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Abstract. The original motivation for the study of hook length polynomials was to find a
combinatorial proof for a hook length formula for binary trees given by Postnikov, as well as a
proof for a hook length polynomial formula conjectured by Lascoux. In this paper, we define
the hook length polynomial for plane forests of a given degree sequence type and show that it
can be factored into a product of linear forms. Some other enumerative results on forests are
also given.

Keywords: hook length, plane forest

1. Introduction

In [3], Du and the author defined the hook length polynomials for m-ary trees and
showed that they can be written as simple binomial expressions. In this paper, we
extend this result to plane forests of a given degree sequence type.

The original motivation for the work on hook length formulas was to seek a com-
binatorial proof of an identity derived by Postnikov [7, 8]:

∑
T

n!
2n ∏

v

(
1 +

1
hv

)
= (n + 1)n−1, (1.1)

where the sum is over all complete binary trees with n internal vertices, the product
is over all internal vertices of T , and hv is the “hook length” of v in T , namely, the
number of internal vertices in the subtree of T rooted at v.

Chen and Yang [2] and Seo [9] both gave direct bijective proofs for (1.1). More-
over, based on (1.1), Lascoux replaced 1 with x and conjectured a hook length poly-
nomial formula for binary trees:

∑
T

∏
v

(
x+

1
hv

)
=

1
(n + 1)!

n−1

∏
i=0

((n + 1 + i)x+ n + 1− i). (1.2)
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316 F. Liu

Du and the author [3] generalized Lascoux’s conjecture and proved hook length
polynomial formulas for m-ary trees and plane forests. Analogous results were also
given by Gessel and Seo [5].

In Section 2, we define hook length polynomial for forests corresponding to a
given degree sequence and show that it has a simple binomial form. In Section 3, we
study another form of hook length polynomials (3.2) and get an enumerative result
on colored labelled forests (3.4) by using the idea of proper vertices introduced by
Seo [9]. These techniques allow a fully bijective proof of (3.4), which then yields
new fully bijective proofs for the formulas (2.1) and (2.2).

2. Hook Length Polynomials for Plane Forests of Type r

A tree is an acyclic connected graph. For any vertices v and u in a tree, we call v a
descendant of u (or u an ancestor of v) if u lies on the unique path from the root to v.
In particular, if u and v are adjacent, we call v a child of u. For any vertex v, we use
Des(v) to denote the set of descendants of v.

For any vertex v in a tree, the degree of v is the number of children of v. A vertex
is an internal vertex if it is not a leaf, i.e., its degree is not zero. A plane tree is
an unlabelled rooted tree whose vertices are regarded as indistinguishable, but the
subtrees at any vertex are linearly ordered. A plane forest is a finite set of ordered
plane trees. For any plane forest F , we denote by I(F) the set of internal vertices of
F .

For any plane forest F , let ri be the number of vertices of degree i and r =
(r0, r1, r2, . . .), then we say that F is of type r. Given a nonnegative integer sequence
r = (r0, r1, r2, . . .) with ∑d≥0 rd < ∞, we use F (r) to denote all the forests F of type
r.

There is a well-known result on the cardinality of F (r) [1, 4, 6, 10], denoting by
n = ∑d≥1 rd = |I(F)| the number of internal vertices and � = −∑d≥0(d − 1)rd the
number of trees in F :

|F (r)| =
�

n + r0

(
n + r0

r0, r1, r2, . . .

)
. (2.1)

Definition 2.1. For any vertex v of a forest F, let dv be its degree and hv its hook
length, i.e., the number of descendants it has. We define the hook length polynomial
of v as

Pv(x) =
((dv −1)hv + 1)x+ 1−hv

dvhv
.

Definition 2.2. We define the hook length polynomial for plane forests of type r as

Hr(x) = ∑
F∈F(r)

∏
v∈I(F)

Pv(x).

