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ABSTRACT OF THE THESIS

Comparative Analysis of the SEIR and Point Process Models for Invasive Streptococcus

Pneumoniae in Florida

by

Janella Shu

Master of Science in Applied Statistics

University of California, Los Angeles, 2021

Professor Frederic R. Paik Schoenberg, Chair

We investigated the extent to which a SEIR compartmental model, two Hawkes point process,

each with a different trigger density function, and a recursive point process could characterize

the transmission dynamics of invasive Streptococcus pneumoniae. All models were parame-

terized using surveillance data from Florida between 2010 to 2014. The maximum likelihood

estimates of the parameters were calculated, and weekly counts were predicted using a thin-

ning technique for the point processes and adaptive tau-leaping method for the SEIR model.

Results suggest that the point processes performed better than the SEIR model. When

comparing goodness of fit and prediction errors between the point processes, the recursive

point process appeared to perform reasonably well on both. The recursive point process had

an RMSE almost as small as the Hawkes with power-law decaying trigger density, which had

the lowest RMSE, and the highest log-likelihood of all the models that were evaluated.
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CHAPTER 1

Introduction

In 1998, there were an estimated 62, 840 cases of invasive Streptococcus pneumoniae also

known as invasive pneumococcal disease (IPD) in the United States (Bridy-Pappas, Margolis,

Center, & Isaacman, 2005). Streptococcus pneumoniae is a leading cause of illness in young

children, the elderly and persons with certain underlying medical conditions (Bridy-Pappas

et al., 2005). In 2000, a 7-valent pneumococcal polysaccharide-protein conjugate vaccine

(PCV7) was licensed for use among infants and young children (Advisory Committee on Im-

munization Practices, 2000). CDC’s Advisory Committee on Immunization Practices (ACIP)

recommends that the vaccine be used for all children aged 2-23 months and for children aged

24-59 months who are at increased risk for pneumococcal disease (Advisory Committee on

Immunization Practices, 2000). CDC’s Active Bacterial Core Surveillance (ABC) data in-

dicated that in 2008 before a 13-valent pneumococcal conjugate vaccine (PCV13) replaced

PCV7 for routine use among children, approximately 61% of IPD among children, younger

than 5 years were attributable to the serotypes included in PCV13, and PCV7 serotypes

caused less than 2% of cases (Hamborsky & Kroger, 2015). Indirect effects from PCV13 use

among children might further reduce the remaining burden of adult pneumococcal disease

caused by PCV13-types (Hamborsky & Kroger, 2015). In 2010, PCV13 was licensed and

the Food and Drug Administration approved PCV13 as a single dose for people 50 years of

age and older in December 2011 (Hamborsky & Kroger, 2015).

Since the introduction of PCV7 and PCV13, IPD has decreased from 100 cases per

100,000 people in 1998 to 9 cases per 100,000 in 2015 (Pneumococcal Disease, 2017). There

is evidence to support that serotype replacement, an increase in the incidence of IPD caused

by nonvacine types (NVTs) after vaccine introduction, had occurred in IPD after the intro-
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duction of PCV7 in most populations and was caused by the vaccine (Weinbergera, Malley,

& Lipsitch, 2012). There are at least 93 known serotypes of pneumococci. Therefore, it

is not unreasonable to assume that serotype replacement will eventually occur after the in-

troduction of PCV13 as well. Analyzing the infectious disease dynamics can help inform

decisions on prevention and control of IPD.

Although the number of cases in the United States are very low, countries in sub-

Saharan Africa continue to have large outbreaks including in December 2015 and April 2016

(Organization, 2016). In Malawi, a landlocked country in southern Africa that lies to the

south of the classical meningitis belt, Streptococcus pneumoniae is a leading cause of pneu-

monia, sepsis, bacterial meningitis and death in both children and adults (Everett & et al. .,

2011). The high antimicrobial resistance of Streptococcus pneumoniae in Asia contributes to

both the treatment and economic burden caused by IPD (Bravo, 2009). The Asian Strate-

gic Alliance for Pneumococcal Disease Prevention (ASAP) is a work group composed of

healthcare professionals from 12 Asian countries and territories; namely, Hong Kong, India,

Indonesia, Korea, Macau, Malaysia, Pakistan, the Philippines, Singapore, Sri Lanka, Taiwan

and Thailand (Bravo, 2009). Pneumococcal vaccination is currently not part of the national

immunization programs of any of the ASAP member countries and territories, despite it

being projected to prevent around 260, 000 deaths annually as well as having the potential

to mitigate widespread antibiotic resistance (Bravo, 2009).

