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Developing Measures of  Interval Breast Cancer Risk 
Benjamin John Hinton 

Abstract 

One in eight women experiences breast cancer in their lives, making it the number one cancer 

affecting women. Interval cancers are cancers that are found by women in between normal 

screening mammogram intervals, and often represent a failure mode of mammography screening 

where it was unable to detect a lesion. While supplemental screening can help prevent these interval 

cancers, referring all women with interval cancer risk to supplemental screening would lead 

additional biopsies, stress, and false positives. A need exists to create a specific measure of interval 

risk that could help identify women that would truly benefit from supplemental screening.  

The goal of this dissertation was to develop that measure of interval risk and is centered on the 

hypothesis that advanced computer vision methods can identify metrics of detectability that quantify 

risk of interval cancer more effectively than currently used metrics of breast density. I first present 

methods to better quantify composition of limbs, and trunk, as compositional measures have been 

shown to relate to cancer risk. I then present an algorithm that directly quantifies mammogram 

detectability by creating and inserting pseudo-lesions in digital mammograms and summarize its 

ability to quantify interval risk. I lastly present a method using deep learning to create and train 

classifier to identify risk of interval cancer. I describe the underlying hypotheses behind these 

methods, their effectiveness of identifying interval risk compared to current gold standards, 

strategies for improving their effectiveness, and future steps.  

In conclusion, we have developed several methods that help to improve upon current measures 

of interval cancer risk. Further work to refine and develop these methods could be applied to 

improve risk models, identify groups of women at high risk of interval cancers, develop software to 
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aid radiologists, and help radiologists identify women who would benefit from supplemental 

screening. As a result, these methods may be able to help prevent interval cancers, improve 

sensitivity of screening, and save lives. The following chapters outline these tools and methods, as 

well as ways they can be applied.  
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1 | Background 

1.1: Motivation: Breast Cancer  

Breast cancer is a common cancer with 1 in 8 women experiencing some form of malignant 

breast cancer in their lifetime and is the number one killer of women in their 50s (1,2). It accounts 

for nearly 1 in 3 cancers in women and is the second leading cause of cancer death in women after 

lung cancer (1). Worldwide there are roughly 1 million yearly diagnoses and over 400,000 deaths 

annually (3), and costs related to breast cancer are in the tens of billions (4,5).   

There are several internal and external factors that can increase the long-term risk of breast 

cancer. Internal risk factors such as age, specific genetic mutations such as BRCA1 and BRCA2, late 

pregnancies, late menopause, and breast density all increase the risk of breast cancer. External risk 

factors such as alcohol consumption, family history of breast cancer, use of hormone replacement 

therapy, use of oral contraceptives, and Body Mass Index (BMI) are all additional risk factors for 

breast cancer (6).  

Several studies have shown that early detection is one of the most important factors in long 

term breast cancer survival. Women diagnosed with earlier stage cancers have much higher survival 

rates (2), and regardless of node positive or negative status, the size of the detected tumor has been 

shown to be a key factor in the 15 year survival rate (7). Precision medicine has also helped to 

identify certain subgroups of women that early detection would not benefit. Esserman et al 

determined that early detection does not benefit or improve survival rates in women with fast 

growing and aggressive tumors. In women with moderately aggressive and slow growing tumors, 

however, it was shown that early detection did improve survival rates (8,9). These studies have 

shown that making subclassifications of women based on various factors have helped improve 
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mortality rates in breast cancer, and that improving and optimizing screening for breast cancer is 

hugely important. 

Digital mammography is the clinical standard in screening for breast cancer in average-risk 

women (10). Clinically, screening mammography is defined as routine scheduled mammograms that 

simply look for signs of cancer in asymptomatic women, while diagnostic mammograms are 

mammograms that are specifically looking to investigate a specific symptom, such as a lump, breast 

pain, or other concerning issue (10). In brief, mammography works by sending low energy X-rays 

through breast tissue to produce an image that can distinguish between tumors and healthy breast 

tissue (11). The details of X-ray mammography, its imaging process, and its limitations are discussed 

in detail in Section 1.4: . Overall performance of digital mammography in one study observed a 

sensitivity of cancer detection in screening mammography of 87.8% and specificity of 90.5% (12). 

One study showed that radiologically dense breast tissue can reduce the screening sensitivity of 

detection down to 68% in high density mammograms, as rated by the Breast Imaging - Reporting 

and Data System (BI-RADS) breast density, leading to cancers missed by screening mammography 

(13,14). A detailed discussion on what breast density is and how it affects tumor detection is in 

Section 1.3:  and 1.5: . These cancers that go undetected by mammography are called interval 

cancers (13), and they are of great interest to researchers and the focus of this dissertation. 

Interval cancers are commonly defined as invasive breast cancers diagnosed within 12 months 

of a normal screening mammogram (13). Interval cancers represent a failure mode of screening 

mammography, making them a large research topic and area to improve. Women usually detect 

these interval cancers through self-examinations or experiencing various symptoms that lead to a 

clinical check-up or diagnostic mammogram (1,10). Further, interval cancers have characteristics that 

differentiate them from screen-detected cancers. Interval cancers are on average larger than screen 
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detected cancers when found, are at a higher histologic grade, and have higher expression of markers 

for cancer aggressiveness, such as bcl-2, p53, and Ki-67 (15), making these cancers more deadly and 

dangerous. A significant goal in breast cancer research is to improve detection capabilities, allow for 

earlier detection of cancers, and reduce the number of breast cancer deaths by reducing the number 

of interval cancers (13).  

In the following sections of this chapter, properties and causes behind interval cancers are 

discussed along with currently used measures to quantify interval cancer risk. Additionally, the 

imaging physics behind mammography is detailed to better understand the limitations of 

mammography that leads to interval cancers. Lastly, advances in technology are discussed that could 

potentially improve quantifying risk of interval cancer, such as computer vision methods and deep 

learning methods. 

1.2: Interval Cancers 

In order to understand how to identify interval cancer risk, we need to understand interval 

cancers. Roughly 13 percent of the breast cancers diagnosed in the U.S. are interval cancers based on 

initial assessment (12), making it a significant proportion of breast cancers. The American College of 

Radiology (ACR) defines an interval cancer as a cancer diagnosed in between normal screening 

mammograms, usually within 12 or 24 months of a normal result (10,16). These interval cancers can 

occur for several different reasons: 

- True interval or mammographically occult: These are cancers where the prior screening 

mammogram showed no reason for assessment and appeared normal. This includes interval 

cancers that were not mammographically visible even at the time of diagnosis, and is roughly 

42% of interval cancers (17,18). 
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- Minimal sign of cancer: There are some interval cancers where, in hindsight, there was a 

possible abnormality but it would not have necessitated further assessment at the time. This 

is roughly 23% of interval cancers (17,18). 

- Radiologist Error / False Negative: These are interval cancers where an abnormality was 

clearly visible in the prior mammogram and should have warranted additional assessment. 

This is roughly 35% of interval cancers (17,18). 

A major goal is to improve and reduce each type of these interval cancers, if possible. Interval 

cancers that were not present at the time of the mammogram are an unimprovable category without 

increasing the screening rate of mammography. The United States Preventive Services Task Force 

(USPSTF) recommends biennial screening mammography for women aged 50 to 74 (10,19). While 

increasing the rate of screening could potentially catch these fast growing cancers, that benefit is 

offset by the risk of additional biopsies or false positives (19).  

The subset of interval cancers where the tumor was present in the mammogram is of most 

importance to researchers. A large fraction of these interval cancers have tumors that are occult and 

undetectable in the image (17). This effect is commonly called mammographic masking, and can lead 

to the type of interval cancer where lesions are missed by screening mammography due to dense 

tissue masking the presence of a lesion (15,20,21). Magnetic resonance imaging (MRI) or ultrasound 

(US) in addition to screening mammography has been shown to reduce interval cancer rates in high 

risk populations (13,22,23). If we can identify mammograms that are likely to mask any future 

tumors and make them invisible, we can refer those women at high risk of a missed cancer to 

supplemental screening like ultrasound or MRI. In order to accomplish this, we need to identify the 

groups of women that are at highest risk of interval cancer. 
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Radiologist fatigue is a factor in interval cancers where the cancer is present and visible but 

undetected due to user error (17). Without altering the workload or work flow of radiologists, these 

interval cancers are unlikely to be helped. However, if we are able to identify a subset of women 

with a high risk of interval cancer or low detectability in their mammograms, we may be able to 

subdivide the screening population into a higher interval risk group and a lower interval risk group, 

allowing for a more optimized workflow.  

Regardless of the type of interval cancer, on average interval cancers have several different, and 

more dangerous, characteristics compared to screen detected cancers. First, interval cancers are on 

average larger than screen detected cancers when detected, with tumors 2-4 cm having an interval 

odds ratio (OR) of 2.2 and tumors larger than 4 cm having an interval odds ratio of 2.57 (20). This is 

significant, as larger tumor sizes directly lower the 15-year survival rate of breast cancers (7). Tumors 

that were lymph node positive had an 80.4%, 70.1%, and 47.1% 15-year survival rate when found at 

sizes between 0.1 - 1 cm, 1.1 – 2 cm, and 2.1 – 5 cm respectively. Further, interval cancers on 

average tend to be more aggressive, with a higher percentage of interval cancers having p53 and Ki-

67 expression compared to screen detected cancers, which are markers for tumor aggressivity (15). 

35 percent of interval cancers had p53 expression compared to only 16 percent of screen detected 

cancers, and 45 percent of screen detected cancers had 0-4% cell expression of Ki-67, while only 25 

percent of interval cancers had the same expression level. Only 13.1 percent of screen detected 

cancers had over 20 percent cell expression of Ki-67, while 26.6 percent of interval cancers had the 

same expression level.  Additionally, when interval cancers are found they are more likely to exhibit 

lymph node involvement and are of a more severe histological grade, with 43 percent of interval 

cancers being at histological grade 3 compared to only 19 percent of screen detected cancers. 

(15,20). These factors, in addition to the known evidence that earlier detection of breast cancer leads 
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to higher survival rates (2,7), provides strong motivation to provide analyses that help identify risk of 

interval cancer in order to help those women get their cancers detected earlier if they do happen.  

It has been shown that additional screening methods can better detect interval cancers 

compared to using mammography alone. Adding ultrasound to mammography was shown to detect 

an additional 4 interval cancers per 1000 mammograms, and adding magnetic resonance imaging to 

mammography was shown to detect an additional 14.7 interval cancers per 1000 mammograms 

(13,22,23). This is because in true interval cancers, breast density makes it difficult to distinguish 

between lesions and other healthy types of tissues, and different imaging modalities are able to see 

through and distinguish between tissues differently. This will be discussed further future sections. 

Because it is more difficult to detect lesions in certain types of mammograms and supplemental 

screening could aid in helping identify lesions, legislation has been passed or is in process to be 

passed in 39 states to mandate notifying women when they have dense breast tissue, including the 

recommendation to consider additional supplementary screening methods (24). 

Unfortunately, recommending all women with dense breasts get supplemental screening is both 

impractical and not beneficial, as it would cause roughly 50% of women to get supplemental 

screening and would increase the false positive rate (19). Currently, a more specific and stronger 

measure of interval cancer risk is required before supplemental screening is reasonable and practical 

to perform in those women. If we can better identify women at high risk of interval cancer, we can 

identify the women that would most benefit from supplemental screening, while maintaining regular 

screening methods for the women that it benefits best. This would be the optimum method to both 

prevent the stress, cost, and false positives inherent in additional screening, but also give the 

additional screening to the women who benefit from it. 
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1.3: Current Methods of Interval Risk 

To understand how to make a more effective measure of interval risk, we need to understand 

the current methods that exist of quantifying interval cancer risk. Over the years there have been 

several measures that have served as proxies for interval risk, some more sophisticated than others.   

First, many demographic and environmental factors are not only risk factors for breast cancer, 

but also risk factors for interval cancer. In particular, a young age, use of hormone replacement 

therapy (HRT), and oral contraceptive use, and low BMI are all known to be associated with higher 

interval cancer rate (25). Being older was shown to be protective of interval risk, as women aged 60-

69 had roughly half the odds ratio for interval cancer compared to those aged 50-59 (26). At least 

some of the interval risk associated with these measures is due to the fact that these measures 

intrinsically affect breast density.  

One of the more established basic measurements known to be a risk of interval cancer is high 

breast density. A plethora of studies have shown increased interval rate with higher breast density 

(12,13,16,20,25,27), with odds ratios for interval cancer risk being up to 5 times higher in the highest 

density groups compared to moderate and low density groups. Given that breast density is a known 

risk factor for interval cancer, clinicians have spent considerable time to quantify and standardize 

breast density measurements. Currently, radiologists rate the breast density of the images on a 4 

point categorical scale called the BI-RADS density scale (10). This scale places women into either 

category A: Entire Fatty, B: Scattered Fibroglandularities, C: Heterogeneously Dense, D: Almost 

entirely Dense. Representative images of each level are shown in Figure 1-1. Roughly 8% of the 

population is in category A, 40% in B, 44% in C, and 8% in D (16). Mammograms are categorized 

on this scale based on the judgement of the radiologist, so this is a subjective scale, with a moderate 

interobserver agreement with a kappa score of roughly 0.44-0.54 (28,29).  
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Figure 1-1: Representative images of the four BI-RADS density categories: A-fatty, B-scattered 

fibroglandularities, C-heterogeneously dense, D-almost entirely dense. The dense tissue seen in categories C 

and D can mask tumors and increase the risk of interval cancer. Source:  (30) 

Even though BI-RADS density is on a subjective scale and has reproducibility issues, it still is 

one of the better indicators we currently have for risk of interval cancer. Women with BI-RADS 

density D breasts have a 5.65 times higher interval cancer risk compared to women with BI-RADS 

density B breasts (13,16). Individuals with dense breasts had nearly 3 times higher interval cancer 

rate than individuals with non-dense breasts (13). Luckily it has been shown that women with dense 

breasts have a reduced interval cancer rate with additional or supplemental screening, such as 

ultrasound (US) or magnetic resonance imaging (MRI) (13). If we can more effectively identify 

women at higher risk of interval cancer, we can help to lead conversations and better identify 

women that would benefit from supplemental screening, helping to reduce mortality of the disease.  

In addition to using BI-RADS breast density, several groups have created risk models by 

incorporating information from both demographic information and breast density information. 

These risk models have also shown significant associations with interval breast cancer (13). The Gail 

risk model combines information about age, age at first menstruation, age at first live birth, first 

degree relatives with breast cancer, previous breast biopsies, and race/ethnicity. This model was 
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shown to be significant in projecting 10 year risk of breast cancer (31,32). Also, the Breast Cancer 

Surveillance Consortium (BCSC) Model combines information about age, race/ethnicity, first degree 

relatives with breast cancer, prior biopsies, history of Ductal Carcinoma In Situ (DCIS), breast 

augmentation, or mastectomy, and BI-RADS Density. This BCSC Model has been shown to 

improve 5 and 10 year risk projections of breast cancer (33). In addition to being risk factors for 

breast cancer in general, these have been studied to see if they are indicative of interval cancer risk. 

In addition to breast density, the BCSC five-year risk has been shown to be predictive of interval 

cancer risk and help stratify individuals in to higher risk categories of interval risk (13). 

While risk models and BI-RADS density have helped identify individuals at higher risk for 

interval cancer, there is a flaw inherent to BI-RADS density that likely reduces its strength. BI-

RADS density is a subjective measure, with inherent variance and interobserver disagreement (34). 

To try to combat this subjectivity and variance, several companies hypothesized that if they could 

standardize the measure and remove the variance it would increase its strength as a predictor of 

interval risk. Several companies and automated programs exist to automate breast density measures 

and categorize mammograms into BI-RADS density categories such Cumulus (University of 

Toronto, Toronto, CA) (35,36), Volpara (Wellington, New Zealand) (37,38), Quantra (Bedford, MA, 

USA) (37,39), and Single X-ray Absorptiometry (SXA) (40,41). Figure 1-2 shows a sample output 

from the Volpara program for both a non-dense and a dense breast. Many of these programs have 

been found to reproducibly automate the process of breast density measures (41). While these 

programs have high consistency, one study showed that using these automated measures did not 

increase the interval risk compared to using BI-RADS density, as seen in Table 1-1 (16). This 

indicates that while these measures removed the subjectivity, they did not add any additional 

information to help identify interval cancer risk.  
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Figure 1-2: Sample images showing the automated categorization of breast density for a low-density breast 

(top, BI-RADS density A), and a high-density breast (bottom, BI-RADS density C) from Volpara Software. This 

turns the subjective measure of BI-RADS density into a more objective and repeatable measure. Source: (42)  

 

Table 1-1: Interval cancer odds ratios using BI-RADS density as a predictor versus using automated BI-RADS 

density measures. One can see that the interval cancer odds ratios do not differ significantly even though 

automated measures remove some level of subjectivity. Source: (16) 

Clinical BI-RADS 
Density 

Interval Cancer Odds 
Ratio (95% CI) 

Automated BI-RADS 
Density 

Interval Cancer Odds 
Ratio (95% CI) 

A - Fatty 0.74 (0.41-1.36) A - Fatty 0.73 (0.42-129) 

B - Scattered 1.00 (REF) B - Scattered 1.00 (REF) 

C – Heterogeneous 2.51 (1.74-3.61) C – Heterogeneous 2.22 (1.44-3.43) 

D - Dense 5.09 (3.11-8.35) D - Dense 5.65 (3.33-9.60) 
 

Other researchers have taken a more analytical approach to identifying interval risk and 

attempted to identify specific image properties of the mammogram that correlate to interval risk. 

These researchers have analyzed the properties of the mammograms themselves, rather than the 

characteristics of the women, and generated different measures of image statistics and texture that 

could correlate to interval risk (43). These features include everything from first order image 

statistics like means and standard deviations, second order statistics like gray level co-occurrence 

matrix (GLCM) measures, and other novel features to summarize image data, and many have found 
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these measures to be significant for interval risk (43,44). Strand et al found several features: first that 

eccentricity and skewness of intensity gradient measures differentiates between interval and screen 

detected cases with an odds ratio of 1.32 and 1.20 (45), and second that longitudinal fluctuations of 

breast density could also indicate risk of interval cancer, with an interval cancer odds ratio of 1.17 

(46). Byrne et all found various subjective parenchymal patterns had significant odds ratios for 

cancer (47). Another study found that a support vector machine (SVM) of 158 different 

mammographic density, similarity, and texture based features were able to significantly add to risk 

predictions of near-term cancer (48). Another study found that various features Quantitative Image 

Analysis (QIA) features and several 3 Component Breast (3CB) QIA features were able to help 

distinguish between benign and malignant tumors (49). Lastly, Malkov et al analyzed 46 different 

mammographic image features and found several were significantly associated with breast cancer, 

like the fractal dimensions and second order statistics (50). Unfortunately, these measures have not 

broken into the mainstream of been significantly better than other interval measures like the current 

risk models. 

Other companies have tried to make automated programs to detect or help diagnose various 

cancers, called Computer Aided Diagnosis (CAD)  (51–56). These programs usually use model 

observers, feature detectors, or some other means to identify regions of interest (ROIs) where a 

tumor is possibly located, and a radiologist can then investigate those regions more rigorously 

(51,57). These systems have been shown to be highly sensitive in lesion detection, but they have 

several false positive per case as well (53). Overall, these CAD methods have a true positive fraction 

(TPF) of 80-95%, but their false positive fraction (FPF) leads to many false positives that 

radiologists need to ignore (54). However, most of these programs aim to aid radiologists in 

determining and detecting regions of interest (ROI) for potential cancers, and not on determining 

the actual ability of mammograms to detect an image or risk of interval cancer. While these 
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programs and pieces of software are interesting and helpful, they are asking a fundamentally 

different question from the question. 

While many systems have been developed to improve on BI-RADS breast density, develop QIA 

methods to analyze images, and use CAD systems to identify cancer locations, these methods have 

not generated significant and actionable results for interval risk. As a result of this and to expand the 

effort to identify interval risk predictors, the ACR has called for direct measures of mammographic 

masking and detectability and interval risk. We aim to use new methods to identify and predict 

interval cancer risk in order to refer women to supplemental imaging methods that can help reduce 

deaths and other injuries due to interval cancer.  

1.4: X-Ray Imaging 

In order to create better measures of interval risk, we need to understand why current measures 

of interval risk, like BI-RADS density, correlate with interval risk. In order to understand why BI-

RADS density is one of the stronger risk factors for interval cancer, we need to understand how X-

ray imaging systems such as mammography work, and fail, as imaging systems. 

Fundamentally, mammography is a form of X-ray imaging specialized for imaging breast tissue. 

X-rays were first discovered in 1895, and they were first applied to try to identify breast cancers in 

1913 (11,58). All X-ray imaging technologies, like X-Ray, computed tomography (CT), and 

mammography, create X-rays and images using the same fundamental imaging physics and methods, 

as seen in the schematic of the X-ray emitter in Figure 1-3. In the emitter, energy is passed through 

the filament or cathode, producing high energy electrons. These electrons then travel towards the 

target on the anode at extremely high speeds due to a voltage difference between cathode and 

anode. When these electrons strike the target, X-rays are created that fly in a variety of directions. 

The X-rays that make it through the window are the X-rays that eventually go through the tissue and 
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create an image (11). Depending on the composition of the anode, cathode, and energy (kVp), 

different X-ray spectra will be produced. 

   
Figure 1-3: Diagram of an X-ray tube with labeled components. The parameters surrounding the cathode, 

anode, and the voltage affect the spectrum of X-rays produced. Source (59)  

Further, in almost all cases the camera unit contains a filter at the window, which is a thin piece 

of metal that absorbs the lower energy X-rays that do not aid in the imaging process, which helps to 

improve image quality and reduce the amount of radiation that the patient receives (11,58). Most of 

the lower energy X-rays that exist are just absorbed by tissues and contribute to patient radiation 

exposure, but do not aid in the imaging process. To expose patients to less dose and improve image 

quality, after the X-rays are produced they go through a filter to reduce these lower energy, more 

harmful X-rays. These filters are usually thin sheets of various metals, from bronze to aluminum to 

tungsten (11). Figure 1-4 shows the difference in X-ray spectrum before and after filtration.  
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Figure 1-4: X-ray spectrum before and after filtration. Inherent and additional filtration sources help to narrow 

the energy range of the spectrum and reduce low-energy photons that do not contribute to imaging. Source: 

(60) 

Once X-rays are produced, different tissues will absorb, or attenuate, X-rays at different 

amounts, depending on a number of factors. Most importantly, higher density materials attenuate X-

rays more strongly (11). A film or detector is placed on the opposite side of the tissue as the X-ray 

emitter and detects the amount of X-ray photons that make it through the tissue at each point, with 

the differences in attenuation highlighting different tissue areas. For example, Figure 1-5 

demonstrates that bone tissue attenuates X-rays much more than surrounding tissue, leading to the 

contrast between tissues that allows clinicians to detect broken bones or other anomalies (11). 

Through further research, clinicians discovered that certain image processing algorithms were able to 

improve diagnostic quality of images. Many of these algorithms involved enhancing contrast and 

inverting the image scale, so that the image regions that attenuated more photons actually appear 

brighter, rather than darker like they would appear on the actual raw data image (61).  
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Figure 1-5: graph showing the relative difference in attenuation between bone and soft tissue (left), and the 

resulting image that forms due to that attenuation difference in a chest X-ray (right) Source: (62,63)  

There are several geometric factors that affect the image quality in X-ray imaging. An important 

factor is focal spot size and focal spot distance from the object. Just as in working with a camera or 

human eye, The focal spot size is the minimum possible size that is able to be distinguished, and 

scientists have worked to reduce focal spot sizes in order to improve imaging quality (11).  

There are also several factors inherent to X-ray imaging that contribute to blur. If an X-ray gets 

close to the nucleus of an atom during its travel or gets too close to electrons in an electron cloud, 

several types of scattering can occur, as seen in Figure 1-6 (11). In addition to the scatter types seen 

in the figure, Bremsstrahlung is another type of scatter where the electron changes directions after 

coming too close to the nucleus of an atom. All of these forms of scatter change the path of 

photons that traveled through one part of tissue to hit the detector and appear as though they 

traveled through a different part of the tissue, lowering image quality and creating blur (11). These 

factors partially contribute to blur but adding collimation at the end to block these deflected X-rays 

at the source helps to reduce noise from this (11,61).  
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Figure 1-6: Schematic showing various forms of X-ray scatter that contribute to imaging blur. Absorption, 

Rayleigh scattering, and Compton scattering can all affect the energy of incoming photons and adjust the 

photon path, contributing to blur. Source:  (64) 

Lastly, a common factor that hinders image quality is movement artifacts. If the tissue moves as 

the X-rays are being produced, a blur will be introduced just as in traditional cameras (11). This 

source of errors gets more significant as one is looking for smaller objects (Such as small bones in 

the wrist) and objects with lower contrast (such as soft tissue lesions within other soft tissue), and 

radiologists often implement restraints to immobilize the region being imaged and into improve 

image quality. 

1.5: Mammography Imaging Chain and Breast Density 

Mammography uses these same methods to create and image tissues, just specialized and 

optimized for breast imaging. A key difference is that in mammography the X-rays created are of a 

much lower energy, in order to help differentiate between different types of soft tissues in the breast 

(11). Several other changes exist in mammography that do not exist in conventional X-ray imaging, 

such as introducing breast compression to help stabilize the breast and make the breast tissue 
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thinner, which produces a higher quality image with less movement artifacts (14,58). A sample 

mammography unit displaying these differences in shown in Figure 1-7. 

 
Figure 1-7: Diagram of a mammography unit with various components. Key features include tissue 

compression and adjustment of imaging parameters. Source (65)  

While a variety of choices exist, typical anode/cathode combinations in mammography use 

Molybdenum, Tungsten, and Rhodium as they produce characteristic spectra that produce the best 

possible images. While the kVp of imaging can be from 100-150 kVp for traditional X-rays, they are 

usually only done at 25-35 kVp in mammography (66,67). All X-ray imaging modalities would use 

lower energy X-rays if possible, because it helps to reduce radioactive dose to patients. Because 

mammograms have less tissue to go through and that breast tissue attenuates less than other tissues 

in the body, mammography has the capability to use lower energy X-rays and still generate high 

quality images (11). 

The standard procedure when getting a mammogram is to get two different views for each 

breast, and is shown in Figure 1-8 (10). This helps because it allows you to see any potential tumors 
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from a variety of angles and can avoid any situations that might obstruct some tissue in one view. 

There are a variety of views that exist for specific cases, but the standard views are craniocaudal (CC) 

views and mediolateral oblique (MLO) views because they are nearly perpendicular to each other 

and show vital information (10). A craniocaudal view is an image from the top down and helps 

distinguish lateral and medial tissue, while the MLO view looks at a slightly oblique angle from the 

lateral side inward and helps to differentiate superior and inferior tissue, as well as gives the ability to 

see closer to the chest wall.  

  
Figure 1-8: Standard viewing all four views of a mammogram. The views are Right CC (Far-Left), Left CC 

(Middle-Left), Right MLO (Middle-Right), and Left MLO (Far-Right). These four views help to see additional 

tissue and identify possible tumor location in 3D space by combining information from both view (such as with 

the tumor highlighted by the black arrow). Source: (68)  

A radiologist then examines these images simultaneously to determine if there is a tumor or 

suspicious findings. They look for tumor-like objects, odd-texture patterns like spiculations, looking 

for differences in shape or texture of left and right breasts, or differences in the breast image over 

time (10). If a tumor or suspicious area is found, a biopsy or additional screening will next be 

performed in order to properly identify whether it is a tumor, the characteristics of the tumor, and 

inform doctors about best next steps for treatment (10).  
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This procedure is normally effective and helps detect and treat cancers. Unfortunately, this 

process is not perfect due to some inherent limitations in mammography and breast tissue 

composition. Breast tissue is mostly composed of two tissue types: fatty tissue and fibroglandular 

tissue (43,46). Fibroglandular tissue contains most of the connective tissue and functional tissue 

within the breast and attenuates X-rays at a higher rate than fatty tissue, as seen in Figure 1-9. 

Because of this, breasts with more fibroglandular tissue have more signal attenuated and more signal 

attenuated at the same amount as tumors, making it harder to distinguish other object such as 

tumors. This means that if a tumor is within fibroglandular tissue, it can be difficult to distinguish 

the cancerous tumor from actual healthy fibroglandular tissue, as seen in Figure 1-10. This is a 

fundamental problem that contributes to mammography not always detecting breast cancers.   

breasts with a high ratio of fibroglandular tissue are called radiographically dense breasts (or just 

dense breasts).  

 
Figure 1-9: Attenuation plot comparing attenuation rates of adipose tissue, fibroglandular tissue, and breast 

tumors. One can see that fibroglandular tissue closely matches the attenuation curve of tumor tissue, meaning 

there is little differentiation between those two tissue types. Source: (69)  

 



20 

 
Figure 1-10: At left, a mostly fatty breast with an easily distinguishable tumor. At right, a mostly 

fibroglandular breast with a tumor that is hard to distinguish from the fibroglandular tissue. This masking of 

tumors is part of why dense breast tissue is a risk factor for interval cancers. Source: (70)  

1.6: Computer Vision and Deep Learning as Potential Tools 

In the past decades, there have been several advances and developments in the field of 

computer vision – the study to help computers perform the same tasks that human vision can 

perform. This field involves designing algorithms and software to automatically take an image and  

detect objects, make object measurements, identify unique features, define edges, and segment 

portions of a scene (44). This field has been applied in order to drive technologies such as facial 

detection, automated object detection and measurement, self-driving cars, and many other 

technologies in the military, private companies, and researchers (71,72). This field of computer 

vision has been a cutting-edge tool helping to make improvements to a variety of fields. 

In recent decades a new sub-field of computer vision has opened up called deep learning (44). 

This field had been theorized for many years (73,74), but implementation was not practically 

possible until advances were made in computing ability and the amount of data available to 

researchers in the early 2010s (44). The key development is that instead of looking for a specific 

feature or object that a researcher pre-defines like in tradition computer vision, deep learning 
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develops its own features to look for over time in order to achieve an optimal decision outcome, 

whether that decision is object identification, optical character recognition (OCR), natural language 

processing (NLP), or image segmentation (44,75). Deep learning has made advances and 

improvements to the field of computer vision in past decades, and even influenced medical fields 

(76,77).  

Because interval cancers are fundamentally tied to an inability to detect an object (a tumor), it is 

reasonable to hypothesize that computer vision may also be able to better identify risk of interval 

cancer or quantify mammograms with low detectability than current measures of breast density. In 

future sections the history and methods of both traditional computer vision as well as deep learning 

will be detailed in depth, and my personal work in applying these methods will be detailed in my 

effort to quantify measures of interval cancer risk.   

1.7: Unmet Needs 

Currently, gold standard measurements for interval risk identify demographic factors, subjective 

breast density, and different rudimentary textural qualities to best identify risk of interval cancer. 

These methods have been able to identify that some groups of women, such as those with high 

breast density, are significantly more likely to experience interval cancer compared to other groups. 

Unfortunately, these measures of interval risk are not specific enough or strong enough to 

implement supplemental screening clinically. Currently, one of the strongest measures of interval 

risk, BI-RADS breast density, identifies roughly 50 percent of women as having high density breasts, 

and therefore a higher risk of interval cancer. Opening this subset of women to supplemental 

screening would prevent several interval cancers. Unfortunately, this level of additional testing would 

be expensive, impractical and liable to false positives and additional biopsies, and these 

considerations already lead to other countries, such as those in the European Union, to introduce 
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screening later in life and at longer screening intervals compared to the U.S. based on their 

prioritization of identifying cancer risk, reducing dose, and avoiding false positives (21). Because of 

this, there is a need to better identify and subset the group of women at highest risk of interval 

breast cancer in order to maximize the ability to detect cancers and minimize the risk of false 

positives.  

Many advances have been made to improve and apply computer vision methods to a variety of 

fields, but this trend has been slower to come into medicine and have not been applied to quantify 

risk of interval cancer. This dissertation addresses the unmet need of applying these current 

technologies to help address interval cancer risk, helping to mitigate an important problem and 

failure mode of mammography screening. Throughout this dissertation I detail, develop, and test a 

variety of computer vision techniques that improve on interval risk measures. 
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2 | Standards in Composition and Cancer Risk 

2.1: Body Composition as a Measure of Cancer Risk 

Body composition measures have been shown to be extremely valuable tools to measure health 

outcomes, risks, and recovery from various treatments. Additionally, compositional measures have 

been shown to be associated with cancer risk, including risk of breast cancer (25). Mandelson et al 

showed that individuals with low BMI were at higher risk for interval breast cancer, and high BMI 

was a risk factor for overall breast cancer compared to average BMI/FMI levels. Unfortunately, the 

most common compositional metric, BMI, is a non-specific measure that combines both lean and 

fat mass (78).  

