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We show that a stochastic approach enables calculations of the optical properties of large 2-
dimensional and nanotubular excitonic molecular aggregates. Previous studies of such systems relied
on numerically diagonalizing the dense and disordered Frenkel Hamiltonian, which scales approxi-
mately as O(N3) for N dye molecules. Our approach scales much more efficiently as O(N log(N)),
enabling quick study of systems with a million of coupled molecules on the micron size scale. We
calculate several important experimental observable including the optical absorption spectrum and
density of states, and develop a stochastic formalism for the participation ratio. Quantitative
agreement with traditional matrix diagonalization methods is demonstrated for both small- and
intermediate-size systems. The stochastic methodology enables the study of the effects of spatial-
correlation in site energies on the optical signatures of large 2D aggregates. Our results demonstrate
that stochastic methods present a path forward for screening structural parameters and validating
experiments and theoretical predictions in large excitonic aggregates.

I. INTRODUCTION

Excitonic molecular aggregates are ubiquitous in
molecular electronics and photosynthetic light harvesting
systems.[1] In these systems, coupling among transition
dipole moments enables collective interactions with the
electromagnetic field. Long-range dipole-dipole interac-
tions induce complex and tunable photophysical proper-
ties, such as superradiance,[2, 3] exchange narrowing,[4]
strong polarization dependent behavior,[5] and long-
range transport properties.[6–8] Particular applications
of these materials are as photo-emitters and antennas,
and they are highly desired for numerous technologi-
cal, medical, and biological imaging applications.[9–12]
Given the interest in the optical properties of these
dye aggregates, approaches to rationalize and control
excitonic properties aggregation are a subject of re-
cent research.[13–15] Thoroughly testing design princi-
ples new aggregate complexes is difficult, as the tradi-
tional Frenkel exciton matrix diagonalization approach
becomes prohibitively expensive for large systems.

Experimental and theoretical exploration of the opti-
cal properties of molecular aggregates is nearly a century
old.[16–18] In recent years, advances in chromophore de-
sign and self assembly has allowed for the creation of
tubular and 2D aggregates which have potential as ex-
citonic antennae.[15, 19, 20] However, the slow conver-
gence of the r−3 dipolar coupling necessitates calculat-
ing band structures for extremely large systems.[21] This
is exacerbated in 2-D and quasi-2D tubular systems for

∗ nadinebradbury@ucla.edu
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which the number of sites grows non-linearly with system
size. Without methods which treat large systems, com-
putational studies are limited to diagonalizing Hamilto-
nians representing a few thousand dye monomers, and
observed localization effects of disorder depend on the
size of the calculation.[19, 22] Larger systems are ap-
proached analytically with highly limiting assumptions,
such as nearest-neighbor interactions or zero disorder.
Probing 2-D aggregates at the length scales observed ex-
perimentally (microns),[23] stochastic methods provide
an appealing alternative to insurmountable diagonaliza-
tion tasks.

The idea of calculating the density of states through
stochastic expectation values of a polynomial approxima-
tion for the delta density operator is well established. Its
foundations go back to Lanczos in 1950,[24] but the essen-
tial algorithm has been significantly refined in the 1970s
and 1990s in the fields of nuclear physics and quantum
chemistry.[25–32] Based off its numerical accuracy and
ease of implementation, it has become a staple method
for computation of large quantum systems, and is now of-
ten known as the kernel polynomial method.[33] To date,
similar stochastic methods have been applied to complex
excitonic systems with similar computational require-
ments as molecular aggregates, like quantum dots.[32, 34]

The stochastic approach for calculating the density of
states is highly suitable for our specific case of dipole-
coupled dyes in ordered 2D planar or tubular systems.
This is because the effective exciton Hamiltonian that
needs to be diagonalized has a special form, i.e., the cou-
pling between sites depends only on the distance between
them. This makes it very efficient to calculate, in a quasi-
linear scaling, the required kernel moments using convo-
lution. An additional advantage is that the method is au-
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tomatically suitable for including many kinds of energy
disorder, without additional cost, as the averaging over
the different disorder is included as part of the stochastic
averaging of the moments.

