
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Some contributions to uncertainty quantification and change point detection in dynamic 
systems

Permalink
https://escholarship.org/uc/item/88q199hb

Author
HAN, YI

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/88q199hb
https://escholarship.org
http://www.cdlib.org/


Some Contributions to Uncertainty Quantification and Change Point Detection in Dynamic
Systems

By

YI HAN
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Statistics

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Thomas C.M. Lee, Chair

Alexander Aue

Debashis Paul

Committee in Charge

2024

i



© Yi Han, 2024. All rights reserved.



To my family for their endless love, support, and encouragement.

ii



Contents

Abstract v

Acknowledgments vi

Chapter 1. Introduction 1

Chapter 2. Uncertainty Quantification for Sparse Estimation of Spectral Lines 3

2.1. Introduction 3

2.2. Methodology 6

2.3. GFI for Line Spectral Estimation 10

2.4. Theoretical Properties 14

2.5. Simulation Results 15

2.6. Real Data Example: Radial Velocity Analysis 20

2.7. Concluding Remarks 23

2.8. Supplementary materials 26

Chapter 3. Structural Break Detection in Non-stationary Network Vector Autoregression

Models 36

3.1. Introduction 36

3.2. Breakpoint Detection using MDL 40

3.3. Practical Optimization of MDL Using Genetic Algorithms 45

3.4. Simulation Results 49

3.5. Real Data Analysis 62

3.6. Concluding Remarks 67

3.7. Supplementary materials 68
iii



Chapter 4. Change Point Detection in Sequential Pairwise Comparison Data with Covariate

Information 83

4.1. Introdution 83

4.2. Model Formulation 85

4.3. Change Point Detection using MDL 87

4.4. Practical Optimization of MDL 92

4.5. Simulation Results 93

4.6. Real Data Analysis 95

4.7. Concluding Remarks 96

4.8. Supplementary materials 98

Bibliography 112

iv



Abstract

Some contributions to uncertainty quantification and change point detection in dynamic systems

This dissertation makes significant contributions to important statistical machine learning

problems, including uncertainty quantification and structural break detection in dynamic systems.

It focuses on these two challenges in several specific settings and develops tailored solutions.

Firstly, it addresses the problem of uncertainty quantification for line spectral estimation. By

leveraging the generalized fiducial inference framework, a novel method is developed to quantify

the uncertainty of spectral line estimators. This method is theoretically proven to possess desir-

able properties and demonstrates promising empirical performance. Additionally, the proposed

method has been successfully applied to exoplanet detection applications, shedding light on a cru-

cial topic in astronomy. Secondly, the dissertation tackles the challenge of breakpoint detection in

non-stationary network vector autoregression models. Thirdly, it considers breakpoint detection in

pairwise ranking problems. For the latter two problems, the minimum description length principle

is invoked to derive a model selection criterion, which is shown to produce statistically consis-

tent estimates for the number and locations of change points, as well as other model parameters.

Furthermore, two practical algorithms are developed to optimize the criterion for these respective

problems.
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CHAPTER 1

Introduction

In the analysis of many real-world complex problems, two key challenges are widely encoun-

tered. The first is quantifying the uncertainty of estimated parameters, and the second is detecting

breakpoints in observed data. This dissertation focuses on addressing these two important prob-

lems.

Spectral analysis is a crucial topic that has garnered significant attention in the signal pro-

cessing community due to its rich applications in areas such as speech coding, radar, sonar signal

processing, and imaging systems. However, most published work in this field primarily focuses on

point estimation of the spectral line numbers and frequencies, while relatively little attention has

been given to the issue of uncertainty quantification. Chapter 2 of this dissertation examines the

line spectral estimation problem from the perspective of uncertainty quantification for the numbers

and amplitudes of the signals. Specifically, it develops a novel method for deriving a probability

density function on the space of all potential signal combinations. This approach enables the cal-

culation of point estimates and confidence intervals for quantities of interest. The proposed method

is based on the relatively new methodology termed generalized fiducial inference (GFI), a modern

update of Fisher’s original fiducial idea, and is theoretically proven to possess desirable properties.

Several simulated datasets and three real exoplanet datasets are used to illustrate the promising

empirical performance of the proposed method.

Another critical problem addressed in this dissertation is the detection of breakpoints in ob-

served multivariate time-series datasets. Breakpoints are time points that divide the series into

smaller locally stationary time series, where the stationarity assumption holds.

In Chapter 2, the dissertation tackles the challenge of analyzing multivariate time series data

in dynamic networks. It introduces a piecewise stationary network vector autoregressive (NAR)
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model to capture evolving dynamics within the network over time. The identification of these seg-

ments, along with the determination of the NAR processes’ autoregressive lag orders, are treated

as unknowns. The minimum description length (MDL) principle is leveraged to develop a crite-

rion for model selection that estimates these unknown parameters. A two-stage genetic algorithm

is formulated to tackle this optimization challenge. The MDL criterion is proven to be consis-

tent in identifying the number and positions of the breakpoints, and its validity is demonstrated

through simulation studies and real data analysis related to yellow-cab pick-up data in Manhattan.

To the best of our knowledge, this is one of the first works to consider breakpoint detection in NAR

models.

In Chapter 3, the dissertation shifts its focus to breakpoint detection within the ranking prob-

lem domain. The Bradley-Terry-Luce model, which facilitates the estimation of item ranks based

on pairwise comparison results, is foundational. Additionally, with the availability of covariate

information for the items, the covariate-assisted ranking estimation (CARE) model was introduced

to enhance ranking accuracy. Chapter 3 introduces the Piecewise Stationary CARE (PS-CARE)

model, designed to partition the data into distinct stationary CARE phases, initially characterized

by unknown numbers and positions of segments. To address this challenge, the minimum descrip-

tion length (MDL) principle is employed to derive a model selection criterion, crucial for accurately

estimating these unknown parameters. The practical optimization of this criterion is achieved

through the utilization of the PELT algorithm, effectively identifying change points—namely, the

junctures where adjacent CARE segments converge temporally.
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CHAPTER 2

Uncertainty Quantification for Sparse Estimation of Spectral Lines

Line spectral estimation is an important problem that finds many useful applications in signal

processing. Many high-performance methods have been proposed for solving this problem: they

select the number of spectral lines and provide point estimates of the frequencies and amplitudes of

such spectral lines. This chapter studies the line spectral estimation problem from a different and

equally important angle: uncertainty quantification. More precisely, this chapter develops a novel

method that provides an uncertainty measure for the number of spectral lines and also offers point

estimates and confidence intervals for other parameters of interest. The proposed method is based

on the generalized fiducial inference framework and is shown to possess desirable theoretical and

empirical properties. It has also been numerically compared with existing methods in the literature

and applied for the detection of exoplanets.

2.1. Introduction

Spectral analysis is an important topic that attracts much attention in the signal processing

community. It has rich applications in areas like speech coding [1], radar and sonar signal process-

ing [2] [3], and imaging system [4], to name a few.

This chapter focuses on the sparse spectral line estimation problem as described, for example,

in [5]. Let

(2.1) Y = [Y (t1), Y (t2), · · · , Y (tN)]
T ∈ CN×1

denote the complex-valued signal data vector, where the observed times tk ∈ R+, k ∈ 1, . . . , N ,

are not required to be regularly spaced. We shall focus on complex-valued signals, but our method-

ology can be naturally carried over to real-valued signals; see Section VI. We assume that Y

satisfies the following model, sometimes known as the sinusoids-in-noise model [5], in which p
3



represents the true number of significant frequencies:

(2.2) Y =

p∑
l=1

αla(fl) + ϵ,

where αl ∈ C are the complex amplitudes of the p sinusoidal components, fl ∈ R are the true

frequencies, and

a(f) = [ei2πft1 , ei2πft2 , ei2πft3 , · · · , ei2πftN ]T ∈ CN×1.

Also, ϵ ∈ CN×1 is the noise vector, and we assume that its elements are i.i.d. and follow the

complex normal distribution with mean 0 and variance σ2, denoted as CN (0, σ2).

With this setup, the problem is to use the observation signal vector Y to estimate the true

frequencies fl and their amplitudes |αl|. This problem has been studied for a long time, and

different methods have been proposed. An earlier set of methods are non-parametric, including

conventional periodogram-based methods and variants like the Daniell method [6] and the Welch

method [7]. There are also correlogram-based, temporal windowing, and lag windowing methods.

However, these methods may show low performance, such as limited resolving power.

The second set of methods is parametric and models the time series data with auto-regressive

or auto-regressive moving-average processes [8] [9]. They provide accurate spectral estimation

if the assumed model is appropriate for the observed time series. However, a drawback of these

methods is that they typically require prior knowledge of the number of true frequencies p, which

is often not practical.

The third set of methods is semi-parametric, which mostly performs sparse estimation. The

performances of these methods are similar to those of parametric methods despite not requiring

prior knowledge of p. Some of these methods perform sparse data recovery using mixed norm ap-

proximation [10], or atomic norm denoising [11]. Also, there are other sparse estimation methods

that need other prior information, such as the noise variance as in [12]. One notable exception is

the LIKES method (LiKelihood-based Estimation of Sparse), which does not require prior infor-

mation [5].
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Lastly, Bayesian methods have also been proposed [13] [14]. In addition to offering point

estimates, the latter work also provides uncertainty quantification for some parameters of interest.

We need more notations to proceed. Assume fmax to be the upper bound of all the true fre-

quencies {fl}; i.e., fmax ≥ fl, l = 1, . . . , p. Let ∆ be the step size or the distance between two

adjacent grid points of a uniform grid covering the interval [0, fmax]. This chapter only consid-

ers the positive frequencies for notation simplicity, but the discussion can be straightforwardly

extended to negative frequencies. Finally, write

(2.3) K = ⌊fmax

∆
⌋

and

A = [a(0),a(∆), · · · ,a((K − 1)∆))] ∈ CN×K .

Using these notations, we can approximately re-express (2.2) as

(2.4) Y = Aβ + ϵ,

where β = [β1, · · · , βK ]T is a sparse vector with mostly zero elements. Those non-zero elements

of β equal to {αl}, while the indexes of these non-zero elements represent the corresponding

frequencies in A that are equal to {fl}.

The main idea of this so-called on-grid method is to use the grid that is closest to the true

frequency to approximate it. Also, the problem of estimating {αl, fl} can be reformulated as

estimating the sparse vector β in (2.4) and detecting the non-zero elements of the sparse vector.

By choosing K to be sufficiently large and ∆ to be sufficiently small, one can have the distance

between the true frequencies and their closest grids be practically negligible. However, a very large

value of K usually implies high-dimensional problems, so there is actually a trade-off between

estimation accuracy and computational efficiency.

In practice, K is almost always much larger than N , which makes the estimation of β from

Y in (2.4) a very challenging task. Different methods have been proposed to solve this problem,
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where some require additional prior knowledge such as noise variance or the number of non-zero

frequencies; e.g., see [12, 15, 16].

It is fair to say that most existing methods focus on estimating the amplitudes αl and noise

variance σ2. At the same time, very little treatment has been given to the issue of uncertainty

quantification. The main goal of this chapter is to construct confidence intervals for αl, σ2, as

well as the number of the true frequencies, p. The proposed method is based on the relatively new

methodology termed generalized fiducial inference (GFI) [17]. To the best of our knowledge, this

is one of the first complete systematic analyses that capture these uncertainties in the line spectral

estimation problem. It is also the first time that GFI is being applied to a complex-valued problem.

The rest of this chapter is organized as follows. Section 2.2 provides some background mate-

rial and usage on GFI. Section 2.3 applies the methodology to the sparse line spectral estimation

problem, and one relatively simple and fast algorithm to generate fiducial samples is proposed.

The theoretical properties of the proposed solution are examined in Section 2.4, while its empirical

properties are illustrated in Sections 2.5 and 2.6 by numerical simulations and a real data applica-

tion. Lastly, concluding remarks are offered in Section 2.7, and technical details are provided in

the appendix.

2.2. Methodology

2.2.1. A Brief History of Generalized Fiducial Inference. The idea of fiducial inference was

first proposed by Fisher in 1930s [18] as an alternative to the Bayesian approach with the goal of

constructing an appropriate statistical distribution on the estimator of an unknown parameter. One

potential issue of the Bayesian approach is that, when inappropriate prior distributions are used, the

performance and reliability of the approach could be affected. Fisher’s fiducial method intends to

avoid using the prior distribution; instead, it considers a switching mechanism between the model

parameters and the observed data that is very similar to the idea of the method of maximum like-

lihood. In spite of Fisher’s continuous endeavor to complete the framework of fiducial inference,

it has not received much attention because it works well only for single-parameter problems but
6



fails in the context of multiple parameters. Interested readers are referred to [17], where a more

detailed introduction about the history of fiducial inference is given.

In recent years, there has been a resurgent interest in reformulating the fiducial concept. These

modifications include Dempster–Shafer theory [19], [20] and inferential models [21]. Motivated

by generalized confidence intervals [22], [23] and the surrogate variable method for obtaining

confidence intervals for variance components [24], GFI was developed in a series of papers pub-

lished around 2010s, and summarized in [17]. It has been successfully applied to solve different

uncertainty quantification problems, including wavelet regression [25], ultrahigh dimensional re-

gression [26] and sparse additive models [27].

2.2.2. An Introduction to Generalized Fiducial Inference. As mentioned before, GFI uti-

lizes the idea of a so-called switching principle that is similar to Fisher’s celebrated maximum

likelihood method. It first begins with expressing the relationship between the data Y and the

parameter θ with

(2.5) Y = G(U ,θ),

where G(·, ·) is sometimes known as the “structural equation.” Also, U is the random component

of the problem whose distribution is completely known and is independent of θ. For example, for

the problem of estimating µ from {Xi}ni=1 withXi’s as i.i.d. N (µ, σ2), we writeXi = µ+σZi with

Zi as i.i.d. N (0, 1), where the parameter θ = {µ, σ}, data Y = {Xi}ni=1 and random component

U = {Zi}ni=1. Note that the distribution of U is completely known.

Similar to the main idea behind maximum likelihood estimation, with the switching principle,

the roles of θ and Y are switched in the GFI framework once the data are observed. That is, to treat

the random data Y as deterministic and the deterministic parameter θ as random. With this idea,

we can define a set {θ : y = G(U ∗,θ)} as the inverse mapping of G, where U ∗ is an independent

copy of U and y is an observation of Y . A method is provided by [28] to ensure the existence and

uniqueness of this inverse mapping.
7



With the above setup, we can build a distribution of θ from (2.5) in the following manner. For

any observed data y and u, we can adopt the method from [28] to identify one θ that guarantees

the existence of the inverse

(2.6) Hy(u) = {θ : y = G(U ∗,θ)}.

Since the distribution of U is totally known and independent of θ, we can generate the random

samples U1,U2, . . . and use (2.6) to obtain the random samples for θ via

θ1 = Hy(U1), θ2 = Hy(U2), . . .

In other words, GFI transfers the randomness in U1,U2, . . . to θ1,θ2, . . . via the inverse equa-

tion (2.6). We call these θ1,θ2, . . . fiducial samples, which can be used to calculate point estimates

and construct confidence intervals of θ in a way similar to posterior samples in the Bayesian con-

text. Notice that an explicit expression for Hy may not exist for certain problems, but next, we

describe how the fiducial samples can still be generated without calculating an expression for Hy.

Through (2.6) one can see that a density function r(θ|y) is implicitly defined for θ. We refer

r(θ|y) as the generalized fiducial density (GFD) of θ, which plays a similar role as the posterior

density in the Bayesian context. It is shown in [17] that under some mild smoothness assumptions

on the likelihood function f(y, θ) of y, the GFD r(θ|y) admits the following expression

(2.7) r(θ|y) = f(y,θ)J(y,θ)∫
Θ
f (y,θ′) J (y,θ′) dθ′ ,

where

(2.8) J(y, θ) = D

(
d

dθ
G(U,θ)|U=G−1(Y,θ)

)
with D(A) = | det(ATA)|1/2 and u = G−1(y, θ) as the value of u such that y = G(U,θ).

We note that although (2.7) provides an explicit formula to calculate the GFD, it may not

be as straightforward as it looks: the denominator requires the calculation of an integral that is
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intractable for some problems, and hence Monte Carlo or other numerical techniques are needed

to sample from the GFD r(θ|y).

2.2.3. Incorporating Model Selection in GFI. Up to now, our discussion on GFI assumes

that the dimension of θ is fixed and known. In other words, (2.7) cannot be used for model

selection problems, where the size of θ also needs to be chosen.

In the context of wavelet regression, [25] incorporated model selection in the GFI framework,

which can be extended to more general situations. The idea is similar to penalized likelihood

estimation, where a penalty term is added to the (log)-likelihood function to achieve a balanced

trade-off between data fidelity and model complexity. Here we provide a brief description and

refer the reader to [17] for further details.

Let M be the set of all possible models and θM be the parameters of any model M ∈ M.

The GFD of (θM ,M) can be expressed as

r(θM ,M |y) = r(θM |y,M)r(M |y),

where the conditional GFD r(θM |y,M) of θM (given M ) can be calculated using (2.7), while the

marginal GFD r(M |y) of M admits the expression

(2.9) r(M |y) =
∫
r(θM |y,M)e−q(M)dθM∑

M ′∈M
∫
r(θM ′ |y,M ′)e−q(M ′ )dθM ′

,

where q(M) is the penalty associated with model M .

Different choices of q(M) will lead to different penalty strengths, which will in turn affect the

final results. In general, the stronger the penalty, the lesser the number of spectral lines we would

expect to obtain. When q(M) is suitably chosen, it leads to some well-known model selection

methods commonly used in the signal processing and statistics communities. For example, if

we set q(M) = 2|M | with |M | as the number of parameters in model M , we have the Akaike

Information Criterion (AIC). Here we follow [26] and choose q(M) as

(2.10) q(M) =
|M |
2

logN + loge1/γ
(

K
|M |

)
,

9



where K is the number of parameters of the largest model in M. Also, γ is a constant measuring

the sparsity belief of the model. A natural choice is γ = 1, but other choices are also possible,

and we note that there is not a universal choice of γ that is suitable for all different kinds of true

models. In our work, we use γ = 1, which aligns (2.10) with the minimum description length

principle [29] for high-dimensional problems [30]. This is a main reason behind our choice of

q(M), as the minimum description length principle is a well-studied model selection method that

often produces excellent theoretical and empirical results.

2.3. GFI for Line Spectral Estimation

This section applies the above GFI methodology to the line spectral estimation problem rep-

resented by (2.4). We shall calculate the GFDs for this problem and devise a method for generating

fiducial samples. To the best of our knowledge, this is the first time that GFI is being applied to a

problem with complex-valued coefficients and responses.

Let M0 be the true model and M be any candidate model such that |M | < K. Given M , the

structural equation (2.5) for model (2.4) is:

(2.11) y = AMβM + σU ,

where AM and βM represent, respectively, the design matrix and the parameter vector of model

M . Also, σ is the standard deviation of the error term and U is a standard multivariate complex

normal variable; i.e. U ∼ CN (0, IN). To calculate the GFD of θ = (σ,β)T given M for (2.11),

we first compute (2.8)

J(y, θ) = D

(
d

dθ
G(U,θ)|U=G−1(y,θ)

)
= D

(
AM ,

y −AMβM

σ

)

=

det

 AH

M

yH−βH
MAH

M

σ

(AM
y−AMβM

σ

)


1
2

= σ−1| det(AH
MAM)|

1
2 RSS

1
2
M ,

where AH
M is the conjugate transpose of a A and RSSM is the residual sum of squares of model

M .
10



Next we calculate the GFD of θ given M using (2.7):

r(θ|y,M) =
cNσ−1RSS

1
2
M ( 1

σ−2n )e
−1

σ2 (y−AMβM )H(y−AMβM )∫
Θ cNσ−1RSS

1
2
M ( 1

σ−2n )e
−1

σ2 (y−AMβM )H(y−AMβM )dθ′
,

where cN = 1
πN | det(AH

MAM)| 12 .

Let K be the length of βM . So the numerator of (2.9) can be calculated as:

r(M |y) ∝
∫
σ−1| det(AH

MAM)|1/2RSS1/2
M (

1

πNσ−2N
)

· e−
1
σ2 (y−AMβM )H(y−AMβM )dθe−q(M)

=e−q(M) ·
∫
π−Nσ−2N+1| det(AH

MAM)|1/2RSS1/2
M dσ

·
∫
e−

1
σ2 (y−AMβM )H(y−AMβM )dβM ,

where the last term is
∫
e−

1
σ2 (y−AMβM )H(y−AMβM )dβM = π|M |σ2|M | det(AH

MAM)−1 exp(−RSSM

σ2 ).

Therefore

(2.12)

r(M |y) ∝
∫
π−Nσ−(2N+1)| det(AH

MAM)|1/2π|M |σ2|M | · 1

det(AH
MAM)

e−
1
σ2 RSSMdσe−q(M)

=π|M |−N | det(AH
MAM)|−1/2RSS1/2

M e−q(M) ·
∫
σ2|M |−2N−1e−

1
σ2 RSSMdσ

=π|M |−N | det(AH
MAM)|−1/2 · RSS

1
2
+|M |−N

M · Γ(N − |M |) · e−q(M).

2.3.1. Generating Fiducial Samples. This subsection presents a method for generating fidu-

cial samples for the line spectral estimation problem that this chapter considers. The idea is to first

generate a candidate model M , then given M , generate θ = (σ,β).

First of all, due to the large number of columns of A in the line spectral estimation context, we

are facing an extremely large number of potential models in the model set M; i.e., the cardinality

of M equals 2K , which is often intractable. Therefore, for various practical considerations, we

only consider models from a subset M∗ of M. We delay our discussion of how to choose M∗ to

Appendix 2.8.1. In principle, an ideal M∗ should include all the models that have a non-negligible

11



value of r(M |Y ), while at the same time excluding other models that have a zero or near-zero

r(M |Y ) value.

Suppose now we have a good M∗. For each M ∈ M∗, we compute (see (2.12))

R(M) = π|M |−N | det(AH
MAM)|−1/2 · RSS

1
2
+|M |−N

M · Γ(N − |M |) · e−q(M),

where e−q(M) is given by (2.10). The generalized fiducial probability r(M |y) (2.12) can then be

well approximated by

(2.13) r(M |y) ≈ R(M)∑
M∗∈M∗ R(M∗)

.

We can then sample a candidate model M ∈ M∗ from (2.13).

Once a model M is generated, we set up the corresponding design matrix AM . Then we

estimate the parameters βM of the generated model M using maximum likelihood and obtain the

estimate β̂ML and the corresponding residual sum of squares RSSM . As AH
MAM is of full rank (i.e.,

not in a high-dimensional setting), these two quantities can be calculated using classical regression

formulae: β̂ML = (AH
MAM)−1AH

My and RSSM = yH(I −AM(AH
MAM)−1AH

M)y. Then, using

the properties of the complex normal distribution, σ and β can be sampled using the following

distributional results:

(2.14)
2RSSM

σ2
∼ χ2

2(N−|M |)

and

(2.15) β ∼ CN (β̂ML, σ
2(AH

MAM)−1),

where χ2
2(N−|M |) is the chi-square distribution with 2(N − |M |) degrees of freedom.

To sum up, a fiducial sample for (M,σ,β) can be generated by the following steps.

(1) Sample a model M from M∗ using (2.13).

(2) Fit M using maximum likelihood and obtain β̂ML and RSSM .

(3) Sample σ2 using (2.14).
12



(4) Sample β using (2.15), where the σ2 obtained from the above step is used in the RHS of

(2.15).

By repeating the above steps, one can generate enough samples of (M,σ,β) for forming point

estimates and constructing confidence intervals. Notice that (2.13) only needs to be calculated

once, so it is fast to generate an M . Also, notice that no costly procedures are required to generate

σ or β so overall the whole sample method is fast.

2.3.2. Point Estimates and Confidence Intervals. Repeating the above procedure, we obtain

multiple fiducial samples for (M,σ,β), which can be used to perform statistical inference in a

similar manner as with posterior samples in the Bayesian context. For the case of σ, we can use

the mean or the median of its fiducial samples as a point estimate, and the (α/2, 1−α/2) quantiles

of the fiducial samples to be its 100(1− α)% confidence intervals.

The situation is less straightforward for M , as its domain M is a discrete space with 2K ele-

ments and it is not entirely clear what would be a universally accepted definition for a “confidence

interval” for a model. However, the fiducial samples of M could still provide valuable information

on uncertainties. For example, for any M the samples can be used to approximate the generalized

fiducial probability r(M |y) as in (2.13), which is a numerical measure indicating how likely (or

unlikely) M is the true model.

The fiducial samples can also provide uncertainty information for p, the number of significant

frequencies. For example, the generalized fiducial probability for p = l can be approximated by

the sum of the generalized fiducial probabilities r(M |y) of all models M with p = l.

One can also construct confidence intervals for β in the following manner. First, notice that,

unless the GFD r(M |y) has all its mass at one model, the fiducial samples will contain different

models. In other words, for any l = 1, . . . , K, βl may be declared insignificant by some of the

fiducial samples. These insignificant fiducial samples for βl are zero, which will have an adverse

effect when calculating averages or quantiles with those non-zero βl values. We follow [26] to

handle this issue: for each βl, we count the percentage of non-zero fiducial sample values. If it is
13



more than 50%, we claim that this specific βl is significant and use all the non-zero fiducial sample

values to obtain point estimates and confidence intervals, in the same manner as for σ.

2.4. Theoretical Properties

This section investigates the theoretical properties of the above proposed GFI-based method

under the situation that K is diverging and the size of the true model is fixed.

First, some notations. Recall M is any candidate model and M0 is the true model. Let PM

be the projection matrix of AM ; i.e., PM = AM(AH
MAM)−1AH

M . Define ∆M = ∥µ − PMµ∥2,

where µ = E(Y ) = AM0βM0 .

Throughout this section, we assume that the following identifiability condition holds:

(2.16) lim
n→∞

min

{
∆M

|M0| log(K)
:M0 ̸⊂M, |M | ≤ b|M0|

}
= ∞

for some fixed constant b > 1. This b ensures that we only consider models whose size is compa-

rable to the true model. This assumption is an identifiability condition because it guarantees the

uniqueness of the true model among all the models that have a comparable size to the true model.

To be more specific, this condition guarantees that if the true model M0 ̸⊂ M , the residuals will

become unbounded as n → ∞. The restriction |M | ≤ b|M0| is imposed because in practice only

those models with sizes comparable to the true model will be considered. Overall, this assumption

means the true model is identifiable if no model other than the true model of comparable size can

predict the response almost equally well, which ensures the true model can be differentiated from

the other models.

THEOREM 2.4.1. Assume condition (2.16). If N → ∞, K → ∞, |M0| log(K) = o(N),
log(|M0|)
log(K)

→ δ and log(N)
log(K)

→ η, then there exists γ > 1+δ
1−δ

− 5η
2(1−δ)

such that

(2.17) max
M ̸=M0,M∈M∗

r(M)

r(M0)

P→ 0.
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Moreover, Suppose there exists a procedure for obtaining M∗ that satisfies:

(2.18) P (M0 ∈ M∗) → 1 and log
(∣∣M∗

j

∣∣) = o(j log(N)),

where M∗
j denotes the set of all sub-models in M∗ of size j, we have

r(M0)
P→ 1.

Theorem 2.4.1 implies that, under some regularity conditions, the true modelM0 has the high-

est generalized fiducial probability amongst all the candidate models. Assumption (2.18) guaran-

tees the true model in the candidate set and the candidate set not to be too large. The proof of this

theorem is provided in the appendix.

2.5. Simulation Results

Two simulation experiments were conducted to evaluate the practical performance of the pro-

posed GFI method under the line spectral model (2.1).

2.5.1. Confidence Intervals and Widths. In the first experiment, we follow the experimental

setting of [5], where

• Number of spectral lines: p = 3.

• Parameters: f1 = 0.4230, f2 = 0.6875, f3 = f2 + δf , α1 = 5ei2πu1 , α2 = 5ei2πu2 and

α1 = 10ei2πu3 , where u1, u2, u3 are randomly chosen from Unif(0, 1). See below for a

discussion on the values used for δf .

• Number of observations: N = 50.

• Sampling times: t1 = 0[sec], tN = 50[sec], and {tk}49k=2 are uniformly randomly selected

(real numbers) from the interval (0, 50).

• Noise: ϵ is sampled from a complex normal distribution CN (0, σ2IN).

The signal-to-noise ratio (SNR) is defined as

SNR = 10 log10

(
|α1|2 + |α2|2 + |α3|2

σ2

)
= 10 log10(

150

σ2
).
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As in here we have min
k

(tk+1 − tk) < 0.5[sec], we can set fmax = 1[Hz]. For the choices of K and

∆ in (2.3), we adopted the suggestion by [5] and set

∆ =
1

c(tN − t1)

with c = 20, which gives ∆ = 1 × 10−3[Hz]. As we chose fmax = 1[Hz], using (2.3) we have

K = 1000.

