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Abstract	

Do	people	have	well-defined	social	preferences	waiting	to	be	applied	when	making	decisions?	

Or	do	they	have	to	construct	social	decisions	on	the	spot?	If	the	latter,	how	are	those	decisions	

influenced	by	the	way	in	which	information	is	acquired	and	evaluated?	These	temporal	

dynamics	are	fundamental	to	understanding	how	people	trade	off	selfishness	and	pro-sociality.	

Here,	we	investigate	how	the	temporal	dynamics	of	the	choice	process	shape	social	decisions	in	

three	studies	using	response	times	and	mouse	tracking.	In	the	first	study,	participants	made	

binary	decisions	in	mini-dictator	games	with	and	without	time	constraints.	Using	mouse-

trajectories	and	a	starting-time	drift-diffusion	model	(stDDM),	we	find	that,	regardless	of	time	

constraints,	selfish	participants	were	delayed	in	processing	others’	payoffs,	while	the	opposite	

was	true	for	pro-social	participants.	The	independent	mouse-trajectory	and	computational	

modeling	analyses	identified	consistent	measures	of	the	delay	between	considering	one’s	own	

and	others’	payoffs	(self-onset	delay,	SOD).	The	SOD	correlated	with	individual	differences	in	

pro-sociality	and	predicted	heterogeneous	effects	of	time	constraints	on	preferences.	We	

confirmed	these	results	in	two	additional	studies,	one	a	purely	behavioral	study	in	which	

participants	made	decisions	by	pressing	computer	keys,	and	the	other	a	replication	of	the	

mouse-tracking	study.	Together	these	results	indicate	that	people	preferentially	process	either	

self	or	others’	payoffs	early	in	the	choice	process.	The	intra-choice	dynamics	are	crucial	in	

shaping	social	preferences	and	might	be	manipulated	via	nudge	policies	(e.g.,	manipulating	the	

display	order	or	saliency	of	self	and	others’	outcomes) for	behavior	in	managerial	or	other	

contexts.	  

Key	words:	social	preferences;	information	processing;	drift-diffusion	model;	mouse-tracking	
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1.	Introduction	

Social	decisions	involving	tradeoffs	between	selfishness	and	pro-sociality	are	ubiquitous	in	

managerial	settings,	organizations,	and	societies.	For	instance,	many	decisions	in	teams	or	

organizations	concern	the	distribution	of	money	or	other	scarce	resources	between	individuals.	

Managers	that	prioritize	fairness	of	relationships	between	themselves	and	employees,	as	well	as	

relationships	between	team	members,	may	have	positive	effects	on	organizational	performance	

(Breugem	et	al.	2022,	Cappelen	et	al.	2007,	Moon	2017,	Pfeffer	2007).	Thus,	it	is	important	to	

understand	how	people	construct	social	preferences	to	make	decisions,	as	well	as	how/why	

social	decision	making	may	change	in	different	circumstances.	Do	people	have	well-defined	

social	preferences	waiting	to	be	applied	when	making	decisions?	Or	do	they	have	to	construct	

social	decisions	on	the	spot?	If	the	latter,	how	are	those	decisions	influenced	by	the	way	in	

which	information	is	acquired	and	evaluated?	

Traditionally,	researchers	have	assumed	that	social	decisions	are	determined	by	the	given	

values	of	the	selfish	and	pro-social	attributes	together	with	subjective	weights	assigned	to	those	

attributes	(Bolton	and	Ockenfels	2000,	Charness	and	Rabin	2002,	Fehr	and	Schmidt	1999,	

Liebrand	and	McClintock	1988).	In	recent	years,	research	has	increasingly	turned	to	the	

dynamics	underlying	decisions	and	proposed	dynamical	models	of	the	decision	process.	These	

models	have	the	advantage	of	accounting	for	and	being	informed/constrained	by	more	than	just	

choice	data;	they	can	explain	or	incorporate	response	times	(RTs,	Baldassi	et	al.	2020,	Clithero	

2018b,	Frydman	and	Nave	2017,	Guo	et	al.	2017,	Mischkowski	et	al.	2018,	Pleskac	and	

Busemeyer	2010,	Roe	et	al.	2001,	Spiliopoulos	and	Ortmann	2018,	Trueblood	et	al.	2014,	Webb	

2019),	eye-movements	(Fiedler	et	al.	2013,	Fisher	2021,	Krajbich	et	al.	2010),	and	brain	activity	

(Basten	et	al.	2010,	Edelson	et	al.	2018,	Gluth	et	al.	2012,	Pisauro	et	al.	2017,	Turner	et	al.	2013).	

They	allow	us	to	decompose	the	decision	process	and	ask	to	what	extent	it	is	driven	by	

categorical	predispositions	(Desai	and	Krajbich	2022,	Kvam	and	Busemeyer	2020,	White	and	

Poldrack	2014,	Zhao	et	al.	2020),	attentional	priorities	(Amasino	et	al.	2019,	Sheng	et	al.	2020,	
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Teoh	et	al.	2020),	attribute	latencies	(Amasino	et	al.	2019,	Maier	et	al.	2020,	Sullivan	et	al.	2015,	

Sullivan	and	Huettel	2021),	and	the	relative	weights	on	the	attributes.	This	is,	in	turn,	improves	

out-of-sample	predictions	for	distinct	contexts,	for	example	allowing	us	to	predict	how	behavior	

would	change	under	time	constraints	(Chen	and	Krajbich	2018,	Clithero	2018a,	Guo	et	al.	2017,	

Milosavljevic	et	al.	2010,	Spiliopoulos	and	Ortmann	2018,	Trueblood	et	al.	2014).	 	

Controversial	results	on	the	effects	of	time	pressure	and	delay	in	social	decision-making	

(Rand	et	al.	2012,	Tinghög	et	al.	2013,	Verkoeijen	and	Bouwmeester	2014)	have	brought	further	

attention	to	the	mechanisms	of	the	choice	process.	Some	researchers	have	argued	for	a	dual-

process	account	in	which	there	is	a	fast	and	intuitive	pro-social	process	and	a	slower,	

deliberative	selfish	process	(Artavia-Mora	et	al.	2017,	Cappelen	et	al.	2016,	Mischkowski	et	al.	

2018,	Rand	et	al.	2012),	although	others	have	found	that	faster-responding	subjects	were	more	

selfish	(Piovesan	and	Wengström	2009).	Studies	based	on	sequential	sampling	models	have	

shown	that	both	fast	and	slow	decisions	can	be	explained	by	a	single	comparison	process	(Chen	

and	Krajbich	2018,	Hutcherson	et	al.	2015,	Krajbich	et	al.	2015a,	Krajbich	et	al.	2015b,	Teoh	et	

al.	2020).	The	sequential	sampling	approach	is	analogous	to	the	standard	utility-function	

modeling	approach,	but	yields	both	choice	outcomes	and	RTs.	In	these	models,	the	specified	

payoffs	and	subjective	weights	on	those	payoffs	determine	the	rate	at	which	support	(or	

evidence)	is	gathered	in	favor	of	the	pro-social	or	selfish	options	and	determine	both	the	choice	

outcome	and	RT.	 	

In	addition	to	their	subjective	weights	on	self	and	others’	payoffs,	people	may	have	general	

predispositions	that	favor	pro-social	or	selfish	choices	regardless	of	the	details	of	a	particular	

choice	problem	(Chen	and	Krajbich	2018).	Within	the	sequential	sampling	framework,	such	a	

predisposition	can	be	quantified	by	the	so-called	starting	point	(analogous	to	a	prior	in	a	

Bayesian	framework),	which	measures	the	relative	amount	of	evidence	required	to	take	one	

type	of	action	versus	another	(e.g.,	pro-social	vs.	selfish).	Note	that,	despite	the	label	“starting	

point”,	this	term	does	not	necessarily	indicate	different	levels	of	relative	evidence	at	the	start	of	
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a	trial,	instead	it	indicates	that	the	amount	of	newly	sampled,	trial-specific	relative	evidence	

required	to	select	one	type	of	choice	is	higher	or	lower	than	the	other.	Sequential	sampling	

models	predict	that	time	pressure	(delay)	should	exacerbate	(diminish)	the	influence	of	

predispositions	on	social	choices	(Chen	and	Krajbich	2018).	Additionally,	time	pressure	may	

change	attentional	priorities	to	self	versus	others’	payoffs	leading	to	choices	in	favor	of	the	

payoff	attended	to	first	or	most	(Teoh	et	al.	2020).	 	

Here,	we	investigate	the	temporal	dynamics	underlying	social	decisions	and	how	intra-

choice	dynamics	shape	social	preferences	using	two	mouse-tracking	and	one	behavioral	studies.	

In	the	first	mouse-tracking	study,	participants	made	a	series	of	decisions	about	two	options	that	

typically	involved	conflict	between	selfishness	and	pro-sociality	while	we	tracked	their	mouse	

trajectories.	The	mouse-trajectory	offers	an	accessible,	data-rich,	and	real-time	window	into	

how	people	categorize	and	form	preferences	and	decisions	(Freeman	and	Ambady	2010,	

Konovalov	and	Krajbich	2020,	Stillman	et	al.	2020,	Stillman	et	al.	2018).	We	use	those	mouse	

trajectories	to	identify	the	relative	onset	time	of	self	and	others’	payoffs	considerations	(self-

onset	delay,	SOD).	Independently	of	the	mouse	trajectories,	we	model	the	choice	and	RT	

distributions	using	a	starting-time	drift-diffusion	model	(stDDM),	which	quantifies	both	the	

weights	given	to	the	attributes	and	their	onset	times	(Amasino	et	al.	2019,	Maier	et	al.	2020,	

Sullivan	and	Huettel	2021).	Based	on	these	analyses,	we	evaluate	how	the	SOD	along	with	the	

predispositions	and	the	weights	explain	individual	differences	in	social	preferences	and	

preference	changes	across	time	pressure	and	delay	conditions.	

Our	results	reveal	that	people	are	heterogeneous	in	the	order	of	processing	self	and	others’	

payoffs	over	the	course	of	a	decision.	Selfish	participants	process	self	payoffs	(self	attribute)	

earlier	than	others’	payoffs	(other	attribute),	while	the	opposite	is	true	for	pro-social	

participants.	The	participants’	pro-sociality	in	the	time-free	condition	correlates	with	mouse-

trajectory-derived	self-onset	delay	(MTSOD)	in	the	time-free,	time-pressure,	and	time-delay	

conditions.	The	SOD	estimated	with	the	starting-time	drift-diffusion	model	(stDDM),	i.e.,	
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response-time-derived	self-onset	delay	(RTSOD),	is	highly	correlated	with	the	mouse-

trajectory-derived	self-onset	delay	(MTSOD)	across	participants,	lending	credence	to	both	

methods	of	estimating	this	aspect	of	the	decision	process.	We	find	that	time	pressure	amplifies	

participants’	general	preferences,	making	them	more	pro-social	or	selfish,	while	time	delay	

attenuates	these	general	preferences,	making	them	less	extreme.	These	effects	of	time	pressure	

and	delay	are	explained	by	the	magnitude	of	the	SOD	in	conjunction	with	the	subjective	weights	

on	self	and	others’	payoffs.	