Measures such as fat mass index (FMI) and fat free mass index/lean mass index (FFMI/LMI) 

are able to better identify those tissues, and as a result have been shown to be more predictive of 

certain conditions, especially when broken down into composition of different regions of the body 

(78–81). Equations for FMI and LMI are defined as: 

𝐹𝑀𝐼 =
𝐹𝑎𝑡 𝑀𝑎𝑠𝑠

𝐻𝑒𝑖𝑔ℎ𝑡2   𝐿𝑀𝐼 =
𝐿𝑒𝑎𝑛 𝑀𝑎𝑠𝑠

𝐻𝑒𝑖𝑔ℎ𝑡2  

Further, breaking down FMI and LMI to quantify the fat and lean mass of certain limbs or 

regions of the body has been shown to be predictive of cardiovascular disease, regional lipolysis, 

blood pressure, and other conditions (80,82–88). Caan et al have shown that muscle area and muscle 

density relate to breast cancer survival, as well as functional and movement limitations in breast 

cancer patients. They showed that women with sarcopenia, defined as a lower quantity of lean mass 

compared to standard levels, had a higher mortality with a Hazard Ratio (HR) of 1.41 compared to 

those without sarcopenia. Further, they showed that BMI alone was not significant for mortality. 
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They also showed that functional limitations were significantly associated with mortality (HR = 1.40)  

(89,90). It is reasonable to believe that improving regional composition measures could better 

identify risk of various diseases and outcomes, including breast cancer or interval breast cancer risk. 

 While regional measures of composition exist, there have not been standards or percentile 

charts produced in order to compare regional measures to some sort of standard or average 

measure. In body composition, the Lambda-Mu-Sigma (LMS) method is often utilized to produce 

standardized measures and percentiles as a function of age (91). Generating and providing this data 

will be a useful tool for groups investigating the effects of regional distribution, body shape, and 

composition on metabolic conditions and could lead to better measures of cancer and interval 

cancer risk based on regional composition.  

2.2: NHANES 

The National Health and Nutritional Examination Survey, or NHANES, is an effective sample to 

generate U.S. body composition standards of the limbs and trunk that could be useful in identifying 

individuals at risk of various diseases, from sarcopenia, to cachexia, to breast cancer. NHANES is a 

national survey of Americans that uses a rigorous sampling method and has been used many times 

to provide an accurate representative sample of health and body composition in the U.S. (92,93). 

This is by far one of the most comprehensive measures of body composition and outcomes that 

exists in the U.S., and is a comprehensive survey to generate standards of body compositions. These 

standards could later be used for a number of applications, from identifying disease risk to 

monitoring recovery from surgery to quantifying the negative effects on body composition that 

cancer has such as cachexia (94,95). Previous work from our group has used NHANES data to 

quantify risk of fracture, osteoporosis, osteopenia, and several other measures of composition (96–

101). 
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2.3: Study: Dual energy X-ray absorptiometry body composition reference 

values of limbs and trunk from NHANES 1999-2004 with additional 

visualization methods (95) 

In this study, we aimed to generate reference measures of regional body composition in order to 

help advance more specific compositional measures of various mortality risk markers, breast cancer 

and interval cancer risk factors, as well as produce measures that may be useful in tracking recovery 

from breast cancer treatments such as cachexia. 

2.3.1 Introduction 

Body composition is a known risk factor for a number of conditions such as diabetes and heart 

disease that contribute to higher healthcare costs and reduced lifespan (102,103). Body mass index 

(BMI, total mass/height2) and waist circumference have long been used as indicators of body shape 

and adiposity and as crude measures of health risk (104,105), but these measures are not specific to 

lean or fat mass. Fat Mass Index (FMI, fat mass/height2) and Lean Mass Index (LMI, lean 

mass/height2) have been introduced as more specific composition measures than BMI (106–109), 

but even these measures are not specific to the composition of each region (arms, legs, trunk) of the 

body. 

In many studies regional fat mass and composition has been shown to be predictive of 

cardiovascular disease, regional lipolysis, blood pressure, and other conditions. (80,82,83,110–114). 

Wilson et al. showed that the volume ratio of trunk to leg had a strong association to diabetes and 

mortality that was independent of total fat distribution (115). Prado et al. used regional composition 

of the limbs to calculate Appendicular Lean Mass Index (ALMI) and proposed new body shape and 

composition phenotypes to study along with ways to diagnose sarcopenia and sarcopenic obesity 

(116). Regional composition and volume measurements play an important role in both direct 
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associations to disease states and in developing an improved understanding of healthy compositional 

phenotypes. 

Performing studies with standardized reference curves of regional composition provides 

advantages over using raw regional FMI and LMI values. First, reference curves inherently control 

for differences in sex, age, and ethnicity (91). Second, Z-scores and T-scores are more interpretable 

than raw FMI and LMI values or ratios in many cases. Lastly, conditions such as sarcopenia and 

sarcopenic obesity rely on Z-score or T-score cutoff values for diagnosis (117–119). Reference 

curves have been made for total body FMI and LMI (94,120), but as of yet no reference curves have 

been produced for regional composition of the U.S. population. Deriving such reference curves 

would prove useful for groups studying how regional body composition varies across demographic 

groups and how it affects different health outcomes. 

In this study, we produced FMI and LMI reference curves and LMS tables for the legs, arms, 

and trunk by sex and ethnicity in a representative U.S. sample. These LMS tables will allow 

researchers to determine when individuals have higher or lower fat or lean mass in different regions 

of the body for a given age, sex, and ethnicity by calculating Z-scores in each of those regions. We 

further produced software to visualize an individual’s regional distribution of FMI and LMI Z-scores 

using radar charts. We do not aim to explain many of the differences found between demographics, 

but to provide this data as a useful tool for groups investigating the effects of regional distribution, 

body shape, and composition on metabolic conditions such as sarcopenia, sarcopenic obesity, and 

many other conditions. 

2.3.2 Methods 

Our study aimed to produce regional reference values for FMI and LMI of the arm, leg, and 

trunk for by sex and ethnicity in the cross sectional dual-energy X-ray (DXA) measurements from 
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the 1999-2004 National Health and Nutrition Examination Survey (NHANES). NHANES uses a 

rigorous sampling method and has been used many times to provide an accurate representative 

sample of health and body composition in the U.S.(92,93). 

Subjects 

NHANES DXA scans report whole body and regional measures of fat mass, lean mass, bone 

mineral content, and bone mineral density (121). Measurements for our study were taken from 

15,908 individuals from the NHANES reference database from 1999-2004 for all individuals aged 8-

85 (92).  

This survey used a multistage sampling method to enroll individuals in the study. Because 

reference compositional values are different in different ethnicities in the U.S., the survey provides 

statistics for different self-reported U.S. ethnic groups (Non-Hispanic Whites, Non-Hispanic Blacks, 

and Mexican Americans, Other Hispanics, and Other Minorities) (92,93,122). In order to provide 

more reliable estimates, Blacks, Mexican Americans, low-income Whites, individuals between 12-19 

years old and above 60 years old were oversampled (92). Subjects were excluded if they were above 

the weight (136 kg) or height (196 cm) limit of the DXA table. Females were excluded if they 

reported they were pregnant or if a pregnancy test was positive at exam time (92). Approval for the 

study was obtained from the National Center for Health Statistics international review board. 

DXA Measurement Protocol 

Our analysis used the DXA data sets released by NHANES from 1999-2004 without imputation 

on the Center for Disease Control website 

(http://www.cdc.gov/nchs/about/major/nhanes/dxx/dxa.htm). DXA scans in NHANES were 

acquired per manufacturer recommendations of the QDR 4500A fan beam densitometer (Hologic, 

Inc., Bedford, MA). All subjects wore paper gowns and removed jewelry and other personal items 
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capable of interfering with the DXA exam. These exams were reviewed and analyzed by the 

University of California-San Francisco Department of Radiology Bone Density Group. Prosthetics, 

implants and other regional devices capable of affecting results were listed as missing in the dataset 

and not included in our analysis (92).  

Body composition results are calibration dependent and results provided by different 

instruments can vary. In 1999-2004 NHANES, the DXA scans were analyzed using the Hologic 

Discovery software version 12.1. NHANES calibration from Schoeller et al (123) were applied 

before results publicly released. The NHANES data sets contained whole body bone mineral 

content, bone mineral density, percent fat, lean mass, fat mass as well as with regional measurements 

(each arm and leg along with trunk) (92).  

Producing Reference Curves 

From the DXA measures, we calculated the FMI and LMI for the trunk, average arm, and 

average leg by dividing fat and lean mass of each region by the square of height (94,120,124). Next, 

we calculated the reference curves of these regional FMI and LMI values using a Lambda-Mu-Sigma 

(LMS) curve fitting method (lmsChartMaker Pro Version 2.54) (125). LMS is a mathematical 

method to produce reference curves for measures that corrects for skewed data by generating an 

“L” (power), “M” (Median), and “S” (Coefficient of Variation) curve across ages of interest. It has 

been used in the past to calculate reference curves and centiles for height, BMI, and total FMI/LMI 

(93,126–128). This method produces Z-scores via the following equation (91): 

 𝑧 =
[

𝑦

𝑀(𝑡)
]

𝐿(𝑡)
−1

𝐿(𝑡)𝑆(𝑡)
 (1) 

The centile curves of y (measure of interest) for a given t (age) are modeled by: 
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 𝐶100𝛼(𝑡) = 𝑀(𝑡)(1 + 𝐿(𝑡)𝑆(𝑡)𝑍𝛼 )1/𝐿(𝑡)  (2) 

We developed these reference curves and LMS tables for the three major self-reported U.S. 

ethnic groups from NHANES: Non-Hispanic Whites, Non-Hispanic Blacks, and Mexican 

Americans/Other Hispanics (hereafter referred to as Hispanic). Mexican Americans and Other 

Hispanics were grouped to increase power of the model. There were not enough observations to 

develop reference data for other ethnic minorities. 

The degrees of freedom of the model were increased for each LMS parameter in the order 

suggested by the developers of LMS (125), and were only increased if it improved the Bayesian 

Information Criterion more than ln(N) units (N = Sample Size of demographic group), as done in 

other work to minimize overfitting (124). As recommended by the LMS developers, we examined 

de-trended Q-Q plots and the fitted curves for smoothness of fit (125).  

We used equation 1 to apply the LMS values for each individual based on their demographic and 

their FMI and LMI data to produce Z-scores for every limb and the trunk. We applied the LMS 

values and from the average arm and leg to the left and right limbs to produce Z-scores for each of 

the four limbs, which allowed us to compare symmetry of the left and right appendages of the body. 

These Z-scores can then be used to determine if an individual has high or low fat or lean mass in 

different regions of the body for their respective age, sex, and ethnicity. 

Radar Charts 

To visualize regional differences, we created software that outputs a pentagonal radar chart of 

regional body composition, where each spoke represents the Z-score FMI and LMI values of each 

region (each leg, each arm, and trunk) of the body. These radar charts were produced in R (Version 

3.2.3) with the fmsb and shiny packages. We opted to plot the Z-score of FMI and LMI for each 
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appendage as opposed to an absolute value because it provided better scaled images and provided 

more information about regional composition relative to people of the same age/sex/ethnicity.  

2.3.3 Results 

Subjects 

The number of  observations used in the reference database by age group, sex, and ethnicity is 

provided in Table 2-1. These data show the distribution of  participants across a wide age range and 

set of  ethnicities and an adequate number of  individuals across the age distribution for each sex and 

ethnicity except for the oldest non-white individuals. 

Table 2-1: Number of observations in the NHANES reference database:  

Age Group Sex Whites Blacks 
Mexican 
Americans 

8 to 9 Male 128 162 197 

  Female 67 92 75 

10 to 11 Male 132 169 166 

  Female 52 63 66 

12 to 13 Male 205 269 331 

  Female 149 177 199 

14 to 15 Male 197 244 284 

  Female 144 153 187 

16 to 17 Male 208 271 316 

  Female 145 129 147 

18 to 19 Male 188 212 276 

  Female 166 163 257 

20 to 24 Male 191 105 162 

  Female 186 78 155 

25 to 29 Male 202 74 160 

  Female 165 64 115 

30 to 34 Male 202 88 132 

  Female 198 81 98 

35 to 39 Male 199 85 133 

  Female 204 81 115 

40 to 44 Male 220 109 152 

  Female 199 99 161 

45 to 49 Male 186 97 125 

  Female 196 96 128 
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Age Group Sex Whites Blacks 
Mexican 
Americans 

     

50 to 54 Male 223 79 81 

  Female 224 60 98 

55 to 59 Male 158 44 64 

  Female 140 47 56 

60 to 64 Male 185 68 133 

  Female 185 87 150 

65 to 69 Male 178 67 107 

  Female 179 59 119 

70 to 74 Male 198 47 88 

  Female 168 38 91 

75 to 79 Male 149 30 56 

  Female 127 36 40 

80 to 84 Male 159 12 27 

  Female 170 17 25 

85+ Male 75 10 10 

  Female 86 13 18 

Total Male 3583 2242 3000 

  Female 3150 1633 2300 

    6733 3875 5300 
 

 

We created reference curves and tables of  LMS values and included them as supplemental 

figures and tables. A list of  the reference curves and tables is provided in 
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Table 2-2. For completeness, the tables for total FMI and total LMI were included. These centile 

curves show smooth transitions throughout the age range. De-trended Q-Q plots of  the data 

affirmed the goodness of  fit and our inclusion criterion for allowing extra degrees of  freedom 

reduced overfitting. As expected, average Z-scores were very close to zero with standard deviations 

very close to one for all the fitted regional DXA measures.  
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Table 2-2: Table showing supplemental figures and tables of the LMS curves from this work. Source and figures 

located in Appendix B and available online at: (95) 

DXA Measure Supplemental 
Figure 

Supplemental Tables (Female, Male) 

Average Arm FMI S1 Fig S1-2(Black), S17-18(Hisp/Mex), S33-34(White) Tables 

Average Arm LMI S2 Fig S3-4(Black), S19-20(Hisp/Mex), S35-36(White) Tables 

Average Leg FMI S3 Fig S5-6(Black), S21-22(Hisp/Mex), S37-38(White) Tables 

Average Leg LMI S4 Fig S7-8(Black), S23-24(Hisp/Mex), S39-40(White) Tables 

Trunk FMI S5 Fig S9-10(Black), S25-26(Hisp/Mex), S41-42(White) Tables 

Trunk LMI S6 Fig S11-12(Black), S27-28(Hisp/Mex), S43-44(White) Tables 

Total FMI S7 Fig S13-14(Black), S29-30(Hisp/Mex), S45-46(White) Tables 

Total LMI S8 Fig S15-16(Black), S31-32(Hisp/Mex), S47-48(White) Tables 
 

 

There were noticeable differences observed across sex for the various measures, many of  which 

varied with age. To help visualize some of  these differences, we plotted the median (M) values across 

sex and ethnicity for the LMI and FMI of  the trunk (

 

Figure 2-1), the average leg (Figure 2-2), and the average arm (Figure 2-3). First, we noticed that 

in most cases and especially for regional LMI, differentiation occurred between males and females 

during the years of  puberty and young adult development. Further in adults between 30 and 50, 

females had 39%, 83%, and 47% larger median arm, leg, and trunk FMI values than males. Males in 

this age range had 49%, 20%, and 15% higher regional LMI values than females for the arms, legs, 

and trunk respectively.  Male median LMI values peaked in adulthood and decreased thereafter 
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especially in limbs, while female median LMI values peaked in adulthood and did not experience as 

much of  a decrease as male values going into old age in the arm and trunk.  

In this adult range of  30-50 years of  age, there were also apparent differences in regional 

composition across ethnicity. The leg FMI and LMI of  black females were 14% and 15% higher 

respectively than for Hispanic and white females. White and Hispanic males had 37% higher trunk 

FMI values than black males, while black males averaged 9% higher leg LMI than white and 

Hispanic males. Hispanic females had 20% higher trunk FMI than white and black females. Lastly, 

black and Hispanic females on average had 15% higher arm FMI than white females.   
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Figure 2-1: Median Trunk FMI and LMI values by ethnicity and sex. This comparison of the median trunk FMI 

values by ethnicity and sex (top) and median LMI values by ethnicity and sex (bottom). Females generally have 

larger trunk FMI and lower trunk LMI values than males, and males have a more pronounced drop off in trunk 

LMI values as they age compared to females. Deviations of each median measure not shown for figure clarity; 

consult supplemental figures S1-S8 to examine individual data points with percentiles shown or the LMS tables 

to further examine coefficient of variation 
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Figure 2-2: Median Leg FMI and LMI values by ethnicity and sex. This comparison of the median leg FMI values 

by ethnicity and sex (top) and median LMI values by ethnicity and sex (bottom). Females generally have larger 

leg FMI and lower leg LMI values than males, and black females tended to have larger FMI and LMI values in 

the legs compared to females of other ethnicities. Deviations of each median measure not shown for figure 

clarity; consult supplemental figures S1-S8 to examine individual data points with percentiles shown or the 

LMS tables to further examine coefficient of variation 
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Figure 2-3: Median Arm FMI and LMI values by ethnicity and sex. This comparison of the median arm FMI 

values by ethnicity and sex (top) and median LMI values by ethnicity and sex (bottom). Females generally have 

larger arm FMI and lower arm LMI values than males. Males have a more pronounced drop off in their arm LMI 

values as they age compared to females. Deviations of each median measure not shown for figure clarity; 

consult supplemental figures S1-S8 to examine individual data points with percentiles shown or the LMS tables 

to further examine coefficient of variation 

Radar Charts: 

We developed software to produce radar charts of  regional FMI and LMI based on the age, sex, 

and ethnicity of  an individual and the regional fat and lean mass values. The software selects the 

appropriate LMS table based on demographic information and calculates and displays Z-scores 

based on the fat and lean mass entries. An example output of  the software which displays 

demographic information, composition information, and the radar chart is included in Appendix B.  
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Figure 2-4 shows several of  the generated radar charts (plots A-F) for 6 individuals and charts 

those same individuals on a scale of  percentile total LMI vs. percentile total FMI (top chart) to show 

what the generated radar charts look like for individuals of  varying overall levels of  lean mass and 

fat mass. Below average LMI individuals are at the bottom half  of  this chart and low FMI 

individuals are at the left half  of  this chart. This top chart, inspired the chart produced in work from 

Prado et al. to identify compositional categories of  individuals (116),  shows that the 6 individuals 

chosen represent a wide variation of  overall LMI and FMI.   

 
Figure 2-4: Sample radar charts of individuals in different quartiles of lean and fat mass indices. Radar charts 

of individuals as they fit into quadrants of adiposity and muscle mass. Each labeled circle in the above chart 

corresponds to an individual radar composition chart below. In the radar charts, each spoke represents: TR = 

Trunk, LA = Left Arm, LL = Left Leg, RL = Right Leg, RA = Right Arm. 

Radar charts A-F in Fig 4 shows the radar charts that display the FMI and LMI Z-scores of  

subjects A-F that were plotted in the above chart. The top spoke represents the trunk, the lower 
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spokes represent the legs, and the middle spokes represent the arms. An individual with median 

regional FMI and LMI values (Z-scores of  zero) would have two regular pentagons with every spoke 

at zero. Subject A in Fig 4 shows a high lean mass-low adiposity individual with more lean mass in 

the right half  of  their body. Subject B in Fig 4 shows an individual with high lean mass and high 

adiposity, and their radar chart reflects this with all values regional FMI and LMI Z-scores being 

above zero. Subject C in Fig 4 shows a sarcopenic individual in the low muscle mass low adiposity 

category. 

The second row of  radar charts in Fig 4 depicts three levels of  severity in the high adiposity low 

muscle mass category similar to those defined by Prado et al (116). This high FMI and low LMI 

quadrant of  the top chart contains many high-risk groups including those with sarcopenic obesity. 

Subject D in Fig 4 shows someone with slightly higher than normal adiposity and slightly lower than 

normal muscle mass. Subject E shows an individual deeper in this high-risk quadrant of  the top 

chart with above average adiposity and below average muscle mass. Subject F shows an individual 

severely in this high-risk quadrant of  the top chart with much higher than normal adiposity and very 

low muscle mass relative to that. 

We discovered a wide variety of  different compositional shapes. We saw more asymmetry in the 

LMI Z-score distributions across regions than in the FMI Z-score distributions. Further, we found 

some individuals with distinct distributions, such as individuals who had relatively normal 

compositions in most regions but their legs, trunk, or arms contained more mass leading to a ‘spike’ 

in those regions in the radar chart.  

2.3.4 Discussion 

This study is the first to produce regional LMI and FMI curves and LMS tables representative 

of  the US population, which will be useful in many body composition studies (124). This 

development of  standard FMI and LMI LMS curves for each appendage and a method such as 
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radar charts to visualize body symmetry will prove useful for doctors, researchers, therapists, 

athletes, and trainers. 

These reference curves will help to identify and monitor abnormal regional body composition 

patterns that arise in childhood and adulthood including sarcopenia, cachexia, anorexia nervosa, 

female athlete triad, growth hormone deficiencies, cancers, endocrine disturbances, and many others 

(94,126). Sood et al. showed that trunk lean mass could be predictive of  asthma in females (79). 

Another study showed that two weeks of  inactivity specifically reduced the lean mass of  the legs in 

older adults (82). Leg lean mass has been shown to be a predictor of  femur BMD (129). Studies of  

cardiovascular health have shown that trunk fat mass is a risk factor of  cardiovascular disease and 

leg fat mass had a protective effect (80,83). Studies have also shown that regional fat distribution 

affects the regional rate of  lipolysis in obesity (130). It is clear that regional body composition can 

affect various health outcomes and is worthy of  studying, and this research will help to perform 

studies on height-normalized regional FMI and LMI values to better understand the role 

composition plays in these conditions. 

This work also enables identification and monitoring of  the relative symmetry and asymmetry 

of  the lean and fat mass of  individuals, as well as research on the effects of  symmetry on the body. 

We noticed several cases of  handedness, where one leg or arm had significantly more lean mass than 

the other. Research has already shown limb and body symmetry plays a role in sports performance 

and injury prevention (81,131), and these tables and this software enables further research in the role 

regional symmetry plays in health and performance. 

Analyzing the regional FMI and LMI median values highlights several trends that provide insight 

or warrant further investigation. We can see the clear effect of  puberty in all regional LMI values, 

where males and females start out at similar values until adult development occurs. Once adult 

development occurs, we can see males have larger LMI values in every region while females have 
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larger FMI values in every region, which is consistent with previous comparisons of  body 

composition by gender and explained by endocrine differences (93,132,133). It is interesting to note 

the differences are most pronounced in the limbs.  

Further, we can see in some cases certain ethnicities have a different trend from other ethnicities 

of  the same sex. Black males had lower trunk FMI and higher leg LMI than their white or Hispanic 

counterparts. Hispanic females averaged a noticeably higher trunk FMI than black or white females, 

and white females had lower arm FMI values than black or Hispanic females. These differences in 

regional composition by sex and ethnicity could serve as avenues of  future research for some 

investigators and highlight the importance in accounting for sex and ethnicity in future body 

composition studies. 

The creation of  the software to create radar charts that visualize regional composition will be 

useful for researchers to intuitively interpret these data and any future studies of  regional 

composition. These charts could aid in interpreting regional composition and in tracking changes 

over time through interventions such as diet, exercise, or other means. While the radar charts 

provide a mostly qualitative sense of  composition, they provide an excellent structure to start 

visualizing these data and examining abnormalities, asymmetries, and changes over time.  

This paper has several strengths that contribute to the power of  the study. First, the large sample 

size from the NHANES data set provides a wide and comprehensive variety of  data that describes 

the U.S. population by sex and ethnicity. Next, we have used established methods in producing these 

regional FMI and LMI values and LMS curves and our total body FMI/LMI LMS measurements 

matched up well with previous studies. Lastly, providing the software to create radar charts will make 

studies by other researchers much more accessible. 

While there are several strengths to this study there are several limitations that, if  avoided, would 

improve the study. A larger sample size especially in the black and Hispanic groups would have 
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allowed for even more accurate reference curves especially at the ends of  the age spectrum. Further 

segmentation of  our population into separate LMS curves for youth and adults may have provided 

slightly improved curves, but this would have caused a sharp transition in Z scores during this 

transition. Further, our large sample size in this transition period produced LMS curves and de-

trended Q-Q plots with enough smoothness to warrant calculating curves for all ages combined. 

Further, it should be noted that the values reports are only valid to directly compare in new 

measurements that use the same procedure and same machines as the NHANES dataset. Further 

studies will need to be performed in order to elucidate the usefulness of  these regional values and 

how to best use them in conjunction with full body composition measures for risk assessment.  

From this study, we can conclude that these regional measures follow expected curves and 

already provide insight about compositional phenotypes by sex and ethnicity. Additionally, these data 

could be useful for stronger descriptions of  risk of  mortality and metabolic conditions. 

Implementing radar charts to visualize regional composition may enable patients to track their 

regional composition to avoid unhealthy or undesirable compositional shapes (e.g., larger fat mass 

centile than lean mass centile, larger trunk FMI centile than leg/arm FMI centile). In the future, we 

plan studies to further investigate the role that regional body composition plays in health outcomes.  
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3 | Computer Vision 

Computer vision is the field that attempts to create software and algorithms that allows 

computers to interpret images in the various ways humans interpret images. Different applications 

include edge detection, object segmentation, object detection, language processing, and object 

identification and classification. This field has expanded wildly as technology has improved and has 

helped improve the workflow and accuracy of many industries, from automated mail sorting by zip 

code to crash avoidance systems in cars (44). Given its impact in various fields, we explored the 

ability of computer vision to identify poor detectability in mammograms, in order to quantify 

interval risk.   

3.1: History, Cats, and V1 Neurons 

The roots of computer vision are based in biology and have been refined over the years. 

Computer vision research was spearheaded by Hubel and Wiesel in the 60’s (44,134,135). They 

examined the response of specific neurons in cats while showing cats an image moving in a specific 

direction, as seen in Figure 3-1. In this study, they discovered that specific neurons showed activity 

only when an object was moved along a certain direction, indicating that these neurons served as 

edge detectors along specific angles and orientations.  
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Figure 3-1: Figure from Hubel and Wiesel (134,135) showing a neuron’s varying responses to object moving in 

different orientations, which was one of the foundational works that led to edge and feature detection in 

computer vision. 

Scientists already knew of several functions that behaved similarly to this, such as derivatives, 

where a strong response is elicited when a large change happens along a given axis or variable. 

Further research merged these ideas by applying these algorithms to detect a change along an image 

direction, rather than along a specific function. These were the first edge detectors in computer 

vision, all inspired by our own biology. 

3.2: Edge and Feature Detection 

3.2.1 Edge Detection 

The field of edge detection was immediately iterated and improved upon, as understanding and 

replicating robust and automated edge detection would be useful in a huge number of fields such as 

robotics, artificial intelligence, computer graphics, image processing, and neuroscience (44). Being 

able to properly define edges helps identify objects, segment different parts of an image, and 

understand and interpret orientation. Given most edges present themselves in images as a difference 

in intensity across a certain orientation, many designed filters to detect a sharp intensity gradient 

(44). The values in these filters look for an intensity gradient across a specific orientation and output 
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a high value when that gradient is seen. We can see an example of convolving a vertical edge filter 

on an image of the number 7 in Figure 3-2. We can see a large output exists at the main vertical edge 

of the ‘7’. If one knows the specific objects you are looking for such as numbers, letters, or tracking 

a specific object, it is then possible to look at these edge responses at various orientations and make 

basic decisions. Even simple filters like this can be adapted and applied to help recognize digits for 

automating mail processing, determine collision risk or spatial orientation for different objects, or 

helping to segment objects within a scene (44).   

  
Figure 3-2: Convolution showing how a horizontal edge detector produces different responses in different 

regions. In regions with no variation (left) there is no output, with an edge there is a strong output (middle 

cases), and a medium output occurs at a medium intensity edge (right). Source: (136) 

 Various filters have been developed over years to help detect edges along a certain orientation 

through convolution of a specific function, including through the use of Laplacian functions, Sobel 

filters, Prewitt filters, and several others (137). Most of these functions look for a difference in 

intensity across a specific orientation, as seen in the Sobel filter shown in Figure 3-3.  
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Figure 3-3: Example showing how a Sobel filter simulates the edge orientation neurons as a vertical edge 

detector (middle) and horizontal edge detector (right). Source: (44) 

Unfortunately, edge detection alone is not enough to completely satisfy every need in 

computer vision, such as advanced object identification, object characterization, and scene 

interpretation. Scientists continued working to develop further methods of computer vision, 

including feature detection and direct object identification. 

3.2.2 Feature and Object Identification 

Feature Quantification 

A next level of sophistication in computer vision was to identify specific features and objects 

within an image. ‘Features’ is a broad term that describes a quantifiable property of an object, image, 

or image region, and can include likelihood of specific objects like eyes, or various statistical or 

textural measures of an image (44). Identification and quantification of these features is useful in 

several aspects of computer vision. First it can help in object segmentation, as a single object will 

often maintain several image features throughout the object, such as image intensity, color, or 

texture. Further, this can help in identifying more complex objects, as an object with a region similar 

to an eye is likely to be a face of an animal or human. To better understand the usefulness of these 

features, we need to understand which features are often quantified and defined. 

Features can include direct features on an object like the presence of an eye, arm, or face. More 

often, however, it is used to describe statistical measures. These features could include basic 
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measures such as image minimum, maximum, variance, mode, percentile, and other basics statistics 

qualities (138,139). Statistics of the histogram of the image can also be considered, such as kurtosis, 

adherence to normality, or skewness (138,139). Because similar objects often maintain certain 

statistical measures throughout the object, this helps in object segmentation and scene interpretation 

(44). 

Unfortunately, many of these basic statistics only give a sense of absolute values and 

distributions of values but cannot compare the positioning of these pixel values throughout the 

image. Images with the same basic statistics but different positioning of these pixel values are said to 

have different textures. Some examples of images with similar statistics but different textures are 

shown in Figure 3-4. Identifying texture is an important distinguishing characteristic of many human 

vision tasks, such as edge detection and image segmentation (44). Therefore, it is important to 

identify texture in computer vision tasks as well. 

  
Figure 3-4: Sample image showing a variety of textures with similar image statistics at left, and images with 

similar color and statistics, but different texture qualities at right. This shows that texture analysis is necessary 

to fully understand and interpret an image. Source: (140)  

Several algorithms and procedures have been developed to help identify and quantify textures. 

First, statistics of edge detection images can give a sense of frequency of edges or number of objects 

in an image (44,137). When locations of images or regions are identified, orientation, eccentricity, 

and object area can be quantified to differentiate objects of different shapes. Further, a gray-level co-
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occurrence matrix (GLCM) compares the values of connected pixels and can give a sense of various 

texture features such as image contrast, correlation, energy, and homogeneity. These texture 

differences help to identify changes in object type, orientation of an object, or other ways to 

interpret a scene that are useful to researchers.  

Object Identification 

In addition to identifying features within an image, scientists have worked to directly identify 

and detect specific objects. This is often a goal of computer vision applications, whether it is to 

detect a postage stamp on a letter, detecting eyes or faces in a crowd, or detecting different types of 

objects in satellite images.   

Many methods surrounding object identification involves first creating a template of an object 

(or part of an object) that one is looking for. This can be as simple as a sample image of what you 

are looking for, like an eye if you are looking for eye-like objects. Figure 3-5 shows how having an 

eye template and then applying a cross-correlation of that template through an image will show 

spikes in value right where eyes are located in an image (44). 
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Figure 3-5: Sample image showing that searching for a specific image feature (an eye in this case) can identify 

multiple areas that are likely to contain that feature in specific circumstances where the object is similar to the 

template. Source adapted from: (44) 

This application can sometimes work in highly structured images where we know the specific 

object being looked for. However, this simple methodology is often not sophisticated enough to 

reliably work. For example, if you apply this same methodology to identify and locate in a simple 

image you get good results, but in a more realistic image with noise and object variety the results are 

much worse. Figure 3-6 shows an example of successfully attempting to identify a chair in a simple 

image with a known object versus failing to identify a chair when the chair is slightly dissimilar in a 

busier image. 
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Figure 3-6: Image of a feature search of a chair (left) that fails when searching in a complex background and 

produces several false positives (right). Source: (44) 

That is a fundamental problem of traditional computer vision: specific knowledge is required 

about the objects one is looking to identify, as well as the scale and perspective from which the 

image is taken. Fortunately, in medical imaging, this is often the case. Many medical imaging 

procedures are heavily standardized with images being taken at the same angle each time, and very 

specific objects (fractures, tumors, etc.) are looked for (11). This has enabled the development of 

model observers and detectability metrics to be created and applied to medical fields. 

