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Uncertainty analysis in matched-field geoacoustic inversions

Chen-Fen Huang,a) Peter Gerstoft, and William S. Hodgkiss
Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California 92093-0238

(Received 29 April 2005; revised 18 October 2005; accepted 19 October 2005)

Quantifying uncertainty for parameter estimates obtained from matched-field geoacoustic inversions
using a Bayesian approach requires estimation of the uncertainties in the data due to ambient noise
as well as modeling errors. In this study, the variance parameter of the Gaussian error model,
hereafter called error variance, is assumed to describe the data uncertainty. In practice, this
parameter is not known a priori, and choosing a particular value is often difficult. Hence, to account
for the uncertainty in error variance, several methods are introduced for implementing both the full
and empirical Bayesian approaches. A full Bayesian approach that permits uncertainty of the error
variance to propagate through the parameter estimation processes is a natural way of incorporating
the uncertainty of error variance. Due to the large number of unknown parameters in the full
Bayesian uncertainty analysis, an alternative, the empirical Bayesian approach, is developed, in
which the posterior distributions of model parameters are conditioned on a point estimate of the
error variance. Comparisons between the full and empirical Bayesian inferences of model
parameters are presented using both synthetic and experimental data. © 2006 Acoustical Society of

America. [DOI: 10.1121/1.2139075]
PACS number(s): 43.30.Pc, 43.60.Pt [AIT]

I. INTRODUCTION

Ocean acoustic data inversions typically have focused
just on inverting the parameters for one environmental
model,]_5 but some researchers have also considered select-
ing the best environmental parametrization over a family of
geoacoustic models.”” Under the Bayesian framework, all
inferences are based on the posterior distribution p(m|d, 1)
given by

p(m|d, 7,) OcP(d|m, ﬂo)P(m|7lo), (1)

where m represents the geoacoustic model parameter vector,
d represents the data, and p(d|m, 7,) and p(m| 7,) represent
the likelihood and prior distribution conditioned on 1, re-
spectively. The symbol 5 refers to other possible unknown
quantities in our mathematical model, such as uncertainty in
signal characteristics as well as uncertainty of other param-
eters not included in m (e.g., ocean water column sound
speed parameters). As indicated above, it is customary to
keep these quantities at fixed values 7.

Under the Bayesian approach, unless there is absolute
certainty regarding the value of #, inference of m should be
made by integrating out the effect of # from the joint poste-
rior probability p(m, 7|d):
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The second representation shows that the posterior distribu-
tion of interest, p(m|d), is a mixture of the conditional pos-
terior distributions as shown in Eq. (1) given a fixed 7 where
p(m|d) is a weighting function for the different possible val-
ues of 7. This is referred to as a full Bayesian approach. A
major problem with this approach is that the number of pos-
sible parameters to include in the uncertainty analysis might
be quite large.

An alternative, the empirical Bayesian approach,8 is to
replace 7 by a single estimate # obtained from the data.
Inference of m is now based on the estimated posterior dis-
tribution

d, n)p(n|d) dy. 3)

d, 7). (4)

This simplified approach essentially replaces the integration
in Eq. (2) by an estimation step. Since the full Bayesian
approach accounts explicitly for the uncertainty in 7, the
inference of m based on Eq. (2) should produce a more cor-
rect distribution than that based on Eq. (4). For the linear
forward model case, adjustments to account for the uncer-
tainty induced by estimating 7, especially to produce valid
parameter variances, can be found in Ref. 8.

This study discusses several methods for implementing
both the full and empirical Bayesian approaches with a focus
on one important parameter usually not included in the Baye-
sian analysis: the error variance v in a Gaussian error model.
However, our methods are applicable to any nuisance param-
eter. The error variance is influenced by both errors in the
data and systematic errors in modeling the data. While error

p(m
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in the data, also known as noise, usually can be determined
directly from the data (e.g., in the absence of signal), the
systematic error is more difficult to assess. The error vari-
ance is important because incorrect choices for this param-
eter can seriously skew the posterior probability density
(PPD) for the model parameters of interest.

The full Bayesian approach requires integrating out the
nuisance parameters in Eq. (2) and either numerical or ana-
lytical integration can be used. Numerical integration is the
most general approach as it can be carried out for any like-
lihood or prior distribution (see Sec. III A). Analytical inte-
gration is only possible for certain parameters with specific
likelihood functions and prior distributions. For the error
variance parameter in a Gaussian model, integrating out the
error variance analytically (Sec. III B) makes this an attrac-
tive approach from both a computational and an analytical
point of view.

For the empirical Bayesian approach, inferences are
conditional on point estimates of the nuisance parameters in
Eq. (4) and these can be estimated by either numerical or
analytical optimization (as opposed to the integration used in
the full Bayesian approach). Numerical optimization of the
posterior probability with respect to both nuisance param-
eters and model parameters can easily be applied to most
parameters and likelihood functions using standard optimiza-
tion procedures™'” (Sec. III C). Analytic optimization is only
feasible for certain combinations of likelihood functions and
prior distributions. Assuming a Gaussian error model, it is
possible to estimate the error variance analytically2 (Sec.
III D) and thus it is not necessary to use numerical optimi-
zation.

When estimating the error variance an interesting alter-
native to the point estimate (fixing the error variance at some
specified value) is to use the analytic estimator of the error
variance for each value of the model parameter vector."" This
gives the same form of the posterior distribution as the full
Bayesian approach (Sec. III D).

