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Abstract

Using X-ray Thomson Scattering to Measure Plasma Conditions in Warm Dense Matter
Experiments on the OMEGA Laser

by

Alison Marie-Anne Saunders

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Roger W. Falcone, Co-chair

Doctor Tilo Döppner, Co-chair

High energy density physics (HEDP) is an emerging field that seeks to investigate the
properties of matter at extreme conditions. High energy density conditions occur in materials
with pressures exceeding 1 Mbar, or pressures that exceed Earth’s atmospheric pressure by
a factor of more than a million. A regime of HEDP of particular interest is warm dense
matter (WDM) physics, which describes the behavior of materials at near solid densities
and 10’s of eV temperatures. WDM occurs in astrophysical objects, such as giant planets
and brown dwarfs, and is also generated in inertial confinement fusion (ICF) experiments.
X-ray Thomson scattering (XRTS) o↵ers a powerful tool to probe the equation of state of
WDM. XRTS spectra consist of two components: elastically scattered photons with the
frequency of the original x-ray source and inelastically scattered photons that are down-
shifted in frequency. The Compton-shifted profile of inelastically scattered x-rays can be
analyzed to return the sample’s electron density and electron temperature. The ratio of
elastically to inelastically scattered x-rays relates to the number of tightly bound versus free
electrons, and thus reflects the ionization state.

This thesis discusses the results of XRTS experiments onWDM performed at the OMEGA
Laser facility. The first experiment presents and discusses XRTS results from 1 mm diamond
spheres. The scattering spectra show evidence of higher ionization than predicted by several
commonly-applied ionization models. A second experiment analyzed the contributions to
elastic scattering from a small argon impurity in imploding beryllium capsules. The exper-
iment found that less than 1 at.% of argon significantly a↵ects the elastic scattering signal
strength, and concluded that impurities in a sample should be considered before drawing
conclusions from elastic scattering signals. The final experiment uses XRTS to measure
the electron temperature and ionization state in isochorically heated materials used in ion
stopping power experiments. The results from these experiments demonstrate the power of
XRTS to measure ionization in WDM to benchmark theoretical modeling.
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To Austin

Research in high pressure physics can cause stress and strain, but you help me remember
where life’s true value lies. Thank you for reminding me that sparkly diamonds only exist

because they, too, were once under pressure.
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Chapter 1

Introduction to High Energy Density
Physics

1.1 High Energy Density Physics

High energy density physics (HEDP) is a multidisciplinary field that combines elements of
plasma physics, condensed matter physics, material science, and mechanical engineering to
describe the behavior of matter at extreme conditions. A material at “high energy density”
conditions has a pressure of greater than 1 Mbar, which is 106 times greater than earth’s
atmospheric pressure [1]. Another benchmarking metric for HEDP conditions is the sun,
which corresponds with temperatures on the order of 6000 to 1.5⇥ 107 K, or 0.5 to 1200 eV
and densities on the order of 1 to 100 g cm�3 [1]. These conditions are hotter than typically
described by condensed matter physics and denser than typically described by traditional
plasma physics, but matter in these regimes shows behavior characteristic of both condensed
matter and plasma physics. The fields of high energy and nuclear physics also involve ex-
treme temperatures and densities, but seek to understand the properties and interactions of
subatomic particles; experiments in these fields often accelerate a small number of particles
to energies on the scale of a particle’s rest mass to break them apart and study their compo-
sitions. In contrast, HEDP experiments involve comparatively more mass and experiments
measure the collective and individual behavior of the atoms under extreme pressures. The
advent of high-power laser and pulsed power facilities over the past few decades drove the
development of experimental HEDP, as these facilities generate extreme conditions in a con-
trolled environment and o↵er the ability to make high precision measurements of relevant
physical properties [1, 2]. Because of its multidisciplinary nature, HEDP was described as the
“X-games of Contemporary Science” in a 2003 report that sought to outline the objectives
and challenges that the burgeoning field faced [1]. The report stressed the importance of
training a new generation of scientists in the field of HEDP to support critical applications,
such as inertial confinement fusion research and the stockpile stewardship program. The
report also outlined the challenges of HEDP research, as HEDP is a regime of physics in
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which many of our traditional models that describe matter begin to break down; much more
experimental validation of models is needed, and new experimental techniques are constantly
being developed to drive understanding of HED materials to new levels.

Matter at HED conditions behaves fundamentally di↵erently than matter found on the
surface of the earth. Water is o↵ered as an example of an incompressible fluid in an intro-
ductory physics course, but the approximation breaks down at pressures exceeding 1 Mbar
as atoms begin to ionize and dramatic changes in conventional chemistry occur. Above 10
Mbar, the chemistry that rules the periodic table becomes invalid, and the material resists
compression through thermal pressure. Between 100 Mbar and 10 Gbar, continuum lowering
and pressure-induced ionization begin to dominate the material’s response to pressure, and
above 100 Gbar, the material becomes dominated by radiation e↵ects and begins to act like
a photon gas. To date, there lacks su�cient experimental data at these high energy densi-
ties, marking HEDP as an area of physics with much room for progress and experimental
validation of models that seeks to describe this behavior.

Figure 1.1 shows a phase-space plot of di↵erent regions of high energy density physics
and labels di↵erent physical phenomena and objects, such as the big bang and giant planets,
in terms of their densities and temperatures. The two black lines in the middle of the plot
denote the points at which the thermal energy equals either the Coulomb energy or the
Fermi energy. Far above the lines in the phase-space plot, the temperature is hot enough
such that the plasmas may be considered as classical plasmas. Near and below the lines, the
plasmas are highly coupled and degenerate. The di↵erent regions of matter are dominated
by di↵erent forces and require di↵erent treatment in order to predict their behavior. The
solid colored lines trace the conditions in astrophysical objects such as brown dwarfs and
large planets; from left to right, they show the conditions from the outer to inner radii of the
objects. The plot shows the variety of conditions described by high energy density physics
and the applicability of HEDP to many astrophysics objects and phenomena, such as the
big bang. The vast phase-space of HEDP means many competing physical forces must be
considered in the generation of theoretical models. Because of the competing forces, there
is uncertainty as to what regimes are dominated by what forces, marking the importance
of experimental validation. Figure 1.1 also shows the regions of HEDP that are accessible
by the currently available experimental facilities (for more details about the facilities, see
Section 1.2). To date, much of the phase space remains experimentally inaccessible, but the
regions we can access still o↵er the ability to probe conditions relevant to many astrophysical
objects, such as the sun and giant planets. The field of HEDP is a new and exciting field
that still has much room for innovation.

1.1.1 Warm Dense Matter

An important subset of high energy density material is warm dense matter (WDM), which
lies in the regime where multiple forces dominate the behavior of the material and standard
simplifying approximations cannot be made. Much current research focuses on investigating
the properties of WDM due to the significant modeling uncertainties and the relevance of
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Figure 1.1: A phase-space plot to categorize the di↵erent areas of high energy density physics.
Two black lines denote the points at which the thermal energy is equal to the Coulomb
energy and to the Fermi energy. Far above the lines, the plasmas can be described by classical
plasma physics. Close to the lines and below, the plasmas are degenerate and highly coupled.
The colored solid density lines indicate the phase-space trajectories of astrophysical objects,
such as giant planets and brown dwarfs; the lines trace the conditions from the outer to
inner radii of the objects from left to right. Also shown are the regions accessible by the
current experimental facilities. Republished with permission of National Academies Press,
from Frontiers in High Energy Density Physics: The X-Games of Contemporary Science [1],
National Research Council, 2003; permission conveyed through Copyright Clearance Center,
Inc.

WDM to planetary interiors, brown dwarfs, and inertial confinement fusion [3, 4, 5, 6, 7, 8, 9,
10, 11]. WDM refers to materials with near solid densities and temperatures between 1 and
10’s of eV [2]. More specifically, we quantify the WDM regime with several dimensionless
parameters to describe the competing forces that dominate the material’s behavior. One
parameter is the plasma coupling parameter, �, which is defined as the ratio of Coulomb
potential energy to thermal energy and is written as:

� =
Z2e2

r0kBT
, (1.1)
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where Z is the ion charge state, e is the charge of an electron, r0 is the average distance
between ions, defined as r0 = (3/4⇡ni)1/3, ni is the ion density, kB is the Boltzmann constant,
and T is the temperature [12, 11]. For WDM, � ⇠ 1, which means the plasma is moderately
coupled and the plasma experiences long- and short-range order due to correlations between
the atoms and the ions; in addition, the atoms start to behave in a way that is coupled to
the plasma properties [11]. The coupled behavior contrasts with an ideal plasma ( � ⌧ 1),
in which atoms are fully described by their isolated motions and the plasma can be treated
as a thermal bath. Another way of stating that the coupling parameter in WDM is ⇠ 1
is to say that the average spacing between ions, r0, is on the order of the Debye screening
length [13]:

�D =

r
kbT

4⇡niZ2e2
. (1.2)

This means that there are not enough electrons inside a Debye sphere to screen other particles
from the Coulomb potential. Charge screening is a fundamental property of classical plasmas,
but cannot be assumed in the WDM regime.

Another dimensionless parameter used to describe WDM is the electron degeneracy pa-
rameter, ⇥, which is the ratio of the thermal energy to the Fermi energy:

⇥ =
kBT

Ef

, (1.3)

where the Fermi energy EF = h̄2/2me(3⇡2ne)2/3, me is the mass of an electron, and ne is
the electron density [11]. When ⇥ � 1, the plasma acts classically and the electrons can be
described by the Maxwell-Boltzmann energy distribution. When ⇥ ⌧ 1, the electrons are
fully degenerate and their energy levels can be described by the Fermi-Dirac distribution [12].
In WDM, ⇥ ⇠ 1, which means the plasma is moderately degenerate and both quantum and
thermal e↵ects must be considered. The challenge in the warm dense matter regime is that
the conventional diagnostic techniques and standard plasma theory assumptions that treat
correlations and quantum e↵ects as perturbations are no longer applicable [11, 14]. Thus,
many of the models used to describe matter in these conditions break down [2, 11, 14]. It is
therefore of interest to the HEDP community to generate well characterized WDM states in
the laboratory to test models in this regime.

1.1.2 Astrophysical Applications

As seen in Figure 1.1 in Section 1.1, research in high energy density and warm dense matter
physics is relevant to the study of astrophysical objects. One such application uses WDM
physics to understand planetary formation; the interiors of planets the size Saturn to those a
few times greater than Jupiter consist of matter at pressures exceeding 10 Mbar [15]. Much
current research seeks to understand the atomic makeup and structure of planetary cores,
which informs planetary formation theories [15, 16, 17, 18]. Some theories predict that at the
pressures of Jupiter’s core, hydrogen and helium will become metallic as a result of pressure
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ionization [19, 20, 21, 22, 23]. A metallic core supports a core-accretion planetary formation
model, as opposed to a model that predicts Jovian planets form freely from a gas without
an initial heavy core [16]. The demonstration of metallic hydrogen in a lab has long been
sought as a way to test this theory deriving from WDM physics.

In addition, many WDM experiments seek to investigate the thermodynamics and trans-
port properties of hydrogen and helium at pressures exceeding 10 Mbar in order to un-
derstand the formation of brown dwarfs. The exact process of how they form is not well
understood [19]. A brown dwarf is a sub-stellar object that is the same size as Jupiter but
10 to 100 times as massive. At the lower end of the mass spectrum, a brown dwarf resists
gravitational collapse through Coulomb pressure, but at the higher end, it resists collapse
through degeneracy pressure. In the middle of the mass spectrum, the competing forces of
degeneracy and Coulomb pressure are a trademark of the WDM regime. Brown dwarfs are
not massive enough to fuse hydrogen, but can fuse deuterium, tritium, and lithium. Some
experiments analyze observed emission spectra from brown dwarfs in order to understand
their detailed chemical makeup and fusion products [20]. Laboratory experiments on warm
dense hydrogen and lithium shed light on the underlying structure and behavior of these
massive astrophysical objects.

Another astrophysical object with high energy density conditions is the white dwarf, first
described by Chandrasekhar in 1931 [24]. The formation of a white dwarf happens when a
star fuses all its hydrogen and becomes a red giant. If the red giant doesn’t have enough
energy to fuse carbon or oxygen, an inert core of carbon and oxygen forms at the center and
eventually develops into a white dwarf. Unlike a brown dwarf, the white dwarf doesn’t have
enough energy to fuse any materials, and only degeneracy pressure prevents its collapse. An
average white dwarf is 0.6 solar masses with a radius akin to that of the earth. That means
the material in a white dwarf is highly degenerate, with a density of 104-107 g cm�3. White
dwarfs cool over time and can collapse and form supernovae. The physics of white dwarfs is
still an area of active research, as very little matter exists in such a dense state [25, 26, 27].

Another application of WDM physics with astrophysical implications is diamond pre-
cipitation from a carbon-hydrogen mixture. It is predicted that at the pressures present
in gas giants like Uranus and Neptune, the elements that form the molecular methane gas
environment will begin to phase separate [28]. Furthermore, under the right conditions, the
carbon atoms will begin to form into diamond. The phase separation and diamond formation
were demonstrated in an experiment that used CH4 samples in laser-heated diamond anvil
cells [29]. Experimenters also recently demonstrated the formation of nanodiamonds in an
experiment on shock compressed CH plastic at the Linac Coherent Light Source, at SLAC
National Accelerator Laboratory [30].

Laboratory research of WDM has many applications to astrophysical bodies and helps us
understand the behavior of matter extreme conditions that exists naturally in the universe.



CHAPTER 1. INTRODUCTION TO HIGH ENERGY DENSITY PHYSICS 6

1.1.3 Stockpile Stewardship

Another application of high energy density physics is the nuclear weapons program. A
report titled “Basic research needs for high energy density laboratory physics” labeled the
relationship between unclassified HEDP work and nuclear weapons as the elephant in the
room [31], as often the applications of HEDP to weapons cannot be and are not discussed.
A nuclear weapon passes through the warm and hot dense matter stages as it detonates, so
designing experiments that look at states of matter in those regimes inherently supports our
understanding of how weapons function.

It’s important to keep in mind that a robust HEDP research program allows us to ad-
vance our understanding of weapons without reverting to underground testing of nuclear
devices. Testing can result in radiation pollution, among other potentially grave environ-
mental and political consequences. For that reason alone, it is important to keep the field of
HEDP thriving such that any weapons-related questions that arise can be answered through
controlled laboratory experiments. A large portion of HEDP research remains unclassified so
the scientific community can advance our modeling and experimental capabilities. A fusion
bomb and an inertial confinement fusion reactor both involve compressing hydrogen isotopes
to high densities. Thus, any research in one field promotes research in the other. We as the
scientists rely on our policy makers to ensure that the nuclear deterrent we maintain is seen
as such internationally, and no nuclear weapon will ever be used in combat again.

1.1.4 Inertial Confinement Fusion

One of the primary applications of high energy density physics research today occurs in
the pursuit of laboratory generated inertial confinement fusion (ICF). The goal of these
experiments is to hold fusion material together with inertia long enough such that more
energy is generated by the system than is put in to compress it; that criteria is referred
to as ignition. However, obtaining an ignition reaction in a laboratory has proven to be a
complicated task.

In a thermonuclear weapon, the primary stage of a fission reaction generates tens of
terajoules (⇠ 1013 J) of energy to ignite the secondary, which is where an ignition level
fusion reaction occurs. In a laboratory setting, the amount of available energy is limited to
the energy provided by lasers, which at the National Ignition Facility (see Section 1.2), is on
the order of a few megajoules (⇠ 106 J), nearly six orders of magnitude less than in a weapon.
Because there is less energy available in the lab, the amount of mass in the fusion target
must be smaller than that in a bomb (the mass is also limited by the fact that experimenters
don’t want the reaction to generate enough energy to destroy the facility). Less mass needs
to be compressed more to generate an ignition condition (1000x at the NIF, see following
sections for more detail), and then the experiment su↵ers from the many instabilities that
arise from trying to compress matter by that amount.

Figure 1.2 shows a schematic of the four stages of an inertial confinement fusion reaction.
At the beginning of the reaction, laser beams (shown as blue arrows) heat the outer surface
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of a fusion target, which then causes plasma to ablate at the surface (shown by the orange
arrows). The outer surface of the sphere begins to accelerate inwards (shown by the purple
arrows) due to conservation of momentum. As the sample continues to compress, the central
hot spot reaches pressures akin to those in the center of the sun and fusion reactions begin
to occur. Byproducts of the fusion reactions in the hot spot spread to the outer layers and
cause more fusion reactions to occur; this is known as thermonuclear burn and is the primary
goal of an ICF reaction. Finally, the plasma expands and the pressure drops below what is
necessary to sustain a fusion reaction.

A typical fusion reaction consists of a deuterium and tritium nucleus, as seen in Figure 1.3.
The two atoms must overcome the Coulomb energy barrier to fuse, which requires ⇠ 10 keV
of energy. The fusion cross section, �, can be estimated as a product of a geometrical
cross section of the reaction and a factor that accounts for the transparency of the quantum
tunneling barrier. The highest probability of a fusion reaction occurs at ⇠ 30 keV, an energy
that is a few times higher than the required temperature .

In 1955, John Lawson proposed several criteria to ignite magnetically confined deuterium-
tritium (DT) plasmas [32]. Since then, the concept has been extended to understand the
ignition criteria for inertially confined plasmas [33, 34, 35], and the criteria are known as the
Lawson Criteria. The double-product criterion states:

n⌧ > 1.5⇥ 1014 s cm�3 , (1.4)

where n is the DT density and ⌧ is the confinement time [33]. The double-product Lawson
Criterion is a time-density product that constrains the requirements for an ignition reaction.

Figure 1.2: A schematic of the four stages of an inertial confinement fusion reaction. 1.
Laser beams (shown as blue arrows) heat the outer surface of a fusion target. 2. Plasma
begins to ablate (shown by the orange arrows), which causes the outer surface of the
sphere to accelerate inwards (shown by the purple arrows) by conservation of momentum.
3. The sample continues to compress, and the central hot spot reaches pressures akin to
those in the center of the sun as it begins to ignite. 4. A thermonuclear burn wave
propagates outwards through the fuel from the hot-spot until the target completely dis-
assembles. Image by Benjamin D. Esham (bdesham) - Originally uploaded to the English
Wikipedia as en:Image:Inertial confinement fusion.jpg by en:User:Deglr6328; marked as a
work of the U.S. government and therefore as a public domain image. This version created
by bdesham with Inkscape.This vector image was created with Inkscape., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=2352291
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Some fusion schemes use magnetic fields to confine a lower-density plasma for a longer
confinement time, ⌧ [36, 37]. In inertial confinement, much higher density plasmas are
confined for much shorter times [13, 34]. Because ICF plasmas are at such high densities,
the behavior of the plasmas is described by HEDP.

The confinement time required for an ICF plasma to ignite can be estimated by the
amount of time it takes a hot neutron to travel from the central hot spot through the dense
core of compressed hydrogen isotopes. Assuming the dense material forms a sphere of radius
R with mass M , we estimate the confinement time:

⌧ =
1

M

Z
R

0

⇢
R� r

cs
4⇡r2dr , (1.5)

where cs is the material’s sound speed [34]. The integral evaluates to:

⌧ =
R

4cs
. (1.6)

A typical ICF implosion has a dense core with a radius of ⇠ 100 µm and a sound-speed of
1.3⇥ 106 ms�1 at a temperature of 30 keV [34], which amounts to a confinement time of 20
ps.

We calculate the fusion burn rate:

dnT

dt
= nTnDh�⌫i , (1.7)

where dnT/dt is the burn rate of tritium, nT and nD are the tritium and deuterium densities,
respectively, and h�⌫i is the reactivity of the fusion system, which evaluates to the integral

Figure 1.3: A schematic of a typical fusion reaction between a deuterium and tritium atom.
Protons and neutrons are shown as red and blue circles, respectively. Once the atoms
overcome the Coulomb barrier, a fusion reaction can occur, which results in a neutron and
alpha particle.
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of the fusion cross section over the particle velocity distribution [34]. Assuming that nD =
nT = n, we simplify the expression for the fusion burn rate [34]:

dn

dt
=

n2

2
h�⌫i . (1.8)

Integrating the fusion burn rate over the confinement time leads to the relation:

1

nf

� 1

ni

=
1

2
h�⌫i⌧ =

R

8cs
h�⌫i , (1.9)

where ni is the initial number density of fuel, and nf is the final density of fuel remaining
that hasn’t been burnt [34]. We define the fusion burn rate:

f = 1� nf

ni

, (1.10)

and if we define ni = ⇢/mDT , where mDT is the mass of an average DT nucleus (2.5 AMU),
we estimate the burn fraction as:

f =
⇢R

⇢R + 8mDT cs/h�⌫i
. (1.11)

At 30 keV, the most probable temperature for fusion reactions [13], we express the burn
fraction as:

f =
⇢R

⇢R + 6 g/cm2 . (1.12)

Clearly, the burn fraction depends on the areal density, ⇢R. The stagnation pressure and the
Lawson criterium can also be expressed in terms of ⇢R, marking the areal density as a way
to quantify the compression necessary to obtain ignition. In order to overcome ine�ciencies
of an ICF implosion, an ideal burn fraction of the fuel for ICF reactions is f = 1/3 [34],
which corresponds with a ⇢R = 3 g cm�12. This new ⇢R = 3 g cm�3 condition can be
used to rewrite the Lawson criterion in terms of number density and confinement time as
n⌧ = 2⇥ 1015 s cm�3. This means that the Lawson Criterion for ICF implosions is roughly
20 times greater than that for magnetically confined plasmas, which arises from ine�ciencies
involved in assembling mass to high densities during ICF implosions [34].

We can solve the ICF Lawson Criterion with the confinement time of 20 ps to obtain
the required number density of n = 1026 cm�3. This means a 1 mm-scale target needs to
compress by a factor of 1000 in order to achieve ignition. In practice, the only way to achieve
a convergence ratio of 1000 is to use spherical implosions. As the sphere compresses, the
density scales as R3, which means the radius needs to decrease by a factor of 30. This required
decrease in radius implies that implosion symmetry plays a large role in the success of an
experiment. To further the calculations, we estimate the implosion velocity and ablation
pressures required to decrease the radius by this amount by equating the implosion kinetic
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Figure 1.4: A schematic of a typical ICF capsule target. The outer layer consists of a low-Z
material, such as C, CH, or Be, designed to ablate o↵ with radiation incident on the surface.
The ablation causes the second layer of DT fuel to accelerate inwards and compress. The
middle of the target is filled with DT gas at the vapor pressure of the inner-surface of the
solid fuel layer.

energy to the Fermi degeneracy pressure of the compressed target [34]. In doing that, we
find that vimp ⇠ 3.5⇥ 109 ms�1 and that Pabl ⇠ 60 Mbar.

These calculations serve to outline the length and time-scales relevant to ICF experiments.
In short, a small capsule must be compressed to very high densities for a short period of
time in order to attain the necessary burn fraction to generate ignition. In order to attain
the necessary densities on the necessary timescales, ICF capsules compress spherical shells
of DT ice. A schematic of an ICF target is shown in Figure 1.4. The outer layer of the
target is called the ablator and serves to help compress the target; the ablator layer is
often made from beryllium, carbon-based plastic, diamond, or boron carbite [38]. There are
several features of ablators that help facilitate capsule compression. One feature is a mid-
or high-z dopant in one layer, which absorbs x-rays and prevents the fuel from becoming
pre-heated from drive radiation, which would cause the fuel to resist compression due to
thermal pressure. Another important consideration of ablators is transparency to the driving
radiation source once the ablator material is ionized; the radiation must be able to reach the
surface of the ablator to compress the capsule continuously. Carbon and beryllium become
nearly transparent to low energy x-rays once their atoms become mostly ionized, which
is why ablator materials are rarely made of heavier elements [2]. In principle, high density
carbon and boron-carbite are more ideal than lower density ablators, like CH plastic, because
heavier atoms can generate greater ablation pressures; however, manufacturing challenges
and crystal structures complicate the use and implosion dynamics of these heavier elements.
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Figure 1.5: Schematics of direct-drive and indirect-drive approaches to ICF. In direct-drive,
lasers deposit their energy directly on the capsule surface. In indirect-drive, lasers heat the
inner walls of a high-Z hohlraum, which reemits radiation to compress the capsule.