In	the	second	purely	behavioral	study,	participants	made	decisions	by	pressing	keys	rather	

than	moving	the	mouse.	In	the	third	replication	mouse-tracking	study,	we	randomized	the	

games	across	time	conditions	for	each	participant.	Using	these	data,	we	checked	and	confirmed	

the	robustness	of	the	main	results	above:	differences	in	processing	delays	explain	individual	

differences	in	social	preferences	and	predict	social	preference	changes	under	time	pressure	

versus	delay.	 	

These	results	reveal	the	intra-choice	dynamics	underlying	social	decisions	and	how	people	

construct	social	preferences	through	a	sequential	sampling	process.	Using	two	independent	

analyses,	the	mouse-trajectory	analysis	and	the	computational	modeling	analysis,	we	identify	

that	people	are	heterogenous	in	the	onset	times	of	considering	self	and	others’	payoffs	when	

deciding	whether	to	be	pro-social	or	selfish.	We	find	that	the	attributes	of	the	choice	problem	

are,	to	some	degree,	evaluated	sequentially.	In	other	words,	the	attributes	do	not	all	affect	the	

choice	process	to	the	same	degree	over	the	whole	course	of	the	decision.	This	is	consistent	with	

work	on	Decision	Field	Theory	(Roe	et	al.	2001)	and	multi-attribute	attentional	DDM	(Fisher	

2021,	Yang	and	Krajbich	2022),	which	argue	that	attention	can	shift	between	both	options	and	

attributes	over	the	course	of	the	decision.	

In	contrast	to	Rand	et	al.’s	(2012)	theory	that	people	are	intuitively	pro-social	and	then	

become	more	selfish	with	deliberation,	we	show	that	the	effects	of	time	constraints	depend	on	

individual-specific	processing	dynamics.	Our	results	show	that,	more	than	predispositions,	the	
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SOD	(the	relative	onset	time	of	self	and	others’	payoffs	considerations)	is	a	key	predictor	in	

explaining	people’s	social	preferences	and	predicting	how	their	preferences	change	under	time	

pressure	versus	delay.	This	finding	not	only	supports	models	of	sequential	(rather	than	parallel)	

information	processing,	but	also	highlight	the	important	possibility	that	features	of	the	choice	

problem	itself	(i.e.,	choice	architecture	manipulations)	could	be	used	to	promote	pro-social	

decision	making	within	managerial	or	other	contexts.	For	instance,	time	delay/pressure	will	not	

be	an	effective	manipulation	to	promote	pro-sociality,	on	average,	because	time	constraints	do	

not	alter	social	preferences	in	the	same	way	for	everyone.	Instead,	one	could	provide	

information	about	others’	outcomes	before	one’s	own	outcomes	(Johnson	et	al.	2007,	Teoh	et	al.	

2020,	Weber	et	al.	2007),	in	order	to	promote	more	pro-social	behavior.	

2.	Study	1:	Mouse-Tracking	Experiment	

2.1.	Materials	and	Methods	 	

2.1.1.	Experimental	Task	 	

In	the	experiment,	participants	made	binary	decisions	in	300	mini-dictator	games,	where	

they	allocated	money	between	themselves	(dictator)	and	another	participant	(receiver)	(Fig.	1).	

240	out	of	the	300	games	involved	a	conflict	between	selfishness	and	advantageous	inequality	

aversion	(Fehr	and	Schmidt	1999).	In	other	words,	each	of	these	decisions	offered	participants	

the	opportunity	to	reduce	inequality	by	increasing	the	other’s	payoffs	and	decreasing	their	own.	

In	the	other	60	games,	there	was	no	conflict	between	selfishness	and	advantageous	inequality	

aversion.	In	all	games,	the	self	and	others’	payoffs	were	integers	from	10	to	99.	The	differences	

between	self	payoffs	were	from	1	to	10,	and	the	differences	between	others’	payoffs	were	from	

1	to	62.	When	generating	these	games,	we	first	fixed	the	parameters	for	a	subgroup	of	50	games	

(Games	ID	1-50).	We	then	decreased	or	increased	all	the	payoffs	by	1	(to	get	2	subgroups,	100	

games),	2	(to	get	2	subgroups,	100	games)	or	3	(to	get	1	subgroup,	50	games).	Thus,	the	

differences	between	self	payoffs	and	the	differences	between	others’	payoffs	were	identical	
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across	the	six	subgroups,	though	the	payoffs	were	slightly	different.1	 	

We	divided	the	300	trials	into	four	blocks	in	the	experiment.	The	first	and	the	last	were	

time-free	blocks	(100	trials,	2	subgroups	in	each)	in	which	participants	had	unlimited	time	to	

make	each	of	their	decisions.	The	other	two	in	between	were	time-pressure	and	time-delay	

blocks	(50	trials,	1	subgroup	in	each).	This	ensured	that	the	mini-dictator	games	in	different	

time	conditions	had	the	same	properties,	i.e.,	identical	differences	between	self	payoffs	and	

identical	difference	between	others’	payoffs.	In	the	time-pressure	block,	participants	had	to	

make	each	decision	within	2	seconds.	In	the	time-delay	block,	participants	had	to	make	each	

decision	after	the	game	had	been	displayed	for	10	seconds.	The	order	of	the	time-pressure	and	

time-delay	blocks	was	counterbalanced	across	participants,	as	were	the	positions	of	the	self	and	

others’	payoffs	(top	or	bottom).	The	locations	(left	or	right)	of	the	selfish	and	pro-social	options	

were	randomized	across	trials.	 	

	

Fig.	1.	Timeline	of	the	time-free	condition.	(A)	Participants	clicked	the	“Start”	button	at	the	

bottom	center	of	the	screen	to	proceed	to	the	decision	stage.	(B)	The	decision	stage	consisted	of	

two	options,	one	in	each	top	corner	of	the	screen.	In	this	example,	the	top	left	corner	contains	

the	selfish	option,	which	has	a	higher	payoff	for	self	(89	vs.	77)	and	the	top	right	corner	contains	

the	pro-social	option,	which	has	a	higher	payoff	for	other	(74	vs.	13).	(C)	The	blue	and	red	

curves	illustrate	possible	mouse	trajectories	for	choosing	the	pro-social	and	selfish	options,	

respectively.	Participants	made	their	choice	by	clicking	the	mouse	button	once	the	cursor	was	

on	an	option.	Note:	the	text	is	translated	from	Mandarin	and	enlarged	for	display	purposes.	 	

 
1	 In	the	experiment,	the	self	payoff	of	91	in	a	game	was	mistakenly	input	as	11.	All	participants	in	Study	1	
made	decisions	for	the	trial	with	mistaken	parameter.	Thus,	this	error	had	no	systematic	effects	on	our	
results.	 	
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2.1.2.	Procedure	 	

We	provided	participants	with	instructions	before	each	block.	They	could	only	start	the	

experiment	when	they	correctly	answered	the	comprehension	questions	at	the	end	of	the	

instructions.	Each	participant	was	paired	with	another	participant	and	played	both	the	role	of	

dictator	and	receiver.	Both	participants	made	decisions	in	the	role	of	dictator	and	thus	the	

pairing	was	purely	for	calculating	payoffs	at	the	end.	Specifically,	participants	made	decisions	by	

moving	the	mouse	cursor	toward	an	option	in	the	upper	left	or	right	corners	of	the	screen	and	

clicking	that	option.	In	addition	to	the	choice	and	the	associated	RT,	we	tracked	the	mouse	

cursor’s	(𝑥, 𝑦)	position	using	MouseTracker	(Freeman	and	Ambady	2010)	with	a	temporal	

resolution	of	70	Hz.	Participants	were	instructed	to	start	moving	their	mouse	as	soon	as	the	two	

options	appeared	on	the	screen	in	the	time-free	and	pressure	conditions,	and	as	soon	as	the	10-

second	delay	was	over	in	the	time-delay	condition.	If	they	did	not	begin	moving	their	mouse	

within	1	s	in	a	given	trial,	a	reminder	dialogue	box	would	appear	on	the	screen	after	that	trial.	At	

the	end	of	the	experiment,	one	of	the	trials	was	randomly	selected	and	paid	out	according	to	the	

participant’s	decision.	That	is,	each	participant’s	total	payoff	included	the	dictator’s	payoff	in	the	

selected	trial,	the	receiver’s	payoff	in	their	partner’s	selected	trial,	and	the	show-up	fee.	

2.1.3.	Participants	 	

A	total	of	117	university	students	(61	females,	 𝑚𝑒𝑎𝑛 = 21.4	 years,	 𝑠𝑑 = 2.0	 years)	

participated	in	Study	1	from	April	20	to	May	24,	2019.	All	participants	were	right-handed.	On	

average,	participants	earned	6.6	US	Dollars	(including	the	show-up	fee).	The	Internal	Review	

Board	of	Zhejiang	University	approved	the	experiment,	and	all	participants	provided	written	

informed	consent.	

2.1.4.	Within-participant	out-of-sample	analysis	 	

In	the	experiment,	we	used	the	50	games	with	GameID	1-50	for	the	time-pressure	

condition,	the	50	games	with	GameID	51-100	for	the	time-delay	condition,	and	the	200	games	

with	GameID	101-300	for	the	time-free	condition.	The	order	of	the	games	was	randomly	
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displayed	within	each	time	condition	for	each	participant.	In	the	analysis	below,	we	estimated	

participants’	preferences	in	the	time-free	condition	(𝛽!)	using	the	100	games	with	GameID	201-

300.	The	mouse-trajectory	analysis	and	computational	modeling	in	the	time-free	condition	was	

based	on	the	100	games	with	GameID	101-200.	 	

2.2.	Results	

2.2.1.	Behavioral	Results	

Participants	chose	the	pro-social	option	more	frequently	than	the	selfish	option	in	the	

experiment.	The	payoff	differences	in	this	study	were	designed	to	elicit	a	relatively	high	number	

of	pro-social	responses	even	though	the	average	person	places	more	importance	on	self,	relative	

to	other,	payoffs.	In	the	time-free	condition,	the	mean	fraction	of	pro-social	choices	at	the	

participant	level	was	62.3%	(sd	=	24.3%).	In	the	time-pressure	and	time-delay	conditions,	the	

mean	fractions	of	pro-social	decisions	were	51.2%	(sd	=	25.6%)	and	66.2%	(sd	=	24.1%),	

respectively.	The	mean	RTs	were	2.462	(sd	=	1.697),	1.226	(sd	=	0.277),	1.203	(after	the	

enforced	delay	of	10	seconds,	sd	=	0.781)	seconds	in	the	time-free,	time-pressure	and	time-

delay	conditions	respectively.	Thus,	in	contrast	to	the	predictions	of	an	intuitive	pro-social	

process,	participants	became	more	selfish	under	time	pressure	(two-sided	Wilcoxon	signed-

rank	test,	 𝑉 = 5775.5,	 𝑝 =10-11)	and	more	pro-social	under	time	delay	(𝑉 = 1554,	 𝑝 =10-5),	

on	average.	However,	there	was	substantial	heterogeneity	in	pro-social	behavior	and	

substantial	heterogeneity	in	the	size	and	direction	of	the	time	manipulation	effects	across	

individuals.	We	sought	to	explain	this	interindividual	variability	with	the	mouse-tracking	data	

and	computational	modeling.	 	

