy-
namic systems (43, 74). Takens showed that a dynamic system could be accurately
represented by using “shadow attractors,” or manifolds, built from time series
of observed variables in that system. In basic terms, an attractor or manifold
is built from a set of E-length state-space vectors, where E is the number of
progressive lags of a single variable (for CCM) or the number of separate variables
(for multispecies S-maps) used in the reconstruction. E is called the “embedding
dimension.” Each E-length vector—for example, xt =< xt , xt−1, xt−2 > —is a
point on the attractor, and the set of E-length vectors used for the reconstruction
is called the “library.” Takens showed that these reconstructions are topologically
invariant to the “true” (unobserved) dynamic system, with a one-to-one mapping
between points on the attractor and points on the true manifold. This powerful
theory is what allows EDM to draw inference about nonlinear dynamic systems
through attractor reconstruction.

Before variables were included in CCM-inferred causality tests, we ensured
that each variable could be properly embedded using univariate simplex projec-
tion (40) (SI Appendix). Univariate simplex projection uses attractors built from
multiple lags of single time series (e.g., for variable x, an attractor with an E of 3
would consist of vectors xt =< xt , xt−1, xt−2 >). To predict xt+1, the simplex
algorithm finds the E + 1 nearest neighbors of xt in the library of vectors,
and the prediction x̂t+1 is the average of those nearest neighbors’ values at
t + 1, weighted by their Euclidean distance from xt at t. This is the essence of
simplex projection: A forecast for a given point in state space is surmised from
the forward trajectories of observed nearby points. Keep in mind that because of
the way attractors are reconstructed, the nearest neighbors are not necessarily
nearby in time, but, rather, close in ecosystem “state” to the predicted point.
Applying this method, all variables in the analysis showed significant univariate
predictability based on out-of-sample prediction skill (SI Appendix, Fig. S1). The
best embedding dimension (that is, the number of lags included for each variable
that gave optimal predictability) was extracted for each variable. These best E’s are
an estimate of the dimensionality of the dynamic system experienced by each
species.

Extensions of Takens’ theory state that if two variables (in our case, species
or physical variables) are part of the same dynamic system, their univariate
attractors should be topologically invariant from the true attractor and, therefore,
should be topologically invariant from one another (39, 42). This means that
there will be a one-to-one mapping (“cross-mapping”) between points on the
reconstructed attractor of one variable and the corresponding points on the other
variable’s attractor. Taking advantage of this property, significant cross-mapping
is evidence of causation. In practical terms, if (for example) giant kelp is causally
forced by sea urchins, that forcing should leave a signature on the giant kelp
time series. CCM tests for causation by using the same simplex algorithm as
described above, except that now we use an attractor/manifold built from the
time series of one variable (X) to predict contemporaneous values of another
variable (Y). If the attractor can accurately predict the dynamics of the second

variable, we infer that the second variable has a causal influence on the first.
In simple terms, the inferred causal effect of X on Y is determined by how
well Y cross-maps X (42). In this way, the inference from cross-mapping is the
converse direction of causation. In our example, if sea urchins drive giant kelp,
the dynamic information from the urchin time series should be reflected in the
kelp dynamics, and, therefore, we should be able to recover (cross-map) dynamic
information about sea urchins using the kelp time series (which, indeed, we
can; SI Appendix, Fig. S3). Moreover, as we use more data in the cross-mapping,
the predictive skill should increase. This is because with more data, the attractor
“fills in,” or becomes denser, and, consequently, predictions made from nearest
neighbors become more accurate. This property is called “convergence” (hence,
“CCM”) and is an essential criterion for causation and what distinguishes corre-
lation from causation (42). We assessed convergence by testing whether cross-
mapped prediction accuracy (Pearson’s ρ between observations and predicted
values of the cross-mapped variable) improves with library length (the number of
embedded vectors used to construct the attractor). If two variables are spuriously
correlated and not causally linked, CCM will not display convergence.

Following Sugihara et al. (42), each separate CCM test used an attractor built
from one variable to predict another. Causation was tested by plotting predictive
skill ρ against library size. For simplex and CCM analyses, we used leave-one-
out cross-validation to assess model skill, where models were built excluding
one observation at a time and used to predict that observation. Then, the process
was repeated for all observations. We used three restrictive criteria for CCM to
establish inferred causality, to ensure to the extent practicable that CCM did not
simply represent spurious correlation between time-series variables (75). The
criteria were, first, that cross-map skill using all available data were significantly
greater than zero; second, that predictability was convergent, defined by whether
the predictive skill at maximum library size was significantly greater than predic-
tive skill at minimum library size (71); and, third, that that CCM significance was
robust to the use of a seasonal null model and, hence, did not simply represent
effects of shared seasonality in species dynamics (see the online repository at
GitHub [https://github.com/owenrliu/env context dependency] for details). Any
species interactions that failed any of these tests were deemed noncausal. All
species–species and species–environment interactions were tested by using CCM
(Fig. 2 and SI Appendix, Fig. S4), and significant interactions among species that
met inferred causality criteria were retained for use in building multispecies
attractors.