The fuel itself comprises a frozen DT mixture in a spherical shell under the ablator, as
seen in Figure 1.4. A cryogenic target both increases the initial fuel density and decreases
the amount of compression required to attain the necessary densities for ignition [39]. Using
a solid as opposed to liquid fuel layer provides several advantages to the implosion, includ-
ing minimizing some aspects of the Rayleigh-Taylor instability, which can degrade target
performance [39]. Finally, a hollow capsule is preferable to a solid sphere because less peak
power and less extreme variations of power with respect to time are required to reach high
pressures in the sample [40]; given a certain strength radiation drive, it is easier to compress
a shell with a high velocity implosion than it is to send shock wave through a solid sphere
at the same velocity. DT gas fills the inner section of the sphere at the vapor pressure of the
inner-surface of the solid fuel layer. The density of DT vapor can be controlled by controlling
the temperature of the target, and the vapor forms part of the hot spot after the implosion
begins, as the vapor gets much hotter than the surrounding fuel [41].

There are two main approaches to laser-driven ICF: direct- and indirect-drive [2, 41, 42].
Figure 1.5 shows a schematic of the two di↵erent approaches. In a direct-drive approach,
as seen on the left of Figure 1.5, the lasers deposit energy directly onto the surface of the
sample. The lasers are tuned to irradiate at intensities ranging from 1012 to 1016 W/cm2 [2].
At the higher-end of these intensities, the electric field from the laser is strong enough to
ionize the electrons in the ablator directly. At the lower-end of the intensities, the laser
light deposits energy in the material through the inverse-bremsstrahlung process; the light
penetrates into the ablator layer until the light reaches a surface of a critical density at
which point most of the light is absorbed. Electrons then penetrate further into the ablator,
depositing more energy, until an ablation front is formed (for more details on the physics of
a laser-driven shock, see Section 2.3.1). Then plasma heats and expands and generates an
ablation pressure.
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Figure 1.6: Schematic of an indirect-drive platform on NIF. A cylindrical gold hohlraum
encases the capsule, which is held in place by two layers of thin of plastic, called “the tent.”
A fill tube fills the ablator shell with the liquid fuel.

The other approach to laser-driven ICF involves indirectly driving the implosion with x-
rays generated from a hohlraum, as seen in the right side of Figure 1.5. In the indirect-drive
approach, lasers deposit energy into a high-Z material which heats and radiates x-rays to
compress the capsule. The x-ray spectrum mimics a black-body spectrum, with additional
x-ray features generated by the high-Z material. Figure 1.6 shows a more detailed schematic
of a typical indirect-drive target. A cylindrical gold hohlraum (the German word “hohlraum”
translates as “cavity” in English) encases the capsule, which is held in place by two layers
of thin of plastic, called “the tent.” A fill tube fills the ablator shell of the capsule with the
DT gas fuel; as the capsule is cooled to cryogenic temperatures, the gas cools to a liquid and
forms an ice layer. For the case of ICF at Livermore, hohlraums are almost always made
of gold due to manufacturing facility and high x-ray conversion e�ciency. However, other
high-Z materials and compounds such as lead and depleted uranium have been explored [43,
44, 45].

Both approaches to ICF have their advantages and disadvantages. The primary advan-
tage of direct drive is better coupling e�ciency of the laser energy to the imploding shell’s
kinetic energy, since the laser impinges directly on the target. However, direct laser ablation
also makes the implosion more sensitive to variations in the spatial laser profile, which leads
to less symmetric implosions with instabilities that result from imprints of laser spots on the
capsule surface [46]. Experimenters made many improvements to the design of direct-drive
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experiments since the declassification of laser-driven shocks in the 1970’s. One improvement
involved changing the wavelength of laser light from infrared to frequency-tripled infrared;
the shorter wavelength generated less suprathermal electrons, which led to less preheating
of the ICF fuel. Other improvements sought to smooth out the laser spatial profile through
techniques such as phase plates and smoothing by spectral dispersion; these reduced the
speckle pattern from hot spots in the beam spots, which generated drive asymmetries that
propagated through the implosion. Experimenters then focused on reducing the hydrody-
namic instabilities that arose as a result of the lasers imprinting a pattern on the capsule
surface. Research in direct-drive is still ongoing.

Because of the reduced requirements for laser uniformity and lower sensitivity to hydro-
dynamic instabilities, the US has primarily focused on achieving ICF through indirect-drive
platforms since 1976 [35]. However, hohlraums also present a myriad of complicated physics
interactions that complicate laboratory ignition e↵orts. One such problem includes gold
plasma ablating inwards from the hohlraum walls; the under-dense gold plasma undergoes
stimulated Raman scattering with the drive laser and electron-transport, which results in
areas of high and low temperatures. The temperature of the under-dense Au plasma ranges
from 2 keV, near the spots where the lasers interact with the solid hohlraum, to ⇠300 eV,
or near the wall temperature. Experiments seek to understand the spatial distributions of
those temperatures through spectroscopy from localized microdots [47]. To combat the ef-
fects of gold plasma filling the hohlraum, the hohlraum is often filled with gas to provide a
back-pressure for the expanding Au wall plasma. However, the gas generates its own laser-
plasma instabilities. In addition, even though the drive from a hohlraum is more symmetric
than that from direct-drive, the drive is still not perfectly symmetric, and hydrodynamic
instabilities still arise. The many challenges of hohlraums are left for the reader to explore
on her own from here on out.

Although experimenters continue to increase energy yields from fusion experiments, no
experiment has thus far achieved ignition. Several reports outline the challenges experi-
menters face in pursuing laboratory fusion and some of the attempted mitigating strategies
[48, 49, 50]. The original National Ignition Campaign (NIC) on the NIF ran for three years,
between 2009 and 2012, and sought to maximize the ⇢R of the fuel [38]. Experimenters used
a four-shock design to compress the capsule e�ciently at a low adiabat, with an initial small
shock, called the “foot,” generated by a 60 eV radiation drive. NIC was successful in achiev-
ing high compression (⇢R ⇠ 1.24 g cm�2), but neutron yields were limited to 7.5⇥1014. One
reason the campaign failed to achieve higher yields was because the NIC design showed very
large growth factors for perturbations seeded at the capsule surface. One particularly strong
perturbation originated from the contact ring where the capsule support tent meets the cap-
sule. The tent caused mix of the ablator into the hot-spot, which a↵ected the ability of the
fuel to burn [50]; however, mix occured from other asymmetries as well. Tent mitigation
strategies are still areas of active research.

After NIC, experimenters implemented a high-foot drive design [38, 50, 51]. The higher
energy initial shock reduced the tent-driven hydrodynamic instabilities, and improved the
neutron yield to 9 ⇥ 1015 neutrons, with a DT fuel ⇢R of 0.83 g cm�2.The Rayleigh-Taylor
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growth rate depends inversely on density gradient scale length and mass ablation rate; the
stronger initial shock decreased the gradients between the first and second shocks and in-
creased the implosion velocity, thus reducing the instability. However, this limited the
amount the fuel could be compressed which lowered the final ⇢R [51]. Despite the lower
⇢R, the high-foot campaign increased the fusion yield by a factor of ten by obtaining ↵-
particle self-heating; ↵-particle self-heating is a secondary fusion step that occurs when the
↵-particles from the fusion reactions in the central hot-spot deposit energy into the sur-
rounding colder, denser fuel and cause more fusion reactions to occur there [52]. We are still
in a regime where ↵ re-deposition into the hot-spot is the main source of yield.

The high-foot campaign also involved the development of many di↵erent experimental
platforms that sought to investigate the high energy density physics involved in these implo-
sions [50]. Di↵erent campaigns probed di↵erent properties, ranging from equation of states to
hydrodynamic instabilities. An intense computational e↵ort followed, which tried to match
the outputs of the hydrodynamic codes to the experimental results from both the fusion
and physics platforms [38]. Radiation hydrodynamic codes such as HYDRA [53], which
sought to predict implosion outcomes, often showed predictions that di↵ered vastly from the
experimental results. Recent ICF campaigns on the NIF explored the use of diamond, or
high density carbon (HDC), as an ablator material [54, 55]. HDC further reduces hydro-
dynamic instability and hot-spot mix, which increased yields above the 1 ⇥ 1016 neutrons
mark. However, more work remains to be done before ignition can occur.

ICF implosions remain highly sensitive to the hydrodynamic instabilities involved with
compressing matter to 1000⇥ solid densities. The field of HEDP provides a way to quantify
and explore the di↵erent instabilities and forces acting in ICF implosions in order to help
generate ignition in the laboratory.

1.2 Experimental Facilities for HEDP Research and
Applications

There are several facilities capable of compressing matter to conditions at which ignition
can occur. The three primary facilities in the United States are described in the following
sections.

1.2.1 The OMEGA Laser

The OMEGA Laser is part of the Laser Laboratory for Energetics (LLE), which is part of
the University of Rochester in Rochester, New York [56]. An original 24-beam laser was built
at LLE in 1980 and the laser was upgraded to the current 60-beam version of the OMEGA
Laser in 1995. Figure 1.7 shows an areal schematic of the laser and an image inside the
target chamber during an implosion. The laser facility is 10 m tall and 100 m in length,
which is approximately the size of one football field. The OMEGA laser is a 60 beam, 351
nm, Nd:glass laser that can deliver over 30 kJ in energy to the target on ns timescales [46,
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Figure 1.7: a) Areal schematic of the OMEGA laser. The pulse driver generates and shapes
seed pulses and delivers them to the amplifiers. The amplifiers increase the energy of the
beams, which are eventually focused to a millimeter-scale target at the center of the traget
chamber. b) A picture of the inside of the target chamber during the implosion. Di↵erent
diagnostics point into the center of the chamber. Credit: University of Rochester.

56]. The beams can be focused to 85 µm spot sizes, and can be pointed with a 15 µm
accuracy. As seen in Figure 1.7, the pulse driver generates seed pulses, which then split and
propagate through the amplifiers until the laser energy impinges on a target. The laser can
repeat shots as quickly as once per 45 minutes, which means that experimenters can obtain
10 - 14 shots per day. The 60 beams are distributed spherically around the center of the
chamber and as such are optimized for direct-drive capsule implosions.

The OMEGA target chamber has diagnostic ports around it’s exterior. Users of the laser
can specify diagnostics they would like in each port, as the majority of OMEGA diagnostics
are “plug and play” and are designed to work in any port. A ten-inch manipulator (TIM)
inserts the diagnostic into the chamber. In a typical experiment, the user has access to six
separate TIM’s, each at a di↵erent position around the target chamber. Typical diagnos-
tics include spectrometers, time-gated x-ray framing cameras, time-of-flight detectors, and
diodes.

The main advantage of the OMEGA facility is that experimenters can get many shots
per day, and access to shot days tends to be easier than that on larger lasers. The OMEGA
laser produces many high-profile papers in high energy density physics and is an essential
machine in the field.

1.2.2 The National Ignition Facility

The National Ignition Facility (NIF) is currently the world’s largest and most energetic
laser. The NIF project began in 1995 and was completed in 2009; the laser continues
to run today [57]. Figure 1.8 shows an areal schematic of the laser and a picture of the
outside of the target chamber. Roughly three football fields would fit into the NIF laser bay,
demonstrating the massive size of the facility. The NIF is a 192 beam Nd:glass laser system
that can deliver over 1.8 MJ to a millimeter-scale target on time scales of nanoseconds. The
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Figure 1.8: a) Areal schematic of the National Ignition Facility. The lasers are amplified in
two di↵erent laser bays, until they are focused to a millimeter-scale target at the center of
the target chamber. b) Picture of the top half of the NIF target chamber, which is 10 m in
diameter. Square laser transport tubes and other diagnostics sit on the sides of the chamber.

lasers are arranged around the north and south poles and as such are optimized for indirect-
drive implosions. The laser can fire 1 - 3 shots per day, with the cooling of the amplifier
optics limiting the recovery time between shots. The NIF is a high accuracy machine, with
high-precision and repeatable laser pulse shaping and pointing accuracy on the scale of 15
µm.

The target chamber itself is 13 m in diameter. Various fixed diagnostics are distributed
around the chamber, and several diagnostic ports can be swapped out using diagnostic
instrument manipulators, or DIM’s.

1.2.3 The Z-Machine

The Z-machine is another facility that pursues inertial confinement fusion research, but is not
a laser facility like OMEGA or NIF. The Z-machine is a pulsed-power facility that delivers 30
MA currents to create magnetic fields above 1000 T and pressures ranging up to 1 Gbar [58,
59]. The machine was originally built as the “particle beam fusion accelerator” (PBFA) in
1980, but was upgraded to PBFA-Z, or the Z-machine, in 1996. The Z-machine can be run
in two di↵erent configurations. In the Z-pinch configuration, a cylindrical current implodes
a wire array by the Lorentz force, which generates high energy densities and large amounts
of x-rays. The x-rays from one implosion contain about 2 MJ of energy, putting it on par
with the National Ignition Facility. The imploding wire array can be considered a dynamic
hohlraum, which then compresses a capsule inside of it. Another configuration involves using
the magnetic pressure to launch a flyer plate, which can shock materials up to pressures of 10
Mbar [58]. The Z-machine can be fired once a day, as each time it fires the target implodes
and generates debris. The inside of the target chamber must be physically cleaned out before
a new sample is placed inside.
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Figure 1.9: a) Schematic side-view of Sandia’s Z-machine. Power is stored in the Marx
bank capacitors, until it is released and flows through a series of secondary capacitors and
switches. The power flows through transmission lines until it reaches the center of the target
chamber. The quickly changing electric field from the flowing current generates a magnetic
pressure on the sample. b) A picture of the Z-machine during firing.

1.3 Thesis Outline

Chapter 1 outlined the field of high energy density physics and the motivations as to why
studying warm dense matter is both challenging and well warranted. The remainder of this
thesis will describe my contributions to the field of high energy density physics and present
the necessary theoretical background to understand my work. Chapter 2 describes the equa-
tion of state variables relevant to warm dense matter and the di↵erent models available to
describe the ionization state. The chapter also discusses the Hugoniot relations and outlines
the importance of the Hugoniot in understanding the equation of state. Chapter 3 describes
the di↵erent tools we use to study warm dense matter and discusses the advantages and
disadvantages of each tool. Chapter 3 also describes the Gbar platform on the NIF, which
inspired much of my work. Chapter 4 describes x-ray Thomson scattering (XRTS) in detail,
ranging from experimental design considerations to data analysis techniques. Chapter 5 de-
scribes an x-ray scattering experiment on the OMEGA laser that was performed on solid
diamond spheres and discusses the results. Chapter 6 describes scattering data I analyzed
in order to return information about a small impurity fraction in a material. Chapter 7 de-
scribes another scattering experiment I performed on the OMEGA laser that measured the
temperature of plasmas involved in ion stopping power experiments. And the final chapter,
Chapter 8, summarizes my work and provides several suggested future directions.
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1.4 Role of the Author

All my work is only possible through collaborations with Lawrence Livermore National Lab-
oratory, University of Rochester, and the MIT Plasma Science and Fusion Center. I here
outline my role in the experiments presented in the following chapters.

• Chapter 4: Implementation of XRTS Experiments on the OMEGA Laser : Dr. Tilo
Döppner and Dr. Amy Jenei of LLNL guided target design decisions and experimental
implementation.

• Chapter 5: X-ray Thomson Scattering and Radiography from Imploding Diamond
Spheres on the OMEGA Laser : Dr. Döppner and Dr. Wolfgang Theobald (Uni-
versity of Rochester) aided in experimental design considerations. Both Dr. Döppner
and Dr. Michael MacDonald (UC Berkeley) aided in experimental implementation and
data interpretation.

• Chapter 6: Influence of Argon Impurities on Elastic X-ray Scattering from Imploding
Beryllium Capsules : This paper was a reanalysis of data taken by Kritcher et al. [60].
Prof. Dirk Gericke and Dr. Tilo Döppner aided in data interpretation. The results in
this these were published in Reference [61].

• Chapter 7: Using X-ray Thomson Scattering to Measure Temperature in Ion Stopping
Power Experiments : Brandon Lahmann of MIT acted as the principal investigator of
the experimental campaign. Dr. Döppner and Dr. Johan Frenje guided target design
decisions.
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Chapter 2

Characterization and Generation of
Warm Dense Matter

The previous chapter outlined the field of high energy density physics and detailed why warm
dense matter is a complex and relevant field. Chapter 1 also described inertial confinement
fusion research and the facilities at which ICF and HEDP research is pursued. This chapter
will describe methods of characterizing warm dense matter states, which are relevant to both
HEDP and ICF.

2.1 Equations of State

To generate warm and hot dense matter in the lab, an experimenter must impose a force
that generates a pressure on a material. It is useful to quantify the response of that material
in terms of an equation of state (EOS), which describes the relationship between material
properties such as pressure, temperature, energy, and density. The following sections outline
the di↵erent EOS’s that can be used to describe materials at high energy densities. Di↵erent
physical forces dominate the behavior of a material in di↵erent temperature and density
regimes. Thus, di↵erent equations of state can become more or less relevant depending on
the plasma conditions.

2.1.1 Ideal Gas

The simplest equation of state is the ideal gas law, which relates pressure P , volume V ,
temperature T , and particle number N by:

PV = NkBT (2.1)

where kB = 8.62�5 eV/K is Boltzmann’s constant [2]. We can rewrite the law in terms of the
ionization state of the material, Z, the average atomic mass of the ions, A, and the proton
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mass, mp:

P =
⇢(1 + Z)kBT

Amp

(2.2)

where ⇢ is the mass density of the material and V/N = Amp/⇢(1 + Z) [2]. In the case of a
polytropic ideal gas, we can also derive the sound speed cs and the specific internal energy,
✏:

c2
s
=

�P

⇢
, (2.3)

⇢✏ =
P

� � 1
, (2.4)

where � is the polytropic index [2]. In the case of an ideal gas with n degrees of freedom,
� = (n+ 2)/n.

A polytropic process is one in which PV x is constant for all x. In the case of an adiabatic
process, PV � = constant. Of course the polytropic EOS equations outlined above assume
that the material in question is an ideal gas. In general, a plasma is not an ideal gas,
especially when in the warm dense matter state. However, if the temperature of the plasma
is well above the temperature required to fully ionize all atoms, then the plasma can be
reasonably described by the polytropic equations. And even when the polytropic equations
are not particularly accurate, they are often useful in describing the general reliance of one
variable on the others.

2.1.2 Warm Dense Matter

As expected, the equation of state in the warm dense matter regime is much more complicated
than that of the polytropic ideal gas. As discussed in Section 1.1.1, warm dense matter is
often degenerate and highly coupled, which means a plasma in the warm dense matter state
responds to pressure fundamentally di↵erently than does an ideal gas.

In a classical plasma, thermal pressure acts to resist compression. In the case of dense
matter, degeneracy pressure can also resist compression. This arises from the fact that
electrons are fermions, which means only two electrons, one with spin up and one with spin
down, can occupy any one energy state. We characterize the degeneracy of the system with
the Fermi energy. At zero temperature, the Fermi energy is the highest occupied energy
state of an electron gas:

✏F =
h2

2me

✓
3

8⇡
ne

◆ 2
3

, (2.5)

where h is Plank’s constant, me is the mass of the electron, and ne is the electron density [62].
At temperatures greater that zero, the Fermi energy can be interpreted as the energy equal to
the chemical potential, or the energy level with a 50% chance of occupancy. We approximate
the Fermi energy in terms of more useful units:

✏F = 7.9n2/3
23 eV , (2.6)
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where n23 is the electron density in units of 1023 cm�3 [2]; a typical metal at room tem-
perature has an electron density of 3⇥ 1023 cm�3. In practice, the expression for the Fermi
energy at 0 K is compared with the temperature of the system. If kBT � ✏F , the electrons
can be approximated as free particles. However, in the case of warm dense matter, it is often
true that kBT  ✏F and quantum e↵ects like degeneracy pressure must be considered.

In the case of a degenerate plasma, the equation of state is similar to that of a polytropic
gas with � = 5/3 [2]. The pressure can then be written as:

P =
h2

20me

✓
3

⇡

◆ 2
3

n5/3
e

, (2.7)

or in the units of Mbar [2]:

P = 9.9

✓
⇢

A/Z

◆ 5
3

Mbar . (2.8)

Another type of pressure that can play a role in high energy density materials is radiation
pressure. Radiation pressure is defined by:

PR =
4

3

�

c
T 4 , (2.9)

where � = 5.67 ⇥ 10�8 Wm�2K�4 is the Stefan-Boltzmann constant, and c is the speed of
light. Because PR varies with temperature to the fourth power, radiation pressure rarely
dominates the equation of state in warm dense matter. However, in some high pressure
experiments, the shock front heats enough to radiate and become radiation-dominated. To
determine at what temperature a material switches into a radiation-dominated regime, the
polytropic pressure and radiation pressures can be equated to each other. Solving for tem-
perature returns [2]:

T (keV) = 2.6

✓
⇢(1 + Z)

A

◆ 1
3

. (2.10)

For solid density plasmas with ⇢ = 1 g cm�3, this occurs at temperatures of 1 keV, which
corresponds with a pressure of 50 Mbar. It is also worth noting that a radiation-dominated
plasma has an adiabatic index of � = 4/3.

2.1.3 Tabular

While the expressions for pressures in degenerate, polytropic gases, and radiation-dominated
plasmas are appealing for their simple analytic expressions, they are often not accurate
enough for most practical applications. The radiation hydrodynamics codes of Livermore,
such as HYDRA [53], rely on an accurate EOS to model ICF-related implosions. These codes
typically use what’s called a tabular EOS, which is a table that gives two thermodynamic
variables (⇢, P , ✏, or T ) as a function of the other two [2]. This allows for benchmarking
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di↵erent variables of the EOS with experiments or costly simulations, such as density func-
tional theory or molecular dynamics. These EOS tables must be consistent with the laws of
thermodynamics, in that if one variable is held constant and the other varied, the equation
of state must obey the first law of thermodynamics. In practice, this is harder than it may
seem, and there are countless examples of di↵erent calculations of EOS tables for materials
at conditions relevant to ICF and in the warm dense matter regime [3, 63, 64, 65, 66, 67,
68].

Many experiments seek to benchmark EOS tables by measuring plasma parameters, such
as temperature and density, and equating them to pressure [69, 70, 71, 72, 73, 74]. By
doing so, the tabular equations of state can be refined to better predict implosion behavior.
A refined table of state will allow simulations to better predict implosion dynamics of ICF
experiments, helping with the quest to attain laboratory generated ignition.

2.2 Ionization in Warm Dense Matter

The ionization state of a material a↵ects many physical properties, such as thermal conduc-
tivity, radiation transport, and compressibility. This is because an applied pressure adds
energy to a system, and the number of free electrons a↵ects how the system absorbs that
energy. For example, plasma pressure scales linearly with Z, electron thermal conductivity
scales with Z�2, bremsstrahlung radiation scales with Z2, and the photoelectric absorption
cross-section scales with Z4 [12]. Because ionization a↵ects so many processes, it is important
to understand how ionized a material becomes at a specific temperature and density. This
is a particularly challenging problem in the warm dense matter regime, in which continuum
lowering dominates the ionization state of the material [12]. Much current experimental and
theoretical work seeks to investigate the degree of ionization in warm dense matter [75, 76,
77, 78]. Several experiments found higher ionization states than predicted by any commonly
applied ionization model [75, 79]; however, the results have come under criticism due to
potentially inconsistent and incomplete modeling [80]. Thus, more experiments are needed
to benchmark the ionization in the warm dense matter regime.

In warm and hot dense matter, the temperatures are high enough such that all molecules
of the original material are each broken up into their constituent atoms [12]. The ionization
state of warm dense matter, Z, is defined as the average number of stripped electrons per
each atom. For a single atom, Z can only take on integer values. But for a material, Z
refers to the average ionization state of a sample, and the distribution of individual ion
species that amounts to the average ionization state Z is called the ionization balance. This
section presents several models to calculate ionization in plasmas. Functionally, there are
three events that can cause ionization: collisions, radiation-induced transitions, and magnetic
induced ionization.

The ionization state of a material is determined by the balance of two competing pro-
cesses: collisional ionization and collisional recombination, or radiative ionization and radia-
tive recombination. In cases where the plasma is not in local thermodynamic equilibrium,
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two di↵erent processes may act in opposition. For example, in a low density and high tem-
perature plasma, coronal equilibrium is obtained because radiative recombination balances
collisional ionization. Coronal equilibrium is aptly named because it occurs in the corona of
our sun.

In general, calculating the ionization state of a material is a complicated process that
depends on detailed atomic physics. To this day, we still do not have accurate ionization
models for matter at extreme conditions. However, the following models show the general
behavior of ionization state with respect to equation of state variables, such as density and
temperature.