The objective of a mathematical model of an infectious disease is to describe the trans-

mission process of the disease (Li, 2018). There are three general approaches to mathemat-

ical modeling of infectious diseases: statistical models, deterministic models, and stochastic

models (Li, 2018). In this paper, we will be comparing a deterministic SEIR compartmental

model, and three stochastic models, specifically Hawkes process with exponentially decaying

trigger density, Hawkes process with power-law decaying trigger density and a point process

proposed by Schoenberg, Hoffmann and Harrigan (2019) called the recursive point process.

A Hawkes process is self-exciting but also has the property of static productivity. However,

this assumption of static productivity seems questionable (Schoenberg, Hoffmann, & Harri-

gan, 2019). Early in the onset of an epidemic, when prevalence of the disease is still low, one

2



would expect the rate of transmission to be much higher than when the prevalence of the

disease is higher, because of human efforts at containment and intervention of the disease,

and because some potential hosts of the disease may have already been exposed (Schoenberg

et al., 2019).

The organization of the paper is as follows: Chapter 2 defines a Hawkes and recursive

point process model. Chapter 3 defines a SEIR model. In Chapter 4, we describe the data,

the methods used to estimate model parameters as well as goodness of fit measures. In Chap-

ter 5, we provide the results from our analysis including the estimated parameters, model

performance and weekly predictions. Finally in Chapter 6, we discuss possible improvements

and alternative models.
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CHAPTER 2

Point Process Model

2.1 Point Process

A (simple) point process is a sequence of random variables T = t1, t2, ... taking values in

[0,∞), has P(0 ≥ t1 ≥ t2 ≥ ...) = 1 and the number of points in the bounded region is

almost surely (a.s.) finite (Laub, Taimre, & Pollett, 2015). For a temporal point process, ti

would represent the times of events occurring between time 0 and t (Schoenberg, 2010). A

temporal point process, N , can be alternatively described as a count process N(t). A count

process is a stochastic process (N(t) : t ≥ 0) taking values N0 that satisfies N(0) = 0, is a.s.

finite, and is a right-continuous step function with increments of size +1 (Laub et al., 2015;

Daley & Vere-Jones, 2003).

The behavior of a simple temporal point process N is typically modeled by specifying its

conditional intensity λ(t) (Schoenberg, 2010).

λ(t) = lim
∆→0

E[N(t+ ∆)−N(t)|H(t)]

∆t

where H(t) is the history of arrivals up to time t.

2.2 Hawkes

Alan G. Hawkes described a class of point processes that were self-exciting, where the current

intensity of events is determined by events in the past (Hawkes, 1971). He suggested that

the self-existing process is a possible epidemic model in large populations in so far as the

occurrence of a number of cases increases the probability of further cases (Hawkes, 1971).

The Hawkes process is a mathematical model for these self-exciting processes. For a simple
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Hawkes process, the conditional rate of events at time t can be written as

λ(t) = µ+K

∫ t

0

g(t− t′)dN(t′) = µ+K
∑
i:ti<t

g(t− ti)

where µ > 0, is the background rate, g(v) ≥ 0 is the trigger density satisfying
∫∞

0
g(u)du = 1

which describes the conductivity of events, and the constant K is the productivity, defined

as the expected number of first generation offspring of the point ti, which is required to

satisfy 0 ≤ K < 1 in order to ensure stationary and subcriticality (Schoenberg et al., 2019).

A frequently used trigger function is the exponential decay function, αeβ(t) where α, β > 0,

which can be interpreted as each arrival in the system instantaneously increases the arrival

intensity by α and over time this arrival’s influence decays at rate β (Laub et al., 2015).

Another commonly used function is the power-law function, k
(c+(t−t′))p where c and p are

positive scalars, which was popularized by the geological model called Omori’s Law that was

used to predict the rate of aftershocks caused by an earthquake (Laub et al., 2015).

Some applications of the Hawkes point process include using high frequency financial data

to model the so-called volatility phenomenon at the transactional level, estimating residential

burglary and gang violence to create crime hotspot maps, and characterizing the temporal

pattern of seismicity (Bacry, Mastromatteo, & Muzy, 2015; Mohler, Short, Brantingham,

Schoenberg, & Tita, 2011; Ogata, 1998).