Following earlier work on the stochastic resolution of
the identity (SIR),[35–38] we show that, in addition to
the calculation of the density of states, the stochastic
approach enables the calculation of a further quantity
that measures exciton delocalization. This quantity, the
participation ratio,[39] is obtained here with the same
overall scaling as the density of states.

The overall approach presented here enables extremely
fast screening of aggregate geometries and disorder, un-
locking rapid computation of experimentally relevant pa-
rameters optical parameters.

II. COMPUTATIONAL METHODS

A. Hamiltonian, spectra and participation ratio

We study here the Frenkel-Exciton Hamiltonian for in-
teracting molecular chromophores,[17]

H =
∑
n

εn |n〉 〈n|+
∑
nm

J(n−m) |n〉 〈m| , (1)

where n represents the site basis of an exciton localized
on a single monomer. εn are the on site excitation ener-
gies. We set the average monomer excitation energy to 0
artificially to study specifically the effects of aggregation.

The primary tool by which optical properties of exci-
tonic molecular aggregates are usually studied is through
explicit construction and diagonalization of the Frenkel
Hamiltonian matrix. A variety of different off-diagonal
coupling functions may be used to capture the transi-
tion dipole coupling or charge transfer effects .[14, 40–
42] The important optical properties are then assessed
through several quantities defined below: optical absorp-
tion, density of states, and participation ratios.

The optical absorption coefficient (abbreviated here as
optical absorption) is

A(ω) =
∑
i

(E · µ)
2
δ(ω − εi) (2)

=
∑
i

|〈ψ|φi〉|2 δ(ω − εi). (3)

Here, εi and |φi〉 are the eigenvalues and eigenvectors
of H. µ is the dipole moment operator, and E is the
electric field polarization. For a system small relative to
the wavelength of the absorbed radiation, the so called
optically bright state |ψ〉 would be the k = 0 state, with
elements

〈n|ψ〉 = µn ·E (4)

where µn is now refers to the dipole vector of an indi-
vidual monomer. The k = 0 state is the most studied,

so it is what we restrict to in this paper, though the sys-
tems are large enough that full consideration beyond the
dipole limit may be appropriate for future work. The
stochastic method can easily be extended to do the full
absorption through the addition of a spatial filter (See
Appendix C).

The density of states is,

ρ(ω) = Tr[δ(H − ω)] =
∑
i

δ(εi − ω), (5)

and the participation ratio is defined as,

P(ω) =
ρ(ω)

K(ω)
, (6)

where

K(ω) ≡
∑
i

δ(εi − ω)
∑
n

| 〈n|φi〉 |4. (7)

Average aggregate properties should be estimated by
many realizations of the Hamiltonian with different dis-
order. This additional cost further reduces the maximum
practical aggregate size that can be studied using direct
diagonalization.

B. The Chebyshev expansion

As mentioned, in this paper we use a stochastic trace
of the delta density operator to retrieve the density
of states. Before we can take the trace, the delta
function is first numerically implemented with Gaussian
regularization.[33] The regularized density operator is de-
fined through the Chebyshev polynomial expansion [43]

F (ω) =
1

γ
√
π
e−(H−ω)2/γ2

=

NChebyshev∑
`=0

c`(ω)T`(H
′) (8)

and of course in the small γ limit, F (ω) → δ(H − ω).
Here, T`(H

′) is the `’th Chebyshev polynomial of a lin-
early scaled Hamiltonian H ′ = (H − h̄)/∆H constructed
so that its eigenvalues are within the interval [−1, 1]; h̄ is
an estimate for the center of the spectrum ofH, and 2∆H
is an upper bound for its spectral width. NChebyshev is
the required number of Chebyshev polynomials, which is
proportional to ∆H/γ.

As discussed later, the coupling in the Hamiltonian
only depends on the difference of position between sites,
so if there is no disorder ∆H can easily be shown to be
given from a 2D Fourier transform of the elements in the
Hamiltonian. Accounting for the effect of the disorder,
we enlarge the spectral width by a factor to ensure the
stability of the Chebyshev expansion.

The scalar Chebyshev coefficients are calculated using
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the transform θ = cos−1(x).

c`(ω) =
1√
πγ

∫ ∞
−∞

dx
e−(∆Hx−h̄−ω)2/γ2

T`(x)√
1− |x|2

(9)

=
2− δ`,0√

πγ

∫ 2π

0

dθe−(∆H cos θ−h̄−ω)2/γ2

ei`θ. (10)

The coefficients are then calculated via Eq. (10) using a
fast Fourier Transform (FFT).