2.2.1 The Saha Model

The simplest model for ionization in plasmas is the Saha equation [81], which denotes the
ratio of densities between two ion species with successive ionization states. The Saha equation
calculates the most probable state of an atom using the grand canonical partition functions
for the three types of particles involved in an ionization event: an atom ionized to m, and
an atom ionized to m+1 plus a free electron. The electron’s partition function is calculated
from Maxwell-Boltzmann statistics, and the ions’ partition functions are calculated using a
hydrogen-like atomic configuration. The Saha equation reads [81]:

nm+1

nm

ne =
gm+1

gm

2

�3
D

eIm+1/kT , (2.11)

where nm is the number density of ions with state of m, ne is the free electron density,
gm is the statistical weight of the of state m, �D = h/

p
2⇡mekT is the thermal DeBroglie

wavelength of an electron, and Im+1 is the ionization potential of the ion with state m + 1.
The Saha equation can be solved for all charge states to find the ionization balance. In
general, the distribution of ionization states is roughly Gaussian.

We can translate the Saha equation to more useful units by assuming there is an ionization
state Zbal, for which nm+1/nm = 1 for two charge states Zbal+1/2 and Zbal�1/2. In this case,
because the distribution of charge states is roughly Gaussian, we would expect Zbal ⇠ Z.
We can then solve Equation 2.11 for Zbal and obtain [2]:

Zbal = 19.7

vuutTe

 
1 + 0.18 ln

T 3/2
e

n24

!
� 1

2
, (2.12)

where n24 is the electron density in units of 1024 cm�3.
Equation 2.12 shows that ionization increases with increasing temperature and decreases

with increasing density. This intuitively makes sense, as a higher temperature implies that
more electrons will have energies high enough to undergo ionizational collisions. The com-
peting process, collisional recombination, scales with density; this is why ionization state
decreases as a function of increasing density [13]. The Saha equation only applies for the
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case of low density plasmas dominated by statistical mechanics, when the governing ener-
gies are ionization and excitation [2] and there is no screening of charges [12]. The Saha
equation fails to predict ionization in the case of high densities or the presence of non-local
thermodynamic equilibrium e↵ects.

2.2.2 Ionization Potential Depression

In warm dense matter, the electrons are often partially degenerate and the inter-atomic po-
tentials between ions must be considered. The Saha equation can be adjusted to account for
the correlations by applying an energy o↵set to the ionization potential of bound electrons;
this is referred to as ionization potential depression (IPD), and is also referred to as contin-
uum lowering or pressure ionization. There are many di↵erent models that calculate IPD
in dense plasmas, but there remains no one model that accurately predicts ionization for all
density and temperature regimes.

Figure 2.1(a) shows a simplified cartoon of IPD. The left side shows the electron energy
levels of a single atom; all electrons are bound to the ion because they have lower energies
than the continuum states. The right side of the figure shows the same electron energy
levels, but this time in a dense system. The electrons begin to experience the fields from
the neighboring particles, which lowers the energy of the continuum. Now several electrons
have energies that are higher than the continuum and are ionized. In the warm dense matter
regime, IPD plays a large role in governing the ionization state of the system.

To quantify the e↵ects of ionization potential depression, one must calculate an o↵set
in the binding energy of the electrons. This o↵set in energy takes the form of the binding
energy of the electron in the Bohr model for the hydrogen atom, which was a simplified model,
derived before Schrödinger’s description of the hydrogen atom existed. The derivation of the
Bohr atom energy levels relies on three principles: 1) the Coulomb force between the electron
and the nucleus balances the centrifugal force of the orbiting electron, 2) the electron’s energy
is the sum of kinetic and potential energy, and 3) an orbit of the electron around the nucleus
must be done in discrete steps. We solve for the binding energy, E:

E = �Z⇤e2

2a
, (2.13)

where Z⇤ is the nuclear charge, e is the charge of the electron, and a is the classical radius
of the electron orbit. For hydrogen, a = a0 = 5.29 ⇥ 10�11 m is the Bohr radius and
E = �13.6 eV. In a similar fashion, the continuum lowering models calculate �I:

�I =
Z⇤e2

2an
, (2.14)

where Z⇤ is the ion charge, n is the principle quantum number of the level at which the atomic
energy levels become a continuum for free electrons, and an is the characteristic radius of
the beginning of the continuum [12]. Di↵erent IPD models calculate di↵erent values for an
depending on the plasma conditions.



CHAPTER 2. CHARACTERIZATION AND GENERATION OF WARM DENSE
MATTER 25

Figure 2.1: a) A cartoon schematic of continuum lowering. The left side shows the electron
energy levels for an isolated atom, and the right side shows electron energy levels for a
dense collection of atoms. In the case of the dense system, the continuum energy is lowered
as a result of interactions between particles. Credit: APS/Alan Stonebraker. Adapted
from [82]. b) A plot of energy versus electron density showing the e↵ects of ionization
potential depression in beryllium at 0 K. The blue line represents the Fermi energy and
scales as n2/3. The red dashed lines on the right side represent the ionization potential of
di↵erent ionization states of beryllium. The red curves represent the change in ionization
potential of di↵erent states of beryllium as predicted by the Stewart-Pyatt model [83].

The two simplest IPD models use one of the two natural plasma length-scales: either
the ion sphere radius, R0, or the Debye shielding length, �D. The ion sphere radius is used
in the case of a high density plasma, in which inter-particle correlations are high and the
spatial electron distribution is constant within a single ion sphere. The ion sphere radius is
defined by [2]:

4⇡

3
R3

0ni = 1 , (2.15)

where ni is the ion density. We set an = R0 to obtain the ion sphere IPD model [2]:

�IIon Sphere =
Z⇤e2
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◆ 1
3

. (2.16)

In the case that the plasma is low density and has many particles per Debye sphere, the
Debye shielding length is used for an. The energy o↵set is then calculated by the Debye-
Hückel model for IPD, which reads [12]:

�IDebye�Hückel =
Z⇤e2

2�D

. (2.17)

The Debye-Hückel model is only valid up to a density in which the coupling parameter � = 1,
or when correlations begin to a↵ect the plasma’s behavior. Correlations become important
at an ion density of ni ⇠ 8⇥ 1028T (keV)/Z⇤2 [12].
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The Stewart-Pyatt model [83] interpolates between the two regimes of low and high
density. In that case, the IPD model gives:

�I =
Z⇤e2
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2�d
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3
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R3
0/�

3
D

. (2.18)

Stewart-Pyatt is the most commonly used IPD model in radiation hydrodynamic codes.
However, Stewart-Pyatt fails to account for electron screening cloud e↵ects, which occurs as
the inner electrons screen the outer electrons from the full nuclear charge [2]. Thus, none of
these simple models fully capture the physics of IPD in warm dense matter and more work
is needed to investigate the e↵ects of continuum lowering.

2.2.3 Other Ionization Models

The previous discussion on the Saha equation and the IPD models assumed that the electrons
obeyed Maxwell-Boltzmann statistics. This is a good assumption if the temperature of the
electrons is much greater than the Fermi temperature, but in the case of warm dense matter,
the temperatures are similar to or lower than the Fermi temperature, which means the
electrons are often partially degenerate. In this case, a Maxwell-Boltzmann description of
electron behavior is incomplete and the electrons must also be described by Fermi-Dirac
statistics.

Another model for ionization, the Thomas-Fermi model, self-consistently treats electrons
as fermions and combines that description with the ion sphere model [2, 41, 84].The Thomas-
Fermi model solves Poisson’s equation for the electric potential within the R0 of the ion
sphere, assuming the electron density is given by that of a classical electron gas. In this
case, ionization is defined as [12]:

Z =

Z
n(r)d3r , (2.19)

where the electron distribution n(r) is given by [12]:

n(r) =
4p
⇡
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where Fj(r) is the Fermi-Dirac integral of order j, �(r) is the electrostatic potential within
the sphere, and µ is the chemical potential. The electrostatic potential may then be solved
for with the following di↵erential equation [12]:
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In practice, Z and the potential must be solved for numerically. However, in the case of zero
temperature there is an analytic solution, which can be written as:

Z = Z⇤ y

1 + y +
p
1 + 2y

, (2.22)
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where y = ↵(⇢/Z⇤A)�, ↵ = 14.3139, and � = 0.6624 [12]. This equation at zero temperature
shows that the ionization state increases with density, as the Thomas-Fermi model accounts
for density-related e↵ects of ion-ion correlations and degeneracy pressure. Increasing the
temperature also a↵ects the solutions to the ionization state as the electron distribution in
Equation 2.20 changes to reflect the higher temperatures.

The Thomas-Fermi model is able to capture the physics of pressure ionization by forcing
the electron density to equal zero at the ion-sphere radius; this means any electrons with
radii higher than the ion-sphere radius are considered ionized. However, the Thomas-Fermi
model has significant limitations, as it doesn’t account for the shell-structure of the atom,
is not relativistic, and is only strictly correct in the limit of infinite nuclear charge [12].
The Thomas-Fermi model is notoriously bad at predicting the ionization states of low-Z and
partially ionized materials as it assumes a continuous electron density function and thus
calculates continuous and smooth ionization.

A model that does include shell e↵ects is the hydrogenic average-atom model [12, 85, 86].
The precise details of the ionization state calculation are beyond the scope of this thesis,
but the calculations derive from several key model components. The three components
are: 1) screening theory based on WKB1 calculations, 2) Hartree-Fock approximations that
average over shell populations, and 3) NLTE rate equations to calculate the average shell
populations [12].

Figure 2.2 shows a plot of ionization levels of gold (Au[79]) versus temperature at a
density of ⇢ = 0.1 gcm�3, calculated by Gupta et al. [87] for three di↵erent ionization models
(the NLTE model follows a similar formalism to the average-atom model discussed above).
The two models that contain shell e↵ects, Saha and NLTE, show ripples in the ionization
versus temperature, whereas the Thomas-Fermi model shows a smooth ionization curve. The
predictions for ionization vary widely between ionization models, as shown in Figure 2.2.
Because ionization a↵ects the equation of state and the behavior of materials, much more
experimental validation of ionization models is needed in all regimes of temperatures and
densities.

2.3 Shock Physics and the Rankine-Hugoniot
Relations

Shock waves are often used to generate HEDP conditions in the laboratory to benchmark
di↵erent equation of state and ionization models as a shock front traveling through a material
can reach high pressure states. A shock wave involves an abrupt transition of fluid properties
across a boundary [2] and results from the hydrodynamic properties of the material. In order
to generate a shock, a dynamic pressure is applied to a material causes an acceleration.
The acceleration launches a compression wave, which propagates at the material’s ambient

1The WKB method is a method used to approximate the solutions to partial di↵erential equations and
stands for WentzelKramersBrillouin.
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Figure 2.2: Au ionization versus temperature as calculated by three di↵erent ionization mod-
els. The Saha and NLTE models account for the shell structure of the atom, and so show
ripples in the calculated ionization state as a function of temperature. The Thomas-Fermi
model does not account for shell e↵ects and shows a smooth ionization curve. Adapted by
permission from RightsLink Permissions Springer Customer Service Centre GmbH: Springer
Nature Pramana (Gupta, N.K. and Godwal, B.K. Pramana - J Phys (2002) 59: 33.
https://doi.org/10.1007/s12043-002-0031-6), Copyright Indian Academy of Sciences (2002).

sound speed. Within the compression wave, the sound speed increases due to the increased
density, and successive shock waves travel faster through the compressed regions and catch
up to earlier shock waves to form what is known as a shock front [12]. In practice, almost
all laboratory HED experiments launch shock waves into materials to generate extreme
conditions. The following sections will outline how shocks are generated and characterized.

2.3.1 Laser-Driven Shocks

Lasers e�ciently drive shocks into materials, making them ideal tools to generate shock-
compressed matter in the laboratory. There are two primary methods for generating shocked
material: direct- and indirect-drive, the fundamentals of which were discussed in Section 1.1.4.
In a direct-drive platform, such as on the OMEGA laser, an ultraviolet laser impinges on
a solid target with intensities ranging from 1013 � 1016 Wcm�2. The laser deposits energy
into the target and generates a variety of HED states as the outer surface heats and ablates.
The states can be categorized into three regimes: a collisionless/classical plasma in the outer
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corona, a collisional plasma farther into the material, and finally a degenerate plasma. Most
of the laser energy is absorbed into the hot corona, in which the atoms are partially or com-
pletely ionized. Because the photon energy is low compared to the ionization potentials of
the electrons in the atom, the light’s behavior is dictated by interactions with free electrons
in a process called inverse bremsstrahlung [12].

In an inverse bremsstrahlung process, photons from the lasers give energy to free elec-
trons. The laser is an electromagnetic wave that generates a net current from the oscillating
electric field within the plasma. Collisions between the ions and electrons damp the wave,
which eventually reaches a depth at which the frequency of oscillations equals that of the
plasma frequency, wp = (ne2/✏0m)1/2. At that point, the oscillating electrons oscillate at
the frequency of the light and form an ostensible mirror [2]. That surface is called the crit-
ical surface. Solving for the density at which that occurs, one obtains the critical density
equation:

nc[cm
�3] = 1.1⇥ 1021/�2

µm , (2.23)

where �µm is the wavelength in microns [2]. After the critical surface, the laser deposits
any remaining energy into the collisional plasma through resonance absorption, where the
electromagnetic wave couples with a longitudinal plasma wave. The light that doesn’t par-
ticipate in resonance absorption is reflected back, and undergoes inverse bremsstrahlung
processes again.

Direct-drive implosions generate a substantial amount of hot electrons from inverse
bremsstrahlung interactions. The hot electrons carry energy beyond the critical surface and
deeper into the dense plasma; the ablation front then occurs in this higher-density regime
rather than at the critical surface itself. The deposition of energy up to the ablation-front
results in an ablation pressure applied to the plasma. We can estimate the ablation pressures
generated in direct-drive experiments by considering how electrons heat material. A simple
model used to describe electron heating is flux-limited transport. This model derives from
the idea that the maximum possible energy flow occurs when the thermal energy density in
the plasma moves at the thermal velocity vth, which generates a free-streaming heat flux of
nekBTvth [2]. However, since this is the maximum heat transport, it is often necessary to
add a factor called the flux-limiter, f to the equation. Then, the free-streaming heat flux
can be written as [2]:

QFS = fnskBTevth . (2.24)

In a typical physical system, f = 0.1 [2]. Assuming that ne ⇠ nc beyond the critical surface,
and that roughly half of the intensity of laser light transports through the critical surface,
we write [2]:

0.5IL = fnckbTe

r
kBTe

me

, (2.25)

and then solve for Te with the assumption that f = 0.1:

Te[keV] = 1.7(I14�
2
µm)

2
3 , (2.26)
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where I14 is the laser intensity in 1014 Wcm�2. We now estimate the ablation pressure
by setting the ablation pressure equal to the outward momentum flux carried by the heated
electrons. Assuming that the flow occurs at

p
2 the sound speed (for simplicity of calculation)

we can write [2]:

Pabl = 2M

r
ZkBTe + 3kBTi

M
⇥ nc

M

r
ZkBTe + 3kBTi

M
, (2.27)

where M is the Mach number and Ti is the ion temperature. With the assumption that
Ti = Te/3, which is reasonable for the coronal area, we derive a simplified expression for the
ablation pressure [2]:

Pabl = 2nckBTe

Z + 1

Z
. (2.28)

Finally, by assuming Z = 3, we can write the ablation pressure as [2]:

Pabl[Mbar] = 8.0I
2
3
14 �

� 2
3

µm . (2.29)

This means that in a typical direct-drive facility such as OMEGA, a 0.35 µm wavelength and
1015 Wcm�2 drive generates ablation pressures on the order of 75 Mbar, which is equivalent
to the pressure at the center of Jupiter [2].

Indirect-drive experiments use laser light to generate shocks in materials through the
conversion of laser-light to x-rays in a hohlraum. In the case of the NIF, lasers deposit UV
light into a high-Z hohlraum that surrounds a capsule. The heated hohlraum generates a
near-uniform x-ray bath at the center of the hohlraum, which heats the sample at the center
and generates an ablation pressure and a shock wave. An ideal hohlraum emits radiation
like a black body, and the total flux in the cavity can be written as:

S[TWcm�2] = 10T 4
r
, (2.30)

where S is the flux and Tr is the radiation temperature in 100’s of eV. A hohlraum must be
heated to 250 - 300 eV to obtain the necessary flux of 500-1000 TW cm�2 for ignition [41].

Hohlraums convert laser light to x-rays with 70-80% e�ciency [41], but the process is
multi-faceted and complex. The first step in conversion occurs in the region of interaction
between the laser spots and the hohlraum walls. The laser energy is absorbed through inverse
bremsstrahlung process, which ionizes the Au and heats the electrons. The hot electrons
excite the partially ionized ions, which then emit x-rays. The x-rays heat and ionize the
surrounding cold Au material. Because the optical depth of the ionized Au is low, slightly
more than half of the x-rays radiate inwards to heat cold material, and less than half give
energy to expanding Au plasma and hot electrons, which also serve to heat the surrounding
Au [2]. The radiation past the spots of direct laser irradiance forms a Marshak wave, which
is a type of wave that occurs at the boundary between a cold material and a hot material
with a constant-temperature energy source. The Marshak wave describes how di↵usion of
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radiation heats cold material. The depth of a Marshak wave in a hohlraum can be estimated
by:

xM [µm] = 0.53T 1.86
0 t0.75

ns
, (2.31)

where xM is the depth of the Marshak wave in microns, T0 is the temperature of the hot
material at 1 ns in 100’s of eV at the boundary of the hot and cold regions, and tns is the
time in nanoseconds [2, 49]. Equation 2.31 shows that the Marshak wave is only on the order
of microns for most hohlraum experiments and that the e�ciency of a hohlraum increases
with time, as less power is required to sustain the wave.

The laser spots on the hohlraum walls also emit x-rays that further interact with the
remainder of the hohlraum walls, because the hohlraum is a closed cavity. That means that
every spot that generates x-rays heats the opposing wall with those x-rays. Considering
that some of emitted radiation is also reabsorbed, one can arrive at an estimate for the wall
temperature in eV as [2]:

Tw =
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◆ 1
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, (2.32)

where ⌘ is the x-ray conversion e�ciency, AL and AW are the areas of the laser spots and the
hohlraum walls, f is the fraction of emission from the laser spots that reaches the other walls,
and ↵ is the albedo (the fraction of radiation that is incident on a wall which is re-emitted
by the wall). Put in simpler units, we can estimate the wall temperature to be [2]:

Tw[eV] = 177(⇠I14)
1
4 . (2.33)

Typical values for these parameters are ⌘ ⇠ 0.7, f ⇠ 0.9, and ↵ ⇠ 1 [2]. f is near unity
because the only fraction of the x-rays that doesn’t reach opposing walls is the fraction that
exits through the hohlraum’s laser entrance holes, which are typically small compared to the
total inner surface area of the hohlraum. ↵ is near unity because often many more x-rays
are re-emitted than absorbed in the high-Z material. A good approximation for the ratio of
laser spot area to hohlraum wall area is AL ⇠ 0.1AW . Thus, we find that ⇠ is often on the
order of unity as well.

The hohlraum emission spectrum has three main components: a lower-temperature
black body component governed by the radiation temperature, a higher temperature non-
equilibrium component from the hot, under-dense plasma region expanding from the hohlraum
walls, and gold M-shell emission around 2 keV. The black-body spectrum contributes the
most to the generation of the ablation front as the low energy x-rays e�ciently deposit their
energy into the low-Z ablator materials; typical values for the radiation temperature on the
NIF range from 200-300 eV [88]. If we assume that half the x-ray energy contributes to
ablation pressure, we estimate the ablation pressure as [2]:

Pabl = 0.5(� � 1)�T 4
w

s
Amp

(Z + 1)
kBTw , (2.34)
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where � is the adiabatic index. In the coronal region, � = 5/3. In the case that the ablator
is beryllium, we find the following expression for the ablation pressure [2]:

Pabl[Mbar] = 4.4

✓
Tw

100 eV

◆ 7
2

. (2.35)

On the NIF, a hohlraum temperature of 300 eV generates an ablation pressure on the order
of Pabl = 100 Mbar [38]. This is a similar value to the pressures generated by direct-drive
implosions.

2.3.2 E�ciency of Laser-Generated Shocks

Material that ablates away acts like a rocket engine; by conservation of momentum, the un-
ablated mass must accelerate in the opposite direction. Both directly- and indirectly-driven
shocks result from ablation pressures, but the methods of generating ablation pressures vary
greatly between the two techniques. In this section, we asses the e�ciency of direct- and
indirect-drive techniques by solving the classic rocket engine problem as follows.

A rocket of mass m+�m moves through vacuum with velocity vi. After the rocket burns
a fuel mass of �m in time �t, the rocket has a velocity vi+�v and the the burnt fuel moves
with a velocity of vex relative to the rocket. The equation for conservation of momentum
before and after the fuel is burnt can be written as [89]:

(m+�m)vi = m(vi +�v) +�m(vi � vex) . (2.36)

We solve the equation for �v to obtain:

�v = vex
�m

m
. (2.37)

Assuming that the fuel �m is burned in �t and dm is negative, we can we write the equation
in terms of time derivatives and solve the di↵erential equation to obtain the rocket equation:

vf � vi = vex ln
mi

mf

, (2.38)

where mi and mf are the initial and final masses of the rocket [89]. We can then solve for the
e�ciency, eR, of the rocket, which is defined as the ratio of kinetic energy of the remaining
rocket mass to the total kinetic energy of exhausted fuel and remaining mass. The ablation
e�ciency reads:

eR =
mfv2

mfv2 + 2Kex

, (2.39)

where Kex is the kinetic energy of the exhausted fuel [2]. After solving for the kinetic energy
of the fuel by integrating over the lost mass, we find the rocket engine e�ciency to be [2]:

eR =
(mf/mi) lnmf/mi

2

1� (mf/mi)
. (2.40)
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Figure 2.3: Rocket engine e�ciency, ✏R, versus fraction of remaining mass, mf/mi. An
indirect-drive implosion works in the regime of maximum e�ciency with 20% of the mass
remaining. Direct-drive implosions are less e�cient at generating shock waves, as they
operate in the regime with 70% of the mass remaining.

Figure 2.3 shows a plot of ✏R as a function of remaining mass, with arrows indicating
the regimes in which direct- and indirect-drive experiments operate. Laser light from direct-
drive experiments is absorbed in low density plasmas, whereas the x-rays from indirect-
drive experiments are absorbed further into the material, in higher-density regions. Thus,
indirect-drive platforms generate higher ablation pressures for a given laser drive intensity.
Even though indirect-drive leads to more e�cient ablation and higher ablation pressures, the
coupling e�ciency with the laser is still lower than it is in the direct-drive case. The lower
coupling e�ciency of indirect-drive amounts to a final fusion energy gain of only double that
from a direct-drive implosion [35, 90]. Thus, both direct-drive and indirect-drive platforms
are still used to generate shocks in materials to probe the properties of high energy density
material in the laboratory.

2.3.3 The Rankine-Hugoniot Relations

An ablation pressure generates HEDP conditions by launching a shock wave into a material.
The progression of the shock wave and the conditions behind the shock front depend on the
equation of state of the compressed material. Thus, many experiments measure the shock
propagation and shock front conditions as a way to characterize the equation of state [91].

As a shock propagates through a material, there is a discontinuity in conditions between
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Figure 2.4: A schematic of a shock front traveling at velocityD in a material; the grey portion
represents the shocked material and the blue portion represents the unshocked material. The
unshocked material has an initial density and pressure of ⇢0 and p0, and the shocked material
has density and pressure ⇢ and p. u is the jump in particle velocity across the shock front.

the cold, unshocked material and the hot and dense shock front. The Rankine-Hugoniot
relations, often referred to as the shock Hugoniot, describe the change in conditions over
the boundary of the shock front. Figure 2.4 shows a schematic of a shock wave as it travels
through material. The shock front travels with velocity D, and u represents the jump in
particle velocity across the shock front. The unshocked material has initial density, pressure,
and energy ⇢0, p0, and ✏0, and the shocked material has density, pressure, and energy ⇢, p,
and ✏. The Rankine-Hugoniot relations conserve momentum, mass, and energy across the
shock front. The following derivations follow the method of Reference [91].

