
UC Davis
IDAV Publications

Title
Interactive Visualization Of Very Large Datasets Using An Out-of-Core Point-based Approach

Permalink
https://escholarship.org/uc/item/88p1b4db

Authors
Nuber, Christof
Bruckschen, Ralph W.
Hamann, Bernd
et al.

Publication Date
2003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/88p1b4db
https://escholarship.org/uc/item/88p1b4db#author
https://escholarship.org
http://www.cdlib.org/


Interactive Visualization of Very Large Datasets Using an
Out-of-Core Point-based Approach

Christof Nuber∗, Ralph W. Bruckschen, Bernd Hamann and Kenneth I. Joy

Center for Image Processing and Integrated Computing (CIPIC)
Department of Computer Science

University of California
One Shields Avenue

Davis, CA 95616-8562

Abstract

We present an out-of-core, point-based approach for inter-
active rendering of very large volumetric datasets. Our ap-
proach is based on the assumption that the density of voxels
with the same function-value in large discretized volumetric
scalar fields is high enough to be used to render contour and
volume approximations using points to represent the vox-
els. This approach allows us to visualize isovalue-structures
in high-resolution datasets at full resolution and interactive
frame rates.

In a pre-processing step, we sort the voxels by function-
value and store them in a file together with a look-up table
for later interactive retrieval. The displayed voxelsets can
then be changed in real time by determining their locations
in the file and loading them into memory. As we store po-
sition, and not function-value, the volumetric dimension of
a dataset to be handled by our approach is limited by three
factors: the number of points that can be rendered to achieve
a sufficient frame rate, the number of bits used to store the
position data, and the maximum file-size supported by the
operating system. Depending on the spatial distribution of
the voxels among the function-values selected, the result is
either one or multiple contours or “isoclouds”.

Keywords: Point-based Rendering, Isovalue, Volume Ren-
dering, Out of Core, Data Exploration

1 Introduction

Well established 3D volumetric data visualization tech-
niques, like isosurface extraction and volume rendering,
usually cannot support real-time interaction with massive
datasets. New ways of accessing and displaying large vol-
umetric datasets need to be investigated.

Isosurface extraction is the process of computing a surface
C(v) = {x|F (x) = v}, whereF is a scalar function defined
over a 3D domain andv the function value defining the iso-
surface. This process is done in two phases, a search phase

∗E-mail: {cnuber,rwbruckschen,bhamann,kijoy}@ucdavis.edu

to identify the cells of a dataset that defines the isosurface
(active cells) and a generation phase, where the isosurface is
extracted using the active cells. In our approach, we perform
the search phase in a pre-processing step and reduce the con-
tour generation phase to the task of loading and displaying
the active cells using voxels.

Isosurface extraction algorithms usually assume that a
trivariate scalar field is represented on a grid in an at least
C0-continuous fashion. Isosurface extraction methods gen-
erate large numbers of triangles, and one must store posi-
tional and connectivity information for the resulting triangle-
meshes. For real-time rendering applications, the number
of triangles becomes a limiting factor. Multi-resolution rep-
resentations, mesh reduction and view-dependent rendering
are techniques used to cope with massive triangle-based con-
tour visualization. These approaches fail to provide interac-
tive rendering at the highest original resolution for very large
datasets. If translucency, for example, is required, to display
occluded isosurfaces, artefacts can result due to lack of suf-
ficient rendering-hardware support. Mesh-based contour vi-
sualization methods are not suitable when a contour (locally)
degenerates to an actual volumetric isoregion, like a contigu-
ous set of neighboring voxels. Changes in density can thus
not be displayed.

Hardware-supported volume rendering approaches using
textures have become very popular, exploiting the capabil-
ities of current hardware. Using hardware-supported algo-
rithms, manipulations of volumes can be performed in real
time, and both isosurfaces and isoclouds can be visualized.
The volume to be displayed is restricted by the available
amount of texture memory and the transfer rate between
main and graphic memory. Large datasets must be ren-
dered either at lower resolutions or with distributed render-
ers, where interactive frame rates are required. Affordable
graphics boards, like the GeForce4, provide up to 128MB
of on-board memory, sufficiently enough memory to ren-
der an eight-bit5123 volumetric dataset at interactive rates
at full resolution. The available on-board memory becomes
the limiting factor for hardware-accelerated volume render-
ing methods. When rendering datasets exceeding a size of



a) b)

Figure 1: Visible female dataset: a) upper-body blood sys-
tem, b) bone-marrow color selection.