C. Absorption Spectrum

From Eq. (2), the absorption spectra is calculated with
the Chebyshev expansion using only the optically absorb-
ing bright state

A(ω) = 〈ψ|F (ω) |ψ〉 . (11)

This expectation value can be calculated for each coordi-
nate of the electric field, E, and therefore a bright state
along each coordinate can be defined via (Eq. (4)). This
gives the dichroism response.

D. Stochastic Density of States

To take the trace of the moments operator, a stochastic
state is introduced, which Monte-Carlo samples a com-
plete basis for H (see Ref.[32]). The stochastic excitation
has a random ±1 amplitude at each site, ζ(n) ≡ 〈n|ζ〉 =
±1. Thus, the DOS is calculated directly as

ρ(ω) =
{
〈ζ|F (ω) |ζ〉

}
=
∑
`

c`(ω)R`, (12)

where curly brackets are introduced to represent a clas-
sical expectation value over the random excitations, and
the kernels are

R` ≡
{〈
ζ
∣∣ζ`〉}, (13)

where we defined the Chebyshev vectors,∣∣ζ`〉 ≡ T`(H ′) |ζ〉 (14)

obtained recursively by the usual Chebyshev recursion
relation,

∣∣ζ`〉 = 2H ′
∣∣ζ`−1

〉
−
∣∣ζ`−2

〉
.

The proof of Eq. (12) follows once we expand the ran-
dom vector in terms of the site basis set |ζ〉 =

∑
i ζ(n) |n〉,

and use {ζ(n)ζ(m)} = δnm. This approach to the den-
sity of states converges rapidly with the line broadening
parameter γ, and is memory efficient, as one stores only
the kernels and coefficients.

FIG. 1. Demonstration of the accuracy of the stochastic res-
olution of the participation ratio. Top left is the density of
states, top right the denominator of the participation ratio
K(ω), and the participation ratio is shown at the bottom. A
small system of N = 15 × 9 = 135 monomers is simulated
here with Nstochastic = 5× 105 samplings (of ζ and the noisy
diagonal energies, with disorder σ = 400 cm−1 and no site-to-
site correlation of the diagonal energies). In accordance with
the small γ limit necessary for the accuracy of the ratio, we
used γ = 2 cm−1 and NChebyshev = 16384. The very high-
wavelength fluctuations are due to stochastic error, and can
be flattened either by more samplings or by explicit smooth-
ing.

E. Stochastic Participation Ratio

To have a fully stochastic expression for the participa-
tion ratio, we need a stochastic formalism that samples
the fourth power of the eigenvectors accurately, i.e., the
denominator of Eq. (6). This is done here analogously
to the stochastic estimation of the exchange and MP2
energies.[35, 36, 44, 45]

For a given broadening parameter, γ, we first pick two
independent random vectors, |ζ〉 and |ξ〉, each defined
similarly to the random vector in the previous section
with ±1 at each grid site. We then define filtered-vectors:∣∣ζ̄(ω)

〉
≡ F 1/4(ω) |ζ〉 ,

∣∣ξ̄(ω)
〉
≡ F 1/4(ω) |ξ〉 , (15)

where F 1/4(ω) = 1
γ1/4π1/8 e

−(H−ω)2/4γ2

. These vectors

are calculated using Eq. (8), i.e.,∣∣ζ̄(ω)
〉

=
∑
`

c̄`(ω)
∣∣ζ`〉 . (16)

Here, c̄`(ω) are the Chebyshev coefficients associated
with F 1/4(ω). Given the filtered vectors, the stochas-
tic expression for the denominator in Eq. (6) is K(ω) =



4

limγ→0Kγ(ω) where

Kγ(ω) =
{∑

n

∣∣〈n∣∣ζ̄(ω)
〉 〈
n
∣∣ξ̄(ω)

〉 ∣∣2}. (17)