2.2.2.	Effects	of	Self	and	Others’	Payoffs	on	Mouse	Trajectories	 	

We	first	analyze,	on	average,	how	the	subjective	utility	difference	between	the	two	options	

affects	the	mouse	trajectories.	To	calculate	the	subjective	utility	difference	between	the	two	

options,	we	estimated	participants’	pro-sociality.	More	specifically,	we	employed	the	inequality	

aversion	model	proposed	by	Fehr	and	Schmidt	(1999)	to	estimate	participants’	social	
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preferences	(advantageous	inequality	aversion,	 𝛽)	using	maximum	likelihood	estimation	

(MLE).	A	participant’s	utility	for	each	option	in	the	mini-dictator	game	is	given	by	 	

𝑈6𝑃"#$! , 𝑃%&'#(8 = 𝑃"#$! − 𝛽(𝑃"#$! − 𝑃%&'#()	 		 	 	 	 	 	 	 (1)	

where	 𝑃"#$!	 and	 𝑃%&'#( 	 are	the	self	and	others’	payoffs,	respectively.	The	parameter	 𝛽	

indicates	the	participant’s	social	preference,	with	higher	 𝛽	 indicating	stronger	pro-sociality.	

Using	each	participant’s	estimated	 𝛽	 in	each	time	condition,	we	calculated	the	absolute	

subjective	utility	difference	between	the	two	options	for	each	trial.	The	most	common	approach	

to	analyzing	mouse	trajectories	is	to	quantify	the	relative	conflict	present	on	a	given	trial	

(Stillman	et	al.	2018).	Here,	we	compare	the	actual	trajectory	with	a	straight	trajectory,	with	the	

logic	that	the	greater	the	deviation	from	a	straight	path	towards	the	chosen	option,	the	greater	

the	conflict	between	the	two	responses.	Thus,	the	conflict	is	quantified	by	taking	the	area	

between	the	actual	trajectory	and	a	straight	trajectory	and	is	referred	to	as	the	area	under	the	

curve	(AUC).	Consistent	with	Stillman	et	al.	(2020),	in	the	time-free	condition,	the	larger	

subjective	utility	difference	corresponded	to	less	conflict,	i.e.,	lower	AUC	(model	1	in	Table	A1	of	

SI	Note	A,	 𝑐𝑜𝑒𝑓 = −0.044, 𝑝 = 10-16).	And	it	appeared	that	the	mouse	trajectory	was	sensitive	

to	within-subject	variation	in	subjective	utility	difference	(Fig.	A1	in	SI	Note	A).	In	the	time-

pressure	condition,	the	subjective	utility	difference	had	no	significant	effects	on	AUC	(model	3,	

𝑐𝑜𝑒𝑓 = −0.000,	 𝑝 = 0.493),	and	in	the	time-delay	condition,	the	subjective	utility	difference	

had	weaker	effects	on	AUC	(model	7,	 𝑐𝑜𝑒𝑓 = 0.037,	 𝑝 =10-16)	than	the	time-free	condition	

(model	5,	 𝑐𝑜𝑒𝑓 = −0.004,	 𝑝 = 0.028;	see	SI	Note	A	for	more	details).	 	

Next,	we	investigated	how	the	attributes	of	self	and	other’s	payoff	affected	the	mouse	

trajectories.	To	do	so,	we	normalized	the	coordinates	of	the	center	of	the	“Start”	button	to	

(0,0),	the	top	left	to	(−1,1),	and	the	top	right	to	 (1,1)	 (Lim	et	al.	2018,	Sullivan	et	al.	2015).	We	

divided	the	RT	of	each	decision	into	100	equal	time-intervals.2	 The	start	position	of	each	mouse	

trajectory	was	at	time	point	1,	and	the	time	an	option	was	clicked	was	at	time	point	101.	For	

 
2	 The	response	time	(RT)	in	the	time-delay	condition	was	from	the	time	when	participants	could	move	
their	mouse	to	the	time	when	they	clicked	the	mouse.	
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each	of	the	101	time	points,	we	calculated	a	trajectory	angle	from	the	position	at	that	time	to	(0,	

0).	The	trajectory	angle	was	 −45°	 along	the	line	directly	to	the	left	option,	 +45°	 along	the	

line	directly	to	the	right	option,	and	 0°	 along	the	line	directly	upwards	(see	Fig.	A2	in	SI	Note	A	

for	illustrations	of	the	trajectory	angle).	 	

We	estimated	linear	regressions	of	how	the	trajectory	angle	at	each	time	point	was	affected	

by	the	relative	payoffs	for	self	(DiffSelf	=	SelfPayoffright	–	SelfPayoffleft)	and	for	other	(DiffOther	=	

OtherPayoffright	–	OtherPayoffleft)	for	the	three	time	conditions	separately.	The	regression	for	

participant	 𝑖	at	time	point	 𝑡	 in	each	time	condition	was:	

Angle)&* = 𝛾)&+ + 𝛾)&" × 𝐷𝑖𝑓𝑓𝑆𝑒𝑙𝑓* + 𝛾)&% × 𝐷𝑖𝑓𝑓𝑂𝑡ℎ𝑒𝑟* 	 	 	 	 	 (2)	

where	 𝛾)&+ 	 is	the	constant,	 𝛾)&"	 is	the	coefficient	for	the	difference	in	self	payoffs,	 𝛾)&%	 is	the	

coefficient	for	the	difference	in	the	other’s	payoffs,	and	 𝑗	 is	the	index	of	trials	(observations).	

At	the	participant	level,	the	average	coefficient	on	the	self	payoff	(free:	 𝑚𝑒𝑎𝑛 = 0.355,	

𝑠𝑑 = 0.201;	pressure:	 𝑚𝑒𝑎𝑛 = 0.619,	 𝑠𝑑 = 0.669;	delay:	 𝑚𝑒𝑎𝑛 = 1.831,	 𝑠𝑑 = 0.972)	was	

greater	than	the	average	coefficient	on	the	other’s	payoff	(free:	 𝑚𝑒𝑎𝑛 = 0.074,	 𝑠𝑑 = 0.187;	

pressure:	 𝑚𝑒𝑎𝑛 = 0.060,	 𝑠𝑑 = 0.158;	delay:	 𝑚𝑒𝑎𝑛 = 0.442,	 𝑠𝑑 = 0.316)	(two-sided	

Wilcoxon	signed-rank	tests,	free:	 𝑉 = 5951,	 𝑝 =10-11;	pressure:	 𝑉 = 5887,	 𝑝 = 10-11;	delay:	

𝑉 = 6712,	 𝑝 =10-16).	That	is,	the	self	payoff	had	a	stronger	influence	than	the	other’s	payoff	on	

the	mouse	position	over	the	course	of	the	decision	in	the	time-free,	time-pressure	and	time-

delay	conditions	(Fig.	B1	in	SI	Note	B). 

To	examine	whether	self	and	other’s	payoffs	had	different	effects	for	participants	with	

different	degrees	of	pro-sociality,	we	grouped	participants	into	four	bins	of	equal	size	based	on	

the	quartiles	(𝑄,, 𝑄-, 𝑄.)	of	their	preferences	in	the	time-free	condition	(𝛽!)	(extremely	selfish	

group:	 𝛽! ≤ 𝑄,;	selfish	group:	 𝑄, < 𝛽! ≤ 𝑄-;	pro-social	group:	 𝑄- < 𝛽! ≤ 𝑄.;	extremely	pro-

social	group:	 𝛽! > 𝑄.).	Fig.	2	plots	the	coefficient	difference	between	self	and	other’s	payoffs	

for	each	group,	and	shows	that	self	and	other’s	payoffs	had	different	effects	on	the	mouse-
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trajectories	at	different	times	for	these	four	sub-groups.	For	participants	in	the	extremely	

selfish,	selfish	and	pro-social	groups,	self	payoffs	had	stronger	effects	on	the	mouse	trajectory	

than	others’	payoffs	across	all	three	conditions.	In	the	extremely	pro-social	group,	i.e.,	the	most	

pro-social	participants,	the	effects	of	others’	payoffs,	relative	to	self	payoffs,	were	stronger	in	

the	time-free	condition,	equally	strong	in	the	time-pressure	condition,	and	weaker	in	the	time-

delay	condition.	Moreover,	the	coefficient	difference	between	self	and	others’	payoffs	decreased	

from	the	extremely	selfish	group	to	the	extremely	pro-social	group	in	all	three	conditions	(Fig.	

2,	see	SI	Note	B	for	more	details).	

	
Fig.	2.	The	mean	difference	between	the	effects	(coefficients)	of	the	self	and	others’	

payoffs	on	the	mouse	trajectories.	(A)	Time-free	condition;	(B)	Time-pressure	condition;	(C)	

Time-delay	condition.	Error	bands	denote	standard	errors.	

2.2.3.	Mouse-Trajectory-Derived	Onset	Time	for	Self	and	Others’	Payoffs	 	

Next,	we	estimated	the	onset	time	for	each	attribute	using	the	mouse-trajectory	data,	

namely	the	time	that	each	attribute	began	(and	continued)	to	significantly	affect	the	mouse	

trajectory.	We	define	the	mouse-trajectory-derived	self-onset	delay	(MTSOD)	as	the	time	that	

the	self	payoffs	began	to	affect	the	mouse	trajectory	minus	the	time	that	the	others’	payoffs	

began	to	affect	it.	Thus,	the	MTSOD	was	negative	if	self	payoffs	affected	the	mouse	trajectory	

earlier	than	the	others’	payoffs,	and	positive	if	the	others’	payoffs	affected	the	mouse	trajectory	

earlier	than	the	self	payoffs.	

In	the	mouse-trajectory	analysis	above,	we	normalized	each	of	the	mouse	trajectories	into	

100	intervals.	This	might	distort	onset	times	because	a	unit	of	MTSOD	in	trials	with	longer	
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durations	is	longer	in	absolute	time	than	a	unit	of	MTSOD	in	trials	with	shorter	durations.	

Therefore,	here	we	extended	the	mouse	trajectory	at	the	last	time	point	of	each	trial	out	to	the	

maximum	RT	across	all	trials	in	each	time	condition.3	 Before	doing	this,	we	excluded	trials	with	

extremely	long	or	short	RTs	using	the	IQR	method.	At	the	aggregate	level,	we	eliminated	trials	

with	RTs	above	the	0.75	quartile	by	more	than	1.5	times	the	interquartile	range,	or	below	the	

0.25	quantile	by	more	than	1.5	times	the	interquartile	range	in	each	time	condition.	In	this	case,	

6.4%,	0.9%	and	7.4%	of	the	trials	were	excluded	in	the	time-free,	time-pressure,	and	time-delay	

conditions,	respectively.	Then	we	divided	each	of	the	extended	trajectories	into	100	equal	

intervals.	In	this	case,	all	the	mouse-trajectories	in	each	time	condition	have	the	same	duration,	

i.e.,	the	maximum	RT	of	that	time	condition.	