By the conservation of momentum across the shock front, we obtain the equation:

p� p0 = ⇢0Du . (2.41)

Conservation of mass gives:
⇢0D = ⇢(D � u) , (2.42)

and conservation of energy gives:

✏� ✏0 =
1

2
(p� p0)

✓
1

⇢0
� 1

⇢

◆
. (2.43)

In solids, p0 ⌧ p, so we assume p0 = 0. ✏0 is the thermal energy associated with the lattice
vibrations of the solid, which is, in principle, tabulated and known [91]. That then leaves
three equations and five unknowns, namely: ✏, p, D, u, and ⇢. Thus, measuring any two
variables allows one to solve for the entire equation of state. This is the power of the Hugoniot
relations: one only needs to measure two variables to solve for all five. For example, in the
case that one measures ⇢ and D, the equations can be rewritten to solve for pressure in the
shock front as a function of density and shock speed as:

p =
⇢0
⇢
(⇢� ⇢0)D

2 . (2.44)
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Figure 2.5: Calculated shock Hugoniot curves for three di↵erent initial densities of carbon:
diamond at ⇢0 = 3.5 gcm�3 (blue), graphite at ⇢0 = 2.3 gcm�3 (red), and porous graphite
at ⇢0 = 1.0 gcm�3 (yellow). The plot shows how the shape of the Hugoniot changes with
di↵erent equation of state models. The Thomas-Fermi model (dashed lines) shows smooth
compression curves, whereas the average-atom Purgatorio model [92] shows the e↵ects of
atomic shell structure through slight wiggles; instead of assuming a smooth function of
ionization, each shell requires a di↵erent amount of energy to ionize. It is worth noting that
even though the ⇢/⇢0 compression reached by all materials is similar, the materials with
higher starting densities allow for reaching much higher densities in the shock fronts at peak
compression; shock fronts in diamond can reach densities of 14 g cm�3 whereas shock fronts
in porous graphite can only reach densities of 4 g cm�3.



CHAPTER 2. CHARACTERIZATION AND GENERATION OF WARM DENSE
MATTER 36

In practice, the Hugoniot is a useful framework for understanding how materials in ex-
treme conditions respond to pressure. The shape of the Hugoniot curve through pressure-
density space depends on the EOS, so measuring the shock Hugoniot benchmarks EOS
models. Figure 2.5 shows a plot of Hugoniot pressure versus compression (⇢/⇢0) for carbon
at three di↵erent initial densities (represented by the di↵erent colors) for two di↵erent EOS
models: Thomas-Fermi [84] and the average-atom model, Purgatorio [92].

The primary di↵erence to note between curves is the shape at higher compressions. The
average atom curves have additional structure due to the atomic shell structure. When the
pressure becomes high enough to free the electrons in a specific shell, more energy goes into
internal energy [2]. The density then increases more for a given pressure, and the Hugoniot
curve “softens.” This e↵ect is seen around 100 Mbar in Figure 2.5. Once ionization is
complete, less of the energy in the shock front converts to internal energy, and the Hugoniot
curve “hardens,” as seen around 1 Gbar in Figure 2.5. The Thomas-Fermi curve is smooth
through all states as the Thomas-Fermi does not contain the physics of atomic shell structure.
Thus, mapping out the shape of the Hugoniot provides information on the onset of ionization
in materials, as well as the material’s compressibility at high pressures.

Overall, HED experiments seek to measure plasma properties and equation of state vari-
ables in these dynamic compression experiments. The following chapter will describe the
basic theory and methodology of several important measurement techniques, as well as an
experimental platform that can be used to measure the Hugoniot.
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Chapter 3

Measuring Equation of State
Variables in High Energy Density
Matter

3.1 Diagnostics for Plasma Conditions in Warm
Dense Matter

Chapter 2 defined the equation of state and outlined the challenges of predicting equation
of state variables in materials at high energy density conditions. This chapter will outline
the theory of several techniques used to measure conditions in highly compressed materials
where optical techniques like VISAR are no longer capable of making measurements due
to the extreme densities. Both high energy x-rays and neutron diagnostics are capable of
penetrating into high densities, making them ideal probes for HEDP conditions.

3.1.1 X-ray Thomson Scattering

One powerful tool for probing the conditions of warm and hot dense matter is x-ray Thomson
scattering (XRTS). An XRTS experiment scatters a narrow energy band of x-rays o↵ of
a plasma sample and then collects the frequency-resolved scattered power spectrum at a
specified scattering angle. Since the photons scatter from electrons, XRTS probes the physics
of the electrons in the system, which can reveal many plasma properties, such as electron
temperature, density, ion-ion correlations, and ionization states [62]. Here I present the basic
theory and techniques of XRTS.

Thomson scattering itself refers to the process of a photon scattering elastically from an
electron. More specifically, Thomson scattering refers to the process of an electron oscillating
and emitting radiation in response to an applied electric field. For the simplicity of the initial
derivation, we assume that a linearly polarized electric field of frequency !0 and strength
E0, with oscillating velocity less than the speed of light (h⌫ ⌧ mc2), is incident on a free
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electron. We can write the force on the charge due to the electric field [93] as:

~F = m~̈r = eE0 sin!0t✏̂ , (3.1)

where m is the mass of the electron, ~r is the position vector, e is the charge of the electron,
and ✏̂ is the direction of the electric field. Using the expression for the electric dipole, ~d = e~r,
we find a di↵erential equation for ~d [93]:

~̈d =
e2E0

m
sin!0t✏̂ , (3.2)

and then solve the di↵erential equation for ~d to obtain [93]:

~d = �
✓
e2E0

m!2
0

◆
sin!0t✏̂ . (3.3)

The dipole approximation allows us to estimate the radiated power per solid angle as [93]:

dP

d⌦
=

e4E2
0

8⇡m2c3
sin2 ✓ , (3.4)

where c = 3 ⇥ 108 ms�1 is the speed of light in vacuum and ✓ is the scattering angle. The
incident flux on the sample is the average of the Poynting vector: h~Si = (c/8⇡)E2

0 . We can
then rewrite the scattered power in terms of the scattering cross section � [93]:

dP

d⌦
= hSi d�

d⌦
=

cE2
0

8⇡

d�

d⌦
. (3.5)

With Equation 3.4, we find that:
✓
d�

d⌦

◆

polarized

=
e4

m2c4
sin2 ✓ = r20 sin

2 ✓ , (3.6)

where we define r0 ⌘ e2/mc2 as the classical electron radius [93]. To find the total cross
section, we can integrate over the full solid angle to obtain what is know as the Thomson
scattering cross section, or �T [93]:

�T =
8⇡

3
r20 . (3.7)

For electrons, �T = 0.655 ⇥ 10�24 cm2. Equation 3.6 can be extended to unpolarized light
by averaging over linearly polarized light of angles 0 and ⇡/2. The result is then [93]:

✓
d�

d⌦

◆

unpolarized

=
1

2
r20(1 + cos2 ✓) . (3.8)

If the initial photon is of su�ciently high energy (h⌫ ⇠ mc2), the scattering cross section
can also depend on the energy of incoming photons, at which point the actual quantum
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Figure 3.1: A cartoon schematic of x-ray Thomson scattering. Incoming photons can scatter
elastically from electrons that are tightly bound to the ionic core. Photons scatter inelas-
tically from free electrons and from loosely bound electrons. These three processes can be
described as bound-bound, bound-free, and free-free scattering, respectively.

mechanical cross sections must be used. Thomson scattering is also referred to as coherent
scattering, as the emitted photon maintains the same frequency as the incoming photon.

One type of incoherent scattering that can happen when a photon is of su�ciently high
energy is Compton scattering. In this case, a photon impinges on an electron, imparting
momentum. In practice, Compton scattering can be thought of akin to a relativistic billiards
ball momentum transfer problem. Let’s first assume the electron is at rest and a photon with
an initial wavelength �i scatters o↵ of the stationary electron. The photon imparts some
momentum to the electron, which then carries its own momentum. The typical relativistic
momentum conservation equations can be solved to obtain the wavelength shift of the photon:

�s � �i =
h

mc
(1� cos ✓) , (3.9)

where �s is the scattered wavelength and ✓ is again the scattering angle [93]. The Compton
wavelength is defined as �C ⌘ h/mc, and equals 0.024624 Å for electrons.

Another type of incoherent scattering occurs when a photon photoionizes a loosely bound
electron. In that case, the bound electron experiences a force due to the applied electromag-
netic field while under the central field force of the nucleus. This adds a frequency-dependent
adjustment factor to the Thomson scattering cross section. The cross section for scattering
from bound electrons becomes:

�bound =
8⇡

3
r20

!4
0

(!2
0 � !2

e
)2 + (�!0)2

, (3.10)
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where !e is the resonant frequency of the oscillator force imposed by the central field and
� represents a dissipative force that accounts for energy loss [94]. The cross section is the
largest when the incoming photon is on resonance with the oscillator force, or if !0 ⇠ !e. In
that case, the cross section is considerably higher than that of the case of scattering from
a free electron. In the high frequency limit of !0 � !e, the photon scatters as if it were
scattering from a free electron. In the low frequency limit of !0 ⌧ !e, we return the classical
Rayleigh scattering cross section of [94]:

�R =
8⇡

3
r20

✓
!0

!e

◆4

, (3.11)

which of course explains why the sky is blue due to the strong frequency dependence (al-
though, it does not explain why the sky is not purple.)

XRTS involves both Thomson and Compton scattering phenomena, but it is simply
referred to as x-ray Thomson scattering. Figure 3.1 shows a cartoon schematic of an XRTS
process in which x-rays impinge on a plasma sample and then scatter to a detector at a
scattering angle, ✓. X-rays scatter elastically from inner-shell electrons that are tightly bound
to the ionic core and inelastically from free or loosely bound electrons, as seen in Figure 3.1.
In free-free scattering, the photon transfers an average momentum to the electron of h~k,
where ~k is the scattering vector. In the nonrelativistic limit, we approximate the magnitude
of ~k as:

k ⌘ |~k| = 4⇡
E0

hc
sin ✓/2 (3.12)

where E0 is the energy of incident radiation [95]. We can then define the Compton energy,
EC in terms of the scattering vector [95]:

EC =
h̄2k2

2m
= h̄!i � h̄!s , (3.13)

where !i and !s are the frequencies of incident and scattered light, respectively. The di-
mensionless scattering parameter, ↵, describes whether XRTS will probe individual electron
e↵ects or collective electron e↵ects. We define the scattering parameter as [62]:

↵ =
1

k�s

, (3.14)

where �s is the screening length. In the case of non-degenerate plasmas, we can take �s as the
Debye screening length, and in degenerate plasmas, is becomes the Thomas-Fermi screen-
ing length. The correct screening length can be determined by the previously introduced
degeneracy parameter, ⇥; the Thomas-Fermi screening length should be used if ⇥  1 [95].
The work in this thesis will only include scattering in which ↵ < 1, in which the scattering
spectrum reflects non-collective motion of the electrons.

We can now extend Equation 3.8 to the case of scattering multiple photons o↵ of a diverse
set of electronic states. In that case, the scattered power per unit frequency per solid angle
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from unpolarized light can be written as:

dP

d⌦d!
= r20

1

2
(1 + cos2 ✓)

✓
!s

!i

◆2

NI0S(k,!) , (3.15)

where N is the number of scatterers, I0 is the intensity of incident radiation, and S(k,!) is
the total electron dynamic structure factor [62]. The structure factor is defined as the Fourier
transform of the electron density correlation function [95]. This structure factor accounts for
both elastic and inelastic scattering. The well-known Chihara decomposition [96] breaks the
dynamic structure factor into three components, each component denoting bound-bound,
free-free, and bound free scattering. The Chihara decomposition reads [96, 97]:

S(k,!) = |f(k) + q(k)|2 Sii(k,!) + ZfSee(k,!) +

Zb

Z
Sbe(k,! � !0)Ss(k,!

0)d!0, (3.16)

where f(k) is the ionic form factor, q(k) is the electronic screening cloud contribution, Sii is
the ion density correlation function, Zf is the ionization state, See is the free-free dynamic
structure factor, Zb is the bound charge per atom, Sbe is the form factor of bound electrons
undergoing Raman-like transitions to the continuum, which is modulated by the self-motion
of the ions, Ss. From left to right, the three terms represent the contributions from bound-
bound, free-free, and bound-free scattering, respectively.

Free-free scattering occurs when x-rays scatter from free electrons. The Compton wave-
length we derived previously assumed that the electron was initially at rest. In practice, the
electrons are moving with a velocity distribution, f(v), so a photon interacts with an electron
in motion. In this case, the frequency shift of a scattered x-ray can be written as [62]:

! = � h̄k2

2m
± ~k · ~v . (3.17)

The first term in Equation 3.17 accounts for the Compton shift and the second term ac-
counts for the Doppler e↵ect, as the photons interacts with a moving charge. Thus, free-free
scattering probes the velocity distribution of the free electrons. In the case of a highly degen-
erate plasma, the velocity distribution depends primarily on the electron density, and in the
case of a classical plasma, the velocity distribution is Maxwell-Boltzmann. In many cases of
warm and hot dense matter, the plasma is weakly degenerate, and the velocity distribution
depends on both temperature and density. Bound-free scattering is similarly broadened by
the electron velocity distribution.

XRTS also o↵ers the ability to probe the ionization state of the sample. Inelastic scatter-
ing occurs from electrons that are either free or loosely bound, and elastic scattering occurs
from electrons that are tightly bound. Thus, the ratio of elastic and inelastic scattering scales
with the ionization state. Elastic scattering depends on the ion-ion structure factor Sii(k),
the ionic form factor f(k), and the screening cloud contribution q(k). At su�ciently high
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k-values, both Sii(k) and q(k) reach their ideal plasma values of 1 and 0, respectively. Elastic
scattering is then sensitive to the ion form factor, which is simply the Fourier transform of
the electron charge density around the nucleus. In that case, elastic scattering scales with
Z2.

Table 3.1 describes all terminology associated with the di↵erent components of an XRTS
spectrum in order to characterize which terms are used interchangeably with each other in
the literature and in this thesis.

Term Description Usage
Elastic
Scatter-
ing

Elastic scattering refers to all x-
rays that scatter elastically from
electrons. This occurs when x-
rays interact with electrons that are
tightly bound to an ionic core and
the photons are unable to impart
significant momentum, thus leav-
ing the electron’s state unchanged.
The strength of the elastic scatter-
ing signal scales with the ionic form
factor, f(k), the screening cloud
contribution, q(k), and the ion-ion
structure factor, Sii(k).

“Elastic scattering” and “Rayleigh
scattering” are often used inter-
changeably in the literature to de-
scribe the elastic scattering of x-
rays.

Rayleigh
Weight

Rayleigh scattering was originally
defined by Lord Rayleigh as the
primarily elastic scattering of elec-
tromagnetic radiation from the at-
mosphere. In terms of XRTS,
the Rayleigh weight is defined as:
WR(k) = [f(k) + q(k)]2Sii(k) and
refers to the total strength of elastic
scattering in the Chihara decompo-
sition.

The terms “elastic scattering
strength” and ”Rayleigh weight”
are often used interchangeably in
the literature to describe the rela-
tive amount of elastic compared to
inelastic scattering.
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Thomson
Scatter-
ing

Thomson scattering refers to the
elastic scattering of electromag-
netic radiation from a charged par-
ticle. The theory behind Thomson
scattering is based in classical elec-
tromagnetism; free electrons accel-
erate as a result of an incident elec-
tromagnetic wave, which then gen-
erates an electric dipole, which re-
radiates an electromagnetic wave.
The process is considered to be
elastic, as the electron state is left
unchanged.

“Thomson scattering” is used to
describe all contributions of an
XRTS spectrum in this thesis and
in the literature.

Inelastic
Scatter-
ing

Inelastic scattering refers to the
processes that result in photons
imparting momentum to electrons;
because the photons impart mo-
mentum, they scatter inelastically.
The inelastic scattering portion of
the scattering spectrum is com-
prised of photons that undergo
free-free and bound-free scatter-
ing. The inelastic scattering peak
is Doppler-broadened by the ther-
mal motion of the plasma.

“Inelastic scattering” and “Comp-
ton scattering” are used inter-
changeably in the literature, as the
two contributions to inelastic scat-
tering typically overlap to form one
inelastic peak.
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Compton
Scatter-
ing

Compton scattering refers to the
inelastic scattering of a photon
from a free electron and occurs in
the limit that the photon energy
is much higher than the binding
energy of the electron. Compton
scattering is a quantum mechanical
phenomenon, as the photon must
be treated like an incoming particle
with a momentum that scales with
the frequency. The Compton peak
in an XRTS spectrum is centered at
an energy of E0 � h̄2k2/2me, where
E0 is the energy of incident radia-
tion. The peak has a finite width
due to the velocity distribution of
the electrons.

Colloquially, the “Compton peak”
in an XRTS spectrum refers to the
entire peak of inelastic scattering.

Doppler
Broaden-
ing

In XRTS, all three components
of bound-bound, bound-free, and
free-free scattering are broadened
by the velocity distribution of
the electrons; however, unless the
plasma has a bulk speed compa-
rable to the scattering energy, the
Doppler broadening of the elastic
peak is small enough to be ignored.
The width imparted to the inelas-
tic components is referred to as
Doppler broadening. Because of
the Doppler broadening, the width
of the spectrum can be analyzed to
return the velocity distribution of
the electrons, and thus the electron
temperature or density.

In XRTS literature, “Doppler
broadening” typically refers to the
broadening of a spectral feature due
to the velocity distribution of the
electrons.

Table 3.1: A table recounting the terms used to describe the di↵erent components of an
XRTS spectrum. The third column describes the usage of the term in this thesis and in the
relevant literature, and outlines the terms that are used interchangeably.

Figure 3.2 shows XRTS simulations from a beryllium target generated with the scattering
simulation code, Multi-Component Scattering Simulations (MCSS). The simulations use a
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(a) Simulations varying Te. (b) Simulations varying ⇢.

(c) Simulations varying ZBe.

Figure 3.2: Simulations of XRTS spectra from a beryllium target generated with the Multi-
Component Scattering Simulations Code [98]. All simulations assume a scattering angle
of 120� and use a 100 eV FWHM Gaussian x-ray source centered around 8975 eV. The
simulations show the sensitivity of scattering spectra to the various parameters.
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100 eV FWHM Gaussian x-ray source centered at 8975 eV in order to mimic the Zn He-↵
source typically used, and assume a scattering angle of 120�. In the case of solid density
beryllium at 1.85 g cm�3 with an ionization state of 2, the electron density is 2.5 ⇥ 1023

cm�3, and the Fermi energy is 16 eV. Thus, the spectra show sensitivity to temperature and
density. It should be noted that there is a significant trade-o↵ to fitting both density and
temperature, as often a good fit to a spectrum can be found for a given temperature and
density, and then again for a di↵erent set of temperature and density values. However, the
range of temperatures and densities for which good fits can be found is often bounded, both
by physical limitations (e.g. the density of a compressed sample cannot be lower that solid
density) and by fitting limitations; there is almost always a temperature and density that is
too high or too low such that a good fit cannot be found. In addition, increasing temperature
softens the red-most wing of the spectrum, whereas density tends to a↵ect the FWHM of
the inelastic peak. In practice, a spectrum that is being fit for temperature and density
constrains one of the variables by simulations or other a priori knowledge. But in principle,
an experiment can be designed such that the spectrum is more sensitive to one variable or
the other (e.g. scattering spectra from Fermi degenerate matter will be more sensitive to
density), which then better constrains the fitting, although limits the fitting relevance to
only one variable.

Figure 3.2 also shows the sensitivity of scattering spectra to the beryllium ionization
state. As the beryllium ionizes above ZBe = 2, the elastic scattering decreases. Elastic
scattering at 120� is less sensitive to ionization states below ZBe = 2. This occurs because
photons impart significant momentum to electrons when the photons are back-scattered, as
they are in the case of 120� scattering; the large momentum transfer ionizes any electrons in
the Be L-shell. In principle, elastic scattering in a forward-scattering geometry would remain
sensitive to lower Be ionization states.

The use of inelastic scattering to determine electron properties such as temperature and
density is well documented in previous work [60, 99, 100, 101]. In these experiments, plasmas
are created through techniques like radiative heating or shock compression. Then, the shape
of the elastic feature is fit to analytic models to determine plasma parameters. Experimenters
have also used the shape of the bound-free feature to determine the ionization state and to
constrain continuum lowering models [4]. There has also been forward scattering work that
analyzes the plasmon shape to return density of the sample with high accuracy [6, 102].
Much recent work has focused on the information found from the elastic scattering feature;
various authors use the strength of the elastic scattering to deduce plasma properties, such
as the ion structure factor [103], the ionization state [4, 5, 30, 75, 104], or the screening
properties [105, 106].

However, some of the results from these analyses have come under criticism due to use
of physics models for di↵erent parts of the Chihara decomposition that are not self consis-
tent [107]. In all of the above cases, simplifying models have been used to determine the
precise shape and intensity of both the inelastic and elastic features (for more details on
frequently used approximations, see Chapter 4). Much recent work focuses on more detailed
modeling of x-ray scattering to help constrain the scattering models through density func-



CHAPTER 3. MEASURING EQUATION OF STATE VARIABLES IN HIGH ENERGY
DENSITY MATTER 47

tional theory and other similar computational tools [9, 107, 108, 109]. These simulations
are advantageous in that one does not need to assume simplifying physics models for the
di↵erent parts of the Chihara decomposition, but disadvantageous in that they are very
costly to run, both in expertise and time. It is thus of benefit to the community to run
experiments to benchmark models used for Thomson scattering; once Thomson scattering
is well understood, it can be better applied to understand the physics of matter in extreme
conditions.

Despite some uncertainties in the modeling, XRTS remains a valuable tool to measure
plasma properties of dense matter. Because XRTS is based on a theory and not a model,
XRTS is not as susceptible to the systematic errors present in some other techniques used to
study HEDP. Of course no method is a panacea, and XRTS presents its own di�culties with
data interpretation, as alluded to above. In addition, the experiments frequently su↵er from
low signal-to-noise ratios and high background signals due to the small Thomson scattering
cross section. For the present, I shelve the discussion of XRTS, which will discussed in more
detail in the later chapters.

3.1.2 X-ray Radiography

X-ray radiography is another important x-ray diagnostic that can probe the physics of high
energy density material. In a radiography experiment, x-rays propagate through a shocked
plasma target and a detector, such as film or a CCD, collects the transmitted signal. De-
pending on the instrument, a radiography image can take the form of a 1-D line image that is
streaked in time, or several time-gated frames of 2-D images. In either case, the radiographs
show the time progression of the shock front which allows one to characterize the shock prop-
agation. The image from the radiograph can be thought of akin to a medical x-ray; an x-ray
of a hand shows contrast on the film because bone is higher density than skin and absorbs
more of the light. The same principle holds for x-ray radiographs of HEDP experiments; the
higher density region in the shock front absorbs more than the lower density regions. The
contrast can then be used to determine phenomena related to density, such as the position
of the shock front at a specific time.

In addition, if one knows the brightness of the x-ray source before it passes through the
sample, the reduced signal after transmission can be used to determine the absolute amount
of mass that caused the absorption. If we consider a mono-energetic collimated source of
x-rays passing through material, the change in intensity over a small distance dx is written
as:

dI = µIdx , (3.18)

where I is the irradiance or spectral flux density and µ is the linear attenuation coe�cient
with units of 1/[length] [110]. Integrating the equation over the distance variable provides
the expression for the intensity after absorption:

I = I0e
�µx , (3.19)
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Figure 3.3: Mass attenuation coe�cients for iron plotted versus photon energy. Absorption
dominates photon interactions below 100 keV.

where I0 is the initial intensity and x is now the total distance traveled through the sam-
ple [110]. In practice, 1/µ can be thought of the mean free path of a photon through the
material. Thus, µ can be represented in terms of the interaction cross section as µ = n�,
where n is the number density. More commonly, attenuation is expressed in terms of the
mass attenuation coe�cient, µm = µ/⇢. In practice, µ depends on several physical param-
eters, such as the ionization state of the sample and the energy of the photon beam. All
attenuation processes, including absorption and coherent and incoherent scattering can be
described by µ. The values of µ for all interactions have been measured by various experi-
ments and are tabulated in databases managed by the National Institute of Standards and
Technology. Figure 3.3 shows iron mass absorption coe�cients plotted versus photon energy
in MeV from the XCOMS database. Note that for x-rays below 1 MeV, absorption domi-
nates photon attenuation and processes like coherent and incoherent scattering are several
orders of magnitude less likely. Thus, if the photon source is below 10 keV, a radiography
measurement provides an accurate measurement of mass attenuation.

X-ray radiography measures the attenuated signal through a sample and can be used
to determine the density of the sample. In practice, analysis of radiography data is always
complicated by the fact that no practical x-ray source is mono-energetic and it is hard to
determine the precise 2D profile of the x-ray source. Radiography will be discussed in more
detail in the following chapters.
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3.1.3 X-ray Fluorescence

Another x-ray diagnostic used in HEDP experiments is fluorescence spectroscopy, which
measures the energies and line-shapes of radiative transitions from the atoms that make up
a plasma. The energies of the transitions depend on the ionization balances, which in turn
depend on the plasma temperatures and densities. Thus, fluorescence spectroscopy provides
another way to measure equation of sate variables.