3.3: Model Observers 

Model observers are a subfield of computer vision that work to quantify how an object will be 

detected in human observer tasks, such as many medical diagnostic tasks. Many of these model 

observers have been shown to correctly quantify the detection capabilities of various imaging tasks 

in various backgrounds (141). By understanding how these model observers work, we may be able to 

apply these techniques to determine the ability to detect an object in breast imaging tasks, in order to 

better quantify interval cancer risk. Over the years a variety of model observers have been developed 

for medical applications, including the design of CAD systems (51,141–147) . The model observers 

used in these studies all varied in the amount of information assumed about the signal of interest 

and in the background. 
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3.3.1 Non-Channelized Filters 

There are two main classes of model observers: non-channelized and channelized observers. 

Non-channelized observers are observers that look for specific templates or objects and do not 

account for the fact that they eye responds to various frequencies at different amounts. Even with 

this limitation, it has been shown that these non-channelized observers correlate well with humans 

in various detection tasks (148,149).  An advantage of these filters is that because they are generally 

more simple, they are easier and quicker to implement (141,150). 

Non-prewhitening (NPW) filters have been used extensively in medical imaging (150). For its 

effectiveness, the NPW model observer is one of the simpler models to implement, as it has a filter 

that exactly matches the expected signal that is attempted to be detected. The NPW filter is unable 

to account for noise correlations in its model, but it assumes full knowledge of the signal of interest 

and. This model is usually successful in many predicting human performance in white noise but fails 

in certain anatomic backgrounds. The non-prewhitening eye (NPWE) filter adds an eye filter to the 

NPW filter, which helps the model observer take into account the fact that the eye responds 

differently to different spatial frequencies (141,148,150). 

A more advanced non-channelized model observer is the Hotelling filter, which was proposed 

by Barrett et al (141). The Hotelling observer differs from the previous filters mainly that the 

template used accounts for the expected signal profile as well as the expected background statistics. 

This helps to better identify how the noise will affect the patterns and objects seen by a human 

observer in certain backgrounds. It has been shown that background noise statistics play a part in 

object and signal detectability (151,152), so it is often a good idea to consider which observer is best 

considering the background statistics. 
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3.3.2 Channelized Filters 

Channelized model observers are fundamentally different from non-channelized filters in that 

they pre-process the image through a series of filters, or channels, that are tuned to specific spatial 

frequencies or orientations. These models then compute the correlation of each channel to obtain a 

response of each channel at a possible signal location. This allows the observer to combine 

information and responses of a variety of frequencies at once. The filters chosen can vary wildly, but 

two common sets of channels are the difference of gaussians and the Gabor channels (141,150). 

In addition to a variety of filters, there are a variety of model observers that handle the channel 

responses differently. Simple models can take the sum of each channel response or just take the 

response of the most sensitive channel. Additionally, non-prewhitening channelized matched filters 

have been developed, which applied a NPW model to each image channel response (141). There are 

also channelized Hotelling filters that further weight the response of various channels based on the 

frequency and orientation. Each of these filters have a variety of applications in medical imaging 

(141).  

3.4: Figures of Merit and detectability 

Figures of merit are the measures that quantify the level of detectability after running an image 

through a model observer. There are a variety of ways to quantify the output of a model observer, 

each with its own benefits and drawbacks.  

3.4.1 Forced Choice Tests 

A method that is often used to determine detectability in both human observers and model 

observers is an alternative forced choice test (AFC). There are 2-alternative forced choice (2AFC) 

and 4-alternative forced choice (4AFC) tests (141,153,154). In both of these a set of either 2 or 4 

images is shown with a similar background, one of which has the signal of interest. If the reader is 
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able to correctly identify the image with the signal at a certain rate, the signal is deemed detectable. 

This process helps to specifically quantify whether a signal is detectable in a given background and 

can be automated by asking whether a model observer is able to correctly guess the signal-present 

image. 

3.4.2 Metrics of Detectability 

In addition to AFC tests, several indices of detectability have been created as measures of 

detectability strength. These indices measure the different between the channel outputs of the signal 

present and signal absent images divided by the overall variability, as seen in the following equation 

(141). These are often adjusted when accounting for image correlation between channels, certain 

types of background noise, or other factors. These metrics also can also include measures of 

intensity, signal to noise ratios, and other imaging metrics.  

𝑑′ =  
〈𝜆𝑠〉 − 〈𝜆𝑛〉

𝜎𝜆
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4 | Model Observer Detectability in Mammography 

Because of the various medical fields in which model observers have been applied to quantify 

detectability, it is a reasonable hypothesis that model observers could also be applied to quantify 

detectability in mammograms, especially in an image where the background is usually consistent.   

There has been much work to apply these computer vision methods to quantify detectability and 

detect potential lesions in mammography. 

4.1: Detectability Limits in Mammography - CDMAM Phantom 

The limits of detectability in mammography has been extensively studied and quantified for 

quality assurance (QA) tests by developing phantoms with human readers.  

4.1.1 CDMAM Explained 

The Contrast Detail Mammography (CDMAM) phantom is a well-established phantom that 

helps investigate detectability limits of small objects in mammograms, such as small tumors and 

calcifications (151,155). It is a phantom scanned on its own with several gold discs of varying 

diameters and thicknesses where the reader is tasked to identify the locations of the discs, making a 

reader perform a 4AFC test. In addition, this can be analyzed to help produce a Contrast Detail 

(CD) curve, a curve showing detectability thresholds for objects of various sizes (155,156). Figure 

4-1 shows the CDMAM phantom as well as a characteristic CD curve that can be produced from it. 
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Figure 4-1: Image of a CDMAM phantom enhanced (left). At right, a CD curve is shown that identifies the 

minimum object thickness for detectability at each diameter. Source: (142,155) 

The contrast detail curve is a curve summarizing the detectability limits of an image at various 

diameters. This helps radiologists identify the limits to detect calcifications or tumors if they exist at 

various sizes and is also used for QA tests (156). In general, the curve follows a logarithmic scale and 

the lower the curve, the better the detectability. This phantom helps quantify the smallest objects 

that can be detected in a mammogram with no background, often with objects roughly the size of 

microcalcifications. Because this phantom does not include an anatomically correct background, it 

cannot be directly applied to quantify risk of interval cancer or of missing a cancer directly in a 

mammogram, as the background noise plays a significant role in the detectability of an object. 

4.1.2 IQF 

In addition to contrast detail curves, the results of a CDMAM phantom test can be summarized 

as an Image Quality Factor, or IQF (149,155,157). The IQF summarizes the CD curve as a single 

number that is calculated as an inverse area under the curve. The larger the IQF, the better the 

performance of the mammography unit. While this IQF number does not differentiate detectability 

at different sizes like the CD curve, it can be split to identify detectability of only large, medium, or 

small diameter objects (155). 
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𝐼𝑄𝐹 = 𝑛/ ∑ 𝑇𝑖,𝑚𝑖𝑛𝐷𝑖

𝑛

𝑖=1

 

4.2: Simulating Lesions 

Several groups have worked to determine methods to create, simulate, and model virtual pseudo 

lesions. The motivations behind these studies have been purely academic, to help identify 

differences between lesion shape and outcomes, or to better understand various obstacles in 

detecting tumors in mammography. Shaheen has developed methods that simulate the shape and 

appearance of microcalcification and lesions, both in 2D and 3D environments for use in virtual 

trials. Further, Pezeshk et all have shown the ability to simulate lesion insertions into mammograms, 

allowing for improved ability of virtual clinical trials (158–161). Most of these studies implemented 

their method by simulating the X-ray spectrum as well as the expected attenuation of breast tissue 

and lesions, based on known attenuation values of these tissues (66,162,163).  

4.3: Study: Derived mammographic masking measures based on simulated 

lesions predict the risk of interval cancer after controlling for known risk 

factors: a case-case analysis (164) 

If we are able to combine the work that has been done to simulate lesions as well as the work 

that has been done in computer vision to develop model observers that simulate human vision, it is 

likely that we could create a measure of lesion detectability throughout a mammogram that would be 

a strong risk factor for interval cancer. 

4.3.1 Introduction 

Digital mammography is the clinical standard in screening for breast cancer in average-risk 

women. However, radiologically dense and complex tissue can reduce the screening sensitivity of 
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detection from 84% in low density mammograms to 68% in high density mammograms, leading to 

cancers missed by screening mammography (13,165). This effect is commonly called mammographic 

masking, and can lead to one type of interval cancer where lesions are missed by screening 

mammography due to dense tissue masking the presence of a lesion (15,20,21). Roughly 13 percent 

of the breast cancers diagnosed in the U.S. are interval cancers based on initial assessment (166). 

Women with dense breast tissue have a higher rate of interval cancer, and legislation has been 

passed or is in process in 41 states to mandate the notification of women found to have breast 

tissue, including the recommendation to consider additional supplementary screening methods 

(13,167).While breast density measured using Breast Imaging-Reporting and Data System (BI-

RADS) scores can serve as a rough proxy for masking in measuring interval cancer risk, the scores 

are subjective and do not account for the texture and distribution of dense tissue (168–170). As a 

result, the American College of Radiology has called for direct measures of mammographic masking 

as a way to predict risk of interval cancer (171). 

We hypothesized that mammographic masking could be directly measured by developing 

software that inserts pseudo-lesions into clinical mammograms and these measures can predict the 

effectiveness of mammography to detect cancer at the time of screening mammogram acquisition. 

To test this hypothesis, we performed a case-case analysis of women who had developed breast 

cancer either by screening mammography (screen-detected cancer) or clinically during the interval 

after a normal screening (interval cancer) in a cohort of women with raw digital images. The purpose 

of this study was to create masking measures and apply them to a population of women who 

experienced either screen-detected or interval cancers after controlling for breast density. 
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4.3.2 Methods 

The aim of the study was to examine if our generated masking measures could classify between 

screen-detected and interval cancers. 

Subjects and Data 

Raw digital screening mammogram images for both Craniocaudal (CC) and Mediolateral 

Oblique (MLO) views were collected from 2006 to 2015 from three radiology facilities. During this 

time period all interval cancers, defined as invasive cancers identified within 12 months of a negative 

screening examination, from these facilities were identified. An equal number of screen-detected 

cancers were matched by based on age, race, exam date (within 365 days) and time since last imaging 

examination. Screen-detected cancers were defined as invasive cancers identified within 12 months 

of a positive screening examination. All mammograms were interpreted prospectively by radiologists 

during the course of routine clinical care. Cancers were identified by annual linkage with the 

respective cancer registry. Ethics approval was obtained by the Institutional Review Board for this 

retrospective analysis of mammograms for masking properties, informed consent was given, and the 

study was Health Insurance Portability and Accountability Act (HIPAA) compliant. For each case 

identified, the mammograms prior to cancer detection were selected for analysis. 

Derivation of X-Ray Spectra and attenuation curves 

We extracted the relevant imaging technique factors from the Digital Imaging and 

Communications in Medicine (DICOM) image headers (kVp, mAs, breast thickness, anode and 

filtration materials and thicknesses) reproduced the characteristics of the incident X-ray spectra (67). 

We then used previously established methods to determine the additional attenuation from the 

breast tissue and the resulting X-ray spectrum at each pixel (172,173). 
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Creation of Virtual Lesions 

Next, we created our virtual lesions by inserting a Gaussian profile of an additional attenuation 

into the raw data mammograms (67) as it corresponds to the most commonly clinically found tumor 

shapes (171) with full width half max (FWHM) to emulate clinically relevant tumor sizes (0.5 to 3 

cm) (174). The magnitude of attenuation of our virtual lesions was calculated by combining the X-

ray spectrum with the attenuations that would be observed in the Contrast Detail Phantom for 

Mammography (CDMAM) phantom, which contains gold discs with varying size and thickness and 

is used to quantify detectability thresholds of different imaging configurations by having readers 

attempt to identify the locations of these disks  (151). We analyzed peak lesion thickness ranges of 

0.03 – 4 um of gold attenuation, which correspond to 0.05 - 3 cm of lesion peak thickness (67). 

These virtual lesions are then blurred by the point spread function of the mammography unit (175).  

Model Observer 

Model observers are used often in medical literature to emulate the result of a human reader in a 

detection task.(176) We chose to implement the Non Pre-Whitening Matched Eye Filter (NPWE), 

as studies have shown the filter correlates with human observers in the case of detecting lesion like 

objects in a background similar to what is seen in mammography.(143) Equation 1 shows the 

NPWE filter, where  𝐸 is an eye filter, 𝑔𝑠 is the image template with the signal of interest (virtual 

lesion), and  𝑔𝑛  is the image template without the signal of interest. 

𝑤 = 𝐸𝑇[𝑔𝑠 − 𝑔𝑛]𝐸 (1) 

When the result 𝑤 is above a detectability threshold, the signal of interest is deemed detectable. 

We calculated IQF at 5 mm intervals patch by patch throughout the breast for the full range of 

diameters and visualized this through the image as an IQF map. We exclude non-breast regions 
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from calculations by defining the skin edge and muscle region via thresholding and in-house 

software. 

Determining Detectability Thresholds 

In order to determine the threshold of detectability, we implemented a 2-Alternative Forced 

Choice (2-AFC) test.(143) In this test, two images are presented to the model observer. Only one 

contains the inserted lesion. The observer chooses the image with the highest response to the filter, 

and if this choice is correct more than 92% of the time(143) then the model observer is deemed able 

to accurately detect the lesion in that image.  

To run a 2-AFC test, it is necessary to have lesion-free image patches similar to the image patch 

with the virtual lesion. For this, we generated simulated image patches with the same mean, standard 

deviation, and radially averaged power spectrum as each lesion-containing image region. We used 

these images as our patches without signal in order to perform the 2-AFC test.  

Producing Masking Maps 

Performing the 2-AFC test allowed us to calculate the threshold peak thickness value that was 

detectable for each FWHM virtual lesion size. From this, we produced a CD curve for each region, a 

curve that plots thresholds of detectability across multiple diameters and is important to image 

quality studies for mammography.(177,178) We then summarized this CD curve by calculating the 

IQF: 

 𝐼𝑄𝐹 = 𝑛/ ∑ 𝑇𝑖,𝑚𝑖𝑛𝐷𝑖
𝑛
𝑖=1  (2) 

Where  𝑛 is the number of virtual lesion FWHM values and 𝐷𝑖 and 𝑇𝑖,𝑚𝑖𝑛 are FWHM values 

and threshold peak thicknesses of detectability for each virtual lesion FWHM. Larger IQF 

represents higher detectability in that patch, i.e., that masking is less likely. We calculated IQF patch 
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by patch throughout the breast for the full range of diameters. This entire set of IQF values can then 

be visualized across the image as an IQF map, which highlights patches of high and low 

detectability. Next, we consider IQF map first order statistics, second order statistics, and other 

summary IQF measures that may classify between mammograms with low and high masking.  

Statistical Analysis 

Based on these IQF maps, we calculated various summary masking measures ranging from 

common statistics to measures of the grey level co-occurrence matrix (GLCM). We generated these 

IQF maps for CC and MLO views of the right and left breasts. We then used conditional logistic 

regression with interval vs. screen-detected cancer as the outcome and each of these masking 

measures as the predictor. We first fitted a conditional logistic regression using only BI-RADS 

density. We then fitted two conditional logistic regressions for each masking measure: one univariate 

regression using only the masking measures and one regression using BI-RADS density as well as 

the masking measures. We computed and compared the Receiver Operator Curve Area Under the 

Curve (ROC AUC) from the conditional logistic regressions (172). The best masking measure was 

selected as the measure with the largest improvement to the AUC compared to the model with only 

BI-RADS density, and also had a significant p-value of inclusion into the model with Bonferroni 

correction after controlling for BI-RADS density with a critical significance value of 2.85E-3.  

 Image analysis and calculation of masking parameters were carried out using MATLAB 

r2015a (Mathworks, Natick, MA). Conditional logistic regressions were carried out in R version 3.2.2 

using the clogit function in the survival package. Analysis also used R.matlab, ROCR, dplyr, e1071, 

ICC, lattice, gdata, PredictABEL, and psych packages. 
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4.3.3 Results 

Descriptive Statistics 

Table 4-1 shows the demographic information of the women from each case-type. Within this 

dataset we had 182 women diagnosed with an interval breast cancer. These were matched by 

exam date (within 365 days) and time since last imaging examination to 173 women with screen-

detected breast cancers. There were no screen-detected cancers that matched by age and race for 9 

of the interval cancers, and these were excluded in the conditional logistic regressions. The 

descriptive statistics showed a difference in Body Mass Index (BMI) and BI-RADS density between 

groups, but the other demographic and risk information was not significantly different.  

Table 4-1: Demographic information and statistics of the screen-detected and interval groups. 

 

Screen-Detected 
Group 

Interval Group P-Value 

N (CPMC/MGH/UCSF) 173 (122/38/13) 184 (108/53/23)  

Age, years (Standard Deviation)  57.8 (10.9) 56.8 (11.8) 0.28 

BMI, kg/m2 (Standard Deviation)  24.9 (4.7) 23.5 (4.3) <0.0001 

Race:   0.88 

     White 127 129  

     African American 3 4  

     Chinese 25 27  

     Filipina 3 3  

     Hispanic 0 2  

     Japanese 5 9  

     Mixed 5 6  

     Other Asian 2 1  

     Other Non-Asian 3 3  

Menopausal status 119 (69%) 123 (67%) 0.69 

Family history of breast cancer 47 (23%) 60 (33%) 0.25 

Previous history of breast biopsy 55 (32%) 68 (37%) 0.33 

BI-RADS Frequency:   0.008 

     A: Almost Entirely Fatty 11 3  

     B: Scattered Fibroglandularities 50 33  

     C: Heterogeneously Dense 61 78  

     D: Extremely Dense 19 53  

     Missing Data 19 7  

     Unknown 13 10  
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Figure 4-2 shows a sample region where a simulated Gaussian lesion was inserted into a region 

of a mammogram, with the peak thicknesses and FWHM of the virtual lesions shown in Table 4-2.  

Table 4-2: Table showing all combinations of simulated lesions in terms of their FWHM and peak thickness.  

Dimension Sizes Used 

Full Width Half Max 
(mm) 

30, 28, 25, 22, 20, 18, 15, 12, 10, 8, 5, 4 
 

Peak Thickness 
(um Au Equivalent) 

4, 3.5, 3, 2.5, 2, 1.5, 1, 0.75, 0.5, 0.36, 0.25, 0.2, 0.16, 0.13, 
0.1, 0.08, 0.05, 0.03 
 

 

 
Figure 4-2: Sample image of a raw mammogram image (Left), and that same image region with a pseudo-

lesion simulated and inserted into the image. 

Figure 4-3 shows a masking map generated from a sample mammogram. Intuitively, we can see 

that the masking map has lower values in regions of high density. 
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Figure 4-3: Raw data mammograms (CC View) and the respective generated IQF masking maps for sample 

images with BI-RADS density 1 (top-left), 2 (top-right), 3 (bottom-left), and 4 (bottom-right). Scale of IQF 

values are shown at right and are consistent across images. IQF values closer to zero are represented as darker 

pixels, indicate higher levels of masking, and are seen in the higher density images. Raw data mammograms 

have been contrast-enhanced to better see dense regions. 

The full list of masking variables used in the conditional logistic regression between interval and 

screen-detected cancers and their univariate conditional logistic regression results are shown in Table 

4-3.  

Table 4-3: List of all masking measures analyzed and their respective AUC and P-value for the univariate 

classification and classification after controlling for BI-RADS density. 

Masking measure AUC for 
each 
masking 
measure 

P-value in 
regression 
model  

AUC after 
controlling 
for BI-RADS 
density 

P-Value for 
inclusion 
of masking 
measure 

IQF Mean 0.60 6.62E-07 0.68 1.19E-03 

IQF Median 0.61 3.04E-06 0.68 02.18E-03 

IQF Sum 0.63 8.58E-11 0.67 2.52E-06 

IQF Entropy 0.59 6.64E-06 0.68 8.05E-04 

IQF Kurtosis 0.56 0.015 0.67 0.214 

IQF Skewness 0.59 1.78E-04 0.67 7.55E-02 

IQF 10th Percentile 0.61 1.12E-06 0.69 1.72E-03 

IQF 25th Percentile 0.61 7.02E-07 0.68 1.17E-03 

IQF 75th Percentile 0.59 4.37E-06 0.69 2.91E-03 

IQF 90th Percentile 0.60 1.15E-07 0.68 4.07E-04 
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Masking measure AUC for 
each 
masking 
measure 

P-value in 
regression 
model  

AUC after 
controlling 
for BI-RADS 
density 

P-Value for 
inclusion 
of masking 
measure 

IQF Percent Area below 1 0.59 5.17E-06 0.68 6.72E-04 

IQF Percent Area below 2 0.60 9.91E-07 0.68 2.43E-03 

IQF Percent Area below 3 0.58 4.22E-05 0.68 5.58E-03 

IQF Percent Area below 4 0.58 3.42E-04 0.68 1.22E-02 

IQF GLCM Contrast 0.54 0.032 0.68 4.43E-02 

IQF GLCM Correlation 0.58 1.72E-04 0.67 9.50E-04 

IQF GLCM Energy 0.60 8.11E-07 0.68 4.58E-05 

IQF GLCM Homogeneity 0.57 7.68E-03 0.67 3.91E-03 

 

Many of the masking measures had similar AUC levels and similar ROC curves, as seen in 

Figure 4-4:  This figure shows the ROC curves and associated AUC values of predicting interval and 

screen-detected cancer in the test set for the most significant masking measures. These measures 

improved upon the prediction after including other breast cancer risk factors.  

 
Figure 4-4: ROC curves for several of the masking measures in predicting interval vs screen-detected cancer. All 

masking measures had similar AUCs and ROC curves in the univariate analysis. 

Figure 4-5 shows the ROC curves and associated AUC values of predicting interval and screen-

detected cancer of the different models for the IQF 10th percentile, the masking measure that 

improved the AUC the most compared to the density only model. 
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Figure 4-5: ROC curves of predicting interval vs screen-detected cancer for the best performing masking 

measure (IQF 10th percentile). After controlling for BI-RADS density, this masking measure improves the AUC 

from 0.65 to 0.69. P-value for inclusion of masking measure in combined model = 1.7 E-3. 

Several IQF masking measures were statistically significant for inclusion in the conditional 

logistic regression, even after controlling for BI-RADS density. Table 4-4 contains the results of the 

proportion analysis. In Table 4-4 we see decreasing proportion of screen-detected cancers in the 

groupings with high levels of masking. 

Table 4-4: Comparison of proportions of screen-detected cancers by BI-RADS density groupings and masking 

measure groupings, grouped by percentiles similar to BI-RADS density distribution. Left most quartiles of the 

masking measure correspond to the quartile with the lowest masking, and right most quartiles with the 

highest masking levels.  

1st – 0-10th percentile of the value of the masking measure 

2nd – 10-50th percentile of the value of the masking measure 

3rd – 50-90th percentile of the value of the masking measure 

4th – 90-100th percentile of the value of the masking measure 

IQF: Image Quality Factor, BI-RADS: Breast Imaging-Reporting and Data System. 

Masking measure Measure by quartile   

Clinical BI-RADS 
Density 

A B C 
 

D Unknow
n 

Overall 

 Interval Cancers 3 32 77 
 

53 17 182 

 Screen Detected 
Cancers 

11 50 61 
 

19 32 173 

 Proportion of screen-
detected cancers 

0.79 0.61 0.44 
 

0.26 0.65 0.49 

IQF 10th Percentile 4th 3rd 2nd 
 

1st  Overall 

 Interval Cancers 11 62 84 25  182 

 Screen Detected 
Cancers 

25 79 57 12  173 

 Proportion of screen-
detected cancers 

0.69 0.56 0.40 0.32  0.49 
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4.3.4 Discussion 

We identified several measures of masking that are associated with interval compared to screen-

detected cancers even after adjusting for BI-RADS density, and these masking measures may be 

useful to better identify groups at high risk of interval cancer. The IQF 10th percentile measure 

provided the largest gain in the AUC when added into the model, raising the AUC from 0.65 with 

density alone to 0.69. This indicates that these masking measures contain information about interval 

breast cancer risk that is not captured in the BI-RADS density classification alone. 

The most significant measure, the 10th percentile of the IQF map, is an indicator of a region of 

the breast with low detectability. If such a region exists, it follows that a potential cancer would be 

less likely to be detected by the radiologist if in that region of the breast and that interval cancers are 

more likely. The fact that masking measures related to overall, local, and texture qualities were 

significant indicates that masking properties are complex and need to be further studied to identify 

all relevant factors at play. Analyzing the proportion of screen-detected cancers stratified by BI-

RADS density and the IQF 10th percentile measure showed interesting interactions as well. In each 

case, the proportion of screen-detected cancers was highest in the low masking category and was the 

lowest in the high masking category. The difference between the lowest and the highest proportion 

was over 30%. 

Little has been reported with regards to measuring mammographic masking. Mainprize et al. 

have performed a similar study in which they derive a masking measure by creating a regional 

detectability index of a Gaussian shaped simulated lesion with a 5 mm FWHM based on the signal 

to noise ratio, which can be derived from the normalized noise power spectrum, and several other 

imaging parameters of the mammogram (170). They found their masking measure correlated with 

breast density in several different ways and indicated it may be useful to identify risk of interval 
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cancer. Our study expands upon this work by calculating detectability directly with a 2-AFC test of 

the model observer and by performing regressions to predict screen-detected and interval cancers. 

As the field investigating mammographic masking is growing, future developments and insights will 

be gained to best understand how to model and quantify masking.  

This study has several strengths. First, it accounts for BI-RADS density, a known risk factor for 

interval cancer. This was important because as expected there was a significantly higher proportion 

of  interval cancer cases in the high density categories compared to the screen detected category 

(13,167). Additionally, matching by age and race between the datasets helps control for confounding 

in our dataset.  

There were several limitations that, if  resolved, could improve upon the strength of  the study. A 

more sophisticated model observer could potentially be used, such as a Channelized Hotelling filter 

(150). However, a NPWE filter may still be sufficient to properly quantify masking and predict risk 

of  interval cancer in mammography. Additionally, this study was performed on a case-case dataset. 

In the future, comparing masking measures in interval cancers compared to women that don’t have 

breast cancer would help better define the predictive value of  the masking measure. 

In conclusion, we’ve developed an automated method that better identifies mammograms with a 

high likelihood of  masking invasive cancers compared to screen-detected cancers than BI-RADS 

density alone. Further, analysis of  proportions of  screen-detected cancers showed that these 

masking measures provide risk segmentation and may have the potential to identify low density 

groups at higher risk of  interval cancer and high-density groups with lower risk of  interval cancer. 

This method may be useful to objectively identify women that would benefit by either non-

mammographic screening methods or supplemental breast cancer screening 
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4.4: IQF In Tomosynthesis - Feasibility 

4.4.1 Tomosynthesis Imaging Chain 

Tomosynthesis has been approved for use by the Food and Drug Administration (FDA) since 

2011, with the goal to help resolve lesions at a higher specificity and sensitivity (179,180). Because of 

this and the uptake in screening using tomosynthesis, developing measures of interval risk and 

measures of detectability would be useful in this new technology as well. 

Tomosynthesis is similar to mammography in that it helps with breast imaging using X-rays, but 

the main difference is that tomosynthesis machines take several images at slightly different angles, 

allowing for reconstruction of a pseudo 3D image to take place using reconstruction methods 

similar to CT (179,180). Figure 4-6 shows a schematic outlining the imaging process in 

tomosynthesis.  

 
Figure 4-6: Schematic showing the imaging process of taking multiple projections for tomosynthesis imaging. 

Source: (179) 

This technology was developed in the hope that tomosynthesis could help resolve tumors in 

fibroglandular regions or other hard to see areas of an image. The extra detection effect of 

tomosynthesis is still being studied (181), but it appears encouraging. While the extra projections add 
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some extra calculations, it is still possible to simulate lesions create and calculate model observers in 

tomosynthesis (160). We performed a preliminary analysis to examine the feasibility of performing 

such a process to explore and compare interval risk between tomosynthesis and mammography. 

4.4.2 Preliminary Results 

To create and insert pseudo-lesions into a tomosynthesis image, a pseudo lesion must first be 

inserted at the correct location for all projections based on the specific geometry of the projection 

and the distance of tissue penetrated based on that geometry (160,180). After that, image 

reconstruction must be performed, which implements filtered back projection (similar to CT). This 

produces a pseudo 3D image which allows one to see the image in slices throughout the Z axis and 

can visualize the inserted lesion in the appropriate spot. From there, similar methods to a model 

observer could be performed in order to quantify detectability.  

Figure 4-7 shows preliminary results of inserting a pseudo lesion into a tomosynthesis image. 

While this was primarily a feasibility and proof of concept study, it shows that it is certainly possible 

to create and insert pseudo lesions into tomosynthesis images to study the detectability of 

tomosynthesis images, the interval risk of those images, and compare them to detectability of 

mammogram images of women.   
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Figure 4-7: Full view (left) and zoomed in (right) tomosynthesis image showing a pseudo lesion created by 

inserting lesion-like attenuations into each projection and then reconstructing as an image. 

In the future we plan to examine and compare the interval risk in mammograms and 

tomosynthesis images from the same women. This will not only allow to compare the detectability 

of lesions between tomosynthesis and mammography images, but also can examine the ability to 

determine interval risk between the two imaging modalities.  



72 

5 | Deep Learning  

Deep learning is a relatively new branch of computer vision that has revolutionized the field, 

improving existing applications and enabling a wide new set of other applications. It has improved 

capabilities in a variety of fields, and introduced an outcome-based, rather than hypothesis-based, 

form of making decisions (71,182). In order to understand if deep learning could be used to create 

better measures and predictions of interval cancer risk, we need to better understand how deep 

learning works and what its advantages and drawbacks are. 

5.1: History and development 

5.1.1 Theory and Math 

The theory behind deep learning has been theorized since the 70s and 80s, well before 

implementing the idea was actually possible (74,75). These papers theorized that it would be possible 

to have a series of interconnect variables, each with a series of weights. The variable and weights 

would predict a specific outcome and depending on the accuracy of prediction a back-propagation 

algorithm could be applied to change the weights and make the system and algorithm more accurate 

(44). An example of a fully connected set of layers and weights is shown in Figure 5-1.  

 
Figure 5-1: Schematic of a fully connected neural network. Each circle represents a node, and each arrow 

indicates a weight that the node is given from previous nodes or gives to future nodes. The summation of these 

operations produces values in each output node, leading to a decision. Source: (44)  
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In this figure, each arrow represents a multiplier and each circle represents a weight. In this 

system, there are five input variables (X) connected to three input weights, connected to two more 

output weights. This example network could be taking five blood marker levels to predict a 

likelihood of any two outcomes, such as diabetes or heart disease. The equation for this network 

would be set up its predictions through forward propagation, by multiplying the variables with the 

weights similar to matrix multiplication, by the following equations (44): 

𝑂𝑖 = ∑ 𝑤𝑖𝑗𝑉𝑗        𝑉𝑗 = ∑ 𝑤𝑗𝑘𝑥𝑘  

𝑂𝑖 = ∑ 𝑤𝑖𝑗 ∑ 𝑤𝑗𝑘𝑥𝑘 

 

After a prediction is made on some data, the network will adjust the (w) weights with each 

iteration in order to bring its predictions closer to the truth. In our diabetes example, if one of the 

inputs was blood sugar levels, the weights associated with that variable would get more substantial 

over time, as it is a known risk factor for diabetes. This can expand as far as the imagination can go, 

with as many variables per layer and as many layers as one wishes (44,182). This allows to include 

information from a wide variety of data types and makes this computation potentially robust.  