We	used	the	linear	regression	(2)	above	to	identify	the	onset	time	of	self	and	others’	

payoffs	in	the	time-free,	time-pressure,	and	time-delay	conditions	separately.	This	was	done	by	

carrying	out	a	two-tailed	test	of	the	hypothesis	that	the	estimated	regression	coefficient	of	

interest	would	be	significant	at	the	level	of	0.001,	for	each	individual	and	time	interval.	We	were	

interested	in	when	they	became	significantly	positive.	The	earliest	time	point	at	which	the	test	

was	satisfied	was	then	labeled	as	the	onset	time	of	that	attribute	for	that	participant.	If	an	

attribute	never	became	significant,	we	set	the	onset	time	as	102.	In	the	time-free	condition,	the	

mean	MTSOD	at	the	participant	level	was	7.957	(median	=	21.000,	sd	=	62.560).	The	mean	

MTSODs	were	-7.632	(median	=	0.000,	sd	=	42.590)	and	6.709	(median	=	4.000,	sd	=	48.216)	in	

the	time-pressure	and	delay	conditions,	respectively.	 	 	

Fig.	3A	plots	the	MTSOD	across	time-free	and	pressure	conditions	for	each	participant.4	

When	analyzing	the	MTSOD	data	across	all	participants,	we	found	that	their	magnitude	

 
3	 We	can	get	similar	mouse-trajectory-derived	self-onset	delay	(MTSOD)	if	we	extend	the	trajectory	at	the	
last	time	point	of	each	trial	out	to	the	maximum	RT	at	the	participant	level	or	if	we	normalize	each	of	the	
mouse	trajectories	into	100	intervals,	the	same	as	Sullivan	et	al.	(2015)	and	Lim	et	al.	(2018)	(see	SI	Note	
F	for	more	details).	 	
4	 It	is	tricky	to	compare	the	MTSOD	in	the	time-delay	condition	with	other	time	conditions,	since	we	
cannot	clearly	identify	the	decision	time	frame,	i.e.,	we	do	not	know	how	much	participants	processed	
information	during	the	10-seconds	enforced	delay.	
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decreased	under	time	pressure.	Compared	to	the	time-free	condition,	time	pressure	decreased	

the	MTSOD	for	the	69	participants	with	positive	MTSOD	in	the	time-free	condition	(two-sided	

Wilcoxon	signed-rank	test,	 𝑉 = 2202,	 𝑝 =10-10),	and	increased	(i.e.,	pushed	closer	to	zero)	the	

MTSOD	for	the	45	participants	with	negative	MTSOD	in	the	time-free	condition	(𝑉 = 203.5,	

𝑝 =10-4).	This	indicates	that	time	pressure	reduced	the	initial	processing	time	advantage	for	the	

earlier-considered	attribute.	Note	that	the	MTSODs	were	often	reduced	to	zero	in	the	time-

pressure	condition	and	there	were	27	participants	for	whom	neither	payoff	was	deemed	

significant	before	the	end	of	the	decision.	This	is	due	to	the	fact	that	we	used	stringent	

significance	thresholds	(𝑝 =0.001)	when	identifying	the	onset	times;	however	the	correlation	

between	MTSOD	and	preferences	is	robust	to	the	choice	of	significance	threshold	(Table	C2	in	SI	

Note	C).	 	

	

Fig.	3.	Mouse-trajectory-derived	self-onset	delay	(MTSOD)	across	time-free	and	pressure	

conditions	(A)	and	correlations	between	pro-sociality	and	MTSOD	(B-D).	In	(A),	

participants	that	consider	self	or	others’	payoffs	first	in	the	time-free	condition	are	shown	in	

green	or	blue,	respectively.	The	black	dotted	line	indicates	the	45-degree	line	where	all	dots	

would	fall	if	the	MTSOD	was	equal	in	both	conditions.	(B)	Pro-social	preference	parameter	(𝛽!)	

in	the	time-free	condition	vs.	MTSOD	in	the	time-free	condition;	(C)	 𝛽!	 vs.	MTSOD	in	the	time-

pressure	condition;	(D)	 𝛽!	 vs.	MTSOD	in	the	time-delay	condition.	The	solid	lines	are	the	fitted	

regression	lines.	Each	dot	represents	one	participant.	

In	order	to	directly	quantify	the	relationship	between	MTSOD	and	pro-social	preferences,	

we	computed	their	correlation	(Fig.	3).	In	the	time-free	condition,	the	MTSOD	computed	from	

one	half	of	the	trials	was	correlated	with	the	advantageous	inequality	aversion	parameter,	 𝛽! ,	

estimated	from	the	other	half	of	the	time-free	trials	(Fig.	3B,	two-sided	Pearson	correlation	test,	



 16 

𝑟(117) = 0.851,	 𝑝 = 10-16).	That	is,	the	earlier	the	participant	started	to	process	the	other’s	

payoff	relative	to	the	self	payoff,	the	more	pro-social	the	participant	was.	Moreover,	the	

MTSODs	for	both	time-pressure	(Fig.	3C)	and	delay	(Fig.	3D)	conditions	were	correlated	with	

𝛽!	 (pressure:	 𝑟(117) =0.690,	 𝑝 =10-16;	delay:	 𝑟(117) =0.761,	 𝑝 =10-16).	The	results	are	

similar	if	we	exclude	cases	where	an	attribute	did	not	become	significant	before	the	response	

was	made	(SI	Note	C).	The	separate	mouse-trajectory-derived	onset	times	of	the	self	and	others’	

payoffs	were	each	significantly	correlated	with	 𝛽!	 as	well	(see	SI	Note	D).5	 These	results	

show	that	the	mouse-trajectory	data	provide	information	about	participants’	social	preferences,	

even	under	time	constraints.	Moreover,	the	MTSOD	can	explain	additional	variability	in	

individual	choices	beyond	the	utility	parameters	(partial	F-tests,	free:	F-value=84.459,	 𝑝 =

10/,0,	pressure:	F-value=182.320,	 𝑝 = 10/,1;	delay:	F-value=38.306,	 𝑝 = 10/2,	SI	Note	E	

and	G).	These	findings	alleviate	the	potential	concern	that	the	relationship	between	MTSOD	and	

social	preferences	might	be	an	artifact	of	the	fact	that	relatively	larger	influences	of	self	or	

other’s	payoffs	could	make	it	easier	to	detect	the	onset	of	one	attribute	earlier	in	the	mouse	

trajectory	(Sullivan	et	al.	2015).	 	

2.2.4.	Computational	Modeling	of	Choice	Outcomes	and	Response	Times	 	

To	model	the	decision	process,	we	employed	a	time-varying	DDM.	This	DDM	allows	for	

different	onset	times	for	each	attribute	to	affect	the	drift	rate,	and	thus	we	refer	to	it	as	the	

starting-time	drift-diffusion	model	or	stDDM	(Amasino	et	al.	2019,	Maier	et	al.	2020)	(Fig.	4).	

The	drift	rate	captures	the	rate	of	evidence	accumulation	in	favor	of	one	option	over	the	other.	

Here,	we	model	the	drift	rate	as	a	linear	function	of	the	difference	in	self	payoffs	(SelfDiff),	the	

other’s	payoffs	(OtherDiff),	and	a	constant	(to	account	for	any	fixed	bias	towards	the	selfish	or	

pro-social	option	during	the	evidence	accumulation	process).	Additionally,	we	allow	for	a	delay	

 
5	 If	we	exclude	participants	whose	onset	time	of	the	self	or	the	other	attribute	was	greater	than	101,	 𝛽!	
was	correlated	with	the	onset	times	of	the	self	and	others’	payoffs	in	the	time-free	and	time-pressure	
conditions.	And	 𝛽!	 was	correlated	with	the	onset	times	of	the	self	payoffs	but	not	significantly	correlated	
with	the	onset	times	of	the	others’	payoffs	in	the	time-delay	condition	(SI	Note	D).	
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before	one	of	the	payoff	differences	affects	the	drift	rate.	If	the	self	payoff	enters	into	the	process	

first,	the	update	equation	for	the	relative	evidence	(𝑅)	is:	

𝑅&3, = 𝑅& + [𝜔+ +𝜔" ∗ 𝑆𝑒𝑙𝑓𝐷𝑖𝑓𝑓 +	[𝑡 > | 456
7&
|_ ∗ 𝜔% ∗ 𝑂𝑡ℎ𝑒𝑟𝐷𝑖𝑓𝑓_ ∗ d𝑡 + 𝜀	 	 	 (3)	

If	the	other’s	payoff	enters	the	process	first,	the	update	equation	for	the	relative	evidence	is:	

𝑅&3, = 𝑅& + [𝜔+ + [𝑡 > | 456
7&
|_ ∗ 𝜔" ∗ 𝑆𝑒𝑙𝑓𝐷𝑖𝑓𝑓 +	𝜔% ∗ 𝑂𝑡ℎ𝑒𝑟𝐷𝑖𝑓𝑓_ ∗ d𝑡 + 𝜀	 	 	 (4)	

where	SOD	(self-onset	delay)	is	the	time	that	the	self	payoff	begins	to	affect	the	decision	process	

minus	the	time	that	the	other’s	payoff	begins	to	affect	it,	and	 𝜀	 represents	zero-mean	Gaussian	

noise.	In	addition	to	these	drift-rate	parameters,	the	stDDM	includes	three	additional	

parameters	for:	(1)	threshold	(𝑎);	(2)	non-decision	time	(𝑡8);	(3)	starting	point	(𝑧).	The	starting	

point	captures	the	participant’s	predisposition	towards	selfish	or	pro-social	options.	 	

	

Fig.	4.	A	graphical	illustration	of	the	starting-time	drift	diffusion	model	(stDDM).	a	denotes	

the	boundary,	t0	denotes	the	non-decision	time,	and	z	is	the	starting	point	parameter	which	

indicates	the	prior	bias	towards	the	pro-social	option	(𝑧 > 0.5)	or	the	non-pro-social	(selfish)	

option	(𝑧 < 0.5).	The	red	and	blue	trajectory	displays	an	example	of	the	evolution	of	the	relative	

evidence.	In	the	example,	the	self	payoff	enters	the	evidence	accumulation	process	first	at	t0	and	

the	other’s	payoff	(other)	enters	into	the	process	later	at	time	t0+t1.	We	refer	to	the	duration	of	

t1	as	the	self-onset	delay	(SOD).	For	illustrative	purposes,	here	we	have	omitted	the	diffusion	

noise	in	the	process	and	only	shown	the	average	drift	rates.	

It	is	worth	noting	an	important	aspect	of	the	two	drift	weighting	parameters	in	our	stDDM.	