For the frequency separation δf between f2 and f3, we considered three values: δf = {0.01, 0.015, 0.1}.

The first two values are considered “high-resolution” cases, and the last is a “normal” case. We

also considered two SNRs={5, 10}. Therefore, we have six different scenarios in this first simu-

lation experiment. For each scenario, we generated 1,000 data sets and applied the proposed GFI

method to each of them, where the number of fiducial samples for each data set was 10,000.

Recall that, unlike many traditional methods, the proposed GFI method also provides the

generalized fiducial probabilities r(M |Y ) for all the candidate models, which in turn can be used

to generate the corresponding generalized fiducial probabilities for the number of frequencies p;

see Section 2.3.2. These probabilities provide valuable information about how certain or uncertain

we are with the estimated results. For the six scenarios, Table 2.1 lists the percentages of times that

different frequency numbers p were selected by the fiducial samples. As expected, the percentages

for choosing the correct p are higher when the separation δf and/or the SNR are higher. Also, given

the high percentages for selecting the true p = 3, one may conclude that the GFI estimation results

are reliable.

For each data set, we also applied the LIKES method of [31] and the so-called Oracle method

that has the knowledge of the true p and fl’s. Of course, the Oracle results cannot be obtained in

practice as such knowledge is not available, but they are used here for benchmark comparisons.

Table 2.2 provides the empirical coverage rates of the confidence intervals from Oracle and the GFI

method for σ2 (note that LIKES does not produce confidence intervals for σ2). One can observe

that the GFI results are comparable to those from Oracle.
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TABLE 2.1. Percentages of times that different frequency numbers p were selected
by GFI in the six different scenarios. Recall that the true p = 3.

estimated number of frequencies: 1 2 3 4

δf SNR percentages selected

0.01 5 2% 12.5% 83.3% 2.2%
0.01 10 0% 7.5% 92.1% 0.4%

0.015 5 1.1% 11.2% 86.5% 1.2%
0.015 10 0% 6.2% 93.2% 0.6%
0.1 5 0.9% 10.3% 87.6% 1.2%
0.1 10 0% 4.5% 94.4% 0.1%

We also constructed confidence intervals for the amplitudes αl’s using all three methods:

GFI, LIKES, and Oracle. Note that for GFI and LIKES, we only used those results where the true

number of frequencies was selected. The empirical coverage rates of these confidence intervals are

reported in Table 2.3. One can see that the GFI results are slightly worse than those from Oracle,

but in general, are superior to those from LIKES. Also, very often, GFI produced higher empirical

coverage rates with narrower confidence intervals.

2.5.2. Comparison with Bayesian Approach. In this second experiment, the simulation set-

ting is similar to [14]:

• Number of spectral lines: p = 3.

• Parameters: f1 = 0.4230, f2 = 0.6875, f3 = 0.7875, α1 = 1 + 0.1ei2πu1 , α2 = 1 +

0.1ei2πu2 and α3 = 5 + 0.1ei2πu3 , where u1, u2, u3 are randomly chosen from Unif(0, 1).

• Other quantities such as the sampling times are the same as in the first experiment.

As in [14] we use these two metrics to measure the quality of the estimation results: the

normalized mean-squared-error (NMSE) of Â (only with those columns selected by the methods)

and the mean-squared-error (MSE) of f = (f1, f2, f3), defined respectively as

NMSE(Â) = 20 log(∥Aβ − Âβ̂∥F/∥Âβ̂∥F )
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TABLE 2.2. Empirical coverage rates of the confidence intervals for σ2 obtained
by the proposed GFI method and Oracle. The numbers in the parentheses are the
average widths of the intervals.

(δf , SNR) method 90% CI 95% CI 99% CI

(0.1, 5) GFI 91.0% (1.81) 93.8% (1.14) 98.4% (2.88)
Oracle 88.7% (1.67) 94.4% (2.00) 99.0% (2.66)

(0.1, 10) GFI 91.6% (0.97) 96.0% (1.16) 99.6% (1.53)
Oracle 89.7% (0.94) 94.7% (1.12) 99.1% (1.49)

(0.015, 5) GFI 90.8% (1.81) 96.0% (2.23) 98.5% (2.87)
Oracle 88.3% (1.68) 94.5% (2.01) 99.3% (2.67)

(0.015, 10) GFI 88.6% (0.95) 93.8% (1.14) 98.0% (1.51)
Oracle 89.0% (0.95) 94.8% (1.13) 98.7% (1.50)

(0.01, 5) GFI 90.6% (1.82) 95.8% (2.76) 98.8% (2.86)
Oracle 90.5% (1.68) 95.0% (2.00) 98.9% (2.66)

(0.01, 10) GFI 88.8% (0.96) 96.0% (1.15) 99.6% (1.52)
Oracle 89.5% (0.94) 94.0% (1.13) 98.5% (1.49)

and

MSE(f̂) = 20 log(∥f̂ − f∥2),

where ∥·∥F is the Frobenius norm for matrices and ∥·∥2 is the L2 norm for vectors. Following [14],

MSE(f̂) is calculated only when both the model order p is correctly estimated and MSE(f̂) ≤

0(dB). In addition, we also approximated the probability that the correct model order p is selected;

i.e., P (p̂ = 3).

For each simulated data set, we applied the GFI method and the MVALSE method of [14]

and calculated the above metrics. Figure 2.1 summarizes the results when the number of ob-

servations is fixed at N = 75 with changing SNRs = {−5, 0, 5, 10}. One can observe that

when SNR = 10, both methods give comparable results, while GFI is better for the remaining
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TABLE 2.3. Empirical coverage rates of the confidence intervals for the frequency
amplitudes obtained by the proposed GFI method, LIKES, and Oracle. The num-
bers in the parentheses are the average widths of the intervals.

method 90% CI 95% CI 99% CI

(δf , SNR) = (0.1, 5)

GFI 90.2%, 87.9%, 90.1%
(2.4, 2.4, 2.4)

95.5%, 93.8%, 94.6%
(2.9, 2.8, 2.9)

98.4%, 98.4%, 99.2%
(3.9, 3.8, 3.8)

LIKES 84.9%, 84.9%. 85.8%
(6.5, 6.4, 6.8)

90.2%, 92.0%, 89.3%
(6.1, 6.1, 6.6)

94.9%, 95.6%, 94.5%
(8.6, 8.6, 8.9)

Oracle 88.3%, 89.4%, 90.2%
(2.3, 2.3, 2.3)

94.6%, 95.4%, 95.7%
(2.8, 2.8, 2.8)

99.2%, 98.3%, 99.1%
(3.6, 3.6, 3.7)

(δf , SNR) = (0.1, 10)

GFI 91.0%, 91.5%, 91.7%
(1.4 1.4, 1.4)

96.6%, 95.8%, 95.8%
(1.7, 1.7, 1.7)

98.4%, 98.6%, 99.3%
(2.3, 2.2, 2.3)

LIKES 83.4%, 84.4%, 84.2%
(2.2, 2.2, 2.2)

89.6%, 91.0%, 90.6%
(2.6, 2.6, 2.6)

96.4%, 97.0%, 95.6%
(3.4, 3.4, 3.5)

Oracle 87.8%, 89.8%, 90.0%
(1.3, 1.3, 1.3)

95.4%, 94.8%, 93.8%
(1.6, 1.6, 1.6)

99.2%, 99.0%, 99.0%
(2.1, 2.1, 2.1)

(δf , SNR) = (0.015, 5)

GFI 89.5%, 88.9%, 89.3%
(2.4, 2.7, 2.6)

95.2%, 94.0%, 95.1%
(2.8, 3.0, 2.8)

98.6%, 97.6%, 98.2%
(3.7, 4.1, 3.9)

LIKES 85.8%, 84.7%, 81.3%
(6.3, 6.4, 6.6)

92.8%, 90.2%, 89.9%
(6.6, 6.8, 6.8)

95.1%, 95.8%, 94.7%
(8.8, 8.7, 8.9)

Oracle 90.3%, 90.0%, 89.5%
(2.3, 2.4, 2.4)

95.3%, 95.1%, 95.1%
(2.8, 2.9, 2.9)

98.9%, 98.8%, 97.8%
(3.6, 3.7, 3.8)

(δf , SNR) = (0.015, 10)

GFI 91.5%, 91.4%, 91.5%
(1.5, 1.7, 1.6)

96.1%, 95.9%, 96.0%
(1.8, 1.9, 1.9)

99.2%, 99.5%, 99.2%
(2.2, 2.6, 2.4)

LIKES 84.2%, 84.4%, 85.2%
(2.2, 2.2, 2.2)

89.0%, 85.6%, 88.2%
(2.6, 2.6, 2.6)

95.6%, 96.4%, 96.4%
(3.4, 3.4, 3.5)

Oracle 91.1%, 89.7%, 90.8%
(1.3, 1.4, 1.4)

95.2%, 95.6%, 94.5%
(1.8, 1.9, 1.9)

98.8%, 98.8%, 98.8%
(2.1, 2.1, 2.1)

(δf , SNR) = (0.01, 5)

GFI 90.8%, 89.6%, 87.1%
(2.4, 3.0, 3.1)

95.4%, 94.4%, 92.8%
(2.9, 3.7, 3.7)

98.3%, 98.7%, 98.0%
(3.9, 4.9, 4.8)

LIKES 86.9%, 85.9%, 85.6%
(6.3, 6.3, 6.1)

90.3%, 93.0%, 89.4%
(6.9, 6.9, 6.4)

95.0%, 95.9%, 95.7%
(8.8, 8.2, 8.4)

Oracle 90.0%, 91.5%, 88.9%
(2.3, 2.9, 2.9)

93.9%, 94.8%, 94.1%
(2.8, 3.5, 3.5)

99.4%, 99.1%, 98.7%
(3.6, 4.6, 4.6)

(δf , SNR) = (0.01, 10)

GFI 91.8%, 91.3%, 89.2%
(1.5, 1.9, 1.9)

96.7%, 95.1%, 93.5%
(1.7, 2.2, 2.2)

99.2%, 98.9%, 98.1%
(2.3, 2.9, 2.9)

LIKES 85.2%, 85.4%, 86.2%
(2.2, 2.2, 2.2)

90.4%, 91.4%, 90.8%
(2.6, 2.6, 2.6)

97.0%, 96.2%, 96.6%
(3.4, 3.4, 3.5)

Oracle 89.5%, 88.7%, 91.3%
(1.3, 1.6, 1.6)

94.1%, 94.6%, 93.8%
(1.6, 2.0, 2.0)

98.8%, 99.2%, 98.7%
(1.7, 2.2, 2.2)

SNRs. Similarly, Figure 2.2 presents the results when SNR = 2 is fixed for different values of

N = {25, 50, 75, 100, 125}. The results suggest that GFI is superior.

To sum up, results from these two sets of numerical experiments suggest that the proposed

GFI method produces highly reliable results, and compares favorably with some of the leading
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methods in the literature. This agrees largely with the authors’ experience in applying GFI to other

problems. A thorough theoretical study is underway to identify those conditions under which GFI

is expected to produce reliable results.

FIGURE 2.1. Empirical performances of the MVALSE method [14] and the pro-
posed GFI method with different SNRs and N = 75.

FIGURE 2.2. Empirical performances of the MVALSE method [14] and the pro-
posed GFI method with different N and SNR= 2.

2.6. Real Data Example: Radial Velocity Analysis

2.6.1. Background. The detection of extrasolar planets, also known as exoplanets, has always

been a challenging and fascinating area in astronomy. Until the end of 2021, a total of 1274 exo-

planets have been discovered. Popular techniques for exoplanet detection include radial velocity

analysis, the transit method, direct imaging, gravitational microlensing, and astrometry minuscule
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movements; e.g., [32], [33]. Among these techniques, radial velocity analysis is one of the most

commonly used.

Radial velocity refers to the speed at which an object (in this case an exoplanet) moves away

from Earth (or approaches it, with a negative radial velocity). Orbiting exoplanets cause the stars to

wobble in space, which in turn changes the color of the light astronomers observe. This permits an

analysis of the Doppler shifts to confirm if there is any exoplanet revolving around a star. In order

to do so, the radial velocity frequencies and amplitudes of the stars, need to be estimated. Notice

that the radial velocity measurements are often obtained at non-uniformly spaced time intervals

due to hardware and practical constraints, which limits the applications of many spectral analysis

methods designed for equally-spaced data.

Here we apply the proposed GFI method to estimate the radial velocity frequencies and am-

plitudes of three different stars: HD 63454 [34], HD 208487 [35], and GJ 876 [36]. We note that

the model we use ((2.2) and (2.4)) is simpler than those that are based on Keplerian’s planetary

motion, which also consider eccentricity and periastron parameters of the orbital planets thus more

accurate; e.g., [32]. We also note that our model is complex-valued while the radial velocity data

are real-valued. To circumvent this issue, we follow [32] and require both positive and negative

frequencies in the model to represent a real-valued component. Below we compare our results with

those reported in [32].

2.6.2. HD 63454. The radial velocity data set of star HD 63454 contains 26 samples spanning

350 days. The sampling pattern and the radial velocity measurements are shown in Figures 2.3(a)

and (b), respectively. The proposed GFI method was applied to the data set and the results are

shown in Table 2.4, where f represents its orbital frequency (in cycles day−1) and β represents the

corresponding amplitude. As the results suggest, only one exoplanet was detected whose estimated

frequency was 0.3549 cycles day−1 (i.e., an orbital period of 2.8176 days), which is the same as

in [32]. The GFI estimated amplitude is smaller than the one reported by [32] but the corresponding

GFI confidence interval does cover it, so overall the GFI results are consistent with those in [32]

for HD 63454. Table 2.5 shows the percentages that different numbers of exoplanets were selected.
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One can see that for this star the proposed method is highly confident (99.9%) that there is only

one exoplanet.

TABLE 2.4. Estimated results for star HD 63454 obtained from different methods.
The GFI 95% confidence interval is given in parentheses.

[32] GFI

Exoplanet No f̂ β̂ f̂ β̂

1 0.3549 0.0634 0.3549 0.0482
(0.0255, 0.0708)

TABLE 2.5. Percentages that different numbers of exoplanets were selected for the
three stars.

Number of exoplanets detected 1 2 3

HD 63454 99.9% 0.1% 0

HD 208478 93.9% 6.1% 0

GJ 876 0.03% 15.02% 84.95%

2.6.3. HD 208487. The data set for star HD 208487 contains 31 samples spanning 2250 days.

The sampling pattern and the radial velocity measurements are displayed in, respectively, Fig-

ures 2.3(c) and (d). The GFI method only detected one exoplanet with an estimated orbital fre-

quency of 0.0078 cycles day−1, while 3 detected exoplanets were reported in [32]; see Table 2.6.

However, as noted in both [32] and [35], there is no convincing evidence to support the claim of

the existence of the two additional exoplanets for this star system, so the GFI method provided rea-

sonable results for HD 208487. Table 2.5 also provides strong evidence (around 94%) that there is

only one exoplanet for this star.
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TABLE 2.6. Similar to Table 2.4 but for star HD 208487.

[32] GFI

Exoplanet No f̂ β̂ f̂ β̂

1 0.0078 19.9 0.0078 17.5
(13.7, 21.3)

2 0.0690 12.18 - -

3 0.0408 4.96 - -

2.6.4. GJ 876. The last data set is for star GJ 876. It consists of 100 samples spanning 2000

days; see Figures 2.3(e) and (f) for the sampling pattern and the radial velocity measurements,

respectively. The results are shown in Table 2.7. The GFI method detected 3 exoplanets with

orbital frequencies 0.0165, 0.0332 and 0.0666 cycles day−1. A previous study by [36] also detected

3 exoplanets, but with a different orbital frequency (0.516 cycles day−1) for the last one. The

method of [32] detected 5 exoplanets. However, [32] also suggested that there is no concrete

evidence to support the existence of the additional 2 exoplanets. In any case, all these methods

agreed on the first 2 exoplanets in this star system. The uncertainty information in Table 2.5 also

suggests that there are three exoplanets, but with lower confidence (around 85%). This indicates

that for this star, the true number of exoplanets is more challenging to estimate, as can be seen

from the very different results obtained from previous studies.

2.7. Concluding Remarks

This chapter developed a new method to perform statistical inference on the line spectral esti-

mation problem. The proposed method is based on the approach of generalized fiducial inference.
23



(a): HD 63454, tk (b) HD 63454, Y (tk)

(c): HD 208487, tk (d): HD 208487, Y (tk)

(e): GJ 876, tk (f): GJ 876, Y (tk)

FIGURE 2.3. Sampling times tk’s (left column) and radial velocity measurements
Y (tk)’s (right column) for stars HD 63454 (top row), HD 208487 (middle row), and
GJ 876 (bottom row).
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TABLE 2.7. Similar to Table 2.4 but for star GJ 876.

[32] [36] GFI

Exoplanet No f̂ β̂ f̂ β̂ f̂ β̂

1 0.0164 215.09 0.0164 212.60 0.0165 201.03
(181.44, 220.61)

2 0.0331 82.62 0.0331 88.36 0.0332 69.74
(46.99, 92.49)

3 0.0011 9.61 0.516 6.40 0.0666 31.86
(10.44, 53.27)

4 0.0066 9.95 - - - -

5 0.0168 23.57 - - - -

In greater detail, a procedure was developed to generate fiducial samples from a so-called gen-

eralized fiducial density for a set of candidate models. This generalized fiducial density plays a

similar role as the posterior density in the Bayesian context. Its samples (i.e., fiducial samples) can

be used to perform statistical inferences such as forming point estimates and confidence intervals.

The proposed method was shown to enjoy desirable asymptotic properties under some regularity

conditions. Through numerical experiments, it was also demonstrated that the proposed method

possesses promising empirical properties and often outperforms existing methods in the literature.

Lastly, the proposed method was applied to analyze three radial velocity data sets in the context of

exoplanet detection and yielded similar results as those reported in the astronomy literature.

Recall that our method is an example of semi-parametric method, which can be further divided

into three categories [37]: on-grid, off-grid, and gridless. The on-grid methods require a pre-

selected grid and the true frequencies to be one of the grid values. Our method can be classified as

on-grid. However, as mentioned in Section 2.1 and demonstrated by the simulation experiments

in Section 2.5, our method can handle the situation when some of the true frequencies do not fall

on the grid, by suitably choosing the values of K and ∆. For off-grid methods, they also require a
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grid, which is estimated jointly with the sparse signals. Consequently, more variables are needed to

be estimated, which increases the dimension of the problem. The last category of gridless methods

does not require any grid when compared with the first two categories. However, they are typically

designed for equally spaced sampled data, which may restrict their applicability. We believe that

GFI can be applied to these methods, but the form of the structural equation (2.5) will need to

be formulated differently. Overall, we are confident that the GFI approach can be applied to these

off-grid and gridless methods. The main challenge will be the development of a practical algorithm

for generating the fiducial samples. These are left for future work.

2.8. Supplementary materials

2.8.1. Obtaining M∗. This appendix presents our method for obtaining M∗. Recall that an

ideal M∗ should only contain those models that have a non-negligible value of r(M |Y ). Our

method consists of two stages. The first stage applies a fast algorithm to traverse the space of

M to obtain a set of non-negligible models, where the true model will be included with high

probability. In the second stage, we obtain more models by data perturbation and add these models

to M∗. Notice that we are not choosing the models by comparing their values of r(M |Y ) with a

threshold.

Stage 1: In the context of ultra-high dimensional regression, the lasso algorithm [38] [39] has

been applied by [26] to obtain a M∗. The idea is that, by changing the lasso tuning parameter, a

sequence of models (also known as a solution path) will be generated, and all these models form

M∗. We shall follow this idea in the first stage of our method. This is a variable selection problem

that is studied widely [40]. However, due to the complex-valued coefficients, the lasso algorithm

cannot be directly applied, as it does not guarantee to select both the real and imaginary parts of

a complex coefficient simultaneously. To circumvent this, one can use for example the complex

lasso [41]. Below, however, we shall re-express the problem and apply the group lasso algorithm

of [42].
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First, express the lasso problem as:

(2.19) min
β

(
1

2
∥Xβ − y∥22 + λ∥β∥∗1),

where X = ℜ(X) + iℑ(X) ∈ CN×K , y = ℜ(y) + iℑ(y) ∈ CN , β = ℜ(β) + iℑ(β) ∈ CK , and

∥β∥∗1 =
n∑

j=1

√
ℜ(β))2j + ℑ(β)2j ,

with ℜ(β),ℑ(β) ∈ R and j = 1, . . . , n. Minimizing (2.19) with different values of λ will give

different models. However, as suggested before, there is no guarantee that all the resulting models

are legitimate in the sense that the corresponding estimates in ℜ(β) and ℑ(β) are both zeros or

non-zeros.

Now we can re-express

∥Xβ − y∥22 =∥ℜ(X)ℜ(β)−ℑ(X)ℑ(β)−ℜ(y)∥22

+ ∥ℜ(X)ℑ(β) + ℑ(X)ℜ(β)−ℑ(y)∥22

=

∥∥∥∥∥∥
ℜ(X) −ℑ(X)

ℑ(X) ℜ(X)

ℜ(β)

ℑ(β)

−

ℜ(y)

ℑ(y)

∥∥∥∥∥∥
2

2

and (2.19) becomes

(2.20) min
β

(
1

2
∥X̃β̃ − ỹ∥22 + λ∥β̃∥2,1)

with X̃ =

ℜ(X) −ℑ(X)

ℑ(X) ℜ(X)

, ỹ =

ℜ(y)

ℑ(y)

, β̃ =

ℜ(β)

ℑ(β)

 and ∥β∥2,1 =
∑n

j=1

√
ℜ(β)2j + ℑ(β)2j .

With the above, we can apply the group lasso algorithm to (2.20) to generate different models with

different values of λ. In practice, we observe that the true model was almost always included as

one of the models generated by this algorithm.

Stage 2: To achieve theoretical guarantee, in the second stage, we apply the adaptive group

lasso algorithm to generate more models, which was shown by [43] that the true model will be

selected consistently. We can also obtain more models by applying the group lasso algorithm
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to various re-sampled data sets [44], so that in practice most non-negligible models are included

in M∗. We can yet further enrich M∗ by adding solutions from other methods to M∗, such as

SPICE [45] and GIST [46]. By doing so, we expect the size of M∗ to be much smaller than the

size of M (which is 2K) and yet
∑

M∈M∗ r(M |Y ) is close to 1.

Lastly, we note that before we generate the fiducial samples, the model parameters will be

re-fitted using maximum likelihood, and therefore the parameter estimation bias from group lasso

will not be carried over.

2.8.2. Proof and Technical Details. This appendix proves Theorem 2.4.1. When compared

to earlier theoretical results in GFI, a major difference is that the current work considers complex-

valued coefficients and responses. We begin by presenting three lemmas.

2.8.2.1. Lemmas.

LEMMA 2.8.1. If log j/log p→ δ as p→ ∞, then log
(
p
j

)
= j log p(1− δ)(1 + o(1)).

PROOF. First, calculate
(
p
j

)
= p!

j!(p−j)!
= p(p−1)···(p−j+1)

j!
=

pj(1− 1
p
)(1− 2

p
)···(1− j−1

p
)

j!
and we have

(1− j − 1

p
)j−1 < (1− 1

p
)(1− 2

p
) · · · (1− j − 1

p
) < (1− 1

p
)j−1.

By sterling’s formula,
√
2πjj+1/2e

−j+1
12j+1 < j! <

√
2πjj+1/2e

−j+1
12j

so we have

log
(
p
j

)
≤j log p+ (j − 1) log

(
1− 1

p

)
− log j!

≤j log p+ (j − 1) log

(
1− 1

p

)
−
(
j +

1

2

)
log j + j − 1

12j + 1
− log

√
2π

≤j log p−
(
j +

1

2

)
log j + j

=j log p

[
1−

(
j + 1

2

)
log j

j log p
+

1

log p

]

=j log p(1− δ)(1 + o(1))
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and

log
(
p
j

)
≥j log p+ (j − 1) log

(
1− j − 1

p

)
−
(
j +

1

2

)
log j + j − 1

12j
− log

√
2π

≥j log p+ (j − 1) log

(
1− j − 1

p

)
−
(
j +

1

2

)
log j − log

√
2π

=j log p

1 +
(j − 1) log

(
1− j−1

p

)
j log p

− j log p

((
j + 1

2

)
log j

j log p
− log

√
2π

j log p

)

=j log p(1− δ)(1 + o(1)),

which completes the proof. □

LEMMA 2.8.2. Let χ2
j be a chi-square random variable with j degrees of freedom. If c→ ∞

and J
c
→ 0, then

P (χ2
j > c) =

1

Γ( j
2
)
(
c

2
)k/2−1e−c/2(1 + o(1))

uniformly over j ≤ J .

PROOF. The pdf of χ2
j is f(x) = 1

2
j
2 Γ( j

2
)
x

j
2
−1e−

x
2 , so

P
(
x2j > c

)
=

∫ ∞

c

(
1
2

) j
2

Γ
(
j
2

)x i
2
−1e−

x
2 dx

=

(
1
2

) j
2

Γ
(
j
2

) ∫ +∞

c

x
j
2
−1e−

x
2 dx.

Now calculate∫ ∞

c

x
j
2
−1e−

x
2 dx =

∫ ∞

c

x
j
2
−1(−2)de−

x
2

=(−2)x
j
2 − e−

x
2

∣∣∞
c
−
∫ ∞

c

e−
x
2 (−2)

(
j

2
− 1

)
x

j
2
−2dx

=(j − 2)

∫ +∞

c

x
j
2
−2e−

x
2 dx+ 2c

j
2
−1e−

c
2 .
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Therefore

Fj(c) = P
(
X2

j > c
)
=

(
1
2

) j
2
−1

Γ
(
j
2

) c j
2
−1e−

c
2 +

(
1
2

) j
2

Γ
(
j
2

)(j − 2)

∫ ∞

c

x
j
2
−2e−

x
2 dx

=

(
1
2

) j
2
−1

Γ
(
j
2

) c j
2
−1e−

c
2 + Fj−2(c).

So if j is even,

Fj(c) =
1

Γ
(
j
2

) ( c
2

) j
2
−1

· e−
c
2

1 + j−2
2∑

i=1

((
j
2
− 1
)
· · ·
(
j
2
− i
)

(c/2)i

)
and if j is odd,

Fj(c) =
1

Γ
(
j
2

) ( c
2

) j
2
−1

· e−
c
2

1 + j−3
2∑

i=1

((
j
2
− 1
)
· · · −

(
j
2
− i
)(

c
2

)i
)+ F1(m),

where

F1(c) = P (χ2
1 ≥ c) ≈ 2

exp
(
− c

2

)
√
2πc

=
1

Γ
(
j
2

) ( c
2

) j
2
−1

e−
c
2

2T
(
j
2

)
√
2π
(
c
2

) j−1
2

.

Now when c→ ∞, we have

Fj(c) =
1

Γ
(
j
2

) ( c
2

) j
2
−1

e−
c
2 [1 +R(j, c)].

Finally, it is straightforward to see that R(j, c) ≤ R(J, c) → 0 as c → ∞, which completes the

proof. □

LEMMA 2.8.3. Let χ2
j be a chi-square random variable with j degree of freedom. Let cj =

2jlog p+ log(j log p). If p→ ∞, then for any J ≤ p,

J∑
j=1

(
p
j

)
P (χ2

j > cj) → 0.
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PROOF. Here we can directly apply Lemma 2.8.2. Let qj =
√

cj
(j log p)2

, by using
(
p
j

)
≤ pj , we

have (
p
j

)
P
(
x2j > cj

)
=
(
p
j

)( cj
2

) j
2
−1
e−

cj
2

Γ
(
j
2

) (1 +O(1))

≤ (cj)
j
2
−1 p

je−
1
2
·2j(log p+log(j log p))

2
j
2
−1Γ

(
j
2

) (1 + o(1))

= (cj)
j
2
−1 (1 + o(1)) · p

je−j log p−j log(j log p)

2
j
2 − 1Γ

(
j
2

)
= (cj)

j
2
−1 (1 + o(1)) · (j log p)

−j

2
j
2
−1Γ( j

2
)
.

Let

qj =

√
cj

(j log p)2
≤ (cj)

j
2
−1

(j log p)j
(1 + o(1)) ≤

qjj
cj
(1 + o(1))

and therefore
J∑

j=1

(
p
j

)
P (χ2

j > cj) ≤
J∑

j=1

qjj
cj
(1 + o(1))

qj→0−→ 0,

which completes the proof. □

2.8.2.2. Proof of Theorem 2.4.1. Denote M as the collection of models for which (2.16) holds.

We shall prove that max
M

r(M)
r(M0)

P−→ 0. Without loss of generality, we assume σ2 = 1. We write

|M0| = m0, |M | = m, where m0 = o(N) and m = o(N). For simplicity, we can rewrite

r(M)

r(M0)
= exp{−T1 − T2 − T3},

where

T1 = (N −m− 1

2
) log

RSSM

RSSM0

,

T2 =
m−m0

2
log n+ (m−m0) log πRSSM0

+ log
Γ(N −m0)

Γ(N −m)
+ γ log

(
K
m

)
− γ log

(
K
m0

)
and

T3 = −1

2
log

[det(AH
M0
AM0)]

[det(AH
MAM)]

.
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Next we consider the following two cases:

Case 1: M0 ̸⊂M .