Then Hr(x) can be written as a binomial expression:

Theorem 2.3.
Hr(x) =

�

r0

(
r0x

r0x−n, r1, r2, . . .

)
. (2.2)
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Proof. If we replace x by k, then the right side of (2.2) becomes

�

r0

(
kr0

kr0 −n, r1, r2, . . .

)
=

k�
kr0

(
kr0

kr0 −n + r1, r2, r3, . . .

)(
kr0 −n + r1

r1

)
.

Applying (2.1), one can see that it counts the number of plane forests of type
r′ = (r′0, r′1, r′2, . . .), with r1 leaves circled, where r′0 = kr0 −n + r1, r′ik = ri+1, ∀i ≥ 1
and r′j = 0 for all j �= ik for any i. (Note that (kr0 − n + r1) + ∑d≥2 rd = kr0 and
(kr0 −n + r1)−∑d≥2((d −1)k−1)rd = k�.)

Because both sides of (2.2) are polynomials in x, it’s enough to prove that

Hr(k) =
�

r0

(
r0k

r0k−n, r1, r2, . . .

)
. (2.3)

We prove this by induction on n, the number of internal vertices of F .
When n = 0, we have r = (r0, 0, 0, . . .) and � = r0, so

Hr(k) = 1 =
�

r0

(
r0k
r0k

)
.

Assume (2.3) holds for n < n0. Now we consider n = n0.
If � = 1, then ∀F ∈ F (r), F is just a tree, say, T . Let v0 be the root of T . Then

Hr(k) = ∑
d≥1,rd �=0

((d −1)n + 1)k + 1−n
dn

Hr(d)(k),

where r(d) = (r0, r1, . . . , rd−1, rd −1, rd+1, . . .).
By the induction hypothesis,

Hr(d)(k) =
d
r0

(
r0k

r0k−n + 1, r1, . . . , rd−1, rd −1, rd+1, . . .

)

=
d
r0

rd

r0k−n + 1

(
r0k

r0k−n, r1, . . . , rd−1, rd , rd+1, . . .

)
.

Therefore,

Hr(k) = ∑
d≥1,rd �=0

((d−1)n + 1)k + 1−n
r0n

rd

r0k−n + 1

(
r0k

r0k−n, r1, r2, . . .

)

=
1
r0

(
r0k

r0k−n, r1, r2, . . .

)
∑

d≥1,rd �=0

(((d−1)n + 1)k + 1−n)rd

n(r0k−n + 1)

=
1
r0

(
r0k

r0k−n, r1, r2, . . .

)
.
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If � > 1,

Hr(k) = ∑
r=r(1)+r(2)+···+r(�)

�

∏
i=1

Hr(i)(k)

= ∑
r=r(1)+r(2)+···+r(�)

�

∏
i=1

# of forests of type r(i)′ with r(i)
1 leaves circled

= # of forests of type r′ with r1 leaves circled

=
�

r0

(
r0k

r0k−n, r1, r2, . . .

)
.

3. Colored Labelled Forests

In this section, we will consider labelled plane forests. Given a plane forest F with
n internal vertices, a labelling is a bijection from I(F) to [n]. A labelled forest is a
plane forest with a labelling. For a vertex v in a labelled forest, following [9], we call
v a proper vertex if none of its descendants has smaller label than v, and an improper
vertex otherwise. For a labelled forest F , we use Prop(F) to denote the set of proper
vertices and Improp(F) the set of improper vertices.

Suppose that we have two sets of colors {c1, c2, . . .} and {c′1, c′2, . . .}. Fix k ≥ 0
and given a labelled forest F (which means we know the two sets Prop(F) and
Improp(F) of F), a proper k-coloring of F is a way of coloring all the internal ver-
tices of F so that for any v ∈ I(F), if v is proper then it can be colored by any color
in {c1, c2, . . . , cdv}; otherwise it can be colored by any color in {c1, c2, . . . , cdv} ∪
{c′1, c′2, . . . , c′k}. (Note that c1, c2, . . .cdv can be considered corresponding to the
dv edges of v, and the colors c′1, c′2, . . . , c′k for improper vertices are considered as
“special” colors.) Therefore, given a labelled forest F , there are ∏v∈Prop(F) dv

∏v∈Improp(F)(dv + k) proper k-colorings.
A k-colored labelled forest is a labelled forest with a proper k-coloring. Given a

degree sequence r and k ≥ 0, let C F r,k be the set of all k-colored labelled forests F
of type r.