5123 voxels, different approaches need to be applied.
Our approach is based on the principle of reducing the

amount of data that needs to be transferred to the graphics
hardware for rendering. The general idea is to use a dis-
continuous, point-based approach to visualize contours using
point (= small volumetric) primitives, which we will sim-
ply refer to as points. Due to the usage of points and the
assumption that the point density is “high enough,” we do
not rely upon additional information, like connectivity and
topology, to render a contour. This approach allows us to
render contours of very large volumetric datasets at the high-
est possible resolution in real time (Fig. 1 shows pictures
generated for the visible female dataset). By using out-of-
core techniques the limiting factor for interactive rendering
of datasets, namely available memory, becomes the size of
the hard-drive, which allows us to handle datasets that are
much too large to fit into graphic or main memory.

In our out-of-core method, a given gridded dataset is trans-
formed from grid space to a color-space representation by
sorting voxels according to their colors (which, in turn, are
defined by the original function values). For each color, a
list of voxels containing the coordinates of all voxels is gen-
erated. When a value is selected, we access the list of voxels
already computed and stored on disk. Thus, for each value
only one seek/read operation is required, which allows us to
access data in real time. Selecting consecutively stored val-
ues reduces the number of seek/read operations further.

2 Related Work

Point-based rendering is used in several applications to dis-
play both large point-based datasets and surfaces. Especially
for complex surfaces that would require a large number of

triangles for surface-based discretization, point-based ren-
dering using splatting techniques has become a powerful al-
ternative. Cline et al. [1] applied point-based rendering to
render complex surfaces inherent in medical datasets, using
their “dividing-cubes” algorithm. They discovered that, with
decreasing triangle size, it is more efficient with respect to
memory and time to render point primitives when triangle
size approaches pixel size. Peng et al. [2] used point-based
rendering to render complex surfaces at different levels of
resolution by sampling a given surface and splatting only
points. Zwicker et al. [3] used a texture mapping approach
for splats to render point-based datasets acquired by laser-
range and optical scanners. They also developed a technique
called “EWA volume splatting” [4], using splatting for direct
volume rendering.

Out-of-core approaches have been used to speed up and
simplify the generation of isosurfaces , e.g., by optimizing
the selection of active cells. Livnat et al. [5] introduced a
near-optimal isosurface extraction approach (NOISE), using
a kd-tree-based search method to identify active cells. Shen
et al. [6] extended the NOISE approach for both sequen-
tial and parallel isosurface extraction by using a regular 2D
lattice instead of akd-tree. Cignoni et al. [7] accelerated
isosurface extraction by using interval trees to locate active
cells for a given isovalue. Chiang and Silva [8] introduced
an I/O-optimal approach of isosurface extraction to speed
up the search for active cells for an isosurface. Chiang et
al. [9] improved this approach by using a two-level index-
ing scheme, which further reduces main memory and disk
space requirements. Bajaj et al. [10] developed a parallel ac-
celerated contouring approach that partitions large datasets
into multiple levels of granularity to achieve load balancing
and disk-access optimization for isosurface extraction. All
these approaches have in common that they attempt to op-
timize the generation of a mesh-based isosurface represen-
tation. Bruckschen et al. [11] and Kuester et al. [12] used
an out-of-core, point-based approach to interactively render
time-varying vector fields in a virtual environment. Pascucci
et al. [13] presented an approach based on a z-ordered space-
filling curve, allowing them to extract arbitrary slices from a
previously re-ordered volumetric dataset at interactive frame
rates, using a homogeneous PC-cluster.

While point-based volume-rendering approaches lack in-
teractivity when it comes to select arbitrary values, as ac-
cessibility of the complete volume for image-generation is
assumed, point-based surface rendering approaches assume
that a surface is already given, and out-of-core approaches
for surfaces are limited to mesh-based isosurface-generation.
No approach is applicable for real-time access and rendering
of arbitrary values within very large volumetric datasets.