Let M| = {M : |M | = j,M ∈ M}. Notice that RSSM0 = (N − m0)(1 + op(1)) =

N(1 + op(1)),

(2.21) RSSM − RSSM0 =∆M + 2µH(I − PM)ϵ− ϵHPMϵ+ ϵH(I − PM0)ϵ,

where µ = AM0βM0 , ∆M = ||(I − PM)µ||2 and ϵHPM0ϵ = m0(1 + op(1)).

First consider the second term in (2.21) and denote ZM = µH(I − PM)ϵ/
√
∆M , we have

µH(I − PM)ϵ =
√

∆MZM ,

where ZM ∼ CN (0, 1). Let cj = j{logK + log j logK}. For simplicity, we denote c|M | by cm.

Then by Lemma 2.8.3

P (max
M

|ZM/
√
cm| > 1) ≤

bm0∑
j=1

∑
Mj

P (Z2
M > cj)

=

bm0∑
j=1

(
K
j

)
P (
χ2
2

2
> cj) ≤

bm0∑
j=1

(
K
j

)
P (χ2

j > 2cj) → 0.

Therefore,

|µH(I − PM)ϵ| ≤
√
∆M |ZM | ≤

√
∆M

√
cM(1 + op(1))

uniformly over M. Since cm = o(m0 logK) and the identifiability condition (2.16) statesm0 log(K) =

op(∆M) uniformly over M s.t. M0 ̸⊂M ,

|µH(I − PM)ϵ| = op(∆M).
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Next, we consider the third term in (2.21). By Lemma 2.8.3 again, we have

P (max
M

ϵHPMϵ/cm > 1) ≤
km0∑
j=1

∑
Mj

P (ϵHPMϵ > cj)

≤
km0∑
j=1

(
K
j

)
P (χ2

j > 2cj) → 0.

So ϵHPMϵ ≤ cm(1 + op(1)), and ϵHPMϵ = op(∆M) uniformly over M s.t. M0 ̸⊂M . Therefore

RSSM − RSSM0 = ∆(M)(1 + op(1))

and we have
log(

RSSM

RSSM0

) = log(1 +
RSSM − RSSM0

RSSM0

)

= log(1 +
∆(M)

N
(1 + op(1)))

uniformly over all M ∈ M s.t. M0 ̸⊂M . Thus

T1 = (N −m− 1

2
) log(

RSSM

RSSM0

)

= (N −m− 1

2
) log(1 +

∆(M)

N
(1 + op(1)))

=
2N(op(1) + 1)

2
· ∆(M)

N
(1 + op(1)) = ∆(M)(1 + op(1))

uniformly for M ∈ M such that M0 ̸⊂M .

Also,

(m−m0) log(πRSSM0) + log
Γ(N −m0)

Γ(N −m)

= (m−m0) logN(1 + op(1)) + (m−m0) logN(1 + op(1))

= 2(m−m0) logN(1 + op(1)).

Finally, we have

T2 =
5

2
(m−m0) logN(1 + op(1))− γ log

(
p
m0

)
+ γ log

(
K
m

)
≥ −5

2
m0 logN(1 + op(1))− γm0 logK.
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Case 2: Let M∗ = {M ∈ M,M0 ⊂ M,M ̸= M0} and M∗
j = {M, |M | = j,M0 ⊂ M}. First

notice that when M0 ⊂ M , we have RSSM0 − RSSM = 1
2
χ2
2(m−m0)

(M), where χ2
2(m−m0)

(M)

is a chi-square distribution with 2(m − m0) degrees of freedom depending on M . Write cj =

j{logK + log(j logK)}. Then by Lemma 2.8.3 we have

P ( max
1≤j≤bm0−m0

max
M∈M∗

j

χ2
j(M)/2cj ≥ 1)

≤
bm0−m0∑

j=1

P ( max
M∈M∗

j

≥ 2cj)

=

bm0−m0∑
j=1

(
K−m0

j

)
P (χ2

j(M) ≥ 2cj)

≤
bm0−m0∑

j=1

(
K
j

)
P (χ2

j ≥ 2cj) → 0,

which implies

χ2
2(m−m0)

(M) ≤ 2c2(m−m0)(1 + op(1)).

Notice that 2c2(m−m0) = o(N), and therefore

(N −m− 1

2
) log(

RSSm

RSSM0

)

=− (N −m− 1

2
) log(1 +

1
2
χ2
2(m−m0)

(M)

RSSM0 − 1
2
χ2(m−m0)2(M)

)

≥(N −m− 1

2
) log(

χ2(m−m0)2(M)

2RSSM0 − χ2
2(m−m0)

(M)
)

≥−
c2(m−m0)

2
(1 + op(1))

≥− 2(m−m0)[1 +
log{(bm0 −m0) logK}

logK
] logK(1 + op(1))

≥− 2(m−m0)(1 + δ) logK(1 + op(1))

uniformly over M∗. Consequently, we have shown that

T1 ≥ −2(m−m0)(1 + δ) logK(1 + op(1))
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uniformly over M∗. By Lemma 2.8.1, for m0 < m < bm0, we have

log
(
K
m

)
= (1− δ)m logK(1 + o(1))

uniformly over M∗. So

T2 =
5

2
(m−m0) logN(1− op(1)) + γ(1− δ)(m−m0) logK(1 + o(1))

uniformly over M∗.

Finally, we have

max
M ̸=M0,M∈M

r(M)

r(M0)
= max

{
max
M0 ̸⊂M

exp (−T1 − T2 − T3), max
M0⊂M

exp(−T1 − T2 − T3)
}
.

As T3 = −1
2
log

[det(AH
M0

AM0
)]

[det(AH
MAM )]

and under the identifiability condition (2.16), where we only consider

|M | ≤ b|M0|, we have T3 > −∞. Together with the above analysis, we have

(2.22) max
M0 ̸⊂M

exp(−T1 − T2 − T3)
P→ 0,

since min
M0 ̸⊂M

{T1 + T2 + T3} → ∞. Also,

(2.23) max
M0⊂M

exp(−T1 − T2 − T3) → 0,

as min
M0⊂M

T1 + T2 + T3 → ∞ if γ > 1+δ
1−δ

− 5η
2(1−δ)

, which is guaranteed by the assumption.

So (2.22) and (2.23) together show that

max
M ̸=M0,M∈M∗

r(M)

r(M0)

P−→ 0.

□

Moreover, if condition (2.18) holds, we have

∑
M ̸=M0,M∈M∗

r(M)

r(M0)
≤

km0∑
j=1

∑
M∗

r(M)

r(M0)
≤ km0 max

M ̸=M0,M∈M∗
|M∗

j |
r(M)

r(M0)

P−→ 0

which shows that r(M0)
P−→ 0 over the class M∗.
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CHAPTER 3

Structural Break Detection in Non-stationary Network Vector

Autoregression Models

Imagine a network, like a social network or a system of connected devices, is being observed

over time. Each node in this network has certain measurements attached to it that can change, like

the temperature of a device. Although the overall structure of the network remains constant, these

measurements can vary, leading to a complex multivariate time series dataset that exhibits non-

stationary characteristics over time. This chapter applies a piecewise stationary network vector

autoregressive (NAR) model to analyze these network data. The main idea is to partition the entire

dataset into segments where the NAR model for each segment remains stationary. The identifi-

cation of these segments, along with the determination of the NAR processes’ autoregressive lag

orders, are treated as unknowns. The minimum description length (MDL) principle is employed

to develop a criterion for model selection that estimates these unknown parameters. A two-stage

genetic algorithm is then formulated to tackle this optimization challenge. The MDL criterion is

proven to be consistent in identifying the number and positions of the breakpoints - the junctures

where adjacent NAR segments intersect. The effectiveness of the proposed method is demonstrated

through simulation studies and real data analysis.

3.1. Introduction

Consider a network A = (ai1i2) ∈ RK×K with K nodes that may represent different relation-

ships in different situations, such as people’s social networks [47], companies’ economic networks,

and physical site networks. Let ai1i2 = 1 if there exists some kind of relationship from node i1

to node i2; for example, followers and followees on social media. On the other hand, ai1i2 = 0
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if such a relationship does not exist. Also, further assume A cannot be self-related: ailil = 0 for

il = 1, . . . , K. Such relationships can be either directed or undirected.

From the network A we can collect continuous measurements Xit ∈ R from node i =

1, . . . , K at time t = 1, . . . , T . Denote

Xt = (X1t, . . . , XKt)
T ∈ RK , t = 1, . . . , T,

as the measurements from all K nodes in the whole network at time point t.

One of the earlier and widely used models for the Xt’s is the vector autoregressive (VAR)

model; e.g., see [48] and [49]. The VAR model introduces O(K2) parameters to handle the inter-

actions amongst the nodes, but the estimation problem is tremendously large ifK is large. Besides,

there might be other exogenous covariates related to the nodes that also influence the Xt’s; e.g.,

personal information in social networks and regional development level in economic networks.

The VAR model unusually fails to include such information.

The network vector autoregressive (NAR) model was thus proposed by [50] to model the

Xt’s. It contains much fewer parameters that also utilize the observed network structure A and

also allows possible exogenous covariates. Other time series models designed for networks include

[51, 52].

For each node i, assume there exists a q dimensional node-specific exogenous covariates Vi =

(Vi1, · · · , Viq)T ∈ Rq. As stated in [50] and [53], a NAR(p1, p2) model assumes the measurements

Xit’s are influenced by self lags (past values), network lags (past values of “related” nodes), and

node specified covariates effects, and is given by

(3.1) Xit = β0 + V ⊤
i γ +

p1∑
m=1

αm

K∑
j=1

aij
ni

Xj(t−m) +

p2∑
n=1

βnXi(t−n) + εit,

where ni =
∑

l ̸=i ail is the total number of nodes that i follows, β0, αm ∈ R, βn ∈ R, and

γ = (γ1, · · · , γq) ∈ Rq are, respectively, the coefficients for the network lags, the self lags and

the node specified covariates. Also, p1 and p2 are the lag orders for the network lags and the self
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lags, respectively. The noise εit is assumed to follow a normal distribution N(0, σ2
i ). Lastly, write

W = diag{n−1
1 , · · · , n−1

K }A = (w1, · · · ,wk)
T as the row-normalized network.

The NAR model has been successfully applied to solve problems in different areas, including

social media analysis [50], air quality studies [53], and economic growth evaluations [54]. How-

ever, the vast majority of these studies assume the underlying process is stationary over the whole

time span, which can be an unrealistic assumption for multivariate time series observed in many

modern applications [55, 56].

One possible approach to mitigate this issue is to partition the whole process into a number

of shorter, stationary processes. That is, a sequence of piecewise stationary NAR models is used

to model the non-stationary series {Xt}Tt=1.

A precise formulation is as follows. Suppose there are m0 breakpoints; i.e., {Xt}Tt=1 is parti-

tioned into m0+1 piecewise stationary NAR models. The m0 breakpoint locations {τj}m0
j=1 satisfy

0 < τ1 < τ2 < . . . < τm0 < T + 1, and for convenience, write 0 = τ0 and τm0+1 = T + 1. For

all j = 1, . . . ,m0 + 1, it is assumed that the j-th segment, {Xt} with τj−1 ≤ t < τj , follows a

stationary NAR(p1,j, p2,j) model. It is also assumed that the network structure remains unchanged

in all segments. Similar to (3.1), the j-th segment is modeled as

(3.2) Xit,j = β0,j + V ⊤
i γj +

p1,j∑
m=1

αm,j

K∑
l=1

ail
ni

Xl(t−m) +

p2,j∑
n=1

βn,jXi(t−n) + εit,j.

Throughout the chapter, we follow the same stationarity assumptions in [50] for each seg-

ment, for example,
∑p1,j

i=1(|αi| + |βi|) <= 1 is satisfied which guarantees the piecewise stationar-

ity. With the above piecewise NAR model, one needs to estimate the number m0 and the locations

{τ1, · · · , τm0} of the breakpoints. One also needs to estimate the model parameters in each seg-

ment, including the lag orders p1,j and p2,j , and the regression coefficients β0,j , αm,j , and βn,j .

It will be shown below that for each segment, once the lag orders are determined, the regression

coefficient estimates can be obtained using maximum likelihood [50]. So the main challenge is to

estimate the number and locations of the breakpoints, as well as the lag orders in each segment.
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Notice that this can be seen as a statistical model selection problem, as different m0 would lead to

different piecewise stationary models with different numbers of model parameters.

One major contribution of this chapter is the development of a systematic method for selecting

a best-fitting piecewise stationary NAR model (3.2). That is, to estimate the number and locations

of the breakpoints, as well as the orders for each stationary NAR model between any two adjacent

breakpoints. Once these quantities are estimated, the remaining model parameters can be estimated

using maximum likelihood. The proposed method invokes the minimum description length (MDL)

principle [29,57] to derive an objective criterion for model selection, and uses the genetic algorithm

to solve the corresponding optimization problem.

Breakpoint detection in network problems has been widely investigated in recent years, for

example, in the medical area [58]. Existing mainstream methods can be broadly divided into two

categories. The first group of methods begins with summarizing a certain characteristic of each of

the networks with a metric and then detects any possible breakpoints with respect to that metric.

Examples of a network metric include various matrix norms [59,60] and centrality metrics [61,62].

Reducing a (complicated) network to a simple metric typically provides substantial speed gain, but

at the same time, it may inevitably cause information loss, which in turn may adversely affect the

final results. The second group of methods fits a dynamic network model to the data and uses

model-based testing methods to detect breakpoints. Examples of such a network model include

generalized hierarchical random graphs [63], Kronecker product graphs [64], and stochastic block

models [65]. Some of these model assumptions could be restrictive, but if appropriate for the data

at hand, these methods tend to provide excellent results.

One merit of the proposed method is that no strong restrictions are imposed on the network

structures, which greatly increases the applicability of the method. To the best of the authors’

knowledge, this is one of the first complete systematic studies that consider structural break esti-

mation in non-stationary NAR models.

The rest of this chapter is organized as follows. Section 3.2 derives the MDL criterion for

estimating the unknowns in the piecewise stationary NAR model. It also studies the theoretical
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properties of the criterion. Section 3.3 develops a two-stage GA algorithm to minimize the MDL

criterion. The empirical performance of the proposed method is illustrated in Section 3.4 via vari-

ous numerical simulations and in Section 3.5 via an application to some real Manhattan yellow cab

data. Lastly, concluding remarks are offered in Section 3.6, while technical details and additional

simulation results are provided in the supplementary material.

3.2. Breakpoint Detection using MDL

The MDL principle is a popular method for deriving an effective model selection criterion. It

defines the best-fitting model as the one that compresses the data into the shortest possible code

length for storage, where the code length represents the bites needed to store the data. It was

proposed by Rissanen [29, 57] and has been successfully applied to solve various model selection

problems such as image segmentation [66], network constructions [67, 68, 69], and quantile and

spline regression [70, 71]. This chapter focuses on the so-called “Two–Part MDL” [72], and this

section derives the corresponding MDL criterion for fitting a piecewise stationary NAR model.

3.2.1. Derivation of the MDL Criterion. To store the observed data, one can split them into

two parts: the first part is a fitted model and the second part is the corresponding residuals. If the

fitted model is a good model, it will be more economical to store the data in this way. Denote

CL(z) as the code length of any object z; thus, we want to minimize CL(“data”). Also, denote

the whole class of piecewise NAR models as M, denote any model in M as F ∈ M and its

corresponding residuals as Ê . Then we have

CL(“data”) = CL(“fitted model”) + CL(“residuals”) = CL(F) + CL(Ê |F).

We need a computable expression for CL(“data”) and we first calculate CL(F). Notice that

to completely specify a model F , we need to know the breakpoint number m and their locations

T = {τ1, · · · , τm}. In addition, for all j = 1, . . . ,m + 1, we need to know the lag orders pj =

(p1,j, p2,j) and regression parameters θj = (β0,j, α1,j, · · · , αp1,j ,j, β1,j, · · · , βp2,j ,j,γj), for the j-th

segment. Write P = (p1, · · · ,pm+1) and Θ̂ = (θ̂1, · · · , θ̂m+1). Then we have F = (m, T ,P , Θ̂),
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which leads to the code length decomposition:

(3.3) CL(F) = CL(m) + CL(T ) + CL(P) + CL(Θ̂).

When applying MDL, the code length of an unknown positive integer I can be approximated

by log(I) [57]. On the other hand, if I is known to be upper-bounded by Iu, then its code length is

log(Iu). So the first three terms on the RHS of (3.3) are

CL(m) = log(m+ 1),(3.4)

CL(T ) = (m+ 1) log(T ),(3.5)

CL(P) =
m+1∑
j=1

{log(p1,j) + log(p2,j)},(3.6)

where the additional 1 in CL(m) is used to make the formula meaningful when m = 0.

For the last term in (3.3), we need to first estimate Θ̂ from model (3.2) and then encode the

resulting estimated values. For estimation, we shall use the maximum likelihood method of [50],

while for encoding, we shall use the result of [57] that any (scalar) maximum likelihood estimate

calculated from N observations can be effectively encoded with 1
2
log(N) bits. We first describe

the maximum likelihood method of [50].

Let wi = (ail/ni : 1 ≤ l ≤ K)T ∈ RK be the i-th row vector of the row normalized network

matrix W , and

Z∗
l(t−1),j := {1,wT

l Xt−1,j, . . . ,w
T
l Xt−p1,j ,j, Xl(t−1),j, . . . , Xl(t−p2,j),j,V

T
l }T ∈ Rp1,j+p2,j+q+1,

where Xl(t−1),j represents the l-th element of Xt−1,j . Let

Z∗
t−1,j := (Z∗

1(t−1),j, · · · , Z∗
K(t−1),j)

T ∈ RK×(p1,j+p2,j+q+1).
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Then the j-th segment, which is a NAR(p1,j, p2,j) model (see (3.2)), can be rewritten in vector

form as

(3.7) Xt,j = Z∗
t−1,jθj + εj,

where εj ∼ Nk(0, σ
2
jIk). Here the variances do not need to be the same for the proposed method

to work, but for simplicity, below we will assume they are identical. With this, the maximum

likelihood estimator of θj is

(3.8)

θ̂j =

 τj∑
t=τj−1+pmax,j+1

Z∗T
t−1,jZ

∗
t−1,j

−1

×

τj∑
t=τj−1+pmax,j+1

Z∗
t−1,jXt,j ∈ R(p1,j+p2,j+q+1),

where pmax,j := max(p1,j, p2,j), nj := τj − τj−1, and

(3.9) σ̂2
j =

∑τj
t=τj−1+pmax,j+1(Xt,j −Z∗

t−1,j θ̂j)
T (Xt,j −Z∗

t−1,j θ̂j)

K(nj − pmax,j)
.

As mentioned before, to encode a scalar maximum likelihood estimate, the code length is

1
2
log(N) if N observations were used for estimation. Therefore,

(3.10) CL(Θ̂) =
m+1∑
j=1

p1,j + p2,j + q + 1

2
log(nj).

The last term in (3.3) that we need to calculate is CL(Ê |F), which equals the negative log

(base 2) of the likelihood of the fitted model F [57]. From (3.7), (3.8) and (3.9), we have

(3.11) CL(Ê |F) =
m+1∑
j=1

[
K(nj − pmax,j)

2

{
log(2πσ̂2

j ) + 1
}]

log2 e

Combining (3.4), (3.5), (3.6), (3.10) and (3.11) and using logarithm base e instead of base 2,

(3.3) becomes
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(3.12)

CL(“data”) = log(m+ 1) + (m+ 1) log(T )

+

m+1∑
j=1

(
log(p1,j) + log(p2,j) +

p1,j + p2,j + q + 1

2
log(nj)

)

+
m+1∑
j=1

{
K(nj − pmax,j)

2

(
log(2πσ̂2

j ) + 1
)}

log2 e

:= MDL(m, τ1, · · · , τm, p1,1, p2,1, · · · , p1,m+1, p2,m+1).

Thus, the MDL principle suggests that the best-fitting model for the observed data Xt,j, t =

1, . . . , nj, j = 1, . . . ,m is the one F ∈ M that minimizes (3.12).

3.2.2. Theoretical Properties. Denote the true number of breakpoints as m0 and the true

locations of the breakpoints as T0 = {τ 01 , · · · , τ 0m0
}. Define the true relative breakpoint locations

as λ0 = {λ01, · · · , λ0m0
} with τ 0j = ⌊λ0jT ⌋ for j = 1, . . . ,m0, where ⌊x⌋ represents the greatest

integer that is less than or equal to x. Further, write p = (p1,1, p2,1, · · · , p1,m+1, p2,m+1) and

λ = (λ1, · · · , λm). Note that the theoretical results in this subsection will be presented in terms of

λ instead of T .

As suggested by [73], for each segment, a sufficient number of data points are required to

adequately estimate the corresponding NAR model parameters. For this reason, we impose the

following constraint on the estimate of λ. First, choose ξ > 0 sufficiently small enough that

ξ ≪ mini=1,··· ,m0+1(λ
0
i − λ0i−1). Then define

Am = { (λ1, . . . , λm 0 = λ0 < λ1 < · · · < λm < λm+1 = 1, λi − λi−1 ≥ ξ, i = 1, 2, . . . ,m+ 1}

Lastly, we require the estimate of λ to be an element of Am.

Using this constraint and (3.12), the unknown meta-parameters are given by

(3.13) {m̂, λ̂, p̂} = argmin
m,p,λ∈Am

2

T
MDL(m,λ,p).
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THEOREM 3.2.1. For the piecewise stationary NAR model given by (3.2), when the true

number of breakpoints m0 is known, the estimate λ̂ defined by (3.13) satisfies

λ̂j
a.s.−→ λ0j , j = 1, . . . ,m0.

COROLLARY 3.2.1.1. If the number of breakpoints m0 is unknown and estimated with (3.13),

then

(1) The estimated number of breakpoints m̂ ≥ m0 for sufficient large T .

(2) When m̂ > m0, for any λ0j ∈ λ0, there exists a λ̂k such that |λ0j − λ̂k| < ϵ, ∀ϵ > 0 for

large enough T .

(3) The lag order of the model in each segment cannot be underestimated; i.e., p̂1,j ≥ p01,j ,

p̂2,j ≥ p02,j , where p01,j and p02,j are the true lag orders.

If Assumption 1 below is satisfied, a consistency result of the MDL estimator (3.13) can be

derived even when m0 is not known.

ASSUMPTION 1. For j = 1, · · · ,m+1, any fixed pj and any sequence {g(T )}T≤1 of integers

that satisfies g(T ) ≤ cT 0.5 for some c > 0 when T is sufficiently large. Let fpj
(Xi,j|Xs,j, s <

i;θj) be the conditional density function of the i-th observation in the j-th segment. Also let

lj(pj,θj,Xi,j|Xs,j, s < i) = log fpj
(Xi,j|Xs,j, s < i;θj) be the conditional log-likelihood func-

tion for Xi,j . then

1

g(T )

T∑
i=T−g(T )+1

lj(pj,θj,Xi,j|Xs,j, s < i)
a.s.−−→ E(lj(pj,θj,X1,j|Xs,j, s < 1))

and

1

g(T )

T∑
i=T−g(T )+1

l
′

j(pj,θj,Xi,j|Xs,j, s < i)
a.s.−−→ E(l

′

j(pj,θj,X1,j|Xs,j, s < 1))

where l
′
j(pj,θj,Xi,j|Xs,j, s < i) is the first derivative of lj(pj,θj,Xi,j|Xs,j, s < i).
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This assumption is needed to control the effects at the two ends of the fitted segments so that

the convergence rate of the location estimator can be established.

THEOREM 3.2.2. For the piecewise stationary NAR model given by (3.2), under the assump-

tions of Theorem 3.2.1(except for the known number of breakpoints) and Assumption 1, the esti-

mator {m̂, λ̂} defined by (3.13) satisfies

m̂
a.s.−−→ m0, λ̂

a.s.−−→ λ0.

The proofs of Theorem 3.2.1, Corollary 3.2.1.1, and Theorem 3.2.2 can be found in the sup-

plementary material.

3.3. Practical Optimization of MDL Using Genetic Algorithms

The enormous searching space makes the minimization of (3.12) or (3.13) a non-trivial task.

This section develops a genetic algorithm (GA) for solving this problem.

3.3.1. A Brief Introduction to Genetic Algorithms. GA is a search heuristic that can be

dated back as early as [74], for which the main idea was inspired by Charles Darwin’s theory of

natural evolution. Typically, a GA begins with generating an initial set of possible solutions (chro-

mosomes) to the optimization problem of interest, which is represented by vector form. Next, these

chromosomes are weighted sampled as parents to generate their “offspring”: parent chromosomes

with better values for the optimization problem (i.e., larger values for maximization problems or

smaller values for minimization problems) have higher chances of being chosen. An offspring

chromosome is then produced by applying either a crossover or a mutation operation to the chosen

parent chromosomes. Such a process repeats until some stopping criteria are met.

As suggested in [73], to preserve the evolution direction towards the optimal value, the best

chromosome from the previous generation is preserved to replace the worst chromosome of the

current generation. This process is known as the elitist step and guarantees the monotonously of

the algorithm.
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To speed up the algorithm, [75] introduced an island model version that is particularly suited

for parallel computing. Rather than running with only one group of evolving chromosomes, the

island model can simultaneously run NI (number of islands) subgroups of chromosomes. Period-

ically, chromosomes are allowed to migrate amongst the islands, a process known as migration.

The migration policy that we use here is the same as in [73]. The purpose of migration is to avoid

sub-optimal solutions for the subgroups. At every Mi-th generation, the worst MN chromosomes

in j-th island are replaced by the best MN chromosomes in (j − 1)-th island, for j = 2, . . . , NI .

The first island’s worst MN chromosomes are replaced by the best MN chromosomes in the NI-th

island.

3.3.2. Implementation Details. This subsection provides details of the tailored GA that we

use to minimize (3.12) for the piecewise stationary NAR model (3.2).

3.3.2.1. Chromosome representation. In general, the representation of chromosomes plays an

important role in the overall performance of GAs. A good representation should contain all the

needed information of any potential solution for the calculation of (3.12). For the current problem,

it suffices to include only the breakpoints T and the lag orders p, as once these quantities are

specified, the remaining unknown parameters can be uniquely calculated. Given this, we propose

using the following constant-length representation for a chromosome δ = (δ1, · · · , δT ), where the

gene values are

(3.14)



δt = −1 if time t is not a breakpoint

δt = (p1,j, p2,j) if t = τj−1 (i.e., time t is the (j − 1)-th

breakpoint) and the j-th segment is a

NAR (p1,j, p2,j) model.

If t is a breakpoint location, the t-th gene consists of two values, even though together they

only use one gene index. This allows the length of the chromosomes to remain constant T irre-

spective of the number of breakpoints, which in turn facilitates the execution of the crossover and

mutation operations.
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3.3.2.2. Maximum lag order and minimum span. In practice we set the maximum possible lag

order as P0 = 10; i.e., (p1,j, p2,j) ≤ P0 for all j. Also, as mentioned before, we require each

segment to have a minimum number of data points so that reasonable parameter estimates can be

obtained. This requirement is called the minimum span constraint by [73]. For our problem, the

minimum span mpmax of a segment with a maximum lag order pmax,j = max(p1,j, p2,j) can be

found in Table 3.1.

TABLE 3.1. Minimum number of data points required for different pmax.

pmax 0-1 2 3 4 5 6 7 8 9-10 11-20

mpmax 10 12 14 16 18 20 22 24 25 50

3.3.2.3. Generating the first generation chromosomes. The way we generate the first-generation

chromosomes is summarized in Algorithm 1. We denote a pre-specified parameter rG as the prob-

ability for any time point t to be a breakpoint. See section B of the supplementary material for

other methods for generating the first-generation chromosomes.

Once the first generation is available, we select parent chromosomes from it and apply the

crossover and mutation operations to produce offspring chromosomes. We denote the pre-specified

probability for performing a crossover operation as rC , and the probability for mutation is 1− rC .

3.3.2.4. Crossover. In the crossover operation, one offspring chromosome is generated in a

manner that is summarized by Algorithm 2.

3.3.2.5. Mutation. During mutation, one offspring chromosome is produced by Algorithm 3.

3.3.2.6. Stopping Criterion. As mentioned in the previous section, the island model will be

used, which allows migration after every Mi generation. The algorithm will finish if the chro-

mosome with the smallest MDL value does not change for MC consecutive migrations or if the

total number of migrations exceeds an upper bound MU . The chromosome with the smallest MDL

value will be taken as the final solution provided by the algorithm.