Unfortunately setting up a network purely in this way has an inherent flaw: all of the matrix 

multiplication steps are linear at this point. This reduces the ability of the network to adjust, and 

drastically reduces the complexity and depth of the network by making it a series of linear 

combinations (44). To improve on this, researchers developed activation functions, which help add 

nonlinearities into each layer of these functions and prevent them from being simple linear 

combinations. A sample nonlinearity is shown in Figure 5-2. 
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𝑔(𝑧) =  
1

1 + 𝑒−𝑧
 

Figure 5-2: The nonlinear rectified linear unit (reLU) function that is introduced to deep learning networks to 

add complexity to the model. Source (44) 

This changes our forward propagation from linear combinations to a series of nonlinear steps, 

as seen in the following equations (44): 

𝑉𝑗 = 𝑔(∑ 𝑤𝑗𝑘𝑥𝑘)        𝑂𝑖 = 𝑔(∑ 𝑤𝑖𝑗𝑉𝑗)   

𝑂𝑖 = 𝑔 (∑ 𝑤𝑖𝑗𝑔 (∑ 𝑤𝑗𝑘𝑥𝑘)) 

 

Within these fully connected layers and nonlinearities, the forward propagation is now much 

more robust and complex than just a series of linear combinations. Once the predictions are made 

from forward propagation, a loss function is created that compares the predicted outcomes with the 

actual outcomes. There are a variety of optimization functions (182), but the vast majority of them 

compare the difference between the predictions (and confidence in those predictions) with the 

ground truth output and weight the loss based on how far from the truth the prediction was (44). 

The loss function is then leveraged to determine the way the network should change its weights 

in order to produce better results in the future. This process involves taking the derivative of the 
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loss function to determine where the largest changes in weights should occur and is called back 

propagation, and it is shown in Figure 5-3.  

   
Figure 5-3: Schematic showing forward propagation to produce predictions (left equations) and back 

propagation to change the weighting factors (right equations).  Source (44) 

All of these mathematical steps help the network to make and adjust its predictions, not be 

limited to a linear combination, and adjust its weights to optimize a loss function. A lower output in 

the loss function indicates more confidence and more accuracy, and a decrease in this loss over time 

indicates the model is learning. Unfortunately, this also makes it difficult to compute and adjust 

these weights. In the 1980s, computing and updating the weights of  these networks would take 

weeks and was just impractical considering the available computing power at the time (44). This 

made it impractical to apply these ideas for research in a meaningful way. 

5.1.2 The Computing Revolution 

It took decades between when deep learning was first theorized in the 70s and 80s to when it 

revolutionized computer vision in the 2010s. Improvements in the amount of data and its structure 

as well as improvements in computing ability helped to make implementation of deep learning more 

possible and practical (44,182,183).  Figure 5-4 shows changes in both the amount of data and the 

computing power available over time.  
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Figure 5-4: Graphs showing the growth in the amount of data existing and generated over time (left) and the 

increase in computing power over time (right). Both of these factors contributed to the explosive growth seen 

in deep learning over time. Source (183–185) 

In order to actually apply deep learning methods, a large amount of computing ability is 

required. The recent increase in computing ability was hugely influential in the application of neural 

networks and is rapidly increasing from year to year. In addition to improving computational power 

over the years, researchers discovered that using graphics processing units (GPUs) as opposed to 

central processing units (CPUs) could improve the computational speed of deep learning algorithms 

by a factor of 10 or more (44,183). These advancements helped to drastically improve the ability of 

deep learning to be actually applied.  

Another factor that served as a catalyst for deep learning applications was the explosion in both 

the amount and availability of data over time. Because of the large number of parameters inherent in 

neural networks, they will naturally overfit data unless they can train on a large dataset with a variety 

of data. In recent years the amount of data being produced and stored has doubled every two years, 

providing the large amount of data required. In addition, the advancement of the internet made it 

much easier to share and have access to that large amount of data, something that was incredibly 

difficult before. Further, the ability to share data through the internet made it much easier to 

collaborate with other groups, providing a larger variety of data into training. 
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This has led to very large public databases, like the ImageNet database. ImageNet is one of the 

premier deep learning competitions that occurs annually. In this competition, the goal is to use 

computer vision methods to correctly classify a set of over 1 million images in over 1,000 categories 

(44,75,186). Some sample ImageNet images are shown in Figure 5-5. 

 
Figure 5-5: Sample images from a variety of the categories used in the ImageNet competition, showing the 

vast complexity and wide differences in types of images. Source: (44) 

In the earliest years of this competition, traditional computer vision methods were used to 

categorize different classes. In 2010, the method had an accuracy of roughly 72% with these 

traditional computer vision methods, as seen in Figure 5-6. Once deep learning methods were 

introduced in 2012, it revolutionized the ImageNet competition and many other computer visions 

tasks. In 2012, the deep learning entry to the competition was over 10% more accurate than the best 

non-deep learning method, having an accuracy of 85% compared to 73%. Just two years later, every 

top competitor in the competition has used deep learning methods. These methods also took hold 

in a variety of fields including medical imaging, leading to a large spike in papers submitted over the 

years (77,78).  
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Figure 5-6: Methods and results over the past years of the leading ImageNet competition leaders. Once deep 

learning was introduced to this competition in 2012, it has outclassed every traditional computer vision 

method. Source (72).  

5.2: Deep Learning Basics 

5.2.1 Convolutional Neural Networks 

In addition to standard deep learning methods, deep learning can be applied to make predictions 

based off of image data. For the most part these are created and applied through the use of 

convolutional neural networks (CNNs), an example of which is shown in Figure 5-7. In CNNs, 

instead of a set of variables and layers connecting to each other and changing weights, a series of 

filters of various sizes are connected to each other and change weights (44,187). These weights then 

are trained to look for specific features that are important for the discrimination task at hand.  
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Figure 5-7: Schematic showing the layout of a convolutional neural network (CNN) and how convolutional 

layers and fully connected layers are stacked to produce full deep learning networks. In these networks instead 

of layers of nodes connected to each other through weights, we have layers of features that are convolved 

through the preceding image or feature map, with weights attached to those layers. These methods are used 

extensively in image processing competitions. Source: (44) 

Once a CNN is trained, in general the first level features look for more general features like 

edges, curves, and intensity, and later features look for things specific to the classification task like 

eyes, wheels, mouths, and other high-level features.  For example, in Figure 5-8, we can see the first 

filters look for edges and intensity measures and the later features are trained to look for hubcaps, 

windows, and other features specific to cars (44).  In some cases, these filters look like some hand 

designed edge and feature filters created by humans, and they help to look for the same basic 

elements (edges, spheres) that those filters would in conventional computer vision. 

 
Figure 5-8: Schematic showing how low-level features in CNNs tend to identify base-level features like edges 

and intensity. Middle and higher-level features tend to show and look for more advanced features like curves 

and items specific to the task like wheels and windshields. Source: (44) 
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5.2.2 Outputs 

Over time, deep learning networks have been adapted and trained to work on a variety of 

datasets and produce a variety of outcomes. Because of this, CNNs and deep learning have impacted 

nearly every facet of computer vision. They have been used to classify images into categories, to 

segment different regions of an image, to read and identify words, to identify the sentiment or style 

of a word or image, and to help fill in missing data in an image or even create new simulated images 

(71,72,76,77,187,188).  

5.2.3 Drawbacks / Limitations 

There is a key possible limitation and drawback in deep learning, and that is the great risk of 

deep learning networks to overfit and memorize data (78). Figure 5-9 shows a classic case of 

overfitting linear data to a polynomial equation.  

 
Figure 5-9: Classic example of overfitting a general linear dataset. In this case, linear data is being fit to a 

high-order polynomial. While it fits these specific data points well, extrapolating this polynomial to any point 

outside of those specific points produces wildly inaccurate results. Overfitting in deep learning applications 
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produces the same results, with great results on training data and poor accuracy on any outside data. Source: 

(189) 

In deep learning, many networks have millions of weights and millions of interactions between 

those weights. This gives the networks a great risk to identify patterns in data for classification, but 

also a great ability for networks to memorize data and overfit (44). 

Overfitting essentially happens in deep learning networks for two reasons. First, if the network 

is too complex for the type of analysis being done, for example if you choose an extremely complex 

network to classify digits, the network has more variables to potentially overfit and memorize the 

training data. Secondly, if you don’t have enough training data, the neural network tends to 

memorize specific images in the dataset, meaning no learning is happening but the images are just 

being memorized. Lastly, if there is not enough variety in the dataset or the dataset is missing a key 

aspect of variation, the neural network will likely perform poorly on new data. For example, training 

a neural network to identify only printed words will not work effectively if the network tries to 

identify cursive words.  

5.3: Training Heuristics 

There are a number of methods to help mitigate overfitting from occurring in deep learning 

training or to help make your network more robust. 

5.3.1 Training and test sets 

It is important to have a metric that allows you to determine whether overfitting is occurring or 

not. To do this, a standard has evolved to split the data you have access to into a training dataset and 

test dataset (44). Often 80 percent of the data is placed into the training set and 20% of the data is 

placed into the test set. 
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The neural network then adjusts its weights and learns using the training dataset. It then 

performs predictions on the test dataset, and the results of the network on the training dataset and 

test dataset are compared. The benefit of this process is that during training, the network does not 

have access to the test dataset, so if the network starts to memorize the training dataset the results 

will get worse and worse in the test dataset. This lets one observe the training and test loss, and 

observing a decrease in test and train loss values indicates better learning over time. A sample curve 

showing results from the training and test datasets is shown in Figure 5-10 

 
Figure 5-10: Typical loss (left) and accuracy (right) curves that are produced during deep learning training for 

both the test and train dataset. Ideally, loss curves decrease over time with test loss staying similar to training 

loss, and accuracy ideally rises over time. If test loss and accuracy deviate from the training results, like we see 

halfway through training, it indicates overfitting.  

In this, the training and test accuracy and loss start out at similar levels. At this point in training, 

the network is doing true learning and not overfitting, as it is producing similar results in both data 

that it sees during training and the new data in the test set. After roughly 50 Epochs, however, the 

test loss starts to stabilize and then increase, and meanwhile the training accuracy continues to 

increase. This gap between the two curves is called the generalization gap, and it is an indicator of 

overfitting as the gap widens. At the point where the training accuracy is 85% and the test accuracy 

is 50%, a large amount of overfitting has occurred and the network has essentially just memorized 

each case in the training set. Keeping an eye on this generalization gap is key to identifying if 
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overfitting is occurring, and there are several methods that exist to control this generalization gap 

and help prevent overfitting 

5.3.2 Selecting the right network 

There are a wide variety of different deep learning architectures, each with their own pros and 

cons (44,72,75,182). It has been shown that different types of data perform much differently using 

different architectures, so testing the different architectures on your dataset is very important (44).  

This can help to provide more consistent results, prevent overfitting, and generate more accurate 

predictions. 

5.3.3 Learning Hyperparameters 

Learning hyperparameters are user-defined parameters that tell a network how to treat data, 

how it should learn, and how aggressively it should learn (44). A sample of different learning 

hyperparameters are shown in Table 5-1.   

Table 5-1: List of typical hyperparameters and their interpretation in deep learning networks. 

 Hyperparameter 
(Range) 

Interpretation 

Rotation  Range for a random rotation 

Zoom Range for a random zoom 

Shear  Range for a random shear 

Vertical/Horizontal Flip Random chance of flip in respective direction 

Momentum Importance given to previous weight updates compared to current weight 
updates 

Regularization Penalty applied to large image weights 

Decay Learning rate decay over each update 

Dropout Percent of weights ignored between dense layers in the fully connected layer 

Learning Rate How big of a change is made with each weight update 

Epochs (In Number of times to run through and predict the whole dataset 

Batch Size Number of samples per weight update 
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Image Size  Input image size in pixels 

nLayersRetrain  Number of layers allowed to have their weights altered. 

Channel Shifts Switches the RGB channels of the input image 

Noise Addition Addition of noise, removal of image regions. 

Rescaling Rescales image values 

Mean/Deviation 
Centering 

Option to normalize or center the image statistics 

 

Adjusting these hyperparameters will affect how aggressively the network learns and help 

change the generalization gap to prevent (or produce) overfitting. Many studies have been done to 

show baseline levels and typical ranges for many of these hyperparameters.  

5.3.4 Hyperparameter Optimization 

Although using standard levels of learning rate, momentum, and other hyperparameters can be 

useful, it is difficult to identify what to do if those sets of hyperparameters don’t produce good 

results. While adjusting individual parameters can sometimes help, it is often useful, more practical, 

and more reproducible to standardize this process of identifying the best hyperparameter values to 

use. 

This process is called hyperparameter optimization (44). There are several ways to perform 

hyperparameter optimization, but one of the most common and easy ways is to perform a grid 

search or hyperparameter sweep. This is where you take the full set of realizable hyperparameters for 

each image and train the network with each possible combination of hyperparameters. This allows 

you to see and identify different hyperparameters sets that would be useful and to better understand 

the interaction between these hyperparameters. This is important to do because while it is often the 

case that standard hyperparameters values work well during training, different types of data and 

different sizes of data often get better results in different hyperparameter spaces (44,76,182) . 
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5.3.5 Image Augmentation 

Sometimes regardless of the hyperparameters chosen and the network chosen, it is difficult to 

get reasonable results that don’t overfit because the dataset is just too small. This happens often in 

cases where the data available is limited, like in medical imaging and diagnostics (77). In these cases, 

it is often helpful to perform another process called image augmentation.  

Image augmentation can help introduce variety to small datasets. The process involves 

performing a series of random image alterations before feeding the image into the deep learning 

network. This helps ensure that each time the network sees the same image, it is seeing the image at 

a slightly different angle or orientation, which helps prevent the network from memorizing the 

specific pixels or a specific image has a specific outcome (77,182,190). Figure 5-11 shows several 

options for image augmentation steps, which can include introducing random flips, zoom, shear, and 

rotation to the image before feeding the image into the network. 

Image augmentation has been shown to make networks more robust and more resistant to 

overfitting (44). It has also been shown to produce features that re more significant to the 

underlying detection process, rather than features that help identify specific images.  
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Figure 5-11: Example of the various image augmentation steps that can occurs before feeding into the 

network, allowing one to add variety to a limited dataset and reduce overfitting. Source: (190) 

5.3.6 Transfer Learning 

Even with all of these heuristics, in some settings the data is not available in the volume or 

variety required in order to prevent overfitting and despite best efforts, the network will lean 

towards memorizing the training set. In these cases, it is often useful to perform a process called 

transfer learning. In transfer learning, before training happens, you borrow network weights from a 

well-established training dataset that has already been performed (44,191). This helps to establish 

features from the outset that look for important general features in image classification such as 

edges, curves, common shapes, and common textures. 

Then, you re-train those weights to adjust the weights and features to identify which features are 

most important for this specific problem, and adjusts the features to look for shapes, edges, and 

textures that are most important in this specific problem. A schematic showing the transfer learning 

process is shown in Figure 5-12 
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Figure 5-12: Schematic of how transfer learning works. A network is first trained on a large and robust dataset 

(such as ImageNet) for a specific task (task A). Those weights are then borrowed, a new end of the network is 

applied to classify a new task, and weights are retrained to best perform for that new task. Source: (192) 

Often, this involves borrowing network weights from the ImageNet competition, as it is one of 

the most well-established competition with a huge amount and a huge variety of data (182). This 

ensures that in most cases it will have identified important features for all parts of image detection. 

During this process, you can unlock any level of layers to be retrained based on preference and 

results, allowing you do just refine top level features or refine all the weights and features as well.  

This process of transfer learning has been shown to improve and help in many cases where data 

is limited (44,76,188,191,193). It helps to leverage the large datasets and things learned from that, 

and applies it to a specific problem 

5.3.7 Tiered vs Categorical vs Binary. 

While the learning of a deep learning network is done independent of the user, it is dependent 

on user-defined outcomes, whether it is classification, segmentation, or some other task. Because of 
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this. When choosing between classes of objects, Binary classification is typically done when a 

decision needs to be made between two classes only, whereas categorical classification is used in 

multiclass problems (182).  

In some cases, with a limited number of classes, some people hypothesized that a tiered 

classification system may outperform trying to classify all categories at once. For example, classifying 

images of animals first into cats versus dogs, and then having a network to differentiate dogs and a 

network to differentiate cats may outperform classifying all at once. However, it has been shown 

that most networks with enough depth are able to classify categorically quite efficiently even with a 

small number of categories (44). 

5.4: Improvements to Medicine 

Deep learning has made a plethora of improvements over the years. It has helped a variety of 

military applications, from automated flying of drones to machine learning. More relevant to us 

though, it has revolutionized the field of medicine (77,78). 

Deep learning has consistently been applied to and improved on current diagnostic methods in 

many medical fields. CheXNet has been able to improve upon lung pathology diagnoses using chest 

X-ray images compared to an average of radiologist diagnoses, improving the F1 score from 0.387 

to 0.435 (63). Deep learning was applied to diagnose diabetic retinopathy and was able to improve 

classification AUC from 0.937 using current detection techniques and human observers to 0.980 

using deep learning methods. A negative of this network was a specificity level of 0.87, which would 

lead to a larger number of false positives (194). Several review papers have highlighted the various 

advancements, opportunities, and risks of deep learning in other medical fields (76,77,195). 
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Deep learning methods have already been applied to several areas of breast cancer research with 

promising results. An analysis of screening mammograms to perform lesion segmentation and 

classification with a deep learning network was able to achieve classification AUC of 0.95 and 

outperformed CAD systems (196). Deep learning networks were also able to categorize amount of 

dense tissue on par with experts using Cumulus-like thresholds (197). Lastly, a deep learning 

network lesion classification system achieved an AUC of 0.82 on digitized-screen film mammograms 

and 0.90 on breast tomosynthesis images (188). Our study, which has been able to differentiate 

between future interval and screen detected cancers more effectively than using current methods 

such as BI-RADS breast density, further contributes to the understanding that using deep learning 

can further our diagnostic capabilities and our understanding in several areas of breast cancer 

research.    
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6 | Deep Learning to Quantify Interval Risk 

6.1: Preliminary Work: Optimizing deep learning for interval risk. 

In the studies outlined in future sections, we attempted to implement deep learning methods to 

identify interval risk on a variety of datasets. In order to make this successful, we implemented 

several heuristics and methods to get the best possible results, as detailed below.  

6.1.1 Transfer Learning 

Medical imaging often has a limited number of images in each classification category, and that 

holds true in the studies that will be presented in Sections 6.2:  and 6.3:  as well. In initial work 

implementing deep learning without performing transfer learning, we observed a huge amount of 

overfitting. It was clear that the dataset we had was not large enough to create large and robust 

weights from scratch. To combat the effects that a limited dataset has on deep learning, we 

implemented transfer learning as seen in Section 5.3.6 : Transfer Learning.  

6.1.2 Computational Limitations 

Deep learning is always limited by the computational ability of the computer it is performed on. 

This work was performed on an NVIDIA (Santa Clara, CA, USA) Quadro K 2200 with 16 GB of 

RAM. While this is capable of running and training deep learning networks consistently, there were 

several compromises we undertook in order to allow for the technical specifications of the 

workstation. 

The K2200 GPU limits the training speed of the deep learning networks. Because of this, image 

compression is forced in order to allow for reasonable training times so we can iterate on a variety 

of training techniques. Further, the 16GB of RAM in this system force limitations in both the image 

size (in pixels) and the batch size (number of images fed into the network at once). Because of this, 
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it takes longer to train a network, and we need to compress the image size from their natural image 

size of 2000x3000 pixels per mammogram. We tested a number of image compression sizes to see 

the training speeds and maximum batch sizes for a variety of cases. As seen in Table 6-1, training 

time for a reasonable number of epochs becomes quite long, and compression down to roughly 300 

pixels was necessary in many cases.  

Table 6-1: Sample of maximum batch sizes possible and training speeds of various image input sizes on our 

workstation. Because of this in order to iterate on network on a practical time scale, we were limited to 

optimizing networks by compressing the images down to 331 pixels or below. 

Image Size (Pixels) Max Batch Size Training Time per epoch 
(case-case analysis: Section 
6.2: ) 

Train time 500 
Epochs 

224 16 18 sec 2.5 hrs 

275 16 25 sec 3.5 hrs 

331 8 35 sec 4.9 hrs 

400 8 52 sec 7.2 hrs 

450 4 65 sec 9.0 hrs 

500 4 78 sec 10.8 hrs 

600 2 123 sec 17.1 hrs 

 

6.1.3 Image Input 

A large proportion of the area of a mammogram is empty space without breast tissue. As a 

result, this area would not be useful in deep learning training. Because image compression is required 

from the computational limitations of our system, it was important to maximize the amount of 

useful information presented to the deep learning network. To do this, we implement a number of 

image preprocessing techniques that resulted in each mammogram being cropped into the rectangle 

that inscribes the mammogram area. 

In this, we identify the skin edge through thresholding. We then crop the excess material out, 

and normalize the image on a 0 to 255 intensity scale as that is the expected intensity scale in these 

deep learning networks. 
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6.1.4 Image Collaging 

An important consideration when designing a deep learning network is the method and way to 

input images into the deep learning network. Because mammograms are always taken in sets of four, 

we leveraged an idea called image collaging that combines all four mammograms of a single patient 

into a single image that is inputted into the network, as seen in Figure 6-1: 

 
Figure 6-1: Schematic showing the process of collaging the preprocessed images together into a single image. 

At left is the raw 16-bit unprocessed mammogram. Middle left is the image after image cropping. Left and 

Middle left images were brightness and contrast enhanced in this figure for improved visibility. Middle right 

removes background values and convert the values to an 8-bit scale, and the rightmost image combines each 

of the four mammograms into a single image. This helped to maximize the amount of useful data introduced 

to the network at once. 

This method has both benefits and drawbacks. A benefit of image collaging is that the network 

sees all imaging information about each case simultaneously, allowing it to make additional and 

deeper connections than if it sees each image individually. Further, this helps reduce image 

redundancy, as inputting multiple images from the same case as individual inputs implies image 

uniqueness when the images are in fact related. Unfortunately, this method also drastically reduces 

the amount of total data the deep learning network has access to, as it combines multiple images 

into a single image. Lastly, the type of image collaging performed here, where each image is forced 

into a different quadrant, does not preserve the aspect ratio of the image, meaning certain factors 

such as breast shape and total area may not be preserved by this pre-processing method. 
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In the end, several studies showed promising results from image collaging rather than using 

separate image inputs. We adopted this collaging methodology as we were able to get more accurate 

and more robust results from this method on our dataset, as seen in Figure 6-2. 

 
Figure 6-2: Comparison of test and training accuracy by inserting each mammogram individually (left) versus 

inserting the 4 mammograms as a collage (right). In this case each network was trained under the same set of 

hyperparameters, and shows how combining the images as a collage helped to reduce overfitting and improve 

accuracy. 

6.1.5 Hyperparameter Sweeps 

In deep learning networks, there are a variety of hyperparameters that are available to adjust in 

order to optimize and improve training, learning, and prevent overfitting. Different datasets require 

different hyperparameter sets for proper training, so in order to test which range of hyperparameters 

would produce good results with minimal overfitting, we performed a hyperparameter search. 

In some cases, with a large amount of time and resources, a full grid search in implemented that 

tests every permutation of hyperparameters. Since our setup was limited by computational ability, we 

tested each hyperparameter across its full range independently, rather than doing a full grid search. 

Doing this, we were able to identify several trends and hyperparameter sets that would produce 

positive results, as seen in Figure 6-3.  



94 

Low hyperparameter Medium hyperparameter High hyperparameter 

 
Batch Size = 2 

 
Batch Size = 8 

 
Batch Size = 16 

 
Learning Rate = 1e-8 

 
Learning Rate = 1e-4  

Learning Rate = 1e-2 

 
Zoom = 0.1 

 
Zoom = 0.4  

Zoom = 0.5 
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Figure 6-3: Schematic showing several graphs of the change in the accuracy of the training versus various 

hyperparameter changes. From this we see high overfitting with low amounts of rotation, zoom, batch size, 

and dropout, and increasing those hyperparameters helps to reduce overfitting. We see too high of a learning 

rate leads to overfitting and too low of a learning rate leads to no learning occurring. 

6.1.6 Class Weights 

When deep learning networks are trained, it assumes that each potential outcome has an equal 

chance of happening. During training, a deep learning network will change its weights in whatever 

way it can to get the best accuracy and minimize its loss function. If one image category has many 

more images or cases than the other categories, the network will quickly realize the best way to 

maximize accuracy is to always guess the most common category. While this maximizes accuracy, it 

does not actually produce true learning and the network will not perform well with new data. 

In medical imaging, and in this case of identifying interval cancer risk, it is quite common to 

have one category (healthy cases) be much more common than another category (cancer cases). To 
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avoid having the more common category dominate the decision making of the system, we 

implemented class weights in Section 6.3: . These class weights add an extra penalty to guessing the 

over-represented category and prevents deep learning networks from only guessing the most 

common category. Below you can see a case of training before and after class weights were 

implemented in a case where we had a healthy image category that outnumbered the other 

categories. 

 
Figure 6-4: Training before (left) and after (right) the implementation of class weights into the loss metric. In 

this case the most common category contains 66% of the total images. One can see that before class weights 

were introduced, the network immediately skyrockets to 66% test accuracy, showing that the network was 

simply guessing the most common category. 

6.2: Study: Deep learning networks find unique mammographic differences in 

previous negative mammograms between interval and screen-detected 

cancers (198) 

In this study we aimed to use the advances in deep learning and apply them to our goal of 

identifying groups of women at higher risk of interval cancer.  

6.2.1 Introduction 

Mammography is the current gold standard in screening for breast cancer in average-risk 

women. However, radiologically dense and complex tissue can reduce screening detection sensitivity 

leading to cancers missed by screening mammography from the obscuring of the lesions (13,165). 
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These cancers discovered after normal screening mammograms are called interval cancers and the 

effect reducing sensitivity in mammograms is commonly called mammographic masking. Roughly 

13% of breast cancers diagnosed in the U.S. are interval cancers (12). 

Previous studies have shown BI-RADS density and other density measures are risk factors for 

interval cancer (13,16). While clinically measured BI-RADS breast density can serve as a rough proxy 

for masking in measuring interval cancer risk, the scores are subjective and do not account for 

texture of dense tissue (168–170). Because of this the American College of Radiology has asked for 

development of direct measures of masking and interval risk (10). 

 Previous studies have measured the ability of pre-defined kernels and model observers to 

quantify masking and interval cancer risk, indicating some promise in computer vision to identify 

interval risk (170). Advanced computer vision methods such as deep learning have shown promise 

in many computer vision tasks such as object identification and have performed extremely well in 

the ImageNet competition compared to traditional pre-defined kernel methods (73,76). Transfer 

learning (191,195) of these networks has been effective in medical applications, including breast 

cancer, where in many cases deep learning models were able to equal or improve current 

classification or diagnostic schemes performed (63,76,188,193,196,199,200). Another useful property 

of deep learning models is their ability to highlight pixels containing unique information relevant to 

that image’s classification called saliency maps, which can be used in biological applications to 

develop hypothesis on the underlying biology or features associated with the classification of interest 

(63,187).  

The purpose of this study was to implement a convolutional neural network to classify pre-

cancer mammograms in a population of women who later experienced either screen-detected or 

interval cancers and compare this classification to a similar classification using BI-RADS density in 

order to see if neural networks can more effectively quantify risk of interval cancer. If successful, 
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these methods could be expanded upon to improve risk models and identify high risk groups of 

women, develop automated methods or software that can aid radiologists, and further understand 

radiomic quantities and underlying biology that indicate high risk of interval cancer  

6.2.2 Methods 

Participants 

Participants were selected from a screening population that had received full-field mammograms 

acquired from 2006 to 2015 from three medical centers University of California – San Francisco, 

California Pacific Medical Center, and Marin General Hospital. Ethics approval was obtained by the 

University of California – San Francisco Institutional Review Board for this retrospective analysis of 

mammograms for interval risk properties. Interval cancers were defined as invasive cancers 

identified within 12 months of a negative screening examination, from these centers were included. 

An equal number of screen-detected cancers were matched by age and race if such matching data 

existed, based on all screen-detected cancers diagnosed at the three centers. Screen-detected cancers 

were defined as invasive cancers identified within 12 months of a positive screening examination. All 

mammograms were interpreted prospectively by radiologists during the course of routine clinical 

care. Cancers were identified by annual linkage from the associated registry. 

Mammography 

The raw, “For Processing” representation of the standard four screening views (Mediolateral-

oblique (MLO) and Cranio-Caudal (CC) images of both sides) were used for this study. All images 

were acquired on Hologic Selenia full-field digital mammography systems. These images were pre-

processed in order to maximize the information provided to the network in the following ways. 

First, the skin edge of these images was identified via thresholding and excess background of the 

images was cropped out. The images were then normalized on a 0 to 255 scale and the four views 
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were stacked as a 2x2 collage image for each case, with one view in each quadrant. This allowed all 

four views to be contained in a single image. These images were then separated randomly into a 

training and test set at an 80/20 split. 

Deep Learning Models 

An existing deep learning network architecture (ResNet50) was implemented with ImageNet 

transfer learning weights on all convolutional blocks (73). A fully connected layer was then added 

with 256 weights, a dropout layer, and a final weight with sigmoid activation to classify between 

screen-detected and interval cases. Figure 6-5 shows a diagram of  the deep learning architecture and 

the fully-connected layer used in training (73). The weights of  the fully-connected layer were 

randomly initialized and pre-trained on the training set images. During training, a binary cross 

entropy loss metric was optimized with a stochastic gradient descent optimizer. During model 

training, data augmentation was performed by introducing a random amount of  shear, zoom, 

rotation, and horizontal and vertical reflection within specific ranges in order to increase the variety 

of  data and reduce overfitting. For each epoch training and validation loss and accuracy was 

recorded and network weights were saved if  it improved the validation loss. The final network 

weights used were the weights with the best validation loss throughout training.  
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Figure 6-5: Schematic of the architecture of the deep learning network used in this study. YxY conv, M/N = M 

kernels of YxYx3 size and stride length of N (N=1 if only M is listed). Fully Connected (FC) Layer = Dense(256), 

Dropout, Dense(1) 

Model hyperparameters for data augmentation, training parameters, and optimizing parameters 

were selected though hyperparameter sweeps of a variety of hyperparameters. The hyperparameters 

were swept through a full realizable range of values and examined to determine best values to 

improve training or reduce overfitting. Data augmentation hyperparameters were rotation, zoom, 

shear, horizontal reflection, and vertical reflection and applied to the training data. Training 

hyperparameters were learning rate, batch size, number of epochs, image input size, and number of 

convolutional layers to allow to re-train weights. Model optimizer hyperparameters were 

momentum, regularization, and decay. Loss and accuracy were computed in the train and validation 

set. Saliency maps were produced along with a contingency table enumerating the number of correct 

and incorrect predictions with some sample images in order to understand what factors contributed 

to incorrect and correct predictions. Image preprocessing was done in Matlab r2015a (Mathworks, 
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Natick, MA), ResNet50 was implemented with Keras and Tensorflow (182) using Spyder 3.2.3 and 

Python 3.5. 

Model Statistical Testing 

After training was complete, conditional logistic regression was performed in three cases: one 

with BI-RADS density as a classifier, one with the deep learning network predictions as a classifier, 

and one with both. In all cases interval vs. screen-detected was the outcome. An ROC analysis and 

AUC curve was produced in all cases and compared. Statistical analysis and figure generation was 

performed via Spyder and R version 3.2.2.  

6.2.3 Results 

Demographic Information 
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Table 6-2 shows the demographic information of the women from each case-type. Within this 

dataset we had 182 women diagnosed with an interval breast cancer. These were matched by age and 

race to 173 women with screen-detected breast cancers. There were no screen-detected cancers that 

matched by age and race for 9 of the interval cancers, and these were excluded in the conditional 

logistic regressions. The descriptive statistics showed a difference in body mass index (BMI) and BI-

RADS density between groups, but the other demographic and risk information was not 

significantly different.  
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Table 6-2: Descriptive statistics of the screen-detected and interval cancer groups 

 

Screen-Detected 
Group 

Interval Group P-Value 

N  173 182   

Age, years (Standard Deviation)  57.8 (10.9) 56.8 (11.8) 0.28 

BMI, kg/m2 (Standard Deviation)  24.9 (4.7) 23.5 (4.3) <0.0001 

Race:   0.88 

     White 127 129  

     African American 3 4  

     Chinese 25 27  

     Filipina 3 3  

     Hispanic 0 2  

     Japanese 5 8  

     Mixed 5 5  

     Other Asian 2 1  

     Other Non-Asian 3 3  

Menopausal status 119 (69%) 123 (68%) 0.69 

Family history of breast cancer 47 (23%) 60 (33%) 0.25 

Previous history of breast biopsy 55 (32%) 68 (37%) 0.33 

BI-RADS Frequency:   0.008 

     A: Almost Entirely Fatty 11 3  

     B: Scattered Fibroglandularities 50 33  

     C: Heterogeneously Dense 61 78  

     D: Extremely Dense 19 53  

     Missing Data 19 7  

     Unknown 13 8  

 

Hyperparameter Training 

Table 6-3 shows the end result of  the hyperparameter sweep and optimal hyperparameters that 

were used in training our network. Of  note we learned moderately aggressive image augmentation 

hyperparameters controlled overfitting while still allowing learning to take place. Additionally, a large 

batch size improved training by introducing the optimizer to more data and a learning rate in the 

range of  1e-3 – 1e-5 produced good learning results. High dropout in the final fully-connected layers 

helped to control overfitting as well. Optimal parameters were selected based on their ability to 

reduce overfitting and reduce validation loss. 