To prove this expression, we first formally expand each
vector in terms of the complete basis of eigenstates of H,

|ζ〉 =
∑
i

ai |φi〉 , |ξ〉 =
∑
j

bj |φj〉 , (18)

where ai ≡ 〈φi|ζ〉, etc. While the coeficients ai do not
have a closed form like the elements of |ζ〉, they remain
uncorrelated ({aiaj} = δij) due to their construction
from |ζ〉. We also define

fi(n) = 〈n|F 1/4(ω) |φi〉 = δ1/4(εi − ω)φi(n)

without explicitly denoting the ω dependence of fi(n).
Plugging to the expression for Kγ(ω), we get

Kγ(ω) =
∑
n

∑
ijkl

{
aiajbkbl

}
fi(n)fj(n)fk(n)fl(n) (19)

and using

{aiajbkbl} = {aiaj} · {bkbl} = δijδkl, (20)

leads to

Kγ(ω) =
∑
n

(∑
i

(
f

1/4
i (n)

)2
)2

=
1

γ
√
π

∑
n

∑
ij

e−(εi−ω)2/2γ2

e−(εj−ω)2/2γ2

〈n|φi〉2 〈n|φj〉2

(21)

and taking the limit γ → 0 and in the limit of any disor-
der to break eigenstate degeneracies,

K(ω) = lim
γ→0

1

γ
√
π
e−(εi−ω)2/2γ2

e−(εj−ω)2/2γ2

〈n|φi〉2 〈n|φj〉2

= δijδ(εi − ω). 〈n|φi〉4 ,
(22)

finally leading to Eq. (7), as stipulated.
The estimate for the denominator in the participation

ratio, Eq. (17), converges well statistically, since it is an
average of positive definite quantities, but its γ depen-
dence relates to the system size and disorder strength:

• For small N the accuracy of the overall participa-
tion ratio depends much more strongly on reaching
the small gamma limit than for the density of states
alone, as shown in Fig. 1.

• In contrast, for large N (beyond 104) the partici-
pation ratio converges rapidly with the number of
stochastic samples and with gamma, due to self-
averaging and the fact that different states have lit-
tle spatial overlap. Put differently, the i 6= j terms

in Eq. (22) become minuscule due to the reduced
overlap of eigenvectors for large systems, not just
due to being a sum over spatially destinct Gaus-
sians at small γ. For further details, see Appendix
B.

A complication in the participation ratio calculation is
that memory-constraints rather than CPU time usually
limit the fesible system size, N . This is due to the need
to store the set of

∣∣ζ̄(ω)
〉

vectors, of size Nω ·N , which for
a large system quickly reaches gigabytes of CPU mem-
ory per core if significant resolution across the band is
desired.

F. Choice of Coupling Function

An underlying key element of the iterative stochastic
approach is the use of a Hamiltonian with off diagonal
components that depend only on the distance between
sites, or difference of indices, and the use of a perfect
lattice. This makes it feasible to apply the Hamiltonian
on a vector with quasi-linear cost. Specifically, here we
use the point dipole approximation,

J(n−m) =
µn · µm

|rnm|3
− 3

(µn · rnm)(µm · rnm)

|rnm|5
(23)

with rnm = rn − rm. Eq. (23) is applied to aggregates
with both planar and tubular geometry.[20, 22, 46] Fig.
2 contains a diagram showing how the coupling is con-
structed from the aggregate geometry. System geometry
is further discussed in Appendix A.

For perfect toroidal boundary conditions, the Frenkel
Exciton Hamiltonian, Eq. (1), forms a block circulant
matrix, with block sizes Nx and Ny, and is thus diag-
onalized by a 2D Fourier Transform.[47] At sufficiently
large block sizes, perfect periodic boundaries (toroidal)
do not impose an issue with self coupling. Multiplication
by a block circulant matrix is done by the two dimen-
sional convolution theorem,

bj = (Ha)j =
∑
i

Hjiai = εjaj +
∑
i

J(i− j)ai (24)

= εjaj + F−1[J̃(k)F [a]] (25)

where F represents the Fourier transform. Open bound-
ary conditions, such as in the most recent computational
work on tubular aggregates,[19] can be achieved via zero-
padding of the coupling matrix.