3 Approach

The objective for our out-of-core approach is to generate
visualizations that ideally bring out features in very large



datasets and to do this at interactive frame rates, supporting
real-time interaction capabilities. Using a point-based ap-
proach, we convert the volumetric colored dataset from grid
space to color space, sorting points by their color for faster
isovalue-access. Assuming an underlying Cartesian grid and
an RGB-color space, we perform a mapping

fv : (x, y, z) → (r, g, b)

to group the points according to color.
In RGB-color space, a voxelset

V(r,g,b) = {vi|fv(vi) = (r, g, b)} is accessed using the
corresponding color(r, g, b) via the mapping

fc : (r, g, b) → {(x, y, z)}.

This transformation allows us to easily identify and ac-
cess a set of values when the corresponding color is defined,
without the necessity of searching the complete volumetric
dataset.

The color of a point can be determined by the set it be-
longs to. Retrieving the color at a given coordinate is a very
expensive operation. As we are displaying point-sets associ-
ated with a known color value, we are interested in all points
with a given value, not the color of the volume at a given
coordinate.

All voxelsets{V } are stored in one file, together with
a look-up table containing position and length of each set
within the file. As the colors are stored in a linear order
on disk, an indexing scheme for RGB values is needed to
convert a given color to an index. To determine the index
of a given RGB value (encoded by three bytes) we are us-
ing a Morton order scheme [14] that places colors close in
RGB space close to each other on disk. The indexing scheme
can be varied, depending on the underlying dataset (eight-bit
greyscale datasets, for example, do not require any indexing
scheme as the greyscale values can be used as indices). The
only restriction is that the index for the background color
(which depicts points that will be neither encoded nor ren-
dered) equals zero.

Data processing is separated into two stages: preprocess-
ing and data-retrieval. During the preprocessing the data-file
is generated using a two-pass algorithm. For data retrieval
the look-up table is used to read data from disk for render-
ing.

3.1 Morton Order

Morton ordering is a mapping{M : Nm → N} that allows
us to convert the three-tuple index of any RGB color to a
single index within a linear array. It defines a linear index
structure of the leaves of a multidimensional Cartesian grid
in such a way that it optimizes the number of seeks needed
to select an arbitrary subset. In the worst case, only eight
seek-operations are required to access any rectangularn×n
subset in a 3D octree, and usually less seek-operations are
needed. This fact reduces the number of disk accesses based

0

1

2

0 1 2 3 4 5 6 7

3

4

5

6

7

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

16 17 20 21

18 19 22 23

24 25 28 29

26 27 30 31

32 33 36 37

34 35 38 39

40 41 44 45

42 43 46 47

48 49 52 53

50 51 54 55

56 57 60 61

58 59 62 63

0

1

2

0 1 2 3 4 5 6 7

3

4

5

6

7

a) b)

0,0 1,0 0,1 1,1 2,0 3,0 2,1 3,1 0,2 1,2 0,3 1,3 2,2 3,2 2,3 3,3

4,0 5,0 4,1 5,1 6,0 7,0 6,1 7,1 4,2 5,2 4,3 5,3 6,2 7,2 6,3 7,3

0,4 1,4 0,5 1,5 2,4 3,4 2,5 3,5 0,6 1,6 0,7 1,7 2,6 3,6 2,7 3,7

4,4 5,4 4,5 5,5 6,4 7,4 6,5 7,5 4,6 5,6 4,7 5,7 6,6 7,6 6,7 7,7

0-15

16-31

32-47

48-63

c)

Figure 2: Bottom-up construction of a Morton-order for 2D-
arrays: a) lowest level traversal, b) complete traversal, c) re-
sulting order.

on the assumption that multiple voxelsets have similar col-
ors. Using a Morton order for indexing reduces the num-
ber of seek-operations when reading voxelsets of multiple or
similar color/function values when the indices are sorted by
value.