An objective of this study is the analysis of error vari-
ance. Since the computational expenses are of little concern
for the example, an exhaustive evaluation of p(m|d) over a
grid of parameter space combined with ordinary numerical
integration is employed. This is a robust and accurate ap-
proach and is recommended for inverse problems with only a
few parameters (e.g., less than eight parameters). However, if
the number of parameters is large, Monte Carlo methods of
numerical integration“’7 should be used.

For the exhaustive integration, it is easier to assess the
convergence than for the complex Monte Carlo methods. The
convergence was assured by running the exhaustive search
with a certain discretization and then comparing the result to
a down sampled result. The integration is done by simply
summing the enumerated values over the grid, since the pa-
rameters near the edge of the parameter space usually have
less contribution to the integral.

The motivation of developing the full Bayesian ap-
proach is to avoid under/overestimating the data error vari-
ance and to understand how the data error uncertainty influ-
ences the uncertainty of the parameters of interest. The
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obtained parameter distributions can be used to make statis-
tical predictions of various quantities of interest (e.g., trans-
mission loss, as in Ref. 12).

The remainder of this paper is organized as follows. In
the next section, the formulation of the inverse problem us-
ing the Bayesian approach is reviewed briefly. Section III
outlines the approaches for handling error variance. Section
IV provides an analytic expression for posterior probability
distribution (PPD) of error variance. Section V presents the
results and compares the model parameter posterior probabil-
ity distributions using both synthetic and experimental data.
Lastly, a few concluding remarks are made in Sec. VL.

Il. FORMULATION OF THE INVERSE PROBLEM

In a Bayesian approach for geoacoustic inversions, in-
ferences about the model parameter vector m based upon an
observed data vector d are made in terms of probability den-
sity functions (pdf’s). The basic formula for Bayesian param-
eter estimation is represented by the posterior probability
density function, p(m|d), which by Bayes’ theorem is given
by

_ p(dm)p(m)
p(m|d) = R

where p(m) is the pdf associated with our a priori under-
standing of m before having access to the data d.

The posterior probability density provides the full de-
scription of the state of knowledge about model parameters
after observing the data. To interpret the multidimensional
PPD, marginalization is used to summarize the PPD for a
single parameter m; by integrating over the remaining param-
eters m’:

(5)

plmj|d) = f p(m;m'’|d) dm'. (6)

Also, 2-D marginal probability distributions of paired param-
eters can be obtained in a similar way. Further, the structure
of the marginal posterior distribution is captured by the high-
est posterior density (HPD) interval (or region in the 2-D
marginal) at a specified level of probability’® (Sec. V A).

A. Single-frequency matched-field likelihood
function

For matched-field geoacoustic inversions, the relation-
ship between the observed complex-valued pressure field at a
single frequency sampled at an N-element array and the pre-
dicted pressure field, at the frequency of interest, is described
by the data model:

d=D(m) +n, (7)

where d is the observed data and D(m) is the modeled data
based upon a parametrized environmental model. In general,
the modeled data is nonlinear with respect to the model pa-
rameter vector m. The residual vector n represents the error
terms. Typically, the residual vector is ambient noise but
here the interpretation of n is broadened to include modeling
erTors.

Huang et al.: Uncertainty analysis



If we assume that the error vector n is zero-mean com-
plex Gaussian with covariance matrix Cp, ie., n
~CMO0,Cp), then the likelihood function p(d|m) may be
expressed as

p(dm,Cp) = 77|Cp|™!
Xexp[- (d - D(m))'Cp'(d -D(m))], (8)

where N is the number of elements in the array and super-
script 1 denotes the complex conjugate transpose. Here, for
simplicity, we also assume that the error terms may be de-
scribed by independent and identically distributed (IID) com-
plex Gaussian random variables with common variance v,
i.e., Cp=vI. This IID type of assumption is useful for con-
venience, but it may not completely model all the errors of
interest. In what follows we shall always refer to the variable
v as the variance of the data errors.

The likelihood of the model parameter vector m for a
given set of data may be written as

L(m,v,s) = p(d|m,v,s)

1 (_ ||d—d(m)s||2>

= N NEXP )

14

in which the modeled data D(m) is represented by D(m)
=d(m)s, where d(m) is the replica field vector (or normal-
ized signal field) computed using an acoustic propagation
model for the model parameters m, and s is the complex-
valued source signature at the frequency of interest.

The source signature can be estimated either by the
maximum-likelihood (ML) estimator, i.e., finding the value
of s that maximizes the likelihood function,2 or, should we
have no interest in its value, by treating s as a nuisance
parameter and eliminating it by integration (as will be dis-
cussed in Sec. IIT). Here we adopt the former method and
obtain the ML estimate of the source parameter s as Sy
=dT(nzl)d/ |[d(m)]||>. Substituting this relationship into Eq. (9)
yields

1
L(m,v) = NN exp (— 4’(:}11)) (10)
where ¢(m) denotes an objective function defined as
d(m)'d]? }
=|d 2[1 - |— 11
¢(m) ” ” ||d||2||d(m)||2 (11)

in which the second term in the bracket is the normalized
Bartlett power objective function' measuring the correlation
between the data and the replica vectors. The objective func-
tion in Eq. (11) can be generalized” when multiple data snap-
shots are available.