Algorithm 4 provides an overall summary that links all the above ingredients of the genetic

algorithm.
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Algorithm 1: Initialization
Input: Minimum span for different lag order: mpmax;

Probability of being a breakpoint: rG;
The upper bound of lag orders: P0;

Output: Initialization chromosome δ
initialize δ = (δ1, · · · , δT ) = (−1, ·,−1); i = 1
while i ≤ T do

Generate r ∼ Uniform(0, 1)
if i == 1 then

SAMPLE p1,i, p2,i ∼ [P0];
SET δi = (p1,i, p2,i); pmax,i = max(p1,i, p2,i);
i = i+mpmax,i

+ 1
else

if r < rG then
SAMPLE p1,i, p2,i ∼ [P0];
SET δi = (p1,i, p2,i); pmax,i = max(p1,i, p2,i);
i = i+mpmax,i

+ 1
else

i = i+ 1
end

end
end

3.3.2.7. Refined estimates for the lag orders. Although the above GA provides good results

in estimating the number and locations of the breakpoints, the estimated locations are not always

equal to the true ones. This could have negative impacts on the estimation of the lag orders if the

estimated segment contains data points from its adjacent segments.

As Corollary 3.2.1.1 states, although the estimated breakpoint locations are not necessarily

to be exact, the true locations will likely be within some neighborhoods of the estimated ones. In

light of this, when we estimate the lag orders (p1,j, p2,j) of the j-th estimated segment [τ̂j−1, τ̂j),

we only use data from [τ̂j−1 +Rn, τ̂j −Rn), where Rn is a calculated radius of the neighborhood,

which can be calculated using the similar way as in [76]. The simulation results below show that

this improves the estimation of the lag orders. We also only use those data from the shortened

segment to estimate the regression parameters.

Figure 3.1 shows the flowchart of this two-stage genetic algorithm.
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Algorithm 2: Crossover
Input: Chromosomes of last generation;

MDL values for last generation chromosomes;
Minimum span for different lag order: mpmax;
The upper bound of lag orders: P0;

Output: New generation chromosome δnew

initialize δnew = (δnew,1, · · · , δnew,T) = (−1, ·,−1); i = 1;
Weight Sample 2 parent chromosomes δp1 , δp2 based on their inverse MDL values;
Set i = 1.

while i ≤ T do
Generate r ∼ Uniform(0, 1)
if r ≤ 0.5 then

SET δnew,i = δp1,i;
if δnew,i ̸= −1 then

SET pmax,i = max(δnew,i[0], δnew,i[1]);
i = i+mpmax,i

+ 1
else

i = i+ 1
end

else
end

end

3.4. Simulation Results

3.4.1. General Parameter Settings. We first specify the parameter values that we used in

the GA in all simulation settings: upper bound of lag order P0 = 10; number of islands NI =

40; number of chromosomes in each island nm = 40; migration frequency Mi = 5; migration

numbers MN = 2; stopping criterion MC = 20, MU = 100; initialization probability rG = 0.1;

crossover probability rC = 0.9; mutation probabilities rP = rN = 0.3; neighbourhood radius

Rn = 0.5 log(K) log(T ) as suggested in [76].

Three network structures from [50] are considered in each of the five simulation scenarios

below:

I. Power-Law Distribution Structure: this structure mimics the phenomenon when a major-

ity of nodes have very few edges while a few nodes have enormous numbers of edges.

A discrete power-law distribution is used to generate in-degree di =
∑

j ̸=i aji, where
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Algorithm 3: Mutation
Input: Chromosomes of last generation;

MDL values for last generation chromosomes;
The probability of a gene mutating to non-breakpoint rN ;
The probability of a gene inherent from parent chromosome rP ;
Minimum span for different lag order: mpmax;
The upper bound of lag orders: P0;

Output: New generation chromosome δnew

initialize δnew = (δnew,1, · · · , δnew,T) = (−1, ·,−1); i = 1;
Weight Sample 1 parent chromosome δp1 based on their inverse MDL values;
Set i = 1.

while i ≤ T do
Generate r ∼ Uniform(0, 1)
if i == 1 then

if r < rP then
SET δnew,i = δp1,i;
if δnew,i ̸= −1 then

SET pmax,i = max(δnew,i[0], δnew,i[1]);
i = i+mpmax,i

+ 1
else

i = i+ 1
end

else
SAMPLE p1,i, p2,i ∼ [P0];
SET δi = (p1,i, p2,i); pmax,i = max(p1,i, p2,i);
i = i+mpmax,i

+ 1
end

else
if r < rP then

SET δnew,i = δp1,i;
if δnew,i ̸= −1 then

SET pmax,i = max(δnew,i[0], δnew,i[1]);
i = i+mpmax,i

+ 1
else

i = i+ 1
end

else if r > rG + rN then
SAMPLE p1,i, p2,i ∼ [P0];
SET δi = (p1,i, p2,i); pmax,i = max(p1,i, p2,i);
i = i+mpmax,i

+ 1
δnew,i = −1;
i = i+ 1

end
end
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Algorithm 4: Genetic algorithm for solving (3.13)

Input: Minimum span for different lag order: mpmax;
Probability of Crossover: rC;
Probability of being a breakpoint: rG;
The probability of a gene mutating to non-breakpoint rN ;
The probability of a gene inherent from parent chromosome rP ;
The upper bound of lag orders: P0;

Output: Final chromosome δfinal

Initialize chromosomes using Algorithm 1
while minimum MDL value changes do

Generate r ∼ Uniform(0, 1)
if r < rC then

Generate next generation using Crossover Algorithm 2
else

Generate next generation using Mutation Algorithm 3
end

end

FIGURE 3.1. Flowchart for the two-stage genetic algorithm.
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P (di = x) = cx−1.2 with a constant c set to c = 1.5. Then for each node i, randomly

select di nodes to follow it.

II. Dyad Independence Structure: A dyad is defined as a pair of nodes Dij = (aij,aji), 1 ≤

i < j ≤ K and it is assumed that different dyads are independent. We set P (Dij =

(1, 1)) = 0.1, P (Dij = (1, 0)) = P (Dij = (0, 1)) = 0.05, and P (Dij = (0, 0)) = 0.85.

III. Stochastic Block Structure: Randomly assign each node a block label uniformly from 5

groups; i.e., {1, . . . , 5}. We set P (aij = 1) = 0.15 if {i, j} belong to the same group, and

P (aij = 1) = 0.015 if {i, j} belong to different groups. This implies that nodes within

the same group will have higher chances of being connected.

The node specific covariates are generated as Vi = 0.15Zi, where Zi = (Zi1, . . . , Zi4)
T ∈ R4

is from a multivariate normal distribution with N4(0,ΣZ) with ΣZ = (σj1j2) = (0.5|j1−j2|). For

all different scenarios below, we set the number of time points T = 300, the number of nodes

K = 20, and the number of simulation runs to 100.

3.4.2. Scenario 1: Impact of the refining step of Section 3.3.2.7. In this first scenario, break-

points are set as T = (T
3
, 2T

3
) = (100, 200), with two sets of error variances: σ1 = σ2 = σ3 = 0.1

and σ1 = σ2 = σ3 = 0.3. We have p1,j = p2,j for all segments:

Segment 1: p1,1 = p2,1 = 1, θ1 = (β0,1, α1,1, β1,1,γ1) = (0,−0.1, 0.2, 0.1, 0.4, 0.1, 0.2) ∈ R7.

Segment 2: p1,2 = p2,2 = 2, θ2 = (β0,2, α1,2, α2,2, β1,2, β2,2,γ2) = (0, 0.2,−0.22,−0.12, 0.4,

− 0.1, 0.1, 0.2,−0.1) ∈ R9.

Segment 3: p1,3 = p2,3 = 2, θ3 = (β0,3, α1,3, α2,3, β1,3, β2,3,γ3) = (0,−0.12, 0.1, 0.25,−0.4,

0.2,−0.5, 0.1, 0.1) ∈ R9.

The above regression coefficients guarantee that the NAR model in each segment is stationary

[50, 53].

For each of the three network structures, 100 data sets were generated, and the proposed

method was applied to estimate the breakpoints and other model parameters. One typical data set

(with σ1 = σ2 = σ3 = 0.1) from each of the network structures are shown in Figure 3.2, while the

breakpoint estimation results for the 100 runs are summarized in Tables 3.2 and 3.3 respectively
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for smaller and larger error variances. One can observe that the proposed method successfully

detected the correct number of breakpoints in all cases when error variances were smaller. The

method also produced excellent estimates for the breakpoint locations, as shown by their mean

values and standard deviations.

We compare the estimation results of the lag orders without and with the refining step de-

scribed in Section 3.3.2.7: the results for the smaller error variance cases are summarized, respec-

tively, in Table 3.4 and 3.5. The results for the larger error variance cases are similar and hence

omitted for brevity. One can observe that the refining step did indeed improve the estimation re-

sults of the lag orders. So if not specified, the refining step was applied in all the numerical work

presented below.

The estimation results of the regression parameters (θ1, θ2, θ3) are delayed to section C in the

supplementary material.

FIGURE 3.2. Typical simulated data sets with estimated breakpoints (vertical red
lines). Left: power-law network structure; middle: dyad independence network
structure; right: stochastic block network structure.

3.4.3. Scenario 2: Different segment lengths. In the second scenario, two sets of breakpoints

were used: T = (T
3
, 2T

3
) = (100, 200) and T = (T

6
, 5T

6
) = (50, 250). The error variances are

σ1 = σ2 = σ3 = 0.1, and other model parameters are:

Segment 1: p1,1 = p2,1 = 1, θ1 = (β0,1, α1,1, β1,1,γ1) = (0,−0.1, 0.2, 0.1, 0.4, 0.1, 0.2) ∈ R7.

Segment 2: p1,2 = 2, p2,2 = 1, θ2 = (β0,2, α1,2, α2,2, β1,2,γ2) = (0, 0.2,−0.22,−0.12,−0.1, 0.1, 0.2,−0.1)

∈ R8.
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TABLE 3.2. Results of selected breakpoints of Scenario 1 when σ1 = σ2 = σ3 =
0.1. Truth: locations of the true breakpoints; Mean/SD: means/standard deviations
of the estimated breakpoint locations over the 100 simulation runs; Selection Rate:
percentages of times that the correct number of breakpoints were selected.

Breakpoint Truth Mean SD Selection Rate

Power-Law
Structure

1 0.333 0.323 0.016 100%
2 0.667 0.666 0.008 100%

Dyad Independence
Structure

1 0.333 0.325 0.016 100%
2 0.667 0.665 0.009 100%

Stochastic Block
Structure

1 0.333 0.328 0.010 100%
2 0.667 0.665 0.011 100%

TABLE 3.3. Similar to Table 3.2 but for σ1 = σ2 = σ3 = 0.3.

Breakpoint Truth Mean SD Selection Rate

Power-Law
Structure

1 0.333 0.320 0.020 93%
2 0.667 0.669 0.015 91%

Dyad Independence
Structure

1 0.333 0.321 0.015 90%
2 0.667 0.663 0.009 93%

Stochastic Block
Structure

1 0.333 0.330 0.011 94%
2 0.667 0.664 0.012 93%

Segment 3: p1,3 = 1, p2,3 = 2, θ3 = (β0,3, α1,3, β1,3, β2,3,γ3) = (0,−0.12, 0.25,−0.4, 0.2,−0.5, 0.1, 0.1)

∈ R8.

The estimated breakpoints from 100 simulation runs are summarized in Tables 3.6 and 3.7, in a

similar fashion as in Scenario 1. The proposed method selected the correct number of breakpoints

for all cases. It also gave excellent location estimates, as reflected by the mean and standard

deviations.
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TABLE 3.4. Estimated Lag orders in each segment of three network structures of
Scenario 1 without the refining step of Section 3.3.2.7, where σ1 = σ2 = σ3 = 0.1.
The numbers are the proportions that a particular order was estimated. Bolded
numbers correspond to the true orders.

Orders 0 1 2 3 4 5

Power-Law
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.05 0.88 0.06 0.01 0
p2,2 0 0.05 0.85 0.09 0.01 0
p1,3 0 0.12 0.78 0.08 0.02 0
p2,3 0 0.10 0.78 0.10 0.02 0

Dyad Independence
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.11 0.83 0.05 0.01 0
p2,2 0 0.10 0.80 0.06 0.04 0
p1,3 0 0.23 0.73 0.04 0 0
p2,3 0 0.20 0.75 0.01 0.03 0.01

Stochastic Block
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0 0.80 0.20 0 0
p2,2 0 0 0.83 0.17 0 0
p1,3 0 0.12 0.65 0.19 0.04 0
p2,3 0 0.10 0.70 0.20 0 0

Estimation results of the lag orders are summarized in Tables 3.8 and 3.9. The results seem to

be slightly worse for breakpoints T = (50, 250) when compared to T = (100, 200). One possible

explanation is that the first and third segments are shorter, and hence there were less number of

data points available for the estimation of the lag orders.
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TABLE 3.5. Similar to Table 3.4 but with the refining step of Section 3.3.2.7

Orders 0 1 2 3 4 5

Power-Law
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0 1 0 0 0
p2,2 0 0.01 0.99 0 0 0
p1,3 0 0.02 0.98 0 0 0
p2,3 0 0.02 0.98 0 0 0

Dyad Independence
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0 1 0 0 0
p2,2 0 0 1 0 0 0
p1,3 0 0 0.97 0.03 0 0
p2,3 0 0.02 0.96 0.02 0 0

Stochastic Block
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0 1 0 0 0
p2,2 0 0.01 0.99 0 0 0
p1,3 0 0 1 0 0 0
p2,3 0 0.01 0.98 0.01 0 0

3.4.4. Scenario 3: Correlated variance matrices. Here we set the breakpoints as T =

(T
3
, 2T

3
) = (100, 200) and adopt a more complicated error structure: the errors are correlated and

the covariance matrix of the error terms is dense. To be more specific, we assume the covariance
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TABLE 3.6. Similar to Table 3.2 but for Scenario 2 with true breakpoints T =
(100, 200).

Breakpoint Truth Mean SD Selection Rate

Power-Law
Structure

1 0.333 0.330 0.004 100%
2 0.667 0.662 0.010 100%

Dyad Independence
Structure

1 0.333 0.330 0.009 100%
2 0.667 0.660 0.011 100%

Stochastic Block
Structure

1 0.333 0.332 0.007 100%
2 0.667 0.662 0.010 100%

TABLE 3.7. Similar to Table 3.2 but for Scenario 2 with true breakpoints T =
(50, 250).

Breakpoint Truth Mean SD Selection Rate

Power-Law
Structure

1 0.167 0.167 0.012 100%
2 0.833 0.830 0.007 100%

Dyad Independence
Structure

1 0.167 0.166 0.011 100%
2 0.833 0.829 0.010 100%

Stochastic Block
Structure

1 0.167 0.165 0.007 100%
2 0.833 0.831 0.006 100%

matrix of error εj is Σεj = 0.01((σij))T×T with σij = 0.5|i−j|. All the remaining model parameters

are the same as those in Scenario 2.

The estimation results for breakpoints and lag orders are summarized, respectively, in Ta-

bles 3.10 and 3.11. One can observe that the proposed method performed very well in this sce-

nario, which confirms the applicability of the method in the case of correlated error terms. These

results verify our previous claim that the variances of the error terms do not have to be the same

for the proposed method to work.
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TABLE 3.8. Similar to Table 3.5 but for Scenario 2 with true breakpoints T =
(100, 200).

Orders 0 1 2 3 4 5

Power-Law
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.01 0.99 0 0 0
p2,2 0 0.99 0.01 0 0 0
p1,3 0 0.96 0.04 0 0 0
p2,3 0 0.01 0.99 0 0 0

Dyad Independence
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.05 0.95 0 0 0
p2,2 0 1 0 0 0 0
p1,3 0 0.98 0.02 0 0 0
p2,3 0 0.02 0.98 0 0 0

Stochastic Block
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.02 0.98 0 0 0
p2,2 0 0.96 0.04 0 0 0
p1,3 0 0.98 0.02 0 0 0
p2,3 0 0 1 0 0 0

3.4.5. Scenario 4: Slowly varying coefficient. In this scenario we consider the case that there

is no breakpoint and one of the coefficients is slowly varying. The exact specification is: p1 = p2 =

1 and θ = (β0, α1, β1,γ1) = (0, at,−0.1, 0.1, 0.4, 0.1, 0.2), where at = 0.55 − 0.25 cos(πt/T )
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TABLE 3.9. Similar to Table 3.5 but for Scenario 2 with true breakpoints T =
(50, 250).

Orders 0 1 2 3 4 5

Power-Law
Structure

p1,1 0 0.98 0.02 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.04 0.96 0 0 0
p2,2 0 0.99 0.01 0 0 0
p1,3 0 0.89 0.11 0 0 0
p2,3 0 0.05 0.95 0 0 0

Dyad Independence
Structure

p1,1 0 0.99 0.01 0 0 0
p2,1 0 0.99 0.01 0 0 0
p1,2 0 0.11 0.89 0 0 0
p2,2 0 0.96 0.04 0 0 0
p1,3 0 0.92 0.08 0 0 0
p2,3 0 0.01 0.97 0.02 0 0

Stochastic Block
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.04 0.96 0 0 0
p2,2 0 0.94 0.06 0 0 0
p1,3 0 0.90 0.10 0 0 0
p2,3 0 0.05 0.95 0 0 0

changes over time. Typical realizations of this process are shown in Figure 3.3 with breakpoints

estimated by the proposed method.

For both the Power-Law and Dyad Independence Structures, no breakpoint was detected in

any of the simulation runs, while for the Stochastic Block Structure, one breakpoint was always
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TABLE 3.10. Similar to Table 3.2 but for Scenario 3.

Breakpoint Truth Mean SD Selection Rate

Power-Law
Structure

1 0.333 0.324 0.011 100%
2 0.667 0.663 0.007 100%

Dyad Independence
Structure

1 0.333 0.325 0.010 100%
2 0.667 0.664 0.01 100%

Stochastic Block
Structure

1 0.333 0.323 0.012 100%
2 0.667 0.664 0.007 100%

detected near 0.6T . The reason may be that the Stochastic Block structure has the lowest structure

sparsity, so it contains less information in this difficult scenario.

FIGURE 3.3. Typical simulated data sets with a slowly varying coefficient. Left:
power-law network structure with no detected breakpoint; middle: dyad indepen-
dence network structure with no detected breakpoint; right: stochastic block net-
work structure with one detected breakpoint (red vertical line).

3.4.6. Scenario 5: Mis-specified W . In this last scenario, the row normalized network matrix

W is mis-specified. Although W is always assumed known and can be derived directly from the

network structure matrix A in NAR models, in many applications, it is reasonable to assume that it

is empirically defined and hence it may not be exactly accurate [53]. Here we use Wobs = W +πT

with πT ∼ N(0, 0.12) and πT ∼ N(0, 0.52). Other model parameters are the same as those in

Scenario 2 with true breakpoints T = (100, 200).
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TABLE 3.11. Similar to Table 3.5 but for Scenario 3.

Orders 0 1 2 3 4 5

Power-Law
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0 0.99 0.01 0 0
p2,2 0 1 0 0 0 0
p1,3 0 0.97 0.03 0 0 0
p2,3 0 0.02 0.98 0 0 0

Dyad Independence
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.03 0.97 0 0 0
p2,2 0 0.99 0.01 0 0 0
p1,3 0 0.98 0.02 0 0 0
p2,3 0 0.02 0.98 0 0 0

Stochastic Block
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.02 0.98 0 0 0
p2,2 0 0.95 0.05 0 0 0
p1,3 0 0.99 0.01 0 0 0
p2,3 0 0 1 0 0 0

The estimation results for the breakpoints and lag orders are summarized in Tables 3.12

to 3.15. These results are comparable to those from Scenario 2, which suggests that the intro-

duction of the error term πT did not affect the estimation results too much. In other words, the
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results suggest that the proposed method is, to a certain extent, robust against changes in the net-

work structure matrix.

TABLE 3.12. Similar to Table 3.2 but for Scenario 5 with πT ∼ N(0, 0.12).

Breakpoint Truth Mean SD Selection Rate

Power-Law
Structure

1 0.333 0.330 0.009 100%
2 0.667 0.660 0.008 100%

Dyad Independence
Structure

1 0.333 0.320 0.007 100%
2 0.667 0.664 0.009 100%

Stochastic Block
Structure

1 0.333 0.330 0.013 100%
2 0.667 0.663 0.010 100%

TABLE 3.13. Similar to Table 3.2 but for Scenario 5 with πT ∼ N(0, 0.52).

Breakpoint Truth Mean SD Selection Rate

Power-Law
Structure

1 0.333 0.331 0.010 94%
2 0.667 0.662 0.012 92%

Dyad Independence
Structure

1 0.333 0.323 0.010 95%
2 0.667 0.662 0.008 92%

Stochastic Block
Structure

1 0.333 0.331 0.015 91%
2 0.667 0.661 0.012 93%

3.5. Real Data Analysis

This section applies the proposed method to a Manhattan yellow cab demand data set, which

was obtained from the NYC Taxi and Limousine Commission’s website1. This dataset depicts the

number of yellow cab pick-ups in different taxi zones and is aggregated spatially over the zipcodes.

Here, Manhattan was divided into 64 taxi zones, as shown in Figure 3.4. Note that zones 103, 104,

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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TABLE 3.14. Similar to Table 3.5 but for Scenario 5 with πT ∼ N(0, 0.12).

Orders 0 1 2 3 4 5

Power-Law
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.02 0.98 0 0 0
p2,2 0 0.97 0.03 0 0 0
p1,3 0 0.95 0.05 0 0 0
p2,3 0 0.02 0.98 0 0 0

Dyad Independence
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.04 0.96 0 0 0
p2,2 0 0.99 0.01 0 0 0
p1,3 0 0.98 0.02 0 0 0
p2,3 0 0.02 0.98 0 0 0

Stochastic Block
Structure

p1,1 0 1 0 0 0 0
p2,1 0 1 0 0 0 0
p1,2 0 0.02 0.98 0 0 0
p2,2 0 0.97 0.03 0 0 0
p1,3 0 1 0 0 0 0
p2,3 0 0.01 0.99 0 0 0

105, 202, and 194 are isolated with no common boundaries with any other zones, thus these five

zones were not included in the analysis.
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TABLE 3.15. Similar to Table 3.5 but for Scenario 5 with πT ∼ N(0, 0.52).

Orders 0 1 2 3 4 5

Power-Law
Structure

p1,1 0 0.98 0 0 0 0.02
p2,1 0.01 0.89 0 0 0 0.1
p1,2 0 0.05 0.90 0 0 0.05
p2,2 0 0.91 0.06 0 0 0.03
p1,3 0 0.90 0.06 0 0 0.04
p2,3 0 0.04 0.92 0 0 0.04

Dyad Independence
Structure

p1,1 0 0.95 0.02 0.03 0 0
p2,1 0 0.96 0 0 0 0.04
p1,2 0 0.06 0.89 0 0 0.05
p2,2 0.08 0.87 0.01 0 0 0.05
p1,3 0 0.88 0.07 0 0 0.05
p2,3 0 0.02 0.89 0 0 0.09

Stochastic Block
Structure

p1,1 0 0.97 0.03 0 0 0
p2,1 0 0.99 0.01 0 0 0
p1,2 0 0.07 0.90 0 0 0.03
p2,2 0 0.88 0.05 0 0 0.07
p1,3 0 0.92 0 0 0 0.08
p2,3 0 0.02 0.89 0 0 0.09

For the remaining 59 zones, we aggregated the numbers of their yellow cab pick-ups tempo-

rally over 15-minutes intervals for the date April 16th, 2014. Thus, there are T = 96 time points

with K = 59 nodes at each time point. The network structure A = (ai1,i2) ∈ R59×59 was con-

structed by using the physical relationships of these taxi zones: ai1,i2 = 1 if zones i1 and i2 share

a common boundary, otherwise ai1,i2 = 0. We considered the average tip amount of the trips in

different zones in April 2014 as the node-specified exogenous covariates.
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We performed a first-order difference to the data to remove the first-order non-stationarities.

Altogether, three breakpoints were detected by the proposed method; they are shown in Figure 3.5.

These three breakpoints correspond to 6:15 AM, 11:30 AM, and 5:45 PM, which seem to coincide

with the daily major changes in traffic patterns in Manhattan: people commute to work, go out

for lunch, and return home after work. These results broadly agree with those in [76]. Lastly, the

fitting time for this data set is about 46.7 seconds per generation on a 2020 Macbook Pro with an

M1 chip.
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FIGURE 3.4. Taxi Zones of Manhattan.2
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FIGURE 3.5. The one-lag difference time series of the Manhattan yellow cab data
set in 59 taxi zones over 96 time points taken on April 16th, 2014. Altogether 3
breakpoints were detected (red vertical lines).

3.6. Concluding Remarks

This chapter developed a method for simultaneous multiple breakpoint detection and param-

eter estimation for piecewise stationary NAR models. The proposed method utilizes the MDL

principle to derive an objective criterion for estimating the breakpoints as well as other model pa-

rameters. It has been shown that the MDL estimates enjoy desirable asymptotic properties. To

optimize the MDL objective criterion, the proposed method uses a tailor-made GA. Through a

sequence of simulation experiments, the proposed method is shown to possess excellent empirical

properties. Lastly, the proposed method was applied to analyze a Manhattan yellow cab data set

and yielded similar results as those reported in the literature.

2Source: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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The proposed methodology offers several notable advantages, such as its statistical consis-

tency and the straightforward interpretation offered by piecewise stationary NAR models. How-

ever, it is not without its limitations. One key constraint is its reliance on the piecewise stationary

assumption; deviation from this assumption could lead to the identification of breakpoints that

do not truly exist, such as in cases where the data undergo gradual changes without clear break-

points. Additionally, the method presupposes an observed network structure that stays constant

throughout the observation period, a condition that may not always hold. While network imputa-

tion techniques [77, 78, 79] offer a remedy by enabling the reconstruction of the missing network

structure, they introduce a layer of uncertainty to the analysis.

Future work includes two ambitious goals. First, we aim to enhance the method by incor-

porating uncertainty quantification for the fitted piecewise stationary NAR model. Uncertainty

quantification is of great important in a lot of area [80]. This development would provide a deeper

understanding of the model’s predictive confidence across different segments. Second, we plan to

explore strategies for condensing the network without losing critical information. This endeavor

will investigate approaches similar to factor modeling in high-dimensional time series analysis,

aiming to maintain the important information hidden in the data while simplifying the model’s

complexity.

3.7. Supplementary materials

3.7.1. Proof and Technical Details.

3.7.1.1. General Notations. We follow the ideas of [81] and establish our theoretical results

using proof by contradiction. We observe that the MDL criterion (3.12) can be decomposed into

two parts: the minus log-likelihood part and the penalty part, where the latter can be controlled

asymptotically.

Denote pj = (p1,j, p2,j), and w.l.o.g., assume p1,j > p2,j . Let fpj
(Xi,j|Xs,j, s < i;θj) be the

conditional density function of the i-th observation in the j-th segment. Also let lj(pj,θj,Xi,j|Xs,j, s <

i) = log fpj
(Xi,j|Xs,j, s < i;θj) be the conditional log-likelihood function for Xi,j .
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From model (3.7), it can be seen that the distribution of Xi,j depends on Xi−1,j, · · · ,Xi−p1,j ,j .

However, for the first p1,j data, it is not possible to observe all the required preceding data. So,

we need to handle the gap between them. To proceed, we define the real observed past data to be

yi,j = (X1,1, · · · ,Xn1,1, · · · ,X1,j, · · · ,Xi−1,j).

The theoretical conditional log-likelihood of the j-th segment given all the unobserved past

is

Lj(pj,θj;Xj) =

nj∑
i=1

lj(pj,θj,Xi,j|Xs,j, s < i) =

nj∑
i=1

lj(pj,θj,Xi,j|Xs,j, i− p1,j ≤ s < i).

The real observed conditional log-likelihood of the j-th segment given all the real observed

past is

L̃j(pjθj;Xj) =

nj∑
i=1

lj(pj,θj,Xi,j|Xs,j, s < i)

=

p1,j∑
i=1

lj(pj,θj,Xi,j|yi,j) +

nj∑
i=p1,j+1

lj(pj,θj,Xi,j|Xs,j, i− p1,j ≤ s < i).

Due to imperfect estimation and the use of the refining step of Section 3.3.2.7, for most

practical situations we can only estimate parameters with a portion of the data in any one specific

segmentation. To handle this issue, let λu, λd ∈ [0, 1] and λu − λd > ϵλ > 0, and define

Lj(pj,θj, λd, λu;Xj) =

[njλu]∑
i=[njλd]+1

lj(pj,θj,Xi,j|Xs,j, s < i)

=

[njλu]∑
i=[njλd]+1

lj(pj,θj,Xi,j|Xs,j, i− p1,j ≤ s < i)

and

L̃j(pj,θj, λd,λu;Xj) =

[njλu]∑
i=[njλd]+1

lj(pj,θj,Xi,j|Xs,j, s < i)

=

[njλd]+p1,j∑
i=[njλd]+1

lj(pj,θj,Xi,j|yi,j) +

[njλu]∑
i=[njλd]+p1,j+1

lj(pj,θj,Xi,j|Xs,j, i− p1,j ≤ s < i),

which represent, respectively, the theoretical conditional log-likelihood and real observed log-

likelihood functions based on partial segmentation. We begin by presenting two lemmas.
3.7.1.2. Lemmas.
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LEMMA 3.7.1. For the piecewise stationary NAR(p1, p2) model (3.2), for any fixed pj , we
have

(3.15) sup
λd,λu

sup
θj∈Θj(pj)

| 1
T
L̃j(pj,θj, λd, λu;Xj)− (λu − λd)L

(j)(pj,θj)|
a.s−→ 0,

where λd, λu are defined as before, Θ(pj) is a compact parameter space of θj , and L(j)(pj,θj) :=
E(lj(pj,θj,X1,j|Xl,j, l < 1)).