It	is	common	to	interpret	the	two	parameters	 𝜔"	 and	 𝜔%	 as	the	subjective	weights	on	self	

and	other	attributes	(Amasino	et	al.	2019,	Chen	and	Krajbich	2018,	Hutcherson	et	al.	2015,	

Maier	et	al.	2020).	However,	DDMs	that	are	specified	with	parameters	for	both	attributes	are	
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mathematically	equivalent	to	models	in	which	there	is	a	single	parameter	that	determines	the	

relative	weight	on	self	vs.	other	(or	any	other	pair	of	attributes)	and	a	second	drift	

scaling/inverse-temperature	parameter	that	determines	how	consistently	people	choose	in	line	

with	those	relative	weights	(Krajbich	2021).	The	two	ways	of	specifying	the	model	are	

equivalent,	and	therefore	neither	is	more	or	less	correct	than	the	other.	However,	we	should	be	

cautious	in	how	we	interpret	the	two	weighting	parameters	on	each	attribute,	bearing	in	mind	

that	the	relative	magnitude	of	the	two	parameters	is	what	should	capture	the	underlying	level	of	

pro-sociality.	 	

We	fit	the	stDDM	to	the	choice	and	RT	data	in	the	time-free	condition	using	a	hierarchical	

Bayesian	toolbox	(Lombardi	and	Hare	2021)	that	provides	estimates	of	the	parameters	both	at	

the	group	(SI	Note	H)	and	participant	levels.	We	coded	the	decision	as	pro-social	if	the	

participant	chose	the	option	with	the	higher	payoff	for	the	other	participant,	and	coded	the	

decision	as	non-pro-social	(selfish)	if	the	participant	chose	the	option	with	the	lower	payoff	for	

the	other	participant.	Thus,	a	starting	point	greater	than	0.5	represents	a	prior	bias	towards	the	

pro-social	option,	and	a	starting	point	less	than	0.5	represents	a	prior	bias	towards	the	selfish	

option.	Without	loss	of	generality,	we	fixed	the	noise	parameter	(𝜀)	to	1	in	the	estimation.	

Parameter	recovery	analyses	demonstrated	that	choice	and	RT	patterns	simulated	using	

estimates	of	the	stDDM	could	be	recovered	in	each	case.	In	other	words,	our	estimation	

procedures	for	the	stDDM	yielded	accurate	estimates	for	known	parameter	values	(SI	Note	I).	

Critically,	this	stDDM	formulation	can	accurately	distinguish	between	the	effects	of	a	starting-

point	bias	(i.e.,	predisposition),	preferential	consideration	of	one	attribute	earlier	in	the	decision	

process	(i.e.,	SOD),	and	the	subjective	weights	of	each	attribute.	

The	parameter	SOD	from	the	stDDM	(response-time-derived	self-onset	delay,	RTSOD)	was	

correlated	with	the	MTSOD	(Fig.	5A,	two-sided	Pearson	correlation	test,	 𝑟(117) =0.762,	

𝑝 =10-16;	see	SI	Note	J	for	the	correlation	between	RTSOD	and	RTs).	In	both	cases,	the	SOD	is	

computed	as	self	minus	other	payoff	consideration	onset	time,	so	positive	values	indicate	that	
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consideration	of	the	self	payoff	is	delayed	relative	to	the	other’s	payoff.	In	RTSOD,	the	units	are	

seconds,	while	in	MTSOD	the	units	are	the	percent	of	maximum	RT	across	all	trials	in	the	time-

free	condition.	Furthermore,	66	out	of	86	participants	whose	RTSOD	was	positive	also	had	a	

positive	MTSOD	(two-sided	Binomial	test,	 𝑝 =10-6),	and	26	out	of	31	participants	whose	

RTSOD	was	negative	had	a	negative	MTSOD	(𝑝 =10-4).	This	indicates	a	strong	correspondence	

between	the	SOD	derived	from	the	mouse-tracking	data	and	that	from	the	choice	+	RT	data.	The	

correspondence	between	MTSOD	and	RTSOD	together	with	the	robustness	checks	and	

parameter	recovery	tests	for	these	analyses	give	us	confidence	in	the	SOD	measures.	Moreover,	

the	within-subject	out-of-sample	prediction	exercises	show	that	the	stDDM	has	better	

predictive	performance	than	the	standard	DDM	in	predicting	participants’	choices	(higher	

Cramer’s	λ,	Chen	and	Krajbich	2018,	Clithero	2018a,	Cramer	1999)	and	RTs	(lower	squared	

error,	SI	Note	K).6	 This	indicates	that	the	starting	point	in	the	standard	DDM	(predisposition)	

cannot	adequately	capture	a	delayed	start	in	processing	some	attributes	relative	to	others.	The	

difference	between	the	SOD	and	predisposition	is	that	the	predisposition	is	the	prior	bias	before	

processing	any	information	from	the	current	choice	problem,	i.e.,	it	does	not	depend	on	trial-

level	variables.	The	attribute	latency	(SOD),	also	captures	a	general	tendency	to	consider	self	or	

other	first,	but	its	effects	on	choice	outcomes	depend	on	the	trial-specific	self	and	other	payoffs	

as	well.	

2.2.5.	Explaining	Individual	Differences	in	Social	Preferences	and	Preference	Changes	

across	Time	Conditions	 	

To	evaluate	which	components	in	the	stDDM	predicted	pro-sociality	in	the	time-free	

condition,	we	ran	an	OLS	regression	explaining	 𝛽!	 derived	from	one	half	of	the	time-free	trials,	

with	all	the	stDDM	parameters	fit	to	the	other	half	of	the	time-free	trials.	We	found	that	the	

 
6	 We	note	that	the	standard	DDM	had	better	predictive	performance	than	the	stDDM	for	some	
participants,	especially	for	participants	whose	self-onset	delay	(SOD)	is	around	0	or	whose	relative	weight	
between	other’s	and	self	payoffs	in	the	standard	DDM	is	very	small	(near	0)	or	negative.	Thus,	the	stDDM	
was	more	predictive	of	choices	than	the	standard	DDM	for	more	pro-social	participants	and	on	choices	
with	selfish	outcomes	(see	SI	Note	K	for	more	details).	
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starting	point	(z),	drift-rate	constant	(𝜔+),	response-time-derived	self-onset	delay	(RTSOD),	and	

subjective	weights	on	self	and	others’	payoffs	(𝜔"	 and	 𝜔%)	were	all	significant	predictors	of	 𝛽!	

(model	1	in	Table	1;	see	also	SI	Note	L).	As	noted	above	in	the	description	of	the	stDDM,	the	drift	

weight	parameters	on	self	and	other	payoffs	(𝜔"	 and	 𝜔%)	represent	a	combination	of	the	

overall	drift	scaling	and	the	relative	contribution	each	payoff	makes	in	determining	utility.	By	

including	the	ratios	 𝜔+/𝜔"	 and	 𝜔%/𝜔"	 in	the	linear	regression	model,	we	make	 𝜔"	 the	drift	

scaling	parameter	and	 𝜔%	 the	effective	trade-off	between	self	and	other	payoffs	in	determining	

choice	outcomes.	

	
Fig.	5.	(A)	Correlation	between	the	response-time-derived	self-onset	delay	(RTSOD)	and	

the	mouse-trajectory-derived	self-onset	delay	(MTSOD);	(B)	Correlation	between	time-

free	preferences	(𝜷𝒇)	and	the	preference	change	across	time-pressure	and	delay	

conditions	(𝜷𝒑 − 𝜷𝒅);	(C)	Correlation	between	RTSOD	and	 𝜷𝒑 − 𝜷𝒅.	The	solid	line	is	the	

fitted	regression	line.	Each	dot	represents	one	participant.	Six	participants	whose	 𝛽< − 𝛽= 	

values	are	beyond	 [−1,1]	 are	not	shown	in	(B)	and	(C),	but	were	included	in	the	correlation	

analysis.	

Our	results	reveal	that	participants’	preferences	changed	across	time	conditions.	Time	

pressure	amplified	the	degree	to	which	participants	preferred	selfish	relative	to	pro-social	

outcomes,	or	vice	versa.	In	contrast,	time	delay	reduced	the	strength	of	their	preference	for	the	

category	they	preferred	in	the	time-free	condition.	As	shown	in	Fig.	5B,	the	time-free	preference	

(𝛽!)	was	correlated	with	the	preference	change	across	time-pressure	and	time-delay	conditions	

(𝛽< − 𝛽=)	 (two-sided	Spearman	correlation	tests,	 𝜌 = 0.313,	 𝑝 < 0.001,	see	also	SI	Note	M).	

Moreover,	the	RTSOD	from	the	stDDM	was	correlated	with	the	preference	change	across	time-



 21 

pressure	and	delay	conditions	(𝛽< − 𝛽=)	 (Fig.	5C,	two-sided	Spearman	correlation	tests,	 𝜌 =

0.310,	 𝑝 < 0.001).	

Table	1.	OLS	regressions	of	pro-social	preference	(𝛽!)	and	preference	change	(𝛽< − 𝛽=)	across	
time	conditions	on	stDDM	parameters	from	Study	1.	
	 𝛽!	 𝛽< − 𝛽= 	
	 (1)	 (2)	
Constant	 -0.094	 -0.474		

(0.091)	 (0.294)	
𝑧	 0.868***	 1.221**		

(0.185)	 (0.596)	
𝜔+ 	 0.383***	 0.137		

(0.034)	 (0.110)	
RTSOD	 0.082**	 -0.067	
	 (0.023)	 (0.074)	
𝜔"	 -0.992***	 -0.412	
	 (0.236)	 (0.760)	
𝜔%	 4.299***	 2.013	
	 (0.426)	 (1.372)	
𝑡8	 -0.082**	 -0.120	
	 (0.035)	 (0.112)	
𝑎	 -0.013	 -0.020	
 (0.012)	 (0.038)	
𝜔+/𝜔" 0.000	 -0.001	
 (0.000)	 (0.001)	
𝜔%/𝜔" -0.005	 -0.005	
 (0.005)	 (0.016)	
RTSOD	× 𝜔" -0.078	 -0.697	
 (0.344)	 (1.107)	
RTSOD	× 𝜔% 1.770	 11.355**		

(1.717)	 (5.529)	
R2	 0.868	 0.140	
Adj.	R2	 0.853	 0.045	
Num.	obs.	 111	 111	
Notes:	In	model	(1),	the	dependent	variable	is	the	advantageous	inequality	preference	
parameter,	 𝛽! ,	in	the	time-free	condition.	We	estimated	the	stDDM	using	half	of	the	trials	and	
estimated	 𝛽!	 using	the	other	half	of	the	trials	in	the	time-free	condition.	In	models	(2),	the	
dependent	variable	is	the	difference	in	the	pro-social	preference	parameters,	 𝛽< − 𝛽= .	
Participants	whose	 𝛽!	 was	out	of	[-1,	2]	and	 𝛽< − 𝛽= 	was	out	of	[-1,	1]	were	not	included	in	
the	OLS	regressions.	 	
Abbreviations:	 𝑧	 is	the	starting	point,	𝜔+ 	 is	the	drift	constant,	 	𝜔"	 and	 	𝜔%	 are	stDDM	
parameters	quantifying	the	relative	contributions	of	the	differences	in	self	and	other	payoffs,	
respectively,	to	the	drift	rate,	 𝑡8	 is	the	non-decision	time,	 𝑎	 is	the	magnitude	of	the	boundary	
separation.	 	
***p	<	0.01,	**p	<	0.05.	
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We	ran	an	OLS	regression	of	(𝛽< − 𝛽=)	 on	all	the	stDDM	parameters	fit	to	the	time-free	

trials	to	test	if	any	of	them	could	explain	individual	differences	in	the	effects	of	the	time	

pressure	or	delay	treatments	(Model	2	in	Table	1).	There	was	a	significant	main	effect	for	

starting	point	indicating	that	participants’	predispositions	revealed	during	time-free	choices	

were	indicative	of	how	they	would	behave	under	time-pressure	versus	delay.	In	addition	to	the	

main	effect	of	predispositions,	there	was	a	significant	interaction	between	the	RTSOD	and	 𝜔%	

parameters	(see	also	SI	Note	N	for	a	direct	replication	of	Chen	and	Krajbich	(2018)	using	a	

standard	DDM).	Note	that	the	RTSOD	parameter	interacts	with	the	weighting	parameters	within	

the	stDDM	as	depicted	in	Fig.	4,	and	thus	this	interaction	is	not	surprising.	The	 𝑅𝑇𝑆𝑂𝐷	

parameter	is	computed	as	self	minus	others’	payoff	consideration	onset	time.	Therefore,	larger	

values	of	 𝜔%	 and	 𝑅𝑇𝑆𝑂𝐷	 combine	to	yield	more	pro-social	choices,	whereas	small	values	of	

those	two	parameters	lead	to	more	selfish	choices.	