B. Multi-frequency matched-field likelihood function

Assuming that the data errors are statistically indepen-
dent across frequencies, then the multi-frequency matched-
field likelihood function is the product of the single fre-
quency counterparts:

J. Acoust. Soc. Am., Vol. 119, No. 1, January 2006

J
L(m, v, ...,VJ)=H£j(m,Vj), (12)
j

where J indicates the number of the processed frequencies
and £;(m,v;) is the jth frequency likelihood with the error
variance denoted by »; as in Eq. (10). To illuminate the
significance of v;, Eq. (10) is rewritten as

L;(m,v;) = exp (—M—Nln Vj) (13)

Vi

in which 1/7" has been expressed as exp (=N In v;) and the
constant 77" is omitted.

1. Frequency-dependent error variance

Error variance is frequency dependent. Not only does
ambient noise vary across frequency but the error due to
modeling mismatch also varies across frequency. With the
assumption that errors are independent across frequencies, as
in Eq. (12), the likelihood of m for multi-frequency cases is
the product of the marginal likelihoods of m for each fre-
quency, with v; being integrated out:

J
L(m) = H J L;(m,v)p(v;) dv;, (14)
J Vi

where p(v)) is the prior distribution of »; which will be speci-
fied in Sec. II C.

2. A single global error variance

A common approach is to assume the variation of the
data error variances »; over the selected frequencies is neg-
ligible and model them by a single variable v, i.e.,

vi=v, forj=1,....J. (15)

The likelihood for the selected frequencies with a common
error variance v, can be written as

L(m, v) = exp (— iJ)"(m) —JN1n v0>, (16)
Yo

where <7>“(m)=(1/J)E¢j(m) is the arithmetic mean of the
objective function over frequencies.

Equations (14) and (16) hold under the assumption that
the errors are independent for each frequency. However,
when the errors due to frequency-dependent modeling mis-
match are the dominant source of error, the modeling error
may not be independent across the frequencies used. There-
fore, the number of frequencies J must be replaced with an
effective number of frequencies J .

C. Noninformative priors

Before applying Bayes’ theorem to make inference of
parameters, one needs to specify their prior pdf’s. The natu-
ral choice for a prior pdf is the distribution that allows for the
greatest uncertainty while obeying the constraints imposed
by prior knowledge. We treat here the case where very little
is known about m and v a priori.

Starting from the model parameters m, all one knows is
that the values of the parameters are within lower bounds /;
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TABLE I. Summary of the approaches (single frequency).

Section: Approach PPD of m Error variance Remark
III A: Full Bayesian (numerical) f p(m,v|d) dv f p(m,v|d) dm Theoretically preferred but computationally expensive
111 B: Full Bayesian (analytic) 1 . P(im) Theoretically & computationally preferred
_— ~[(2N-M )12+1] _ b
¢"(m) Y T

I C: Empirical Bayesian (numerical) p(m|d, vyap)

1II D: Empirical Bayesian (analytic) p(m|d,vy)

ML=

Vyap=arg max p(m, V‘d)

Computationally efficient

P(im) Computationally preferred
N

“As for the multi-frequency data, see Eq. (24) for the details.
"The formula is derived in Sec. IV.

and upper bounds u; based upon the measurements indepen-
dent of the acoustic data. We assume that there is no prior
preference for any value over any other; then a uniform dis-
tribution over that range is a practical choice for the prior,

li<m[<ui. (17)

pom)=——.
1 1

For the error variance parameter v, all one knows about
this parameter a priori is that it is always positive and one is
equally ignorant about its value or any of its powers (e.g., a
standard deviation or a variance). The appropriate distribu-
tion for this parameter is a uniform pdf on In ».” In practice,
the limits of this prior do not go all the way to zero and
infinity. We usually know in advance that v cannot be much
less than the ambient noise variance estimate (v,y) and can-
not be much greater than the maximum likelihood estimate
(vpmp)- Thus,

p(y) « 1%, 0.1v,y < v < 10wy (18)
Note that using broader limits for the error variance is to
obtain a full distribution where the upper and lower ends
have zero probability.

With the additional assumption that all model param-
eters (my,...,my,) and v are mutually independent, the prior
distribution is the product of the prior distributions for each
parameter:

M
p(m,) = p(m)p() = T pom)p(s) = - (19)

over the interval where prior probability of m is nonzero.
Then, based upon Bayes’ theorem, the posterior distribution
is as follows:

1
p(m,|d) = p(djm,»)p(m,») = L(m, v~
o exp (—M—(N+l)ln V) (20)

with the scale factor that makes the posterior distribution
integrate to one being omitted. The final representation of
Eq. (20) will be extensively used in this analysis.
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Note that the posterior distribution for a uniform prior
on v or for a uniform prior on In v differs only in an N or
N+1 in front of In v [Eq. (20)]. This suggests that for rea-
sonably large N their respective PPDs are similar.

lll. ERROR VARIANCE AS A NUISANCE PARAMETER

In this section, we shall treat the error variance in a
Gaussian error model as a nuisance parameter and discuss
both the full and empirical Bayesian methods from an imple-
mentation perspective. For convenience of comparison, the
approaches discussed below are summarized in Table 1.

A. Full Bayesian estimation—numerical integration

The full Bayesian approach is a natural way of incorpo-
rating the uncertainty of error variance in the analysis. The
approach does not assume the error variance at a particular
value, rather, it regards the error variance as an unknown in
the parameter space. In this way, the approach allows the
data uncertainty to propagate through the parameter estima-
tion processes and, at the end, reflect uncertainty in the error
variance in the resulting parameter estimation.