PROOF. First, we prove that for any segment j, j = 1, . . . ,m+ 1 and fixed pj , we have

(3.16) sup
λd,λu

sup
θj∈Θj(pj)

| 1
T
Lj(pj,θj, λd, λu;Xj)−

1

T
L̃j(pj,θj, λd, λu;Xj)| = o(T− 1

2 ),

which means that we only need to consider theLj(pj,θj, λd, λu;Xj) instead of L̃j(pj,θj, λd, λu;Xj).
Now calculate

| 1
T
Lj(pj,θj,λd, λu;Xj)−

1

T
L̃j(pj,θj, λd, λu;Xj)|

= | 1
T

[njλd]+p1,j∑
i=[njλd]+1

lj(pj,θj,Xi,j|Xs,j, s < i)−
[njλd]+p1,j∑
i=[njλd]+1

lj(pj,θj,Xi,j|yi,j)|

= | 1

2T σ̂2
j

[njλd]+p1,j∑
i=[njλd]+1

(2[(Xi,j − B̂0,j −
i−1∑
l=1

Ĝl,jXi−l,j)])
T × (Xi,j − B̂0,j −

i−1∑
l=1

Ĝl,jXi−l,j)])

+ (

p1,j∑
r=i

Ĝl,jXi−l,j)
T (

p1,j∑
r=i

Ĝl,jXi−l,j)− (

p1,j∑
r=i

Ĝl,jyi−l,j)
T (

p1,j∑
r=i

Ĝl,jyi−l,j)|.

Since ∥W ∥max = 1,
∑p1,j

i=1(|αi|+ |βi|) <= 1 as well as p1,j is bounded, so as T → +∞, (3.16) is
satisfied.

Due to the compactness of the parameter space Θj(pj) and the ergodic theorem for NAR(p1,j, p2,j)
model, we have

sup
θj∈Θj(pj)

| 1
T
Lj(pj,θj;Xj)− L(j)(pj,θj)|

a.s−→ 0,

which can be viewed as a strong law of large numbers for the time series.
Let Q[0,1] be the set of rational numbers in [0, 1], for r1, r2 ∈ Q[0,1] and r1 < r2, then we

further have

(3.17)

sup
θj∈Θj(pj)

| 1
T
Lj(pj,θj, r1, r2;Xj)− (r2 − r1)L

(j)(pj,θj)|

= sup
θj∈Θj(pj)

|r2(
1

Tr2

[Tr2]∑
i=1

lj(pj,θj,Xi,j|Xs,j, s < i)− L(j)(pj,θj))

− r1(
1

Tr1

[Tr1]∑
i=1

lj(pj,θj,Xi,j|Xs,j, s < i)− L(j)(pj,θj))|
a.s−→ 0
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Let Br1,r2 be a probability measure 1 set that (3.17) holds, and ω ∈ Br1,r2 be any events in it.
Define

(3.18) B =
⋂

r1,r2∈Q[0,1]

Br1,r2 .

Using countable sub-additivity, it can be shown that P (B) = 1. Then for any ω ∈ B and for any
λu ∈ [0, 1], we can choose r1, r2 ∈ Q[0,1] in such a way that r1 ≤ λu ≤ r2, and hence we have

sup
θj∈Θj(pj)

| 1
T

[Tλu]∑
i=1

lj(pj,θj,Xi,j|Xs,j, s < i)− 1

T

[Tr1]∑
i=1

lj(pj,θj,Xi,j|Xs,j, s < i)|

= sup
θj∈Θj(pj)

| 1
T

[Tλu]∑
i=[Tr1]+1

lj(pj,θj,Xi,j|Xs,j, s < i)|

≤ sup
θj∈Θj(pj)

1

T

[Tλu]∑
i=[Tr1]+1

|lj(pj,θj,Xi,j|Xs,j, s < i)|

≤ sup
θj∈Θj(pj)

1

T

[Tr2]∑
i=[Tr1]+1

|lj(pj,θj,Xi,j|Xs,j, s < i)|

−→ (r2 − r1) sup
θj∈Θj(pj)

E|L(j)(pj,θj)|.

Next, it can be verified due to the compactness of the parameter space as well as the moment
boundless of the normal distribution that

sup
θj∈Θj(pj)

E|L(j)(pj,θj)|1+ϵ < +∞.

So if |r2 − r1| < ψ, and by making ψ arbitrarily small, we can derive
1

T
Lj(pj,θj, 0, λu;Xj)

a.s−→ λuL
(j)(pj,θj)

uniformly in θj ∈ Θj(pj). Similarly, we have

(3.19) sup
θj∈Θj(pj)

| 1
n
Lj(pj,θj, λd, λu;Xj)− (λu − λd)L

(j)(pj,θj)|
a.s−→ 0.

Now we prove (3.19) holds uniformly on λd, λu ∈ [0, 1]. Let λu − λd > ϵλ. For any fixed
ϵ < ϵλ, we can choose one specific N such that = 0 = r0 < r1 < · · · < rN−1 < rN = 1
and maxi∈[0,N ](ri+1 − ri) ≤ ϵ. Then for any λd, λu ∈ [0, 1], we have specific g < h such that
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rg < λd < rg+1 and rh < λu < rh+1. Then we have for T large enough
(3.20)

| 1
T
Lj(pj,θj, λd, λu;Xj)− (λu − λd)L

(j)(pj,θj)|

≤ | 1
T
Lj(pj,θj, λd, λu;Xj)−

1

T
Lj(pj,θj, rg, rh+1;Xj)|

+ | 1
T
Lj(pj,θj, rg, rh+1;Xj)− (rg − rh+1)L

(j)(pj,θj)|

+ |(rg − rh+1)L
(j)(pj,θj)− (λu − λd)L

(j)(pj,θj)|

≤ 2ϵ sup
θj∈Θj(pj)

E|L(j)(pj,θj)|+ ϵ+ 2ϵ sup
θj∈Θj(pj)

E|L(j)(pj,θj)|
a.s−→ 0,

which completes the proof. □

LEMMA 3.7.2. This lemma consists of three results.

(R1) For the j-th stationary piece of a NAR model, there exists a model p0
j ∈ M with parameter

θ0
j ∈ Rdj that satisfies (p0

j ,θ
0
j ) = argmaxp,θ E(lj(p,θ,Xi,j|Xs,j, s < j)). Also, the

model p0
j is uniquely identifiable.

(R2) Suppose that pb is a bigger model than ps with pb, ps associated with parameter vectors
θb ∈ Θ(pb) ⊂ Rdb and θs ∈ Θ(ps) ⊂ Rds , respectively. Here a bigger model means
for every θs ∈ Θ(ps), there exists a θ∗

b ∈ Θ(pb) such that for every Xi, the conditional
densities are equal almost everywhere:

(3.21) fpb
(Xi,j|Xs,j, s < i;θ∗

b ) = fps(Xi,j|Xs,j, s < i;θs).

Then θb can be partitioned into three parts θb = (β, ξ,π), where β ∈ Θβ ⊂ Rdβ ,
ξ ∈ Θξ ⊂ Rds and π ∈ Θπ ⊂ Rdπ . Also, dβ + ds + dπ = db and Θβ, Θξ and Θπ are
compact. Now, for any given π ∈ Θπ, the vector θ∗

b = (0,θs,π) is the unique vector in
the neighbourhood

{θb = (β, ξ,π) : |β| < δ, |ξ − θs| < δ} satisfying (3.21) for some δ > 0.
(R3) If the true model order for the j-th piece is p0

j , j = 1, . . . ,m+ 1, and is specified, then

(3.22) θ̂j
n(λ̂j−1, λ̂j)− θ0

j = O(

√
log log(T )

T
), a.s.,

where θ0
j is the true parameter vector and θ̂j

n(λ̂j−1, λ̂j) = argmaxθj L̃j(p
0
j ,θj, λ̂j−1, λ̂j;Xj).

Suppose the specified model pj is larger than the true model p0
j , then we have the

partition
θ̂n = (β̂j

n(λ̂j−1, λ̂j), ξ̂
j
n(λ̂j−1, λ̂j), π̂

j
n(λ̂j−1, λ̂j))

with

(3.23)
β̂j
n(λ̂j−1, λ̂j) = O(

√
log log(T )

T
), a.s.

ξ̂jn(λ̂j−1, λ̂j)− θ0
j = O(

√
log log(T )

T
), a.s.

PROOF. Results (R1) and (R2) are satisfied by our piecewise stationary NAR model, as the
errors are assumed to be normally distributed, and the normal distribution is determined uniquely
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by its mean and variances. It remains to prove (R3), and we shall only prove (3.23) as (3.22) can
be proved similarly.

Define θ0
n = (0,θ0

j , π̂
j
n), γ

0
n = (0,θ0

j ) and let γ̂j
n = (β̂j

n(λ̂j−1, λ̂j), ξ̂
j
n(λ̂j−1, λ̂j)) be the first

two segments of θ̂n. Now apply Taylor expansion

L̃
′

j(p
0
j , θ̂n, λ̂j−1, λ̂j;Xj) = L̃

′

j(p
0
j ,θ

0
n, λ̂j−1, λ̂j;Xj) + L̃

′′

j (p
0
j ,θ

+
n , λ̂j−1, λ̂j;Xj)(γ̂n − γ0

n),

where θ+ = (γ+
n , π̂n),γ

+
n ∈ Rdβ+ds and |γ+

n −γ0
n| ≤ |γ̂n−γ0

n|. And we have L̃′
j(p

0
j , θ̂n, λ̂j−1, λ̂j;Xj) =

0 due to the definition. Thus we know

(3.24) L̃
′

j(p
0
j ,θ

0
n, λ̂j−1, λ̂j;Xj) = −L̃′′

j (p
0
j ,θ

+
n , λ̂j−1, λ̂j;Xj)(γ̂n − γ0

n).

Combining Lemma 3.7.1, we have
(3.25)
L̃

′

j(p
0
j ,θ

0
n, λ̂j−1,λ̂j;Xj) = L

′

j(p
0
j ,θ

0
n, λ̂j−1, λ̂j;Xj) +O(T 1/2)

=

[T λ̂j ]∑
i=[T λ̂j−1]+1

l
′

j(pj,θ
0
n,Xi,j|Xs,j, s < i) +O(T 0.5)

=

[T λ̂j ]∑
i=1

l
′

j(pj,θ
0
n,Xi,j|Xs,j, s < i)−

[T λ̂j−1]∑
i=1

l
′

j(pj,θ
0
n,Xi,j|Xs,j, s < i) +O(T 0.5).

And for any fixed π and X , we have fpj
(Xi,j|Xs,j, s < i; (0,θ0

j ,π)) = fps(Xi,j|Xs,j, s < i;θ0
j )

almost everywhere. So we have Ep0
j ,θ

0
j
(l

′
j(pj, (0,θ

0
j ,π),Xi,j|Xs,j, s < i)) = 0. Following [82],

we know that both
∑[T λ̂j ]

i=1 l
′
j(pj,θ

0
n,Xi,j|Xs,j, s < i) and

∑[T λ̂j−1]
i=1 l

′
j(pj,θ

0
n,Xi,j|Xs,j, s < i) +

O(T 0.5) are of order O(
√
T log log(T )).

Thus, we have L̃′
j(p

0
j ,θ

0
n, λ̂j−1, λ̂j;Xj) = O(

√
T log log(T )). Due to the definition of γb =

(0,θ0
j ), L

′′
j (pj, (0,θ

0
j ,π)) is positive definite. Combining all the above together, we have (3.23).

□

Generally speaking, Lemma 3.7.1 guarantees a good asymptotic property for the log-likelihood

based on partially observed data. Lemma 3.7.2 guarantees the good identifiability of model orders

in each segment as well as controlling the differences between estimated model coefficients and

true ones once the lag order identifiability is satisfied.
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3.7.1.3. Proof of Theorem 3.2.1. First, when the true breakpoint number m = m0 is known,

the MDL criterion (3.12) for model (3.2) is

(3.26)

2

T
MDL(λ,p) =

2

T
(log(m+ 1) + (m+ 1) log(T ) +

m+1∑
j=1

(log(p1,j) + log(p2,j))

+
m+1∑
j=1

p1,j + p2,j + q + 2

2
log(nj) +

m+1∑
j=1

K(nj − p1,j)

2
(log(2πσ̂2

j ) + 1)

=O(
log(T )

T
) +

2

T

m+1∑
j=1

K(nj − pj)

2
log(σ̂2

j )

−→O(
log(T )

T
) +

m+1∑
j=1

K(λj − λj−1) log(σ̂
2
j (λj−1, λj, pj)).

Recall the definition of B in (3.18). We shall show by contradiction that for any ω ∈ B,

λ̂ −→ λ0. Now suppose for any ω ∈ B, λ̂ ↛ λ0. Then we can assume there exists a subsequence

{tk} such that λ̂ −→ λ∗ −̸→ λ0 along the subsequence. We can further assume p̂j −→ p∗
j ,

θ̂j −→ θ∗
j , and σ̂2

j (λ̂j−1, λ̂j, p̂j) −→ σ2∗
j . For notation simplicity, we denote ϕj = (θj, σ

2
j ).

Therefore, ϕ̂j −→ ϕ∗
j .

For any of the estimated intervals I∗j = (λ∗j−1, λ
∗
j), j = 1, . . . ,m, only one of the following

two possible cases is true. The first case is that the estimated interval is a subset of a true interval:

I∗j ⊂ I0k , i.e. λ0h−1 ≤ λ∗j−1 ≤ λ∗j ≤ λ0h. The second case is that the estimated interval contains

g ≥ 0 true intervals: λ0h−1 ≤ λ∗j−1 < λ0h <, · · · , < λ∗j ≤ λ0h+g+1. We will consider these two cases

separately.

Case 1. This case assumes λh−1 ≤ λ∗j−1 ≤ λ∗j ≤ λh, in particular, we consider the case that

λh−1 < λ∗j−1 ≤ λ∗j < λh. So by Lemma 3.7.1, we have

(3.27)
1

T
L̃j(p̂j, θ̂j, λ̂j−1, λ̂j;Xj)

a.s−→ (λ∗j−1 − λ∗j)L
(j)(p∗

j ,θ
∗
j ).

If p∗
j = p0

j , then ϕ∗
j = ϕ0

h. And if p∗
j underestimates p0

j , we utilize the K-L distance

D(fp0
h
; θ0h|fp∗

j
;θ∗

j ) = Eϕ0
h
(log

fp0
h
(X1,j|Xl,j, l < 1;θ0

j )

fp∗
j
(X1,j|Xl,j, l < 1;θ∗

j )
).
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It can be shown by Jensen’s inequality that D(fp0
h
;θ0

h|fp∗
j
;θ∗

j ) ≥ 0 with equality only happens

when p∗
j > p0

h, i.e. p1,j > p01,h and p2,j > p02,h. So when p∗
j underestimates p0

h,

(3.28) L(h)(p0
h,θ

0
h) > L(j)(p∗

j ,θ
∗
j ).

To be more specific, (3.28) is

(3.29) σ̂∗2(λ∗j−1, λ
∗
j ,p

∗
j) = (σ0

h(p
∗
j))

2 ≥ (σ0
h)

2

with equality happens only when pj∗ > p0
h.

Case 2: This case considers λ0h−1 ≤ λ∗j−1 < λ0h < · · · < λ∗j ≤ λ0h+g+1, where g ≥ 0. So the

model in segment I∗j is non-stationary, and we have

(3.30)
1

T
L̃j(p̂j, θ̂j, λ̂j−1, λ̂j;Xj) =

1

T
L̃j(p̂j, θ̂j, λ̂j−1, λ

0
h;Xj)

+
1

T

h+g−1∑
l=h

L̃j(p̂j, θ̂j, λ
0
l , λ

0
l+1;Xj) +

1

T
L̃j(p̂j, θ̂j, λ

0
h+g, λ̂j;Xj).

From Lemma 3.7.1 and the fact that L(l)(p0
l ,θ

0
l ) ≥ L(j)(p∗

j ,θ
∗
j ),∀l = h, h+ 1, · · · , h+ g + 1, we

have

lim
T→∞

1

T
L̃j(p̂j, θ̂j, λ̂j−1, λ

0
h;Xj) ≤ (λ0h − λ∗j−1)L

(h)(p0
h,θ

0
h),(3.31)

lim
T→∞

1

T
L̃j(p

∗
j ,θ

∗
j , λ

0
l , λ

0
l+1;Xj) ≤ (λ0l+1 − λ0l )L

(l+1)(p0
l+1,θ

0
l+1),(3.32)

lim
T→∞

1

T
L̃j(p

∗
j ,θ

∗
j ,λ

0
h+g, λ̂j;Xj) ≤ (λ∗j − λ0h+g)L

(h+g+1)(p0
h+g+1,θ

0
h+g+1).(3.33)

It is not possible that (p∗
j ,θ

∗
j ) = (p0

l ,θ
0
l ) for all l = 1, · · · , g + h + 1, therefore at least one of

(3.31), (3.32) and (3.33) is a strict inequality, which implies

(3.34)

lim
T→∞

1

T
L̃j(p̂j, θ̂j, λ̂j−1, λ̂j;Xj) <(λ

0
h − λ∗j−1)L

(h)(p0
h,θ

0
h) +

h+g−1∑
l=h

(λ0l+1 − λ0l )L
(l+1)(p0

l+1,θ
0
l+1)

+ (λ∗j − λ0h+g)L
(h+g+1)(p0

h+g+1,θ
0
h+g+1).

To be more specific, (3.34) implies

(3.35) σ̂∗2
j

(
λ̂j−1, λ̂j, p̂j

)
≥
λ0h − λ∗j−1

λ∗j − λ∗j−1

(σ0
h)

2 +
λ0h+1 − λ0h
λ∗j − λ∗j−1

(σ0
h+1)

2 + · · ·+
λ∗j − λ0h+g

λ∗j − λ∗j−1

(σ0
h+g+1)

2.
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Now since m0 is known and we assume λ̂∗ −̸→ λ0, Case 2 must be true for at least one

estimated interval Ij = (λj−1, λj). Thus, by the concavity of the log function we have

(3.36)
K(λ∗j−λ∗j−1) log σ̂

∗2
j

(
λ∗j−1, λ

∗
j ,p

∗
j

)
≥ K

(
λ∗j − λ∗j−1

) [λ0h − λ∗j−1

λ∗j − λ∗j−1

log(σ0
h)

2 +
λ0h+1 − λ0h
λ∗j − λ∗j−1

log(σ0
h+1)

2 + · · ·+
λ∗j − λ0h+g

λ∗j − λ∗j−1

log(σ0
h+g+1)

2

]
= K[

(
λ0h − λ∗j−1

)
log(σ0

h)
2 +

(
λ0h+1 − λ0h

)
log(σ0

h+1)
2 + · · ·+

(
λ∗j − λ0h+g

)
log(σ0

h+g+1)
2].

Therefore, it follows that

(3.37)

lim
T→∞

2

T
MDL(λ̂, p̂) >

m0+1∑
l=1

K
(
λ0l − λ0l−1

)
log(σ0

l )
2 = lim

T→∞

2

T
MDL

(
λ0,p0

)
≥ lim

T→∞

2

T
MDL(λ̂, p̂),

where the first inequality is due to (3.36), the second equality is due to (3.26) and the last inequality

is due to the definition of the estimators. So this is a contradiction, which indicates λ̂ −→ λ0,

∀ω ∈ B. Thus, Theorem 3.2.1 is proved.

3.7.1.4. Proof of Corollary 3.2.1.1. It can be observed that the condition of known m0 is only

used once in the proof of Theorem 3.2.1 to guarantee there is at least one estimated interval Ij

belonging to Case 2. In other words, once Case 2 is applied, contradiction (3.37) arises. And it is

easy to verify that when m̂ < m0, Case 2 applies and also, when m̂ > m0 but λ0 is not a subset of

the limit points of λ̂, Case 2 is also applied to at least one estimated interval. So Results 1 and 2 in

Corollary 3.2.1.1 can be proved similarly by contradiction.

For Result 3, if p̂j underestimates p0
h, then (3.29) can be applied, and contradiction (3.37)

appears again, which completes the proof.

3.7.2. Proof of Theorem 3.2.2. The main idea of this proof is also by contradiction. First, fix

ω ∈ B, where B is a probability one set defined in (3.18). Suppose now that m̂ ̸→ m0. Since the

number of breakpoints is bounded, we can assume there exists a subsequence nk such that m̂ →

m∗ ̸= m0 for a sufficiently large k. From Corollary 3.2.1.1, m∗ > m0. As the relative breakpoints

∈ [0, 1], we can assume there exists a limiting partition λ∗ such that λ̂ → λ∗ := (λ∗1, · · · , λ∗m∗).

From Corollary 3.2.1.1 again, we know that λ0 is a subset of λ∗. Thus, every segment of λ∗ is
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contained in exactly one of the true segments. As the number of models in family M is finite,

by taking another subsequence, we can assume p̂j = p∗
j for a sufficiently large nk. And using

Corollary 3.2.1.1, p∗
j is no less than the dimension of the true model. To simplify the notation,

below we replace nk with n.

For large enough n, the MDL criterion for the piecewise stationary NAR model is

(3.38) C1 −
m∗+1∑
j=1

L̃j(pj,θj, λ̂j−1, λ̂j;Xj),

where C1 = O( log(T )
T

). We assume the k-th true segment contains d > 1 segments from λ∗: we

let them be the (i + 1)-th to the (i + d)-th segments. Now, suppose we fit one model over the d

segments and define

θ̃n = argmax
θ

L̃i+1(p
0
j ,θ, λ̂i−1, λ̂i+d;Xj)

λ̃n = {λ̂1, · · · , λ̂i, λ̂i+d, · · · , λ̂m∗}

p̃n = {p∗
1, · · · ,p∗

i ,p
0
k,p

∗
i+d+1, · · · ,p∗

m∗+1}

θ̃n = {θ̂1, · · · , θ̃n, θ̂i+d+1, · · · , θ̂m∗ , θ̂m∗+1}.

Also, we have the MDL criterion for the model {m∗ − d+ 1, λ̃n, p̃n} as

(3.39) C2 −
∑

1≤j≤m∗+1,j ̸=i+1,··· ,i+d

L̃j(pj,θj, λ̂j−1, λ̂j;Xj)− L̃i+1(p
0
k,θ

n, λ̂i, λ̂i+d;Xi)

with C2 = O( log(T )
T

). So a contradiction will occur if (3.38) minus (3.39) is positive for large

enough n due to the definition.

Notice that the model that corresponds to C1 contains more segment, therefore C1 − C2 =

O( log(T )
T

) > 0, which means it is enough to prove

(3.40) L̃i+1(p
0
k,θ

n, λ̂i, λ̂i+d;Xi)−
i+d∑

j=i+1

L̃j(pj,θj, λ̂j−1, λ̂j;Xj) = o(
log(T )

T
)

Here we consider two cases. The first case is that, for all segments, the model orders are

correctly specified or p∗
j = p0

h if the j-th estimated segment is within the h-th true segment.

From [81] and [50], it can be shown that θ̂j − θ0
h

a.s.−−→ 0 if p∗
j = p0

h. By the definition of θ̂j ,

we have L̃′
j(p

∗
j ,θ

∗
j , λ̂j−1, λ̂j;Xj) = 0 for j = i, · · · , i + d. So we have the following Taylor’s
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expansion

(3.41)

L̃j(p
∗
j ,θ

∗
j , λ̂j−1, λ̂j;Xj) = L̃j(p

∗
j , θ̂j, λ̂j−1, λ̂j;Xj)+(θ̂j−θ∗

j )
T L̃

′′

j (p
∗
j ,θ

+
j , λ̂j−1, λ̂j;Xj)(θ̂j−θ∗

j ),

where |θ+
j − θ∗

j | < |θ̂j − θ∗
j |. Similarly, we also have

(3.42)

L̃i+1(p
0
k,θ

0
k, λ̂i, λ̂i+d;Xi) = L̃i+1(p

∗
k, θ̃

n, λ̂i, λ̂i+d;Xi)+(θ̃n−θ0
k)

T L̃
′′

i+1(p
0
k, θ̃

+, λ̂i, λ̂i+1;Xi)(θ̃n−θ0
k),

where |θ̃+ − θ0
k| < |θ̃n − θ0

k|.

From Proposition 1, we know that the model order cannot be underestimated for each seg-

ment. Thus

(3.43)

fpi(Xi,j|Xs,j, s < i;θ∗
i ) = fpi+d

(Xi,j|Xs,j, s < i;θ∗
i+d) = · · · = fp0

k
(Xi,j|Xs,j, s < i;θ0

k).

So we have

(3.44) L̃i+1(p
0
k,θ

0
k, λ̂i, λ̂i+d;Xi) =

[T λ̂i+d]∑
j=[T λ̂i]+1

lj(p
0
k,θ

0
k,Xi,j|Xs,j, s < i).

Therefore from (3.41), (3.42) and (3.44), equation (3.40) becomes

(3.45)

(θ̃n − θ0
k)

T L̃
′′

i+1(p
0
k, θ̃

+, λ̂i, λ̂i+1;Xi)(θ̃n − θ0
k)−

i+d∑
j=i+1

(θ̃n − θ0
k)

T 1

T
L̃

′′

i+1(p
0
k, θ̃

+, λ̂i, λ̂i+1;Xi)(θ̃n − θ0
k).

From Lemma 3.7.2, (3.45) is of order O(log log(T )/T ) = o( log(T )
T

). Thus (3.40) is proved.

The second case happens when the estimated order p∗
j is larger than p0

h. The proof is similar

to the above by applying Taylor’s expansion to the relevant part of θ̂j , and (3.45) is also of order

O( log log(T )
T

), which completes the proof.

3.7.3. Another Method for Generating First-Generation Chromsomes. Inspired by [76],

this appendix introduces a different method for initializing the GA; i.e., a different method for gen-

erating the first-generation chromosomes. The idea is to first reformulate the breakpoint detection

problem as a variable selection problem, then set up an appropriate lasso-type estimator that, upon
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solving, can yield a solution path to the problem, and lastly use the models on the solution path as

the chromosomes.

Here for model (3.2), we denote Vj := (V1,j, · · · , VK,j)
T ∈ RK×q, B0,j = (β01,j, · · · , β0N,j)

T :=

β0,j1 + Vjγj ∈ RK , and W = diag{n−1
1 , · · · , n−1

K }A = (w1, · · · ,wk)
T as the row-normalized

network. Let Gl,j = αl,jW + βl,jIK for l = 1, 2, · · · , pmax,j with the convention that zero values

are included for the relationship to hold; i.e. if p1,j > p2,j , βm,j = 0 for m > p2,j , whereas if

p1,j < p2,j , αm,j = 0 for m > p1,j . So the piecewise stationary NAR(p1,j, p2,j) model in the j-th

segments can be rewritten in vector form as

(3.46) Xt,j = B0,j +

pmax,j∑
m=1

Gm,jXt−m,j + εj,

where εj ∼ NK(0, σ
2
jIK).

If all the segments have the same max lag order (i.e., pmax,1 = pmax,2 = · · · , pmax,m0+1 =:

pM ), we can re-express (3.46) in matrix form

(3.47)
X ′

pM+1

X ′
pM+2

...

X ′
T


=


1 X ′

pM
· · · X ′

1 0 . . .

1X ′
pM+1 · · · X ′

2 1X ′
pM+1 · · · X ′

2 0

... . . .

1 X ′
T−1 · · ·X ′

T−pM
1 X ′

T−1 . . .X
′
T−pM

· · ·1X ′
T−1 · · ·X ′

T−pM




ζ ′1

ζ ′2
...

ζ ′n


+


ε′pM+1

ε′pM+2

...

ε′T


,

where n = T − pM and A′ is the matrix transpose of A. Denote G(j) = (B0,j, G1,j, · · · , GpM ,j) ∈

RK×K(pM+1). Now when i = 1, ζi = G(1), while for i = 2, · · · , n,

ζi =


G(j+1) −G(j), when i = τj for some j

0, otherwise.

So the location at which ζi ̸= 0 for i ≥ 2 is a breakpoint.

Denote the first, second, third, and fourth vector/matrix in (3.47) as, respectively, X , Z , ζ and

E , so that (3.47) can be written as X = Zζ + E . We can further re-express it in a vector form as

X = Zζ + E,

where X = vec(X ), Z = IK ⊗Z and E = vec(E), with ⊗ being the Kronecker product.