Lemma 3.1. C F r,k is counted by ∑F∈F(r) n!∏v∈I(F)

(
(dv + k)− k

hv

)
.

Proof. For any F ∈ F (r),

n! ∏
v∈I(F)

(
(dv + k)−

k
hv

)
= n! ∑

J⊂I(F)

(
∏
v∈J

−
k
hv

)(
∏

v∈I(F)\J
(dv + k)

)

= ∑
J⊂I(F)

n!

∏v∈J hv

(
∏
v∈J

−k

)(
∏

v∈I(F)\J
(dv + k)

)

However, n!/∏v∈J hv is the number of labellings of F so that all the vertices in J are
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proper. Therefore,

n! ∏
v∈I(F)

(
(dv + k)−

k
hv

)

= ∑
F ′

∑
J⊂Prop(F ′)

(
∏
v∈J

−k

)(
∏

v∈I(F)\J
(dv + k)

)
(F ′ is F with a labelling)

= ∑
F ′

∑
J⊂Prop(F ′)

(
∏
v∈J

−k

)(
∏

v∈Prop(F ′)\J
(dv + k)

)(
∏

v∈Improp(F ′)

(dv + k)

)

= ∑
F ′

(
∏

v∈Prop(F ′)

(−k + dv + k)

)(
∏

v∈Improp(F ′)

(dv + k)

)

= ∑
F ′

(the number of proper k-colorings F ′ has) .

Summing over all of the forests in F (r) gives us

|C F r,k| = ∑
F∈F(r)

n! ∏
v∈I(F)

(
(dv + k)−

k
hv

)
. (3.1)

Now we look back at our hook length polynomials. We change (2.2) into another
form which is more closely related to Postnikov’s identity.

Lemma 3.2. Identity (2.2) has the following equivalent form:

∑
F∈F(r)

∏
v∈I(F)

(dv + x)hv− x
dvhv

=
�

r1!r2! · · ·

n−1

∏
i=1

(r0 + i(1 + x)). (3.2)

Note that when r = (n + 1, 0, n, 0, 0, . . .) and x = −1, (3.2) is the same as (1.1).
Proof.

(2.2) ⇔ ∑
F∈F(r)

∏
v∈I(F)

((dv −1)hv + 1)x + 1−hv

dvhv
=

�x
r1!r2! · · ·

n−1

∏
i=1

(r0x− i)

⇔ ∑
F∈F(r)

∏
v∈I(F)

((dv −1)hv + 1)x +(1−hv)y
dvhv

=
�x

r1!r2! · · ·

n−1

∏
i=1

(r0x− iy)

⇔ ∑
F∈F(r)

∏
v∈I(F)

dvhvx+(1−hv)(x+ y)
dvhv

=
�x

r1!r2! · · ·

n−1

∏
i=1

(r0x− iy)

⇔ ∑
F∈F(r)

∏
v∈I(F)

dvhvy− (1−hv)x
dvhv

=
�y

r1!r2! · · ·

n−1

∏
i=1

(r0y+ i(x + y))

⇔ (3.2)
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If we replace x with k in (3.2) and rearrange it a bit, we have

∑
F∈F(r)

n! ∏
v∈I(F)

(
(dv + k)−

k
hv

)
=

(
n

r1, r2, . . .

)
�1r12r2 · · ·

n−1

∏
i=1

(r0 + i(1 + k)). (3.3)

Comparing (3.1) and (3.3), we get the following proposition.