Therefore, the true posterior distribution of the model
parameters is obtained by integrating out v from the joint
posterior distribution of m and »:

p(m|d) =fp(m, v|d) dv. (21)

B. Full Bayesian estimation—analytic
integration

In this approach, the error variance is considered as a
nuisance parameter and is eliminated by integrating the like-
lihood function weighted by the prior distribution of v over
the entire range:16

Huang et al.: Uncertainty analysis



p(m|d) = j p(m, v|d) dv
0

ocp(m)J p(dm,v)p(v) dv.
0

p(dlm) (22)

Incorporating the noninformative prior of v in Eq. (18), the
exact expression of p(d|m) can be shown to be of the form'’

1 (N=1)!
7 ¢N(m)

This likelihood function is preferable in estimating PPD
of model parameters for two reasons. Theoretically, this for-
mula is derived based on a full Bayesian methodology. Com-
putationally, this method is faster than a computer-based nu-
merical integration of the full Bayesian procedure.

The above analytic solution, Eq. (23), can be extended
straightforwardly to the multi-frequency data set. From Eq.
(14), the multi-frequency likelihood function can be written

in a concise form:
NJ
_ ) (24)
¢*(m)

where %(m):(/l](ﬁj(m is the geometric mean of the ob-
jective function over frequency when the error variance is
frequency dependent. However, for the case where the
error variance is assumed to be constant over the pro-
cessed frequencies, the arithmetic mean ¢“(m) is used in-
stead of ¢%(m) in Eq. (24) in a manner analogous to that
used by Ref. 11.

p(djm) = (23)

L(m) o« (

C. Empirical Bayesian estimation—optimizing error
variance jointly with model parameters

The main idea behind this approach is to consider the
error variance on the same level as the model parameters and
optimize the joint posterior probability p(m,v|d) to find the
estimate of v

Vyvap = arg max p(m, v|d). (25)

Then, the posterior distribution of the model parameters is
approximated by fixing the error variance at vyp:

¢(m) ] |

Pmap

p(m|d) = p(m|d, vyap) = exp [— (26)
This approach is easier to implement numerically compared
to the full Bayesian approach because the value of the error
variance can be found by any efficient optimization proce-

dure, such as simulated annealing or genetic algorithms.18

D. Empirical Bayesian estimation—maximum
likelihood estimate

The maximum likelihood estimator for the error vari-
ance can be obtained analytically

J. Acoust. Soc. Am., Vol. 119, No. 1, January 2006

dm),

N 27)

vy (m) =
Two approaches for implementing this estimator in ocean
acoustic inversions have been proposed by Mecklenbrduker
and Gerstoft.""

Following an empirical Bayesian methodology, one re-
quires only an estimate of the error variance. First, the ML
solution of model parameter vector, m, is found [by mini-
mizing the objective function, Eq. (11), over all m]. Second,
an estimate of error variance is obtained:”

<, $(m)
vy (1h) = N (28)
Then, the PPD of m is approximated by fixing v at vy (t):
. ¢(m)
p(m|d, vy (M) o« exp[— — . (29)
ML

The error variance estimated from either vyap [Eq. (25)]
or vy [Eq. (28)] often results in overly optimistic posterior
distributions of the model parameters since a single value of
the error variance may not be representative.

The other approach proposed in Ref. 11 is to substitute
Eq. (27) into the likelihood formula [Eq. (10)] without fixing
a value for v. With the noninformative prior for m, the PPD
of m is proportional to the likelihood function

d, vy (m)) o p(m) L(m, vy (m)) = L£(m, vy (m))
1

o N .

¢"(m)

Note that the likelihood formula derived in Sec. III B [Eq.

(23)] and the result derived above [the third representation of
Eq. (30)] possess the same functional form.

p(m

(30)

IV. PPD OF THE ERROR VARIANCE

The posterior distribution of v is obtained by integrating
the joint PPD over the model parameter vector:

p(v|d)=fp(m,vd) dm. (31)
One could always evaluate the integral in Eq. (31) numeri-
cally, but an analytic expression can be obtained under the
simplifying Gaussian approximation for the PPD of the
model parameters. This approach is known as Laplace’s
method, a family of asymptotic techniques used to approxi-
mate integrals.19

Inspired by Malinverno,”” let us assume that, for any
value of v, the PPD of the model parameter vector is ap-
proximated by a Gaussian function of m centered on the
MAP solution m (Ref. 21) with the posterior covariance ma-

trix of model parameters éM (the hat is used to denote the
quantity inferred a posteriori):

(m - )¢5 (m - m)>

d) exp (— 5

p(m,v|d) = p(m,v
(32)
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Since an unnormalized Gaussian pdf has the following
constant,

Té—l —
fexp (- MMM gm = 22|16y, (33)

2

substituting Eq. (20) into p(r, »|d) yields the approximation
to the marginal PPD of »:

p(r]d) = jﬂ exp (— ¢(;n))v 1Cul, (34)

where a is a scale factor that makes p(v|d) integrate to one.
To evaluate the posterior covariance matrix of model

parameters éM the forward model is linearized with respect
to the best-fit model vector

D(m) = K(m -m) + D(m), (35)

where K=[dD(m)/dm]|,,_s is an NX M matrix of Fréchet
derivatives evaluated at the best-fit model solution m. Com-
paring the exponent of Eq. (32) with Eq. (8) in which the
nonlinear forward model is substituted by Eq. (35) gives

Cy= QK Cy'K)™. (36)