A fluorescence experiment involves a plasma sample that contains a small fraction of a
mid-Z or high-Z dopant. A high energy x-ray source impinges on the sample, which excites
inner-shell electrons. The excited state of the electron has a finite associated lifetime, and
at the end of the lifetime, the electron decays back to its ground state and the atom radiates
a photon to conserve energy. The radiated photons are then collected by a spectrometer,
and the observed spectrum is compared to theoretically generated spectra that vary plasma
parameters to try to reproduce the data. Much previous work has focused on using K-↵
and K-� fluorescence line ratios and line shapes to determine a sample’s temperature [111,
112, 113]. Other work used the energy required to remove a K-shell electron to quantify the
e↵ects of continuum lowering in dense samples [79, 114, 115].

In a radiative transition, the radiated photon has the same energy as the di↵erence
between the energies of the final and initial states. The change in energy between two
electronic energy levels in a hydrogen atom is given by [116]:

�E =
Z2
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1

n2
f

� 1

n2
i

!
, (3.20)

where ni and nf are the initial and final primary quantum numbers. Values of nf = 1
and ni ! 1 result in the hydrogen binding energy of -13.6 eV. The quantum number
n is one of several quantum numbers that classifies the various energy levels available to
electrons in an atomic system. The available energy levels are referred to as the atomic
structure, which is governed by many di↵erent quantum e↵ects, including but not limited to
quantized angular momentum, quantized spin, spin-orbit coupling, and relativistic e↵ects.
An x-ray fluorescence spectrum shows line emission from many di↵erent radiative transitions
from these di↵erent energy levels, and a detailed understanding of the atomic structure is
required to understand the origins of all the emission lines. The energy of the radiative
transition provides a way to measure the ionization state of the sample. As an atom ionizes,
electrons in excited states experience less shielding of the nuclear charge as a result of fewer
bound electrons. Less shielding leads to a higher-energy radiative transition.

Another feature of line emission that depends on the material’s equation of state is the
line shape. Because each transition has an associated lifetime, the uncertainty principle
requires an energy spread to the transition, according to �E�t ⇠ h̄ [110]. The natural line
shape follows a Lorentzian profile, with frequency-dependent intensity given by:

I⌫ = I0
(�/4⇡)2

(⌫ � ⌫0)2 + (�/4⇡)2
, (3.21)
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where I0 is the central and maximum intensity, � is again the damping constant and also
the decay rate of the excited state, and ⌫0 is the central frequency. The line shape can
change with an increased plasma temperature through Doppler broadening, which means
the line shape can be a way to determine the plasma temperature. In the case of Doppler
broadening, the line shape takes on a Voigt profile, where the center line becomes dominated
by a Gaussian function shape [93]. However, the resolving power of the spectrometer must
be greater than a million to see such an e↵ect [110]. Another type of broadening is called
pressure or collisional broadening and can result from increased density or temperature.
Collisional broadening reduces the associated lifetime of the excited state and thus increases
the energy band-width of the Lorentzian line-shape of the radiative transition.

The plasma conditions can be extracted from fluorescence spectra by comparing data
with theoretically generated fluorescence spectra. The plasma parameters used to generate
the theoretical spectra can be altered until the predictions match the data. Two commonly-
used codes for extracting plasma parameters from fluorescence spectra are Cretin [117] and
FLYCHK [118]. In order to generate valid results, the codes require detailed atomic models,
which describe all the possible electron energies for all possible ionization states of an atom.
However, the statistical weight of each electron energy level increases exponentially with
the number of electrons in the system, even for a single electron excitation. Thus, for
an atom like argon with 18 electrons, one would have to account for roughly 107 possible
electron configurations for only one electron excitation (if one considers excitations up to
the n = 10 energy level). Typically, one accounts for several di↵erent possible electron
excitations, which means the model must include even more possible electron configurations.
For practical and computational purposes, extensive simplifications of the atomic models are
often required in data analysis. The codes use the simplified atomic models to calculate the
atomic kinetics and the radiative properties [119, 120]. Because of the simplifications and
modeling required, analyzing fluorescence data is a complicated and convoluted technique
subject to much systematic error. Like any multi-parameter fit, one must be sure to use self-
consistent models to avoid obtaining the right answer for the wrong reasons. The primary
advantage to fluorescence is that the signal levels scale with the absorption cross section,
which results in a lot more signal than could ever be obtained in an XRTS experiment.
Ideally, both techniques should be benchmarked against each other to provide data that
enhances our certainty in data analysis.

3.1.4 Neutron Spectroscopy

Another method to diagnose plasma conditions in HEDP involves measuring neutrons from
fusion reactions with neutron time-of-flight (nTOF) spectrometers. The average reactivity
of a fusion reaction is defined by:

h�vi =
Z 1

0

�(v)vf(v)dv , (3.22)
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where � is the cross section, or probability per pair of particles of the occurrence of the
reaction, v is the velocity, and f(v) is the velocity distribution [41]. The reaction rate of
species ‘1’ and ‘2’ with densities n1 and n2 depends on the mass density and reactivity of
the sample by:

R12 =
f1f2

1 + �12

⇢2

m̄2
h�vi , (3.23)

where f1 and f2 are the atomic fractions of species ‘1’ and ‘2’, �12 is the Kronecker delta
function, and m̄ is the average mass density [41]. Thus, the reaction rate depends on both
the density and the temperature of the sample.

The fusion reaction with the largest cross section is:

D + T ! ↵ (3.5 MeV) + n (14.1 MeV) , (3.24)

where ↵ refers to an alpha particle and n to a neutron. Two other reactions with D+D are
equally probable:

D + D ! T (1.01 MeV) + p (3.03 MeV) , (3.25)

and:
D + D ! 3He (0.82 MeV) + n (2.45 MeV) , (3.26)

where p is a proton. There is also a T+T reaction that has a similar cross section to the
D+D reactions:

T + T ! ↵ + 2n + 11.3 MeV . (3.27)

An experiment that seeks to use neutrons to measure either temperature or density will
dope a sample with deuterium or tritium. Then, the nToFs will be set to look for neutrons
with specfic energies that are known to arise from fusion reactions. One previous experiment
imploded solid CD2 spheres and measured neutrons with energies of 2.45 MeV that resulted
from D-D fusion reactions [121]. The nToF spectrum was Doppler-broadened in time as some
of the neutrons were generated in shocked material that was moving with a thermal velocity
similar to the neutron velocity. After accounting for Doppler-broadening e↵ects, the amount
of neutrons produced per time was analyzed to return the reactivity of the reaction, which
allowed determination of the density and temperature in the implosion hot-spot. There
are also several other examples of experiments that similarly used a Doppler-broadened
neutron spectrum to determine hot-spot conditions [122, 123]. The advantage of neutron
spectroscopy is that neutrons are not very interactive with matter, which results in high
accuracy measurements. The limitations are that fusion reactions only occur in parts of the
sample that are hot enough to cause fusion, which often limits the applications of neutron
spectroscopy to hot-spot related measurements.

3.2 The Gigabar Platform

The Gbar platform [124, 125] is a platform designed for the NIF to measure the absolute
equation of state of a spherically convergent sample up to pressures exceeding 1 Gbar, which
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Figure 3.4: A schematic of the Gbar platform. As the solid sphere compresses due to
the hohlraum-generated ablation pressure, a Zn He-↵ x-ray source backlights the sphere to
provide streaked x-ray radiography and time-gated XRTS measurements. The radiography
measurement allows for an absolute measurement of the Hugoniot equation of state.

is 109 times greater than Earth’s atmospheric pressure. Figure 3.4 shows a schematic of
the target and the placement of the primary diagnostics, which include radiography, x-ray
Thomson scattering, neutron spectroscopy, and penumbral imaging of x-ray emission. The
Gbar target is similar to a typical NIF ICF target in that an Au hohlraum is used to
indirectly-drive a capsule implosion at its center. In the case of Gbar, the capsule consists
of a solid carbon-based sample surrounded by ablator layers. A thin layer of the ablator is
doped with silicon or germanium, which absorbs Au M-shell emission and prevents preheat
of the center sample. There are two slits in the hohlraum, each directly across from the
other, located on the hohlraum midline. A Zn backlighter foil is mounted over one slit.
As the sample compresses from hohlraum driven laser ablation, several lasers heat the Zn
backlighter, which allows for several di↵erent measurements to be made to constrain the
equation of state.

The primary diagnostic for the Gbar platform is the streaked radiography measurement,
which measures the mass density behind the shock front and shock speed at di↵erent points
in time in order to measure the Hugoniot over a range of pressures; previous measurements
ranged from 100 Mbar - 1 Gbar [124, 121]. X-rays from the Zn propagate through the slit
in the hohlraum, then through the sphere and out the other slit. Because the radiography
image it is streaked, the measurement shows the time dynamics of the implosion. Figure 3.5
shows a simulated streaked radiography measurement of an imploding CD2 sphere in the
Gbar platform [121]. The radiography measurement shows several features, as noted in the
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Figure 3.5: Simulated radiograph of an imploding CD2 sphere from the Gbar platform. The
position f the shock front decreases in radius until the capsule reaches peak compression.
Reprinted from High Energy Density Physics, 21, Nilsen et al., Using neutrons to measure
keV temperatures in highly compressed plastic at multi-Gbar pressures, p. 20-26, Copyright
(2016), with permission from Elsevier.

figure. The primary features are the shock front and the radiography marker layer, as well
as emission from the central hotspot once the shock waves converge in the center. The shock
speed can be determined at each point in time by a �x/�t calculation. The radiography
marker layer constrains the amount of mass in the sample at each point in time by noting
the outer radius of the spherical sample. By knowing the outer radius of the sample and the
density of the unshocked region, the density in the shocked region can be inferred.

The Gbar platform is able to probe multiple points on the Hugoniot in just one mea-
surement because the platform uses a spherically convergent geometry. As the shock travels
inwards, convergent flow causes the shock pressure to increase due to accumulating mass in
the shock front. The pressure increases with radius as [124]:

P ⇠ r�2� , (3.28)

where � = 1/2+1�+(�/2(��1))1/2, and in this case, � is the adiabatic index. For � = 5/3,
� = 0.45 and for � = 4/3, � = 0.375 [124]. Initial experiments showed a 4% error on both
density and pressure measurements, which will help constrain the Hugoniots of materials at
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such high pressures. As Figure 2.5 shows, the compressibility versus pressure of materials
varies greatly with the assumed EOS. Thus, experimental data at high pressures is still
needed to benchmark the equations of state. Initial measurements on CH spheres are still
being analyzed, but show promise in resolving the equation of state [D. Swift et al., in prep.,
T. Döppner et al., submitted to Phys. Rev. Lett., and A. L. Kritcher et al., in prep.].

Another important measurement technique for the Gbar platform is XRTS [126]. In
this case, x-rays from the Zn scatter from the compressed sample along the hohlraum axis
through laser entrance holes to a time-gated spectrometer [127, 128] that collects XRTS
spectra. Initial spectra from an imploded CH capsule showed much higher ionization than
predicted by most commonly applied ionization models in the regime [75]. However, the
measurement arose from the inhomogeneous conditions of an imploding sphere, and there
were many background signals present, which convoluted data interpretation. More improved
measurements are needed to increase confidence in the results. Because the shape of the
Hugoniot depends on the ionization state of the sample, XRTS o↵ers an independent way
to benchmark the Hugoniot measurement from the radiography diagnostic and can provide
important insight into the material conditions.

Neutron emission can also be used to determine plasma conditions in a deuterium or
tritium doped Gbar capsule. The Doppler-broadened neutron spectrum reflects the velocity
distribution of ions in the sample [121, 123, 122]. In one experiment on the Gbar platform,
nTOFs measured the neutron yield as a function of time from imploding CD2 capsules to
determine the temperature and density in the hot-spot [121]. The neutron yield in combina-
tion with x-ray radiography can help constrain EOS models, as well as models of hot-spot
formation.

Finally, x-ray emission from the hot-spot has been observed with penumbral imaging
in order to return information about the hot-spot micro-structure in Gbar implosions [129,
130]. Penumbral imaging involves viewing the x-rays emitted from the hot-spot through a
pinhole array attached to a time-gated x-ray camera. The images from the camera can be
analyzed to return high-resolution images of the hot-spot, which allows assessment of the
hot-spot size and capsule compression ratio [129].

These four measurement techniques of the Gbar platform were initially developed as part
of the Discovery Science program on the NIF, which allows university researchers to pair with
Livermore scientists to do measurements on the world’s most energetic laser. Because of the
success of the Gbar platform, several groups at Livermore now use the platform to measure
the absolute Hugoniot of materials at extreme conditions. The Gbar platform was then
extended to the OMEGA laser to increase the number of shots and data points, and to
improve diagnostics like XRTS. Chapter 5 will discuss results from an implementation of the
Gbar platform on OMEGA, and show the resulting radiography and XRTS data.
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Chapter 4

Using X-ray Thomson Scattering for
Warm Dense Matter Experiments on
the OMEGA Laser

In this chapter, I describe the practical aspects of performing an XRTS experiment on the
OMEGA laser and all the considerations that must be taken into account, ranging from
target design techniques to data analysis. I illustrate the many trade-o↵s to consider when
constructing a target by describing the iterative process I went through to design experiments
on spherical implosions. I then discuss the details of processing XRTS data from images to
spectral line-outs. Finally, I outline the models we use to extract plasma parameters such
as temperature and density from spectra.

4.1 Experimental Design Considerations

An XRTS experiment at a large laser facility requires three components: a narrow-band
x-ray source, a spectrometer, and a plasma target. The following sections describe the three
requirements in more detail.

4.1.1 X-ray Source

There are no built-in x-ray sources that are suitable for XRTS or radiography measurements
at facilities like OMEGA and NIF, so experimenters have to generate x-rays by use of laser-
driven foil backlighters. A foil backlighter is created when several lasers heating a thin foil
to keV temperatures, which ionizes the atoms in the foil to a helium-like state; the atoms
then emit helium-like K-↵ line radiation, which is referred to as He-↵ radiation [131]. He-↵
radiation appears as a doublet of two lines from the ortho- and para-helium-like states, which
results from the two electrons being in either singlet or doublet states [116]. XRTS measure-
ments use Zn as the backlighter foil material on OMEGA and NIF; experimenters chose to
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Figure 4.1: A measured Zn He-↵ source spectrum and the same spectrum convolved with a
15 eV FWHM Gaussian. The Zn He-↵ doublet shows line emission at 8.950 and 8.999 keV.

use the Zn He-alpha line because the 9 keV line is of high enough energy to propagate through
⇠1 mm of 4x compressed CH plastic, which was required for early ICF experiments [127].
Zn He-↵ doublet line emission occurs at 8.950 and 8.999 keV [127].

On OMEGA, XRTS experiments use 6-10 beams on a foil to generate Zn He-↵ radiation.
The lasers are focused to obtain the best conversion e�ciency from laser light to Zn He-↵
radiation, which occurs with a laser irradiance of 2⇥ 1015 Wcm�2 [131]; this often amounts
to a laser spot-size of 300 µm. A 300 µm spot-size implies that the Zn He-↵ spectrum will
be blurred due to the finite source size of the laser-spot on the foil. Figure 4.1 shows an
example of a measured Zn He-↵ spectrum from a small (< 50 µm) laser spot, and the same
spectrum convolved with a Gaussian. In practice, the convolved spectrum is used as the
XRTS source spectrum in data anlysis; the width of the Gaussian used in the convolution is
altered to match the width of the elastic scattering peak in the data.

4.1.2 Spectrometer

We use the time-gated OMEGA spectrometer called ZSPEC to collect XRTS spectra. ZSPEC
means “zinc spectrometer,” and is named as such because it collects x-rays with energies
between 7.5 - 10 keV, which is centered around the Zn He-↵ emission.

A schematic of the ZSPEC is shown in Figure 4.2. ZSPEC is a Bragg crystal spectrometer,
which consists of a 50 mm x 25 mm highly oriented pyrolytic graphite (HOPG) crystal placed
equidistantly from a gated microchannel plate (MCP). The MCP contains four di↵erent strips
arranged vertically (in space and in the orientation of Figure 4.2). Time gating of each strip
occurs by an applied bias voltage across the MCP. The voltage is a square pulse, which
sweeps over the strip in 200 ps. In order to obtain enough signal, XRTS measurements
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Figure 4.2: A schematic of the ZSPEC at OMEGA. ZSPEC consists of a highly oriented py-
rolitic graphite (HOPG) crystal equally spaced between the source and a gated mircrochannel
plate (MCP). The di↵erent colors in the figure represent di↵erent energy x-rays; the x-rays
must satisfy the Bragg condition to reflect constructively to the MCP.

use a 500 ps pulse-width for the MCP voltage, which results in 180 ps of integration time
due to the characteristic MCP signal rise time. The bias voltages of each strip can be set
independently to change the signal gains in each strip. The MCP generates a signal when
scattered photons cause electrons from the MCP material to cascade through the MCP in
response to the applied voltage. The electrons then hit a phosphor screen behind the MCP,
which fluoresces as a result of electron impact. A CCD behind the screen captures the image
from the phosphor screen, which generates the image-based data. Often, the bias voltages
and timings of the ZSPEC strips will have to be changed between shots in order to obtain
good signal on all strips. These changes are routine and can be easily completed within a
shot cycle.

The HOPG crystal in ZSPEC is a mosaic crystal comprised of several layers of many
smaller graphite crystals with slightly di↵erent orientations to the normal. Mosacity is
defined as the FWHM of the Gaussian of angular spread of crystal orientation, and takes a
value of 0.3� in the ZSPEC. A crystal with high mosaicity has an integrated reflectively of
over 10-100 times as high as a single crystal [132, 133], making it an ideal tool in the case of
XRTS experiments, which often su↵er from low signal levels. As described in Reference [133],
photons of a specific energy fanning from a point source can reflect constructively through
many di↵erent paths and at di↵erent depths in the crystal, which results in higher signal
levels. However, mosaicity often a↵ects the resolution of the instrument; the spectrometer
has a limited resolving power of roughly �E/E ⇠ 2⇥ 10�4 [134].

The crystal resolves photons that satisfy the Bragg condition [94]:

n� = 2d sin ✓B , (4.1)

where n is the di↵raction order, � is the wavelength of light, d is the lattice plane spacing in
the crystal, and ✓B is the Bragg angle. XRTS experiments typically use first order reflections
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Figure 4.3: A schematic of the ZSPEC at OMEGA showing how the same energy x-rays
arising from di↵erent sources may appear o↵set in the energy.

(n = 1), and for ZSPEC, 2d = 0.67 mm and ✓B = 12.2�. Because reflections must satisfy
the Bragg condition, di↵erent energies of light reflect constructively at di↵erent reflection
angles, as indicated in Figure 4.2. The dispersion of the ZSPEC is calculated as:

�E

�x
=

E

2F tan ✓B
, (4.2)

where E is the center energy and F is the distance between the center of the crystal and the
source, F = 125 mm/ cos ✓B. At 9 keV, the rule-of-thumb is 1 mm = 150 eV.

Another feature of the ZSPEC is one-to-one distance mapping from the source to the
detector. This arises from the equidistant crystal placement between the source and the
MCP [127]. Figure 4.3 shows how monoenergetic x-rays that emerge from di↵erent points
in space may appear shifted in energy. This often means that unwanted signals in spectra
contain a mix of energy and spatial information, and it is up to the experimenter to determine
the origin of the signal.

The ZSPEC includes a blast shield to protect the crystal from any debris that might
be generated in the experiment. The ZSPEC may also contain filters in front of the MCP
module in order to reduce x-ray signal. XRTS experiments use a Be blast-shield, which
is near-transparent to 9 keV x-rays. For shots in which the ZSPEC looks directly at line
emission from a target, the MCP filtering includes ⇠600 µm of aluminum.

4.1.3 Target

The design of the scattering target can have many e↵ects on the data obtained from the
spectrometer, including overall signal levels. As described in Chapter 3, the Thomson scat-
tering cross section is small enough such that obtaining adequate signal levels in an XRTS
experiment always presents a challenge. To be sure an experiment will be successful, one
first has to calculate the number of photons to be collected at the detector; this is referred
to as calculating the photometrics of an experiment.
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Figure 4.4: A schematic of k-vector blurring from an experiment that nominally has a 90�

scattering angle. a) k-vector blurring that is dominated by the size of the source, b) k-vector
blurring that is dominated by the size of the scattering target.

We calculate the photometrics by first considering that the Zn x-ray source emits photons
into a 4⇡ solid angle. The number of photons that reach the scattering target depends on
the solid angle that the target subtends. Photons that reach the target again scatter into 4⇡
with some probability, and a portion of those photons eventually reach the detector. The
number of photons that will be detected can be estimated by [62]:

Nph,det =

✓
EL

h⌫

◆✓
⌦plasma

4⇡

◆
(ne�T l)

✓
⌦det

4⇡
⌘det

◆
, (4.3)

where EL is the energy of the laser incident on the backlighter foil, h⌫ is the energy of a
single photon, ⌦plasma is the solid angle subtended by the plasma sample, ne is the electron
density, �T is the Thomson scattering cross section, ⌦det is the solid angle subtended by the
spectrometer, and ⌘det is the quantum e�ciency of the detector.

Designing an XRTS target often involves an optimization between higher signal levels
and challenges in data interpretation. One such compromise involves signal level versus k-
vector blurring. k-vector blurring occurs when an experiment probes the average of multiple
scattering angles, which results in measuring scattering from several k-values. This can
obfuscate interpretation of data by artificially broadening the resulting scattering spectrum.
Figure 4.4 shows a schematic of how k-vector blurring can occur for the case of a large source
(a) and for the case of a large target (b). Both examples show a nominal scattering angle of
90�, but the finite source and target sizes show that x-rays will scatter to the spectrometer
with scattering angles of 90� ±�✓, as depicted. Increasing the distance between the source
and the target decreases the e↵ects of k-vector blurring. However, decreasing the distance
increases the signal levels by a factor of r2. In practice, all experiments have some k-
vector blurring, but the distribution of angles probed is sharply peaked around the designed
scattering angle. A rule-of-thumb for OMEGA experiments is that the source should be 1
mm away from the scattering target for adequate signal levels and minimal k-vector blurring.
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Figure 4.5: Two VISRAD [135] screen shots of experimental configurations on hohlraum-
driven spheres. 20 lasers drive the holraum, and 6 beams drive the Zn backlighter foil which
sits over a notch cut in the hohlraum’s side. The left image shows the spectrometer’s view of
the capsule. The Au shields block the spectrometer’s direct line-of-sight to the Zn foil and
to x-rays generated by the hohlraum drive. The right image shows the backside view of the
hohlraum and is intended to demonstrate the complexity of laser pointing in a demonstrative
XRTS experiment.

Another design consideration that competes with signal levels is shielding of the x-ray
source from the spectrometer. Decreasing the distance between the x-ray source and the
target increases signal levels, but also increases the challenge of blocking the spectrometer’s
direct line-of-sight to the Zn foil. Blocking the direct line-of-sight is crucial to obtaining high-
quality scattering measurements, as any x-ray signal directly from the foil will be orders of
magnitude stronger than the XRTS signal. To make things more challenging, the Zn can
expand around the shielding once the backlighter drive lasers turn on. The lasers heat the
Zn, which becomes a plasma and expands like liquid around the target. The way to mitigate
signal-leakage from the expanding plasma is to make shielding structures large enough such
that any signal that emerges from expanding Zn will be far enough separated from the
scattering signal as to not distort the data. Using the rule-of-thumb for dispersion, signals
that could appear on the low energy side should be separated by roughly 600 eV, which
requires a shield that subtends 4 mm in the dispersion plane, and the high energy side by
100 eV, which requires a 0.66 mm shield. It is thus advantageous to plan a target such that
emerging Zn plasma will appear on the high energy side as so less shielding mass is required.

In addition to the above listed considerations, there are many other target-related details
that must be considered: the scattering target must have a direct line-of-sight to the laser
spot on the Zn foil, the XRTS measurement must be made when the beams driving the
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target are o↵ to avoid seeing a strong thermal-emission spectrum background, glue must be
placed on junctions of shielding where Zn plasma could leak through, and none of OMEGA’s
60 beams should clip anywhere on the target. In order to overcome these challenges, there
is a software developed by Prism Software called VISRAD [135]. VISRAD is a full 3-D view
factor code that allows one to build a 3-D target inside a simulated target chamber, and then
point and focus the OMEGA laser beams on to targets in order to estimate deposited power.
As an example of the possible complexity of a target and laser configuration, Figure 4.5
shows two VISRAD screen shots from an indirect-drive XRTS campaign. Twenty beams
generate the hohlraum drive and six beams heat the Zn backlighter foil. The backlighter
beams are pointed and focused to avoid both the target stalk and the hohlraum fill-tube; the
fill-tube puts a gas pressure inside the hohlraum to help avoid Au blowo↵ towards the capsule.
The images are intended to demonstrate the technical challenges of pointing lasers in the
OMEGA chamber- there are many beams, all with the ability to be pointed independently.
On the more powerful NIF laser, other considerations must be taken into account, such as
reflections from unconverted infrared laser light, bringing even more necessity to programs
like VISRAD.