2.3 Recursive

Schoenberg et al. (2019) proposes an extension of the Hawkes point process that is recursive.

In particular, the productivity of this model at time t is a function of the conditional intensity

at t and the conditional intensity in turn depends critically on this productivity (Schoenberg

et al., 2019) . The model can be written as

λ(t) = µ+H(λt′)g(t− t′)dN(t′)

where µ > 0, g > 0 is the density function, λt′ means λ(t′) and H is the productivity function

which would typically be a decreasing function (Schoenberg et al., 2019). In our analysis,
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we use g(u) = βe−βu. Suppose H(x) = κx−α where κ > 0 then,

λ(t) = µ+ κ

∫ t

0

λ−αt′ g(t− t′)dN(t′).

When α = 0, λ(t) is a Hawkes point process. Schoenberg (2019) refers to λ(t) where α = 1

as the standard recursive model. For the Hawkes model, the productivity at each point ti

is K, but for a standard recursive model, the average productivity is κT
N(S)

→ κ
µ+κ

a.s. since

N(S)
T
→ µ+ κ a.s., where S = [0, T ] (Schoenberg et al., 2019).
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CHAPTER 3

Compartmental Epidemic Model: SEIR

Deterministic or compartmental models are one approach to describing the transmission

process of a disease. These are typically models using differential and difference equations

of various forms. The host population is partitioned into mutually exclusive groups (i.e.

compartments) according to the natural history of the disease. For a simple infectious

disease, possible compartments include susceptible (S), infected (I) and recovered (R). These

models describe the dynamic interrelations among the rates of change and population sizes

(Li, 2018).

In 1906, William Hamer suggested that the course of an epidemic depends on the rate of

contact between susceptible and infectious individuals, and in 1908 Ronald Ross translated

Hamer’s discrete-time model into a continuous time framework (Anderson, 1991). The ideas

of Hamer and Ross were explored in more detail by William Kermack and Anderson McK-

endrick who proposed a model that was compartmental and deterministic in structure and

where the total population was assumed to be constant and divided into three compartments:

susceptible (S), infected (I) and removed/recovered (R).

The Kermack–McKendrick model is a particular instance of the SIR model. Suppose

an infectious disease has a latent period, one way to incorporate the disease latency in a

mathematical model is to split the infected compartment into an exposed/latent compart-

ment (E) and an infected compartment (I). This is called a SEIR model and is an extension

of the SIR model. Since IPD persists for a short period of time, we assume a closed popu-

lation with no births or deaths. The SEIR model can be described by the following equations:
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dS

dt
= −β(t)

SI

N

dE

dt
= β(t)

SI

N
− σE

dI

dt
= σE − γI

dR

dt
= γI

where the total population, N , is the sum of all individuals in S,E, I and R, and β(t) is

the time dependent transmission rate. In our analysis, we assume that the transmission rate

decays exponentially over time, β(t) = β0e
−kt and that σ, the rate of death/recovery, and γ,

the rate of latent individuals becoming infectious, are constant. Therefore, 1/σ and 1/γ are

the mean latent and infectious period, respectively. Figure 3.1 shows the transfer diagram

of the SEIR model.

Figure 3.1: Transfer diagram of SEIR model with constant population

The basic reproductive number, R0 is the single most important parameter in epidemic

modeling (Li, 2018). It measures the average number of secondary infections caused by a

single infectious individual in an entirely susceptible population during the mean infectious

period (Li, 2018). For the SEIR model in Figure 3.1, R0(t) = β/γ. If R0 < 1 then an

epidemic will not occur, and if R0 > 1 then an epidemic will occur (Li, 2018).