Since the data errors are expected a priori to be IID with
variance v (Cp=vI) and with the further assumption that the
model parameters are resolved by the data set, the determi-

nant of Cy; is

o M (37)

oc |VIM*

|Cul = ‘ g(K"‘Krl

where M" is the number of model parameters resolved by the
data. Generally speaking, M" is determined by the number of
elements in the model parameter vector when K has full rank
(all the model parameters are constrained by K). However,
due to the presence of noise, the parameter sensitivity and
the possibility of linear dependence between the model pa-
rameters, not all of these may be estimated to a useful accu-
racy. Therefore, M*< M. Then, substituting Eq. (37) into Eq.
(34), we obtain the following approximation

p(v|d) o V—[(ZN—M*)/2+1] exp (_ %ﬁl)) (38)

This approximation to the marginal PPD of v is the so-called
inverse chi-square distribution used in Bayesian analysis (see
Ref. 13, Sec. 2.3.1). However, the inverse chi-square distri-
bution presented in Ref. 13 is based on real-valued Gaussian
random variables. For the complex-valued Gaussian random
variables, the scaled error variance v/(2¢(m)) has the in-
verse chi-square probability density with 2N—M" degrees of
freedom.

Notice that M" can be found from comparing the ana-
lytic result with the PPD of v obtained from the numerical
integration of the full Bayesian, or it can be estimated from
the rank of the posterior covariance matrix of the model pa-

rameters Cy.
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FIG. 1. The sdc environment from the Geo-Acoustic Inversion > shown

here for the parameters corresponding to ground true.

V. RESULTS AND DISCUSSION
A. Synthetic data

To illustrate the various approaches presented in Sec. 111,
a data set is synthesized using the environmental model em-
ployed in the Geo-Acoustic Inversion Workshop 1997. Fig-
ure 1 shows the baseline model that consists of a downward
refracting sound speed profile overlying a positive-gradient
sediment layer atop of a homogeneous subbottom layer. The
vertical array consists of 20 hydrophones equally spaced
over a 95-m interval with the first phone at 5-m depth, and
the source located at 1-km range and 20-m depth, transmit-
ting CW tones at 100 and 200 Hz. The calculations of acous-
tic fields are performed by the normal-mode propagation
model ORCA.” The interaction of acoustic fields with the
baseline environment for these two frequencies is plotted in
Fig. 2.

In order to demonstrate the effect of error variance on
the parameter estimation, the amount of noise corresponding
to 20-dB SNR [equivalent to v,,,=0.0083, see Eq. (A6) in
the Appendix] is purposely added to the data. The parameters
to be estimated are the geoacoustic parameters, including
sediment thickness d, top and bottom sediment sound speeds
Csedtop AN Ceq por, SUbbOttom sound speed ¢y, and the error
variance v. Figure 3 shows the parameter estimate using the
full Bayesian approach for a frequency of 100 Hz. The line
subplots along the diagonal are the one-dimensional (1-D)
marginal PPDs for each parameter, p(m;|d), and the contour
subplots in the upper triangle are the 2-D marginal PPDs
corresponding to the paired parameters in the bottom-most
and left-most line subplots, p(m,,m;|d). In each contour
plot, the gray-scale coloring from darkest to lightest repre-
sents 50%, 75%, and 95% highest posterior density (HPD).
The 8% HPD describes a region which contains 5% of the
total probability.13 Due to the nonlinearity of the forward
model, the PPD of model parameters is no longer Gaussian.
Therefore, the best-fit model (cross signs in 2-D contours or
arrow lines in 1-D plots) is not necessarily coincident with
those from the mode of the marginal (plus signs in 2-D).

The 1-D and 2-D marginal PPDs reveal the uncertainty
of the parameter estimation but in addition the 2-D PPDs
also show the correlations between the paired parameters.
For example, the contour subplot on row | and column 3

Huang et al.: Uncertainty analysis
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FIG. 2. Range-depth transmission loss for (a) F=100 and (b) 200 Hz, re-
spectively, using the sde environment. The two white lines mark the water-
sediment (top) and sediment-subbottom (bottom) interfaces.

shows the correlation between bottom sediment sound speed
Csedbor and sediment thickness d. The result suggests that
there is a strong positive coupling between these two param-
eters. Therefore, the interparameter correlation results in a
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FIG. 3. Marginal posterior probability densities (PPDs) of the geoacoustic
parameters as well as the error variance for F=100 Hz. In each 1-D mar-
ginal, the horizontal error bar shows 95% highest posterior density (HPD)
interval.
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FIG. 4. The enlarged version of the marginal posterior distribution of the
error variance in Fig. 3. Note thaty™AP is the MAP estimate of the marginal
PPD of v; it is not to be confused with the MAP estimate of the multidi-
mensional joint PPD, yMAP

relatively flat distribution in the 1-D marginal PPDs for the
parameters Cgeqpor and d. If more information about one of
these two parameters could be obtained, then the 1-D mar-
ginal of the other could be sharpened. Likewise, the param-
eters of Cyeqpor AN Cyeq iop are strongly correlated in a nega-
tive manner. However, the 2-D PPDs for each pair of m;
and v show that the error variance has little correlation
with any other geoacoustic parameters, i.e., p(m;,v|d)
=p(m;|d)p(v|d).