79



Since ζ is a sparse vector with only a few nonzero elements at the breakpoint locations, any

suitable l1-penalty methods like the lasso can be used to solve the regression problem

(3.48) ζ̂ = argmin
ζ

1

n
∥X− Zζ∥22 + λ1,n∥ζ∥1,

where λ1,n is a tuning parameter. By solving (3.48), we will obtain a solution path of all possible

breakpoints.

Although it is not always the case that the lag order pmax remains the same in all different

segments, we can still use this method by setting pM ∈ {1, · · · , P0} to obtain first-generation

chromosomes. Our experience suggests that this will help with the convergence speed of the GA.

3.7.4. Additional Simulation Results. This appendix summarizes the results of regression

parameter estimation for simulation Scenarios 1 and 2. For each experimental setting, we report

the means and standard deviations of the estimated parameter values for those simulation runs

with the correct estimated lag order. The results are shown in Tables 3.16 to 3.18. In addition, we

also report the relative absolute estimation errors (RAEs) for each of the three network structures,

where RAE is defined as
∑

j,l |(θjl − θ̂jl)/θjl| with θjl and θ̂jl being, respectively, the l-th entry

of θj and θ̂j . From these tables, one can see that the estimated parameters are very close to the

corresponding true values with small standard deviations.
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TABLE 3.16. The means and standard deviations (SDs) of the estimated regression
coefficients under different network structures for simulation Scenario 1. The rela-
tive absolute estimation errors (RAEs) are also listed.

True Value Mean SD RAE

Power-Law
Structure

θ1 = (0, -0.1, 0.2,
0.1, 0.4, 0.1, 0.2)

(-0.001, -0.119, 0.207,
0.100, 0.382, 0.111, 0.199)

(0.004, 0.029, 0.026,
0.016, 0.029, 0.018, 0.015) 0.075

θ2 = (0, 0.2, -0.22, -0.12,
0.4, -0.1, 0.1, 0.2, -0.1)

(0.001, 0.198, -0.212, -0.125,
0.389, -0.104, 0.091, 0.205, -0.088)

(0.003, 0.030, 0.031, 0.036,
0.020, 0.013, 0.034, 0.037, 0.031)

θ3 = (0, -0.12, 0.1, 0.25,
-0.4, 0.2, -0.5, 0.1, 0.1)

(0.000, -0.131, 0.110, 0.246,
-0.396, 0.197, -0.502, 0.102, 0.105)

(0.003, 0.031, 0.033, 0.0229,
0.019, 0.011, 0.034, 0.026, 0.023)

Dyad Independence
Structure

θ1 = (0, -0.1, 0.2,
0.1, 0.4, 0.1, 0.2)

(0.000, -0.091, 0.199,
0.105, 0.402, 0.098, 0.197)

(0.002, 0.027, 0.023,
0.029, 0.026, 0.017, 0.021) 0.057

θ2 = (0, 0.2, -0.22, -0.12,
0.4, -0.1, 0.1, 0.2, -0.1)

(0.000, 0.181, -0.251, -0.128,
0.387, -0.102, 0.104, 0.210, -0.104)

(0.001, 0.043, 0.062, 0.026,
0.024, 0.023, 0.011, 0.035, 0.035)

θ3 = (0, -0.12, 0.1, 0.25,
-0.4, 0.2, -0.5, 0.1, 0.1)

(-0.001, -0.122, 0.091, 0.237,
-0.398, 0.184, -0.496, 0.110, 0.092)

(0.002, 0.063, 0.039, 0.015,
0.023, 0.015, 0.014, 0.014, 0.020)

Stochastic Block
Structure

θ1 = (0, -0.1, 0.2,
0.1, 0.4, 0.1, 0.2)

(0.001, -0.105, 0.200,
0.087, 0.406, 0.105, 0.196)

(0.002, 0.014, 0.021,
0.021, 0.015, 0.033, 0.021) 0.056

θ2 = (0, 0.2, -0.22, -0.12,
0.4, -0.1, 0.1, 0.2, -0.1)

(0.000, 0.190, -0.228, -0.129,
0.388, -0.104, 0.108, 0.210, -0.107)

(0.002, 0.022, 0.029, 0.023,
0.016, 0.024, 0.024, 0.016, 0.023)

θ3 = (0, -0.12, 0.1, 0.25,
-0.4, 0.2, -0.5, 0.1, 0.1)

(0.000, -0.122, 0.106, 0.238,
-0.398, 0.197, -0.494, 0.093, 0.106)

(0.003, 0.026, 0.027, 0.024,
0.024, 0.034, 0.027, 0.023, 0.018)

TABLE 3.17. Similar to Table 3.16 but for simulation Scenario 2 with breakpoints
T = (100, 200).

True Value Mean SD RAE

Power-Law
Structure

θ1 = (0, -0.1, 0.2,
0.1, 0.4, 0.1, 0.2)

(0.000, -0.102, 0.187,
0.096, 0.412, 0.104, 0.197)

(0.003, 0.029, 0.019,
0.027, 0.032, 0.036, 0.034) 0.059

θ2 = (0, 0.2, -0.22, -0.12, -0.1,
0.1, 0.2, -0.1)

(0.000, 0.199, -0.223, -0.107,
-0.090, 0.098, 0.192, -0.092)

(0.003, 0.026, 0.035, 0.032,
0.023, 0.026, 0.043, 0.029)

θ3 = (0, -0.12, 0.25, -0.4,
0.2, -0.5, 0.1, 0.1)

(-0.001, -0.123, 0.244, -0.406,
0.204, -0.503, 0.094, 0.112)

(0.004, 0.025, 0.026, 0.016,
0.025, 0.032, 0.053, 0.029)

Dyad Independence
Structure

θ1 = (0, -0.1, 0.2,
0.1, 0.4, 0.1, 0.2)

(-0.001, -0.090 , 0.208,
0.098, 0.406, 0.097, 0.201)

(0.002, 0.046, 0.019,
0.020, 0.031, 0.031, 0.025) 0.049

θ2 = (0, 0.2, -0.22, -0.12, -0.1,
0.1, 0.2, -0.1)

(0.000 , 0.165, -0.262, -0.124,
-0.098, 0.090, 0.197, -0.098)

(0.002, 0.056, 0.049, 0.021,
0.018, 0.032, 0.023, 0.022)

θ3 = (0, -0.12, 0.25, -0.4,
0.2, -0.5, 0.1, 0.1)

(0.001, -0.113, 0.237, -0.401,
0.201 -0.500 0.094 0.100)

(0.002, 0.063, 0.030, 0.027,
0.018, 0.034, 0.026, 0.021)

Stochastic Block
Structure

θ1 = (0, -0.1, 0.2,
0.1, 0.4, 0.1, 0.2)

(0.002, -0.099, 0.202,
0.087, 0.392, 0.094, 0.203)

(0.004, 0.018, 0.013,
0.035, 0.023, 0.029, 0.019) 0.060

θ2 = (0, 0.2, -0.22, -0.12, -0.1,
0.1, 0.2, -0.1)

(-0.001, 0.215, -0.205, -0.125,
-0.079, 0.094, 0.214, -0.118)

(0.003, 0.029, 0.027, 0.025,
0.033, 0.019, 0.024, 0.020)

θ3 = (0, -0.12, 0.25, -0.4,
0.2, -0.5, 0.1, 0.1)

(0.000, -0.117, 0.250, -0.414,
0.201, -0.512, 0.109, 0.094)

(0.003, 0.015, 0.023, 0.030,
0.034, 0.023, 0.018, 0.023)
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TABLE 3.18. Similar to Table 3.16 but for simulation Scenario 2 with breakpoints
T = (50, 250).

True Value Mean SD RAE

Power-Law
Structure

θ1 = (0, -0.1, 0.2,
0.1, 0.4, 0.1, 0.2)

(-0.001, -0.101, 0.178,
0.103, 0.426, 0.082, 0.198)

(0.004, 0.038, 0.032,
0.030, 0.032, 0.040, 0.022) 0.088

θ2 = (0, 0.2, -0.22, -0.12, -0.1,
0.1, 0.2, -0.1)

(0.000, 0.204, -0.222, -0.126,
-0.099, 0.104, 0.200, -0.104)

(0.001, 0.023, 0.027, 0.016,
0.013, 0.008, 0.019, 0.013)

θ3 = (0, -0.12, 0.25, -0.4,
0.2, -0.5, 0.1, 0.1)

(-0.001, -0.117, 0.249, -0.403,
0.209, -0.503, 0.093, 0.109)

(0.004, 0.035, 0.029, 0.034,
0.037, 0.028, 0.039, 0.042)

Dyad Independence
Structure

θ1 = (0, -0.1, 0.2,
0.1, 0.4, 0.1, 0.2)

(0.001, -0.128, 0.181,
0.103, 0.416, 0.103, 0.208)

(0.004, 0.066, 0.038,
0.043, 0.039, 0.034, 0.045) 0.118

θ2 = (0, 0.2, -0.22, -0.12, -0.1,
0.1, 0.2, -0.1)

(0.001, 0.194, -0.228, -0.119,
-0.111, 0.105, 0.201, -0.104)

(0.002, 0.027, 0.038, 0.018,
0.025, 0.020, 0.011, 0.016)

θ3 = (0, -0.12, 0.25, -0.4,
0.2, -0.5, 0.1, 0.1)

(-0.002, -0.114, 0.256, -0.417,
0.197, -0.525, 0.107, 0.113)

(0.004, 0.081, 0.030, 0.032,
0.047, 0.037, 0.019, 0.029)

Stochastic Block
Structure

θ1 = (0, -0.1, 0.2,
0.1, 0.4, 0.1, 0.2)

(0.000, -0.095, 0.195,
0.107, 0.399, 0.113, 0.189)

(0.004, 0.033, 0.034,
0.026, 0.045, 0.057, 0.042) 0.063

θ2 = (0, 0.2, -0.22, -0.12, -0.1,
0.1, 0.2, -0.1)

(0.000, 0.193, -0.220, -0.124,
-0.098, 0.099, 0.198, -0.100)

(0.002, 0.016, 0.018, 0.017,
0.014, 0.023, 0.029, 0.017)

θ3 = (0, -0.12, 0.25, -0.4,
0.2, -0.5, 0.1, 0.1)

(-0.001, -0.121, 0.243, -0.398,
0.206, -0.495, 0.084, 0.097)

(0.004, 0.028, 0.037, 0.040,
0.023, 0.040, 0.067, 0.045)
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CHAPTER 4

Change Point Detection in Sequential Pairwise Comparison Data with
Covariate Information

This paper introduces the novel piecewise stationary covariate-assisted ranking estimation

(PS-CARE) model for analyzing time-evolving pairwise comparison data, enhancing item ranking

accuracy through the integration of covariate information. By partitioning the data into distinct,

stationary segments, the PS-CARE model adeptly detects temporal shifts in item rankings, known

as change points, whose number and positions are initially unknown. Leveraging the minimum

description length (MDL) principle, this paper establishes a statistically consistent model selection

criterion to estimate these unknowns. The practical optimization of this MDL criterion is done

with the pruned exact linear time (PELT) algorithm.

Empirical evaluations reveal the method’s promising performance in accurately locating change

points across various simulated scenarios. An application to an NBA dataset yielded meaningful

insights that aligned with significant historical events, highlighting the method’s practical utility

and the MDL criterion’s effectiveness in capturing temporal ranking changes. To the best of the

authors’ knowledge, this research pioneers change point detection in pairwise comparison data

with covariate information, representing a significant leap forward in the field of dynamic ranking

analysis.

4.1. Introdution

The ranking problem has long held a pivotal role in numerous real-life applications, spanning

diverse areas such as recommendation systems [83], university admissions [84], sports analytics

[85, 86] election candidate evaluations [87], and web search algorithms [88]. These rankings not

only offer insights into the comparative quality of entities but also shape subsequent decisions,

highlighting the problem’s significance. Over the years, this has led to a collection of methods

designed to tackle ranking problems, including [89], [90], [91], [92], [93], and [94].
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Of all these, the Bradley-Terry-Luce (BTL) model, introduced by [95] and later expanded

upon by [96], stands out due to its widespread adoption. This model postulates an intrinsic score for

each item being compared. Given n items undergoing pairwise comparison, denoted by intrinsic

scores {θi}ni=1, the probability that item i ranks above item j is given by:

(4.1) P (item i beats item j) =
eθi

eθi + eθj
.

The comparison result is denoted as y ∈ {0, 1}. However, the classic BTL model assumes

static intrinsic scores, overlooking item-related covariates. Such oversight can lead to inefficient

use of important information present in the data, especially when these covariates are available and

relevant. For instance, a movie recommendation system might benefit from considering variables

like genre and duration, just as a National Basketball Association (NBA) match prediction could be

improved by accounting for team-specific attributes such as offensive and defensive capabilities.

Recognizing this limitation, [97] introduced the covariate-assisted ranking estimation (CARE)

model. This innovative approach incorporates covariate information by assuming the intrinsic

score for item i is the sum of two components

θi = α∗
i + z⊤

i β
∗,

where zi ∈ Rd and β∗ ∈ Rd are, respectively, the observed covariate vector and the coefficient

vector for item i. Together, the term z⊤
i β

∗ captures the effects of these covariates, while α∗
i rep-

resents the information that cannot be explained by the covariates. Below are more details about

the CARE model. It has been shown that the CARE model performs better than the classic BTL

model in predictions and inferences when useful covariate information is available.

Though CARE offers a significant advancement, many real-world applications involve se-

quential comparisons, which means scores might evolve over time. While several methods have

been developed to address this by assuming smooth temporal transitions in the BTL model [86,98,

99, 100], they often do not account for sudden shifts, such as an NBA team’s star player’s injury.

A notable exception is the recent work of [101] that recognizes these abrupt changes. However, its

focus was limited to the traditional BTL model, neglecting the rich covariate data.
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This paper introduces a systematic approach to detect abrupt changes while simultaneously

accounting for covariate information. The core concept involves partitioning the data temporally

into distinct segments and fitting a separate CARE model to each. Consequently, the junctions

where adjacent CARE models converge signify abrupt changes. These junctures are hereafter

referred to as change points. The task of estimating both the number and precise locations of these

change points is non-trivial. To address this, this paper employs the minimum description length

(MDL) principle [29,102] as an estimator. Furthermore, the PELT algorithm [103] is harnessed for

the practical estimation process. Given the past successes of both MDL and PELT in diverse change

point detection challenges, it is not surprising that the proposed method exhibits both compelling

theoretical and empirical strengths.

The rest of this paper is organized as follows. Section 4.2 introduces the model formulation

for the piecewise stationary covariate-assisted ranking estimation (PS-CARE) model. Section 4.3

derives the MDL criterion for estimating the unknowns in the PS-CARE model. It also studies

the theoretical properties of the criterion. Section 4.4 develops a PELT algorithm to minimize the

MDL criterion. The empirical performance of the proposed method is illustrated in Section 4.5 via

various numerical simulations and in Section 4.6 via an application to some real NBA match data.

Lastly, concluding remarks are offered in Section 4.7, while technical details are provided in the

appendix.

4.2. Model Formulation

This section provides the precise definition of the PS-CARE model for change point detection.

We first describe the CARE model of [97].

4.2.1. The CARE Model. Recall that in the CARE model, the intrinsic core for item i is

modeled as the sum of two components (4.1): one component z⊤
i β

∗ captures the contributions of

the covariates and the other component α∗
i captures the variations that cannot be explained by the

covariates. With this modification, the BTL score (4.1) becomes:

P (item i beats item j) =
eα

∗
i+z⊤

i β∗

eα
∗
i+z⊤

i β∗
+ eα

∗
j+z⊤

j β∗ .
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Additional constraints are required to make the CARE model identifiable. Write α∗ = (α∗
1, · · · , α∗

n)

and Z = [z1, · · · , zn]
⊤. These additional constraints are

∑n
i=1 α

∗
i = 0 and Z⊤α∗ = 0.

Furthermore, we collect all the parameters in ξ = (α∗,β∗⊤)⊤, and denote wi = [1, zi]
⊤ and

W = [w1, · · · ,wn]
⊤. With these, the constrained parameter set is defined as Θn = {(α,β) :

W⊤α = 0}.

Efficient methods for parameter estimation and uncertainty quantification for the CARE model

are provided by [97].

4.2.2. Piecewise Stationary CARE model. This subsection presents the PS-CARE model

for change point detection for the ranking problem, where the pairwise comparisons are done

sequentially. Briefly, a PS-CARE model is a concatenation of a sequence of different CARE

models, where changes occur when one model switches to a different one.

We need some notation to proceed. We assume T pairwise comparisons are performed at T

distinct time points t = 1, · · · , T . For any positive integerN , we denote [N ] as the set {1, · · · ,M}

containing all positive integers less than or equal to N . Thus, the comparisons occurred at t ∈ [T ].

Let ξ(t) denote the value of ξ at time t. We assume there areK ≥ 1 change points {τ1, · · · , τK}

such that the following conditions are satisfied:

• 1 = τ0 < τ1 < τ2 < · · · < τK < τK+1 = T ,

• τk ∈ {1, · · · , T} for all k = 1, · · · , K,

• ξ(t) ̸= ξ(t− 1) if t ∈ {τ1, · · · , τK}, and

• ξ(t) = ξ(t− 1) if t /∈ {τ1, · · · , τK}.

In other words, the K change points {τ1, · · · , τK} partition the whole time span {1, · · · , T}

into K +1 segments, for which the value of ξ(t) remaining within each segment. The values of K

and τk’s are unknown and need to be estimated.

We also denote the relative location of {τ1, · · · , τK} to be λ = (λ1, · · · , λK), where λk =

τk/T for i = 1, · · · , K, and naturally we set λ0 = 0 and λK+1 = 1. Assume that at time point t
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item i and item j are compared and

(4.2) P (yt = 1) := P (item i beats item j at time t)

= P [yt = 1|ξ(t)] = eα
∗
it+z⊤

i β∗
t

eα
∗
it+z⊤

i β∗
t + eα

∗
jt+z⊤

j β∗
t

,

where (α∗
1t, α

∗
2t, · · · , α∗

nt,β
∗
t ) = ξ(t). We further denote ξ

(k)
T := ξ(t),∀t ∈ {τk−1 + 1, · · · , τk} (if

time t belongs to the k-th segment).

Define z̃i = (e⊤
i , z

⊤
i )

⊤, where {ei}ni=1 represents the canonical basis vectors in Rn. Let

z∗
t = z̃i − z̃j if items i, j ∈ {1, 2, · · · , n} are compared at time t where t belongs to the k-th

segment or τk−1 + 1 ≤ t < τk, then the log-likelihood function of observation yt can be written as

(4.3) lk(ξ
(k)
T ; yt, z

∗
t ) := ytz

∗
t ξ

(k)
T − log(1 + exp(z∗T

t ξ
(k)
T )).

The log-likelihood of all data is then given by

(4.4) LT (y) =
K+1∑
k=1

τk∑
t=τk−1+1

lk(ξ
(k)
T ; yt, z

∗
t ) =

K+1∑
k=1

τk∑
t=τk−1+1

ytz
∗
t ξ

(k)
T − log(1 + exp(z∗T

t ξ
(k)
T )).

The main goal is to estimate the number and locations of the change points as well as the parame-

ters related to the intrinsic scores for the items. In other words, we want to estimate K, λ and ξ
(k)
T

for k = {1, 2, · · · , K + 1}. Thus, we can obtain the ranking of n items in each segment and re-

cover the PS-CARE model. In order to estimate all these parameters simultaneously, the minimum

description length criterion is applied.

4.3. Change Point Detection using MDL

The minimum description length (MDL) principle is a popular and effective method for de-

riving effective selection criteria for model selection problems. Instead of assuming the data is

generated from a given model, it views statistical modeling as a means of generating descriptions

of the observed data. Thus, it defines the best-fitting model as the one that compresses the data

into the shortest possible code length for storage, where the code length can be thought of as the

number of bits needed to store the observed data. The MDL principle was proposed by Rissa-

nen [29,102] and has been successfully applied to solve various model selection problems such as

image segmentation [66], network constructions [67], network vector autoregression models [104],
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and quantile and spline regression [105,106]. There are various versions of MDL criteria, and this

paper focuses on the so-called “Two-Part MDL” [107, e.g.,]. This section derives the corresponding

MDL criterion for fitting a PS-CARE model.

4.3.1. Derivation of the MDL Criterion. To store the observed comparison results y =

{y1, y2 · · · , yT}, the data can be divided into two parts: the first part is a fitted model and the second

part is the corresponding residuals that cannot be explained by the fitted model. If the fitted model

describes the data well, it will be more economical to store the data in this way. Denote CL(z) as

the code length required to store any object z; thus, we want to minimize CL(“observed data”).

Also, denote the whole class of PS-CARE models as M. Lastly, denote any model in M as

F ∈ M, the estimated version of F as F̂ , and its corresponding residuals as Ê . Then we have

CL(“observed data”) = CL(“fitted model”) + CL(“residuals”)

= CL(F̂) + CL(Ê |F̂).(4.5)

Now, we need computable expressions for CL(F̂) and CL(Ê |F̂) and we first calculate CL(F̂).

Notice that in order to completely determine a model F for a PS-CARE model, the parameters

that we need to know including change points number K and their locations τ = {τ1, · · · , τK}.

In addition, for each segment k = 1, . . . , K + 1, we need to know the intrinsic score related

parameters ξ(k)T = (α1,k, α2,k, · · · , αn,k,βk), for the k-th segment. Write ξ̂T = (ξ̂
(1)
T , · · · , ξ̂(K+1)

T ).

Then we have F̂ = (K, τ , ξ̂T ), so the first part code length for fitted model F̂ can be represented

as

(4.6) CL(F̂) = CL(K) + CL(τ ) + CL(ξ̂T ).

In general [102], it takes about log(I) bits to encode an unknown integer I , and it takes log(Iu)

bits to encode it if we know that it has an upper bound Iu. So the first two terms on the RHS of (4.6)

are

CL(K) = log(K + 1),(4.7)

CL(τ ) = (K + 1) log(T ),(4.8)
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where the additional 1 in CL(K) is used to make the formula meaningful when there are no change

points, i.e., K = 0.

It remains to calculate the last term in (4.6). To obtain CL(ξ̂T ), we need to first estimate ξ̂T

from model (4.2) and then encode the estimated values we calculated. For estimation, we shall use

the maximum likelihood method of [97], which has been proven to possess excellent asymptotic

properties. Meanwhile, for encoding the maximum likelihood estimate we obtained, we shall use

the result of [102] that any (scalar) maximum likelihood estimate calculated from N observations

can be effectively encoded with 1
2
log(N) bits. The maximum likelihood estimate can be obtained

by running a projected gradient descent algorithm, and we shall denote the maximum likelihood

estimator of ξT by ξ̂T .

As mentioned before, to encode a scalar maximum likelihood estimate, the code length is

1
2
log(N) if N observations were used for estimation. Therefore, for the PS-CARE model, we

have

(4.9) CL(ξ̂T ) =
K+1∑
k=1

n+ d− 1

2
log(nk),

where nk = τk − τk−1 represents the length of k-th segment.

The second and last part in (4.5) that we need to calculate is CL(Ê |F̂), which is the residuals

of the fitted model F̂ . It equals the negative log (base 2) of the likelihood of the fitted model

F̂ [102]. From (4.4) we have

(4.10) CL(Ê |F̂) =
K+1∑
k=1

τk∑
t=τk−1+1

(
−yt,kz∗T

t ξ
(k)
T + log

(
1 + exp(z∗T

t ξ
(k)
T )
))

log2 e.

Combining (4.7), (4.8), (4.9) and (4.10) and using logarithm base e instead of base 2, (4.5)

becomes

CL(“data”) = log(K + 1) + (K + 1) log(T ) +
K+1∑
k=1

(
n+ d− 1

2
log(nk)

)

+
K+1∑
k=1

τk∑
t=τk−1+1

(
−yt,kz∗T

t ξ
(k)
T + log

(
1 + exp(z∗T

t ξ
(k)
T )
))

log2 e

:= MDL(K, τ , ξT ).(4.11)
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Thus, the MDL principle suggests that the best-fitting PS-CARE model for the observed data

y = {y1, y2 · · · , yT}, is the one F̂ ∈ M that minimizes (4.11).

4.3.2. Theoretical Properties. Denote the true number of change points as K0 and the true

locations of the change points as τ0 = {τ 01 , · · · , τ 0K0
}. Define the true relative change points

locations as λ0 = {λ01, · · · , λ0K0
} with τ 0k = ⌊λ0kT ⌋ for k = 1, . . . , K0, where ⌊x⌋ represents the

greatest integer that is less than or equal to x. Note that the theoretical results in this subsection

will be presented in terms of λ instead of τ since they are equivalent.

As suggested by [73], for each segment, a sufficient number of comparisons are required to

estimate the corresponding CARE model parameters adequately. For this reason, we impose the

following constraint on the estimate of λ. First, choose ϵλ > 0 sufficiently small enough that

ϵλ ≪ mink=1,··· ,K0+1(λ
0
k − λ0k−1). Then define

(4.12) AK
ϵλ

= {(λ1, . . . , λK) , 0 = λ0 < λ1 < · · · < λK < λK+1 = 1,

λk − λk−1 ≥ ϵλ, k = 1, 2, . . . , K + 1} ,

so we require the estimate of λ to be an element of AK
ϵλ

. Under this constraint, the number of

change points is also bounded by M = [1/ϵλ] + 1. As for coefficient ξT , its constraint set is

Θn = {(α,β) : Wα = 0}, which guarantees the model identifiability.

To obtain the maximum likelihood estimator with desirable properties for the CARE model,

several other assumptions are required [97].

ASSUMPTION 2. Denote the projected matrix as PW := W (W⊤W )−1W⊤. Assume that
there exists a positive constant c0 such that

(4.13) ∥PW ∥2,∞ =
∥∥∥W (

W⊤W
)−1

W⊤
∥∥∥
2,∞

≤ c0
√

(d+ 1)/n.

Assumption 2 is called the incoherence condition that guarantees the rows of PW to be nearly

balanced and the row sum of squares all of order (d+ 1)/n or smaller.

ASSUMPTION 3. Denote z̃i = (e⊤
i , z

⊤
i )

⊤, where {ei}ni=1 represents the canonical basis vec-
tors in Rn and Σ =

∑
i>j (z̃i − z̃j) (z̃i − z̃j)

⊤. Assume there exists positive constants c1 and c2
such that
(4.14) c2n ≤ λmin,⊥(Σ) ≤ ∥Σ∥op ≤ c1n,
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where ∥Σ∥op is the operator norm of Σ and

(4.15) λmin,⊥(Σ) := min
{
u | u⊤Σu ≥ µ∥u∥22 for all u ∈ Θn

}
.

Assumption 3 constraints the covariance matrix Σ to be well-behaved in all directions inside

the parameter space Θn by restricting its largest and smallest eigenvalues are both of order n.

Now, we introduce a connected graph notion that describes the sampling scheme for collecting

comparison data over time. Following [101], we consider a connected comparison graph G =

G([n], E) with edge set E ⊆ Efull := {(i, j) : 1 ≤ i < j ≤ n}. At each time point t ∈ [T ],

an element (it, jt) ∈ [n] × [n] is randomly selected from the edge set E to determine which two

items are to be compared. This selection process is independent over time. In our work, we do not

require the graph to be fully connected. That is, we do not require every item to be compared with

every other item. For a specific time interval I, we define similarly a random comparison graph

GI(VI, EI) with vertex set V := [n] and edge set EI := {(i, j) : i and j are compared in I} ⊂ E.

This graph notation will be useful in studying the theoretical properties of the proposed method

and will be first used by Assumption 4 below.

ASSUMPTION 4. In each segment Ik, k = 1, · · · , K+1, suppose Lg,h,k represents the number
of times items g and h compared in segment Ik, g, h ∈ {1, 2, · · · , n}, thus

∑
g,h∈Gk

Lg,h,k = tk,
where tk represents the time points of segment Ik and Gk represents the graph of segment Ik.
Let Lmin,k = ming,h∈[n]2(Lg,h,k). It is required Lmin,k ≤ c1 · nc2 for any absolute constants
c1, c2 > 0. Also, it is required that n · Lmin,k

tk
> cp log(n) for some cp > 0 and d + 1 < n,

(d+ 1) log(n) ≲ n · Lmin,k

tk
, where the notation an ≲ bn denotes an = O(bn).

Assumption 4 guarantees in each segment, the number of comparisons for every two items

should meet some lower bound related to the covariate dimensions and item numbers. This as-

sumption also guarantees the connectivity of graph Gk as well as the consistency of the maximum

likelihood estimator in each segment [97].

Using this assumption and (4.11), the unknown parameters are given by

(4.16) {K̂, λ̂T , ξ̂T} = argmin
K≤M,ξT∈Θn,λ∈AK

ϵλ

2

T
MDL(K,λ, ξT ).