Deterministic models have been used to describe a variety of diseases. For example, Roy

Anderson (1988) developed simple deterministic models in order to address two problems

in the study of the transmission dynamics of HIV-1: the variability in incubation and in-

fectious periods, and heterogeneity in sexual activity within homosexual and heterosexual

communities in the United Kingdom. The basic and effective reproduction numbers of the
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2014 Ebola virus (EBOV) outbreak in West Africa have been estimated using a SEIR model

to better understand the spread of infection in the affected countries (Althaus, 2014). That

study also provided real-time estimates of EBOV transmission parameters during the ongo-

ing outbreak. Additionally, another study examined mathematically the impact of isolation

and quarantine on the control of SARS during the outbreaks in Toronto, Hong Kong, Sin-

gapore and Beijing using a deterministic model containing six compartments: susceptible,

asymptomatic, quarantined, symptomatic, isolated and recovered (Gumel et al., 2004). The

model reasonably mimics the outbreaks in geographically distinct regions, supporting the

notion that simple models can be used to provide insights into the dynamics and control of

an epidemic in progress (Gumel et al., 2004). The study showed that the size and duration of

an outbreak can be greatly influenced by the timely implementation of the isolation program

(Gumel et al., 2004).
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CHAPTER 4

Model Development

4.1 Description of Data

Project Tycho was created in 2013 to improve access to standardized data in global health

(van Panhuis, Cross, & Burke, 2018). The first version of Project Tycho (v1) was comprised

of over a century of infectious disease surveillance data from 1888 to 2014 for the United

States. Version 2 (v2) has been updated with new weekly US surveillance data in addition

to surveillance data for dengue-related conditions from 98 additional countries (van Panhuis

et al., 2018). All Project Tycho data are represented as counts of cases or deaths to disease

conditions reported by public health surveillance, and SNOMED-CT terminology is used

to represent the reporting of cases or deaths due to diseases, and diagnostic certainty (van

Panhuis et al., 2018).

We obtained the pre-compile IPD dataset from the Project Tycho website (http://

www.tycho.pitt.edu) which contained 42,208 records of weekly case count from 12/29/2002

to 12/30/2017. There are 20 variables in the dataset, including the start and end date of

a period, the number of cases in that period, whether the count is part of a cumulative

count series or not, and the age range and location (by state) for those cases. Since there is

missing data from 01/01/2003 to 01/01/2004, 11/04/2007 to 12/31/2009, and 08/03/2014

to 12/31/2014, we only included cases that occurred between 01/01/2010 to 08/02/2014 in

our analysis. We chose to focus on IPD cases in Florida because it had more consistent

weekly case counts in our chosen date range. As in Park et al. (2018), estimated occurrence

times were distributed uniformly within report date ranges. The training and testing data

sets were created by a 90:10 split. Figure 4.1 is a plot of the weekly counts for the training
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(blue dots) and test (red dots) set.

Figure 4.1: Weekly counts of infection in Florida from 01/01/2010 to 08/02/2014

4.2 Parameter Estimation

Given occurrence observation t1, t2, ..., tn for an interval [0, T ], the log-likelihood of a point

process with an intensity function

λ(t|θ) = µ+

∫ t

−∞
g(t− u|θ)dN(u)

is given by

log L(t1, ..., tn|θ) = −
∫ T

0

λ(t|θ)dt+

∫ T

0

logλ(t|θ)dN(t)

where θ = (θ1, θ2, ..., θr) (Ozaki, 1979). As the log-likelihood is non-linear with respects

to the parameters, the maximum of the log-likelihood is performed by using non-linear

optimization techniques. One of the optimization techniques that Ozaki (1979) mentions is

a direct method. The direct method that we used to estimate the parameters for the Hawkes

model and recursive model is the Nelder-Mead simplex method (Nelder & Mead, 1965).

For the SEIR model, maximum likelihood estimates (MLE) of the parameters were ob-

tained by fitting the model to the data, assuming that cumulative numbers of cases are

Poisson distributed (Althaus, 2014). The Nelder-Mead simplex method was also used to

estimate the parameters for the SEIR model.
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4.3 Model Assessment

The goodness of fit of all models was assessed using the method of super-thinning proposed

by Clements, Schoenberg and Veen (2012) to perform residual analysis. For the SEIR model,

we used β(t) multiplied by the infectious population at time t as an estimate of the con-

ditional intensity function λ̂(t) (Park, Chaffee, Harrigan, & Schoenberg, 2020). Suppose

N is a temporal point process with conditional intensity λ(t) then to transform N into a

residual Poisson process with rate k where inf{λ̂(t)} ≤ k ≤ sup{λ̂(t)}, first thin N keep-

ing each point ti independently with probability min{ k

λ̂(ti)
, 1} to obtain a thinned residual

process Z1 (Clements, Schoenberg, & Veen, 2012). Next we simulated a homogeneous Pois-

son process with rate k and independently keeping each simulated point tj with probability

max{k−λ̂(t)
k

, 0} to obtain a Cox process Z2 (Clements et al., 2012). The points of the residual

point process Z = Z1+Z2 are called super-thinned residual points because Z is homogeneous