3.	Study	2:	Response-Time	Experiment	from	Chen	and	Krajbich	(2018)	

Study	1	was	a	mouse-tracking	experiment	where	RTs	are	potentially	distorted	due	to	the	

hand	movements.	To	verify	the	stDDM	results	with	a	more	standard	response	method,	we	

analyzed	a	second	dataset	where	participants	made	decisions	using	keyboards.	We	sought	to	

confirm	whether	the	self-onset	delay	(SOD)	explains	individual	differences	in	pro-sociality	and	

how	it	changes	across	time-pressure	and	delay	conditions,	along	with	other	parameters	in	the	

stDDM.	Specifically,	we	used	the	data	from	Chen	and	Krajbich	(2018).	Chen	and	Krajbich	

(2018)	show	that	the	starting	point	(predisposition)	in	the	standard	DDM	(referred	to	there	as	

biased	DDM)	explains	participants’	preferences	and	the	heterogeneous	effects	of	time	

constraints	on	preferences.	That	is,	the	predisposition	to	behave	pro-socially	or	selfishly	can	be	

captured	by	the	starting	point	of	the	standard	DDM.	As	people	consider	the	payoffs	and	

accumulate	evidence	over	time,	they	may	overcome	their	initial	predispositions.	Reanalyzing	

these	decisions	with	the	stDDM	revealed	important	nuances	in	the	results	that	were	not	evident	

from	the	standard	DDM	results.	Specifically,	some	of	the	individual	variability	in	pro-social	
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preferences	within	the	time-free	condition	originally	linked	to	the	starting	point	in	the	standard	

DDM	instead	turns	out	to	be	driven	by	differences	in	intra-choice	dynamics	(i.e.,	SOD).	

Moreover,	we	can	explain	more	of	the	effects	of	time	pressure	or	delay	on	social	preferences	by	

using	a	decision	model	that	quantifies	both	predispositions	and	self-onset	delays.	 	

3.1.	Materials	and	Methods	

Similar	to	Study	1,	participants	in	Chen	and	Krajbich	(2018)	made	binary	decisions	in	200	

mini-dictator	games.	Each	decision	involved	a	conflict	between	selfishness	and	advantageous	

inequality	aversion.	The	200	games	were	divided	into	four	blocks	of	50	games	each.	Two	of	

them	were	time-free	blocks	and	the	other	two	were	time-pressure	and	time-delay	blocks.	The	

main	difference	between	the	experiments	in	Chen	and	Krajbich	(2018)	and	Study	1	was	that	

participants	made	their	decisions	either	by	pressing	key	“F”	to	choose	the	left	option	or	pressing	

key	“J”	to	choose	the	right	option.	In	total	102	participants	(56	females)	participated	in	the	

experiment.	 	

3.2.	Computational	Modeling	of	Choice	Outcomes	and	Response	Times	 	

We	fit	the	stDDM	to	the	choice	and	RT	data	in	half	of	the	time-free	trials	both	at	the	group	

(SI	Note	O)	and	participant	levels.	Consistent	with	Study	1,	we	coded	the	decision	as	pro-social	if	

the	participant	chose	the	option	with	higher	payoff	for	the	receiver,	and	coded	the	decision	as	

selfish	if	the	participant	chose	the	option	with	the	lower	payoff	for	the	receiver.	Thus,	a	starting	

point	greater	than	0.5	represents	a	predisposition	towards	the	pro-social	option,	and	a	starting	

point	less	than	0.5	represents	a	predisposition	towards	the	selfish	option.	Note	that	the	starting	

point	in	Chen	and	Krajbich	(2018)	was	defined	in	the	opposite	way	(i.e.,	greater	than	0.5	favored	

selfish).	

Reassuringly,	the	results	from	the	stDDM	fits	to	Study	2	were	very	similar	to	Study	1.	The	

average	starting	point	was	slightly	less	than	0.5	(Study	1:	0.473,	Study	2:	0.446),	the	RTSOD	was	

significantly	positive	(Study	1:	0.303,	Study	2:	0.524),	the	drift-rate	constant	was	positive	(Study	
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1:	0.243,	Study	2:	0.137),	and	the	ratio	of	the	weights	on	the	self-payoff	and	other-payoff	was	

substantially	larger	than	one	(Study	1:	6.57,	Study	2:	4.94).	

The	RTSOD	from	stDDM	was	correlated	with	pro-sociality	across	participants	(Fig.	6A,	two-

sided	Spearman	correlation	test,	 𝜌 = 0.763,	 𝑝 = 10/,1).	Moreover,	the	RTSOD	from	stDDM	

was	correlated	with	the	preference	change	across	time-pressure	and	delay	conditions	(Fig.	6B,	

𝜌 = 0.347,	 𝑝 < 0.001).	 	

  

Fig.	6.	Study	2:	(A)	Correlation	between	RTSOD	from	stDDM	and	pro-sociality	in	the	time-

free	condition;	(B)	Correlation	between	RTSOD	from	stDDM	and	preference	change	

across	time-pressure	and	delay	conditions.	For	each	participant,	pro-sociality	(𝛽!)	was	

estimated	using	half	of	the	time-free	trials,	and	the	stDDM	was	estimated	using	the	other	half	of	

the	time-free	trials.	12	participants	whose	 𝛽!	 were	out	of	[-1,	2]	are	not	included	in	(A)	and	30	

participants	whose	 𝛽< − 𝛽= 	 were	out	of	[-1,1]	are	not	included	in	(B),	but	all	participants	were	

included	in	the	correlation	analysis.	The	solid	line	is	the	fitted	regression	line.	Each	dot	

represents	one	participant.	

Here,	we	go	beyond	Chen	and	Krajbich	(2018),	which	focused	solely	on	the	starting	point	in	

the	standard	DDM,	to	explain	individual	differences	in	social	preferences	and	how	preferences	

change	across	time-pressure	and	delay	conditions.	We	investigate	whether	including	a	self-

onset	delay	(SOD)	in	the	DDM	allows	us	to	better	explain	behavior.	The	OLS	regression	in	Table	

P1	(Model	1)	of	SI	Note	P	shows	that	when	both	starting	point	and	RTSODs	are	estimated	in	the	

stDDM,	the	RTSOD	parameter	is	significant	in	explaining	pro-sociality	in	the	time-free	condition	

(𝑝 =10-6),	while	the	starting	point	is	not	significant	(𝑝 =0.239).	Model	2	in	Table	P1	shows	that	
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there	was	a	significant	main	effect	of	RTSOD	(𝑝 =0.004)	and	a	marginally	significant	interaction	

between	the	RTSOD	and	 𝜔%	 parameters	(𝑝 =0.068)	in	predicting	the	change	in	behavior	

across	time-constrained	conditions.	The	starting	point	was	not	significant	(𝑝 =0.112),	unlike	in	

Chen	and	Krajbich	(2018).	

Thus,	advancing	beyond	the	prior	work	we	show	that	people	are	heterogenous	in	the	

consideration	onset	times	of	self	and	others’	payoffs.	Our	results	indicate	that	individual	

attributes	do	not	affect	the	choice	process	to	the	same	degree	over	the	whole	course	of	the	

decision.	Even	after	accounting	for	predispositions,	the	intra-choice	dynamics	quantified	by	the	

SOD	explain	significantly	more	of	the	participants’	preferences	and	how	their	preferences	

change	across	time-pressure	and	delay	conditions.	 	

4.	Study	3:	Mouse-Tracking	Replication	of	Chen	and	Krajbich	(2018)	

In	Studies	1	and	2,	the	differences	between	self	payoffs	and	others’	payoffs	were	identical	

across	time	conditions.	However,	the	payoffs	themselves	were	slightly	different.	Thus,	the	

differences	in	MTSOD	and	RTSOD	between	time	conditions	could	have	been	due	to	the	

differences	in	payoffs	rather	than	time	constraints.	To	address	this	concern	and	check	the	

robustness	of	the	earlier	studies,	we	conducted	a	replication	experiment	of	Chen	and	Krajbich	

(2018)	adding	additional	decision	trials,	using	mouse-tracking	instead	of	button-press	

responses,	and	randomizing	the	assignment	of	the	choice	problems	to	the	three	time	conditions.	

4.1.	Materials	and	Methods	

Chen	and	Krajbich	(2018)	consisted	of	200	mini-dictator	games.	To	make	it	comparable	

with	Study	1	(300	games),	in	this	mouse-tracking	study	we	generated	another	100	games	(two	

subgroups)	using	the	rules	in	Chen	and	Krajbich	(2018).	That	is,	we	decreased	the	payoffs	in	

half	of	the	games	in	Subgroup	1	(with	Game	ID	of	1-50)	by	2	or	3	and	increased	the	payoffs	in	

the	other	half	of	the	games	by	2	or	3.	This	ensured	that	the	differences	in	self	payoffs	and	other’s	

payoffs	were	identical	across	the	six	subgroups.	
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In	the	experiment,	we	randomly	assigned	the	six	subgroups	of	games	into	time-free	(4	

subgroups,	200	games),	time-pressure	(1	subgroup,	50	games),	and	time-delay	(1	subgroup,	50	

games)	conditions	at	the	participant	level.	Thus,	the	games	were	not	systematically	different	

across	the	three	conditions	at	the	aggregate	level.	Other	than	creating	and	randomizing	the	

games	across	conditions	in	this	manner,	we	used	the	same	procedures	in	this	experiment	as	in	

Study	1.	In	total	103	university	students	(56	females,	 𝑚𝑒𝑎𝑛 = 20.0	 years,	 𝑠𝑑 = 2.0	 years)	

participated	in	this	experiment	from	November	20	to	December	24,	2021.	All	participants	were	

right-handed.	On	average,	participants	earned	6.4	US	Dollars	(including	the	show-up	fee).	The	

Internal	Review	Board	of	Zhejiang	university	approved	the	experiment,	and	all	participants	

provided	written	informed	consent.	