THEOREM 4.3.1. For the PS-CARE model given by (4.2), denote the true number of change
points asK0 and the true relative locations of change points as λ0. The estimate λ̂ defined by (4.16)
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satisfies

(4.17) K̂
P−→ K0, λ̂T

P−→ λ0.

Theorem 4.3.1 shows that the MDL criterion enjoys some desirable consistency properties.

The detailed proof of Theorem 4.3.1 can be found in the appendix.

4.4. Practical Optimization of MDL

Due to the huge search space, it is very challenging to locate the global minimum of (4.16).

Here, we propose solving this optimization problem using the PELT algorithm of [103]. It has

been shown that, for a class of change point detection problems, the PELT algorithm is an exact

search algorithm with linear computational cost, which makes it extremely appealing in practice.

The objective MDL criterion (4.11) can be rewritten as

(4.18)
K+1∑
k=1

[
C(y(τk−1+1):τk)

]
+ γf(K),

where

C(y(τk−1+1):τk) =

(
n+ d− 1

2
log(nk)

)
+

τk∑
t=τk−1+1

(−yt,kz∗⊤
t ξ

(k)
T + log(1 + exp(z∗⊤

t ξ
(k)
T ))) log2 e

represents the cost function for a segment and γf(K) = log(T )(K + 1) is the remaining penalty

part.

In order to apply the PELT algorithm, one assumption needs to be satisfied: there is a constant

R such that, for all t < s < T ,

(4.19) C(y(t+1):s) + C(y(s+1):T ) +R ≤ C(y(t+1):T ).

In our case, we can choose R = n+d−1
2

log(8∗π
T
). We refer the readers to [103] for the full descrip-

tion of the general version of the PELT algorithm, while the version that is tailored for the current

problem can be found in Algorithm 5. Following the notations of [103], in Algorithm 5 we use

F (s) to denote the minimization from (4.18) for data y1:s, cp(s) to denote the estimated change
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point set for time point {1 : s}, and Rs to denote the time points that are possible to be the last

change points prior to s.

Algorithm 5: Optimize MDL criterion based on the PELT Algorithm

Input: A set of observed pairwise comparison data (y1, y2, · · · , yT ), (z∗
1 , z

∗
2 , · · · , z∗

T ).

A prespecified constant R satisfied (4.19)

A minimum length L for each estimated segments.

1: Initialization: Set F (0) = · · · = F (L− 1) = −γ; F (i) = C(y1:i),∀i = L,L+ 1, · · · , 2L− 1;

R1 = R2 = · · · = R2L−1 = {0}, R2L = {0, L}.

2: for τ ∗ = 2L, · · · , T do
3: Calculate F (τ ∗) = minτ∈Rτ∗

[
F (τ) + C(y(τ+1):τ∗) + γ

]
.

4: Let τ 1 = arg{minτ∈Rτ∗

[
F (τ) + C(y(τ+1):τ∗) + γ

]
}.

5: Set cp(τ ∗) = [cp(τ 1), τ 1].

6: Set Rτ∗+1 = {τ ∗ ∩ {τ ∈ Rτ∗ : F (τ) + C(y(τ+1):τ∗) + γ < F (τ ∗)}}.

7: end for
Output: The change points recorded in cp(T ).

4.5. Simulation Results

In this section, we report the numerical results of our proposed method in different simulation

settings. We follow a similar convention as in [101]. Suppose we have K change points {τk}k∈[K]

in the sequential comparison data, τ0 = 1. Suppose the number of objects is n and the dimension of

covariates is d. For each setting, we set the comparison graph GI(VI, EI) to be the complete graph

and T = (K + 1)∆ with the true change point located at τi = i∆ for i ∈ [K]. To generate the

covariates Z and the coefficients {α∗} and β∗, we follow the same idea as in [97]. The covariates

are generated independently with (zi)j ∼ Uniform[−0.5, 0.5] for all i ∈ [n], j ∈ [d]. For matrix

Z = [z1, z2 · · · , zn]
⊤ ∈ Rn×d, column-wise normalization is applied and then scale xi by xi/h

so that maxi∈[n] ∥xi∥2/h =
√
(d+ 1)/n. Such initialization guarantees the Assumptions 2 and 3

are satisfied. For α∗, its elements are generated uniformly from Uniform[−0.3, 0.3]. For β∗, it is

generated uniformly from a hypersphere {β, ∥β∥2 = 0.5
√
n/(d+ 1)}. Then we projected ξ onto

the linear space Θn.
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4.5.1. Setting 1: Without Covariates. In the first simulation setting, we compare our meth-

ods to the DPLR method [101] when d = 0, which means no covariates exist. We set K = 3,

n = {10, 15, 20, 30, 40, 50} and ∆ = {400, 500, 650}. Using the procedure described above, we

simulate the pairwise comparison data 100 times and apply both our proposed MDL method and

DPLR method to detect the number and locations of change points.

Methods n ∆ mean of τ̂ s.e. of τ̂ % of K̂ = K

MDL 10 400 (400.0, 798.2, 1200.0) (1.2, 1.0, 0.9) 98%
DPLR (398.9, 799.2, 1199.8) (2.0, 3.2, 1.9) 85%

MDL 15 400 (400.0, 798.0, 1200.0) (1.0, 1.0, 0.9) 99%
DPLR (402.3, 800.4, 1196.2) (2.3, 2.4, 2.4) 87%

MDL 20 400 (401.5, 798.2, 1200.3) (0.9, 1.3, 1.7) 100%
DPLR (399.2, 797.5, 1199.3) (2.6, 3.3, 2.7) 80%

MDL 30 500 (398.5, 804.1, 1199.6) (0.8, 1.6, 0.9) 96%
DPLR (392.7, 801.9, 1201.8) (2.6, 2.4, 3.1) 69%

MDL 40 500 (499.1, 1000.1, 1500.1) (0.9, 1.0, 1.4) 99%
DPLR (501.1, 999.8, 1501.1) (2.5, 2.6, 2.6) 90%

MDL 50 650 (649.0, 1298.6, 1950.5) (1.1, 1.5, 1.4) 99%
DPLR (646.1, 1294.3, 1951.1) (2.5, 2.6, 1.7) 93%

TABLE 4.1. Comparison of MDL and DPLR under different simulation settings
without covariates.

The results are summarized in Table 4.1. When calculating the means and standard errors of

the estimated change points, we only consider the cases where the true number of change points

was estimated. From Table 4.1, we can observe that for the non-covariate settings, our proposed

MDL method outperforms the DPLR method. The reason might be that the DPLR method requires

precise choices of some tuning parameters that might be hard to obtain, especially when the sample

size (∆) is not large enough.
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4.5.2. Setting 2: With Covariates. In this simulation setting, the parameters are n = {10, 15, 20, 30, 40, 50},

d = 5, and ∆ = {700, 800, 1100, 1300, 1300, 2000}. As before, we simulate the pairwise compari-

son data 100 times and apply both the MDL and DPLR methods to detect the number and locations

of change points. Notice that the DPLR method was not designed to incorporate covariate infor-

mation, and hence no such information was fed to it.

The results are summarized in Table 4.2. As expected, given that the proposed MDL method

takes the covariate information into account, it produces superior performance when compared to

the DPLR method.

Methods n d ∆ mean of τ̂ s.e. of τ̂ % of K̂ = K

MDL 10 5 700 (699.2, 1400.6, 2099.2) (0.6, 0.7, 0.4) 96%
DPLR (697.9, 1398.6, 2096.2) (1.3, 1.5, 1.6) 60%

MDL 15 5 800 (799.0, 1600.4, 2399.4) (0.9, 0.5, 0.5) 97%
DPLR (798.3, 1602.4, 2402.2) (1.9, 1.3, 1.4) 66%

MDL 20 5 1100 (1100.0, 2200.2, 3300.3) (0.8, 0.7, 0.6) 97%
DPLR (1099.2, 2198.5, 3295.3) (1.1, 1.2, 2.2) 84%

MDL 30 5 1100 (1299.8, 2599.7, 3901.0) (0.5, 0.5, 0.6) 96%
DPLR (1299.0, 2599.0, 3898.3) (1.1, 1.2, 1.4) 89%

MDL 40 5 1300 (1299.5, 2599.8, 3899.8) (0.6, 0.5, 0.6) 98%
DPLR (1301.2, 2601.6, 3903.9) (1.5, 1.4, 1.4) 94%

MDL 50 5 2000 (2000.8, 3999.5, 5998.1) (0.8, 0.8, 0.7) 97%
DPLR (2001.1, 4000.3, 6000.1) (1.7, 1.8, 1.8) 95%

TABLE 4.2. Comparison of MDL and DPLR under different simulation settings
with covariates.

4.6. Real Data Analysis

In this section, we study the game records of the NBA data as in [101]. The NBA season

starts in October and ends in April the next year. One season is usually referred to as a two-year

span. We focus on the same time range as in [101], which contains records from season 1980-1981

to season 2015-2016 with 24 teams that were founded before 1990. It has been shown in [101] that
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the data is non-stationary and contains multiple change points. We utilize the overall mean salary,

the mean 3-point shoot percentage, and the mean rebound number of each team over the selected

period as exogenous covariates. These 3 covariates respectively represent, to a certain extent, the

investment, attack ability, and defense ability of each team.

We then apply the MDL method to detect the number and locations of change points. We

utilize the even-time point matches as the training dataset and the odd-time point matches as the

test dataset. The results are summarized in Table 4.3.

Our methods detect 9 different change points, which divide the whole history into 10 time

periods. The NBA facts can explain these 9 change points. To be more specific, the first and

second periods, S1980-S1985 and S1986-S1989, represent the times that Larry Bird in the Celtics

and Michael Johnson in the Lakers ruled this era together. In the third period, S1990-S1994,

Michael Jordan in the Bulls won the triple crown. However, in S1994, Michael Jordan retired

for the first time, and the Rockets won 2 champions. In S1995, Michael Jordan came back, and

the Bulls achieved another triple crown. In S1998, Michael Jordan retired again, and Shaq and

Kobe helped the Lakers dominate the period S1998-S2003. In S2004-S2006, the “Big 3” in Spurs

emerged. In S2007-S2009, Kobe helped the Lakers win another 2 champions. In S2010-S2011,

Derk in the Mavericks defeated the “Big 3” in the Heat, but in S2011-S2013, the Heat dominated

the scene. Lastly, in S2014-S2015, Stephen Curry helped the Warriors take the lead.

When comparing our results with those in [101], our method detected some important events

like Michael Jordan retiring for the first time in S1994 and the Mavericks defeated Heat in S2011,

while the DPLR method [101] failed to detect them. Also, the MDL method has, in terms of minus

log-likelihood value, a smaller loss: the loss for DPLR is approximately 8880 while the MDL’s

loss is approximately 8000, which is a 10% decrease.

4.7. Concluding Remarks

This paper addresses the challenge of detecting change points within sequential pairwise com-

parison data, incorporating covariate information for enhanced accuracy. At its core, this paper
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S1980-S1985 S1986-S1989 S1990-S1994 S1995-S1997 S1998-S2003

Celtics 1.0921 Lakers 1.2076 Bulls 0.8809 Jazz 1.1172 Spurs 0.8749
76ers 0.9512 Pistons 0.9508 Spurs 0.6787 Bulls 0.9546 Lakers 0.8284
Lakers 0.7574 Celtics 0.8223 Suns 0.6489 Heat 0.8756 Kings 0.6981
Bucks 0.7534 Trail Blazers 0.6566 Jazz 0.6255 Lakers 0.8113 Mavericks 0.5416
Nuggets 0.0798 Bulls 0.5303 Knicks 0.5510 Trail Blazers 0.5792 Timberwolves 0.4022
Trail Blazers 0.0626 Jazz 0.4991 Rockets 0.5184 Hornets 0.4965 Trail Blazers 0.3938
Suns 0.0551 Bucks 0.3841 Trail Blazers 0.4513 Pacers 0.4329 Jazz 0.3569
Spurs 0.0536 Mavericks 0.3534 Cavaliers 0.3044 Knicks 0.4063 Pacers 0.2981
Nets 0.0311 76ers 0.3311 Pacers 0.1609 Rockets 0.3865 Suns 0.1213
Pistons -0.033 Suns 0.2723 Lakers 0.1603 Cavaliers 0.3706 76ers 0.0730
Knicks -0.1204 Rockets 0.2544 Magic 0.1531 Magic 0.2291 Hornets 0.0625
Rockets -0.1816 Cavaliers 0.1816 Warriors 0.0203 Pistons 0.2100 Pistons -0.0058
Jazz -0.2818 Nuggets 0.1209 Celtics -0.0237 Suns 0.2063 Bucks -0.0401
Bulls -0.2942 Knicks 0.0379 Hornets -0.1150 Timberwolves 0.0199 Rockets -0.0841
Mavericks -0.2974 Pacers -0.0352 Nets -0.2435 Spurs -0.0685 Heat -0.1403
Kings -0.2989 Spurs -0.0702 Heat -0.25397 Bucks -0.1756 Knicks -0.1477
Warriors -0.4193 Warriors -0.0789 Pistons -0.28443 Nets -0.4655 Nets -0.1539
Pacers -0.5259 Kings -0.7207 Nuggets -0.32888 76ers -0.6068 Magic -0.2635
Clippers -0.6087 Nets -0.8198 Clippers -0.39468 Kings -0.6594 Celtics -0.2675
Cavaliers -0.7531 Timberwolves -0.9295 Kings -0.41518 Warriors -0.7487 Nuggets -0.4180
Heat NA Clippers -0.9662 Bucks -0.58409 Celtics -0.8135 Clippers -0.5736
Hornets NA Magic -0.9875 76ers -0.80124 Clippers -0.8698 Cavaliers -0.6686
Magic NA Hornets -1.0816 Mavericks -0.96357 Mavericks -1.1372 Warriors -0.7081
Timberwolves NA Heat -1.1920 Timberwolves -0.98895 Nuggets -1.5718 Bulls -1.1913

S2004-S2006 S2007-S2009 S2010-S2011m S2011m-S2013 S2014-S2015

Spurs 0.9037 Lakers 0.9619 Bulls 1.0465 Spurs 0.9457 Warriors 1.6399
Mavericks 0.8443 Celtics 0.8124 Spurs 0.8086 Clippers 0.8324 Spurs 1.2530
Suns 0.8190 Cavaliers 0.7386 Heat 0.6899 Heat 0.7754 Clippers 0.8556
Pistons 0.7526 Magic 0.7017 Lakers 0.6330 Pacers 0.5711 Cavaliers 0.7377
Rockets 0.2473 Spurs 0.5872 Mavericks 0.5353 Rockets 0.5179 Rockets 0.4701
Heat 0.1795 Mavericks 0.5297 Celtics 0.4928 Warriors 0.4497 Mavericks 0.4178
Cavaliers 0.1540 Jazz 0.4169 Magic 0.4406 Nuggets 0.4091 Trail Blazers 0.3920
Nuggets 0.1502 Suns 0.4024 Nuggets 0.3650 Bulls 0.3619 Heat 0.1986
Nets 0.0460 Nuggets 0.3997 Trail Blazers 0.0628 Knicks 0.2510 Bulls 0.1531
Bulls 0.0219 Trail Blazers 0.3177 Rockets 0.0303 Mavericks 0.2371 Pacers 0.1095
Kings -0.0057 Rockets 0.2942 76ers 0.0296 Trail Blazers 0.1987 Jazz 0.0933
Lakers -0.0220 Hornets 0.2866 Pacers 0.0008 Nets 0.1871 Celtics 0.0752
Clippers -0.0649 Bulls -0.0684 Knicks -0.0209 Lakers -0.1328 Pistons 0.0251
Jazz -0.0926 Pistons -0.2101 Suns -0.0213 Timberwolves -0.1340 Hornets 0.0007
Pacers -0.1213 Heat -0.2717 Jazz -0.0385 Suns -0.2172 Bucks -0.0649
Timberwolves -0.1568 Warriors -0.3373 Clippers -0.0771 Jazz -0.2758 Kings -0.3145
Warriors -0.1936 76ers -0.3645 Hornets -0.3269 Celtics -0.4300 Suns -0.3763
Magic -0.2521 Pacers -0.3706 Warriors -0.3615 Kings -0.5275 Magic -0.3995
76ers -0.2864 Bucks -0.5188 Bucks -0.3695 Hornets -0.5792 Nuggets -0.4144
Hornets -0.4496 Kings -0.7237 Pistons -0.6596 Pistons -0.6031 Nets -0.5219
Celtics -0.4546 Knicks -0.8034 Kings -0.6985 Bucks -0.6512 Knicks -0.9580
Bucks -0.5658 Nets -0.9115 Timberwolves -0.7597 Cavaliers -0.7121 Timberwolves -1.0322
Knicks -0.7506 Timberwolves -1.0381 Nets -0.9547 76ers -0.7279 Lakers -1.0736
Trail Blazers -0.8684 Clippers -1.1249 Cavaliers -1.0610 Magic -0.9004 76ers -1.4612

TABLE 4.3. Fitted scores for 24 selected teams in the seasons S1980-S2016 of
NBA. It is divided into 10 time periods based on the 9 estimated change points.
Within each period, the teams are ranked based on their fitted scores.
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introduced the piecewise stationary covariate-assisted ranking estimation (PS-CARE) model, an

innovative extension of the CARE model designed to handle these data complexities.

We developed a comprehensive methodology for accurately estimating the PS-CARE model’s

unknown parameters, including both the number and precise locations of change points. Central

to our approach is the application of the minimum description length (MDL) principle, which

facilitated the derivation of an objective criterion for parameter estimation. It has been shown the

MDL estimates are statistically consistent.

The practical optimization of the MDL criterion was achieved using the PELT algorithm. Our

extensive simulation experiments underscored the excellent empirical performance of our proposed

methodology. When applied to an NBA dataset, our methodology not only identified meaningful

results but also correlated these findings with significant historical events within the dataset’s time-

line, showcasing the practical relevance of our approach.

In conclusion, this paper contributes significantly to the field of dynamic ranking systems by

presenting the PS-CARE model as a powerful tool for change point detection in sequential pairwise

comparison data, especially when covariate information is available. The demonstrated success of

the PS-CARE model, with its proven methodological rigor and empirical validation, paves the way

for future research and offers valuable insights for practitioners and researchers alike.

4.8. Supplementary materials

4.8.1. Proof and Technical Details. This appendix presents technical details and the proof

for Theorem 4.3.1. We will first define some notations and introduce several lemmas.

4.8.1.1. Lemmas. The k-th segment of {Yt} is modeled by a stationary time series xk =

{xt,k}t∈Z such that

yt = xt−τk−1,k, ∀τk−1 + 1 ≤ t ≤ τk

and Tk = τk − τk−1 for k = 1, · · · , K + 1.

Define li(ξ
(j)
T ;xi,k, z

∗
t |xs,k, s < i) as the conditional log-likelihood function at time i for ob-

servations in the k-th segment, given all the past observations. And the conditional log-likelihood
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of k-th segment, xk = {xt,k, t = 1, 2, · · · , Tj} given all the past observations is

L
(k)
T (ξ

(k)
T ;xk) =

Tk∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i).

However, it is impossible to observe all the past observations {xt,k}t<0 in practice. Denote

yi,k = (y1, · · · , yτk−1+i−1) as the observed past in practice. Thus, the observed likelihood for the

k-th segment is given by

L̃
(k)
T (ξ

(k)
T ;xk) =

Tk∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |yi,k).

Now, for estimating the parameters of (4.16), consider the situation where only a portion of

the data in the k-th segment is chosen to perform the parameter estimation. Define λl, λu ∈ [0, 1]

and λl < λu, λu − λl > ϵλ, where ϵλ is defined in (4.12). To simplify the notation, we write

sup
λl,λu

= sup
λl,λu∈[0,1],λu−λl>ϵλ

.

Next, define the true and observed log-likelihood function based on a portion of the data in

the k-th segment as follows:

L
(k)
T (ξ

(k)
T , λl, λu;xk) =

Tkλu∑
i=[Tkλl]+1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i),(4.8.20)

L̃
(k)
T (ξ

(k)
T , λl, λu;xk) =

Tkλu∑
i=[Tkλl]+1

li(ξ
(k)
T ;xi,k, z

∗
t |yi,k).(4.8.21)

In practice, we can only use (4.8.21) instead of (4.8.20); thus, our first lemma controls the

quality of the approximation.

LEMMA 4.8.0.1. For any k = 1, · · · , K + 1, the first and second derivatives L
′(k)
n , L̃

′(k)
n and

L
′′(k)
n , L̃

′′(k)
n with respect to ξ

(k)
T of the function defined in (4.8.21) and (4.8.20) satisfy

sup
λl,λu

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L(k)
T

(
ξ
(k)
T , λl, λu,xk

)
− 1

T
L̃
(k)
T

(
ξ
(k)
T , λl, λu,xk

)∣∣∣∣ = o (1) ,(4.8.22)

sup
λl,λu

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L′(k)
T

(
ξ
(k)
T , λl, λu,xk

)
− 1

T
L̃

′(k)
T

(
ξ
(k)
T , λl, λu,xk

)∣∣∣∣ = o (1) ,(4.8.23)

sup
λl,λu

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L′′(k)
T

(
ξ
(k)
T , λl, λu,xk

)
− 1

T
L̃

′′(k)
T

(
ξ
(k)
T , λl, λu,xk

)∣∣∣∣ = o (1) .(4.8.24)
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PROOF. We shall only prove (4.8.22), while (4.8.23) and (4.8.24) can be proved using similar
arguments. For the PS-CARE model defined in (4.2), we have

L
(k)
T

(
ξ
(k)
T , λl, λu,xk

)
=

Tkλu∑
i=[Tkλl]+1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)

=

Tkλu∑
i=[Tkλl]+1

(
xi,kz

∗T
i ξ̂

(k,1)
T − log(1 + exp(z∗T

i ξ̂
(k,1)
T ))

)
and

L̃
(k)
T

(
ξ
(k)
T , λl, λu,xk

)
=

Tkλu∑
i=[Tkλl]+1

li(ξ
(k)
T ;xi,k, z

∗
t |yi,k)

=

Tkλu∑
i=[Tkλl]+1

(
xi,kz

∗T
i ξ̂

(k,2)
T − log(1 + exp(z∗T

i ξ̂
(k,2)
T ))

)
,

where ξ̂(k,1)T and ξ̂
(k,2)
T are the maximum likelihood estimators based on true past and observed past

in the j − th segment respectively.
So, we have

(4.8.25)

sup
λl,λu

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L(k)
T

(
ξ
(k)
T , λl, λu,xk

)
− 1

T
L̃
(k)
T

(
ξ
(k)
T , λl, λu,xk

)∣∣∣∣
≤ sup

λl,λu

1

T

Tjλu∑
i=[Tkλl]+1

(
xi,k

∣∣∣z∗T
i ξ̂

(k,1)
T − z∗T

i ξ̂
(k,2)
T

∣∣∣+ ∣∣∣∣∣log
(
1 +

exp(z∗T
i ξ̂

(k,2)
T ))− exp(z∗T

i ξ̂
(k,1)
T ))

1 + exp(z∗T
i ξ̂k,1))

)∣∣∣∣∣
)

≤ sup
λl,λu

1

T

Tkλu∑
i=[Tkλl]+1

(
xi,k∥z∗T

i ξ̂
(k,1)
T − z∗T

i ξ̂
(k,2)
T ∥∞ + log

(
1 + ∥exp(z

∗T
i ξ̂

(k,2)
T ))− exp(z∗T

i ξ̂
(k,1)
T ))

1 + exp(z∗T
i ξ̂

(k,1)
T ))

∥∞

))
.

Assume β̃∗
T be the true parameter vector of j-th segment. According to Theorem 3.1 in [97],

as long as Assumptions 2 to 4 are satisfied, we have

∥Z̃ξ̂
(k,i)
T − Z̃β̃∗

T∥∞ = O(L
−1/2
min,k), for i = 1, 2,∥∥∥eZ̃ξ̂

(k,i)
T − eX̃β̃∗

T

∥∥∥
∞∥∥∥eZ̃β̃∗

T

∥∥∥
∞

= O(L
−1/2
min,k), for i = 1, 2.

And we have

∥z∗T
i ξ̂

(k,1)
T − z∗T

i ξ̂
(k,2)
T ∥∞ ≤ ∥z∗T

i ξ̂
(k,1)
T − z∗T

i ξ̂∗T∥∞ + ∥z∗T
i ξ̂

(k,2)
T − z∗T

i ξ̂∗T∥∞,∥∥∥∥∥exp(z∗T
i ξ̂

(k,2)
T ))− exp(z∗T

i ξ̂
(k,1)
T ))

1 + exp(z∗T
i ξ̂

(k,1)
T ))

∥∥∥∥∥
∞

≤ exp(∥z∗T
i ξ̂

(k,1)
T − z∗T

i ξ̂∗T∥∞) + exp(∥z∗T
i ξ̂

(k,2)
T − z∗T

i ξ̂∗T∥∞).

Thus (4.8.25) = o(1) is satisfied. □
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LEMMA 4.8.0.2. For k = 1, · · · , K + 1, there exists an ϵ > 0 such that

sup
ξ
(k)
T ∈Θn

E
∣∣∣lk (ξ(k)T ;x1,k | xl,k, l < 1

)∣∣∣ϵ <∞,

sup
ξ
(k)
T ∈Θn

E
∣∣∣l′k (ξ(k)T ;x1,k | xl,k, l < 1

)∣∣∣ϵ <∞,

sup
ξ
(k)
T ∈Θn

E
∣∣∣l′′k (ξ(k)T ;x1,k | xl,k, l < 1

)∣∣∣ <∞.

PROOF. Since lk
(
ξ
(k)
T ;x1,k | xl,k, l < 1

)
= x1,kz

∗T
i ξ̂

(k)
T − log(1 + exp(z∗T

i ξ̂
(k)
T )), which is the

probability of one item beating another item, and hence within (0, 1). Thus, Lemma 4.8.0.2 is
proved. □

LEMMA 4.8.0.3. For each k = 1, · · · , K + 1,

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L(k)
T

(
ξ
(k)
T ;xk

)
− Lk

(
ξ
(k)
T

)∣∣∣∣ a.s−→ 0,(4.8.26)

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L′(k)
T

(
ξ
(k)
T ;xk

)
− L

′

j

(
ξ
(k)
T

)∣∣∣∣ a.s−→ 0,(4.8.27)

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L′′(k)
T

(
ξ
(k)
T ;xk

)
− L

′′

k

(
ξ
(k)
T

)∣∣∣∣ a.s−→ 0,(4.8.28)

where

Lk

(
ξ
(k)
T

)
= E

(
lk

(
ξ
(k)
T ;x1,k | xl,k, l < 1

))
,

L
′

k

(
ξ
(k)
T

)
= E

(
l
′

k

(
ξ
(k)
T ;x1,k | xl,k, l < 1

))
,

L
′′

k

(
ξ
(k)
T

)
= E

(
l
′′

k

(
ξ
(k)
T ;x1,k | xl,k, l < 1

))
.

PROOF. Here we only prove (4.8.28), as (4.8.26) and (4.8.27) can be proved using similar
arguments. Since {xk} is a stationary ergodic process, we only need to prove

1

T

[Tλk]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)

a.s−→ λkE
(
lk

(
ξ
(k)
T ;x1,k | xl,k, l < 1

))
.

This can be proved by the ergodic theorem. Let Q[0,1] be the set of rational numbers in [0, 1].
For λj ∈ Q[0,1],

(4.8.29)
1

T

[Tλk]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)

a.s−→ λkE
(
lk

(
ξ
(k)
T ;x1,k | xl,k, l < 1

))
.
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IfBλ is the set of ω’s for which (4.8.29) holds, then setB = ∩λk∈Q[0,1]
Bλ and P (B) = 1. Moreover,

for ω ∈ B and any s ∈ [0, 1], choose λ1, λ2 ∈ Q[0,1] such that λ1 ≤ λk ≤ λ2, hence∣∣∣∣∣∣ 1T
[Tλk]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)− 1

T

[Tλ1]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)

∣∣∣∣∣∣
≤ 1

T

[Tλ2]∑
i=[Tλ1]

∣∣∣li(ξ(k)T ;xi,k, z
∗
t |xs,k, s < i)

∣∣∣ −→ (λ2 − λ1)E
∣∣∣li(ξ(k)T ;x1,k, z

∗
t |xs,k, s < i)

∣∣∣ .
By making λ2 − λ1 arbitrarily small, it follows from the ergodic theorem that

1

T

[Tλk]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i) −→ λkE(li(ξ

(k)
T ;x1,k, z

∗
t |xs,k, s < i)).

To establish convergence on D[0, 1], it is suffice to show that for any ω ∈ B, we have

1

T

[Tλk]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i) −→ λkE(li(ξ

(k)
T ;x1,k, z

∗
t |xs,k, s < i)) uniformly on [0,1].