Poisson with rate k if and only if λ̂ = λ almost everywhere (Clements et al., 2012). Since

the tuning parameter k controls the rate of thinning and superposition, we chose k to be

the mean of estimated lambdas, λ̂(ti) where ti ∈ T , since it minimizes the sum of squared

deviations of the estimated conditional intensity from k (Clements et al., 2012).

For the point processes, we calculated the Stoyan-Grabarnik diagnostic. Baddeley (2005)

noted that for a spatial point process x = {x1, ..., xn},

E

[ ∑
xi∈X∩B

1

λ(xi,X)

]
= E

[∫
B

1du

]
= |B|

where |B| denotes the area of B (Baddeley, Turner, Møller, & Hazelton, 2005). If each point

xi of X is weighted by the reciprocal of its Papangelou conditional intensity mi = 1
λ(xi,X)

,

called the “exponential energy mark” by Stoyan and Grabarnik, then the total weight of all

points xi in X fall in a nominated region B,

M(B) =
∑

xi∈X∩B

mi

has expectation E[M(B)] = |B| (Baddeley et al., 2005). Similarly, for a temporal point

process, instead of the Papangelou conditional intensity, we used the conditional intensity

12



and since points of a Poisson process are independent, mi = 1
λ(xi)

and for a temporal Poisson

process, B is a temporal window . Therefore, if λ̂ is a good estimate, then∑
ti∈T

1

λ̂(ti)

T

should be approximately 1.

Additionally, for all the models, we determined the Akaike Information Criterion (AIC)

which is defined as 2k − 2ln(L), where k is the number of estimated parameters and L is

the maximum value of the likelihood function of the model. AIC was used to compare the

models’ goodness of fit relative to each other.
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CHAPTER 5

Results

The estimated parameters for the Hawkes process with exponentially decaying trigger den-

sity, g(u) = βe−βu, are (µ̂, K̂, β̂) = (0.5490482, 0.8373538, 0.3152318) with corresponding

standard error estimates (0.08155830, 0.02676473, 0.03019345). Since g(u) is the expo-

nential density function, 1

β̂
= 3.17 days can be interpreted as the estimated mean delay

time between events that excites each other. The estimated parameters for the Hawkes

process with power-law decaying trigger density, g(u) = (p−1)c(p−1)

(u+c)p
, are (µ̂, K̂, ĉ, p̂) =

(0.5242630, 0.8425341, 41.3548356, 14.1236510) with corresponding standard error estimates

(0.08241387, 0.02705487, 55.38658258, 17.05229724). From the standard error estimates,

we can see that ĉ and p̂ have very large variance compared to the other estimated pa-

rameters. In both Hawkes point processes, on average, 0.84 cases are triggered by any

given infected individual and both models have an estimated background rate of infec-

tion of approximately 1 case every 2 days. The estimated parameters for the recursive

point process with exponentially decaying trigger density, g(u) = βe−βu, are (µ̂, k̂, β̂, α̂) =

(0.67385384, 0.70639551, 0.32003470, −0.09174118) with corresponding standard error es-

timates (0.13298941, 0.09696835, 0.03206618, 0.06916675). The small value of α̂ seems to

suggest that IPD may have a constant productivity and therefore the recursive model could

be reduced to a Hawkes point process.The estimated parameters of the SEIR model are (β̂0,

k̂, σ̂, γ̂) = (0.054768393, 0.003812852, 0.333333333, 0.058823529). We fixed σ̂ and γ̂ to be 1
3

and 1
17

since we assumed that the latent and infectious period is 3 days and 17 days, respec-

tively (Melegaro et al., 2010; Hamborsky & Kroger, 2015). Additionally, we set N equal to

19, 150, 000 (Bureau of Economic and Business Research & University of Florida, 2014). The

assumed latent period of the SEIR model, 3 days, has a similar interpretation as 1

β̂
= 3.17
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days from the Hawkes model with exponentially decaying trigger density and has a similar

estimated value as well. Since we assumed the transmission rate to decay exponentially,

it is a monotonically decreasing function and therefore, the maximum of β(t) is β0. The

basic reproductive number R0(t) = β(t)
γ
≤ β0

γ
= 0.931 suggests that the initial case will not

lead to an outbreak. R0 can be interpreted as the expected number of secondary cases in a

completely susceptible population (Delamater, Street, Leslie, Yang, & Jacobsen, 2019). The

population of Florida is not a complete susceptible population, but as previously mentioned,

PCV7 serotype caused less than 2% of cases in children younger than 5 years old in 2008.