G. Overall Algorithm Scaling

The main numerical CPU cost is due to the repeated
application of the Hamiltonian (NChebyshev times) and
specifically the convolutions parts, costing in FFT about
10N log2(N) each time. In addition, when we calculate
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FIG. 2. (a) Diagram of section of 2D planar aggregate. The relative coupling strengths for near neighbors of a given site are
shown by different colors. (b) DOS (grey) and Absorption spectra (red) for various slip values. Standard geometry parameters of
length and width of 2nm and 0.4nm respectively are used for all aggregates (see Appendix A).[20] (c) Examples of the Slip=0.5
planar DOS for different system sizes. As with all calculations, we have done perfect toriodal lattice boundary conditions.
Fluctuations in the center of the DOS still appear at system sizes of about 10,000. Further driving the need to simulate big
systems, or use artificial boundary conditions. Mild disorder of 50 cm1 is additionally used to help smooth out the DOS. (d)
Scan across 100 slip values, showing the upper (UB) and lower (LB) band edges as well as the position of the absorption peak
and position of the tallest Van Hove peak.

the participation ratio we need to accumulate frequency-
resolved Chebyshev vectors. Thus the total cost is ap-
proximately

Nopperations = NStochasticNChebyshevN
(

10 log2(N)+Nω

)
(26)

The Monte-Carlo sampling is done in parallel on each
node (using MPI) with every node starting from a differ-
ent random excitation.

The scaling is exemplified in Fig. 3. Both NChebyshev
and NStochastic do not scale up with N , so the algorithm
scales quasi-linearly with N . Specifically:

• Nω is fixed for constant resolution, since ∆H does
not really scale with system size.

• NChebyshev is about 5∆H
γ ∼ 2000 − 8000. For

most of these aggregate systems without extreme
disorder, the spectral width is on the order of
about 105 cm−1, while the spectral line width, γ,
need only be about as good as one could achieve
experimentally, i.e., ≈ 1 cm−1 or larger. Note
that our choice of using the most studied point
dipole coupling function is known to overestimate
nearest-neighbor couplings, and thus the spectral

width.[15] One would expect a decrease in the num-
ber of coefficients with more sophisticated or sys-
tem specific coupling functions.

• In the regime of disorder studied, NStochastic does
not scale with system size. In fact, due to self
averaging in large systems the error goes like ∝
1/
√
NNStochastic,[32, 33], so NStochastic is reduced

commensurately with the system size.

H. Disorder

A key feature of a Monte-Carlo based approach is the
ability to vary multiple input parameters at once and still
sample the general spectrum. As such, disorder poses
no new additional cost to the algorithm. We study the
most common kind of disorder, diagonal site disorder εi.
Latter papers will study the effects of disorder in the
dipole direction and of deviations from the ideal lattice
positions.

The simplest model of diagonal-site disorder is non-
correlated noise, usually via a normal distribution of
standard deviation σ. More sophisticated models in-
troduce correlations into the site disorder. Specifi-
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FIG. 3. Timing test on the program that calculates absorp-
tion and density of states, comparing a single core (red) and
ten cores (blue). For very small systems, the time is ap-
proximately constant, and then scales like ∝ N log(N) for
larger systems. For all calculations Nstochastic = 10 and
NChebyshev = 4096, which is enough to converge the inte-
gral density of states to the exact value of N . Small wiggles
in the timing are due to the different relative efficiency of the
FFT package used, FFTW3,[48] at different array sizes. For
the diagonalization method, the full dimension N × N her-
mitian Hamiltonian matrix is constructed, diagonalized, and
the density of states is calculated from the eigenvalues. Only
a single instant of diagonalization (no disorder) is considered
here. All times were recorded with the Linux ‘time’ command
on an AMD EPYC 7452 32-Core Processor at 3 GHz.

cally, the study of the effects of exponentially corre-
lated site disorder is known as Knapp’s model in molec-
ular aggregates.[49] Knapp suggested that correlation
in disorder may be important in organic molecular ag-
gregates, modeling lattice defects and mixtures with
glasses, and strong low-frequency exciton-phonon cou-
pling where there is no resolvable vibronic structure.[50]
Such a strongly coupled low energy phonon mode was in-
deed recently observed in light-harvesting nanotube ag-
gregates, prompting new interest in correlation in two
dimensional and tubular aggregates.[51]