The error variances estimated from the various ap-
proaches are summarized in Fig. 4. First, the PPD of v ob-
tained from the numerical integration is compared with that
from the analytic integration. We find that by setting the
parameter M =4 in the analytic formula of the error variance
distribution [Eq. (38)], the analytic result (dash-dot-dot
curve) has excellent agreement with the numerical integra-
tion result (solid curve). Note that even though the PPDs of
the geoacoustic parameters are only very approximately
Gaussian, the PPD of v follows an inverse chi-squared den-
sity. In this example, the analytic expression of the posterior
distribution of v agrees well with the full Bayesian result,
given the number of well-determined parameters used.

Second, the point estimates of error variance from the
empirical Bayesian approaches are summarized in Fig. 4.
Since the error variance is distributed a posteriori as an in-
verse chi-square with (2N—4) degrees of freedom, one may
consider the peak of this marginal posterior distribution as an
estimate of the error variance, named as the marginal MAP
(MMAP) value of error variance, vypap- The solid vertical
line shows the actual value of the error variance added to the
data (0.0083). The ML (dash), MAP (dot), and MMAP (dash-
dot) estimates of error variance are also shown. Among the
various point estimates of error variance, vypap i the largest
since it automatically takes into account the reduction in the
degrees of freedom (for the inverse chi-square distribution)
in the process of integration over the model parameters. The
difference between the MAP and ML estimates of the error
variance is due to the 1/ prior being used. In this synthetic
data case, since the only uncertainty is the random error
added to the data, there is not much difference in the esti-
mated error variances among the various approaches.

The comparison of the marginal PPDs for each of the
geoacoustic parameters is given in Fig. 5. The 1-D PPDs are
estimated using full Bayesian treatment of error variance via
numerical integration (solid; Sec. III A) and these using the
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FIG. 5. Comparison of the marginal PPDs for the geoacoustic parameters
using different approaches in handling the error variance. F=100 Hz).

empirical Bayesian methods based on the true value (dash-
dot) and the ML (dash) and MAP (dot) estimates of the error
variance. In addition, the PPDs using the analytic integration
of the full Bayesian approach (Sec. III B) are identical to
these using numerical integration (solid). From the simula-
tions, the empirical Bayesian method using an ML or MAP
estimate of the error variance is a good approximation to the
full Bayesian approach:

p(m|d) = p(m|d, ). (39)

However, the difference would become more distinguishable
when the number of inverted parameters is similar to the
number of the data points.

Figure 6 shows the marginal PPDs for the same param-
eter set using 200-Hz frequency data with the additive noise
corresponding to 15-dB SNR (7,,=0.0194) in contrast to
the 20-dB SNR noise added to the 100-Hz data. Except for
Csed,top» the geoacoustic parameters are poorly estimated in
comparison of Fig. 3. Since the higher frequency has higher
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FIG. 6. Full Bayesian approach. 1-D and 2-D marginal PPDs of the geoa-
coustic parameters as well as the error variance for 200 Hz. The actual value
of the error variance added to the data is equivalent to 15-dB SNR (»'™¢
=0.0194). The format is the same as Fig 3
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2-D marginal PPDs of the geoacoustic parameters as well as the error vari-
ance for frequency of 100 and 200 Hz. (b) The marginal PPDs of geoacous-
tic parameters as well as the global error variance. The format is the same as
in Fig. 3.

resolution in the upper sediment (more structure in the
acoustic field at the water-sediment, as seen in Fig. 2) but
shorter penetration depth, only cyqop i8 better resolved at
200-Hz frequency.

Having estimated the marginal PPDs using data at 100-
and 200-Hz frequencies separately, we then estimate the
PPDs using data from both frequencies which have different
error variances. Figure 7 demonstrates the multi-frequency
case: (a) the error variance are appropriately accounted for
(modeled by v, and »,) and (b) the error variance are as-
sumed the same over these two frequencies (modeled by v;).
In addition, the 1-D PPDs using the analytic integration of
full Bayesian method, Eq. (24), are shown in both figures,
where the geometric mean is used for Fig. 7(a) and the arith-
metic mean for Fig. 7(b). The results are not distinguishable
from those using the numerical integration.

Comparing Fig. 7(a) with Fig. 7(b), we see there is a
slight difference between the two treatments of error vari-
ance. The uncertainties of the geoacoustic parameters using
two frequencies (Fig. 7) are reduced significantly in contrast
to those using single frequency (Figs. 3 and 6), in agreement
with Refs. 1-4.
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B. Experimental data

Data acquired during the ASIAEX 2001 East China Sea
experiment (see Ref. 24) are used to illustrate the approaches
for incorporating uncertainty in the error variance. A 16-
element vertical line array was deployed in 105-m-deep wa-
ter (element 4 failed during deployment). The source was
towed at a depth of about 48 m. A general bathymetric and
geological survey has indicated that in the neighborhood of
the experimental site, the environment is nearly range inde-
pendent. Therefore, the ocean environment is modeled as an
ocean layer overlying a uniform sediment layer atop of a
basement. All layers are assumed to be range independent.

In our previous study,24 matched-field geoacoustic inver-
sion using the frequencies 195, 295, and 395 Hz was carried
out to invert for the seafloor parameters. Based upon the GPS
position of R/V Melville, the observed data d was approxi-
mately 1.7 km away from the source. To reduce mismatch in
water depth, source position, array geometry, and ocean
sound-speed profile, we have inverted for a total of 13 model
parameters. In order to estimate the model parameters, a glo-
bal optimization method, based on genetic algorithms, along
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FIG. 9. Posterior marginal distribution of the error variance obtained from
the numerical integration. (a) F=195 Hz and (b) F=395 Hz. The vertical
lines show the different estimates of error variance.

with the normal-mode propagation model SNAP” was used.