So, one might assume that Florida was susceptible to the serotypes not covered in PCV7

but was eventually covered by PCV13.

(a) Hawkes point process with exponentially

decaying trigger density

(b) Hawkes point process with power-law decaying

trigger density

(c) Recursive point process (d) SEIR

Figure 5.1: Histogram of IPD in Florida from 01/01/2010 to 02/15/2014 with fitted intensity

(red)

In Figure 5.1, we can see that the estimated conditional intensity of the SEIR model does
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not fit the data as well as the estimated conditional intensity of the point process models.

To calculate the estimated conditional intensity, λ̂(t), for the SEIR model, we multiplied the

infectious population at time ti by β̂(ti) = β̂0e
−k̂ti . The infectious population at time ti, was

assumed to be the total number of cases observed during the 17 days, the assumed infectious

period, prior to time ti. It is also evident that the recursive model has a higher λ̂ at the

peak near 2011.

(a) Hawkes point process with exponentially

decaying trigger density

(b) Hawkes point process with power-law decaying

trigger density

(c) Recursive point process (d) SEIR

Figure 5.2: Lag plot of the standardized interevent times ui of the super-thinned residuals

The lag plots of the standardized interevent times of the super-thinned residuals ui where

b is the mean of λ̂(ti) are shown in Figure 5.2. Overall, the points on all the lag plots look

relatively well scattered. For the Hawkes with power-law decaying trigger density, and

recursive model there seems to be clustering in the upper right corner and for the SEIR

model, there the points seem to be more concentrated at the lower left corner.

Figure 5.3 shows the super-thinned residuals ti along with their corresponding standard-
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ized interevent times ui, the cumulative sum of the standardized interevent times (solid red

line), and the individual 95% confidence bounds based on 1,000 simulations of an equivalent

number of uniform random variables (dashed green line). Again, we chose b to be the mean

of λ̂(ti). In all four plots, there seems to be clustering of points around the first third of 2010

and 2011 and more sparsity during the remaining part of those 2 years. This indicates that

the models underestimate the first 4 months of 2010 and 2011 and overestimates the last 8

months of 2010 and 2011. For 2013 and 2014, there seems to be less of a discernible pattern.

(a) Hawkes point process with exponentially

decaying trigger density

(b) Hawkes point process with power-law decaying

trigger density

(c) Recursive point process (d) SEIR

Figure 5.3: Super-thinned residuals tk and their corresponding standardized interevent times

uk

The Stoyan-Grabarnik diagnostics, log-likelihood and AIC are shown in Table 5.1. For

all point processes, the Stoyan-Grabarnik diagnostics is very close to 1, which indicates

that λ̂ is a good estimate. Since the recursive and Hawkes with exponentially decaying
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trigger density models are nested, we can calculate a likelihood ratio test where LRT =

−2(ln(Ls(θ̂)) − ln(Lg(θ̂))) and s is the simpler model and g is the general model. The

difference in log-likelihood is approximately chi-squared with degrees of freedom equal to

the difference in the number of parameters between the two models. Therefore, with a chi-

square score of 3.888 and df = 4 − 3 = 1, the improvement in fit by the recursive mode is

statistically significant with significance level of 0.05. The recursive model has the lowest AIC

which would suggest that it is the better model, but differences in AIC between the recursive

and the other two Hawkes models are marginal when compared to the difference between

the recursive and the SEIR model. The recursive model also has the largest log-likelihood.