Computational work on correlated disorder has a rich
literature in one-dimensional systems,[52–55] and recent
work on two-dimensional nearest-neighbor lattices.[56]
Correlation has yet to be studied in large non-biological
aggregate systems, or in two dimensional systems with
full coupling. Studies of correlated disorder in 1D and
higher dimensions have long suggested that localized
states may exist at all levels of disorder.[57, 58]

In photosynthetic systems, there are common claims
that small-scale correlated fluctuations may effect their
emissive properties. The most heavily studied model is
the FennaMatthewsOlson (FMO) complex, in which long
lived quantum coherences between chromophores suggest
relevant spatial correlations between chromophores.[59–
61] Similarly long lived quantum coherences due to spa-

tial correlation in multi-exciton dynamics have been ob-
served in quantum dots.[62–64] These experiments all
suggest relevant correlation length scales of sub-nm scale
or smaller.

There have been studies using mixed quantum and
classical photosynthetic systems showing the effects of
intersite correlation .[65] Few-state quantum mechanical
models, similar to the calculations done here (but for
much smaller scales), show large influence of even small
correlations between chromophores, and agree qualita-
tively with the experimentally observed lifetimes and
coherences.[66–68] Without an experimentally solved sys-
tem structure and the difficulty in treating these large
aggregate systems quantum mechanically, the full signif-
icance of intersite correlation has not been yet known.

In this work, we apply correlation through
convolution.[66] Any correlation functions that strictly
decreases with distance can be studied with this method.
A strictly decreasing correlation function implies that
its Fourier transform is positive, and the existence of
the square root of the covariance matrix. In either case,
we assume that the disorder covariance matrix is block
circulant (as is the Hamiltonian)

Cij = 〈εiεj〉/〈ε2
i 〉 = e−rij/R (27)

so that it is diagonalized by a 2D plane-wave Fourier-
transform matrix, with eigenvalues denoted by g.

C = F−1gF . (28)

Correlated noise is then generated with convolution with√
C.

ε = ε0 ∗
√
C = F−1[

√
g · F [ε0]] (29)

and ε0 is the initial uncorrelated normal disorder with
standard deviation σ.

In the infinite space limit,
√
g is the square root

of the Hankel transform of the exponential decay ≈√
2π
Rlw (R−2 + |k|2)−3/4. For small correlation lengths it

is better to numerically FFT the desired convolution ma-
trix, rather than simply use the infinite lattice functional
form of

√
g, to avoid edge effects in the correlation.

III. RESULTS

Through a series of simple applications we show the
power of a stochastic approach in describing molecular
aggregates. Our studies include a scan of the point dipole
coupling function parameter space in Fig. 2, efficiently
reproducing the earlier deterministic results of Chuang
et al.[20]

Fig. 3 demonstrates the speed of the method for very
large systems. The stochastic method has a roughly con-
stant cost for small systems (where the time is dominated
by the cost of extracting the Chebyshev coefficients), and
the cost only rises mildly once N is beyond a thousand
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(a) (b)

FIG. 4. (a) Example density of states (colors) and absorption
spectra (reds) for a H, J and I planar aggregates, with the
same system setup as in Fig.2. (b) The maximum absorption
peak shift and FWHM of a H, J, and I planar aggregates of
Slip = 0.2, 0.5 and 1.0 nm respectively. For the Slip = 0.5 nm
band-edge J aggregate, a scaling power law of FWHM ∝ σ2.1

was observed.

side. While Fig. 3 shows the same calculation for a fixed
number of stochastic samples, the true scaling is better
than linear due to self-averaging, i.e., fewer stochastic or-
bitals are needed for larger systems to achieve the same
level of stochastic error in ρ(ω) and P(ω).

Simulating a single “sampling” of a typical 2D aggre-
gate with half a million monomers, as in Fig. 2, takes
a mere five wall minutes on a single node. Ten such
stochastic samplings (each on its own core) are sufficient
for converging the DOS and absorption cross section with
the full effect of disorder to within a percent at each fre-
quency. Each of these samplings uses a different stochas-
tic vector ζ and a different diagonal energies. Such a sys-
tem is about two order of magnitudes larger than systems
that could be studied with numerical diagonalization on
any current computing system. Whether it be geometry,
or disorder (Fig. 4), a key point of the demonstrated ap-
plication of this method is the ease of screening through
parameter space.