4.2.	Mouse-Trajectory	Analysis	

We	used	the	same	econometric	analysis	as	in	Study	1	to	identify	the	MTSOD	in	the	time-

free,	time-pressure,	and	time-delay	conditions.	Fig.	7A	plots	the	MTSOD	across	time-free	and	

pressure	conditions	across	participants.	Compared	to	the	time-free	condition,	time	pressure	

decreased	the	MTSOD	for	the	47	participants	with	positive	MTSOD	in	the	time-free	condition	

(two-sided	Wilcoxon	signed-rank	test,	 𝑉 = 1092.5,	 𝑝 =10-8),	and	increased	the	MTSOD	for	

the	51	participants	with	negative	MTSOD	in	the	time-free	condition	(𝑉 = 457,	 𝑝 =0.054).	That	

is,	time	pressure	reduced	the	initial	processing	time	advantage	for	the	earlier-considered	

attribute	relative	to	the	unconstrained	choices.	Moreover,	the	MTSOD	estimated	for	the	time-

free,	time-pressure,	and	time-delay	conditions	were	correlated	with	pro-sociality	(𝛽!)	in	the	

time-free	condition	(Fig.	Q2,	two-sided	Pearson	correlation	tests,	free:	 𝑟(103) =0.668,	 𝑝 =10-

14;	pressure:	 𝑟(103) =0.566,	 𝑝 =10-9;	delay:	 𝑟(103) =0.613,	 𝑝 =10-11).	This	indicates	that	

the	earlier	the	participant	started	to	process	others’	payoffs	relative	to	self	payoffs,	the	more	

pro-social	the	participant	was.	 	
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Fig.	7.	Study	3:	(A)	Mouse-trajectory-derived	self-onset	delay	(MTSOD)	across	time-free	

and	pressure	conditions;	(B)	Correlation	between	the	response-time-derived	self-onset	

delay	(RTSOD)	from	the	stDDM	and	the	MTSOD	in	the	time-free	condition;	(C)	Correlation	

between	RTSOD	and	pro-sociality	in	the	time-free	condition;	(D)	Correlation	between	

RTSOD	and	preferences	change	across	time	pressure	and	delay	conditions.	In	(A),	

participants	that	consider	self	or	others’	payoffs	first	in	the	time-free	condition	are	shown	in	

green	or	blue,	respectively.	The	dotted	black	line	indicates	the	45-degree	line	where	all	dots	

would	fall	if	the	MTSOD	was	equal	in	both	conditions.	Pro-sociality	(𝛽!)	was	estimated	using	

half	of	the	time-free	trials,	and	the	stDDM	was	estimated	using	the	other	half	of	the	time-free	

trials.	Three	participants	whose	 𝛽!	 were	out	of	[-1,	1]	are	not	included	in	(C)	and	fifteen	

participants	whose	 𝛽< − 𝛽= 	 were	out	of	[-1,1]	are	not	included	in	(D),	but	all	participants	were	

included	in	the	correlation	analysis.	The	solid	line	is	the	fitted	regression	line.	Each	dot	

represents	one	participant.	

4.3.	Computational	Modeling	Analysis	

We	fit	the	stDDM	to	the	choice	and	RT	data	in	half	of	the	time-free	trials.	The	RTSOD	in	the	

stDDM	was	correlated	with	the	MTSOD	(Fig.	7B,	two-sided	Pearson	correlation	test,	

𝑟(103) =0.718,	 𝑝 =10-16).	Furthermore,	45	out	of	57	participants	whose	RTSOD	was	positive	

had	a	positive	MTSOD	(two-sided	Binomial	test,	 𝑝 =10-5),	and	41	out	of	46	participants	whose	

RTSOD	was	negative	had	a	negative	MTSOD	(𝑝 =10-8).	The	RTSOD	in	stDDM	was	correlated	

with	pro-sociality	across	participants	in	the	time-free	condition	(Fig.	7C,	two-sided	Spearman	

correlation	test,	 𝜌 = 0.713,	 𝑝 = 10/,1),	and	the	RTSOD	in	stDDM	was	also	correlated	with	

preference	changes	across	time-pressure	and	delay	conditions	(Fig.	7D,	 𝜌 = 0.440,	 𝑝 = 10/1).	 	

The	OLS	regression	in	Table	Q1	(Model	1)	of	SI	Note	Q	shows	that	there	was	a	significant	

interaction	between	the	RTSOD	and	 𝜔"	 parameters	(𝑝 = 10/1)	in	explaining	pro-sociality	in	
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the	time-free	condition,	while	the	starting	point	was	not	significant	(𝑝 =0.101).	Model	2	in	

Table	Q1	shows	that	there	was	a	significant	main	effect	of	RTSOD	(𝑝 =0.035)	in	explaining	

preference	changes	across	time-pressure	and	delay	conditions,	while	the	starting	point	was	not	

significant	(𝑝 =0.604).	Therefore,	this	study	confirmed	the	key	result	in	the	two	studies	above,	

namely	that	intra-choice	dynamics	quantified	by	the	SOD	are	important	factors	in	determining	

social	preferences	and	how	those	preferences	may	change	under	different	time	conditions.	

5.	Between-subjects	Predictions	of	Preference	Changes	

Lastly,	we	used	a	machine	learning	approach	known	as	random	forests	(Breiman	2001)	to	

make	between-participant,	cross-validated	predictions	of	social	preferences	in	the	time-free	

condition	and	the	change	in	those	preferences	across	the	time-pressure	and	delay	conditions.	

We	chose	the	random	forests	algorithm	because	it	uses	a	different	subset	of	the	available	

variables	(e.g.,	3	out	of	7	parameters)	to	train	on	in	each	iteration.	Comparing	the	mean	squared	

error	(MSE)	of	classifiers	that	omit	versus	include	a	specific	parameter	provides	a	measure	of	

the	importance	of	each	parameter	that	is	less	arbitrary	than	comparisons	of	p-values	for	

regression	coefficients	(Azen	and	Budescu	2003,	Budescu	1993).	This	is	particularly	important	

when	some	of	the	prediction	variables	are	correlated	with	one	another,	which	is	the	case	in	the	

regressions	summarized	in	Tables	1,	P1,	and	Q1.	 	

5.1.	Machine	Learning	Materials	and	Methods	 	

In	this	analysis,	we	combined	the	data	from	all	three	studies	and	used	the	standard	DDM	or	

stDDM	parameters	as	variables	to	train	a	machine	learning	algorithm	to	predict	social	

preferences.	We	applied	the	same	exclusion	criteria	used	for	the	linear	regressions	in	Tables	1,	

P1,	and	Q1,	leaving	265	participants	in	this	analysis.	We	used	the	randomForest	package	(Liaw	

and	Wiener	2002)	in	R	(Team	2022),	which	implements	Breiman's	random	forest	algorithm	

(Breiman	2001).	First,	to	avoid	over-fitting	during	training,	we	tuned	the	algorithm	to	find	the	

optimal	number	of	variables	to	include	in	each	decision	tree.	The	standard	DDM	and	stDDM	

have	a	total	of	6	and	7	parameters,	respectively.	The	optimal	number	of	variables	was	3	for	both	
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models	when	predicting	social	preferences	in	the	time-free	condition	(𝛽!)	and	2	for	both	models	

when	predicting	preference	changes	between	time-pressure	and	delay	conditions	(𝛽< − 𝛽=).	

Next,	we	trained	5000	decision	trees	on	different	randomly	selected	subsets	of	approximately	

two-thirds	of	the	participants	and	recorded	the	MSE	of	the	out-of-sample	predictions	for	the	

remaining	third	of	the	participants.	The	out-of-sample	prediction	for	each	participant’s	social	

preference	in	the	time-free	condition	or	change	in	preference	across	the	time-pressure	and	

delay	conditions	was	the	average	predicted	value	across	all	decision	trees	in	which	the	

participant	was	part	of	the	out-of-sample	test	set.	The	overall	performance	of	the	algorithm	was	

quantified	using	the	R2	(R-squared)	between	the	predicted	and	empirically	observed	

preferences.	We	also	computed	the	probability	that	the	stDDM	predictions	were	better	than	

those	from	the	standard	DDM	on	each	of	the	5000	decision	trees	using	the	parameters	from	

those	models.	The	importance	of	each	parameter	in	predicting	preferences	was	calculated	as	

the	mean	increase	in	MSE	for	all	decision	trees	that	omitted	the	parameter	compared	to	those	

that	included	it.	 	

5.2.	Machine	Learning	Results	 	

Our	random	forests	machine	learning	analysis	indicated	that	intra-choice	dynamics	are	

important	for	predicting	social	preferences	across	individuals.	Random	forests	based	on	stDDM	

parameters	compared	to	standard	DDM	parameters	were	better	at	predicting	participants’	

social	preferences	(𝛽!)	within	the	time-free	condition	(R2	=	0.653	versus	0.600,	probability	of	

lower	error	from	stDDM	=	0.9998)	and	their	preference	changes	(𝛽< − 𝛽=)	across	the	time-

pressure	and	delay	conditions	(R2	=	0.088	versus	0.024,	probability	of	lower	error	from	stDDM	

=	0.995)	at	the	group	level	(see	also	Appendix	Fig.	R1	and	Appendix	Table	R1).	The	relative	

importance	of	each	stDDM	and	standard	DDM	parameter	in	predicting	preference	changes	is	

shown	in	Fig.	8	(see	also	Appendix	Table	R2).	The	stDDM	parameters	that	contributed	most	to	

predicting	preference	changes	were	the	RTSOD,	drift	rate	constant,	and	relative	drift	weight	on	

other	and	self	payoffs.	These	parameters	determine	the	evidence	accumulation	rate	and	how	it	
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changes	over	time	within	a	given	choice,	i.e.,	the	intra-choice	dynamics.	

Note	that	the	drift	constant	parameter	quantifies	the	tendency	to	move	toward	selecting	

the	pro-social	or	selfish	option	irrespective	of	the	payoff	amounts	in	a	given	trial.	In	other	

words,	the	drift	rate	constant	influences	the	process	of	evidence	accumulation	directly,	which	

makes	it	different	from	the	starting	point.	The	starting-point	parameter	quantifies	the	relative	

amount	of	evidence	required	to	select	the	pro-social	versus	the	selfish	option	but	does	not	affect	

the	accumulation	process	itself	(Urai	et	al.	2019).	Thus,	the	results	of	the	random	forest	analysis	

show	that	parameters	quantifying	the	dynamics	of	the	evidence	accumulation	process	are	

important	for	predicting	social	preferences	across	individuals.	