Hawkes, exponential Hawkes, power-law Recursive SEIR

Goodness of fit

Stoyan-Grabarnik 0.9999948 1.002954 1.000396 n/a

Log-likelihood 1660.985 1660.928 1662.929 -4021.85

AIC -3315.97 -3313.856 -3317.892 8047.7

Weekly Prediction Results

RMSE from prediction 7.389659 7.259191 7.280142 10.8545

RMSE from overpredicting 7.57113 6.971462 7.173118 8.41517

RMSE from underpredicting 6.929185 8.06099 7.533728 11.15954

SSE 1310.569 1264.7 1272.011 2827.685

SSE% from overpredicting 74.36% 69.17% 68.77% 7.51%

SSE% from underpredicting 25.64% 30.83% 31.23% 92.49%

Table 5.1: Stoyan-Grabarnik diagnostic, log-likelihood, AIC and squared error from model

fitting

To create predictions for the point processes, we simulated a one-dimensional nonhomo-

geneous Poisson process using an algorithm described by Lewis and Shedler (1979), which

simulated a nonhomogeneous Poisson process with rate λ(x) by generating points from non-

homogeneous Poisson process, {N∗(x) ≥ 0}, with rate λ∗(x) on a fixed interval (0, x0] where

λ∗(x) ≥ λ(x) and then keeping the simulated points with probability λ(ti)
λ∗(ti)

. For our simula-

tion, we chose λ∗ to be 14 which is greater than the maximum of λ̂(ti). To simulate weekly

counts for the SEIR model, we used the Gillespie’s algorithm with a tau-leaping approxima-
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tion which was introduced by Cao (2007) and has been implemented for a compartmental

epidemic model (Rivers, Lofgren, Marathe, Eubank, & Lewis, 2014). For the Gillespie algo-

rithm, first, draw a randomly exponentially-distributed waiting time until the next transition

and then randomly select the identity of the transition, weighted by the relative transition

rates (Johnson, 2014). When models have larger transition rates an approximation ap-

proach is necessary to increase simulation speed (Johnson, 2014). One way to perform this

approximation is the adaptive tau-leaping algorithm to reduce the number of iterations by

treating transition rates as constant over time for which this approximation leads to little

error (Johnson, 2014). To implement the tau-leaping algorithm to predict weekly counts,

we set the initial infectious population as the number of cases observed 17 days (duration of

infectious period) prior to the predicted week, the initial susceptible population is the total

population of Florida minus the initial infectious population, and the initial exposed and

recovered population is zero.

We re-estimated the model’s parameter using all the data prior to the week that we were

predicting. Additionally we did 1,000 simulations for each week and took the average to be

the predicted weekly count. Figure 5.4 shows the predicted weekly counts for each model and

the actual count (black line). SEIR underpredicted cases for all weeks with the exception of

the 8th week, where there were zero cases, and the 19th week. The prediction for the SEIR

model seem to improve in the 12th week and in subsequent weeks. All the point process

models have similar weekly predictions. In the last 12 weeks it looks like the Hawkes with

exponentially decaying trigger density had slightly higher predictions than the Hawkes with

power-law decaying trigger density and recursive model. The predictions of the Hawkes with

power-law decaying trigger density (blue line) and recursive models (yellow-green line) are

very similar for a majority of the forecasted weeks. No model predicted the zero cases in

the 8th week or the peaks at 2nd, 7th and 11th week. RMSE is reduced by approximately

32.93% when we compare the RMSE of the SEIR model to the recursive model in Table

5.1. The Hawkes models have a similar level of RMSE reduction. The difference between

the RMSE and SSE of the Hawkes with power-law decaying trigger density and recursive

model is marginal. RMSE from overprediction and underprediction are similar for the three
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point process models, compared to the SEIR model which almost exclusively underpredicts

as seen by the SSE % of 7.51% from overprediction.

Figure 5.4: Weekly case estimates for point process and SEIR models

The error (predicted - actual) from the weekly estimates is displayed in Figure 5.5. From

this plot, we can see that in general all three point processes seem to underpredict for the

first 12 weeks and then overpredict in the last 12 weeks.

Figure 5.5: Weekly error for point process and SEIR models

Figure 5.6 shows the simulation plots for the point processes and SEIR model. The

red line represents the actual cumulative weekly case count, each blue line is one of the

1, 000 simulations and the dashed black line represents the mean of the 1, 000 simulations.

We can see that the variation of simulations is greater in the point processes compared to

the SEIR model. Additionally, the point processes seem to match the observed cases well

for the first 12 weeks, with approximately half of the simulations overestimating and half
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underestimating, compared to the simulations for the SEIR model which underestimate for

all 24 weeks.