Multivariate S-Maps. Multivariate attractors follow the same logic as the attrac-
tors described above, except that, instead of using single variables to reconstruct
the attractors, we use contemporaneous values of multiple variables (38). That
is, instead of library vectors or points in state-space taking the form of, for
example, < xt , xt−1, xt−2 >, they now are formed in true multivariate space,
e.g., < Kelpt , Urchint , Nutrientst >. Additionally, instead of making predictions
using only nearest neighbors, S-maps [sequential locally weighted global linear
maps (43)] use all library vectors and exponentially weight them by their distance
to the prediction vector before using linear regression to make a forecast; vectors
closest to the prediction vector have the greatest weight. Because library vectors
are weighted individually in this manner, a separate linear map is created for each
predicted vector. This is why the procedure is called “sequentially weighted global
linear maps.” Conceptually, as the dynamic system moves along the surface of the
attractor, S-maps sequentially compute new linear maps to the next point. The
varying species interactions (the measure of interest) are the coefficients of these
local linear maps.

Mathematically, when making a prediction for a target point x∗, each library
vector (point on the attractor) xk is given a weight

wk = exp
−θ || xk − x∗ ||

d̄
,

where || xk − x∗ || is the Euclidean distance between the library and target
vector, and d̄ is the average distance to all library vectors. By controlling the
strength of local weighting, the single parameter θ controls the nonlinearity of
the model (38, 43).

As described in Results, the multivariate model for each species consisted
of all the species that showed significant causation through CCM analysis.
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An example of a multispecies attractor is shown in SI Appendix, Fig. S5. Addition-
ally, the preferred model for each species was then constructed by finding the
value of θ (the amount of nonlinearity) that optimized out-of-sample prediction
using leave-one-out cross-validation. Each S-map model resulted in 500 to 520
estimated interactions for each significant link in Fig. 2 across the entire dataset,
which were then compared to the environmental conditions under which they
took place. For individual model θ and performance metrics, see SI Appendix,
Fig. S2 and SI Appendix, Table S1.

State-Space Interaction Averaging. To compare Jacobian elements to each
other (i.e., to compare the effect of environmental drivers to the effect of biologi-
cal drivers on target species’ dynamics), we adapt a method from ref. 66. For each
multispecies S-map model, we extract all estimated species and environment–
species interactions (coefficients from local Jacobians). Then, for each estimated
interaction, we find its 30 nearest neighbors in the multivariate model space—its
30 most similar environmental and biological contexts—and then calculate the
average value of the interaction among those 30 neighbors. By doing this for
all estimated interactions, we can observe the general environmental contexts
that give rise to stronger or weaker species interactions, while smoothing across
individual observations.

Supplementary Models. In the above analyses, we are interested in the influ-
ence of causal environmental variables on species interactions in kelp forests. We
use causation tests (CCM) and multivariate embeddings to explore how impor-
tant interactions vary along environmental gradients. However, as a robustness
check, we want to ensure that the results are not overly determined by the
particular choice of variables to include in each model. In the main analysis, we
choose to include in multivariate models all the physical and biological variables
that showed inferred causal signals, as determined by CCM. Another feasible
choice for model selection in EDM is to try to find a combination of predictor
variables that best predict the target biological variable. We performed a variable-
exclusion model-selection process that started with all candidate-inferred causal

variables for each species and removed variables sequentially until predictability
began to decay. In the course of model selection, if model dimensionality (total
number of included variables) falls below the optimal embedding dimension for
that species (derived from univariate simplex; SI Appendix, Fig. S1), we add lags
of the focal variable to retain the optimal embedding dimension.

Variable reduction through model selection does not strongly affect the di-
rection and variability of the remaining estimated species-interaction coefficients
(SI Appendix, Figs. S10–S12), providing further confidence that the Jacobian es-
timates of specific species interactions are robust to alternative embeddings. For
the main-text results, we retain the full models that include interactions of each
species with all physical and biological variables that showed inferred causal
signals in CCM analyses because in this study, we are interested primarily in
variation in species interactions driven by environmental fluctuations, and not
exclusively in maximizing the predictability of any one species’ dynamics.

As an additional robustness check, we rerun the multivariate S-map
models using a version of the data that is first-differenced (SI Appendix,
Figs. S13 and S14). Often, EDM uses first-differencing to detrend long time series
and focus on dynamics. The same variables were chosen for each species’ model,
as in the multivariate models from the main analysis.

All analyses in the study were performed in R (76), especially utilizing the
rEDM package [version 1.11.0 (77)]. All code and reproducible analyses are
included in SI Appendix.

Data, Materials, and Software Availability. Time-series data and code
data have been deposited in GitHub (https://github.com/owenrliu/env context
dependency) (78).
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