Constructing a Morton order is done by applying a ba-
sic pattern recursively to anm-dimensional structure with
{2n}m elements, where2n is the length of an edge andm
denotes the dimension. Considering a 2D example (see Fig.
2), a2n × 2n dataset is traversed by following az-shaped
curve within each2×2 square. The traversal scheme starts at
the lowest level of resolution, continuing to the next-higher
level until the complete grid has been traversed. This or-
dering scheme allows us to compute the index of any given
n-dimensional vector (here the RGB color) using simple bit-
shift operations.

3.2 Pre-processing

For our out-of-core approach the data is pre-processed us-
ing a two-pass algorithm. In the first pass, a histogramh
is generated, which serves as a base for a look-up tablel
that is used for retrieving the voxelsetsV during rendering.
During the second pass, the data values are stored at the pre-
calculated offsets in the file.

Given the number of occurrences for each contour value,
as contained within the histogramh, we can calculate the
starting pointsV of each voxelsetV in the file and store it
in a second table, the look-up tablel, which is later used for
index-based data access. The look-up tablel is generated
using the histogramh by successively adding the number
of bytesh(r, g, b) needed to store a voxelset on disk. With
M(r, g, b) giving the Morton index andM−1(i) as the in-
verse, the starting positionsV of any voxelsetV is defined



by

sV =
M(r,g,b)−1∑

i=0

h
(
M−1(i)

)
.

Some datasets contain background noise that cannot be
eliminated easily. To avoid storing unnecessary background
noise data, we use “background-images” to clean up the ini-
tial histogram before setting up the look-up table. The his-
togram entries of all the colors found in the background-
images are set to zero, excluding them from further process-
ing during the encoding/storing step.

3.3 Data Encoding

For each valid voxel, we store its coordinates together with
a normalized gradient that can be used as a surface normal
during rendering. Assuming that we have three four-byte-
values for position and three bytes for normal-information,
15 bytes are required for each data-point. In order to keep
file-size small, the number of bits/bytes per voxel on disk
needs to be reduced.

We are quantizing normals using240 points distributed
nearly uniformly over the sphere. We consider these240
normals to be sufficient for rendering. When alpha-blending
is disabled, we can use the normals to shade points, provid-
ing us with the “illusion” of a shaded surface when point-
density is high enough. The use of normals improves the
perception of 3-dimensional features. The240 points are
generated from a dodecahedron by triangulating each pen-
tagon uniformly and performing a four-split operation on the
resulting triangles. This approach results in240 triangles, of
which we use the centers. The angle between two adjacent
normals is approximately 23 degrees. The normals can be
stored using one byte only.

The points are stored with their position relative to the first
valid point, so that the number of bytes needed for each di-
mension is determined by the size of the bounding box of
all valid data-points. This allows us to optimize the num-
ber of bits needed for each data-point. Further, we only
store the number of points for each z-plane. The z-value
is given implicitly, followed by the x- and y-coordinates of
the corresponding points. Assuming that we have255 dif-
ferent colors in a40963 volume, the worst-case scenario for
storage for this encoding-scheme is255 ∗ 4096 ∗ 3 (#col-
ors*#slices*sizeof(counter)) +40963∗1 (normal) +40963∗3
(xy) bytes≈ 256 Gigabytes as compared to448 Gigabytes
when storing the data uncompressed.

This encoding scheme is simple, and it provides suffi-
cient data reduction together with efficient decoding and pre-
dictable storage space, which is necessary for look-up table-
initialization. The size of datasets we can handle is restricted
only by the file-size supported by the operating-system. The
file-size depends mainly on the number of points to encode
and the number of bits/bytes used to store them.

3.4 Data Retrieval

Whenever a new set of voxelsets is selected, we must re-
trieve the voxels from disk in order to render them. As the
voxelsets are stored in a defined order on disk, we access
the voxelsets according to this order. This access can easily
be executed by calculating the Morton index of every color
selected and sorting the codes in ascending order. By access-
ing the datasets in ascending order we exploit the following
facts:

• Similar selected colors are stored next to each other on
disk.

• We avoid unnecessary seek operations by accessing
datasets in a consecutive manner.

• If n datasets are located next to each other in a file, we
can read by performing just one disk-read operation, re-
ducing the number of seek/read operations and avoiding
unnecessary disk rotations.