105 

Table 6-3: Chosen hyperparameters with brief description used in this analysis 

 Hyperparameter 
(Range) 

Hyperparameter 
Type 

Interpretation Chosen 
Value 

Rotation (0-90) Data Augmentation Range for a random rotation 20 

Zoom (0-1) Data Augmentation Range for a random zoom 0.5 

Shear (0-1) Data Augmentation Range for a random shear 0.3 

Vertical/Horizontal Flip 
(Yes/No) 

Data Augmentation Random chance of flip in 
respective direction 

Yes/Yes 

Momentum (0-1) Optimizer 
Parameter 

Accelerates or dampens 
oscillations in given direction. 

0.3 

Regularization (0-1) Optimizer 
Parameter 

Penalty applied to large image 
weights 

0 

Decay (0-1) Optimizer 
Parameter 

Learning Rate decay over each 
update. 

1e-5 

Dropout (0-1) Fully-connected 
Layer 

Percent of weights dropped out 
between dense layers in the FC 
layer. 

0.95 

Learning Rate (0-1) Training Parameter Importance attributed to weight 
updates. 

1e-3 

Epochs (Integer) Training Parameter Number of epochs performed 1000 

Batch Size (2n any n) Training Parameter Number of samples per gradient 
update 

16 

Image Size (Minimum 
224) 

Training Parameter Input image size in pixels 224 

nLayersRetrain (Fully 
Connected only – All 
Layers) 

Training Parameter Number of layers allowed to have 
their weights altered. 

All 
Layers 
(173) 

 

Training Results 

Figure 6-6 shows the loss and accuracy of  the model over time. We can see that the 

generalization gap between train and test loss is small, indicating little overfitting occurred. Training 

loss continued to drop after 500 epochs. The best validation loss occurred in epoch 482, with a 

validation loss of  0.499 and validation accuracy of  75.2 percent. 
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Figure 6-6: Loss and accuracy curves per epoch of the test and train set of the deep learning network. Best 

validation loss occurred on epoch 482. At that epoch training loss and accuracy were 0.58 and 67.4%, 

respectively, and test loss and accuracy were 0.499 and 75.2%, respectively. 

Table 6-4 shows a contingency table quantifying the number and percent of  correct and 

incorrect predictions in each category. Seventy-five percent of  the images were correctly categorized.  

Table 6-4: Contingency table of the number of correctly and incorrectly classified images from the dep learning 

network 

Number 
(Percent) 

Predicted 
Screened 

Predicted 
Interval 

Actual 
Screened 

134 
(37.6%) 

38 
(10.7%) 

Actual 
Interval 

50 
(14.1%) 

134 
(37.6%) 

 

ROC Analysis 

Figure 6-7 compares the classification ROC analysis and AUC of  the deep learning network 

versus using just BI-RADS density in a conditional logistic regression, and a final analysis combining 

both of  these methods. We can see that the neural network outperforms using BI-RADS density 

alone in predicting interval versus screen-detected cancer. 
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Figure 6-7: ROC Curves interval vs screen-detected cancer classification using BI-RADS density alone (Only BI-

RADS) vs using the deep learning predictions (Deep Learning) vs using both as predictors (Combined). 

Prediction accuracy was 63% using BI-RADS density alone and 75% using deep learning alone. 

Saliency Maps 

Figure 6-8 shows the pseudo presentation mammograms (produced using methods described by 

Malkov, et al (201)), saliency maps, and then the superposition of  the two for representative screen-

detected and interval mammogram visits, both of  which were correctly classified. The intensity of  

the saliency signal is shown from 0 to 255 color scale. A threshold was applied to highlight the 

regions above the 50 percent activation level in the network to improve image clarity. The side and 

quadrant (if  available) where the cancer was found in subsequent mammograms is also shown. We 

observed that localized regions could highly influence the classification, but that broad regions of  

the breast could influence decision making as well.   
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Figure 6-8: Saliency maps of sample screen-detected and interval images (both correctly classified). For each 

row, the pseudo-presentation images are shown (left) along with the saliency map (middle) that highlights the 

pixels that had above a 50 percent weight in classifying the image in its respective category (i.e. first row 

saliency map highlights weights that push towards decision of classifying as screen-detected decision). At 

right, the images are overlaid.  

6.2.4 Discussion 

This is the first application of  neural networks to classify interval cancer risk known to the 

authors. The deep learning model provided an AUC of  0.82 with 75% classification accuracy on its 

own while using BI-RADS density alone produced an AUC of  0.65 and classification accuracy of  

63%. This indicates that this deep learning network is able to pick up on information about interval 

breast cancer risk that is not captured in the BI-RADS density classification alone, such as 

mammographic masking.  

Previous work by Kerlikowske et al. (13) showed that breast density was associated with 

increased prevalence of  interval cancer in a screening population. Women in the highest breast 

density category (BIRADS D) had 5 to 10 times higher incidence of  interval cancers than women 
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with almost entirely fatty breast (BIRADS A). Furthermore, Kerlikowske showed that using a 

combination of  density and age to identify women for discussion about supplemental results in the 

fewest women counseled per interval cancer occurrence. The most efficient strategy resulted in a 

ratio of  694 women targeted for supplemental screening per interval compared to 1124 using breast 

density alone. Recently, automated computerized methods to quantify breast density have been 

shown to produce similar levels of  interval risk as subjective BI-RADS density scores (16). We are 

not able to directly compare our results to these studies since we did not include women that didn’t 

develop breast cancer, but the implication of  this study is that deep learning may be able to further 

stratify women for supplemental screening beyond age and density.  

Other researchers have investigated radiomic features as a measure for interval risk. Strand et al 

identified several mammographic image features, eccentricity and skewness of  intensity gradient, 

that differentiate between interval and screen detected breast cancer risk (169). Holm, et al identified 

some biological risk factors between interval and screen detected cancers after controlling for age 

and mammographic density, including family history of  breast cancer, use of  hormone replacement 

therapy (HRT), and BMI above 25 kg/m2 (20). While no studies of  interval risk have been 

performed using deep learning methods, Mainprize et al developed a direct measure of  detectability 

that were significant for interval risk as well, indicating the promise of  computer vision in 

understanding interval risk (170).  

Deep learning models offer several advantages to conventional biomarker models for interval 

risk. First, deep learning models can continue to learn and improve as more data is added to the 

training set. This is not usually true with conventional biomarkers. Secondly, deep learning doesn’t 

depend on an a priori hypothesis of  what breast feature is important, allowing for identification of  

patterns or features that may be otherwise overlooked. Third, deep learning models are robust with 

regards to image artifacts and quality due to the inclusion of  scans with a variety of  imaging defects.  
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Deep learning has consistently been applied to and improved on current diagnostic methods in 

many medical fields. CheXNet has been able to improve upon lung pathology diagnoses using chest 

X-ray images compared to an average of  radiologist diagnoses, improving the F1 score from 0.387 

to 0.435 (63). Deep learning was applied to diagnose diabetic retinopathy and was able to improve 

classification AUC from 0.937 using current detection techniques to 0.980 using deep learning 

methods (194). While these results are exciting, it is important to note that more work needs to be 

done to fine-tune these methods, as the retinopathy deep learning network had a low specificity of  

87%, leading to more unnecessary biopsies. This problem of  false positives is also the case with 

several other deep learning networks in medical imaging. Several review papers highlight 

advancements, opportunities, and risks in deep learning in a variety of  medical fields (76,77,195). 

Deep learning methods have already been applied to several areas of  breast cancer research with 

promising results. An analysis of  screening mammograms to perform lesion segmentation and 

classification with a deep learning network was able to achieve classification AUC of  0.95 and 

outperformed CAD systems (196). Deep learning networks were also able to categorize amount of  

dense tissue on par with experts using Cumulus-like thresholds (197). Lastly, a deep learning network 

lesion classification system achieved an AUC of  0.82 on digitized-screen film mammograms and 

0.90 on breast tomosynthesis images (188). Our study, which has been able to differentiate between 

future interval and screen detected cancers more effectively than using current methods such as BI-

RADS breast density, further contributes to the understanding that using deep learning can further 

our diagnostic capabilities and our understanding in several areas of  breast cancer research.   

This study has several strengths. First, the dataset controls for age and race between interval and 

screening-detected cancers, helping to reduce possible bias. Being able to compare to predictions 

based on BI-RADS density directly allow for comparisons to current interval cancer risk factors 

(13,167). Additionally, the data pre-processing steps helped to combine data from multiple views and 
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make connections between different views, and the data augmentation we performed in training 

helped to enhance the variability of  our dataset, which helped to prevent or mitigate some of  the 

threat of  overfitting to the data. The hyperparameter sweeps performed enabled us to find 

hyperparameter sets that helped to improve training and test accuracy while minimizing the amount 

of  overfitting. 

The contingency table shows the vast majority of  images analyzed were correctly classified, with 

slightly more actual interval images being misclassified compared to actual screen-detected images. 

This could very well be because the higher density of  the interval images made it more difficult to 

distinguish and classify. The saliency maps provided interesting information about the images and 

which pixels and regions influenced the decisions to classify the image as an interval or a screen-

detected image. While it appears the regions of  interest in the interval image was related to density 

and that the screen detected images were influenced by the region that later developed cancer, 

further work must be done to examine how the pixels and regions of  interest in the saliency maps 

relate to the underlying tissue and density.  

There were several limitations to our study. First, we had a limited number of  interval cases. 

When additional cases become available, an even more robust model may be possible. We attempted 

to mitigate this risk through the various data pre-processing and augmentation steps we performed, 

as well as careful selection of  hyperparameters to prevent overfitting. Further, splitting the data into 

a test and train set helped to test against a dataset unseen to the network.  

Additionally, this study did not include women that didn’t develop cancer by design. Our 

hypothesis was that there were fundamental differences in the mammograms of  women that 

develop interval versus screen-detected cancers. We found a strong signal to confirm this hypothesis, 

guiding the path to future studies that compare interval cases, screen detected cases, and non-cases. 

Lastly, we used a simple definition of  interval cancer with the assumption that all of  the interval 
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cancers were due to masking. However, there are at least four causes of  interval cancers: 

mammographically-occult cancers that are radiographically similar to normal breast tissue, missed 

cancers in dense tissue that would have been detected in fatty tissue (mammographic masking), 

missed cancers due to radiologist fatigue or error, and fast-growing cancers not present at the time 

of  the previous mammogram. Identifying and separating these subgroups can be difficult. We did 

not separate these types of  interval cancers, which introduced additional noise into the dataset. Had 

we trained on only truly masked cancers, there would have been less noise and the performance may 

have been even stronger.   

This study expands upon current knowledge of the field by implementing cutting edge research 

in deep learning to improve upon current methods of quantifying interval risk. Previous models 

currently have implemented model observers in their predictions and produced promising results. 

Our study expands upon this work by improving the predictive ability and detecting factors 

important for classification not quantified in BI-RADS density alone. This work could be expanded 

upon further to develop automated methods or software that can aid radiologists, improve interval 

risk models, or identify groups of women or currently unknown textures or radiomic quantities that 

are at high risk of interval cancer.  

We conclude that pre-cancerous mammograms contain imaging information beyond breast 

density that can be used to predict the probability of mammographic masking and interval cancer 

outcomes. Deep learning models can be trained to utilize this information and may be useful to 

triage women at high risk of interval cancer into alternative screening methods.  
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6.3: Study: Deep learning networks find unique mammographic interval risk 

and screen-detected risk measures (202) 

Using deep learning to risk of interval versus screen detected cancer is valuable, but in order to 

make a robust method of interval risk, we need a deep learning network that is able to identify 

interval cancer risk in the presence of mammograms from and healthy patients as well as screen 

detected cases. In order to do this, we need a dataset of healthy controls as well as our matched 

screen detected and interval cohort. 

6.3.1 Introduction 

Mammography is the current gold standard in screening for breast cancer in average-risk 

women. However, radiologically dense and complex tissue can reduce screening detection sensitivity 

leading to obscuring breast lesions and cancers missed by screening mammography (13,165). These 

cancers discovered within 12 months after normal screening mammograms are called interval 

cancers, and the effect of breast density reducing mammography sensitivity is commonly called 

masking. Roughly 13% of breast cancers diagnosed in the U.S. are interval cancers (203). 

Previous studies have shown Breast Imaging-Reporting and Data System (BI-RADS) breast 

density and other quantitative density measures are risk factors for interval cancer (13,204). While 

clinically measured BI-RADS breast density is a risk factor for interval cancer  such that legislation 

has been passed in over 40 states to notify women if they have high BI-RADS density breast density 

(167), the classification is subjective and does not account for the texture of dense tissue (168–170). 

Because of this the American College of Radiology has asked for development of direct measures of 

masking and interval risk (10). 



114 

Previous studies have measured the ability of pre-defined kernels and model observers to 

quantify masking and interval cancer risk, indicating some promise in computer vision to identify 

interval cancer risk (170). Advanced computer vision methods such as deep learning have shown 

promise in many computer vision tasks and have performed extremely well in the ImageNet 

competition compared to traditional pre-defined kernel methods (73,76). Transfer learning (191,195) 

of these networks has been effective in medical applications, including breast cancer, where deep 

learning models were often able to equal or improve current classification or diagnostic schemes 

performed (63,76,188,193,196,199,200). Another useful property of deep learning networks is their 

ability to highlight pixels containing unique information relevant to that image’s classification called 

saliency maps, which can be used in biological applications to develop hypothesis on the underlying 

biology or features associated with the classification of interest (63,187). 

The purpose of this study was to implement a deep learning network to classify pre-cancer 

mammograms that result in either healthy cases, interval cancers, or screen-detected cancers within 

12 months of the mammogram and to compare this classification to a similar classification using BI-

RADS breast density. We hypothesized that because of the various advances deep learning has done 

in several fields, that these networks can more effectively quantify risk of interval or screen-detected 

cancer than BI-RADS breast density. If successful, these methods could be expanded to improve 

risk prediction models for interval cancer, develop automated methods or software that can aid 

radiologists in risk prediction, and further understand radiomic quantities as they relate to underlying 

cancer biology. 
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6.3.2 Methods 

Participants 

Participants were selected from a screening population that had received full-field digital 

mammograms acquired from 2006 to 2015 from four radiology facilities, University of California – 

San Francisco, California Pacific Medical Center, Marin General Hospital, and Novato Community 

Hospital. Ethics approval was obtained by the University of California – San Francisco Institutional 

Review Board for this retrospective analysis of mammograms. Interval cancers from these 

institutions were included, defined as invasive cancers identified within 12 months of a negative 

screening examination. An equal number of screen-detected cancers were matched by age and race if 

such matching data existed, based on all screen-detected cancers diagnosed at the four centers. 

Screen-detected cancers were defined as invasive cancers identified within 12 months of a positive 

screening examination. Two healthy controls were matched to each interval and screen-detected 

case. All mammograms were interpreted prospectively by radiologists during the course of routine 

clinical care. Cancers were identified by annual linkage to the state California Cancer Registry. 

Mammography 

The de-identified raw, “For Processing” representation of the standard four screening views 

(Mediolateral-oblique (MLO) and Cranio-Caudal (CC) images of both sides) were used for this 

study. All images were acquired on Hologic Selenia full-field digital mammography systems. These 

images were pre-processed in order to maximize the information provided to the network in the 

following ways. First, the skin edge of these images was identified via thresholding and excess 

background of the images was cropped out. The images were then normalized on a 0 to 255 scale 

and the four views were stacked as a 2x2 collage image for each case, with one view in each 
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quadrant. This allowed all four views to be contained in a single image. These images were then 

separated into a training and test set at an 80/20 split. 

Deep Learning Models 

An existing deep learning network architecture (ResNet50) was implemented with ImageNet 

transfer learning weights on all convolutional blocks (73). A fully connected layer was then added 

with 256 weights, a dropout layer, and a final weight with sigmoid activation to classify between 

screen-detected and interval cases. Figure 1 shows a diagram of the deep learning architecture and 

the fully-connected layer (73). The weights of the fully-connected layer were randomly initialized and 

pre-trained on the training set images. During training, a categorical cross entropy loss metric was 

optimized with an adadelta optimizer (182). Class weights were introduced into the loss metric 

during training to account for class imbalance of the healthy control images (182). During model 

training, data augmentation was performed by introducing a random amount of shear, zoom, 

rotation, and horizontal and vertical reflection within specific ranges in order to increase the data 

variability and reduce overfitting. For each epoch, training and test loss and accuracy were recorded 

and network weights were saved if it improved the test loss. The final network weights used were 

the weights with the best test loss throughout training. 
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Figure 6-9: Schematic of the architecture of the deep learning network used in this study. YxY conv, M/N = M 

kernels of YxYx3 size and stride length of N (N=1 if only M is listed). Fully Connected (FC) Layer = Dense(256), 

Dropout, Dense(1) 

Model hyperparameters for data augmentation, training parameters, and optimizing parameters 

were selected through hyperparameter sweeps of a variety of hyperparameters. The hyperparameters 

were swept through a full realizable range of values and examined to determine best values to 

improve training or reduce overfitting. Data augmentation hyperparameters were rotation, zoom, 

shear, horizontal reflection, and vertical reflection and applied to the training data. Training 

hyperparameters were learning rate, batch size, number of epochs, image input size, and number of 

convolutional layers to allow to re-train weights. Model optimizer hyperparameters were 

momentum, regularization, and decay. Loss and accuracy were computed in the training and test set. 

Saliency maps were produced along with a contingency table enumerating the number of correct and 

incorrect predictions with some sample images in order to understand what factors contributed to 

incorrect and correct predictions. Image preprocessing was done in Matlab r2015a (Mathworks, 

Natick, MA), ResNet50 was implemented with Keras and Tensorflow (182) using Spyder 3.2.3 and 

Python 3.5. 
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Statistical Analysis 

After training was complete, accuracy and loss curves were generated. Further, contingency 

tables were generated to show the correct and incorrect classifications. Lastly, risk of interval cancer 

and screen-detected cancer were calculated using conditional logistic regression of each cancer case 

versus the respective matched controls, with BI-RADS density as a risk factor and using the deep 

learning predictions of each outcome as a risk measure, Statistical analysis and figure generation was 

performed via Spyder and R version 3.2.2. 

6.3.3 Results 

Table 1 shows the demographic information of the women from each category. Within this 

dataset we had 182 women diagnosed with an interval breast cancer. These were matched by age and 

race to 173 women with screen-detected breast cancers. There were then a total of 679 healthy 

controls. There were no screen-detected cancers that matched by age and race for 9 of the interval 

cancers. These were included in the deep learning training to maximize the dataset, but were 

excluded in the conditional logistic regressions to ensure matching.  

Table 6-5 shows the end results of the hyperparameter sweep and optimal hyperparameters that 

were used in training our network. Of note we learned moderately aggressive image augmentation 

hyperparameters controlled overfitting while still allowing learning to take place. Additionally, a large 

batch size improved training by introducing the optimizer to more data and a learning rate in the 

range of 1e-3 – 1e-5 produced good learning results. High dropout in the final fully-connected layers 

helped to control overfitting as well. Optimal parameters were selected based on their ability to 

reduce overfitting and reduce training and test loss. 
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Table 6-5: Chosen hyperparameters with brief description. Hyperparameter sweep went through a realizable 

range for each hyperparameter and individual values were chosen to optimize training ability or to minimize 

overfitting, depending on the parameter. 

 Hyperparameter 
(Range) 

Hyperparameter 
Type 

Interpretation Chosen 
Value 

Rotation (0-90) Data Augmentation Range for a random rotation 20 

Zoom (0-1) Data Augmentation Range for a random zoom 0.4 

Shear (0-1) Data Augmentation Range for a random shear 0.3 

Vertical/Horizontal Flip 
(Yes/No) 

Data Augmentation Random chance of flip in 
respective direction 

Yes/Yes 

Momentum (0-1) Optimizer 
Parameter 

Accelerates or dampens 
oscillations in given direction. 

0.3 

Regularization (0-1) Optimizer 
Parameter 

Penalty applied to large image 
weights 

0 

Decay (0-1) Optimizer 
Parameter 

Learning Rate decay over each 
update. 

1e-6 

Dropout (0-1) Fully-connected 
Layer 

Percent of weights dropped out 
between dense layers in the FC 
layer. 

0.75 

Learning Rate (0-1) Training Parameter Importance attributed to weight 
updates. 

1e-3 

Epochs (Integer) Training Parameter Number of epochs performed 1000 

Batch Size (2n any n) Training Parameter Number of samples per gradient 
update 

16 

Image Size (Minimum 
224) 

Training Parameter Input image size in pixels 275 

nLayersRetrain (Fully 
Connected only – All 
Layers) 

Training Parameter Number of layers allowed to have 
their weights altered. 

All 
Layers 
(173) 

 

Figure 6-10 shows the loss and accuracy of the model over time and compares the result of the 

training and test set. We can see that the generalization gap between train and test loss is small and 

that the curves in the test and train set are similar. This indicates little overfitting occurred and that 

classification results were similar in both training and test sets. The best test loss occurred in epoch 

579, with a test accuracy of 67 percent. 
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Figure 6-10: Loss and accuracy curves per epoch of the test and train set of the deep learning network. Best 

validation loss occurred on epoch 579. At that epoch training and test accuracy were 54% and 67%, 

respectively. 

Table 6-6 shows a contingency table quantifying the number and percent of correct and 

incorrect predictions in each category. Sixty-seven percent of the images were correctly categorized.  

Table 6-6: Contingency table of the number of correctly and incorrectly classified images from the deep 

learning network. A higher accuracy existed in predicting the healthy images, and there were few cases of one 

cancer type being misclassified as the other cancer type (i.e. an interval cancer being classified as screened, or 

vice versa). 

Number 
(Percent) 

Predicted 
Healthy 

Predicted 
Interval 

Predicted 
Screened 

Total 

Actual 
Healthy 

500/679 
(73.6%) 

65/679 
(9.5%) 

 114/679 
(17.2%) 

679 

Actual 
Interval 

64/184 
(34.7%) 

97/184 
(52.7%) 

 23/184 
(12.5%) 

184 

Actual 
Screened 

 68/172 
(39.5%) 

 8/172 
(4.7%) 

 96/172 
(55.8%) 

172 

Total  632  170  223 1035 

 

6.3.4 Discussion 

We developed a deep learning algorithm based off of methods that were able to improve on risk 

of interval versus screen detected cancer, and included healthy controls into the training to get a true 

sense of interval risk. After training, the network was able to correctly classify between interval 
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cancer, screen-detected cancer, and healthy images with a 67% classification accuracy. This was quite 

encouraging considering a baseline guessing accuracy would have been 33 percent accurate, and it 

indicates that a deep learning network is able to identify information in mammograms associated 

with interval breast cancer diagnosis that is not captured in the BI-RADS density classification alone. 

Contingency tables showed the area where the deep learning network was failing. The network 

classified the future healthy controls at the highest accuracy, with 73.6% of controls being correctly 

identified. When healthy cases were misclassified, they were more often classified as future screen-

detected cancers. This may be because the future interval cases may have had qualities that indicated 

high masking or low detectability, whereas the future screened and future healthy images may have 

had similar levels of detectability. The future interval and future screened images were correctly 

classified 52.7 and 55.8 percent of the time. In both cases, there was very little misclassification from 

one cancer category into the other cancer category, indicating the network was able to strongly 

distinguish between these two categories.   

Future analyses will finalize this study by comparing classification accuracy using BI-RADS 

density. Further, the odds ratios for interval and screen detected cancer risk will be calculated using 

BI-RADS density as a predictor and compared with using the deep learning predictions as a 

predictor. We expect the results of this will show improvements in interval cancer risk using the 

deep learning predictions, but the data required for this analysis was not available at the time of 

publication.  

Previous work by Kerlikowske et al. (13) showed that breast density was associated with 

increased prevalence of interval cancer in a screening population. Furthermore, Kerlikowske showed 

that using a combination of breast density and 5-year breast cancer risk to identify women for 

discussion about supplemental results in the fewest women counseled per interval cancer 
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occurrence. Recently, automated methods to quantify breast density have been shown to produce 

similar levels of interval risk as subjective BI-RADS density scores (204). 

Deep learning networks have the ability to introduce additional complexity, can become more 

robust with the addition of more data, and can identify patterns or features that may be otherwise 

overlooked with conventional biomarker models for interval risk. Deep learning has consistently 

been applied to and improved on current diagnostic methods in many medical fields (76,77,195), 

including lung pathology diagnosis (63). 

Deep learning methods have also been applied to several areas of breast cancer research with 

promising results. Deep learning has been applied to improve lesion detection in computer-aided 

detection (196), to effectively categorize the amount of dense tissue in mammograms (197), and to 

improve lesion classification systems on breast tomosynthesis images (188). Our study further 

contributes to recent findings that deep learning can improve diagnostic capabilities and our 

understanding in breast cancer research.   

This study has several strengths. First, the dataset controls for age and race, helping to reduce 

possible confounding. Further, comparing our network to predictions based on BI-RADS density 

provides comparisons against current interval cancer risk factors (13,167). Additionally, the transfer 

learning methods, the data preprocessing steps, data augmentation steps, class weights, and 

hyperparameter sweeps performed helped to maximize test accuracy while minimizing overfitting. 

There were several limitations to our study. First, we had a limited number of interval cancers, 

which makes overfitting a concern to be considered. We mitigated this risk through transfer 

learning, data preprocessing and augmentation, and careful selection of hyperparameters. 

Additionally, comparing results of the test and train sets to ensure they had similar results helped to 

prevent overfitting. Lastly, we used a broad definition of interval cancer. While many interval 
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cancers occur because the lesion is masked, some interval cancers occur due to radiologist fatigue or 

error and others from fast growing lesions that develop after the previous mammogram (17). 

Identifying and separating these subgroups can be difficult. We did not separate these types of 

interval cancers, which introduced additional noise into the dataset and may have weakened our 

results compared to using a dataset of only truly masked interval cancers.  

We conclude that pre-cancerous mammograms, whether interval, screen detected, or healthy in 

the future, contain imaging information beyond breast density that can be used to predict the 

probability of breast cancer detection, and that deep learning models may be able to detect and 

identify that imaging information. This work could be expanded upon further to improve risk 

prediction models for interval cancer or screening detected cancer, develop automated methods or 

software that can aid radiologists in risk prediction, and understand if these deep learning 

predictions relate to underlying radiomic quantities or tissue biology. 
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7 | Future Directions 

A limitation in training deep learning networks is the compute power of the system being used 

and the size of the dataset available. Being limited in compute power make training take longer, 

makes it less feasible to test a variety of hyperparameters, makes it less feasible to use large datasets, 

and forces image compression during training. In the future this lab will acquire methods to 

drastically increase compute power, which should improve the speed of iterating on models, allows 

for more robust training, and reduce the amount of necessary image compression. The NVIDIA 

DGX-1 has 170 teraflops of compute power while the NVIDIA Quadro K2200 used in these 

studies had roughly 2 teraflops of compute power, so with the new system with a 100x improved 

compute power will lead to drastic improvements in training time, required image compression, and 

ability to iterate on new networks (205,206). 

In order to generate the strongest measures of interval risk, an analysis on a full prospective 

screening study will need to be performed and analyzed. To date, we have performed preliminary 

analysis on a subset of a prospective screening study with promising results. Our future analysis on 

the full prospective screening study will improve the performance of the network and make it more 

robust.  

There are additional steps we will take in the future to produce more optimized training and 

additional understanding of deep learning predictions. The future implementation of the NVIDIA 

DGX-1 will allow for further optimization by training the deep learning network on higher 

resolution images. Further, the additional computation power of the DGX-1 will make it more 

practical to implement these deep learning networks on the much larger tomosynthesis images. 

Lastly, we plan to perform investigates that examine biological differences between the high and low 
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interval risk images, to see why and how the tissue is different and how that contributes to interval 

risk.  

The end goal of this work is to provide tools that will assist radiologists in identifying risk of 

interval cancer to suggest supplemental screening for women at high risk of interval cancer that will 

maximize interval cancers found early and minimize additional biopsies. In order to do this, 

significant work needs to occur to convert this from a black box prediction that a deep learning 

network outputs into a meaningful output that radiologists and clinicians can understand, identify 

with, and interact with. We will continue to work on saliency maps and GUIs that present the deep 

learning predictions in a digestible way. Further, tying these saliency maps to underlying biology and 

radiomic features or correlating known textural features or histology features with deep learning 

predictions will help clinicians better understand and grapple with these measures of interval risk. 
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8 | Conclusions 

Throughout this dissertation, we developed and iterated on several imaging methods to improve 

upon previous measures of cancer risk, and we have identified when imaging methods fail to be 

useful for detecting cancer. These studies were built on both well-established methods to identify 

risk as well as novel technologies that are becoming more readily available. While the specific 

methods and techniques differ across these studies, the studies in this dissertation all aimed to 

produce stronger imaging-based risk factors and can be used to help personalize different screening 

and risk tools. 

I began my work by studying risk of cancer as related to obesity and lean mass measures using 

DXA. Since the composition of specific limbs of the body can lead to more specific risk measures, 

we developed a means to quantify the expected composition for each limb in the body controlled 

for age, race, and gender through LMS normalization. Because of this work, reference values for 

limbs can be readily calculated for the US population and used in future studies on obesity and 

muscularity as they relate to cancer risk. 

We next studied why mammography failed to detect breast cancer. We had a hypothesis that 

inherently high density and complex texture of some women’s breast puts them at high risk of 

interval cancers compared to women with low density, low complexity breast and screen detected 

cancers. We used traditional computer vision methods in the form of model observers to emulate 

current detectability metrics used in mammography in the form of the CDMAM phantom. This led 

to the development of the IQF metric, which was able to improve on classifying interval versus 

screen detected cancers with an AUC of 0.69 compared to using 0.65 with breast density alone. 

While these results were not as strong as we had hoped, they confirmed that there were inherent 

differences in imaging metrics between interval cancers and screened cancers that is not detected in 
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breast density alone. Although there are ways to extend traditional computer vision methods such as 

different detectability filters, deep learning had consistently outperformed traditional computer 

vision methods in a variety of other tasks (44,186), leading us to conclude that deep learning 

methods in future studies would outperform compared to expanding on traditional computer vision 

methods.  

To further improve measures of interval risk, we leveraged the fact that developments in deep 

learning have improved classification and diagnosis in a variety of fields including the medical field. 

We developed deep learning networks to identify differences between future interval and screen 

detected images and classify between categories. This network utilized transfer learning, image 

collaging, image augmentation, and hyperparameter sweeps in order to mitigate issues that can come 

from smaller datasets seen in medical imaging such as overfitting, non-robust feature weights, and 

poor results on new data. These methods led to a classification ROC AUC of 0.82 with deep 

learning compared to 0.65 with breast density alone. This confirmed our hypothesis that there are 

imaging differences in breasts of women who later are diagnosed with interval versus screen 

detected cancer, and led to the next logical step, testing classification with healthy controls added in 

the dataset in order to generate true measures of interval risk. 

By adding controls into the classification, we gain the ability to generate true measures of 

interval risk, but need to account for several factors. Because control images are more common, 

class weights needed to be introduced in order to prevent the deep learning network from over-

guessing the most common category. By incorporating this as well as previous methods to prevent 

overfitting, we were able to correctly classify 67% of the images. 75% of control images were 

correctly classified, and there was very little misclassification occurred between cancer types (i.e. very 

few screen-detected cancers were classified as intervals, and vice versa). In the future odds ratios and 
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other measures of risk are being developed. With controls added into the study, we’ve further shown 

how these deep learning methods can add to and improve on interval risk measures. 

In summary, these works provide a detailed analysis of various methods to identify interval risk, 

and break ground on emergent methods to use deep learning to identify interval risk. These methods 

could be further developed to identify groups at high risk of interval cancer. By identifying these 

women and referring them to supplemental screening programs, we can help reduce the number of 

interval cancers and improve mortality rates for women. 
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Appendix A: Code Availability 

Several software tools and analysis scripts were developed over the course of this dissertation. 

These pieces of code are maintained in secure repositories on the Shepherd Lab GitHub 

(https://github.com/shepherd-lab). A listing of relevant repositories is provided below. Please direct 

inquiries to Ben Hinton (bhinton@berkeley.edu) or John Shepherd (johnshep@hawaii.edu). 