We inspect here the posterior probability densities of the
following five model parameters: water depth (WD), sedi-
ment sound speed (cyq), basement sound speed increase
(Ac), sediment thickness (d), and sediment attenuation
(@eq), With all other parameters fixed at their optimal values
(using the empirical Bayesian treatment). The same data set
is used in this analysis but with the selected frequencies of
195 and 395 Hz. Therefore, we are finding the PPDs of a
total of seven parameters (the five model parameters plus the
error variances at the two frequencies).

Figure 8 shows the full Bayesian approach for the multi-
frequency case: (a) the frequency-dependent error variances
are considered and (b) the error variances are assumed con-
stant over frequencies. The error variances do not vary too
much across the processed frequencies, therefore, the PPDs
of the model parameters do not have a significant difference
between the two treatments of error variances.

Figure 9 shows the posterior marginal distributions of
error variance obtained from the numerical integration: (a)
F=195 Hz and (b) F=395 Hz. The error estimates from the
other examined approaches are superimposed on the PPD of
v. The dotted line represents the ambient noise estimated
directly from the data (corresponding to SNR=23 and 21 dB,
respectively) and the dashed line denotes the ML estimate of
the error variance. The marginal distribution of the error
variance captures that the effective error variance may be
larger than the ambient noise estimate.

In the experimental data, with the high SNR, the
modeling error in the parametrized environment is the
dominant source of error in the estimation procedure.
Because the modeling error may not be independent
across the receivers, the IID assumption in the likelihood
function is no longer appropriate; a full data
uncertainty covariance matrix Cp is needed. Therefore,
to describe the data uncertainty for N complex-valued
measurements, a huge number of quantities, N>, needs to
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be estimated. A way to fix the defect of the likelihood
function is to down sample the observations as adopted
by Ref. 26. In the experimental data used here,
due to the large separation of the array elements
(5-m interelement spacing and 15 hydrophones in total),
it was not necessary to down sample the data.

Finally, the comparison of PPDs for the model param-
eters using different error variance estimates is shown in Fig.
10. The PPD of the model parameters using the ambient
noise variance (dotted) yields too optimistic an uncertainty
estimate. The PPD based on the ML estimate of error
variance (dash) is similar to the one obtained by the full
Bayesian approach (solid). It is noteworthy that, in the
1-D marginal PPDs of WD and cyq4, the location of the
peaks varies with different values of error variance. The
reason is that there exists nonsymmetrically distributed HPD
contours in the joint marginal PPD, and when using a lower
value of the error variance, the lower probability density
in the 2-D marginal contributes more into the 1-D marginal
distribution.

VI. CONCLUSIONS

This paper describes several methods for handling nui-
sance parameters based on both the full and empirical Baye-
sian approaches. In a full Bayesian approach, the inference is
made from the joint posterior probability distribution (PPD)
of the model parameters and the nuisance parameters,
whereas in an empirical Bayesian approach the PPD of the
model parameters is conditioned on a point estimate of the
nuisance parameters. The full Bayesian approach takes more
complete accounting of uncertainty in the nuisance param-
eters, but it is computationally expensive. The applications of
the approaches to the error variance parameters in a Gaussian
error model were examined.

Following a full Bayesian methodology, the analytic ex-
pression of PPD of the model parameters was derived for
both single frequency [Eq. (23)] and multi-frequency data
[Eq. (24)]. The results (Figs. 3, 6, and 7) show that the PPD
of the model parameters using this analytic formula cannot
be distinguished from that using numerical integration of the
full Bayesian approach. Therefore, the analytic integration of
the full Bayesian approach is theoretically and computation-
ally preferred.

The analytic expression for the PPD of the error vari-
ance was derived and follows the so-called inverse chi-
square distribution. This analytic result agrees well with the
distribution obtained using numerical integration of the full
Bayesian approach.

The empirical Bayesian approach using either the maxi-
mum likelihood or the maximum a posteriori estimate of the
error variance was implemented. For the examples presented
here, the 1-D PPDs of the model parameters using both the
empirical and full Bayesian approaches yield similar results,
but this is most likely not true in general.
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APPENDIX: ADDITIVE NOISE

For the case that the observed data are written in the
form of the cross-spectral density matrix (CSDM), the noise-
contaminated data with error variance v, are synthesized,
based on true data d, by

R=dd" + vl (A1)

The array signal-to-noise ratio (SNR) is the ratio of signal
and noise powers:

dfd
SNR =10 log —.

(A2)
Yo
Equation (11) can be generalized as
d(m)'Rd
bo(m) =Tr R{l - M] (A3)
TrR

Note that the replica field vector d(m) is computed from an
acoustic model for the vector of unknown parameters m and
is normalized to have unit length. If we normalize the objec-
tive function by the trace of the CSDM, denoted by Tr R (the
total intensity of the acoustic field recorded at the receiv-
ers),

¢o(m)
m)=—_—, A4
bu(m) =" (A4)
the noise estimate needs to be scaled by Tr R,
v v
v, = = T—O (A5)
Tr d'd + Ny,
and is written in terms of the array SNR
1
Vn= 1 0SNRI0 . (A6)

Huang et al.: Uncertainty analysis



'J. P. Hermand and P. Gerstoft, “Inversion of broadband multi-tone acoustic
data from the YELLOW SHARK summer experiment,” IEEE J. Ocean.
Eng. 21, 324-346 (1996).