Since ϵ > 0, we can choose λ1, λ2, · · · , λK ∈ Q[0,1] such that 0 = λ0 < λ1 < · · · < λK+1 =
1, with λi − λi−1 < ϵ. Then for any λk ∈ [0, 1], λi−1 < λk ≤ λi and∣∣∣∣∣∣ 1T

[Tλk]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)− λkE(li(ξ

(k)
T ;x1,k, z

∗
t |xs,k, s < i))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1T
[Tλk]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)− 1

T

[Tλi−1]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1T
[Tλi−1]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)− λi−1E(li(ξ

(k)
T ;x1,k, z

∗
t |xs,k, s < i))

∣∣∣∣∣∣
+
∣∣∣λi−1E(li(ξ

(k)
T ;x1,k, z

∗
t |xs,k, s < i))− λkE(li(ξ

(k)
T ;x1,k, z

∗
t |xs,k, s < i))

∣∣∣ ,
where the first term is bounded by

1

T

[Tλi]∑
i=[Tλi−1]

|li(ξ(k)T ;xi,k, z
∗
t |xs,k, s < i)| −→ (λi − λi−1)E

∣∣∣li(ξ(k)T ;x1,k, z
∗
t |xs,k, s < i)

∣∣∣
< ϵE

∣∣∣li(ξ(k)T ;x1,k, z
∗
t |xs,k, s < i)

∣∣∣ .
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Let T be large enough so that this term is less than ϵE
∣∣∣li(ξ(k)T ;x1,k, z

∗
t |xs,k, s < i)

∣∣∣ for i =
1, · · · , K. So it follows that∣∣∣∣∣∣ 1T

[Tλk]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)− λkE(li(ξ

(k)
T ;x1,k, z

∗
t |xs,k, s < i))

∣∣∣∣∣∣
< ϵE|li(ξ(k)T ;x1,k, z

∗
t |xs,k, s < i)|+ ϵ+ ϵE|li(ξ(k)T ;x1,k, z

∗
t |xs,k, s < i)|.

Since ϵ can be arbitrarily small, (4.8.26) is proved, and (4.8.27) and (4.8.28) can be proved in a
similar manner. □

LEMMA 4.8.0.4. For the PS-CARE model defined above, we have

sup
λl,λu

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L̃(k)
T

(
ξ
(k)
T , λl, λu;xk

)
− (λl − λu)Lk

(
ξ
(k)
T

)∣∣∣∣ a.s.−→ 0,(4.8.30)

sup
λl,λu

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L̃′(k)
T

(
ξ
(k)
T , λl, λu;xk

)
− (λl − λu)L

′

k

(
ξ
(k)
T

)∣∣∣∣ a.s.−→ 0,(4.8.31)

sup
λl,λu

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L̃′′(k)
T

(
ξ
(k)
T , λl, λu;xk

)
− (λl − λu)L

′′

k

(
ξ
(k)
T

)∣∣∣∣ a.s.−→ 0.(4.8.32)

PROOF. Here only prove (4.8.30), as (4.8.31) and (4.8.32) can be proved in a similar manner.
From Lemma (4.8.0.1), we only need to proveL(k)

T

(
ξ
(k)
T , λl, λu;xk

)
instead of L̃(k)

T

(
ξ
(k)
T , λl, λu;xk

)
.

Let Q[0,1] be a set of rational numbers in [0, 1]. Then ∀r1, r2 ∈ Q[0,1] with r1 < r2, by (4.8.0.3), we
have

(4.8.33)

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L(k)
T

(
ξ
(k)
T , λl, λu;xk

)
− (r2 − r1)Lk

(
ξ
(k)
T

)∣∣∣∣
= sup

ξ
(k)
T ∈Θn

|r2

 1

Tr2

[Tr2]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)− Lk

(
ξ
(k)
T

)
− r1

 1

Tr1

[Tr1]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)−−Lk

(
ξ
(k)
T

) | a.s.−→ 0.

Let Br1,r2 be the probability one set of ω′s for which (4.8.33) holds. Set

B = ∩r1,r2∈Q[0,1]
Br1,r2 .
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It is well-known that P (B) = 1. Moreover for any ω ∈ B and any λ ∈ [0, 1], we can choose
rl, ru ∈ Q[0,1] such that rl ≤ λ ≤ ru. So we have

sup
ξ
(k)
T ∈Θn

∣∣∣∣∣∣ 1T
[Tλ]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)− 1

T

[Trl]∑
i=1

li(ξ
(k)
T ;xi,k, z

∗
t |xs,k, s < i)

∣∣∣∣∣∣
≤ sup

ξ
(k)
T ∈Θn

1

T

[Tru]∑
i=[Trl]+1

∣∣∣li(ξ(k)T ;xi,k, z
∗
t |xs,k, s < i)

∣∣∣
−→ (ru − rl) sup

ξ
(k)
T ∈Θn

E
∣∣∣li(ξ(k)T ;x1,k, z

∗
t |xs,k, s < i)

∣∣∣ .
From Lemma 4.8.0.2, we have sup

ξ
(k)
T ∈Θn

E
∣∣∣li(ξ(k)T ;xi,k, z

∗
t |xs,k, s < i)

∣∣∣ < ∞. So let ru −

rl < ϵ where ϵ can be arbitrarily small, we have L(k)
T

(
ξ
(k)
T , 0, λ;xk

)
a.s.→ λLk

(
ξ
(k)
T

)
uniformly in

ξ
(k)
T ∈ Θn. With the same idea, we have

(4.8.34) sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L(k)
T

(
ξ
(k)
T , λl, λu;xk

)
− (λl − λu)Lk

(
ξ
(k)
T

)∣∣∣∣ a.s.−→ 0

for any λl and λu in [0, 1] with λl < λu. The next step is to show the convergence in (4.8.34) is
uniform in λl, λu with λu − λl > ϵλ. For any fixed positive ϵ < ϵλ, choose a large K1 such that
with r0, · · · , rK1 ∈ Q[0,1] such that 0 = r0 < r1 < · · · < rK1 = 1 and maxi=1,··· ,K1 ≤ ϵ. Then for
any λl, λu ∈ [0, 1], we can find g and h such that g < h and rg−1 < λl < rg, rh−1 < λu < rh. Thus
we have ∣∣∣∣ 1T L(k)

T

(
ξ
(k)
T , λl, λu;xk

)
− (λl − λu)Lk

(
ξ
(k)
T

)∣∣∣∣
≤
∣∣∣∣ 1T L(k)

T

(
ξ
(k)
T , λl, λu;xk

)
− 1

T
L
(k)
T

(
ξ
(k)
T , rg−1, rh;xk

)∣∣∣∣
+

∣∣∣∣ 1T L(k)
T

(
ξ
(k)
T , rg−1, rh;xk

)
− (rh − rg−1)Lk

(
ξ
(k)
T

)∣∣∣∣
+
∣∣∣(rg − rh−1)Lk

(
ξ
(k)
T

)
− (λl − λu)Lk

(
ξ
(k)
T

)∣∣∣ .
Let T be large enough and the third term is almost surely bounded by

sup
ξ
(k)
T ∈Θn

∣∣∣(rg − rh−1)Lk

(
ξ
(k)
T

)
+ (λl − λu)Lk

(
ξ
(k)
T

)∣∣∣ < 2ϵ sup
ξ
(k)
T ∈Θn

E
∣∣∣li(ξ(k)T ;x1,k, z

∗
t |xs,k, s < i)

∣∣∣ .
By (4.8.33), the second term is bounded by ϵ for sufficiently large T . It follows that

sup
λl,λu

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L̃(k)
T

(
ξ
(k)
T , λl, λu;xk

)
− (λl − λu)Lk

(
ξ
(k)
T

)∣∣∣∣
< 2ϵ sup

ξ
(k)
T ∈Θn

E
∣∣∣li(ξ(k)T ;x1,k, z

∗
t |xs,k, s < i)

∣∣∣+ ϵ+ 2ϵ sup
ξ
(k)
T ∈Θn

E
∣∣∣li(ξ(k)T ;x1,k, z

∗
t |xs,k, s < i)

∣∣∣ ,
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for sufficiently large T , a.s. And since ϵ can be arbitrarily small, and independent of λl, λu, thus
(4.8.30) is proved. □

LEMMA 4.8.0.5. Lemma 4.8.0.4 also holds if we substitute supλl,λu
by sup

λl,λu

. Where sup
λl,λu

=

sup
−hn<λl<λu<1+kn

λu−λl>ϵλ

for any pre-specified sequence hn and kn which are converging to 0 as n→ ∞.

PROOF. First define λ̀l = max (0, λl), λ̈l = min (0, λl), λ̀u = min (1, λu) and λ̈u = max (1, λu).
Then we have

(4.8.35)

1

Tk
L
(k)
T

(
ξ
(k)
T , λl, λu;xk

)
− (λl − λu)Lk

(
ξ
(k)
T

)
=

1

Tk
L
(k)
T

(
ξ
(k)
T , λ̀l, λ̀u;xk

)
−
(
λ̀l − λ̀u

)
Lk

(
ξ
(k)
T

)
− (λ̈u − 1− λ̈l)Lk

(
ξ
(k)
T

)
+

1

Tk

Tk−1∑
i=Tk−1+[Tk(λ̈l)]+1

li(ξ
(k)
T ;xi,k−1, z

∗
t |xs,k−1, s < i)

+
1

Tk

[Tk((̈λ)u−1)]∑
i=1

li(ξ
(k)
T ;xi,k+1, z

∗
t |xs,k+1, s < i).

Since 0 ≤ λ̀l < λ̀u ≤ 1, the sum of the first two terms in (4.8.35) converges to 0 a.s by
Lemma 4.8.0.4. And for any δ > 0, max(|λ̈l, |λ̈u − 1|) < δ for sufficiently large enough T . Thus
the third term in (4.8.35) is bounded by 2δ|Lk

(
ξ
(k)
T

)
|. The fourth term is bounded by

1

Tk

Tk−1∑
i=Tk−1−[Tkδ]

li(ξ
(k)
T ;xi,k−1, z

∗
t |xs,k−1, s < i)

a.s−→ δE|li(ξ(k)T ;xi,k−1, z
∗
t |xs,k−1, s < i)|.

The last term in (4.8.35) can be bounded similarly. And since δ can be arbitrarily small, so (4.8.35)
converges to 0 uniformly in λl, λu. □

LEMMA 4.8.0.6. Let β̃0
k be the true model parameter. Define

ξ̂
(k,λl,λu)
T = ξ̂

(k)
T (λl, λu) = argmax

ξ
(k)
T ∈Θn

, L̃
(k)
T

(
ξ
(k)
T , λl, λu;xk

)
,

ξ∗k = argmax
ξ
(k)
T ∈Θn

Lk

(
ξ
(k)
T

)
.

We have

(4.8.36) sup
λl,λu

∣∣∣∣ 1T L(k)
T

(
ξ̂
(k,λl,λu)
T , λl, λu;xk

)
− (λl − λu)Lk (ξ

∗
k)

∣∣∣∣ a.s→ 0

and

(4.8.37) sup
λl,λu

∣∣∣ξ̂(k)T (λl, λu)− ξ0k

∣∣∣ a.s→ 0.
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PROOF. By the definition of ξ̂(k,λl,λu)
T , we have

L̃
(k)
T

(
ξ̂
(k,λl,λu)
T , λl, λu;xk

)
≥ L̃

(k)
T (ξ∗k, λl, λu;xk)

for all λl, λu, T . Combined with Lemma 4.8.0.1 and Lemma 4.8.0.3, we have

(λl − λu)
{
Lk (ξ

∗
k)− Lk

(
ξ̂
(k,λl,λu)
T

)}
≤ sup

λd,λu

{
(λu − λl)Lk (ξ

∗
k)−

1

T
L̃
(k,λl,λu)
T (ξ∗k, λl, λu;xk)

+
1

T
L̃
(k,λl,λu)
T

(
ξ̂
(k,λl,λu)
T , λl, λu;xk

)
− (λu − λl)Lk

(
ξ̂
(k,λl,λu)
T

)}
= sup

λd,λu

{(
λu − λl

)
Lk

(
ξ∗k

)
− 1

T
L
(k,λl,λu)
T

(
ξ∗k, λl, λu;xk

)

+
1

T
L
(k,λl,λu)
T

(
ξ̂
(k,λl,λu)
T , λl, λu;xk

)
−
(
λu − λl

)
Lk

(
ξ̂
(k,λl,λu)
T

)}
+ o(1)

≤ 2 sup
λd,λu

sup
ξ
(k)
T ∈Θn

∣∣∣∣ 1T L̃(k)
T

(
ξ
(k)
T , λl, λu;xk

)
− (λu − λl)Lk

(
ξ
(k)
T

)∣∣∣∣+ o(1)
a.s.→ 0.

And since Lk(ξ
∗
k) is the maximum value for all ξ, it follows that∣∣∣Lk(ξ̂

(k,λl,λu)
T )− Lk(ξ

∗
k)
∣∣∣ a.s.→ 0.

Thus, using Lemma 4.8.0.5, (4.8.36) is proved. Due to the identifiability of MLE for the CARE
model, (4.8.37) is also proved. □

LEMMA 4.8.0.7. Let y = {yt; t = 1, · · · , T} be the observations from a PS-CARE model
specified by the vector (K0,λ

0, ξ0). Assume the number of change points K0 is known. The
estimator (λ̂T , ξ̂T )is defined by

{λ̂T , ξ̂T } = argmin
ξT∈Θn,λT∈AK0

ϵ

2

T
MDL(K0,λT , ξT ),

where AK0
ϵ is defined in (4.12). Under Assumptions 2 to 4, for sufficiently large T we have

λ̂T
P−→ λo.

PROOF. Let B be the probability one set in which Lemma 4.8.0.5 and Lemma 4.8.0.6 hold.
And we will show that ∀ω ∈ B, we have λ̂T → λ0 and ξ̂T → ξ0. We will prove this by
contradiction. Here we assume λ̂T → λ∗ ̸= λ0 along a subsequence {Tk}. Also, we further
assume ξ̂T → ξ∗ ̸= ξ0. To simplify the future notation, we replace Tk with T . For sufficiently
large T , we have

2

T
MDL(K0,λT , ξT ) = cT − 1

T

K+1∑
k=1

L
(k)
T

(
ξ̂
(k)
T , λ̂k−1, λ̂k;y

)
,
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where cT is of orderO(log(T )/T ). Here we simplify the notation of ξ̂
(k)

T (λ̂l, λ̂u) to ξ̂
(k)
T when there

are no misunderstandings.
For each estimated interval, its limiting I∗k(λ

∗
k−1, λ

∗
k), k = 1, · · · , K+1, there are two possible

cases. The first case is when I∗k is totally contained in one true interval (λ0i−1, λ
0
i ). The second case

is when I∗k covers m + 2(m ≥ 0) true intervals (λ0i−1, λ
0
i ), · · · , (λ0i+m, λ

0
i+m+1). We consider the

two cases individually.
Case 1: If λ0i−1 ≤ λ∗k−1 ≤ λ∗k ≤ λ0i , in particular, we only consider the inequality case. Then

if λ∗k = λ0i or λ∗k−1 = λ0i−1, as λ̂k−1 → λ0i−1 and λ̂k → λ0i , the estimated segment can only include
a decreasing proportion of observations from the adkacent segments. Then max(λ̂k − λ0i , 0) and
max(λ0i−1− λ̂k−1, 0) play the role of hn and kn in Lemma 4.8.0.5. So we have from Lemma 4.8.0.5
that

1

T
L
(k)
T

(
ξ̂
(k)

T , λ̂k−1, λ̂k;y
)

a.s.→ (λ∗k − λ∗k−1)Li

(
ξ0i
)
.

Case 2: If λoi−1 ≤ λ∗k−1 < λoi < . . . < λoi+k < λ∗k ≤ λoi+m+1 for some m ≥ 0. Then, for
sufficiently large T , the estimated stationary process is thus non-stationary so that we can partition
the likelihood by the true segment change point as below:

(4.8.38)
1

T
L
(k)
T

(
ξ̂
(k)

T , λ̂k−1, λ̂k;y
)
=

1

T
L
(k)
T

(
ξ̂
(k)

T , λ̂k−1, λ
0
i ;y
)
+

1

T

i+m−1∑
l=i

L
(k)
T

(
ξ̂
(k)

T , λ0l , λ
0
l+1;y

)
+

1

T
L
(k)
T

(
ξ̂
(k)

T , λ0i+k, λ̂k;y
)
.

Each of the likelihood functions in (4.8.38) involves observations from one of the stationary
segments. From Lemma 4.8.0.4 and Li (ξ

0
l ) ≥ Li (ξ

∗
k) for all l = i, i + 1/cdots, i + m + 1, we

have

lim
T→∞

1

T
L
(k)
T

(
ξ̂
(k)

T , λ̂k−1, λ
0
i ;y
)
≤
(
λoi − λ∗k−1

)
Li

(
ξ0i
)
,

lim
T→∞

1

T
L
(k)
T

(
ξ∗T , λ̂

0
l , λ

0
l+1;y

)
≤
(
λol+1 − λ0l

)
Ll+1

(
ξ0l+1

)
,

lim
T→∞

1

T
L
(k)
T

(
ξ̂
(k)
T , λ̂0i+m, λ̂k;y

)
≤
(
λ∗k − λ0i+m

)
Li+m+1

(
ξ0i+m+1

)
.

Note that the strict inequalities hold for at least one of the above equations since ξ∗k cannot be
correctly specified for all the different segments. Thus we have
(4.8.39)

lim
T→∞

1

T
L
(k)
T

(
ξ̂
(k)
T , λ̂k−1, λ̂k;y

)
<
(
λoi − λ∗k−1

)
Li

(
ξ0i
)
+

i+m−1∑
l=i

(
λol+1 − λ0l

)
Ll

(
ξ0l
)
+
(
λ∗k − λ0i+m

)
Li+m+1

(
ξ0i+m+1

)
.
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Now, as the number of estimated segments is the same as the true number of segments and
λ∗ ̸= λ0, there is at least one segment in which case 2 applies. Thus, for T large enough, we have

2

T
MDL(K0,λT , ξT )

>
cT
T

−
K+1∑
i=1

(λ0i − λ0i−1)Li

(
ξ0i
)
=

2

T
MDL(K0,λ

0, ξ0i ) ≥
2

T
MDL(K0,λT , ξT ),

which is a contradiction. Hence λ̂n ̸= λ0 for all ω ∈ B. Thus, the lemma is proved. □

LEMMA 4.8.0.8. Under the conditions of Lemma 4.8.0.7, if the number of change points is
unknown and is estimated from the data using (4.16), then

A. The number of change points cannot be underestimated, which means that K̂ ≤ K0 for T
is large enough almost surely.

B. When K̂ > K0, λ0 must be a subset of the limit points of λ̂T , which means for any given
ω ∈ B, ω > 0 and λ0k ∈ λ0, there exists a λ̂i ∈ λ̂T such that |λ0k − λ̂i| < ϵ for sufficiently
large T .

PROOF. Notice that in the proof of Lemma 4.8.0.7, the assumption of known K0 is only used
to guarantee that case 2 is applied at least once. No matter how many segments λ∗ contains,
contradiction (4.8.39) arises whenever case 2 applies. So this lemma is proved. □

LEMMA 4.8.0.9. Denote λ0 = (λ01, λ
0
2, · · · , λ0K0

) as the true change points. Then with
(K̂, λ̂T , ξ̂T ) defined in (4.16), for each k = 1, 2, · · · , K0, there exists a λ̂ik ∈ λ̂T , 1 ≤ ik ≤ K̂
such that for any δ > 0 ∣∣∣λ0k − λ̂ik

∣∣∣ = Op(T
δ−1).

PROOF. From Lemma 4.8.0.8 we can assume that K̂ ≥ K0 and for each λ0k there exists a λ̂ik
such that

∣∣∣λ0k − λ̂ik

∣∣∣ = o(1) a.s., where 1 < i1 < i2 < · · · < im < K̂. By construction, for every

m = 0, · · · , K̂ − 1, we have
∣∣∣λ̂K+1 − λ̂K

∣∣∣ > λϵ, so λ̂ik is the estimated location of change-point

closets to λ0k for sufficiently large T . We only need to prove that, for any δ > 0, there exists a c > 0
such that

P
(
∃l,
∣∣∣λol − λ̂il

∣∣∣ > cT δ−1
)
→ 0.

Define λ̃T = {λ̂1, λ̂2, · · · , λ0l , λ̂il+1, · · · , λ̂K0}, where |λ0l − λ̂il | > cT δ−1. By the definition
of (K̂, λ̂T , ξ̂T ), it is suffice to show that

P (MDL((K̂, λ̂T , ξ̂T )) < MDL((K̂, λ̃T , ξ̂T )),∃l, |λ0l − λ̂il | > cT δ−1) → 0.

As the number of change points is bounded, it is sufficient to show that, for each fixed l, we have

P (MDL((K̂, λ̂T , ξ̂T )) < MDL((K̂, λ̃T , ξ̂T )), |λ0l − λ̂il | > cT δ−1) → 0.

Given that |λ0l − λ̂il | > cT δ−1, the difference MDL((K̂, λ̂T , ξ̂T ))−MDL((K̂, λ̃T , ξ̂T )) is either
Tl∑

k=Tl−[T (λ0
l −λ̂il

)]+1

(
lil(ξ̂il ;xk,l, z

∗
t |yk,l)− lil+1(ξ̂il+1;xk,l, z

∗
t |yk,l)

)
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or
[T (λ̂il

−λ0
l )]∑

k=1

(
lil+1(ξ̂il+1;xk,l, z

∗
t |yk,l)− lil(ξ̂il ;xk,l, z

∗
t |yk,l)

)
.

And from Lemma 4.8.0.1, we have the difference is either

Σ′
(
lil(ξ̂il ;xk,l, z

∗
t |yk,l)− lil+1(ξ̂il+1;xk,l, z

∗
t |yk,l)

)
+Op(1)(4.8.40)

or

Σ′′
(
lil+1(ξ̂il+1;xk,l, z

∗
t |yk,l)− lil(ξ̂il ;xk,l, z

∗
t |yk,l)

)
+Op(1),(4.8.41)

where Σ′ =
∑Tl

k=Tl−[T (λ0
l −λ̂il

)]+1
and Σ′′ =

∑[T (λ̂il
−λ0

l )]

k=1 . By Lemma 4.8.0.6 and the ergodic

theorem, we have for case (4.8.41) is positive and of order no less than O(T δ) a.s. For (4.8.40), the
ergodic theorem as well as the stationarity in each segment together guarantees the positive of this
term and is of order O(T δ). Therefore, both the quantities (4.8.40) and (4.8.41) are positive with
probability going to 1, and hence, the lemma is proved. □

LEMMA 4.8.0.10. If {Xt} is a sequence of stationary, zero-mean strongly mixing process
with geometric rate, and E(|X1|r+ϵ) <∞ for some 2 ≤ r <∞ and ϵ > 0, then

1

g(T )

g(T )∑
t=1

Xt
a.s→ µ and

1

g(T )

⊤∑
t=n−g(T )+1

Xt
a.s−→ µ

for any sequence g(T )T≥1 for integers that satisfies g(T ) > cT 2/r for some c > 0 when T is
sufficiently large. Moreover,

s(T )∑
t=1

Xt = O
(
T 2/r

)
and

⊤∑
t=T−s(T )+1

Xt = O
(
T 2/r

)
a.s., for any sequence {s(T )}T≥1 satisfying s(T ) = O(T 2/r).

PROOF. This lemma is taken from [81], from which the proof is given. □

LEMMA 4.8.0.11. Recall ξ̂(k)T (λl, λu) = argmaxξk∈Θn L̃
(k)
T (ξk, λl, λu;xk) .. We have

ξ̂
(k)

T (λ̂k−1, λ̂k)− ξ0k = O
(
T− 1

2

)
a.s.,

where ξ0k is the true parameter vector in k-th segment.

PROOF. Denote (λ̂k−1, λ̂k) by (λl, λu) for simplicity. Let L̃
′(k)
T (ξk, λl, λu;xk) and L̃

′′(k)
T (ξk, λl, λu;xk)

be the first and second partial derivatives of L̃(k)
T (ξk, λl, λu;xk), respectively. Apply Taylor expan-

sion to L̃
′(k)
T (ξk, λl, λu;xk) around the true parameter vector value ξ0k, we have

(4.8.42) L̃
′(k)
T

(
ξ̂k, λl, λu;xk

)
= L̃

′(k)
T

(
ξ0k, λl, λu;xk

)
+ L̃

′′(k)
T

(
ξ+k , λl, λu;xk

)
(ξ̂k − ξ0k),
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where
∣∣ξ+k − ξ0k

∣∣ < ∣∣∣ξ̂k − ξ0k

∣∣∣. By definition of ξ̂k, we have L
′(k)
T

(
ξ̂k, λl, λu;xk

)
= 0. Therefore,

(4.8.42) is equivalent to

(4.8.43) L̃
′′(k)
T

(
ξ+k , λl, λu;xk

)
(ξ̂k − ξ0k) = −L̃

′(k)
T

(
ξ0k, λl, λu;xk

)
.

So combining Lemma 4.8.0.1, Lemma 4.8.0.9 and Lemma 4.8.0.10, we have

L̃
′(k)
T

(
ξ0k, λl, λu;xk

)
= L

′(k)
T

(
ξ0k, λl, λu;xk

)
+O(T )

=

[T λ̀u]∑
i=[T λ̀l]+1

l
′

k

(
ξ0k;xi,k|xl,k, l < i

)
+Op(T

δ)

=

[T λ̀u]∑
i=1

l
′

k

(
ξ0k;xi,k|xl,k, l < i

)
−

[T λ̀d]∑
i=1

l
′

k

(
ξ0k;xi,k|xl,k, l < i

)
+Op(T

δ),

where λ̀l = max (0, λl) and λ̀u = min (1, λu). Since E
(
l
′

k (ξ
0
k;xi,k|xl,k, l < i)

)
= 0, so the

sequence {l′k (ξ0k;xi,k|xl,k, l < i)i∈[N ]} is a stationary ergodic zero-mean martingale difference se-
quence with finite second moment. Thus, from [108]

[T λ̀u]∑
i=1

l
′

k

(
ξ0k;xi,k|xl,k, l < i

)
and

[T λ̀d]∑
i=1

l
′

k

(
ξ0k;xi,k|xl,k, l < i

)
are of order Op(T

1
2 ). Thus, we have L̃

′(k)
T (ξ0k, λl, λu;xk) = Op(1) and L′′

k(ξ
0
k) is positive definite.

Together with Lemma 4.8.0.5 and
∣∣ξ+T − ξ0T

∣∣→ Op(1), 1
T
L̃

′′(k)
T

(
ξ+k , λl, λu;xk

)
(ξ̂k−ξ0k) is positive

definite. Combining all the above, the lemma is proved. □

4.8.1.2. Proof of Theorem 4.3.1. We are now ready to prove Theorem 4.3.1.

PROOF. From Lemma 4.8.0.11, we have
∣∣∣ξ̂(k)T (λ̂k−1, λ̂k)− ξ0k

∣∣∣ = O
(
T− 1

2

)
a.s. Following

Lemma 4.8.0.8 and Lemma 4.8.0.9, it is suffice to prove that for any integer d = 1, · · · ,M −K0,
any δ > 0 and any sequence λ̃T = (λ̃1, · · · , λ̃K0) such that |λ0k − λ̃k| = O(T δ−1) for k =
1, · · · , K0,

(4.8.44) argmin
ξ,λ∈A

(K0+d)
ϵλ

λ̃T ⊂λ

[
2

T
MDL(K0 + d,λ, ξ)

]
− 2

T
MDL(K0, λ̃T , ξ

0)

is positive with a probability approaching 1. Denote

λ̂T = (λ̂1, · · · , λ̂K0+d+1) = argmin
ξ,λ∈A

(K0+d)
ϵλ

λ̃⊂λ

[
2

T
MDL(K0 + d,λ, ξ)

]
.
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First note that λ̃T ⊂ λ̂T by construction. Using Taylor expansion on the likelihood function,
(4.8.44) can be rewritten as

(4.8.45)

(4.8.44) = C1 − C2

+
1

T

(
K0+1∑
k=1

L̃
(k)
T

(
ξ0k, λ̃k−1, λ̃k;y

)
−

K0+d+1∑
l=1

L̃
(l)
T

(
ξ̂
(l−1)
T , λ̂l−1, λ̂l;y

))

−
K0+d+1∑

l=1

(
ξ̂
(l)
T − ξ∗l

)⊤ 1

T
L̃

′′(k)
T

(
ξ+k , λ̂l−1, λ̂l;y

)(
ξ̂
(l)
T − ξ∗l

)
,

where C1 − C2 is positive and of order O( log(T )
T

) and
∣∣ξ+k − ξ0k

∣∣ < ∣∣∣ξ̂k − ξ0k

∣∣∣.
The third part of (4.8.45) is 0 and since

∣∣∣ξ̂(l)T (λ̂k−1, λ̂k)− ξ0l

∣∣∣ = O
(
T− 1

2

)
. As the fourth

part is of order Op(T
−1), C1 − C2 is the dominant part in (4.8.45). Thus (4.8.44) is positive with

probability approaching 1. So, the theorem is proved. □
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