The challenges in designing an XRTS measurement are many, which is why there is still a
dearth of experimental XRTS data from high power laser facilities. However, with the right
combination of target elements, a successful experiment can be performed.

4.2 The Gigabar Platform on OMEGA

To illustrate the challenges in designing XRTS targets for OMEGA, I will describe the
iterative path we took in designing two platforms to take XRTS data from imploding spheres:
one in direct-drive geometry and the other in indirect-drive geometry. In collaboration
with a group at Livermore, I participated in the OMEGA Gbar campaign, which was a
programmatic campaign that sought to measure the Hugoniot of pressures ranging from 50 -
200 Mbar in a spherically convergent geometry. This was an extension of the Gbar platform
described in Chapter 3, and aimed to support the NIF Gbar data by providing additional
data. The primary diagnostic of the campaign was again x-ray radiography. However, a
temperature measurement was also desired, so the platform expanded to include XRTS. The
goal was to design platforms in which XRTS and x-ray radiography shots could be taken
back to back in an OMEGA shot day to measure the full phase space of a capsule implosion.
The desire for two configurations in one shot day imposed several limitations on the target
geometries of both measurements; namely, the lasers used to drive the backlighter foils could
only be repointed once per day and by less than 1 mm.

Figure 4.6 shows a schematic of three di↵erent direct-drive XRTS targets that were
shot on three successive XRTS campaigns. All campaigns were based o↵ of the previously
successful OMEGA XRTS experiments of Kritcher et al. and Fletcher et al. [4, 60], who
used spherical shells of beryllium or CH with diameters on the order of 860 µm. In the
previous campaigns, conical Au shielding cones were glued directly to the spherical shells.
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Figure 4.6: Three iterative target designs used to take XRTS measurements from directly-
driven imploding spheres on the OMEGA laser. (a) The first target was based o↵ of pre-
viously successful work [60, 4]; measurements later in time were corrupted by Zn plasma
emerging from the cone tip; the target stock was also too large and perturbed the implosion.
(b) The second design reduced the e↵ect of the stalk and attempted to mitigate Zn plasma
blowout by placing the Zn foil on the inside of the cone. This was unsuccessful, as a lip at
the end of the cone from target manufacturing blocked the direct line-of-sight from the laser
spot on the Zn foil to the compressed sample. (c) The third design used 3D printed plastic
cones covered in Au foils to reduce the cost of the targets and collected clean scattering data.

The Zn backlighter foils were glued on the inside edges of the cones, close to the spheres.
We adapted the experimental geometry so radiography measurements could be performed in
series. This led to the separation of the cone and the sphere, as shown in Figure 4.6. All the
Gbar campaigns used carbon-based spheres (CH, CH2, CD, and diamond) with radii that
ranged from 430 - 1000 µm in diameter. The shielding cones contained an opening at the
tip, over which was placed 100 µm of CH with 10 µm of Zn on top. The opening angle of the
cone was designed to be wide enough to accept six backlighter beams, which were focused
to 300 µm diameter spot sizes; this yielded maximum conversion e�ciency to Zn He-↵ light
with an intensity of ⇠ 1.5⇥ 1015 Wcm�2 [131].

The first campaign, depicted in Figure 4.6(a), was a half shot day in which we took
two XRTS shots. The shots showed promising signal-to-noise ratios, but shots later in time
showed a non-physical increase in the elastic scattering signal, as well as background signal
emerging from Zn expanding outside the shielding cone. In addition, the target stock created
a significant perturbation in the implosion, as the amount of mass in the stock was on the
same order of magnitude as the mass in the sphere. The second campaign changed how
the sphere was mounted to the cone by using a small fiber instead of the large stock. To
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mitigate Zn backgrounds, the Zn foil was moved to the inside edge of the cone, as seen in
Figure 4.6(b). This succeeded in reducing the expansion of Zn plasma around the cone.
However, we failed to collect an XRTS signal. The cause was at first mysterious, but we
deduced that it was because the sphere did not have a direct line-of-sight to the laser spot on
the Zn foil. The gold shielding cone came to a tip, and at the tip, there was a slight gold lip
that arose from machining. When the sphere was moderately compressed, no potion of the
sphere had a direct line of sight to the laser spot on the foil. Up to this point, it was believed
that the XRTS x-ray source arose from both the laser spot on the Zn foil and expanding
Zn plasma that interacted with the lasers. However, if that were true, expanding Zn plasma
would have come into the field of view of the compressed sphere. In our case, we did not
collect any XRTS signal, which suggests the expanding Zn did not create a bright enough
x-ray source for XRTS. The experiment demonstrated that the scattering target must have
a direct view of the laser spot on the Zn foil in order to generate a scattering signal.

On the final direct-drive shot day, we moved the Zn foil back to the tip of the cone and
restricted our shot timing to the earlier half of the backlighter drive. The machined Au cone
was replaced with a 3-D printed plastic cone covered with Au foils to reduce the cost of
target fabrication. The targets resulted in good XRTS data when used with the larger 1 mm
diameter diamond spheres (discussed in detail in Chapter 5), but failed to generate strong
signals for the smaller 430 µm CH spheres. We believe this was again due to alignment
of the spot of the lasers on the Zn foil with the sphere. These targets included a gold foil
collimator over the tip of the cone to reduce the x-ray source size. A slight misalignment
of the target with respect to the laser system could result in a loss of the line-of-sight from
the sphere to the laser spot on the Zn foil. In the future, the collimator will be removed,
and all experimental designs will be built to tolerate these misalignments. However, the
resulting high quality data from the diamond spheres o↵er important information on warm
dense diamond and signify a successful platform development.

We also developed an XRTS platform for hohlraum-driven spheres. Figure 4.7 shows a
schematic of the three di↵erent iterations of hohlraum targets. All targets used a 1.3 mm x
2 mm hohlraum with 1 mm laser entrance holes. In all three cases, the Zn foil was placed
over plastic that covered a window carved in the hohlraum wall. All configurations used
carbon-based spheres with diameters ⇠500 µm. In the first configuration, the spectrometer
viewed the sphere down the hohlraum axis. A flat Au disc shielded the spectrometer from a
direct line of sight to the Zn foil. The shield subtended 180� around the hohlraum and failed
to provide adequate protection from Zn expanding around the target. The shot day resulted
in successful collection of inelastic scattering data, but the elastic peak was overshadowed
by a direct view of Zn. The results are described in Reference [136].

The second configuration of XRTS from hohlraum targets altered the orientation of the
spectrometer such that it viewed the sphere through a window in the hohlraum wall. This
was due to classification concerns, as well as a desire to prevent the spectrometer from seeing
thermal continuum emission backgrounds from the hohlraum. An Au cone contained the
spread of the Zn foil on the side of the hohlraum, as depicted in Figure 4.7(b). However, the
orientation of the cone on the side of the hohlraum proved di�cult for the target fabrication
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Figure 4.7: The three iterative target designs used to take XRTS measurements from
hohlraum-driven spheres on the OMEGA laser. All three designs use a 2 mm x 1.3 mm
hohlraum to compress a plastic sphere that ranges from 430 - 600 µm in diameter. The 10
µm Zn foil provides the Zn He-↵ x-ray source for the scattering experiment. (a) In the first
design, the spectrometer viewed the imploding sphere through the hohlraum axis and used
a half-circle Au shield [136]. However, the shielding was ine↵ective. (b) The second design
attempted to mitigate the shielding issues by containing the Zn plasma with a full cone. It
also moved to a back-scatter geometry, in which the spectrometer views the sphere through
a window in the hohlraum. (c) The final design used a series of flat shields to block the
spectrometer’s line of sight to the Zn. The best results were obtained with this platform.

team to complete, and several targets fell apart in the target chamber before the measurement
was made. In the end, the cone model had to be abandoned and we moved to flat pieces
of Au to shield the spectrometer, as seen in Figure 4.7(c). This platform yielded the most
successful results. However, the intensity of the elastic peak increased unphyiscally as a
function of backlighter drive turn-on time. We believe this was due to Zn expanding into the
hohlraum. In the future, this measurement will be improved by increasing the thickness of
the plastic that supports the Zn. This will prevent the plastic from being ablated and will
lead to a successful XRTS measurement.

4.3 XRTS Data Processing

Once successful XRTS data is taken, there are several steps required to generate spectral line-
outs. These include: dispersion calibration, flat fielding, accounting for filter transmission,
background subtraction, and source-function calibration. This section describes each process.
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Figure 4.8: Raw XRTS data from directly-driven solid diamond spheres from the ZSPEC
on OMEGA shot number 85696. Each strip is time gated and integrates over 200 ps. The
elastic and inelastic scattering features are indicated.

Figure 4.8 shows an image of raw XRTS data from directly-driven 1 mm diamond spheres
on the OMEGA laser. Each strip is time gated and integrates over approximately 200 ps.
The two peaks of elastic and inelastic scattering are visible in all four strips. A line-out from
each strip can be obtained by summing the signal in the vertical dimension in one strip. The
first correction to be performed is flat-fielding. Flat-fielding helps to account for any defects
in the HOPG crystal, which can result in areas of the crystal with more or less reflectivity
and can distort the shape of the scattering spectrum. A flat-fielding measurement is made
by measuring the bremsstrahlung spectrum of a mid-Z material, such as aluminum. The
bremsstahlung spectrum shows the areas of the crystal with low or high reflectivity, which
can then be used to correct the data. One can also account for crystal non-uniformities by
averaging over scattering spectra that are taken at the same time from di↵erent strips on
the detector.

After accounting for crystal non-uniformities, one needs to calibrate the horizontal axis
of the scattering spectrum from pixels to energy. The dispersion can be calculated by
Equation 4.2, which derives from the spectrometer geometry. However, Equation 4.2 relies
on an accurate understanding of the distance between the center of the crystal and the target,
as well as the energy for which the distance between the crystal and target and target and
source are equal. The nominal stand-o↵ distance for ZSPEC is 125 mm and the center energy
is 8600 eV. But the crystal is placed into the spectrometer by hand and can be up to several
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Figure 4.9: A line-out of one strip from a shot on a brass foil which has been calibrated
for dispersion. The Cu He-↵ (8.347 and 8.392 keV), Zn K-↵ (8.639 keV), Zn He-↵ (8.950
and 8.999 keV), Zn Ly-↵ (9.318 keV), and Cu He-� (9.862 and 9.875 keV) emission lines
are labeled. Dispersion is calibrated by comparing calculated dispersion curves with the
positions of the emission lines.

millimeters o↵ from the design position.
To calibrate the distances used in the dispersion calculation, we generate emission lines

at known energies to make a map between pixel number and photon energy. This is done
by measuring the emission spectrum from a brass foil. The emission lines from the Cu and
the Zn in the brass provide enough points to calibrate the spectrometer. Figure 4.9 shows
a calibrated line-out from one such brass foil shot. The three lines used to calibrate the
dispersion are Cu He-↵ (8.347 and 8.392 keV), Zn He-↵ (8.950 and 8.999 keV), and Cu He-�
(9.862 and 9.875 keV) [127]. The points of pixel number versus energy are then compared
to calculated dispersion curves with di↵erent focal lengths and center energies until a best
fit is found.

Once the dispersion is calibrated, there are several other e↵ects that need to be taken
into account. The CCD in ZSPEC records the number of counts per spatial bin. Because
di↵erent regions get “squeezed” or “stretched” due to non-linear dispersion, the integral
of the counts beneath the spectral curve needs to be conserved by dividing each point on
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the spectrum by a factor of �E/�x. This has the e↵ect of raising the red side of the
spectrum and lowering the blue side. Spectrometer filtering also a↵ects x-ray transmission,
and the observed spectrum should be divided by the filter transmission curve. Often the
only filtration is millimeter-thick beryllium, which has a slowly varying opacity function over
the energy range of scattering. This also results in raising the red side of the spectrum.

The final correction to the spectrum involves subtracting any shaped x-ray background,
which often generates significant uncertainty in spectral processing. Since the shape of the
XRTS spectrum reveals the plasma conditions, subtracting any form of shaped background
complicates interpretations. If the experiment is well shielded, the background subtraction
will be a simple DC o↵set, in which a constant is subtracted from all points on the spec-
trum. In the case of a thermal x-ray background, a polynomial function can be fit to the
background shape and then subtracted from the spectrum. This has been performed in the
past [75], but is known to greatly increase error in the final conclusions. Another option on
the OMEGA laser is to take a separate shot without the XRTS drive beams to obtain a back-
ground measurement that can then be subtracted from the scattering spectrum; however,
this reduces the number of data-shots available and does not account for any background
that might be created by the Zn drive.

To summarize, here are the steps that must be taken to generate a spectral line-out from
the image-based data:

• Take a lineout of the data along the dispersion direction

• Perform flat-field correction to account for crystal nonuniformities

• Calibrate energy dispersion by matching emission lines of known energies with calcu-
lated spectrometer dispersion curves

• Account for dispersion distortion by dividing each point on the spectrum by the cal-
culated �E/�x

• Divide by filter transmission profiles

• Subtract background signals

Once the modified line-out is attained as described by the above list, the spectrum can
be fit to reveal the plasma conditions.

4.4 Extracting Plasma Parameters from XRTS
Spectra

The shape of the spectrum depends on the experimental geometry and the plasma conditions
of the scattering sample, as described in Chapter 3. To extract the plasma parameters, we
use a forward fitting technique. That is, we generate theoretical scattering spectra for a set
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of input parameters, such as scattering angle (which is set by the experimental geometry),
electron temperature, mass density, and ionization state, and then compare the resulting
calculations to the data.

4.4.1 �2 Fitting of Spectra

We compare the theoretically generated spectra with the experimental data via a �2 fitting
technique. In the case that there are N data points in the spectrum, each with value xi and
variance of �2

i
, the �2 is defined as:

�2 =
1

⌫

NX

i

(xi � µi)2

�2
i

, (4.4)

where µi is the associated value of the point of the theoretically generated fit and ⌫ =
N � n is the number of degrees or freedom, or number points minus the number of fitting
parameters [137]. The closer the �2 value is to 1, the better the fit. Fitting certainties can
be associated with certain �2 values; with two fitting parameters, a �2 of 2.28 corresponds
to 2� certainty.

In the case of XRTS data, it can be di�cult to obtain independent measurements for the
variance of each point, �2

i
. In that case, the �2 values can be fit and absolutely calibrated

by the fact that the probability of all solutions must sum to unity. In order to do this, the
fitting parameters should be generated on a fine mesh with dimensions set by the number of
fitting parameters. Theoretical fits should be generated for each point in the mesh and the
�2 values calculated using a best-estimate for the variance of each point. The mesh should
span a large enough space such that the �2 values approach their limiting value of 1 on all
borders. This will generate an oval-like “island” �2 plot in 2-D space. The probability of
each point is related to the �2 value by [137]:

P (�2) / (�2)
⌫�2
2 e

��2

2 . (4.5)

All points on the �2 surface can then be normalized by the fact that the total probability
must sum to unity, and the resulting �2 can be obtained through back calculation. In
practice, generating a normalized �2 fit “island” from XRTS data is often unfeasible, as the
island can be cut o↵ by physical limits, such as temperatures below zero and nonphysical
ionization states.

As mentioned above, it can be di�cult to obtain an accurate and independent value of
�2
i
for each point on the XRTS spectrum. �2

i
should scale with

p
Counts, where the number

of counts refers to the number of detected photons. However, ZSPEC is not absolutely
calibrated. In the case that normalizing the full probabilities to unity is not an option, we
generate a theoretical best fit to the data and calculate the variance of that fit. That variance
is then used as the variance for all points in the data. Because of this method, care must be
taken before interpreting �2 fitting certainties as error bars, as often things like background
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subtraction contribute substantially more to error [75, 138]. However, the �2 fits do provide
a way of interpreting sensitivity to fitting parameters and can be used to generate error bars
in the case that background subtraction and other steps in data processing do not contribute
significantly.

4.4.2 The MCSS Code

We use a code called Multi-Component Scattering Spectra (MCSS) [98, 138] to generate
theoretical scattering spectra to compare with the data and extract plasma conditions. A
collaborator at the Atomic Weapons Establishment in the United Kingdom developed the
code to improve upon the models used in previous XRTS simulation codes [97, 139]; MCSS
accounts for di↵erent plasma components, whereas previous work relied on average atom
approximations [98]. The code allows the user to select di↵erent physics models for the
di↵erent components in the Chihara decomposition based on the experimental geometry and
anticipated plasma conditions in the sample. For instance, experiments that probe at a large
k-value are suited to di↵erent models than experiments that probe in the collective regime at
low k, and degenerate plasmas can require di↵erent treatment than classical plasmas. In this
section, I outline the methods used by the code to generate scattering spectra and highlight
the most frequently used physics models for the data analysis performed in this thesis.

The code itself is user friendly and quick to run; it takes only a matter of seconds to
generate a single scattering spectrum. Figure 4.10 shows an example of an input deck file
designed to generate a scattering simulation from a mixture of beryllium and argon. The
setup block of the deck file specifies the output mode of the code; the code can be run
in angular or spectral mode. Spectral mode generates a scattering spectrum for a given
scattering angle. Angular mode calculates the scattering components like Sii as a function
of k and is useful for characterizing the scattering regime and understanding the contributions
of di↵erent components to scattering spectra. The plasma block allows the user to specify the
plasma conditions, such as temperature, density, and ionization state. If the user specifies
a mean charge state, the code automatically generates populations of whole charge states
above and below the specified mean state such that the average charge evens out to the
user’s specification. In addition, the user can specify population densities of atomic species;
Figure 4.10 shows an example with 95 at.% (atomic percent) beryllium and 5 at.% argon.
The probe block specifies the x-ray source conditions, which can be a source spectrum from a
file or a Gaussian or Lorentzian source. The detector block contains all the details about the
spectrometer, including energy ranges and the scattering angle. The code is able to average
over di↵erent scattering angles in the case of significant k-vector blurring. The models block
contains all the approximations used for the components of the Chihara decomposition.
These models will be discussed in detail below.

To use the code, one generates a deck file with parameters relevant to the experiment.
A front-end processor, such as Matlab, may be used to vary the desired fitting parameters,
such as temperature, density, and ionization states, and to calculate the �2 fit to the data.
Matlab contains machine learning algorithms, which can be used to find the best fit to the
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Figure 4.10: An example of a deck file used to run the MCSS code for an experiment that
collects back-scattered spectra from a mixture of berylium and argon. The SETUP block
specifies basic conditions such as the number of atoms and the output of the code, the
PLASMA block specifies plasma parameters such as mass density and temperature, the
PROBE block characterizes the x-ray source function, the DETECTOR block determines
the scattering angles and energy bandwidth of collection, and the MODELS block specifies
the physics models for the di↵erent components in the Chihara decomposition.
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spectrum. However, sometimes the best fit occurs for a non-physical set of parameters, such
as sub-zero temperatures. In addition, the �2 fit can possess several local minima. Because
of this, it is often more e�cient to generate a large grid of plasma conditions that varies
density, ionization, and temperature. Spectra and �2 values can be calculated for all points
on the grid, and the best fit can be found by observing the fits over the whole parameter
space.

While MCSS is an immensely powerful and user-friendly code, it does possess limitations.
For one, the code is inherently 0-D; one can only generate a scattering spectrum from a
single condition. This presents problems for more complicated scattering geometries, in
which scattering arises from multiple sets of conditions. In that case, additional e↵orts must
be made to compute 3-D e↵ects, such as source-broadening and x-ray attenuation due to
opacity. In addition, the code uses simplifying models to calculate scattering spectra. The
next section discusses the modeling in more detail. But as with any simplifications, the user
needs to have a detailed understanding of the regimes of validity for all models. Overall, the
MCSS code provides an e↵ective way to fit spectral data and understand spectral sensitivity
to plasma parameters.

4.4.3 Models Used by the MCSS Code

The code is convenient to use for fitting spectra because it run quickly, but the speed arises
from simplifications to scattering models used to compute theoretical spectra. Thus, as
in any simulation, the user must understand the approximations behind the code in order
to evaluate whether or not the code produces a reasonable and physical simulation. The
approximations and models in the code are described in detail by the user manual [138, 98].
Here I summarize the most frequently used models.

As described in Chapter 3, the semi-classical Chihara decomposition breaks the dynamic
structure factor into three terms. In view of a multicomponent treatment, the three com-
ponents can be written in terms of their overall weighted contribution to scattering, W ,
as:

Wtot = W ff

C
(~k,!) +W bf

C
(~k,!) +WR(k)�(!) , (4.6)

where the first two terms represent free-free and bound-free scattering and compose the
inelastic (or Compton) peak, and the last term represents the Rayleigh weight of elastic
scattering [138, 98]. The first two terms can be written in terms of their dynamic structure
factors as:

W ff
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and:
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where both equations sum over all ion species a, Zf

a
is the number of free charges per ion

species, Zb

a
are the number of bound charges per ion species, xa is the partial number density
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fraction of ion species a, and See and Sea are the free-free and bound-free dynamic structure
factors, respectively [139]. The total Raleigh weight can be written as:

WR(k) =
X

a,b

p
xaxbni[fa(k) + qa(k)][fb(k) + qb(k)]Sab(k) , (4.9)

where f(k) are the atomic form factors, q(k) are the screening cloud contributions, and Sab

is the partial structure factor for correlations between ion species a and b [140, 98].
Both free-free and bound-free transitions contribute to the inelastic, peak of the scattering

spectrum. The Chihara decomposition treats the free electrons as a free electron gas with
the ions generating a uniform charged background [96]. In order to calculate the free-free
structure factor, the code must calculate the retarded polarization function of the plasma,
which determines the behavior of the free electron density in response to the total e↵ective
potentials of the fully interacting system [98]. In the non-interacting limit, the retarded
polarization function can be modeled using the random phase approximation, which only
keeps the lowest order term in the expansion of the the polarization function expression. In
order to account for correlations in denser plasmas, the RPA can be modified with local-
field corrections [62]. Experiments that probe with large k-values can can approximate the
local field corrections with their static limits, whereas a dynamic treatment must be used
for collective scattering at lower k-values. In the case that the characteristic relaxation rate
of electron distributions due to collisions with ions is large, the Born-Mermin approximation
can be used to account for electron correlations with ions. A local field correction can be
added to account for electron correlations. In running the code, we model the electron
polarization function with the Born-Mermin ansatz, and then add dynamic Hong-Lee local
field corrections; these are generally agreed upon as the current best models for the free-free
structure factor in warm dense matter [98].

The bound-free term accounts for electrons that undergo Raman-like transitions from
bound states into the continuum. The total bound-free dynamic structure factor can be
found by summing over each occupied sub-shell around an ion using the Kramers-Heisenberg
formula. Di↵erent approximations for the e↵ects of each sub-shell apply to di↵erent k-value
limits. In the limit that k ! 1, the impulse approximation (IA) may be used. The impulse
approximation ignores the binding energy of the nucleus, and treats the initial and final
states of the electron as plane waves. Several un-tested corrections can be made to IA to
account for the asymmetry of the Compton profiles of the bound states. In theory, the
best correction would be to treat the initial state of the electron as a bound state with the
form factor approximation. However, current work on modeling the bound-free term with
the form-factor approximation shows disagreements with most scattering data [98]. Thus,
the current best estimate for the bound-free term is found with the impulse approximation.
In running the code, we model the bound-free feature with a slightly modified impulse
approximation that accounts for edge e↵ects near the binding energies of the electrons. In
general, there is much room for improvement in modeling of the bound-free feature, as the
shape of the feature depends on the available energy states of the electrons and thus the
atomic models.
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Elastic scattering comprises three components: the ionic form factors (f(k)), the screen-
ing cloud contributions (q(k)), and the ion-ion structure factors (Sii(k,!)). The values of
f(k), q(k), and Sii(k,!) all depend on the magnitude of the scattering vector, k = 2

c
!i sin ✓/2,

which depends on the frequency of incident radiation, !i, and the scattering angle, ✓. The
ionic form factor, f(k), provides the dominant contribution to elastic scattering, and is the
Fourier transform of bound electrons around an ion species. f(k) can be represented by a
sum over all bound electron states, as [98]:

f(k) =
X

n,l,m,�

fn,l(k) . (4.10)

The individual fn,l are typically constructed with the screened-hydrogenic approxima-
tions [98, 141], although other simplifications have also been used [142]. The screened hy-
drogenic approach to constructing the ionic structure factor is widely accepted as the best
available method.