• deepLearningMasking (https://github.com/shepherd-lab/deepLearningMasking) 

Python scripts to train deep learning networks for interval risk and generate predictions, 

visualization, and other tools.  

 

https://github.com/shepherd-lab
mailto:bhinton@berkeley.edu
mailto:johnshep@hawaii.edu
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Appendix B: Supplemental Tables 

Supplemental tables and figures are provided below for the regional composition study: Section 

2.3:  

 

Figure 0-1: Sample radar chart output relating the FMI and LMI of each limb to the standards based on age, 

race, and sex. 
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Figure 0-2: Distribution of FMI and LMI datapoints for the arms and trunk and centiles by age, race, and sex 
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Figure 0-3: Distribution of FMI and LMI datapoints for the legs and total body and centiles by age, race, and 

sex 
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Table 0-1: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Females 

Ages 8-85 for Average Arm FMI.  

 Females 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.449 0.567 0.125 0.138 0.211 0.300 0.455 1.002 1.277 

10 -0.346 0.544 0.146 0.161 0.248 0.351 0.519 1.023 1.239 

12 -0.263 0.525 0.163 0.180 0.280 0.393 0.569 1.045 1.230 

14 -0.192 0.509 0.178 0.197 0.307 0.428 0.610 1.065 1.232 

16 -0.130 0.495 0.190 0.211 0.331 0.458 0.645 1.084 1.237 

18 -0.076 0.483 0.202 0.224 0.352 0.485 0.675 1.102 1.244 

20 -0.028 0.472 0.212 0.236 0.371 0.510 0.701 1.117 1.252 

25 0.075 0.449 0.234 0.262 0.413 0.561 0.756 1.151 1.272 

30 0.159 0.430 0.253 0.284 0.448 0.602 0.800 1.179 1.290 

35 0.230 0.415 0.270 0.304 0.478 0.638 0.836 1.202 1.307 

40 0.291 0.401 0.285 0.321 0.504 0.668 0.867 1.222 1.321 

45 0.345 0.389 0.299 0.338 0.528 0.695 0.894 1.239 1.335 

50 0.394 0.378 0.313 0.353 0.550 0.720 0.917 1.255 1.346 

55 0.438 0.368 0.325 0.367 0.570 0.741 0.938 1.268 1.357 

60 0.478 0.359 0.337 0.380 0.589 0.761 0.957 1.281 1.367 

65 0.515 0.351 0.348 0.393 0.606 0.780 0.975 1.292 1.376 

70 0.549 0.343 0.359 0.405 0.622 0.797 0.990 1.303 1.384 

75 0.580 0.336 0.370 0.417 0.637 0.812 1.005 1.312 1.392 

80 0.610 0.329 0.380 0.428 0.652 0.827 1.019 1.321 1.399 

85 0.638 0.323 0.390 0.439 0.665 0.841 1.031 1.329 1.406 
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Table 0-2: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Males Ages 8-

85 for Average Arm FMI. 

 Males 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.937 0.457 0.117 0.124 0.167 0.219 0.316 0.808 1.266 

10 -0.880 0.454 0.121 0.129 0.174 0.229 0.327 0.771 1.111 

12 -0.824 0.450 0.125 0.133 0.181 0.238 0.337 0.746 1.016 

14 -0.769 0.447 0.129 0.138 0.188 0.247 0.348 0.729 0.953 

16 -0.714 0.443 0.133 0.142 0.195 0.256 0.358 0.716 0.908 

18 -0.660 0.440 0.137 0.146 0.202 0.264 0.368 0.707 0.876 

20 -0.607 0.437 0.140 0.150 0.208 0.273 0.378 0.701 0.851 

25 -0.477 0.428 0.149 0.160 0.225 0.294 0.401 0.694 0.813 

30 -0.349 0.420 0.157 0.170 0.241 0.315 0.425 0.695 0.794 

35 -0.223 0.412 0.164 0.179 0.256 0.336 0.447 0.700 0.786 

40 -0.099 0.404 0.171 0.187 0.272 0.356 0.469 0.708 0.785 

45 0.024 0.397 0.177 0.195 0.287 0.376 0.491 0.718 0.787 

50 0.145 0.389 0.183 0.202 0.303 0.396 0.512 0.729 0.793 

55 0.265 0.381 0.187 0.209 0.318 0.415 0.532 0.741 0.800 

60 0.384 0.374 0.191 0.215 0.333 0.434 0.552 0.754 0.809 

65 0.502 0.366 0.195 0.221 0.349 0.454 0.572 0.768 0.820 

70 0.619 0.359 0.197 0.227 0.364 0.473 0.592 0.782 0.831 

75 0.735 0.351 0.199 0.232 0.379 0.492 0.611 0.796 0.842 

80 0.850 0.344 0.199 0.236 0.394 0.510 0.631 0.810 0.855 

85 0.965 0.337 0.199 0.239 0.409 0.529 0.650 0.825 0.867 
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Table 0-3: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Females 

Ages 8-85 for Average Arm LMI. 

 Females 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.483 0.163 0.541 0.559 0.647 0.720 0.806 0.959 1.003 

10 -0.483 0.163 0.589 0.609 0.704 0.784 0.878 1.045 1.092 

12 -0.483 0.163 0.627 0.648 0.750 0.834 0.934 1.112 1.162 

14 -0.483 0.163 0.655 0.678 0.784 0.872 0.976 1.162 1.215 

16 -0.483 0.163 0.676 0.699 0.808 0.900 1.007 1.199 1.253 

18 -0.483 0.163 0.691 0.715 0.827 0.920 1.030 1.226 1.282 

20 -0.483 0.163 0.703 0.727 0.841 0.936 1.048 1.247 1.304 

25 -0.483 0.163 0.722 0.747 0.863 0.961 1.076 1.280 1.339 

30 -0.483 0.163 0.730 0.755 0.873 0.972 1.088 1.295 1.354 

35 -0.483 0.163 0.732 0.757 0.876 0.974 1.091 1.298 1.358 

40 -0.483 0.163 0.731 0.756 0.874 0.972 1.088 1.296 1.355 

45 -0.483 0.163 0.727 0.752 0.869 0.968 1.083 1.289 1.348 

50 -0.483 0.163 0.722 0.747 0.864 0.961 1.076 1.281 1.339 

55 -0.483 0.163 0.717 0.742 0.858 0.954 1.068 1.272 1.330 

60 -0.483 0.163 0.712 0.736 0.851 0.947 1.061 1.262 1.320 

65 -0.483 0.163 0.706 0.731 0.845 0.940 1.052 1.253 1.310 

70 -0.483 0.163 0.701 0.725 0.838 0.933 1.044 1.243 1.300 

75 -0.483 0.163 0.695 0.719 0.832 0.926 1.036 1.233 1.290 

80 -0.483 0.163 0.690 0.714 0.825 0.919 1.028 1.224 1.280 

85 -0.483 0.163 0.685 0.709 0.819 0.912 1.021 1.215 1.271 
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Table 0-4: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Males 

Ages 8-85 for Average Arm LMI. 

 Males 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.429 0.156 0.552 0.571 0.657 0.728 0.810 0.955 0.996 

10 -0.265 0.156 0.616 0.638 0.737 0.818 0.910 1.066 1.110 

12 -0.131 0.156 0.699 0.724 0.839 0.932 1.036 1.210 1.257 

14 -0.017 0.156 0.793 0.823 0.957 1.063 1.180 1.374 1.426 

16 0.081 0.156 0.871 0.904 1.055 1.172 1.301 1.511 1.566 

18 0.168 0.156 0.924 0.961 1.123 1.249 1.386 1.605 1.663 

20 0.246 0.156 0.961 0.999 1.171 1.302 1.445 1.670 1.729 

25 0.410 0.156 1.011 1.054 1.241 1.382 1.531 1.763 1.822 

30 0.544 0.156 1.029 1.075 1.272 1.417 1.570 1.802 1.860 

35 0.658 0.156 1.031 1.079 1.281 1.429 1.581 1.811 1.868 

40 0.756 0.156 1.023 1.072 1.278 1.425 1.577 1.802 1.858 

45 0.843 0.156 1.009 1.058 1.266 1.413 1.563 1.782 1.836 

50 0.921 0.156 0.990 1.040 1.248 1.394 1.541 1.755 1.807 

55 0.991 0.156 0.969 1.020 1.227 1.371 1.515 1.723 1.773 

60 1.055 0.156 0.946 0.996 1.202 1.344 1.485 1.686 1.735 

65 1.114 0.156 0.922 0.972 1.176 1.315 1.452 1.648 1.695 

70 1.168 0.156 0.897 0.947 1.148 1.285 1.419 1.608 1.653 

75 1.219 0.156 0.873 0.923 1.121 1.255 1.385 1.569 1.612 

80 1.267 0.156 0.850 0.899 1.095 1.226 1.353 1.531 1.573 

85 1.311 0.156 0.828 0.877 1.070 1.198 1.322 1.495 1.536 
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Table 0-5: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Females 

Ages 8-85 for Average Leg FMI. 

 Females 

       M 

Age L S 3 5 25 50 75 95 97 

8 -0.273 0.426 0.596 0.648 0.933 1.230 1.660 2.680 3.041 

10 -0.190 0.416 0.679 0.740 1.071 1.407 1.876 2.927 3.280 

12 -0.123 0.407 0.745 0.814 1.183 1.549 2.048 3.116 3.462 

14 -0.066 0.400 0.801 0.876 1.277 1.668 2.189 3.266 3.606 

16 -0.017 0.393 0.847 0.928 1.356 1.766 2.304 3.385 3.719 

18 0.027 0.388 0.885 0.972 1.422 1.849 2.399 3.479 3.806 

20 0.066 0.383 0.917 1.008 1.478 1.918 2.477 3.553 3.874 

25 0.148 0.372 0.977 1.077 1.585 2.046 2.617 3.676 3.982 

30 0.216 0.363 1.017 1.123 1.656 2.130 2.704 3.737 4.029 

35 0.273 0.356 1.043 1.154 1.704 2.184 2.756 3.760 4.040 

40 0.322 0.350 1.060 1.175 1.737 2.220 2.786 3.762 4.030 

45 0.365 0.344 1.072 1.190 1.761 2.243 2.803 3.752 4.010 

50 0.404 0.339 1.081 1.201 1.778 2.259 2.811 3.736 3.984 

55 0.440 0.334 1.087 1.210 1.791 2.271 2.815 3.716 3.957 

60 0.472 0.330 1.093 1.216 1.801 2.279 2.816 3.696 3.929 

65 0.501 0.326 1.097 1.222 1.810 2.285 2.815 3.676 3.902 

70 0.529 0.323 1.101 1.228 1.817 2.290 2.814 3.657 3.878 

75 0.554 0.320 1.104 1.232 1.824 2.294 2.812 3.639 3.855 

80 0.578 0.317 1.108 1.237 1.830 2.298 2.810 3.623 3.833 

85 0.600 0.314 1.111 1.241 1.836 2.302 2.809 3.608 3.814 
 

  



154 

Table 0-6: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Males 

Ages 8-85 for Average Leg FMI. 

 Males 

       M 

Age L S 3 5 25 50 75 95 97 

8 -0.531 0.519 0.407 0.442 0.649 0.894 1.317 2.791 3.543 

10 -0.487 0.513 0.411 0.447 0.659 0.907 1.324 2.686 3.335 

12 -0.444 0.506 0.415 0.452 0.669 0.919 1.330 2.599 3.168 

14 -0.402 0.500 0.419 0.457 0.678 0.931 1.337 2.525 3.032 

16 -0.360 0.494 0.423 0.462 0.688 0.942 1.343 2.463 2.918 

18 -0.319 0.487 0.427 0.467 0.698 0.954 1.350 2.409 2.823 

20 -0.279 0.481 0.430 0.472 0.708 0.965 1.356 2.361 2.740 

25 -0.179 0.466 0.440 0.484 0.732 0.993 1.373 2.267 2.579 

30 -0.081 0.452 0.449 0.496 0.756 1.021 1.389 2.196 2.461 

35 0.015 0.437 0.458 0.508 0.780 1.048 1.406 2.142 2.373 

40 0.110 0.423 0.467 0.521 0.804 1.074 1.423 2.101 2.303 

45 0.204 0.409 0.477 0.534 0.829 1.101 1.439 2.067 2.249 

50 0.297 0.395 0.487 0.547 0.854 1.127 1.456 2.041 2.205 

55 0.388 0.381 0.497 0.562 0.879 1.152 1.472 2.020 2.170 

60 0.479 0.368 0.509 0.577 0.905 1.178 1.489 2.003 2.140 

65 0.570 0.354 0.521 0.593 0.931 1.203 1.505 1.990 2.116 

70 0.659 0.341 0.534 0.610 0.958 1.228 1.521 1.979 2.096 

75 0.748 0.327 0.549 0.629 0.985 1.253 1.537 1.970 2.080 

80 0.836 0.314 0.566 0.650 1.013 1.278 1.553 1.964 2.066 

85 0.924 0.301 0.585 0.672 1.041 1.303 1.569 1.958 2.054 
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Table 0-7: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Females 

Ages 8-85 for Average Leg LMI. 

 Females 

       M 

Age L S 3 5 25 50 75 95 97 

8 -0.438 0.163 1.764 1.825 2.113 2.353 2.633 3.130 3.271 

10 -0.438 0.163 1.915 1.981 2.293 2.554 2.858 3.398 3.551 

12 -0.438 0.163 2.028 2.099 2.429 2.705 3.028 3.599 3.761 

14 -0.438 0.163 2.109 2.182 2.526 2.813 3.148 3.742 3.911 

16 -0.438 0.163 2.165 2.240 2.593 2.888 3.232 3.842 4.015 

18 -0.438 0.163 2.205 2.281 2.641 2.940 3.291 3.912 4.088 

20 -0.438 0.163 2.234 2.311 2.676 2.979 3.334 3.964 4.142 

25 -0.438 0.163 2.275 2.354 2.725 3.034 3.396 4.037 4.219 

30 -0.438 0.163 2.283 2.363 2.735 3.045 3.409 4.052 4.235 

35 -0.438 0.163 2.271 2.350 2.720 3.028 3.390 4.029 4.211 

40 -0.438 0.163 2.247 2.325 2.692 2.997 3.355 3.988 4.168 

45 -0.438 0.163 2.219 2.296 2.658 2.960 3.313 3.938 4.116 

50 -0.438 0.163 2.190 2.266 2.623 2.921 3.269 3.886 4.061 

55 -0.438 0.163 2.161 2.236 2.589 2.882 3.226 3.835 4.008 

60 -0.438 0.163 2.134 2.208 2.556 2.846 3.186 3.787 3.957 

65 -0.438 0.163 2.108 2.182 2.526 2.812 3.147 3.741 3.910 

70 -0.438 0.163 2.084 2.157 2.497 2.780 3.111 3.699 3.865 

75 -0.438 0.163 2.061 2.133 2.469 2.749 3.077 3.658 3.823 

80 -0.438 0.163 2.040 2.111 2.444 2.721 3.045 3.620 3.783 

85 -0.438 0.163 2.019 2.090 2.419 2.694 3.015 3.584 3.745 
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Table 0-8: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Males 

Ages 8-85 for Average Leg LMI. 

 Males 

       M 

Age L S 3 5 25 50 75 95 97 

8 0.118 0.147 1.668 1.729 2.001 2.211 2.440 2.807 2.903 

10 0.118 0.147 1.937 2.008 2.323 2.567 2.833 3.259 3.371 

12 0.118 0.147 2.169 2.248 2.601 2.874 3.172 3.649 3.774 

14 0.118 0.147 2.357 2.443 2.826 3.123 3.447 3.965 4.101 

16 0.118 0.147 2.485 2.576 2.980 3.293 3.634 4.181 4.325 

18 0.118 0.147 2.562 2.656 3.073 3.396 3.748 4.311 4.459 

20 0.118 0.147 2.609 2.704 3.129 3.457 3.816 4.390 4.540 

25 0.118 0.147 2.661 2.758 3.191 3.526 3.892 4.477 4.631 

30 0.118 0.147 2.664 2.761 3.195 3.530 3.896 4.482 4.636 

35 0.118 0.147 2.643 2.739 3.169 3.502 3.865 4.447 4.599 

40 0.118 0.147 2.609 2.704 3.129 3.457 3.815 4.389 4.540 

45 0.118 0.147 2.568 2.662 3.080 3.403 3.756 4.321 4.469 

50 0.118 0.147 2.526 2.618 3.029 3.347 3.694 4.250 4.395 

55 0.118 0.147 2.482 2.573 2.977 3.289 3.630 4.176 4.320 

60 0.118 0.147 2.438 2.527 2.924 3.231 3.566 4.103 4.244 

65 0.118 0.147 2.395 2.482 2.872 3.174 3.503 4.030 4.168 

70 0.118 0.147 2.352 2.438 2.821 3.117 3.440 3.958 4.093 

75 0.118 0.147 2.310 2.395 2.771 3.062 3.379 3.888 4.021 

80 0.118 0.147 2.271 2.354 2.723 3.009 3.321 3.821 3.952 

85 0.118 0.147 2.233 2.315 2.678 2.959 3.266 3.758 3.887 
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Table 0-9: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Females 

Ages 8-85 for Trunk FMI. 

 Females 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.516 0.586 0.682 0.746 1.139 1.633 2.540 6.200 8.345 

10 -0.419 0.568 0.833 0.916 1.413 2.015 3.059 6.594 8.308 

12 -0.333 0.552 0.970 1.070 1.666 2.365 3.517 6.968 8.447 

14 -0.255 0.537 1.097 1.215 1.907 2.696 3.941 7.334 8.668 

16 -0.184 0.523 1.216 1.351 2.135 3.005 4.328 7.674 8.905 

18 -0.117 0.511 1.324 1.477 2.348 3.291 4.678 7.975 9.126 

20 -0.056 0.499 1.423 1.592 2.547 3.554 4.992 8.238 9.324 

25 0.085 0.473 1.632 1.840 2.979 4.114 5.634 8.738 9.698 

30 0.209 0.449 1.792 2.035 3.322 4.542 6.092 9.032 9.892 

35 0.321 0.428 1.913 2.186 3.588 4.857 6.400 9.164 9.941 

40 0.424 0.409 2.009 2.308 3.799 5.092 6.607 9.199 9.904 

45 0.519 0.391 2.088 2.411 3.969 5.268 6.742 9.171 9.815 

50 0.609 0.374 2.156 2.499 4.106 5.397 6.821 9.097 9.688 

55 0.693 0.358 2.216 2.575 4.212 5.484 6.854 8.984 9.528 

60 0.773 0.343 2.269 2.641 4.293 5.537 6.848 8.841 9.342 

65 0.848 0.328 2.318 2.700 4.352 5.560 6.811 8.674 9.137 

70 0.921 0.315 2.364 2.752 4.391 5.559 6.748 8.489 8.917 

75 0.990 0.302 2.409 2.800 4.416 5.541 6.668 8.295 8.691 

80 1.057 0.289 2.456 2.848 4.432 5.512 6.580 8.102 8.470 

85 1.121 0.277 2.508 2.898 4.446 5.482 6.494 7.920 8.262 
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Table 0-10: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Males 

Ages 8-85 for Trunk FMI. 

 Males 

       M 

Age L S 3 5 25 50 75 95 97 

8 -1.120 0.458 0.680 0.720 0.954 1.244 1.817 6.541 25.065 

10 -1.011 0.458 0.704 0.748 1.001 1.309 1.895 5.410 9.926 

12 -0.912 0.458 0.728 0.774 1.047 1.374 1.975 4.914 7.439 

14 -0.820 0.458 0.753 0.803 1.097 1.445 2.062 4.672 6.449 

16 -0.736 0.458 0.782 0.837 1.154 1.524 2.163 4.571 5.971 

18 -0.656 0.458 0.816 0.876 1.219 1.615 2.281 4.568 5.751 

20 -0.580 0.458 0.856 0.921 1.295 1.721 2.419 4.636 5.684 

25 -0.407 0.458 0.966 1.048 1.512 2.022 2.812 4.973 5.843 

30 -0.250 0.458 1.065 1.165 1.726 2.323 3.204 5.356 6.133 

35 -0.106 0.458 1.139 1.258 1.917 2.597 3.555 5.697 6.412 

40 0.028 0.458 1.186 1.324 2.080 2.836 3.857 5.979 6.646 

45 0.154 0.458 1.206 1.365 2.216 3.041 4.112 6.204 6.830 

50 0.273 0.458 1.205 1.384 2.331 3.218 4.328 6.385 6.977 

55 0.387 0.458 1.183 1.384 2.428 3.373 4.515 6.534 7.096 

60 0.495 0.458 1.142 1.367 2.511 3.510 4.679 6.661 7.195 

65 0.599 0.458 1.082 1.334 2.584 3.635 4.825 6.770 7.282 

70 0.699 0.458 1.003 1.286 2.648 3.749 4.959 6.869 7.360 

75 0.795 0.458 0.901 1.221 2.705 3.855 5.081 6.958 7.432 

80 0.888 0.458 0.773 1.137 2.757 3.955 5.196 7.042 7.500 

85 0.979 0.458 0.609 1.033 2.805 4.051 5.306 7.124 7.568 
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Table 0-11: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Females 

Ages 8-85 for Trunk LMI. 

 Females 

       M 

Age L S 3 5 25 50 75 95 97 

8 -0.472 0.131 4.429 4.554 5.127 5.589 6.115 7.012 7.259 

10 -0.472 0.131 4.933 5.072 5.710 6.225 6.811 7.809 8.085 

12 -0.472 0.131 5.325 5.475 6.163 6.719 7.352 8.429 8.726 

14 -0.472 0.131 5.618 5.776 6.503 7.089 7.757 8.894 9.207 

16 -0.472 0.131 5.832 5.996 6.751 7.359 8.052 9.232 9.558 

18 -0.472 0.131 5.990 6.159 6.934 7.559 8.271 9.483 9.817 

20 -0.472 0.131 6.110 6.283 7.073 7.711 8.437 9.674 10.014 

25 -0.472 0.131 6.306 6.484 7.300 7.958 8.707 9.984 10.335 

30 -0.472 0.131 6.410 6.591 7.420 8.089 8.850 10.148 10.505 

35 -0.472 0.131 6.463 6.645 7.481 8.156 8.924 10.231 10.592 

40 -0.472 0.131 6.490 6.673 7.513 8.190 8.961 10.275 10.636 

45 -0.472 0.131 6.503 6.686 7.527 8.206 8.979 10.295 10.657 

50 -0.472 0.131 6.507 6.691 7.532 8.211 8.985 10.301 10.664 

55 -0.472 0.131 6.506 6.690 7.531 8.210 8.983 10.300 10.663 

60 -0.472 0.131 6.503 6.686 7.527 8.206 8.979 10.295 10.657 

65 -0.472 0.131 6.497 6.681 7.521 8.199 8.971 10.286 10.649 

70 -0.472 0.131 6.491 6.674 7.514 8.191 8.963 10.276 10.638 

75 -0.472 0.131 6.484 6.667 7.506 8.183 8.953 10.265 10.627 

80 -0.472 0.131 6.477 6.660 7.498 8.174 8.944 10.254 10.616 

85 -0.472 0.131 6.471 6.653 7.490 8.165 8.934 10.244 10.605 
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Table 0-12: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Males 

Ages 8-85 for Trunk LMI. 

 Males 

       M 

Age L S 3 5 25 50 75 95 97 

8 0.110 0.132 4.317 4.458 5.080 5.557 6.072 6.890 7.103 

10 0.110 0.132 4.729 4.883 5.564 6.086 6.651 7.547 7.780 

12 0.110 0.132 5.218 5.388 6.141 6.717 7.340 8.328 8.586 

14 0.110 0.132 5.779 5.967 6.800 7.437 8.128 9.222 9.507 

16 0.110 0.132 6.237 6.440 7.339 8.027 8.772 9.953 10.261 

18 0.110 0.132 6.538 6.751 7.694 8.415 9.196 10.435 10.757 

20 0.110 0.132 6.737 6.956 7.927 8.671 9.476 10.752 11.084 

25 0.110 0.132 7.029 7.258 8.271 9.046 9.886 11.217 11.564 

30 0.110 0.132 7.157 7.390 8.422 9.212 10.067 11.422 11.776 

35 0.110 0.132 7.213 7.448 8.488 9.284 10.145 11.512 11.868 

40 0.110 0.132 7.239 7.475 8.518 9.317 10.182 11.553 11.910 

45 0.110 0.132 7.244 7.480 8.524 9.323 10.189 11.561 11.918 

50 0.110 0.132 7.234 7.469 8.512 9.310 10.174 11.544 11.901 

55 0.110 0.132 7.207 7.441 8.480 9.275 10.136 11.501 11.857 

60 0.110 0.132 7.164 7.397 8.430 9.221 10.077 11.434 11.787 

65 0.110 0.132 7.108 7.340 8.364 9.149 9.998 11.344 11.695 

70 0.110 0.132 7.041 7.270 8.286 9.062 9.903 11.237 11.585 

75 0.110 0.132 6.969 7.196 8.201 8.970 9.802 11.122 11.466 

80 0.110 0.132 6.897 7.122 8.117 8.878 9.701 11.008 11.348 

85 0.110 0.132 6.829 7.051 8.036 8.789 9.605 10.899 11.236 
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Table 0-13: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Females 

Ages 8-85 for Total Body FMI. 

 Females 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.602 0.493 2.445 2.639 3.773 5.108 7.399 15.529 19.823 

10 -0.458 0.472 2.862 3.102 4.478 6.025 8.495 15.710 18.805 

12 -0.340 0.454 3.205 3.487 5.071 6.786 9.377 16.072 18.623 

14 -0.241 0.440 3.501 3.821 5.590 7.442 10.121 16.472 18.712 

16 -0.154 0.427 3.759 4.114 6.047 8.013 10.755 16.850 18.884 

18 -0.078 0.416 3.984 4.371 6.449 8.509 11.295 17.183 19.068 

20 -0.011 0.406 4.182 4.599 6.806 8.942 11.758 17.469 19.238 

25 0.133 0.384 4.584 5.065 7.534 9.807 12.651 17.996 19.557 

30 0.251 0.367 4.889 5.422 8.083 10.435 13.266 18.309 19.726 

35 0.350 0.352 5.126 5.701 8.506 10.899 13.692 18.475 19.781 

40 0.437 0.340 5.320 5.930 8.841 11.253 13.996 18.552 19.769 

45 0.513 0.328 5.485 6.124 9.115 11.530 14.220 18.577 19.721 

50 0.581 0.318 5.630 6.294 9.346 11.753 14.388 18.569 19.652 

55 0.642 0.309 5.761 6.447 9.544 11.938 14.519 18.543 19.574 

60 0.698 0.301 5.883 6.587 9.718 12.096 14.623 18.508 19.493 

65 0.750 0.293 5.999 6.718 9.875 12.232 14.710 18.469 19.414 

70 0.798 0.286 6.110 6.842 10.018 12.354 14.784 18.429 19.339 

75 0.842 0.280 6.218 6.962 10.150 12.464 14.849 18.392 19.270 

80 0.884 0.274 6.323 7.078 10.274 12.566 14.908 18.357 19.207 

85 0.923 0.268 6.427 7.190 10.391 12.661 14.962 18.326 19.151 
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Table 0-14: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Males 

Ages 8-85 for Total Body FMI. 

 Males 

   M 

Age L S 3 5 25 50 75 95 97 

8 -1.125 0.410 2.302 2.428 3.153 4.009 5.581 14.167 24.111 

10 -1.016 0.410 2.297 2.429 3.182 4.058 5.612 12.643 18.263 

12 -0.918 0.410 2.292 2.430 3.210 4.106 5.646 11.733 15.656 

14 -0.827 0.410 2.291 2.434 3.243 4.158 5.689 11.140 14.175 

16 -0.743 0.410 2.299 2.449 3.290 4.229 5.761 10.769 13.272 

18 -0.663 0.410 2.325 2.482 3.362 4.333 5.878 10.585 12.747 

20 -0.588 0.410 2.369 2.536 3.463 4.473 6.046 10.554 12.489 

25 -0.416 0.410 2.525 2.719 3.793 4.926 6.605 10.863 12.474 

30 -0.260 0.410 2.674 2.901 4.135 5.398 7.189 11.325 12.757 

35 -0.117 0.410 2.783 3.043 4.436 5.821 7.708 11.746 13.054 

40 0.017 0.410 2.845 3.137 4.685 6.179 8.138 12.077 13.287 

45 0.142 0.410 2.862 3.188 4.884 6.473 8.486 12.320 13.449 

50 0.260 0.410 2.843 3.203 5.046 6.720 8.773 12.503 13.563 

55 0.373 0.410 2.795 3.190 5.180 6.933 9.017 12.648 13.648 

60 0.481 0.410 2.720 3.154 5.296 7.122 9.230 12.768 13.718 

65 0.584 0.410 2.619 3.097 5.397 7.293 9.420 12.873 13.779 

70 0.684 0.410 2.493 3.018 5.484 7.448 9.591 12.964 13.831 

75 0.780 0.410 2.337 2.918 5.561 7.589 9.745 13.044 13.876 

80 0.872 0.410 2.149 2.794 5.629 7.720 9.887 13.116 13.918 

85 0.962 0.410 1.923 2.647 5.691 7.845 10.022 13.189 13.963 
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Table 0-15: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Females 

Ages 8-85 for Total Body LMI. 

 Females 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.898 0.126 10.556 10.821 12.062 13.095 14.309 16.485 17.112 

10 -0.681 0.126 11.434 11.734 13.120 14.254 15.562 17.838 18.476 

12 -0.503 0.126 12.453 12.792 14.342 15.590 17.009 19.421 20.085 

14 -0.353 0.126 13.561 13.942 15.668 17.041 18.581 21.150 21.846 

16 -0.223 0.126 14.431 14.848 16.722 18.196 19.831 22.514 23.233 

18 -0.108 0.126 14.978 15.421 17.403 18.943 20.637 23.379 24.105 

20 -0.005 0.126 15.322 15.786 17.846 19.434 21.163 23.930 24.656 

25 0.212 0.126 15.785 16.288 18.488 20.149 21.925 24.697 25.411 

30 0.390 0.126 15.916 16.445 18.732 20.429 22.215 24.952 25.646 

35 0.540 0.126 15.881 16.430 18.774 20.486 22.266 24.950 25.623 

40 0.670 0.126 15.771 16.334 18.719 20.436 22.202 24.829 25.482 

45 0.785 0.126 15.620 16.195 18.608 20.324 22.072 24.643 25.277 

50 0.888 0.126 15.450 16.035 18.470 20.181 21.909 24.426 25.042 

55 0.981 0.126 15.257 15.851 18.300 20.003 21.710 24.172 24.771 

60 1.065 0.126 15.043 15.644 18.100 19.791 21.473 23.882 24.465 

65 1.143 0.126 14.811 15.416 17.872 19.549 21.205 23.560 24.127 

70 1.216 0.126 14.562 15.171 17.623 19.282 20.911 23.211 23.763 

75 1.283 0.126 14.310 14.921 17.366 19.006 20.607 22.854 23.391 

80 1.346 0.126 14.066 14.679 17.114 18.735 20.310 22.507 23.029 

85 1.405 0.126 13.833 14.447 16.874 18.477 20.026 22.176 22.686 
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Table 0-16: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Black Males 

Ages 8-85 for Total Body LMI. 

 Males 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.898 0.126 10.556 10.821 12.062 13.095 14.309 16.485 17.112 

10 -0.681 0.126 11.434 11.734 13.120 14.254 15.562 17.838 18.476 

12 -0.503 0.126 12.453 12.792 14.342 15.590 17.009 19.421 20.085 

14 -0.353 0.126 13.561 13.942 15.668 17.041 18.581 21.150 21.846 

16 -0.223 0.126 14.431 14.848 16.722 18.196 19.831 22.514 23.233 

18 -0.108 0.126 14.978 15.421 17.403 18.943 20.637 23.379 24.105 

20 -0.005 0.126 15.322 15.786 17.846 19.434 21.163 23.930 24.656 

25 0.212 0.126 15.785 16.288 18.488 20.149 21.925 24.697 25.411 

30 0.390 0.126 15.916 16.445 18.732 20.429 22.215 24.952 25.646 

35 0.540 0.126 15.881 16.430 18.774 20.486 22.266 24.950 25.623 

40 0.670 0.126 15.771 16.334 18.719 20.436 22.202 24.829 25.482 

45 0.785 0.126 15.620 16.195 18.608 20.324 22.072 24.643 25.277 

50 0.888 0.126 15.450 16.035 18.470 20.181 21.909 24.426 25.042 

55 0.981 0.126 15.257 15.851 18.300 20.003 21.710 24.172 24.771 

60 1.065 0.126 15.043 15.644 18.100 19.791 21.473 23.882 24.465 

65 1.143 0.126 14.811 15.416 17.872 19.549 21.205 23.560 24.127 

70 1.216 0.126 14.562 15.171 17.623 19.282 20.911 23.211 23.763 

75 1.283 0.126 14.310 14.921 17.366 19.006 20.607 22.854 23.391 

80 1.346 0.126 14.066 14.679 17.114 18.735 20.310 22.507 23.029 

85 1.405 0.126 13.833 14.447 16.874 18.477 20.026 22.176 22.686 
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Table 0-17: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Females Ages 8-85 for Average Arm FMI. 