This type of data retrieval allows us to read the informa-
tion from disk in real time. After the data has been read from
disk, we immediately decode it for rendering.

3.5 Rendering Parameters

The selected voxelsets can be rendered either with or with-
out alpha-blending, providing either a more surface-oriented
view of the dataset or a volume-oriented view. For fine-
tuning, parameters like point-size, alpha- and gamma-value,
and anti-aliasing can be changed interactively. Using GL
commands and GL-point parameter extensions, we render
each voxel as a square or circular splat, with a fixed or
distance-dependent diameter.

The datasets used are colored volumetric datasets based
upon pictures, i.e., colors can slightly change during data ac-
quisition, so that several colors need to be selected in order
to emphasize desired features in a visualization. Especially
within the human body this can be an obstacle, as different
tissues can have the same color. It is possible that points
are selected and rendered that are not of any interest. De-
coding and rendering only points within a pre-defined region
(bounding box) helps us in dealing with this situation and al-
lows us to select more values at a time, as not all points are
decoded and rendered. If the density of color values between
tissues differs, alpha-blending and gamma-correction opera-
tions can be used to reduce the contribution of those points
to the resulting image, see Fig. 5.

3.6 Interactive Value Selection

For interactive value selection, we use a slice of the dataset,
in which colors can be selected and unselected by simply
clicking on the pixels in the slice. Whenever the user selects
one or several pixels/colors, the corresponding voxelsets are



retrieved from disk, decoded and rendered. Using this incre-
mental approach, where only some voxelsets are loaded at a
time, we can provide interactive selection of values. Load-
ing an already defined set of colors can take relatively more
time, depending on the number of colors/voxelsets to load,
their size and their location within the data-file.

3.7 Strengths of Our Approach

Our approach provides a simple and efficient method for dis-
playing contours and features of very large volumetric scalar
fields. The approach is efficient for volumes exceeding reso-
lutions of5123 voxels, and supports also volumes exceeding
40963 voxels. By using point primitives surfaces as well as
local features defined by a fixed function value can be visu-
alized. We can also visualize the original color of the vox-
els. By using indices for data access we can use any data tu-
ple as a sorting/accessing criteria, provided that the indexing
scheme is given. Our approach can also be applied to non-
Cartesian, irregular grids by sampling the given grid onto a
Cartesian grid.

4 Results

We have applied our approach to a human brain dataset and
the visible female dataset. All examples were generated us-
ing a Linux-PC with an Intel Pentium4 2GHz processor, two
GB memory, a GeForce4 Ti4600 and a one Terabyte-RAID-
system for data storage.

4.1 Human Brain Dataset

The human brain dataset was generated by cutting slices off
a frozen brain and taking pictures of the remaining top lay-
ers. The slices were segmented to remove regions showing
ice and deeper layers [15]. The original dataset consisted
of 753 slices in RGB format, each slice having a resolution
of 1050 by 910 pixels with 24 bits each. We are using the
segmented slices stored in PPM-format, requiring 2.1 Giga-
bytes of storage space. The generated datafile has a size of
1.7 Gigabytes.

Figure 3 shows several snapshots of the human brain. The
goal was to visualize blood vessels within the brain. Loading
the complete data from a RAID requires about 0.8 seconds
for the 2409 colors and 114103 points used; the frame rates
achieved are about80fps, at a resolution of1600 × 1200
pixels.

4.2 Visible Female Dataset

The visible female dataset, provided by the National Library
of Medicine, contains 5189 slices taken at 0.33mm distance
consisting of2048× 1216 pixels each (36.1 Gigabyte). The
original images were cropped to1640 × 940 pixels, elimi-
nating outer areas containing no data and reducing the size

a) b)

c) d)

Figure 3: Human brain dataset using different rendering op-
tions: a) colored, with blending, b) colored, no blending, c)
unicolor, with blending, d) unicolor, no blending. (Dataset
courtesy of A. W. Toga, UC Los Angeles)

a) b)

Figure 4: Slice used for visualizing brain-dataset: a) original
slice, b) selected pixels shown in white color.

of the dataset to22.4 Gigabytes. The generated datafile has
a size of12.7 Gigabytes. The surrounding ice was removed
by converting the RGB values to the CMY color model and
setting all colors with a “color-angle” between0.8 × π and
1.5× π to background color.