There is less consensus behind the modeling of the electron screening cloud’s contribu-
tion to elastic scattering, which contributes to uncertainties in interpreting elastic scattering
signal strength. The electron screening cloud contribution arises due the response of the free
electrons to the ions; the quantified contribution is particularly uncertain in the partially-
ionized warm dense matter regime [98, 105]. Several di↵erent approximations can be used to
calculate q(k), including finite-wavelength screening at larger wave numbers and Debye-like
Debye-Hückel screening at smaller wave numbers. Other approximations used to calculate
the screening cloud contribution to elastic scattering vary the treatment of the potential be-
tween the electrons and the ions. A typical approximation for this potential is the e↵ective
Coulomb potential, which replaces the nuclear charge with an e↵ective charge that accounts
for the nucleus and the free electrons. Other models include the hard empty core treatment,
which generates an empty core of zero charge inside a user-imposed radius of bound elec-
trons [98]. However, finite wavelength screening has been observed experimentally [105], and
so remains the most-frequently used model for the screening cloud contribution.

Another contribution to the strength of elastic scattering is the static structure factor,
Sii(k), which arises from spatial correlations of the ions. Typical approximations used to
account for the potential governing ion-ion interactions include an e↵ective coulomb potential
that is ideal in weakly ionized systems or a Debye-Hückel potential for fully ionized atoms
with weak coupling. More work is being done to develop a finite-wavelength screening model
and a short-range repulsion model ideal for dense and partially ionized plasmas, but Debye-
Hückel remains the model we use in the code to model scattering spectra.

It should be noted that there is a lot of uncertainty as to whether or not fitting the
data with MCSS is the best way to extract plasma conditions from the scattering data [9,
107, 108]. As the Chihara decomposition allows di↵erent components of the spectrum to be
modelled independently, spectra can be fit using physics models that are not self-consistent.
In addition, the Chihara decomposition forces the definition of an average charge state. In
warm dense matter, the definition of ionization is not fully clear, as the material is often too
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dense for the electron to ever become fully part of the continuum [143]. Finally, because the
code allows for many di↵erent input parameters, good fits to the spectrum can sometimes
be found in non-physical regimes. Thus, much recent work focuses on modeling spectra
outside of MCSS and outside of the Chihara decomposition [9, 23, 107, 108]. However, these
techniques require significant computing resources. Thus, because of its speed and ease of
use, MCSS remains a useful tool for understanding fitting sensitivities and benchmarking
fits to di↵erent plasma conditions.
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Chapter 5

X-ray Thomson Scattering and
Radiography from Imploding
Diamond Spheres on the OMEGA
Laser

As a culmination to the XRTS platform development work, we collected high quality scat-
tering data from directly-driven 1 mm diameter single-crystal diamond spheres during a
Laboratory Basic Science one-day campaign. This chapter outlines the motivation for the
work and discusses the results and and conclusions from the shot day.

5.1 Introduction

Understanding the behavior of matter at extreme conditions is crucial to laboratory astro-
physics and experiments that pursue inertial confinement fusion. Both experimental areas
rely on an accurate equation of state (EOS) model, which describes how matter heats and
compresses in response to an applied pressure. Modern static compression experiments can
reach pressures up to 7 Mbar, at which point valence and conduction bands begin to distort
and material chemistry begins to change. Planar dynamic compression experiments from
laser-driven shocks and flyer plates can reach pressures up to 100 Mbar, at which point basic
chemical properties break down and the EOS becomes dominated by the thermal motion
of the ions. Pressures exceeding 100 Mbar can be reached by lasers that dynamically com-
press solid capsules in spherically convergent geometries, at which point pressure-induced
ionization begins to dominate the material’s response. The EOS models begin to deviate
as materials reach such high energy densities, which are orders of magnitude greater than
found on Earth’s surface. Equation of state studies of some materials with pressures up to
3.6 Gbar were completed using nuclear and chemical explosives during the age of under-
ground testing [144, 145, 146]. However, to date, there lacks su�cient experimental data



CHAPTER 5. X-RAY THOMSON SCATTERING AND RADIOGRAPHY FROM
IMPLODING DIAMOND SPHERES ON THE OMEGA LASER 76

from modern compression techniques to benchmark EOS models at these high pressures.
Dynamic compression experiments generate high pressures by launching a shock wave

into a material. The Hugoniot relations describe the locus of thermodynamic states that
can be reached by single-shock compression from the ground state. Much recent theoretical
and experimental work has focused on the modeling of the Hugoniot of carbon-based mate-
rials [74, 147, 148, 149, 150, 124, 121] because of the prevalence of carbon-based materials as
ICF ablators [52, 50], it’s relevance to astrophysics, and ease of use. Diamond is a material
of particular interest, as recent campaigns on the National Ignition Facility [57] obtained
higher neutron yields in fusion experiments when using high density carbon (HDC) abla-
tors [54]. Experiments have studied the shock Hugoniot in diamond in detail up to pressures
of 26 Mbar [148, 151, 152, 153] and the equation of state of ramp-compressed diamond up
to pressures of 50 MBar [154]. However, there remains a dearth of Hugoniot data at higher
pressures, at which point EOS models begin to diverge in their predictions of material behav-
ior [16, 10, 155]. Experiments using spherically convergent geometries can generate pressures
exceeding 1 Gbar [156, 124, 125, 121, 126]. As the shock wave coalesces towards the cen-
ter, mass accumulates in the shock front and the pressure di↵erential between shocked and
unshocked material increases [124]. The increasing pressure allows experimenters to probe
multiple points along the shock Hugoniot in a single shot with use of time-gated instruments.

Because of the high densities of compressed solid spherical samples, the penetrative power
of x-rays is often used to measure the plasma properties. One such diagnostic is x-ray
radiography. In a radiography experiment, an x-ray backlighter shines through a sample
as the sample compresses, and a time-gated camera measures the intensity of light after
it passes through the sphere. The amount of light absorbed by the sample can be used
to infer the sample’s density, and the time-resolution of the camera allows for resolution
of the shock speed. From these two inferred quantities, the pressure in the sample can
be obtained from the Hugoniot relations. The use of radiography to determine plasma
densities in a variety of experimental geometries is well documented in the literature [157,
158, 159]. X-ray radiography has also been demonstrated to measure the Hugoniot of a solid
spherical sample in a spherically convergent geometry at pressures approaching 1 Gbar on
the National Ignition Facility [125]. Results from spherically convergent NIF experiments
show the promise to measure the EOS of materials at higher pressures than previously
recorded [121].

Another x-ray diagnostic suited to measure plasma parameters of dense matter is x-
ray Thomson scattering (XRTS). In an XRTS measurement, an narrow-band x-ray source
impinges on a plasma sample and a spectrometer measures the scattered x-ray profile at
a designated scattering angle. The Compton-shifted profile of inelastically scattered x-rays
reflects the electron velocity distribution, and thus the density and temperature, and the
number of elastically scattered x-rays depends on the number of tightly bound electrons, and
thus the ionization state [62]. The use of the inelastically scattered x-rays to infer density and
temperature is well documented in the literature [6, 100, 60, 5], and much recent work has
used the elastic feature to determine properties such as ionization and structure factors [103,
61]. A recent XRTS measurement on solid spherical samples on the NIF used radiography
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in conjunction with XRTS to understand the ionization of carbon at 200 Mbar [75, 126].
The measurement found that the carbon in the shock front ionized more than predicted by
commonly applied IPD models. More data at similar pressure ranges is needed to constrain
EOS modeling at such high pressures.

While solid capsules in spherically convergent geometries o↵er the ability to reach un-
precedented pressures, they present challenges in data interpretation. X-ray radiography
measurements rely on an accurate understanding of the opacity of the dense material in the
shock front, as the measured x-rays pass through all areas of the sample; however the opacity
of warm and hot dense carbon is still an area of active discussion [160, 161]. In addition,
XRTS measures mass-averaged conditions, which can also be a↵ected by the opacity of the
material. A previous analysis of an XRTS measurement from a solid spherical sample on
the NIF determined that XRTS can measure the opacity-weighted mass-averaged conditions
of the sample, but the ability to measure average conditions depends on the linearity of the
scattering response to plasma parameters [75, 162]. It is thus of importance to perform more
XRTS and x-ray radiography experiments in conjunction to refine our understanding of how
capable these two measurements are of refining EOS models at high pressures.

To that end, we developed a platform on the OMEGA laser facility [56], which performs
x-ray radiography and XRTS measurements on solid spherical samples. In this chapter,
we present initial measurements from one millimeter diameter solid single-crystal diamond
spheres. We use the radiography measurements to generate post-shot radiation hydrody-
namics simulations of the implosions and confirm that the simulations accurately represent
the mass density profiles of the compressing spheres. We then perform a full analysis on
the XRTS data to determine the electron density and average ionization state in the sample.
Finally, we discuss the successes and challenges in the interpretation of the data, and present
methods to improve upon this data in the future.

5.2 Overview of Experimental Setup and Data
Collection

Here we present the two platforms used to take either x-ray radiography or XRTS measure-
ments from directly driven spheres on the OMEGA laser. The platforms are designed to
work in series with each other, such that experimenters can alternate between the two in
a shot day. In both platforms, 52 beams point at the sphere at target chamber center and
drive the implosion with a 26 kJ, 1 ns square pulse, beginning at time t = 0 ns. The drive
beams are used with phase plates to smooth the laser profile on the sphere. Six backlighter
beams point at a 5 µm thick Zn foil mounted in a cone above the sphere and heat the foil
with a 3 kJ, 1 ns square pulse at the time the measurements are to be made. The Zn emits
He-↵ radiation, which serves as the x-ray source for both XRTS and x-ray radiography. The
samples are single-crystal 1 mm diameter diamond spheres obtained from Dutch Diamond
Technologies. The company quotes a density of 3.52 g cm�3 and roundness of  250 nm.
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Figure 5.1: (a) A schematic of the experimental setup for the radiography shots. 52 beams
drive a diamond sphere directly for 1 ns. 6 1-ns-long beams heat a Zn x-ray backlighter later,
during the implosion. Zn x-rays that pass through the sphere are collected by a time-gated
x-ray framing camera with a pinhole array. (b) Raw radiography data. (c) A side-view
picture of the target.

The single-crystal diamond has a concentration of single substitutional nitrogen of less than
100 parts per billion.

Figure 5.1(a) shows a schematic of the radiography platform and Figure 5.1(c) shows
a picture of the target. For radiography, the backlighter lasers are focused to make a 900
mm spot on the Zn foil to backlight the sphere. The Zn foil is suspended at the bottom
of a 3D printed plastic cone, which contains the outwards spread of the Zn plasma. The
cone is opened at an angle to allow enough beams to reach the Zn foil. X-rays from the
Zn are collected on the opposite side of the sphere by a time-gated x-ray framing camera
(XRFC) with a pinhole array. The framing camera collects 2-D images of the compressing
sphere, as seen in Figure 5.1(b). Each vertical strip begins recording at a di↵erent time in
the implosion, as indicated by the labels at the beginning of the strips. Each individual
image integrates over roughly 50 ps, and the time di↵erence between the first and last image
in a strip is approximately 150 ps.

Figure 5.2(a) shows an experimental schematic for the XRTS platform. As with the
radiography measurement, a 200 µm thick 3D printed plastic cone contains the spread of
the Zn plasma. 60 µ-thick Au foils layer over the plastic cone to block the spectrometer’s
direct line-of-sight to the Zn foil. The gold foils are coated with 5 µ of CH plastic in
order to prevent the gold from accidentally becoming heated by direct laser irradiation or
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Figure 5.2: (a) A schematic of the experimental setup for the XRTS platform. 52 beams
compress the sphere directly for 1 ns. 6 beams heat a Zn x-ray backlighter for 1 ns later
in the implosion time. Zn x-rays that scatter through the sphere are collected by a HOPG
crystal spectrometer attached to a time-gated x-ray framing camera. (b) Raw XRTS data
from one shot. (c) A sideview picture of the target.

hot electron interactions. The backlighter lasers are focused to a 300 µm spot on the Zn
foil. The spectrometer is located at a scattering angle 135�. However, the shielding cone
is thick enough such that a portion of the sphere is not visible to the spectrometer, which
means scattering arises from a scattering angle of 118 ± 5�. The spectrometer, ZSPEC, is
described in Chapter 4. Raw data can be seen in the upper right side of Figure 5.2. Each
strip integrates over 200 ps, and is gated to begin at a di↵erent time, as indicated at the
beginning of each strip.

The following sections outline the theory behind scattering from inhomogenous samples
and perform a full analysis of the radiography and XRTS data in order to return important
information on the ionization in HEDP conditions.

5.3 X-ray Scattering from an Inhomogenous Sample

A scattering spectrum that arises from homogeneous conditions is easy to analyze because
one electron temperature, one electron density, and one ionization state su�ces to describe
the plasma conditions. However, there are many cases in which a scattering measurement
from an inhomogeneous sample is desired, such as in the case of solid spherical samples. If the
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sample is relatively transparent to the probing radiation, the resulting scattering spectrum
measures the mass averaged conditions of the sample. For a spherical sample, the mass
averaged conditions are calculated by:

hxi =
R1
0 x(r)⇢(r)r2drR1

0 ⇢(r)r2dr
, (5.1)

where x(r) is the radially dependent plasma condition to be averaged and ⇢(r) is the mass
density. However, because spherically convergent geometries reach such high densities, it is
often the case that the sample attenuates a fraction of the x-ray probe source and opacity
e↵ects must be taken into account. The detailed e↵ects of opacity in a spherical sample
are summarized in Reference [162]. Opacity shifts the bulk of material that does most of
the scattering to the outer radii of spheres, as the x-rays are attenuated as they penetrate
inwards. Thus, the bulk of the scattering occurs from the warm and dense inwardly moving
material.

In addition, scattering spectra from large targets can su↵er from the e↵ects of k-vector
blurring. A previous analysis of scattering from solid density spheres determined that the
scattering spectrum was still well represented by the mass weighted averages, despite opacity
and k-vector blurring e↵ects [75]. However, opacity and k-vector blurring should always be
considered when analyzing scattering from a large object, as there are regimes in which the
mass-weighted averages might not well represent the scattering spectrum [162].

5.4 Results from Radiography and Generation of
Post-Shot Simulations

We collected data from two radiography shots, with images spanning 5.3 - 7.8 ns in the im-
plosion. Figure 5.3 shows an image of the raw radiography data with key features marked.
The inner circle in each image represents the region of maximum absorption, which corre-
sponds with the high-compression, shocked material. We tracked the region of maximum
absorption as a function of time to measure the shock speed. Figure 5.4 shows a plot of the
measured shock radius as a function of time as the sphere implodes. We then used these
measurements to tune 1-D radiation hydrodynamics simulations with HYDRA [53] to have
the same implosion trajectory.

The post-shot simulations of mass density and electron temperature versus radius are
shown in Figure 5.5. Each color represents a di↵erent snapshot in time. The simulations
are calculated with the tabulated Livermore equation of state for diamond, LEOS 9064. A
red box denotes the conditions over the times we measured. We anticipate up to 10 eV and
three times compression in the shock front, which amounts to pressures of up to 50 Mbar.
The Fermi temperature of three times compressed diamond is roughly 35 eV, which means
the plasma is partially degenerate at temperatures temperatures we expect to measure (10
eV and lower).
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Figure 5.3: Raw radiography data from OMEGA shot 85698. Each strip is gated to measure
at a specfic time and takes four images. The first and last images are separated by 150 ps,
and the times quoted on the left of the strips refer to the timing in the middle of the strip.
Each image integrates over 50 ps. The outer edge of each image is the edge of the laser spot
on the foil backlighter, and the inner circle is shock compressed material.

Figure 5.4: A plot of the measured radius of the shocked material versus implosion time. A
straight line was fit to the data to return a shock speed of 51± 10 µmns�1.
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Figure 5.5: Radiation hydrodynamic simulations of electron temperature and mass density
as a function of radius. Each color is a di↵erent snapshot in time. We expect up to 10
eV and three times compression in the shock front at the times we measured (boxed in
red). The simulations use a tabulated equation of state with ionization calculated by a
Thomas-Fermi-like model.

We then validated the simulated radial density profiles by comparing simulated transmis-
sion profiles with the radiographs. At temperatures of < 10 eV and densities < 10 g cm�3,
carbon is not expected to ionize into its K-shell (above ZC = 4) . Thus, the cold opacity
su�ces to simulate x-ray transmission. Using a mass attenuation coe�cient of µ = 3.225
cm2/g, we calculated the transmission through each point on the sphere by:

I(x, y) = I0(x, y)

Z
zmax

0

e�µ⇢(x,y,x)zdz (5.2)

where I(x, y) is the measured 2-D intensity profile, I0(x, y) is the initial 2-D intensity profile
of the laser spot on the radiography foil backlighter, and z is the dimension through which
the x-rays pass. We simulated the laser spot size as a 2-D super Gaussian with FWHMs
representative of the laser profile on the foil. Because the precise position of the laser spot
varies between strips due to measurement parallax, we altered the central (x, y) coordinates
of the laser spot to match the radiography images. We then scaled the maximum intensity
of I0 to match simulated transmission line-outs as a function of sphere radius.

Figure 5.6 shows an example comparison of the radiography data to the simulated trans-
mission profiles. Figure 5.6(a) shows the raw radiography image at 6.5±0.2 ns. Figure 5.6(b)
shows the laser spot profile on the backlighter foil, and (c) shows the corrected image, which
divides the radiography image by the scaled laser intensity profile. Figure 5.6(d) shows the
simulated transmission line-out at 7.0 ns compared with a radial transmission line-out from
the data. The simulations show good agreement with the data in the region of the shock
and outward, which implies that the simulations predict the radial distribution of density to
within 20%. There is a discrepancy of 0.5 ns in the timing between the simulations and the
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Figure 5.6: An example of calculating the simulated transmission through the sphere. (a)
Radiography data from shot number 85697, taken at 6.5± 0.2 ns with arrow indicating po-
sition of shock front. (b) The laser spot profile on the backlighter foil. (c) The corrected
radiography image, which divides the radiograph by the scaled laser intensity. (d) Radial
lineouts of transmission profiles from the corrected data compared to the simulated trans-
mission lineout at 7.0 ns. The transmission data show good agreement with the simulations,
except for an o↵set in shock timing of 0.5 ns which is within the margin of error from analysis
shown in Figure 5.4.

data, however, this discrepancy is within the margin of uncertainty from the shock timing
analysis seen in Figure 5.4.

By verifying that the simulated transmission profiles match the radiographs, we bench-
mark one important aspect of the simulations: namely, that the simulated radial mass density
profiles match those same profiles as observed in the experiment. Using this information, we
can now constrain the mass density to that predicted by the simulations. This reduces the
number of fitting parameters available in the XRTS analysis and increases confidence in the
modeling of the experiment.

5.5 Analysis of XRTS Data

Wemeasured XRTS spectra from two di↵erent shots. Figure 5.7 shows two processed spectra,
one from each shot. The shots were performed at di↵erent times in the implosion, which
separated the spectra in time by 1.1 ns. Each spectrum integrates over roughly 350 ps and
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Figure 5.7: Line-outs of XRTS spectra from two di↵erent shots. Each spectrum integrates
over 350 ps. The two spectra are qualitatively very similar.

is the result of summing spectra from two di↵erent strips of the detector together to account
for potential HOPG crystal defects. Both spectra are qualitatively similar in shape and in
the ratio of elastic to inelastic scattering, which implies they are probing similar plasma
conditions. As described above, XRTS measures the mass-weighted average conditions of
the sample as a first-order approximation. The simulations show that over the times we
probed, the mass-weighted conditions change by less than 5%. Thus, we would expect the
two spectra to appear similar.

The average conditions we measure are also expected to stay relatively constant if we
account for the e↵ects of opacity. Figure 5.8(a) shows a slice of a 3-D weighting map of
scattering intensity from the diamond spheres, where the brighter regions indicate more
scattering. The weighting is calculated by the method outlined in Reference [162], and the
weight of any point i is calculated by the intensity of light at that point, Ii, multiplied by
the density, ⇢i, to give: Wi = Ii⇢i. The high density region of shocked material absorbs
x-rays as they penetrate inwards. This causes most of the scattering to occur from a region
behind the shock front. Absorption of the x-rays also casts a scattering “shadow” on the
region of the far sides of the sphere from the detector and the x-ray source. In our samples,
the large shielding cone blocks the spectrometer’s line-of-sight to roughly half the sphere,
which results in a weighting map as shown in Figure 5.8(b). The result of the cone is to limit
scattering to one small region of the sphere, which limits the e↵ects of k-vector blurring.
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Figure 5.8: (a) A slice of a 3-D weighting map of scattering intensity at 6.0 ns, accounting
for the opacity of compressed diamond. The brighter regions indicate a higher portion of
scattering. The net e↵ect of opacity is to shift the scattering weighting to regions at higher
radii at one point in the sphere (b) The same slice of the opacity map, with the half of the
sphere that the spectrometer does not see blocked out. The cone ensures that scattering
happens from a small portion of the sphere, limiting the e↵ects of geometric blurring.

Because the shielding cone slices the weighting map along a symmetric axis, the average
plasma parameters we measure from the obstructed view of the sample are very similar to
the conditions we would measure from the full sample.

We can now characterize scattering weights as a function of radius r by summing values
of the 3-D weighting maps within r +�r for the whole sphere. However, it is important to
keep in mind that the radial weighting maps are deceptive, as the majority of the scattering
happens from a given radius at a specific azimuthal and polar angle due to the e↵ects of
opacity and the shielding cone. Nevertheless, it is useful to characterize the scattering by
this method in order to understand the conditions from which the bulk of the scattering
arises. Figure 5.9 shows the radial distribution of scattering weights and the respective
radial distributions of mass density (a), electron temperature (b), and ionization state (b)
at 6.3 ns, assuming half the sphere contributes to the scattering. The majority of scattering
occurs from a radius of roughly 400 µm, which is in the moderately dense region behind
the shock front. Scattering is expected to arise from the average conditions of: h⇢i = 4.0 g
cm�3, hTei = 6 eV, and hZCi = 2.2. The ionization in the simulation was predicted by a
Thomas-Fermi (TF) model, which assumes smooth ionization as a function of temperature
and pressure and does not account for atomic shell e↵ects [84]. TF predicts an unphysical
average ionization state of ZC = 2.5 for the cold, uncompressed diamond, which we replace
with the much lower ionization state of ZC = 0.1. However, very little scattering arises from
the cold portion of the sphere, so any substituted ionization state of the cold mattering will
not impact the results of the fitting.

We can now generate a full simulated scattering spectrum using the e↵ects of opacity



CHAPTER 5. X-RAY THOMSON SCATTERING AND RADIOGRAPHY FROM
IMPLODING DIAMOND SPHERES ON THE OMEGA LASER 86

(a) Scattering weight of ⇢. (b) Scattering weight of Te.

(c) Scattering weight of ZC .

Figure 5.9: The radial weighting of scattering at 6.0 ns plotted with simulated radial profiles
for density, temperature, and ionization state from HYDRA [53]. The majority of scattering
occurs from a radius of roughly 400 µm, which is in the region behind the shock front.
Scattering is expected to arise from the average conditions of: h⇢i = 4.0 g cm�3, hTei = 6
eV, and hZCi = 2.2.

weighting. We divide the radius into N bins, each of a small enough �r such that the
conditions are e↵ectively uniform between r and r +�r. We then generate single condition
scattering spectra, Si, using the average density, temperature, and ionization state of each
radial bin, i. We sum the weighted single condition spectra to generate the full spectrum by:

Sfull =
NX

i

SiWi (5.3)

where Wi is the relative weighting of the bin i, as seen in Figure 5.9.
Figure 5.10 shows a comparison of two simulated scattering spectra. Both spectra average

over scattering angles of 118� ± 5�, which is the angular spread dictated by the geometry
of the experiment, and use a measured Zn He-↵ source. The blue curve represents a single
scattering spectrum from the opacity-weighted average conditions in the sample. The red
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Figure 5.10: Comparison of two theoretical scattering spectra. The blue curve is a single
scattering spectrum generated at the expected average conditions. The red curve is the
summed scattering spectrum which accounts for the inhomogeneities of the plasma. The two
spectra are very similar, except for a slight di↵erence in the magnitude of elastic scattering.
This is because most of the scattering arises from a single portion in the sphere.

curve is the summed spectrum that accounts for the inhomogeneities in the sample. Both
spectra are qualitatively very similar, except for a slight discrepancy in the elastic peak; this
arises from nonlinearity of Sii with respect to the temperatures in the material.