(a) Hawkes point process with

exponentially decaying trigger density

(b) Hawkes point process with

power-law decaying trigger density

(c) Recursive point process (d) SEIR

Figure 5.6: Cumulative weekly cases of IPD
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CHAPTER 6

Conclusion

From our analysis, the likelihood ratio test suggests that the additional flexibility that the

recursive model offers is an improvement compared to the Hawkes with exponentially de-

caying trigger density. Additionally, it appears that the recursive model is able to strike a

balance between fitting the training set and predicting weekly counts in the test set when

compared to the other two Hawkes processes. Although the Hawkes model with power-law

decaying trigger density had the lowest RMSE, it also had the highest AIC out of all the

point processes. On the other hand, the recursive model has the lowest AIC and a RMSE

that is 0.021 higher than the Hawkes model with power-law decaying trigger density. In

comparison, the Hawkes model with exponentially decaying trigger density has a RMSE

that is 0.13 higher. Therefore, in some respects, the recursive model could be viewed as a

better model overall.

A limitation of our analysis was the missing weekly case counts in the pre-compiled IPD

dataset from Project Tycho. The Project Tycho dataset documentation states it does not

include time intervals for which no case count was reported and that the count time series

are often incomplete. Consequently, for instances where there is missing data for a couple

weeks, we can not be confident whether there was actually no cases during that time period

or the count was simply not reported. In some cases it was more evident that the case

count was simply not reported, such as the missing weekly counts between 01/01/2003 and

01/01/2004. As a result of missing data, we were only able to use approximately 42
3

out

of the total 15 years in our analysis. In addition, because we only had weekly counts, we

estimated occurrence times.

Subsequent analysis could be done using the point process models to forecast infections
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where the PCV7 and PCV13 vaccine is not readily available like certain countries in Africa

or Asia. It would be informative to see how the point process performs under different

circumstances. To improve the accuracy of the Hawkes, we can further investigate different

trigger densities and their effect on the model performance and forecasting. One option

could be the rayleigh kernel, RAY (γ, η) = γte−ηt
2
, which has been used in the context of

survival times over diffusion networks for modeling a distinct, non-monotonically decaying,

type of influence (Lima & Choi, 2018). Gomez-Rodriguez, Balduzzi and Scholkopf (2011)

modeled diffusion processes as discrete networks of continuous temporal processes occurring

at different rates. One of the models they considered was the Rayleigh model which has been

previously used in epidemiology (Rodriguez, Balduzzi, & Schölkopf, 2011). Additionally, we

could compare the performance of a model developed by Rizoiu (2018) called HawkesN,

which accounts for finite population sizes, with the four models in this study. The event rate

function in HawkesN is defined as:

λH(t) =

(
1− Nt

N

)µ+
∑
tj<t

φ(t− tj)


where φ(t− tj) can be the same kernel function used with Hawkes, and N(t) is the counting

process associated with the point process (Rizoiu, Mishra, Kong, Carman, & Xie, 2018). The

effect of introducing the finite population size N is that the event rate at time t is modulated

by the available population (Rizoiu et al., 2018).

The SEIR model did not perform as well as the other three models. This could be a result

of the chosen transmission rate β(t) which exponentially decays. Since IPD seems to have

some seasonality, a better choice for β(t) may be a non-negative periodic function (Wang &

Zhao, 2008). For example, Dietz (1976) used a SIR model with contact rate β(1+δcos(2πt)).

The infectious period for IPD is presumed to last until discharges from mouth and nose no

longer contain pneumococci in significant numbers. IPD can have varying infectious period

depending on the serotype; this makes it hard to determine an accurate infection rate γ for

our population, the state of Florida (Sleeman et al., 2006). Additionally there is evidence

that certain serotypes are more common in children younger than 16 years old compared

to adults 16 years or older (Imöhl, Reinert, Ocklenburg, & van der Linden, 2010). The
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assumptions we made in the SEIR model may not have been the most appropriate for de-

scribing the dynamics of IPD. Melegaro et al. (2010) developed, parameterized, and applied

an age-structure transmission dynamic model that also included heterogeneous-mixing and

predicted the overall incident of IPD in England and Wales. Further investigation of differ-

ent models and their ability to accurately forecast the spread of IPD is needed to provide

better insight into IPD dynamics and improve forecasting performance which in turn can

guide vaccination recommendations.
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