In Fig. 4 we track the width and position of the ab-
sorption spectra at varying magnitudes of on-site disor-
der (without correlation). Our method produces non-
linearities in the peak width that are similar to previ-
ous 2D tubular simulations[2, 19] and well established
scalings for 1D Kasha aggregates.[69] Since the power
law exponent scaling of the width is sensitive to the
underlying geometry (slip), this method may be used
as a tool for designing aggregates for particular optical

FIG. 5. Density of states (left) and participation ratios (right)
for macroscopic systems at three different levels of disorder for
a band edge planar aggregate (top) and the equivalent tubular
aggregate (bottom). N ≈ 5× 104. For the tubular aggregate,
a low disorder value, 50 cm−1, is not strong enough to destroy
a fully delocalized bright state, while the planar aggregate is
not able to support such a delocalized state. These calcula-
tions were performed with γ = 2 cm−1, and have not been
interpolated to the γ → 0 limit.

properties.[13, 70].

Moving beyond the kernel approach for absorption
spectra and density of states, we show in Fig. 5 the
participation ratio for large aggregates with both tubular
and planar geometry. This is the first simulation that can
access an eigenvector-based observable like the partici-
pation ratio for very large systems, and also the largest
participation ratio calculations for molecular aggregate
systems. The figure shows that the tubular geometry
is able to support a largely delocalized bright state at
the higher levels of disorder of 50-200 cm−1, while such
a state is not observed in a planar aggregate for those
parameters. Controlling the system localization is im-
portant for potential applications of these aggregates as
photo-emitters,[10] and this work is merely a beginning
for full exploration of the model space with the stochastic
approach.

In Fig. 6, we apply correlated disorder to a 2D pla-
nar aggregate and track the properties of the absorption
spectra, fully mapping out the disorder strength and cor-
relation space. This figure demonstrates that even small
correlation lengths extending over just a few monomers
can have a drastic effect of the observed width on the ab-
sorption spectrum. Previous studies on the effect of lo-
cal inter-site correlation in 1D molecular aggregates has
discussed the change to absorption width in terms of the
small-N phenomena of motional narrowing.[50, 53] Given
how different the landscape and coupling of the 2D aggre-
gate systems is compared with 1D and the change to the
large N limit,[15] a new mechanism is needed to explain
the effect of short length correlation.



8

R = 3 nmR = 1 nm

10 nm 10 nm

(a) (b)

(c)

(d) (e)

FIG. 6. The width (FWHM) of the absorption spectra at varying disorder strengths and exponential correlation lengths. The
full parameter space is mapped out in (a), while curves of constant disorder are shown in (b), and constant correlation (c).
(d) and (e) show an instance of exponentially correlated disorder at two different correlation lengths, as generated by the same
random seed. We observe that σ is not a separable variable from R, and a more complicated re-normalization is occurring.
Calculations were done on a square planar aggregate of N = 243 ∗ 1215 ≈ 2× 105 corresponding to a real space side length of
48.6nm.

IV. CONCLUSION

This work shows that a stochastic approach rapidly
yields the DOS, absorption, and participation ratio for
large and disordered molecular aggregate systems over
the full range of frequencies. We demonstrated the ability
to efficiently screen the large modeling parameter space
for these systems, and accurately model realistic micron-
scale systems of up to a million monomers with the abil-
ity to extend to even larger systems if needed. A new
stochastic approach was introduced to model delocaliza-
tion via the participation ratio, going beyond previous
work with the DOS.

This work adds to the current knowledge of 2D and
tubular molecular aggregates. We map out the entirety
of the parameter space due to varying the lattice angle
(Slip), and the effects of disorder and correlated disorder
on the optical spectrum. We find that the effect of cor-
relation on the absorption is strong even at short length
scales, and is not separable from the strength of the dis-
order.