	 	

Fig.	8.	The	importance	of	each	parameter	in	the	stDDM	(A)	and	standard	DDM	(B)	in	

predicting	preference	changes	across	time-pressure	and	delay	conditions.	The	x-axis	

shows	the	percent	increase	in	mean	squared	error	(MSE)	for	classifiers	that	omit	the	parameter	

listed	in	each	row.	The	larger	the	increase	in	MSE,	the	more	important	the	parameter	is	for	

predicting	an	individual’s	change	in	social	preferences	under	time	pressure	relative	to	time	

delay.	 𝑅𝑇𝑆𝑂𝐷	 is	the	response-time-derived	self-onset	delay	in	the	stDDM,	 𝜔+ 	 is	the	drift	

constant,	𝜔%	 and	 𝜔"	 are	DDM	parameters	quantifying	the	relative	drift	weight	on	other	and	

self	payoffs	respectively,	 𝑎	 is	the	magnitude	of	the	boundary	separation,	 𝑧	 is	the	starting	

point,	and	 𝑡8	 is	the	non-decision	time.	 	
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6.	Discussion	and	Conclusion	

Our	results	reveal	how	people	process	information	to	make	social	decisions	and	help	to	

identify	important	sources	of	individual	variability	in	this	process.	In	particular,	we	find	that	self	

and	other’s	outcomes	enter	the	decision	process	at	different	times,	and	that	these	onset	times	

are	important	for	predicting	the	effects	of	time	pressure	or	delay.	

We	draw	our	conclusions	from	a	combination	of	process	data,	time	manipulations,	and	

computational	modelling.	In	Study	1,	using	mouse-tracking	techniques,	we	find	that	in	the	

absence	of	time	constraints,	participants	who	are	more	selfish	process	their	own	payoffs	earlier	

than	others’	payoffs	while	more	pro-social	participants	process	others’	payoffs	earlier	than	their	

own	payoffs.	A	separate	analysis	of	the	choice	and	RT	data	using	the	stDDM	confirmed	these	

mouse-tracking	results.	In	Studies	2	and	3,	we	replicated	these	results	using	experiments	in	

which	participants	made	decisions	with	and	without	mouse	tracking.	 	

The	attribute	onset	times	determine	when	a	given	payoff	enters	the	decision	process.	The	

payoffs	are	then	multiplied	by	their	subjective	weights	to	determine	the	drift	rate.	Thus,	the	full	

impact	of	the	difference	in	onset	times	(SOD)	depends	on	the	relative	weights	on	the	self	and	

others’	payoffs.	While	on	average	the	relative	weight	on	self	payoffs	is	higher,	the	others’	payoffs	

tend	to	affect	the	mouse	trajectories	first,	although	we	have	shown	there	is	substantial	

individual	variability	in	both	weights	and	consideration	onset	times	(e.g.,	Fig.	2A	vs	Fig.	3B).	

When	striving	to	understand	social	decisions	at	the	mechanistic	level,	researchers	need	to	

quantify	and	evaluate	all	of	these	factors.	Combining	all	these	mechanisms	can	better	explain	

individual	differences	in	pro-sociality.	 	

Our	results	provide	an	insight	into	human	pro-sociality:	Selfish	people	tend	to	first	

consider	information	about	themselves	over	information	about	others,	while	pro-social	people	

do	the	opposite.	This	is	consistent	with	other	eye-tracking	work	on	social	preferences	(Fiedler	

et	al.	2013,	Smith	and	Krajbich	2018,	Teoh	et	al.	2020)	and	suggests	that	the	relative	influence	

of	different	attributes	changes	over	the	course	of	a	decision.	These	findings	raise	questions	
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about	why	some	people	first	consider	themselves	while	others	do	the	opposite.	Does	it	reflect	

top-down,	goal-directed	information	search	based	on	their	preferences,	or	does	it	also/instead	

reflect	bottom-up	saliency	of	self-relevant	information	(Ghaffari	and	Fiedler	2018)?	While	our	

results	cannot	definitively	resolve	these	questions,	the	fact	that	initial	processing	advantages	for	

one	attribute	over	another	decrease	under	time	pressure	suggests	that	information	search	and	

processing	is	context-dependent	and	not	fully	determined	by	bottom-up	saliency.	Our	findings	

also	raise	questions	about	the	distinction	between	sequential	processing	and	parallel	

processing	either	across	the	whole	decision	or	within	certain	phases	of	the	process	(Townsend,	

1990,	Townsend	and	Nozawa,	1995),	which	is	an	interesting	direction	for	future	study.	

While	we	found	that	the	self-onset	delay	(SOD)	predicted	participants’	preference	changes	

across	time-pressure	and	delay	conditions	in	the	three	studies,	we	found	that	the	starting	point	

(predisposition)	in	the	stDDM	only	predicted	changes	in	preferences	in	Study	1,	but	not	in	

Studies	2	and	3.	This	is	in	contrast	to	the	standard	DDM,	in	which	the	starting	point	does	predict	

preference	changes	across	all	three	studies.	So,	while	the	starting	point	is	a	useful	parameter	for	

understanding	social	preferences	and	how	they	change	under	time	constraints,	part	of	its	power	

seems	to	come	from	its	ability	to	partially	account	for	variance	that	is	better	captured	by	the	

SOD	–	which	is	fixed	at	zero	in	the	standard	DDM	(see	Fig.	I3	and	Fig.	N2).	

Our	work	highlights	the	usefulness	of	process-tracing	methods	(especially	mouse	tracking)	

in	decision	science	and	management.	Mouse-tracking	is	an	emerging	tool	that	offers	an	

accessible,	data-rich,	and	real-time	window	into	how	people	categorize	and	make	decisions	

(Chen	and	Fischbacher	2016,	Cheng	and	González-Vallejo	2018,	Falandays	et	al.	2021,	Freeman	

et	al.	2008,	Konovalov	and	Krajbich	2020,	Koop	2013,	Koop	and	Johnson	2011,	Kvam	and	

Busemeyer	2020,	Lepora	and	Pezzulo	2015,	Spivey	et	al.	2005,	Stillman	et	al.	2018,	Sullivan	et	

al.	2015).	As	we	continue	to	develop	and	refine	dynamical	models	of	the	choice	process,	such	

choice-process	measures	become	increasingly	important.	Mouse-tracking	is	especially	useful	

when	experimental	manipulations	obscure	the	true	timing	of	the	decision	process.	For	example,	
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here,	and	in	previous	work	(Chen	&	Krajbich,	2018),	we	only	fit	the	DDM	to	the	time-free	

condition.	This	is	because	it	is	not	clear	how	exactly	people	adapt	their	choice	boundaries	to	

deal	with	a	short	time	limit	(Hawkins	et	al.	2015,	Palestro	et	al.	2018),	and	because	we	cannot	

observe	the	true	RT	in	the	time-delay	condition.	This	makes	it	problematic	to	fit	any	DDM	to	the	

time-delay	data.	Fortunately,	the	high	correlation	between	SODs	based	on	the	mouse-tracking	

and	choice	+	RT	data	indicate	that	one	measure	can	substitute	for	the	other	if	either	accurate	RT	

data	or	mouse-tracking	data	are	not	available.	 	

Another	advantage	of	mouse-tracking	data	is	that	it	can	yield	trial-level	measures	(Stillman	

et	al.	2020)	while	computational	models	of	choice	and	RT	data	(e.g.	with	the	stDDM)	must	be	fit	

to	many	trials	simultaneously.	For	instance,	Stillman	et	al.	(2020)	have	shown	that	the	mouse-

tracking	metrics	of	conflict	predict	participants’	risk	preferences	at	the	single-trial	level,	and	

that	mouse-tracking	metrics	outperform	RT	in	predicting	risk	preferences.	This	suggests	that	

mouse-trajectory	data	are	useful	in	revealing	people’s	preferences	and	worth	collecting	in	

experiments	and	in	practice	(e.g.,	for	predicting	consumers’	preferences	based	on	their	

trajectory	data	while	browsing)	(Fisher	forthcoming).	

Our	results	also	contribute	to	the	research	on	decisions	under	time	constraints.	Time	

constraints	are	common	in	social	decisions.	For	example,	managers	often	need	to	quickly	make	

distribution	decisions	about	how	to	allocate	work	between	their	team	members.	Another	

example	is	that	bargainers	must	often	reach	agreements	before	deadlines	(Karagözoğlu	and	

Kocher	2019,	Roth	et	al.	1988).	Our	results	show	that	the	effects	of	time	constraints	depend	on	

individual-specific	processing	dynamics,	and	thus	we	need	to	take	this	into	account	when	

designing	policies	and	institutions.	Time	constraints	have	often	been	used	or	studied	in	other,	

less	explicitly	social	decisions	as	well,	e.g.,	risk	decisions	(Olschewski	and	Rieskamp	2021,	Saqib	

and	Chan	2015),	intertemporal	choices	(Dai	and	Fishbach	2013,	Imas	et	al.	forthcoming)	and	

others	(Baldassi	et	al.	2020).	Within	the	value-based	DDM	framework,	previous	studies	have	

used	the	starting	point	(Chen	and	Krajbich	2018,	Desai	and	Krajbich	2022,	Zhao	et	al.	2020)	and	
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threshold	(Milosavljevic	et	al.	2010)	parameters	to	quantify	and	explain	the	effects	of	time	

constraints	on	people’s	preferences.	Our	results	show	that	dynamic	intra-choice	changes	in	the	

evidence	accumulation	process	is	another,	potentially	even	more	important	factor	to	account	

for.	

It	is	important	for	managers	and	policy	makers	to	understand	and	predict	the	range	and	

probability	of	changes	in	social	decision	making	that	may	occur	in	response	to	interventions	or	

policy	changes	before	they	are	implemented.	This	means	that	we	need	to	understand	not	just	

the	mean	or	median	response,	but	also	individual	variability.	Greater	knowledge	of	the	dynamic	

cognitive	and	neural	mechanisms	that	drive	choices	is	an	important	step	towards	this	

understanding.	Our	findings	demonstrate	that	the	time	when	a	specific	attribute	begins	to	

influence	the	decision	process	–	a	factor	that	has	so	far	been	relatively	neglected	–	is	an	

important	determinant	of	social	behavior. This	highlights	the	possibility	that	features	of	how	

the	choice	problem	is	presented	(i.e.,	choice	architecture	manipulations)	could	be	used	to	

promote	pro-social	decision	making	within	managerial	or	other	contexts.	The	previous	results	

from	Chen	and	Krajbich	(2018)	suggested	that	choice	independent	predispositions	were	a	

primary	driver	of	social	preferences	changes	under	time	pressure	or	delay.	To	influence	such	a	

predisposition	an	intervention	or	nudge	would	have	to	take	effect	prior	to	the	decision.	

However,	our	current	results	indicate	that	intra-choice	dynamics	also	play	a	role	in	social	

preferences	and	their	changes	under	time	pressure/delay,	which	opens	up	a	wider	set	of	

possibilities	for	promoting	pro-social	decisions.	For	instance,	manipulating	the	order	in	which	

people	consider	different	attributes	(Johnson	et	al.	2007,	Teoh	et	al.	2020,	Weber	et	al.	2007)	

might	be	a	more	effective	strategy	for	altering	real-world	behavior.	  
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