 Females 

       M 

Age M S 3 5 25 50 75 95 97 

8 0.314 0.454 0.151 0.164 0.235 0.314 0.435 0.769 0.904 

10 0.366 0.440 0.176 0.192 0.276 0.366 0.500 0.837 0.963 

12 0.410 0.428 0.197 0.215 0.310 0.410 0.553 0.892 1.012 

14 0.447 0.418 0.216 0.235 0.340 0.447 0.598 0.937 1.053 

16 0.480 0.409 0.232 0.253 0.367 0.480 0.636 0.977 1.089 

18 0.510 0.401 0.247 0.270 0.391 0.510 0.671 1.011 1.120 

20 0.536 0.394 0.260 0.284 0.412 0.536 0.701 1.040 1.147 

25 0.590 0.380 0.288 0.315 0.457 0.590 0.762 1.099 1.200 

30 0.633 0.368 0.310 0.340 0.493 0.633 0.809 1.141 1.238 

35 0.667 0.358 0.328 0.360 0.522 0.667 0.845 1.172 1.266 

40 0.694 0.349 0.344 0.378 0.546 0.694 0.874 1.196 1.287 

45 0.717 0.341 0.357 0.392 0.566 0.717 0.897 1.214 1.302 

50 0.736 0.334 0.369 0.405 0.584 0.736 0.916 1.228 1.313 

55 0.753 0.328 0.379 0.416 0.598 0.753 0.932 1.238 1.322 

60 0.767 0.322 0.388 0.426 0.612 0.767 0.945 1.246 1.328 

65 0.779 0.317 0.396 0.435 0.623 0.779 0.957 1.253 1.333 

70 0.790 0.312 0.403 0.444 0.634 0.790 0.967 1.259 1.337 

75 0.800 0.308 0.411 0.452 0.644 0.800 0.976 1.264 1.341 

80 0.810 0.303 0.417 0.459 0.653 0.810 0.985 1.269 1.344 

85 0.819 0.299 0.424 0.466 0.662 0.819 0.993 1.273 1.347 
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Table 0-18: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Males Ages 8-85 for Average Arm FMI. 

 Males 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.174 0.579 0.119 0.134 0.221 0.323 0.484 0.915 1.081 

10 -0.174 0.544 0.126 0.141 0.226 0.323 0.472 0.855 0.998 

12 -0.174 0.515 0.132 0.146 0.230 0.322 0.461 0.806 0.931 

14 -0.174 0.489 0.137 0.152 0.234 0.323 0.453 0.767 0.878 

16 -0.174 0.465 0.144 0.159 0.240 0.326 0.450 0.741 0.843 

18 -0.174 0.444 0.153 0.167 0.249 0.333 0.453 0.727 0.821 

20 -0.174 0.425 0.162 0.177 0.259 0.342 0.459 0.722 0.810 

25 -0.174 0.386 0.186 0.202 0.286 0.369 0.482 0.723 0.802 

30 -0.174 0.357 0.208 0.224 0.310 0.393 0.502 0.730 0.802 

35 -0.174 0.336 0.226 0.242 0.329 0.411 0.518 0.735 0.803 

40 -0.174 0.321 0.240 0.257 0.344 0.425 0.530 0.739 0.804 

45 -0.174 0.309 0.251 0.268 0.355 0.436 0.539 0.742 0.804 

50 -0.174 0.299 0.260 0.277 0.365 0.445 0.546 0.744 0.804 

55 -0.174 0.291 0.268 0.285 0.372 0.452 0.552 0.745 0.804 

60 -0.174 0.285 0.274 0.291 0.379 0.457 0.556 0.746 0.803 

65 -0.174 0.280 0.279 0.297 0.384 0.462 0.560 0.746 0.802 

70 -0.174 0.275 0.284 0.302 0.388 0.466 0.562 0.746 0.801 

75 -0.174 0.270 0.288 0.306 0.392 0.469 0.565 0.746 0.799 

80 -0.174 0.266 0.292 0.310 0.396 0.473 0.567 0.745 0.798 

85 -0.174 0.262 0.296 0.314 0.399 0.475 0.569 0.744 0.796 
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Table 0-19: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Females Ages 8-85 for Average Arm LMI. 

 Females 

       M 

Age L S 3 5 25 50 75 95 97 

8 -1.204 0.162 0.487 0.501 0.570 0.632 0.710 0.871 0.924 

10 -1.073 0.162 0.525 0.541 0.617 0.684 0.768 0.936 0.989 

12 -0.962 0.162 0.556 0.573 0.655 0.726 0.815 0.988 1.042 

14 -0.865 0.162 0.580 0.598 0.684 0.760 0.852 1.028 1.082 

16 -0.779 0.162 0.598 0.617 0.707 0.786 0.881 1.059 1.113 

18 -0.701 0.162 0.612 0.632 0.726 0.807 0.904 1.084 1.137 

20 -0.629 0.162 0.624 0.644 0.742 0.824 0.923 1.104 1.156 

25 -0.473 0.162 0.645 0.667 0.771 0.858 0.959 1.140 1.192 

30 -0.339 0.162 0.658 0.682 0.790 0.880 0.983 1.163 1.214 

35 -0.223 0.162 0.666 0.690 0.802 0.894 0.998 1.177 1.226 

40 -0.119 0.162 0.668 0.693 0.809 0.901 1.006 1.182 1.230 

45 -0.025 0.162 0.667 0.693 0.810 0.903 1.008 1.181 1.227 

50 0.061 0.162 0.662 0.689 0.807 0.901 1.004 1.173 1.218 

55 0.140 0.162 0.655 0.682 0.801 0.894 0.997 1.162 1.206 

60 0.214 0.162 0.646 0.673 0.793 0.886 0.987 1.148 1.190 

65 0.283 0.162 0.636 0.663 0.783 0.875 0.974 1.132 1.172 

70 0.348 0.162 0.626 0.653 0.773 0.864 0.961 1.114 1.154 

75 0.409 0.162 0.615 0.642 0.762 0.852 0.948 1.097 1.135 

80 0.467 0.162 0.605 0.632 0.751 0.840 0.935 1.080 1.117 

85 0.522 0.162 0.595 0.622 0.741 0.829 0.922 1.064 1.100 
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Table 0-20: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Males Ages 8-85 for Average Arm LMI. 

 Males 

       M 

Age L S 3 5 25 50 75 95 97 

8 0.175 0.162 0.498 0.519 0.610 0.681 0.759 0.883 0.916 

10 0.175 0.158 0.553 0.575 0.674 0.750 0.834 0.967 1.002 

12 0.175 0.155 0.637 0.662 0.773 0.858 0.952 1.101 1.140 

14 0.175 0.152 0.740 0.768 0.894 0.991 1.097 1.266 1.310 

16 0.175 0.150 0.826 0.857 0.996 1.102 1.218 1.403 1.451 

18 0.175 0.147 0.883 0.916 1.062 1.174 1.296 1.489 1.539 

20 0.175 0.146 0.921 0.955 1.105 1.220 1.344 1.542 1.594 

25 0.175 0.142 0.978 1.013 1.167 1.285 1.413 1.615 1.667 

30 0.175 0.139 1.007 1.042 1.197 1.315 1.443 1.644 1.697 

35 0.175 0.136 1.023 1.058 1.212 1.329 1.455 1.654 1.706 

40 0.175 0.133 1.030 1.064 1.216 1.331 1.455 1.651 1.702 

45 0.175 0.131 1.029 1.063 1.211 1.325 1.446 1.638 1.687 

50 0.175 0.130 1.021 1.054 1.200 1.310 1.429 1.615 1.663 

55 0.175 0.128 1.008 1.040 1.181 1.288 1.403 1.584 1.631 

60 0.175 0.126 0.989 1.020 1.157 1.261 1.372 1.547 1.592 

65 0.175 0.125 0.966 0.997 1.129 1.229 1.336 1.503 1.547 

70 0.175 0.124 0.938 0.967 1.094 1.190 1.293 1.453 1.495 

75 0.175 0.122 0.907 0.935 1.056 1.148 1.246 1.399 1.438 

80 0.175 0.121 0.875 0.901 1.017 1.104 1.198 1.344 1.381 

85 0.175 0.120 0.844 0.869 0.979 1.063 1.152 1.291 1.326 
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Table 0-21: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Females Ages 8-85 for Average Leg FMI. 

 Females 

       M 

Age L S 3 5 25 50 75 95 97 

8 -0.710 0.309 0.734 0.774 0.983 1.195 1.497 2.247 2.532 

10 -0.590 0.309 0.813 0.859 1.101 1.341 1.675 2.456 2.736 

12 -0.492 0.309 0.875 0.926 1.196 1.459 1.818 2.621 2.897 

14 -0.409 0.309 0.923 0.980 1.274 1.556 1.935 2.754 3.026 

16 -0.338 0.309 0.962 1.023 1.337 1.636 2.031 2.860 3.128 

18 -0.274 0.309 0.992 1.057 1.389 1.702 2.109 2.944 3.209 

20 -0.218 0.309 1.015 1.083 1.432 1.756 2.173 3.011 3.271 

25 -0.098 0.309 1.052 1.127 1.507 1.852 2.287 3.122 3.373 

30 0.000 0.309 1.069 1.150 1.553 1.913 2.357 3.183 3.424 

35 0.083 0.309 1.075 1.160 1.581 1.952 2.400 3.213 3.446 

40 0.155 0.309 1.074 1.163 1.599 1.977 2.427 3.226 3.451 

45 0.218 0.309 1.069 1.162 1.609 1.992 2.443 3.228 3.446 

50 0.275 0.309 1.062 1.157 1.615 2.002 2.452 3.224 3.435 

55 0.326 0.309 1.053 1.150 1.617 2.007 2.456 3.215 3.420 

60 0.373 0.309 1.043 1.143 1.618 2.010 2.458 3.204 3.404 

65 0.416 0.309 1.033 1.136 1.618 2.012 2.457 3.193 3.388 

70 0.456 0.309 1.023 1.128 1.617 2.013 2.456 3.181 3.373 

75 0.493 0.309 1.014 1.120 1.615 2.013 2.455 3.171 3.358 

80 0.527 0.309 1.005 1.113 1.614 2.013 2.454 3.161 3.345 

85 0.560 0.309 0.996 1.106 1.613 2.014 2.453 3.151 3.333 
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Table 0-22: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Males Ages 8-85 for Average Leg FMI. 

 Males 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.051 0.502 0.446 0.499 0.802 1.121 1.578 2.608 2.953 

10 -0.051 0.478 0.465 0.519 0.815 1.121 1.552 2.502 2.815 

12 -0.051 0.458 0.482 0.535 0.825 1.121 1.531 2.418 2.707 

14 -0.051 0.441 0.497 0.550 0.835 1.121 1.513 2.350 2.619 

16 -0.051 0.427 0.510 0.562 0.843 1.121 1.498 2.292 2.546 

18 -0.051 0.414 0.522 0.574 0.850 1.121 1.485 2.243 2.482 

20 -0.051 0.403 0.533 0.585 0.857 1.121 1.474 2.200 2.427 

25 -0.051 0.378 0.557 0.608 0.870 1.121 1.450 2.111 2.315 

30 -0.051 0.358 0.578 0.627 0.882 1.121 1.430 2.041 2.227 

35 -0.051 0.342 0.596 0.644 0.892 1.121 1.414 1.984 2.156 

40 -0.051 0.327 0.612 0.659 0.901 1.121 1.400 1.935 2.096 

45 -0.051 0.314 0.626 0.673 0.908 1.121 1.388 1.894 2.044 

50 -0.051 0.303 0.639 0.686 0.915 1.121 1.377 1.858 1.999 

55 -0.051 0.293 0.652 0.697 0.922 1.121 1.367 1.825 1.960 

60 -0.051 0.283 0.663 0.708 0.927 1.121 1.358 1.797 1.924 

65 -0.051 0.274 0.674 0.718 0.933 1.121 1.350 1.770 1.892 

70 -0.051 0.266 0.684 0.727 0.938 1.121 1.343 1.747 1.863 

75 -0.051 0.259 0.693 0.736 0.943 1.121 1.336 1.725 1.836 

80 -0.051 0.252 0.702 0.744 0.947 1.121 1.330 1.704 1.811 

85 -0.051 0.245 0.711 0.752 0.951 1.121 1.324 1.686 1.788 
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Table 0-23: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Females Ages 8-85 for Average Leg LMI. 

 Females 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -1.357 0.156 1.526 1.568 1.772 1.955 2.191 2.683 2.847 

10 -1.197 0.156 1.661 1.708 1.936 2.138 2.393 2.908 3.073 

12 -1.067 0.156 1.761 1.812 2.059 2.275 2.545 3.074 3.239 

14 -0.956 0.156 1.831 1.885 2.146 2.373 2.652 3.189 3.353 

16 -0.861 0.156 1.879 1.936 2.208 2.443 2.728 3.267 3.430 

18 -0.776 0.156 1.913 1.972 2.253 2.493 2.783 3.323 3.483 

20 -0.701 0.156 1.937 1.998 2.287 2.531 2.825 3.362 3.520 

25 -0.541 0.156 1.970 2.035 2.337 2.589 2.886 3.416 3.568 

30 -0.411 0.156 1.980 2.047 2.358 2.614 2.912 3.431 3.577 

35 -0.301 0.156 1.975 2.043 2.360 2.618 2.915 3.423 3.564 

40 -0.205 0.156 1.960 2.030 2.350 2.608 2.902 3.398 3.534 

45 -0.121 0.156 1.937 2.008 2.330 2.587 2.877 3.360 3.491 

50 -0.046 0.156 1.909 1.980 2.302 2.557 2.843 3.313 3.440 

55 0.023 0.156 1.877 1.949 2.270 2.522 2.803 3.260 3.382 

60 0.085 0.156 1.844 1.916 2.235 2.485 2.760 3.206 3.323 

65 0.142 0.156 1.812 1.883 2.200 2.447 2.717 3.151 3.265 

70 0.195 0.156 1.780 1.851 2.166 2.410 2.675 3.098 3.209 

75 0.245 0.156 1.750 1.820 2.134 2.375 2.635 3.048 3.155 

80 0.291 0.156 1.721 1.791 2.103 2.341 2.597 3.000 3.105 

85 0.334 0.156 1.694 1.764 2.074 2.309 2.561 2.956 3.058 
 

  



172 

Table 0-24: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Males Ages 8-85 for Average Leg LMI. 

 Males 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 0.120 0.155 1.502 1.560 1.819 2.020 2.241 2.596 2.689 

10 0.120 0.150 1.752 1.817 2.109 2.334 2.581 2.977 3.081 

12 0.120 0.146 1.976 2.048 2.368 2.615 2.884 3.315 3.427 

14 0.120 0.143 2.163 2.240 2.581 2.844 3.130 3.587 3.706 

16 0.120 0.140 2.288 2.367 2.720 2.992 3.287 3.757 3.879 

18 0.120 0.138 2.358 2.438 2.794 3.068 3.365 3.837 3.961 

20 0.120 0.136 2.397 2.478 2.834 3.107 3.402 3.872 3.994 

25 0.120 0.131 2.453 2.532 2.882 3.150 3.439 3.897 4.016 

30 0.120 0.127 2.487 2.565 2.909 3.171 3.453 3.899 4.015 

35 0.120 0.124 2.510 2.587 2.924 3.181 3.457 3.891 4.004 

40 0.120 0.121 2.520 2.595 2.925 3.176 3.445 3.868 3.978 

45 0.120 0.119 2.516 2.589 2.912 3.156 3.418 3.828 3.934 

50 0.120 0.117 2.500 2.571 2.885 3.122 3.376 3.774 3.877 

55 0.120 0.115 2.473 2.543 2.848 3.077 3.324 3.708 3.808 

60 0.120 0.113 2.439 2.507 2.802 3.025 3.263 3.634 3.730 

65 0.120 0.111 2.400 2.465 2.751 2.966 3.196 3.554 3.646 

70 0.120 0.110 2.355 2.418 2.694 2.902 3.123 3.469 3.557 

75 0.120 0.108 2.307 2.368 2.635 2.835 3.049 3.382 3.467 

80 0.120 0.107 2.260 2.319 2.576 2.770 2.976 3.296 3.378 

85 0.120 0.106 2.214 2.271 2.520 2.707 2.906 3.215 3.294 
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Table 0-25: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Females Ages 8-85 for Trunk FMI. 

 Females 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.432 0.518 0.841 0.919 1.371 1.899 2.773 5.498 6.729 

10 -0.343 0.500 1.040 1.138 1.708 2.349 3.360 6.172 7.309 

12 -0.266 0.484 1.218 1.337 2.013 2.752 3.871 6.732 7.804 

14 -0.198 0.470 1.385 1.524 2.300 3.127 4.336 7.231 8.256 

16 -0.136 0.457 1.542 1.700 2.571 3.476 4.760 7.677 8.665 

18 -0.079 0.445 1.689 1.864 2.823 3.797 5.143 8.069 9.025 

20 -0.027 0.434 1.823 2.015 3.054 4.087 5.481 8.402 9.329 

25 0.090 0.410 2.107 2.337 3.541 4.683 6.151 9.009 9.866 

30 0.191 0.389 2.339 2.600 3.929 5.140 6.636 9.394 10.188 

35 0.281 0.370 2.536 2.821 4.246 5.498 6.995 9.640 10.378 

40 0.362 0.353 2.705 3.012 4.506 5.778 7.259 9.785 10.473 

45 0.437 0.337 2.850 3.174 4.715 5.991 7.441 9.846 10.488 

50 0.506 0.323 2.971 3.307 4.874 6.138 7.546 9.826 10.425 

55 0.570 0.309 3.070 3.414 4.988 6.228 7.585 9.739 10.297 

60 0.630 0.297 3.152 3.500 5.066 6.274 7.576 9.605 10.125 

65 0.687 0.285 3.221 3.570 5.116 6.287 7.531 9.440 9.924 

70 0.741 0.274 3.281 3.628 5.147 6.277 7.462 9.258 9.709 

75 0.792 0.263 3.335 3.680 5.164 6.252 7.380 9.071 9.492 

80 0.841 0.253 3.388 3.728 5.175 6.220 7.295 8.887 9.281 

85 0.888 0.243 3.441 3.775 5.183 6.188 7.211 8.713 9.083 
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Table 0-26: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Males Ages 8-85 for Trunk FMI. 

 Males 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.672 0.617 0.781 0.850 1.276 1.842 2.999 10.132 17.520 

10 -0.525 0.583 0.829 0.907 1.379 1.970 3.059 7.465 10.065 

12 -0.404 0.555 0.858 0.943 1.447 2.050 3.074 6.397 7.943 

14 -0.302 0.531 0.890 0.981 1.517 2.131 3.112 5.874 6.995 

16 -0.214 0.511 0.945 1.045 1.623 2.263 3.235 5.710 6.628 

18 -0.136 0.493 1.020 1.131 1.764 2.441 3.428 5.757 6.568 

20 -0.066 0.476 1.107 1.232 1.925 2.645 3.659 5.913 6.660 

25 0.082 0.442 1.336 1.494 2.339 3.162 4.245 6.409 7.070 

30 0.203 0.414 1.534 1.720 2.686 3.581 4.698 6.780 7.382 

35 0.305 0.391 1.694 1.903 2.957 3.891 5.012 6.997 7.551 

40 0.393 0.370 1.827 2.055 3.170 4.122 5.229 7.115 7.627 

45 0.471 0.352 1.942 2.185 3.340 4.296 5.380 7.170 7.646 

50 0.541 0.336 2.045 2.298 3.480 4.431 5.487 7.187 7.632 

55 0.604 0.321 2.137 2.399 3.595 4.534 5.558 7.174 7.591 

60 0.661 0.308 2.221 2.488 3.688 4.611 5.602 7.139 7.531 

65 0.714 0.296 2.296 2.567 3.764 4.667 5.623 7.086 7.455 

70 0.764 0.284 2.366 2.638 3.826 4.707 5.629 7.022 7.371 

75 0.809 0.274 2.433 2.705 3.879 4.737 5.626 6.955 7.286 

80 0.852 0.264 2.498 2.769 3.927 4.762 5.620 6.891 7.205 

85 0.892 0.255 2.562 2.832 3.972 4.785 5.614 6.831 7.130 
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Table 0-27: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Females Ages 8-85 for Trunk LMI. 

 Females 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -1.970 0.129 4.444 4.539 5.001 5.419 5.960 7.131 7.535 

10 -1.769 0.129 4.952 5.061 5.589 6.060 6.659 7.905 8.318 

12 -1.604 0.129 5.355 5.476 6.059 6.573 7.218 8.518 8.936 

14 -1.465 0.129 5.666 5.797 6.425 6.972 7.651 8.988 9.408 

16 -1.345 0.129 5.900 6.039 6.704 7.278 7.983 9.343 9.761 

18 -1.239 0.129 6.080 6.226 6.921 7.517 8.240 9.613 10.029 

20 -1.144 0.129 6.221 6.373 7.093 7.705 8.444 9.824 10.236 

25 -0.942 0.129 6.456 6.619 7.388 8.031 8.794 10.175 10.577 

30 -0.778 0.129 6.590 6.763 7.566 8.229 9.004 10.376 10.767 

35 -0.639 0.129 6.666 6.846 7.675 8.352 9.133 10.490 10.870 

40 -0.518 0.129 6.704 6.889 7.738 8.424 9.208 10.547 10.917 

45 -0.412 0.129 6.712 6.902 7.766 8.458 9.241 10.560 10.920 

50 -0.317 0.129 6.697 6.890 7.765 8.460 9.239 10.537 10.888 

55 -0.231 0.129 6.665 6.861 7.743 8.439 9.214 10.489 10.832 

60 -0.153 0.129 6.624 6.821 7.710 8.405 9.173 10.427 10.761 

65 -0.081 0.129 6.577 6.777 7.669 8.363 9.125 10.357 10.683 

70 -0.014 0.129 6.529 6.730 7.625 8.317 9.073 10.285 10.604 

75 0.048 0.129 6.481 6.683 7.581 8.271 9.020 10.214 10.526 

80 0.107 0.129 6.434 6.638 7.539 8.227 8.970 10.146 10.452 

85 0.161 0.129 6.391 6.596 7.499 8.184 8.922 10.082 10.382 
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Table 0-28: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Males Ages 8-85 for Trunk LMI. 

 Males 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.144 0.150 4.392 4.544 5.239 5.793 6.414 7.448 7.728 

10 -0.144 0.145 4.803 4.964 5.696 6.277 6.926 8.001 8.291 

12 -0.144 0.141 5.327 5.501 6.287 6.909 7.602 8.746 9.052 

14 -0.144 0.137 5.945 6.135 6.989 7.662 8.411 9.641 9.971 

16 -0.144 0.134 6.470 6.671 7.579 8.292 9.083 10.380 10.726 

18 -0.144 0.132 6.814 7.022 7.957 8.691 9.503 10.830 11.183 

20 -0.144 0.129 7.040 7.251 8.198 8.940 9.759 11.094 11.450 

25 -0.144 0.124 7.394 7.607 8.560 9.303 10.120 11.446 11.798 

30 -0.144 0.120 7.606 7.818 8.764 9.498 10.303 11.604 11.948 

35 -0.144 0.116 7.762 7.972 8.907 9.631 10.422 11.697 12.033 

40 -0.144 0.113 7.879 8.087 9.010 9.722 10.499 11.747 12.076 

45 -0.144 0.111 7.963 8.168 9.078 9.778 10.540 11.761 12.081 

50 -0.144 0.108 8.020 8.222 9.118 9.805 10.552 11.745 12.058 

55 -0.144 0.106 8.047 8.246 9.125 9.799 10.530 11.695 12.001 

60 -0.144 0.104 8.041 8.236 9.097 9.756 10.469 11.605 11.902 

65 -0.144 0.102 7.996 8.186 9.027 9.669 10.363 11.466 11.754 

70 -0.144 0.101 7.912 8.097 8.915 9.538 10.211 11.279 11.557 

75 -0.144 0.099 7.801 7.981 8.774 9.377 10.028 11.060 11.328 

80 -0.144 0.098 7.679 7.853 8.621 9.205 9.835 10.830 11.089 

85 -0.144 0.096 7.556 7.725 8.470 9.035 9.644 10.605 10.855 
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Table 0-29: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Females Ages 8-85 for Total Body FMI. 

 Females 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.613 0.391 2.983 3.183 4.286 5.471 7.292 12.386 14.531 

10 -0.523 0.381 3.394 3.628 4.903 6.240 8.222 13.342 15.329 

12 -0.443 0.373 3.762 4.028 5.460 6.929 9.045 14.176 16.050 

14 -0.371 0.365 4.099 4.395 5.974 7.561 9.788 14.922 16.712 

16 -0.305 0.358 4.408 4.732 6.446 8.138 10.459 15.585 17.306 

18 -0.243 0.352 4.688 5.039 6.877 8.661 11.058 16.165 17.826 

20 -0.186 0.346 4.938 5.314 7.265 9.128 11.585 16.656 18.262 

25 -0.055 0.332 5.449 5.879 8.063 10.074 12.621 17.551 19.032 

30 0.060 0.320 5.837 6.312 8.676 10.781 13.360 18.111 19.485 

35 0.164 0.309 6.141 6.654 9.157 11.321 13.897 18.457 19.736 

40 0.260 0.299 6.385 6.929 9.540 11.736 14.287 18.655 19.851 

45 0.349 0.290 6.575 7.146 9.836 12.043 14.551 18.727 19.847 

50 0.431 0.281 6.711 7.303 10.042 12.240 14.688 18.667 19.717 

55 0.510 0.273 6.798 7.405 10.168 12.337 14.712 18.492 19.475 

60 0.584 0.266 6.849 7.466 10.231 12.360 14.654 18.238 19.158 

65 0.654 0.258 6.872 7.495 10.247 12.326 14.534 17.930 18.792 

70 0.721 0.251 6.876 7.502 10.228 12.251 14.373 17.588 18.396 

75 0.786 0.244 6.870 7.496 10.187 12.153 14.189 17.235 17.994 

80 0.847 0.238 6.861 7.486 10.137 12.044 13.998 16.887 17.601 

85 0.907 0.232 6.853 7.476 10.084 11.933 13.810 16.555 17.229 
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Table 0-30: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Males Ages 8-85 for Total Body FMI. 

 Males 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.611 0.514 2.477 2.679 3.869 5.299 7.822 17.426 22.885 

10 -0.487 0.487 2.524 2.738 3.972 5.388 7.706 14.886 18.142 

12 -0.385 0.465 2.562 2.785 4.051 5.447 7.610 13.495 15.847 

14 -0.300 0.447 2.606 2.839 4.134 5.516 7.563 12.652 14.525 

16 -0.225 0.431 2.676 2.919 4.251 5.632 7.604 12.188 13.778 

18 -0.160 0.417 2.771 3.026 4.405 5.797 7.726 11.979 13.390 

20 -0.101 0.404 2.884 3.153 4.584 5.996 7.902 11.926 13.217 

25 0.023 0.377 3.192 3.494 5.056 6.524 8.404 12.075 13.181 

30 0.124 0.355 3.477 3.807 5.474 6.979 8.834 12.262 13.253 

35 0.210 0.336 3.721 4.074 5.815 7.335 9.153 12.380 13.285 

40 0.284 0.320 3.931 4.302 6.091 7.610 9.384 12.433 13.270 

45 0.349 0.306 4.116 4.499 6.318 7.826 9.550 12.442 13.222 

50 0.408 0.293 4.281 4.673 6.508 7.997 9.672 12.423 13.154 

55 0.461 0.282 4.430 4.829 6.668 8.135 9.759 12.382 13.071 

60 0.509 0.271 4.567 4.970 6.806 8.246 9.821 12.327 12.979 

65 0.553 0.262 4.693 5.098 6.924 8.336 9.863 12.263 12.881 

70 0.595 0.253 4.811 5.217 7.028 8.410 9.892 12.194 12.783 

75 0.633 0.244 4.923 5.329 7.122 8.475 9.913 12.125 12.687 

80 0.669 0.237 5.032 5.437 7.209 8.534 9.930 12.060 12.598 

85 0.703 0.229 5.137 5.541 7.292 8.588 9.945 12.000 12.516 
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Table 0-31: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Females Ages 8-85 for Total Body LMI. 

 Females 

   M 

Age L S 3 5 25 50 75 95 97 

8 -2.075 0.126 9.866 10.069 11.062 11.962 13.131 15.678 16.566 

10 -1.876 0.126 10.726 10.954 12.060 13.047 14.310 16.957 17.843 

12 -1.707 0.126 11.431 11.680 12.884 13.946 15.284 18.004 18.886 

14 -1.559 0.126 11.940 12.207 13.487 14.606 15.997 18.754 19.625 

16 -1.427 0.126 12.289 12.569 13.910 15.070 16.496 19.261 20.117 

18 -1.307 0.126 12.552 12.844 14.235 15.427 16.879 19.640 20.479 

20 -1.198 0.126 12.759 13.062 14.495 15.715 17.186 19.937 20.760 

25 -0.959 0.126 13.087 13.411 14.931 16.199 17.698 20.405 21.190 

30 -0.756 0.126 13.272 13.614 15.199 16.502 18.014 20.669 21.420 

35 -0.578 0.126 13.401 13.758 15.401 16.730 18.251 20.858 21.581 

40 -0.419 0.126 13.488 13.860 15.552 16.904 18.429 20.992 21.691 

45 -0.276 0.126 13.517 13.901 15.634 17.001 18.525 21.041 21.717 

50 -0.145 0.126 13.449 13.842 15.601 16.974 18.486 20.945 21.598 

55 -0.024 0.126 13.297 13.696 15.469 16.837 18.330 20.721 21.349 

60 0.089 0.126 13.096 13.499 15.278 16.636 18.103 20.424 21.028 

65 0.194 0.126 12.863 13.268 15.046 16.390 17.829 20.079 20.659 

70 0.293 0.126 12.608 13.015 14.787 16.114 17.522 19.701 20.258 

75 0.386 0.126 12.345 12.752 14.516 15.824 17.201 19.311 19.847 

80 0.475 0.126 12.085 12.493 14.246 15.535 16.882 18.927 19.442 

85 0.559 0.126 11.834 12.242 13.986 15.255 16.574 18.557 19.054 
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Table 0-32: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for Hispanic 

Males Ages 8-85 for Total Body LMI. 

 Males 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.093 0.138 9.955 10.276 11.722 12.855 14.109 16.158 16.703 

10 -0.093 0.133 10.864 11.203 12.725 13.914 15.225 17.357 17.924 

12 -0.093 0.129 11.953 12.316 13.941 15.206 16.597 18.853 19.451 

14 -0.093 0.126 13.152 13.542 15.284 16.637 18.121 20.521 21.155 

16 -0.093 0.124 14.115 14.524 16.351 17.766 19.316 21.815 22.475 

18 -0.093 0.121 14.715 15.134 17.000 18.442 20.019 22.555 23.224 

20 -0.093 0.119 15.100 15.522 17.400 18.850 20.432 22.973 23.641 

25 -0.093 0.115 15.717 16.140 18.017 19.459 21.029 23.539 24.197 

30 -0.093 0.111 16.092 16.512 18.368 19.790 21.333 23.792 24.436 

35 -0.093 0.108 16.348 16.762 18.592 19.990 21.503 23.908 24.536 

40 -0.093 0.105 16.507 16.915 18.714 20.085 21.566 23.915 24.527 

45 -0.093 0.103 16.584 16.985 18.749 20.090 21.538 23.827 24.423 

50 -0.093 0.101 16.597 16.990 18.717 20.028 21.440 23.669 24.249 

55 -0.093 0.099 16.546 16.930 18.617 19.895 21.270 23.438 24.000 

60 -0.093 0.097 16.434 16.809 18.453 19.697 21.033 23.136 23.682 

65 -0.093 0.096 16.256 16.621 18.219 19.426 20.722 22.757 23.284 

70 -0.093 0.094 16.008 16.362 17.909 19.077 20.329 22.293 22.801 

75 -0.093 0.093 15.713 16.055 17.550 18.678 19.885 21.776 22.265 

80 -0.093 0.091 15.399 15.729 17.173 18.261 19.424 21.244 21.714 

85 -0.093 0.090 15.089 15.408 16.803 17.852 18.974 20.727 21.179 
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Table 0-33: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Females 

Ages 8-85 for Average Arm FMI. 