Future extensions of the stochastic method presented
here would tackle more challenging dynamic optical prop-
erties that are not be feasible for large systems with
a deterministic approach. Sample applications include
time-dependent treatment of exciton lifetime, coherences,

and diffusion,[21], system environment and vibronic bath
effects,[51], or a multi-excitonic basis looking at transport
and recombination properties.[71]
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Appendix A: Geometric Parameters

For all figures, unless otherwise specified, we use a pla-
nar aggregate with brick size (l, w) = (2.0 nm, 0.4 nm)
with dipoles pointing out of the plane at a zenith angle
of φ = 70◦, µn = (0, sin(φ), cos(φ)), as done by Chuang
et al.[20] Furthermore, if no slip was given, the standard
structure will be a band edge J-aggregate of Slip = 0.5
nm. As such, a lattice point is generated by

rn =

(
x
y

)
=

(
w 0
s l

)(
ix
iy

)
(A1)

and ix = 1 · · ·Nx, iy = 1 · · ·Ny. For the purpose of
disorder, the Fourier modes are then generated by

kn =

(
kx
ky

)
=

(
2π
wNx

−πs
lwNy

0 2π
lNy

)(
ĩkx
ĩky

)
(A2)

where the indices of ĩk are correctly wrapped around the
periodic boundaries, such that k is in the first Brillouin
zone and has the smallest possible norm.

For the tubular aggregate figures, a band edge J-
aggregate parameters are used as given by Didraga et
al.[22, 46] The parameters used generate an equivalent
tubular aggregate to a planar aggregate with 0.5 nm
slip and a (3,3) chiral vector. A radius of 5.4553 nm
is used, with the dipole angle relative to the plane being
β = 47.4◦, a height between rings of 0.0467 nm, between
ring rotation of δ = 6.7◦ and with rotational symmetry
of Nr = 2. The common “herringbone” structural model
for tubular aggregates was not studied in this paper.

Appendix B: Participation Ratio, and Interpolation
to Delta Functions

Even for fairly large systems, low amounts of static
disorder can cause a constant error in the stochastic
participation ratio due to the Gaussian regularization
of the delta function kernel, and numerical degeneracy
in the eigenstates. For example, when there is a high
amounts of static disorder, such as in Fig. 1 where
σ/(max(J)) is approximately half, we see convergence to
the true matrix-diagonalized participation ratio even at
fairly large γ. However for smaller amounts of disorder,
such as when σ/(max(J)) is less than 10 percent, degen-
eracy in the eigenvalues becomes an issue for stochastic
sampling.

To address this, in Fig. 7 we sample a large sys-
tem at varying degrees of line-broadening and find that
P(ω) ∝ 1

γ , as would naturally be suggested by the func-

tional form of the Gaussian limit of the delta function.
This form of error was found to be constant across the
band. Using Vandermonde polynomial interpolation, we
reconstruct an approximation for the true delta function
limit at γ −→ 0. There is a constant error across the band
introduced by insufficiently small gamma, which is inde-
pendent of the geometry of the system. Convergence of

4000 2000 0 2000
 (cm 1)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(
)
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0.5
1
2
4
8
16
32

FIG. 7. Stochastic participation ratio at varying line broad-
ening parameters, γ. Vandermonde polynomial interpolation
is used at each data point to reach the γ −→ 0 limit, and is
shown by the black curve. This calculation was done for a
planar 2D aggregate of N ≈ 5 × 104, as in Fig. 5, with 50
cm−1 of static disorder. All spectra are generated by the same
random seed.

the interpolation suggests that the stochastic participa-
tion ratio converges to a finite value that is lower than
its theoretical bound of N . The constant error suggests
that the line-shapes for the stochastic participation ratio
are correct, so comparisons between different systems at
the same line broadening are valid.

Appendix C: Stochastic Absorption beyond the
Dipole Approximation

Calculating the absorption beyond the dipole approx-
imation requires filtering of the collective dipoles of each
exciton to obtain the eigenstate at a particular wavevec-
tor k. Stochastically, we will extract the k-dependent
information by starting with spatially random state and
filtering them, spatially, after the frequency filtering, i.e.,

Ak(ω) ∝
{
〈ζ| µ · εPk δ(H − ω)µ · ε |ζ〉

}
, (C1)

where Pk = |k〉 〈k| is a spatial filter at the wavevector k.
Thus, we will apply a delta Chebyshev filter to select for
frequency-selected eigenstates followed by a spatial filter
that selects for overlap with the applied wavevector of the
radiation. Dichroism can similarly be extracted as we do
under the dipole approximation in the main section.
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