Figure 4 shows a slice used for interactive selection of
datasets, and Figure 5 shows the resulting images. The num-
ber of selected colors is2299, resulting in1239811 points
to be used for rendering; the displayed volume has been re-
duced to the head-section. Loading and decoding for render-
ing required about21 seconds, the selection-process could be
performed at interactive frame-rates, as the number of colors
added was well below100 colors at a time. The average
frame-rate during rendering at1600×1200 pixels was about
17fps.

Although point selection seems to be relatively sparse



a) b)

c) d)

Figure 5: Renderings of the volume (head section only) for
the selection shown in Fig. 4 b): a) points rendered with-
out blending, b) alpha-blending applied, all voxels rendered
in same color, slice shown, c) alpha blending applied, vox-
els rendered in original colors, d) alpha blending applied,
voxels rendered in original colors with gamma-modification
applied.

when looking at neighboring slides, it can be seen that our
approach can visualize features and structures. Whereas in
Fig. 5 a) no structure or feature can be detected, apply-
ing alpha-blending makes features behind the outer (thin-
ner) layer of points visible. Fine-tuning using alpha-blending
and alpha-correction provides us with even more informa-
tion about the point density for the selected values, see
Fig. 5 b) - d).

Dataset Human Brain Visible Female Visible Female
(Brain) (Bone Marrow)

original size 2.1 GB 22.4 GB 22.4 GB
size of datafile 1.7 GB 13.6 GB 13.6 GB
number of colors 330460 1333041 1333041
colors selected 2409 2299 897
points rendered 114103 1239811 7057825
initial load time 0.8s 21s 7s
fps (1600× 1200) 80 17 3

Table 1: Load- and rendering times for datasets.

Figure 6 shows pictures of the complete visible female
dataset with bone-marrow structure selected for rendering.
In Figure 6 a) it can be seen that the selection also includes

a) b) c)

Figure 6: Visible female dataset (bone-marrow selected): a)
points rendered without blending, b) alpha-blending applied,
c) alpha-blending applied, gamma-value changed.

points of the skin and muscular tissue; applying alpha-
blending makes the internal bone structure visible, see Fig-
ure 6 b) and c).

Table 1 provides an overview of loading times and frame
rates for the pictures shown. It can be seen that we can pro-
vide interactive visualization at reasonable frame rates for
even the largest datasets.

5 Conclusions and Future Work

We have introduced an interactive technique to render large
discretized volumetric scalar field datasets in real time, al-
lowing a user to interactively change the data being dis-
played. Using our scheme, this technique supports fast
and efficient means of accessing and displaying contours
and bringing out features generated by several values, or
value ranges, which is especially advantageous for datasets
with no “inherent” dedicated isosurfaces like colored medi-
cal datasets.

Our approach supports the generation of images of large
datasets rendered at full resolution. We have shown that,
with a sufficient density of points, structures and regions can
be detected easily in rendered images. Our method can dis-
play contours using multiple isovalues. Our technique sup-
ports features like color preserving and translucency, and it
does not depend on high-performance system hardware; it
does not suffer from limited buffer-fill rates, as only points,
and not polygons, are drawn.

Our technique can also be applied to more general multi-
variate scalar datasets, either using Morton-ordering inn di-
mensions or another appropriate ordering scheme that sorts



similar vectors (or vectors that are likely to be selected to-
gether) in a linear order so that they are close to each other.
Our approach can also be used for time-varying datasets.
Change of time is just one more parameter used to select an
isosurface. Adding a temporal dimension does not affect pre-
processing of the data. Changes in isovalue and change of
time-step require us to only reload new information, which
can be done in real time.

The basic principle of our out-of-core approach is not re-
stricted to point-based rendering. It can be adapted to any
technique that supports on-line re-loading of data. Neverthe-
less, point-based rendering provides several advantages with
respect to performance due to the simplicity of the primi-
tives used for rendering. The size of the used datasets are
large, but random file access is important for this out-of-
core-approach, so any arbitrary compression will be reduced
to the single voxelsets on disk. As no ordering of the vox-
els within a set is needed, different storage/compression ap-
proaches could be investigated exploiting re-ordering of the
voxels in a set.