 Females 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0.000 0.674 1.645 1.881 

8 -0.468 0.491 0.154 0.167 0.243 0.331 0.474 0.913 1.109 

10 -0.380 0.478 0.169 0.185 0.271 0.367 0.518 0.935 1.104 

12 -0.308 0.468 0.182 0.199 0.294 0.397 0.553 0.956 1.108 

14 -0.248 0.459 0.193 0.211 0.313 0.422 0.582 0.974 1.115 

16 -0.195 0.452 0.202 0.222 0.330 0.443 0.607 0.990 1.123 

18 -0.149 0.445 0.210 0.231 0.345 0.463 0.629 1.004 1.131 

20 -0.108 0.439 0.217 0.239 0.358 0.480 0.648 1.017 1.139 

25 -0.020 0.426 0.233 0.257 0.387 0.516 0.688 1.045 1.158 

30 0.051 0.416 0.245 0.272 0.411 0.545 0.720 1.068 1.175 

35 0.112 0.407 0.256 0.284 0.431 0.570 0.747 1.088 1.189 

40 0.164 0.400 0.265 0.295 0.449 0.592 0.770 1.105 1.203 

45 0.210 0.393 0.274 0.305 0.465 0.611 0.791 1.120 1.215 

50 0.252 0.387 0.281 0.314 0.479 0.628 0.809 1.134 1.226 

55 0.289 0.382 0.288 0.322 0.493 0.643 0.825 1.146 1.236 

60 0.323 0.377 0.294 0.329 0.504 0.658 0.839 1.157 1.245 

65 0.355 0.372 0.300 0.336 0.516 0.671 0.853 1.167 1.253 

70 0.384 0.368 0.305 0.343 0.526 0.683 0.865 1.176 1.261 

75 0.411 0.364 0.310 0.349 0.536 0.694 0.876 1.185 1.269 

80 0.436 0.361 0.315 0.355 0.545 0.704 0.887 1.193 1.276 

85 0.460 0.357 0.320 0.360 0.553 0.714 0.897 1.201 1.282 
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Table 0-34: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Males 

Ages 8-85 for Average Arm FMI. 

 Males 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0.000 0.674 1.645 1.881 

8 -0.703 0.505 0.130 0.140 0.199 0.270 0.398 0.940 1.295 

10 -0.595 0.484 0.133 0.144 0.205 0.276 0.397 0.812 1.025 

12 -0.507 0.466 0.136 0.147 0.210 0.282 0.396 0.744 0.898 

14 -0.432 0.452 0.139 0.151 0.216 0.287 0.398 0.704 0.828 

16 -0.367 0.439 0.143 0.155 0.223 0.295 0.403 0.683 0.789 

18 -0.310 0.428 0.149 0.161 0.231 0.305 0.412 0.674 0.769 

20 -0.259 0.418 0.155 0.168 0.241 0.316 0.423 0.674 0.761 

25 -0.152 0.396 0.170 0.185 0.266 0.345 0.453 0.686 0.761 

30 -0.063 0.379 0.185 0.202 0.288 0.371 0.481 0.702 0.770 

35 0.011 0.364 0.198 0.216 0.308 0.394 0.504 0.716 0.780 

40 0.076 0.352 0.210 0.229 0.325 0.413 0.523 0.728 0.788 

45 0.133 0.340 0.220 0.240 0.340 0.430 0.539 0.737 0.794 

50 0.184 0.330 0.229 0.250 0.353 0.443 0.551 0.744 0.798 

55 0.230 0.321 0.237 0.259 0.364 0.455 0.562 0.748 0.800 

60 0.272 0.313 0.244 0.267 0.373 0.464 0.570 0.751 0.801 

65 0.311 0.305 0.251 0.273 0.381 0.472 0.576 0.752 0.800 

70 0.347 0.298 0.256 0.279 0.388 0.478 0.581 0.752 0.798 

75 0.380 0.292 0.261 0.285 0.394 0.484 0.584 0.751 0.796 

80 0.411 0.285 0.266 0.290 0.400 0.488 0.588 0.750 0.793 

85 0.440 0.280 0.271 0.295 0.405 0.493 0.590 0.749 0.791 
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Table 0-35: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Females 

Ages 8-85 for Average Arm LMI. 

 Females 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.383 0.157 0.498 0.515 0.594 0.659 0.734 0.865 0.902 

10 -0.383 0.157 0.532 0.550 0.634 0.704 0.784 0.924 0.963 

12 -0.383 0.157 0.558 0.577 0.665 0.738 0.823 0.970 1.011 

14 -0.383 0.157 0.578 0.597 0.689 0.764 0.852 1.004 1.046 

16 -0.383 0.157 0.592 0.613 0.707 0.784 0.874 1.029 1.073 

18 -0.383 0.157 0.603 0.624 0.720 0.799 0.890 1.049 1.093 

20 -0.383 0.157 0.612 0.632 0.730 0.809 0.902 1.063 1.108 

25 -0.383 0.157 0.624 0.645 0.744 0.826 0.920 1.084 1.130 

30 -0.383 0.157 0.629 0.651 0.751 0.833 0.928 1.094 1.140 

35 -0.383 0.157 0.631 0.652 0.752 0.835 0.930 1.096 1.142 

40 -0.383 0.157 0.629 0.651 0.751 0.833 0.928 1.094 1.140 

45 -0.383 0.157 0.626 0.647 0.747 0.829 0.923 1.088 1.134 

50 -0.383 0.157 0.621 0.642 0.741 0.822 0.916 1.079 1.125 

55 -0.383 0.157 0.615 0.636 0.733 0.814 0.907 1.068 1.114 

60 -0.383 0.157 0.608 0.628 0.725 0.804 0.896 1.056 1.101 

65 -0.383 0.157 0.600 0.620 0.716 0.794 0.885 1.043 1.087 

70 -0.383 0.157 0.592 0.612 0.706 0.784 0.873 1.029 1.073 

75 -0.383 0.157 0.585 0.605 0.697 0.774 0.862 1.016 1.059 

80 -0.383 0.157 0.577 0.597 0.688 0.764 0.851 1.003 1.046 

85 -0.383 0.157 0.570 0.590 0.680 0.755 0.841 0.991 1.033 
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Table 0-36: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Males 

Ages 8-85 for Average Arm LMI. 

 Males 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 0.512 0.141 0.514 0.534 0.621 0.684 0.751 0.852 0.878 

10 0.512 0.141 0.554 0.575 0.668 0.737 0.808 0.918 0.945 

12 0.512 0.141 0.634 0.659 0.766 0.844 0.927 1.052 1.083 

14 0.512 0.141 0.740 0.769 0.894 0.985 1.081 1.227 1.264 

16 0.512 0.141 0.830 0.862 1.001 1.104 1.212 1.375 1.416 

18 0.512 0.141 0.889 0.924 1.073 1.183 1.299 1.474 1.518 

20 0.512 0.141 0.925 0.961 1.116 1.230 1.350 1.533 1.579 

25 0.512 0.141 0.960 0.998 1.159 1.278 1.403 1.592 1.640 

30 0.512 0.141 0.973 1.011 1.174 1.295 1.421 1.613 1.661 

35 0.512 0.141 0.982 1.020 1.185 1.307 1.434 1.628 1.677 

40 0.512 0.141 0.985 1.024 1.189 1.311 1.439 1.633 1.682 

45 0.512 0.141 0.981 1.019 1.184 1.306 1.433 1.626 1.675 

50 0.512 0.141 0.970 1.008 1.170 1.291 1.416 1.608 1.656 

55 0.512 0.141 0.953 0.991 1.151 1.269 1.392 1.580 1.628 

60 0.512 0.141 0.933 0.969 1.126 1.242 1.363 1.547 1.593 

65 0.512 0.141 0.908 0.943 1.096 1.208 1.326 1.505 1.550 

70 0.512 0.141 0.879 0.913 1.061 1.170 1.284 1.457 1.501 

75 0.512 0.141 0.847 0.880 1.023 1.127 1.237 1.404 1.447 

80 0.512 0.141 0.815 0.847 0.983 1.084 1.190 1.351 1.391 

85 0.512 0.141 0.783 0.814 0.946 1.043 1.144 1.299 1.338 
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Table 0-37: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Females 

Ages 8-85 for Average Leg FMI. 

 Females 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.458 0.331 0.707 0.752 0.988 1.222 1.546 2.283 2.540 

10 -0.386 0.331 0.769 0.820 1.085 1.343 1.695 2.472 2.734 

12 -0.328 0.331 0.818 0.874 1.162 1.441 1.816 2.623 2.888 

14 -0.279 0.331 0.858 0.918 1.227 1.523 1.916 2.745 3.013 

16 -0.236 0.331 0.891 0.954 1.280 1.591 2.000 2.846 3.116 

18 -0.198 0.331 0.917 0.983 1.325 1.648 2.069 2.929 3.199 

20 -0.164 0.331 0.938 1.007 1.362 1.695 2.127 2.996 3.266 

25 -0.093 0.331 0.974 1.049 1.430 1.782 2.232 3.114 3.381 

30 -0.035 0.331 0.995 1.075 1.475 1.841 2.303 3.188 3.452 

35 0.015 0.331 1.009 1.091 1.507 1.884 2.353 3.237 3.498 

40 0.057 0.331 1.017 1.102 1.531 1.915 2.390 3.271 3.528 

45 0.095 0.331 1.022 1.110 1.548 1.939 2.418 3.295 3.548 

50 0.129 0.331 1.024 1.114 1.562 1.958 2.439 3.312 3.561 

55 0.159 0.331 1.025 1.117 1.573 1.973 2.456 3.323 3.569 

60 0.187 0.331 1.025 1.119 1.581 1.985 2.469 3.331 3.574 

65 0.213 0.331 1.024 1.119 1.587 1.994 2.479 3.336 3.575 

70 0.237 0.331 1.022 1.119 1.592 2.002 2.487 3.338 3.575 

75 0.259 0.331 1.020 1.118 1.597 2.008 2.494 3.340 3.574 

80 0.279 0.331 1.017 1.117 1.600 2.014 2.500 3.341 3.573 

85 0.299 0.331 1.015 1.116 1.603 2.019 2.505 3.342 3.571 
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Table 0-38: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Females 

Ages 8-85 for Average Leg FMI. 

 Males 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.027 0.485 0.419 0.468 0.745 1.032 1.433 2.311 2.598 

10 -0.027 0.466 0.439 0.489 0.764 1.045 1.433 2.270 2.540 

12 -0.027 0.451 0.457 0.507 0.781 1.057 1.434 2.235 2.492 

14 -0.027 0.437 0.473 0.523 0.795 1.067 1.434 2.206 2.451 

16 -0.027 0.426 0.487 0.537 0.808 1.075 1.434 2.180 2.416 

18 -0.027 0.415 0.500 0.551 0.820 1.083 1.434 2.158 2.384 

20 -0.027 0.406 0.512 0.563 0.830 1.090 1.434 2.137 2.356 

25 -0.027 0.385 0.539 0.590 0.853 1.105 1.434 2.094 2.297 

30 -0.027 0.368 0.563 0.613 0.873 1.118 1.434 2.058 2.248 

35 -0.027 0.353 0.584 0.634 0.890 1.129 1.433 2.027 2.207 

40 -0.027 0.340 0.603 0.653 0.905 1.138 1.433 2.001 2.171 

45 -0.027 0.329 0.621 0.670 0.919 1.147 1.432 1.977 2.140 

50 -0.027 0.318 0.637 0.686 0.932 1.154 1.432 1.956 2.111 

55 -0.027 0.309 0.652 0.701 0.944 1.161 1.431 1.937 2.086 

60 -0.027 0.300 0.667 0.715 0.954 1.168 1.430 1.920 2.063 

65 -0.027 0.292 0.680 0.728 0.965 1.174 1.430 1.903 2.041 

70 -0.027 0.284 0.693 0.741 0.974 1.179 1.429 1.888 2.021 

75 -0.027 0.277 0.706 0.753 0.983 1.185 1.429 1.874 2.003 

80 -0.027 0.271 0.718 0.764 0.992 1.190 1.428 1.861 1.986 

85 -0.027 0.264 0.729 0.775 1.000 1.194 1.428 1.849 1.969 
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Table 0-39: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Females 

Ages 8-85 for Average Leg LMI. 

 Females 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.402 0.153 1.485 1.534 1.762 1.950 2.166 2.542 2.647 

10 -0.402 0.153 1.661 1.716 1.971 2.181 2.423 2.843 2.961 

12 -0.402 0.153 1.785 1.844 2.118 2.344 2.604 3.056 3.182 

14 -0.402 0.153 1.866 1.927 2.214 2.450 2.722 3.194 3.326 

16 -0.402 0.153 1.915 1.978 2.273 2.514 2.794 3.278 3.414 

18 -0.402 0.153 1.946 2.011 2.310 2.555 2.839 3.332 3.470 

20 -0.402 0.153 1.966 2.031 2.334 2.582 2.868 3.366 3.505 

25 -0.402 0.153 1.983 2.049 2.354 2.604 2.893 3.395 3.536 

30 -0.402 0.153 1.981 2.047 2.352 2.602 2.891 3.392 3.532 

35 -0.402 0.153 1.975 2.041 2.345 2.594 2.882 3.382 3.522 

40 -0.402 0.153 1.969 2.034 2.337 2.586 2.873 3.371 3.510 

45 -0.402 0.153 1.959 2.024 2.325 2.572 2.858 3.353 3.492 

50 -0.402 0.153 1.942 2.007 2.305 2.550 2.834 3.325 3.463 

55 -0.402 0.153 1.921 1.985 2.280 2.522 2.802 3.289 3.424 

60 -0.402 0.153 1.897 1.959 2.251 2.490 2.767 3.247 3.381 

65 -0.402 0.153 1.870 1.932 2.220 2.456 2.729 3.202 3.334 

70 -0.402 0.153 1.843 1.904 2.187 2.420 2.688 3.155 3.285 

75 -0.402 0.153 1.815 1.875 2.154 2.383 2.647 3.107 3.235 

80 -0.402 0.153 1.787 1.846 2.120 2.346 2.606 3.059 3.185 

85 -0.402 0.153 1.759 1.818 2.088 2.310 2.567 3.012 3.137 
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Table 0-40: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Males 

Ages 8-85 for Average Leg LMI. 

 Males 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.392 0.146 1.525 1.573 1.797 1.980 2.189 2.549 2.649 

10 -0.243 0.143 1.731 1.788 2.043 2.248 2.479 2.866 2.971 

12 -0.122 0.141 1.953 2.017 2.307 2.535 2.789 3.207 3.319 

14 -0.020 0.139 2.160 2.232 2.553 2.803 3.079 3.525 3.643 

16 0.069 0.137 2.309 2.386 2.730 2.995 3.284 3.746 3.867 

18 0.148 0.136 2.395 2.476 2.833 3.106 3.401 3.868 3.989 

20 0.218 0.134 2.440 2.523 2.887 3.163 3.460 3.924 4.044 

25 0.366 0.131 2.470 2.555 2.924 3.199 3.490 3.938 4.052 

30 0.488 0.129 2.470 2.556 2.926 3.197 3.481 3.911 4.020 

35 0.590 0.127 2.474 2.561 2.931 3.199 3.477 3.894 3.999 

40 0.679 0.125 2.475 2.563 2.932 3.198 3.471 3.877 3.978 

45 0.758 0.123 2.467 2.555 2.923 3.185 3.453 3.847 3.945 

50 0.828 0.122 2.448 2.536 2.901 3.159 3.420 3.803 3.897 

55 0.891 0.121 2.422 2.509 2.869 3.122 3.377 3.749 3.840 

60 0.949 0.120 2.389 2.475 2.830 3.078 3.326 3.686 3.774 

65 1.002 0.119 2.349 2.434 2.782 3.024 3.266 3.614 3.699 

70 1.052 0.118 2.303 2.386 2.727 2.962 3.197 3.533 3.614 

75 1.098 0.117 2.254 2.336 2.669 2.897 3.125 3.449 3.527 

80 1.140 0.116 2.205 2.285 2.610 2.833 3.053 3.366 3.441 

85 1.181 0.115 2.158 2.236 2.554 2.770 2.984 3.286 3.359 
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Table 0-41: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Females 

Ages 8-85 for Trunk FMI. 

 Females 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.418 0.537 0.913 1.000 1.513 2.120 3.139 6.388 7.880 

10 -0.377 0.531 0.998 1.094 1.664 2.328 3.418 6.712 8.146 

12 -0.337 0.524 1.080 1.187 1.812 2.530 3.687 7.014 8.397 

14 -0.298 0.518 1.159 1.276 1.957 2.728 3.945 7.295 8.631 

16 -0.259 0.512 1.235 1.362 2.098 2.920 4.192 7.554 8.846 

18 -0.221 0.506 1.308 1.445 2.233 3.103 4.424 7.788 9.038 

20 -0.183 0.500 1.376 1.523 2.363 3.278 4.642 7.997 9.206 

25 -0.090 0.486 1.527 1.698 2.660 3.673 5.121 8.416 9.529 

30 0.001 0.471 1.656 1.851 2.926 4.021 5.524 8.728 9.753 

35 0.091 0.457 1.768 1.987 3.168 4.331 5.870 8.966 9.915 

40 0.179 0.443 1.870 2.112 3.394 4.615 6.174 9.160 10.040 

45 0.267 0.430 1.961 2.227 3.606 4.875 6.443 9.316 10.136 

50 0.353 0.416 2.041 2.330 3.797 5.103 6.667 9.421 10.186 

55 0.439 0.403 2.104 2.415 3.958 5.284 6.830 9.454 10.165 

60 0.523 0.390 2.146 2.477 4.076 5.406 6.914 9.395 10.052 

65 0.607 0.376 2.164 2.512 4.145 5.460 6.913 9.235 9.839 

70 0.691 0.363 2.160 2.520 4.164 5.446 6.828 8.981 9.531 

75 0.773 0.350 2.137 2.504 4.138 5.371 6.672 8.650 9.148 

80 0.856 0.337 2.104 2.475 4.080 5.255 6.468 8.275 8.724 

85 0.937 0.325 2.069 2.441 4.008 5.120 6.248 7.895 8.298 
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Table 0-42: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Males 

Ages 8-85 for Trunk FMI. 

 Males 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.749 0.524 0.735 0.791 1.124 1.537 2.316 6.137 9.193 

10 -0.663 0.513 0.778 0.839 1.202 1.640 2.429 5.649 7.653 

12 -0.584 0.503 0.821 0.887 1.279 1.743 2.542 5.395 6.904 

14 -0.511 0.493 0.868 0.941 1.364 1.855 2.670 5.289 6.523 

16 -0.441 0.484 0.924 1.004 1.464 1.987 2.826 5.302 6.370 

18 -0.375 0.476 0.988 1.076 1.579 2.138 3.009 5.400 6.362 

20 -0.311 0.468 1.058 1.155 1.704 2.302 3.208 5.548 6.436 

25 -0.163 0.449 1.233 1.354 2.024 2.719 3.708 5.971 6.743 

30 -0.027 0.431 1.389 1.535 2.320 3.099 4.149 6.342 7.037 

35 0.101 0.415 1.521 1.691 2.582 3.429 4.518 6.633 7.266 

40 0.222 0.399 1.634 1.827 2.816 3.716 4.827 6.861 7.444 

45 0.337 0.385 1.731 1.947 3.024 3.966 5.085 7.037 7.577 

50 0.447 0.370 1.814 2.052 3.207 4.179 5.296 7.165 7.667 

55 0.552 0.357 1.883 2.143 3.366 4.357 5.461 7.246 7.713 

60 0.654 0.344 1.937 2.215 3.492 4.490 5.571 7.266 7.700 

65 0.752 0.331 1.970 2.265 3.577 4.567 5.614 7.210 7.613 

70 0.848 0.319 1.984 2.291 3.618 4.588 5.590 7.082 7.453 

75 0.940 0.307 1.985 2.301 3.627 4.566 5.517 6.904 7.244 

80 1.031 0.296 1.980 2.303 3.617 4.521 5.418 6.704 7.015 

85 1.119 0.284 1.978 2.305 3.601 4.468 5.315 6.508 6.793 
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Table 0-43: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Females 

Ages 8-85 for Trunk LMI. 

 Females 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.737 0.127 4.557 4.676 5.226 5.678 6.203 7.124 7.384 

10 -0.737 0.127 5.003 5.133 5.738 6.234 6.810 7.821 8.107 

12 -0.737 0.127 5.353 5.493 6.139 6.670 7.287 8.368 8.674 

14 -0.737 0.127 5.626 5.773 6.452 7.010 7.658 8.795 9.116 

16 -0.737 0.127 5.835 5.987 6.691 7.270 7.942 9.121 9.454 

18 -0.737 0.127 5.993 6.149 6.873 7.467 8.157 9.368 9.710 

20 -0.737 0.127 6.113 6.272 7.010 7.616 8.320 9.555 9.904 

25 -0.737 0.127 6.300 6.464 7.225 7.850 8.575 9.848 10.208 

30 -0.737 0.127 6.398 6.565 7.337 7.972 8.709 10.001 10.367 

35 -0.737 0.127 6.450 6.618 7.397 8.037 8.779 10.083 10.451 

40 -0.737 0.127 6.475 6.644 7.425 8.068 8.813 10.122 10.492 

45 -0.737 0.127 6.481 6.650 7.432 8.075 8.822 10.131 10.501 

50 -0.737 0.127 6.472 6.641 7.423 8.065 8.810 10.118 10.487 

55 -0.737 0.127 6.453 6.621 7.401 8.041 8.784 10.088 10.457 

60 -0.737 0.127 6.428 6.595 7.371 8.009 8.749 10.048 10.415 

65 -0.737 0.127 6.399 6.565 7.338 7.973 8.709 10.002 10.368 

70 -0.737 0.127 6.368 6.533 7.302 7.934 8.667 9.954 10.318 

75 -0.737 0.127 6.336 6.501 7.266 7.895 8.624 9.905 10.266 

80 -0.737 0.127 6.305 6.469 7.231 7.856 8.582 9.856 10.216 

85 -0.737 0.127 6.275 6.439 7.196 7.819 8.542 9.809 10.168 
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Table 0-44: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Males 

Ages 8-85 for Trunk LMI. 

 Males 

   M 

       3 5 25 50 75 95 97 

Age L S -1.881 -1.645 -0.674 0 0.674 1.645 1.881 

8 -0.652 0.135 4.508 4.634 5.222 5.705 6.268 7.257 7.536 

10 -0.494 0.133 4.857 4.996 5.631 6.146 6.734 7.742 8.021 

12 -0.366 0.130 5.351 5.505 6.208 6.769 7.402 8.464 8.754 

14 -0.257 0.129 5.958 6.132 6.915 7.534 8.225 9.365 9.672 

16 -0.163 0.127 6.499 6.690 7.546 8.215 8.955 10.161 10.482 

18 -0.080 0.126 6.878 7.081 7.988 8.691 9.462 10.704 11.032 

20 -0.006 0.124 7.111 7.323 8.262 8.984 9.769 11.024 11.352 

25 0.152 0.122 7.348 7.570 8.541 9.276 10.063 11.297 11.615 

30 0.280 0.119 7.442 7.668 8.652 9.386 10.164 11.365 11.671 

35 0.389 0.118 7.531 7.761 8.756 9.491 10.261 11.437 11.734 

40 0.483 0.116 7.618 7.853 8.859 9.594 10.359 11.515 11.806 

45 0.566 0.115 7.688 7.926 8.940 9.675 10.435 11.573 11.857 

50 0.641 0.113 7.727 7.968 8.986 9.718 10.470 11.589 11.867 

55 0.708 0.112 7.738 7.980 8.998 9.725 10.469 11.567 11.839 

60 0.769 0.111 7.720 7.962 8.976 9.696 10.428 11.504 11.770 

65 0.826 0.110 7.665 7.906 8.911 9.621 10.340 11.392 11.650 

70 0.878 0.109 7.577 7.816 8.808 9.505 10.209 11.232 11.483 

75 0.927 0.108 7.467 7.703 8.679 9.362 10.048 11.042 11.285 

80 0.972 0.108 7.347 7.580 8.539 9.207 9.875 10.841 11.076 

85 1.015 0.107 7.230 7.460 8.402 9.055 9.707 10.646 10.874 
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Table 0-45: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Females 

Ages 8-85 for Total Body FMI. 

 Females 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.471 0.422 3.048 3.281 4.581 5.981 8.116 13.856 16.150 

10 -0.432 0.417 3.227 3.478 4.865 6.345 8.564 14.327 16.554 

12 -0.394 0.413 3.402 3.670 5.145 6.700 8.998 14.776 16.941 

14 -0.357 0.409 3.572 3.856 5.418 7.046 9.417 15.202 17.311 

16 -0.320 0.405 3.735 4.037 5.682 7.380 9.817 15.600 17.656 

18 -0.284 0.400 3.890 4.208 5.935 7.698 10.194 15.963 17.966 

20 -0.248 0.396 4.035 4.370 6.174 7.997 10.543 16.285 18.236 

25 -0.160 0.386 4.353 4.726 6.707 8.656 11.294 16.918 18.740 

30 -0.073 0.376 4.619 5.027 7.164 9.212 11.900 17.360 19.059 

35 0.012 0.367 4.848 5.289 7.566 9.691 12.404 17.678 19.263 

40 0.096 0.357 5.054 5.528 7.933 10.121 12.840 17.925 19.408 

45 0.179 0.348 5.243 5.750 8.274 10.513 13.226 18.124 19.515 

50 0.261 0.338 5.413 5.950 8.582 10.857 13.550 18.259 19.565 

55 0.342 0.329 5.552 6.117 8.838 11.132 13.786 18.294 19.520 

60 0.422 0.320 5.648 6.237 9.023 11.312 13.906 18.196 19.341 

65 0.502 0.311 5.695 6.302 9.120 11.381 13.890 17.943 19.006 

70 0.581 0.302 5.690 6.308 9.127 11.334 13.738 17.534 18.515 

75 0.660 0.293 5.638 6.262 9.051 11.184 13.464 16.995 17.894 

80 0.738 0.284 5.556 6.179 8.916 10.960 13.109 16.374 17.196 

85 0.815 0.275 5.463 6.083 8.753 10.704 12.722 15.736 16.486 
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Table 0-46: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Males 

Ages 8-85 for Total Body FMI. 

 Males 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.683 0.452 2.340 2.507 3.469 4.576 6.440 12.928 16.347 

10 -0.602 0.442 2.411 2.589 3.597 4.729 6.566 12.299 14.970 

12 -0.530 0.432 2.478 2.665 3.716 4.872 6.685 11.888 14.108 

14 -0.463 0.423 2.546 2.742 3.835 5.014 6.810 11.625 13.544 

16 -0.401 0.415 2.620 2.826 3.965 5.169 6.955 11.483 13.192 

18 -0.343 0.408 2.703 2.920 4.107 5.339 7.125 11.438 12.995 

20 -0.288 0.400 2.794 3.022 4.259 5.523 7.314 11.462 12.905 

25 -0.161 0.384 3.032 3.290 4.659 6.002 7.816 11.676 12.924 

30 -0.046 0.369 3.264 3.552 5.045 6.459 8.292 11.946 13.067 

35 0.059 0.355 3.478 3.794 5.400 6.870 8.711 12.193 13.218 

40 0.158 0.342 3.671 4.013 5.718 7.231 9.067 12.393 13.340 

45 0.250 0.330 3.843 4.210 5.999 7.539 9.360 12.538 13.420 

50 0.337 0.318 3.996 4.383 6.241 7.797 9.591 12.627 13.451 

55 0.420 0.307 4.129 4.535 6.446 8.006 9.765 12.663 13.434 

60 0.499 0.297 4.243 4.665 6.613 8.166 9.882 12.642 13.364 

65 0.575 0.287 4.336 4.771 6.741 8.274 9.940 12.563 13.240 

70 0.648 0.277 4.411 4.854 6.831 8.337 9.946 12.433 13.066 

75 0.719 0.268 4.473 4.923 6.895 8.367 9.916 12.272 12.865 

80 0.787 0.259 4.531 4.985 6.943 8.378 9.867 12.098 12.655 

85 0.853 0.250 4.589 5.046 6.985 8.381 9.812 11.929 12.452 
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Table 0-47: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Females 

Ages 8-85 for Total Body LMI. 

 Females 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.820 0.124 10.121 10.376 11.560 12.535 13.672 15.679 16.250 

10 -0.820 0.124 10.838 11.111 12.378 13.422 14.639 16.789 17.400 

12 -0.820 0.124 11.395 11.682 13.014 14.113 15.392 17.652 18.295 

14 -0.820 0.124 11.823 12.121 13.503 14.643 15.971 18.316 18.983 

16 -0.820 0.124 12.147 12.453 13.873 15.043 16.407 18.817 19.502 

18 -0.820 0.124 12.390 12.702 14.150 15.344 16.736 19.193 19.892 

20 -0.820 0.124 12.571 12.887 14.357 15.569 16.980 19.474 20.183 

25 -0.820 0.124 12.842 13.166 14.667 15.905 17.347 19.894 20.619 

30 -0.820 0.124 12.966 13.293 14.809 16.059 17.515 20.086 20.818 

35 -0.820 0.124 13.014 13.341 14.863 16.117 17.579 20.160 20.894 

40 -0.820 0.124 13.016 13.344 14.866 16.120 17.582 20.164 20.898 

45 -0.820 0.124 12.986 13.313 14.831 16.083 17.541 20.117 20.850 

50 -0.820 0.124 12.931 13.257 14.769 16.015 17.467 20.032 20.761 

55 -0.820 0.124 12.859 13.182 14.686 15.925 17.369 19.919 20.645 

60 -0.820 0.124 12.775 13.097 14.590 15.822 17.256 19.790 20.511 

65 -0.820 0.124 12.686 13.006 14.489 15.712 17.136 19.652 20.368 

70 -0.820 0.124 12.595 12.912 14.385 15.599 17.013 19.512 20.222 

75 -0.820 0.124 12.505 12.820 14.282 15.488 16.892 19.372 20.078 

80 -0.820 0.124 12.418 12.730 14.182 15.379 16.773 19.236 19.937 

85 -0.820 0.124 12.334 12.645 14.087 15.276 16.661 19.107 19.803 
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Table 0-48: LMS Curve Fit Data providing L, M, and S values for 3rd through 97th percentiles for White Males 

Ages 8-85 for Total Body LMI. 

 Males 

   M 

Age L S 3 5 25 50 75 95 97 

8 -0.738 0.127 10.119 10.383 11.604 12.608 13.773 15.817 16.394 

10 -0.540 0.124 10.904 11.194 12.523 13.593 14.811 16.886 17.458 

12 -0.378 0.122 11.931 12.254 13.718 14.879 16.180 18.346 18.932 

14 -0.241 0.121 13.105 13.465 15.082 16.347 17.747 20.036 20.647 

16 -0.123 0.119 14.104 14.496 16.244 17.596 19.076 21.460 22.089 

18 -0.018 0.118 14.783 15.199 17.038 18.446 19.973 22.402 23.037 

20 0.075 0.117 15.193 15.625 17.521 18.959 20.507 22.942 23.573 

25 0.274 0.114 15.593 16.044 18.002 19.460 21.001 23.375 23.980 

30 0.435 0.112 15.727 16.190 18.173 19.626 21.143 23.441 24.019 

35 0.572 0.111 15.842 16.314 18.319 19.768 21.264 23.501 24.059 

40 0.691 0.109 15.936 16.416 18.437 19.882 21.359 23.545 24.086 

45 0.795 0.108 15.978 16.463 18.493 19.929 21.387 23.524 24.049 

50 0.889 0.107 15.953 16.442 18.471 19.894 21.329 23.415 23.925 

55 0.974 0.106 15.872 16.362 18.383 19.789 21.197 23.231 23.726 

60 1.051 0.105 15.738 16.227 18.232 19.617 20.997 22.977 23.457 

65 1.122 0.104 15.541 16.027 18.008 19.367 20.714 22.637 23.102 

70 1.188 0.103 15.289 15.769 17.718 19.047 20.359 22.222 22.670 

75 1.249 0.102 15.004 15.477 17.390 18.687 19.962 21.765 22.197 

80 1.306 0.101 14.709 15.175 17.050 18.315 19.554 21.297 21.714 

85 1.360 0.101 14.423 14.882 16.720 17.954 19.158 20.847 21.250 
 