Proposition 3.3.

|C F r,k| =

(
n

r1, r2, . . .

)
�1r12r2 · · ·

n−1

∏
i=1

(r0 + i(1 + k)).

However, we have a stronger result than Proposition 3.3. For any degree sequence
r, we denote by Vr the set of all ordered partitions S = (S1, S2, . . .) of [n] such that
|Si| = ri. We let S = (S1, S2, . . .) and C F r,k,S be the set of all the forests F in C F r,k
such that ∀v ∈ I(F), the label of v is in Sdv , that is, the label i can only be used to label
an internal vertex v of degree d if i ∈ Sd .

We call two partitions S(1) and S(2) adjacent if there exists i ∈ [n− 1], such that
we can obtain S(1) by swapping i and i+ 1 in S(2).

We construct a graph Gr with vertex set Vr and
{

S(1), S(2)
}

forming an edge in

Gr if and only if they are adjacent. It’s not hard to see that Gr is connected.

Lemma 3.4. For any two partitions S(1) and S(2) in Vr,∣∣∣C F r,k,S(1)

∣∣∣ =
∣∣∣C F r,k,S(2)

∣∣∣ .
Proof. It’s enough to prove the case when S(1) and S(2) are adjacent.

Suppose that we obtain S(1) by swapping i and i+ 1 in S(2), for some i ∈ [n−1],

and i ∈ S(1)
d1

, i+ 1 ∈ S(1)
d2

.
(
So i ∈ S(2)

d2
, i+ 1 ∈ S(2)

d1
.
)

We define a map ψ from C F r,k,S(1) to C F r,k,S(2) . For any colored labelled forest
F ∈ C F r,k,S(1) , let v1 be the vertex with label i and v2 be the vertex with label i+ 1:

(i) If v1 �∈ Des(v2) and v2 �∈ Des(v1), then ψ(F) = (i, i + 1)F , where (i, i + 1)F
means swap the labels i and i+ 1.

(ii) If v2 ∈ Des(v1) and v1 is improper, then let ψ(F) = (i, i+ 1)F.
(iii) If v2 ∈ Des(v1) and v1 is proper (so v2 is proper too), then let ψ(F) = (i, i+1)F.
(iv) If v1 ∈ Des(v2) and ∃ j < i such that the vertex with label j is in Des(v2), then

let ψ(F) = (i, i+ 1)F.
(v) If v1 ∈ Des(v2), any vertex with label j < i is not in Des(v2), and color of v2 is

not one of the k special colors, then let ψ(F) = (i, i+ 1)F.
(vi) If v1 ∈ Des(v2), any vertex with label j < i is not in Des(v2) (so v1 is proper and

has a color cα), and the color of v2 is one of the k special colors, then we obtain
ψ(F) in the following way: Suppose that v1 and v2 are in tree T with root r. Let
u be the βth child of v2 that is an ancestor of v1 and w be the αth child of v1
that corresponds to the color of v1. We separate T at v2, u, v1, and w to get five
trees T1, T2, T3, T4, and T5 with roots r, v2, u, v1, and w, respectively, denote by
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v′2, u′, v′1, and w′ the leaves of T1, T2, T3, and T4 obtained from v2, u, v1, and w,
respectively. Attach the root w of T5 to u′, attach the root v2 of T2 to v′1, attach
the root u of T3 to w′, and attach the root v1 of T4 to v′2. Color v2 with the color
cβ corresponding to u and v1 with the original color for v2. Finally, swap labels
i and i+ 1.

One can check that ψ gives a bijection between C F r,k,S(1) and C F r,k,S(2) .