In order to improve visual perception of 3D structures,
a shadow model should be added that supports simple and
efficient shadow calculations for point-based contour ren-
derings. For better surface visualization, we plan to use
both the direction and the size of the gradient, allowing us
to emphasize high-gradient regions. Especially for datasets
with low values (and thus dark colors), or greyscale/single-
valued datasets, an extended color-transfer function needs to
be added, allowing a user to brighten and change the color
of the displayed contours. A value-transfer function that
changes a value before loading the data from disk, and thus
changes the criterion for selecting and grouping contour val-
ues, might also be beneficial in this context.

Acknowledgments

This work was supported by the National Science Founda-
tion under contract ACI 9624034 (CAREER Award) and
ACI 0222909, through the Large Scientific and Software
Data Set Visualization (LSSDSV) program under contract
ACI 9982251, and through the National Partnership for Ad-
vanced Computational Infrastructure (NPACI); the National
Institute of Mental Health and the National Science Foun-
dation under contract NIMH 2 P20 MH60975-06A2 and
the Lawrence Livermore National Laboratory under ASCI
ASAP Level-2 Memorandum Agreement B347878 and un-
der Memorandum Agreement B503159 We thank the mem-
bers of the Visualization and Graphics Research Group at
the Center for Image Processing and Integrated Computing
(CIPIC) and the Center for Neuroscience at the University of
California, Davis.

References

[1] H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Craw-
ford, and B. C. Teeter, “Two algorithms for the
three-dimensional construction of tomograms,”Medi-
cal Physics, vol. 15, pp. 320–327, June 1988.

[2] Q. Peng, W. Hua, and X. Yang, “A new approach of
point-based rendering,” inProceedings of the Com-
puter Graphics International 2001, pp. 275–282, IEEE,
Computer Society Press, July 2001.

[3] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Sur-
face splatting,” inProceedings of SIGGRAPH 2001,
(New York), pp. 275–282, ACM Press, Aug. 12–17
2001.

[4] M. Zwicker, H. Pfister, J. van Baar, and M. Gross,
“EWA volume splatting,” inProceedings of Visualiza-
tion 2001, IEEE, Computer Society Press, Oct. 12–17
2001.

[5] Y. Livnat, H. Shen, and C. Johnson, “A near op-
timal isosurface extraction algorithm using the span
space,”IEEE Transactions on Visualization and Com-
puter Graphics, vol. 2, pp. 73–84, Mar. 1996.

[6] H.-W. Shen, C. Hansen, U. Livnat, and C. Johnson,
“Isosurfacing in span space with utmost efficiency (IS-
SUE),” in IEEE Visualization ’96, pp. 287–294, 496,
IEEE, Computer Society Press, Oct. 1996.

[7] P. Cignoni, P.Marino, C. Montani, E. Puppo, and
R. Scopigno, “Speeding up isosurface extraction using
interval trees,”IEEE Transactions on Visualization and
Computer Graphics, vol. 3, pp. 158–170, Apr./June
1997.

[8] Y.-J. Chiang and C. Silva, “I/O optimal isosurface ex-
traction,” in IEEE Visualization ’97, pp. 293–300, 554,
IEEE, Computer Society Press, Oct. 1997.

[9] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder, “Interac-
tive out-of-core isosurface extraction,” inIEEE Visual-
ization ’98, pp. 167–174, 530, IEEE, Computer Society
Press, Oct. 1998.

[10] C. Bajaj, V. Pascucci, D. Thompson, and X. Zhang,
“Parallel accelerated isocontouring for out-of-core vi-
sualization,” inProceedings of Parallel Visualization
and Graphics Symposium 1999, pp. 97–122, IEEE,
Oct. 25–26 1999.