P, Gerstoft and C. F. Mecklenbriuker, “Ocean acoustic inversion with
estimation of a posteriori probability distributions,” J. Acoust. Soc. Am.
104, 808-819 (1998).

N.R. Chapman and C. E. Lindsay, “Matched-field inversion for geoacous-
tic model parameters in shallow water,” IEEE J. Ocean. Eng. 21(4), 347—
354 (1996).

“S. E. Dosso, “Quantifying uncertainty in geoacoustic inversion. I. A fast
Gibbs sampler approach,” J. Acoust. Soc. Am. 111, 129-142 (2002).

’S. E. Dosso and P. L. Nielsen, “Quantifying uncertainty in geoacoustic
inversion. II. Application to broadband, shallow-water data,” J. Acoust.
Soc. Am. 111, 143-159 (2002).

°C. E. Mecklenbriuker, P. Gerstoft, J. Bohme, and P. Chung, “Hypothesis
testing for geoacoustic environmental models using likelihood ratio,” J.
Acoust. Soc. Am. 105, 1738-1748 (1999).

D. Battle, P. Gerstoft, W. S. Hodgkiss, W. A. Kuperman, and P. Nielsen,
“Bayesian model selection applied to self-noise geoacoustic inversion,” J.
Acoust. Soc. Am. 116, 2043-2056 (2004).

8B. P. Carlin and T. A. Louis, Bayes and Empirical Bayes Methods for Data
Analysis, 2nd ed. (Chapman and Hall, London, 2000).

7. -H. Michalopoulou and M. Picarelli, “A Gibbs sampling approach to
maximum a posteriori time delay and amplitude estimation,” in Proceed-
ings of IEEE ICASSP 02 (IEEE, New York, 2002), Vol. 3, pp. 3001-3004.

05 E. Dosso, “Probabilistic geoacoustic inversion,” J. Acoust. Soc. Am.
113, 2189-2190 (2003).

C. E Mecklenbriuker and P. Gerstoft, “Objective functions for ocean
acoustic inversion derived by likelihood methods,” J. Comput. Acoust. 8,
259-270 (2000).

12p, Gerstoft, C. -F. Huang, and W. S. Hodgkiss, “Estimation of transmission
loss in the presence of geoacoustic inversion uncertainty,” IEEE J. Ocean.
Eng. (in press 2005).

G. E. P. Box and G. C. Tiao, Bayesian Inference in Statistical Analysis
(Addison-Wesley, Reading, MA, 1992).

“A. B. Baggeroer, W. A. Kuperman, and H. Schmidt, “Matched field pro-
cessing: Source localization in correlated noise as an optimum estimation
problem,” J. Acoust. Soc. Am. 83, 571-587 (1988).

5y, Jeffreys, Theory of Probability (Oxford U.P., Oxford, 1939).

J. Acoust. Soc. Am., Vol. 119, No. 1, January 2006

197, J. K. O Ruanaidh and W. J. Fitzgerald, Numerical Bayesian Methods
Applied to Signal Processing, Statistics and Computing Series (Springer,
New York, 1996).

""The derivation of the following formula Eq. (23) requires substituting Egs.
(10) and (18) into Eq. (22) and completing the integrand by the use of the
gamma integral of the form [+ exp (—ax) dx=a~"T'(m). Strictly speak-
ing, the limits of the integration do not have to go from zero to infinity,
since this prior is multiplied by a Gaussian likelihood function which dies
away rapidly as v—0 and v— o (e.g., Refs. 16 and 27).

18p Gerstoft, SAGA Users Guide 5.0, an Inversion Software Package, An
updated version of “SAGA Users Guide 2.0, an inversion software pack-
age,” SACLANT Undersea Research Centre, SM—333, La Spezia, Italy,
1997.

%C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for
Scientists and Engineers: Asymptotic Methods and Perturbation Theory
(Springer-Verlag, New York, 1999).

2A. Malinverno, “A Bayesian criterion for simplicity in inverse problem
parametrization,” Geophys. J. Int. 140, 267-285 (2000).

*!Note that the symbol m refers to both MAP and ML estimates of m. In the
absence of prior information on m, the m that maximizes the likelihood
function, the ML solution, is the same as the MAP solution that maximizes
the posterior pdf p(m|d).

27, Tolstoy, N. R. Chapman, and G. Brooke, “Workshop’97: Benchmark-
ing for geoacoustic inversion in shallow water,” J. Comput. Acoust.
6(1&2), 1-28 (1998).

ZE, K. Westwood, C. T. Tindle, and N. R. Chapman, “A normal mode
model for acoustoelastic ocean environments,” J. Acoust. Soc. Am. 100,
3631-3645 (1996).

*C.-F. Huang and W. S. Hodgkiss, “Matched field geoacoustic inversion of
low frequency source tow data from the ASTAEX East China Sea experi-
ment,” IEEE J. Ocean. Eng. 29, 952-963 (2004).

F. B. Jensen and M. C. Ferla, SNAP: the SACLANTCEN normal-mode
acoustic propagation model, SACLANT Undersea Research Centre, SM—
121, La Spezia, Italy, 1979.

M. J. Wilmut, S. E. Dosso, and J. Dettmer, “Data error estimation for
matched-field geoacoustic inversion,” J. Acoust. Soc. Am. 115(5), 2408—
2409 (2004).

Y1G. L. Bretthorst, Bayesian Spectrum Analysis and Parameter Estimation
(Springer-Verlag, New York, 1988).

Huang et al.: Uncertainty analysis 207