We observe that Proposition 3.3 and Lemma 3.4 together are equivalent to the
following Theorem:

Theorem 3.5.

|C F r,k,S| = �1r12r2 · · ·
n−1

∏
i=1

(r0 + i(1 + k)). (3.4)

We also provide another proof of Theorem 3.5, which is bijective and combinato-
rial.
Proof. Let C F r,k,S,1 ⊂ C F r,k,S be the set with all the forests with label 1 appearing
in the first tree. Clearly, (3.4) is equivalent to

|C F r,k,S,1| = 1r12r2 · · ·
n−1

∏
i=1

(r0 + i(1 + k)). (3.5)

Let gi ∈ [di], ∀1 ≤ i ≤ n, f j ∈ [r0 + j(1 + k)], ∀1 ≤ j ≤ n− 1. Then there are
1r12r2 · · ·∏n−1

i=1 (r0 + i(1 + k)) choices for the gi’s and f j’s.
We will construct a bijection between

{
gi, f j

}
and C F r,k,S,1 inductively on n =

∑d≥1 rd , the number of internal vertices of the forests.
When n = 1, we have only one vertex. Suppose it has degree d. Then r0 =

d +�−1. We don’t have f j’s and g1 ∈ [d]. Clearly, there’s a natural bijection between
the value of g1 and the color of vertex 1 in any forest in C F r,k,S,1.

Now we assume for n < n0, we have a bijection between
{

gi, f j
}

and C F r,k,S,1,
and consider n = n0. For any F ∈ C F r,k,S,1, let T be it’s first tree. We know that 1 is
in T . We have two cases:

If the root of T is 1, then let g1 be the value corresponding to the color of 1.
By removing 1 from T , F becomes a forest with �+ d1 − 1 trees and n− 1 vertices.
However, the smallest vertex 2 is not necessarily in the first tree. Let fn−1 be the
position number of the tree containing 2; then fn−1 ∈ [�+ d1 −1]. We cyclicly rotate
the order of the trees so that that tree becomes the first tree in the forest and call the
resulting forest F ′. Hence, F ′ ∈ C F r′,k,S′,1, where r′ is obtained by subtracting 1
from r1 in r, and S′ is obtained from S by removing 1 from Sd1 . By the induction
hypothesis, we can associate

{
gi, f j

}
2≤i≤n,1≤ j≤n−2 to F ′. Including g1 and fn−1,

we obtain a bijection between forests of this type and the set
{

gi, f j
}

with fn−1 ∈
[�+ d1−1].

If the root of T is i (i �= 1), then i is improper and it can have di + k choices
of colors. We can associate these di + k colors with choosing fn−1 in the interval[
�+ d1 + ∑i−1

j=2 (d j + k) , �+ d1−1 + ∑i
j=2 (d j + k)

]
. Because 1 is in T , it is a de-

scendant of i. Let gi be the number corresponding to the child of i that is ancestor
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of 1. Similar to the first case, remove i and rotate the first di trees so that 1 becomes
contained in the first tree in the new forest F ′. Then F ′ ∈ C F r′,k,S′,1, where r′ is
obtained by subtracting 1 from ri in r, and S′ is obtained from S by removing i from
Sdi . Again, by a similar argument, we can get a bijection between forests of this type

and the set
{

gi, f j
}

with fn−1 ∈
[
�+ d1 + ∑i−1

j=2 (d j + k) , �+ d1−1 + ∑i
j=2 (d j + k)

]
.

Note that �+d1 −1+∑n
j=2 (d j + k) = �+∑d≥1(d −1)rd +(n−1)(1+ k) = r0 +

(n−1)(1 + k). Therefore, we have constructed a bijection for n = n0.

Remark 3.6. Because Theorem 3.5 implies Proposition 3.3, Proposition 3.3 together
with Lemma 3.1 imply (3.2), and (3.2) is equivalent to (2.2), the above proof of
Theorem 3.5 can be considered as another proof of Theorem 2.3. It also gives a new
proof of (2.1) by substituting −1 for x in (2.2) or substituting 0 for x in (3.2).

Remark 3.7. One can modify our definition of k-colorings of a labelled forest so that
it makes sense for k = −1. The proof of Theorem 3.5 works as well for k = −1.
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