[11] R. W. Bruckschen, F. Kuester, B. Hamann, and K. I.
Joy, “Real-time out-of-core visualization of particle
traces,” in IEEE Symposium on Parallel and Large-
data Visualization and Graphics (PVG 2001)(A. H.
D.E. Breen and A. Koning, eds.), (Los Alamitos, Cal-
ifornia), pp. 45–49, IEEE, IEEE Computer Society
Press, 2001.



[12] F. Kuester, R. W. Bruckschen, B. Hamann, and K. I.
Joy, “Visualization of particle traces in virtual environ-
ments,” inACM Symposium on Virtual Reality Software
& Technology 2001, pp. 151–157, ACM, ACM Press,
New York, NY, USA, November 2001.

[13] V. Pascucci and R. J. Frank, “Global static indexing
for real-time exploration of very large regular grids,”
in Proceedings of Supercomputing 2001, ACM, 2001.

[14] H. J. Samet,Design and Analysis of Spatial Data
Structures: Quadtrees, Octrees, and other Hierarchi-
cal Methods. Addison-Wesley, 1989.

[15] I. Takanashi, E. Lum, K.-L. Ma, J. Meyer, B. Hamann,
and A. J. Olson, “Segmentation and 3d visualization of
high-resolution human brain cryosections,” inVisual-
ization and Data Analysis 2002(R. Erbacher, P. Chen,
M. Groehn, J. Roberts, and C. Wittenbrink, eds.),
vol. 4665, (Bellingham, Washington), pp. 55–61, SPIE
- The International Society for Optical Engineering,
2002.

Christof Nuber received his Diploma degree in computer
science and engineering (Dipl. Inf.) from the University of
Kaiserslautern, Germany, in 1995. Between 1995 and 2001
he was working as a computer scientist at Daimler Chrysler
Aerospace Germany, focusing on virtual reality techniques
and their application during the product development life cy-
cle. He received his Doctorate degree (Dr. rer. nat.) in
2001 from the University of Kaiserslautern. He is currently
working at the “Center for Image Processing and Integrated
Computing” (CIPIC) at UC Davis. His special interests are
virtual reality and visualization of very large datasets.

Ralph W. Bruckschen received his degree in mathematics
(Dipl. Math.) at the University of Paderborn, Germany, in
1999. During his studies he was working on large scale
CFD visualization in virtual environments. Between 1999
and 2000 he was working as a software developer for the
Vircinity IT Consulting GmbH in Stuttgart, Germany. He is
currently working at the “Center for Image Processing and
Integrated Computing” (CIPIC) at UC Davis. His special in-
terests are out-of-core algorithms and interactive visualiza-
tion of very large datasets.

Bernd Hamann serves as co-director of a UC Davis Orga-
nized Research Unit, the “Center for Image Processing and
Integrated Computing” (CIPIC), University of California,
Davis. He is a full professor of computer science at the Uni-
versity of California, Davis. His main research interests are

visualization, geometric modeling, computer graphics, and
virtual reality. His current research focuses on hierarchical
representations and visualization methods for very large sci-
entific data sets. Bernd Hamann received a B.S. in computer
science, a B.S. in mathematics, and an M.S. in computer sci-
ence from the Technical University of Braunschweig, Ger-
many. He received his Ph.D. in computer science from Ari-
zona State University in 1991. Hamann is also a Faculty
Computer Scientist at Lawrence Berkeley National Labora-
tory, a Participating Guest researcher at Lawrence Livermore
National Laboratory, and an adjunct faculty in the Depart-
ment of Computer Science at Mississippi State University.

Kenneth I. Joy is a Professor in the Computer Science De-
partment at the University of California at Davis. He came to
UC Davis in 1980 in the Department of Mathematics and was
a founding member of the Computer Science Department in
1983. Professor Joy’s research areas are visualization, geo-
metric modeling, and computer graphics. Professor Joy re-
ceived a B.A. (1968) and M.A. (1972) in Mathematics from
UCLA, and a Ph.D. (1976) from the University of Colorado,
Boulder. He has worked a number of years in the computer
industry, and consults regularly on computer graphics, mas-
sive data visualization and geometric modeling. He is a par-
ticipating guest researcher at the Center for Applied Scien-
tific Computing and serves on the board of advisors of the
Center for Computational Engineering at Lawrence Liver-
more National Laboratory.