We first analyze the inelastic feature of the scattering data using a 0-D approach as the
inelastic feature of the opacity-weighted summed spectrum matches that of the 0-D approx-
imation. The radiography data confirmed that the simulations predict the mass density
profile of the spheres to within 20% accuracy, so we hold the mass density constant to the
predicted average value of (4.0 ± 0.8) g cm�3 in our fitting; however, the lower bound of
possible densities is set by the physical limitation that compressed diamond cannot have an
average density lower than the ambient density of 3.5 g cm�3, which means the range of
possible average densities is limited to values between 3.5 and 4.8 g cm�3.

With the average mass density set to the expected value of 4.0 g cm�3, we vary the
average electron temperature and ionization state to calculate �2 fits to the inelastic feature
of the spectrum. Figure 5.11 shows the �2 fit with 1� confidence intervals marked by the
dashed white lines. The inelastic feature shows much more sensitivity to ionization state
than temperature. This is to be expected, as our plasma is degenerate and the electron
velocity distribution width depends more on electron density than on temperature; since we
hold the mass density constant, varying the ionization state linearly changes the electron
density. Figure 5.11 shows that at the predicted electron temperature of 6 eV, an average
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Figure 5.11: A �2 plot of fitting to the inelastic portion of the spectrum, varying electron
temperature and carbon ionization (read: electron density). The white dashed lines represent
the 1� confidence intervals. In order to reproduce the width of the Compton feature at the
predicted average temperature of 6.0 eV, an average carbon ionization of hZCi = 3.5 ± 0.5
is required, which amounts to an average electron density of hnei = (7.0± 1.0)⇥ 1023 cm�3.

ionization state of hZCi = 3.5± 0.5 is required to reproduce the data, which corresponds to
an average electron density of (7.0± 1.0)⇥ 1023 cm�3. This is significantly higher than the
predicted average ionization of 2.2 and electron density of 4.4⇥ 1023 cm�3.

If we repeat the same analysis with the mass density set to the extremes of the possible
values of 3.5 and 4.8 g cm�3, we again find that a fit with an average ionization state of
hZCi = 2.2 and average electron density of 4.4 ⇥ 1023 cm�3 is incapable of reproducing
the data and the electron density must take a value of (7.0 ± 1.0) ⇥ 1023 cm�3. It is also
worth noting that for all possible mass density values, in order to fit the data with the
average electron density of 7.0 ⇥ 1023 cm�3, an average temperature of (18 ± 4) eV would
be required, which is three times higher than the simulations predict. Because this seems
unphysical, the rest of the analysis assumes the predicted average temperature of 6 eV.
However, as discussed in Chapter 4, the trade-o↵ between density and temperature in fitting
spectra increases uncertainty in the analysis. In this case, the increased sensitivity of spectral
fits to electron density warrant holding temperature constant for the remainder of the fitting.

We now seek to understand the discrepancy between the average ionization required to fit
the inelastic peak and the average ionization predicted by simulations. We calculate several
opacity-weighted summed spectra, each with a di↵erent radial ionization profile. The radial
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Figure 5.12: a) Radial ionization profiles and radial scattering weights for the ionizations
predicted by the simulations (top) and the same ionizations artifically scaled by a factor of
1.8 (bottom). The simulations predict an average ionization state of hZCi = 2.2, but by
artificially increasing the ionization we obtain hZCi = 3.6. b) A comparison of the data to
two calculated spectra: one with hZCi = 2.2 and one with hZCi = 3.6. The best fit to the
data occurs with an an average ionization state of 3.6, which is consistent with the fits to
the inelastic portion of the spectrum.

ionization profiles di↵er by a factor of a constant, which raises the average ionization state.
Figure 5.12(a) shows the radial ionization profiles as predicted by the simulations (top)
and the same radial distribution of ionization with each point multiplied by 1.8, yielding
an average ionization of hZCi = 3.6 (bottom). Note that we account for the carbon shell
structure by capping the ionization states at ZC = 4, as no ionization into the K-shell is
predicted to occur. By this method, the average ionization can increase to a maximum value
of hZCi = 3.8 for all reasonable values of the constant multiplier, as the cold, unshocked
regime prevents the average from increasing all the way to hZCi = 4.

Figure 5.12(b) shows the spectrum taken at 6.3 ns plotted with two di↵erent summed
spectra: one using the simulated profiles for ionization and one with the ionization artificially
increased from the simulated values by a factor of 1.8. The curve that best reproduces the
shape of the inelastic feature and the strength of elastic scattering is the curve that increases
the average ionization state to hZCi = 3.6, which is consistent with our previous finding
from analysis of the inelastic peak. It is worth noting that no appreciable di↵erence is seen
between a spectrum with hZCi = 3.6 and a spectrum with average ionization increased up
to the maximum of hZCi = 3.8; both of these conditions correspond with the majority or
all of the material behind the shock front ionization to ZC = 4. We can repeat a similar
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analysis with the spectrum at 5.1 ns, which similarly finds that ionization must increase to an
average value of hZCi = 3.6 to reproduce the data. The limitation in this method of fitting
is an inability to determine the precise radial profiles of the ionization; we can ascertain the
average conditions, but not the conditions at any one point. There are multiple possibilities
for radial ionization profiles that generate the average ionization states required to reproduce
the data. Of course, these can be bounded by the range of physicality, but we are unable to
benchmark the radial ionization profiles any further.

The fact that the majority of carbon behind the shock front must ionize to ZC = 4 in
order for spectral fits to reproduce the data is consistent with a previous OMEGA experiment
on carbon-based materials in a similar temperature and pressure regime; the experiment
similarly found that the Thomas-Fermi model under-predicted ionization in warm dense
carbon [5]. Thus, an ionization model that includes shell e↵ects should be used in the EOS
for future simulations in order to better predict the behavior of the compressed material.

5.6 Conclusions and Proposed Extensions

In this chapter, we used radiography data from imploding diamond spheres to generate post-
shot simulations of the implosion. We then analyzed the transmission profiles to find that the
simulations accurately predict the radial density profile of the compressing spheres. We fit
the inelastic component of the XRTS spectrum with 0-D simulations to determine that the
predicted average ionization state (and thus electron density) was too low to reproduce the
elastic scattering width. An average ionization state of ZC = 3.5± .5 was required to match
the data at 6 eV, which corresponds with an electron density of ne = (7.0±1.0)⇥1023 cm�1.
We then simulated scattering spectra from the full, inhomogenous sphere that varied the
predicted ionization state. We found that the carbon in the shocked region needed to ionize
up to the carbon K-shell, to produce an average ionization state of ZC = 3.6, which was
consistent with the analysis of the inelastic scattering feature. We thus concluded that the
Thomas-Fermi model underpredicts the ionization of warm dense carbon.

The results from this experiment warrant further exploration. Firstly, more scattering
and radiography data should be collected from earlier and later in the implosion time in
order to benchmark the simulations more rigorously. Although we found the simulations
accurately predicted the radial mass density profile over the times we measured, a more
comprehensive measurement would increase our confidence in the modeling. Ionization af-
fects the compressibility of the material and so could a↵ect the progression of the shock,
especially as the sphere becomes more and more compressed near the end of the implosion.

Furthermore, it is worth noting that in this case, we did not take full advantage of the
spherically convergent geometry in order to probe multiple points in the shock Hugoniot.This
is due to the slow time scale of the implosion and the fact that the shock wave decays over the
times we measured. In order to measure di↵erent compression ratios, smaller samples could
be used such that peak compression happens before the rarefaction wave reaches the shock
front. Smaller samples would also amount to less k-vector blurring and less opacity e↵ects,
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which would reduce the complications in interpreting scattering data. In addition, more
extreme conditions could be reached in the shocked material of smaller diamond spheres,
potentially allowing us to measure the onset of K-shell ionization in carbon.

The combination of radiography and XRTS in convergent geometries o↵ers experimenters
the ability to probe the equation of state of materials at high pressures by measuring the
ionization of the sample. The results from such experiments will help refine the models that
predict the behavior of capsule implosions.
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Chapter 6

Influence of Argon Impurities on the
Elastic Scattering of X-Rays from
Imploding Beryllium Capsules

Another example of a spherically convergent XRTS platform on the OMEGA laser is com-
pressing spherical shells. Spherical shells have more homogeneous conditions than solid
spheres but still reach extreme conditions, so can make ideal scattering targets. Several
Livermore scientists collected scattering data from imploding beryllium shells and used the
inelastic scattering peak to determine the temperature and density as a function of time [60].
We reanalyzed the elastic feature and determined that there was a trace argon impurity in
the sample. The remainder of the chapter discusses the analysis.

6.1 Introduction

In this chapter, we assess the impact of a small (around one percent by number density)
argon impurity fraction on the elastic scattering signal strength from beryllium plasmas.
Our results demonstrate that careful impurity characterization is important for accurate
ionization measurements using the elastic component of XRTS. Moreover, we show that
intentional doping of mid- or high-Z elements into low-Z samples might provide a path
towards studying ionization potential lowering of higher-Z elements, which might be not
possible otherwise due to the high opacity of the pure mid-Z sample.

In an XRTS experiment, a collimated x-ray source impinges on a sample, and a spectrom-
eter spectrally resolves the scattered photons at a desired scattering angle. XRTS spectra
typically consist of two major components: elastically scattered photons with the frequency
of the original x-ray source and inelastically scattered photons that are down-shifted in fre-
quency. The Compton-shifted profile of inelastically scattered x-rays can be analyzed to
return the sample’s electron density and electron temperature. The ratio of elastically to
inelastically scattered x-rays relates to the number of tightly bound versus free electrons,
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and thus reflects the ionization state.
The use of inelastically scattered x-rays to infer electron temperature and density is

well documented. Several experiments on beryllium samples used large scattering angles to
probe the properties of individual electrons and to measure electron temperatures and den-
sities through analysis of the shape of the Compton peak [99, 100, 60]. Forward-scattering
geometries probe the collective behavior of the electrons, i.e. plasmons [6, 102, 163]. The
elastic scattering component is often used to infer ion properties such as the static structure
factor [104, 164, 5, 30] or the associated screening properties [105]. The Rayleigh weight,
which reflects the integral of the elastic scattering peak, relates to the number of tightly
bound electrons, which allows investigation of the ionization balance. Recent XRTS ex-
periments found higher ionization states than predicted for a large range of conditions [4,
75].

The static structure factors, atomic form factors, screening properties, and ionization
balance measured by XRTS are well suited for a comparison with theoretical modeling.
While much progress has been achieved in recent years, there remains a significant need
for additional experimental validation of theoretical predictions. In particular, experimental
measurements of the properties of warm dense matter are needed for integrated modeling
of inertial confinement fusion experiments [35, 165, 51] and astrophysical objects [15, 16,
17, 18]. A particularly interesting question is the behavior of elemental mixtures and how
the di↵erent components interact with each other and a↵ect x-ray scattering. The mutual
interactions and arrangements of di↵erent species are predicted to yield signatures in the
XRTS spectra. Moreover, one needs to ensure that impurities do not invalidate the results
obtained.

In the following sections, we perform a reanalysis of in-flight XRTS data from beryllium
capsule implosions that were driven by the OMEGA laser [60]. After reviewing the exper-
iment, its data, and the description of XRTS spectra from multi-component systems, we
apply our analysis with special focus on the elastic scattering feature. We find a significant
contribution from the argon component to the elastic scattering amplitude, which allows us
to determine the argon content of the samples. We also find a strong decrease of the ratio
of elastic to inelastic scattering as the capsule implodes, indicating an increasing ionization
during compression. Due to the large scattering angle, the data are much more sensitive to
the beryllium ionization than to the ionization of the argon impurities. Finally, we give an
outlook on possible ways to investigate the ionization of mid-Z ions in high energy density
conditions, where highly compressed beryllium provides an environment of high free electron
densities and moderate temperatures.



CHAPTER 6. INFLUENCE OF ARGON IMPURITIES ON THE ELASTIC
SCATTERING OF X-RAYS FROM IMPLODING BERYLLIUM CAPSULES 94

6.2 Overview of Experimental Setup and Data
Collection

The experimental data discussed here were obtained from an XRTS experiment undertaken
at the OMEGA laser [60]. In this campaign, several time-resolved XRTS spectra were
collected from imploding beryllium shells. The previous analysis focused on the inelastic
scattering feature, that is the Compton-shifted response of the free electrons and scattering
by bound-free transitions. Fitting this feature allowed for the determination of the electron
temperatures and free-electron densities at di↵erent times, as well as an ionization state of
the beryllium from the long tail on the Compton-peak, which derives from scattering from
loosely bound electrons [60]. Here, we consider the information contained in the elastic scat-
tering feature to gain insights into the ion properties, mainly the ion charge state, and the
contribution of the argon contamination in the beryllium.

Figure 6.1 summarizes the setup of the experiment. The part on the top-left shows a
schematic of the cone-in-shell design used for the XRTS measurements: 36 laser beams im-
pinged directly on a spherical beryllium shell for 2 ns. The strong laser-ablation accelerated
the spherical sample symmetrically towards the center. Nine additional laser beams heated
the zinc to create a pulse of He-↵ line radiation at 9.0 keV that was used as the probe. The
x-rays scattered from the sample and were collected at a scattering angle of 135� by ZSPEC,
the Bragg-crystal spectrometer that consists of a highly oriented pyrolitic graphite crystal
connected to a gated multichannel plate detector. The zinc foil was glued on the inside of a
gold half-cone that served to block the direct line of sight to the spectrometer. A photo of
the beryllium target, the backlighter foil, and the gold shield is shown in the bottom-left of
Fig. 6.1. The lower right of Fig. 6.1 contains results from radiation-hydrodynamics simula-
tions for the implosion. Here, the density increase to the laser drive is shown together with
the laser power and the probing times. All times refer to t = 0 being set by the beginning
of the laser drive, and peak compression is predicted to occur around 5 ns.

The beryllium targets were 40µm thick spherical shells with an outer diameter of 860µm
and a density of 1.85 g cm�3. They were also glued directly onto the gold cone, as seen in
Figure 6.1. The beryllium contained an argon impurity fraction, µAr, as a result of the
beryllium sputtering manufacturing process. Argon acts as the sputter gas and participates
in the ion-assisted coating of the capsules, which breaks up the columnar structure of beryl-
lium and results in leak-tight capsules. The sputtered capsules usually contain an atomic
argon impurity fraction of µAr = 0.5 � 2.0%. In this chapter, impurity concentrations are
described by atomic percent (at.%), which describes the fractional ion density of a species.
The exact percentage of argon was not characterized in the original experiment. Other im-
purities in the Be include oxygen, at less than 1 at.% from oxidation of the outer layers of
the shells, and trace amounts of iron at roughly 60 parts per million. However, oxygen and
iron at these concentrations do not contribute enough bound electrons to a↵ect the elastic
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Figure 6.1: Experimental setup of the experiment as presented in Ref. [60]. The top shows
the schematic of the experiment and images of the x-ray emission from the sample as it
imploded. The bottom displays a photo of the cone-in-shell target as well as outputs from
radiation-hydrodynamic modeling of the imploding beryllium capsule. Reprinted figure with
permission from A. L. Kritcher, T. Döppner, C. Fortmann, T. Ma, O. L. Landen, R. Wallace,
and S. H. Glenzer, Phys. Rev. Lett., 107, 015002 (2011). Copyright 2011 by the American
Physical Society. https://doi.org/10.1103/PhysRevLett.107.015002

scattering signal strength; the remainder of this chapter focuses on the dominating e↵ects of
the argon impurity.

XRTS spectra were taken at several times along the implosion trajectory of the beryllium
shell [60]. Without accounting for the argon, the strength of the elastic feature could not
be reproduced. Thus, only the inelastic component of each scattering profile was analyzed.
Nevertheless, the electron temperatures and densities could be determined from the Compton
feature at several times during the compression. Here, we will focus on two cases: the
spectrum taken at t = 3.1 ns, yielding an electron temperature of Te = (14±3) eV and a free
electron density of ne = (1.1± 0.3)⇥ 1024 cm�3, and the spectrum recorded t = 5.7 ns after
the beginning of the laser drive where Te = (41± 5) eV and ne = (1.9± 0.5)⇥ 1024 cm�3 was
determined [60]. While the first spectrum is one of the earliest, the second is close to peak
compression. Based on the reported plasma parameters, we now extend the analysis to the
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elastic features of the spectra by accounting for the argon impurity in the sample.

6.3 XRTS Theory for Multi-Component Systems

We give a brief summary of the relevant theory for XRTS with special emphasis on systems
containing multiple ion species [140]. A full account of all mutual correlations is necessary
here, as we expect strongly coupled ions and a significant di↵erence between the charge states
of beryllium and argon.

The total dynamic electron structure factor, S(k,!), includes the properties of the corre-
lated system. As the electrons interact with the ions, the structure factor contains informa-
tion on the electron response and on the behavior of the ions as shown by the widely applied
decomposition derived by Chihara [96, 97]

S(k,!) = WR(k) �(!) +W ff

C
(k,!) +W bf

C
(k,!) . (6.1)

Here, the first term denotes the near-elastic (Rayleigh) scattering that can be linked to the ion
properties. The second and third terms are the inelastic (Compton-shifted) contributions due
to the dynamic response of the free electrons and due to bound-free transitions, respectively.
The latter two can be calculated on the basis of standard approximations [62]. On this basis,
Kritcher et al. [60] obtained the basic plasma properties mentioned above that we will use
here.

The elastic scattering contribution, i.e. the first term in Eq. (6.1), contains information
about the ionic structure. In a system with multiple ion species, all mutual arrangements
must be taken into account. Thus, it is necessary to use a multi-component description of
the weight of the Rayleigh feature [140]

WR(k) =
X

a,b

p
xaxb [fa(k) + qa(k)] [fb(k) + qb(k)]Sab(k) . (6.2)

Here, the elastic scattering is determined by the individual form factors for each species,
fa(k), the individual screening contributions, qa(k), the fractions of the di↵erent ions species,
xa = na/

P
a
na, the number densities, na, and all combinations of partial ionic structure

factors, Sab(k). In this formula, the argon impurity µAr is represented by the fractional
number density of one of the species, i.e. xa. Estimates of the partial structure factors may
be obtained from, e.g., the multi-component hypernetted-chain (HNC) approach [139, 166].

6.4 Analysis of the Rayleigh Weights

To investigate the weight of the elastic scattering feature, we fit several raw line-outs of the
spectral data with the sums of two Gaussians. One Gaussian fits the elastic feature and the
other fits the inelastic feature; the heights and widths of the Gaussians are scaled relatively
to each other until the sum of the two Gaussians minimizes the fitting residuals from the
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Figure 6.2: (Color online) XRTS spectrum taken at t = 5.7 ns after the start of the laser
drive [60]. Both the elastic scattering feature on the right as well as the inelastic feature on
the left were fitted by Gaussian functions. While the special shape of the zinc He-↵ line (see
shape of the elastic feature in the experimental data) is not accounted for, this procedure
generates the correct weights under the two features.

data. We chose to model the probe spectrum as a Gaussian due to the limited spectral
resolution of the instrument, and to simplify the initial analysis. An example of the results
is presented in Figure 6.2. The deviation at the top of the elastic feature is due to the double
peak structure of the zinc He-↵ incident source, with lines at 8950 and 8999 eV. Besides this
feature, fits with two Gaussians represents the data quite well.

The integrals of the Gaussians define the weight of the total inelastic scattering feature
and the weight of the Rayleigh peak WR(k), respectively. The ratio of the two areas is a
good measure of their relative strengths and, moreover, independent of absolute signal levels.
We thus analyze the time-dependence of the implosion via the ratio of elastic to inelastic
scatter.

Figure 6.3 shows the ratios of weights for the elastic and inelastic scattering features
for a number of spectra taken at di↵erent times during the implosion [60]. The spread in
ratios at a given time could be in part due to variations in crystal and framing camera flat
fielding, but the trend stands out above the noise in the data; the elastic to inelastic ratio
decreases with time by almost 40% as the capsule compresses. This cannot be explained by
the heating and compression alone; either beryllium or argon ionization must also contribute
to this drop in elastic scattering.

To quantify the e↵ects of compression and ionization, we generated theoretical predictions
for the scattering spectra of a sample consisting of beryllium and 0.75% argon. All the
theoretical calculations of the scattered power spectra shown in this work are based on the
MCSS code [138, 98]. The dynamic contributions, i.e. the free-free and bound-free terms, are
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Figure 6.3: (Color online) Ratio of elastic to inelastic scattering strength versus time for
spectra taken by Kritcher et al. [60]. Each diamond represents the ratio from one spectrum.
The laser drive turns on at t = 0 and turns o↵ after t = 2ns, with peak compression reached
at 5.7 ns. Here, we focus on the two spectra marked by red circles (early during the implosion
and near peak compression). The red data point at 3.1 ns shows representative 1� error bars.

well documented in the literature. The elastic scattering contribution to the theoretical power
spectra have also been calculated using various commonly-used simple models but, due to
its central role in our present work, warrants additional explanation. For the structure of the
bound electrons (ionic form factor), we use the usual screened hydrogenic approximation.
Here, the e↵ective nuclear charge for each occupied sub-shell is given by the well-known
values tabulated by Pauling and Sherman [141]. The structure of the screening cloud has
been treated in the finite-wavelength screening formalism [105], which accounts for the short-
range Friedel-like density oscillations and also includes a strong coupling correction to the
static screening function [167]. The electron-ion potential is considered to be Coulomb-like,
with an e↵ective ionic charge consistent with the mean ionization state for each species (Be or
Ar). Finally, the spatial correlations of the ions modulating the amplitude of the Rayleigh
signal is described using the multi-component HNC approach [139]. For this part of the
calculation only the ions are considered (no explicit electron-ion correlations are used) and
the inter-ion potential is treated with a statically screened Yukawa interaction; the e↵ective
charges of the ions are again assumed to be consistent with the mean ionization states of
the components of the plasma. Improvements on these simple models are widely known,
e.g. using a pseudo-potential for the electron-ion and ion-ion interactions, although these
invariably require additional fitting constants and/or material-specific information which
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Figure 6.4: (Color online) An XRTS spectrum taken at 3.1 ns [60] compared to two the-
oretically generated spectra. Both predictions use a source-broadened Zn He-↵ source, a
temperature of T = 14 eV, an electron density of 1.1⇥ 1024 cm�3, and a scattering angle of
135�. They di↵er only in the assumed argon content: the simulation represented by the solid
line neglects the argon in the sample, while the dashed line is a simulation that assumes an
argon impurity of 0.75 at.%.

would introduce undesirable extra model uncertainty. The suite of models used here o↵ers a
reasonable compromise between physical accuracy and numerical economy and enables the
large parameter scans required to undertake the rigorous statistical analysis which underlines
our present results.

To represent the x-ray source function, we used a measured Zn He-↵ spectrum, broadened
by the scattering source size. Our theoretical predictions show that at a scattering angle
of 135�, the change in plasma conditions from T = 14 eV and ne = 1.1 ⇥ 1024 cm�3 to
T = 41 eV and ne = 1.9 ⇥ 1024 cm�3 accounts for a 20% decrease of the ratio of elastic
to inelastic scattering if the ionization of both ion species is kept constant. Thus, it is
reasonable to attribute the remainder of the observed decrease in elastic-inelastic signal
strength to ionization. Specifically, the mean ionization of either the Be or the Ar may
account for our observations. We now undertake a careful analysis of our experimental data
to quantitatively understand the relative sensitivity of the spectra to ionization of either
component.

Our theoretical predictions also demonstrate that the elastic scattering signal strength
cannot be reproduced without accounting for the argon impurity fraction. Figure 6.4 shows
an example for the experimental conditions at t = 3.1 ns. To set the ionization, we ran simu-
lations in the atomic kinetics and radiation transport code Cretin; for all available continuum
lowering models [83], the code predicted an ionization state of ZBe = 2.0 and ZAr = 8.0 over
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Figure 6.5: (Color online) (a) �2 analysis of the elastic scattering feature of the spectrum
at 3.1 ns, varying argon impurity fraction and argon ionization. All fits assume ZBe = 2,
Te = 14 eV, and ne = 1.1 ⇥ 1024 cm�3, as reported in Ref. [60]. Since the Ar ionization is
reported to be ZAr = 8 by Cretin simulations at these plasma conditions, the best fit is
obtained for an Ar impurity fraction of 0.75± 0.20%.

all combinations of plasma conditions relevant to the spectrum at 3.1 ns [60]. Using the
aforementioned values, the MCSS calculations show that adding only 0.75 at.% Ar to the
sample increases the elastic scattering by 20% and enables us to match the experimental
observation. Thus, it is of great importance to quantify carefully the argon content in the
sample and the sensitivity of the elastic signal strength to argon and beryllium ionization.
In the following, we will focus on the spectra taken at 3.1 ns and at 5.7 ns, which show a
large di↵erence in the ratio of elastic to inelastic scattering.

Figure 6.5 shows the deviation of model spectra to the measured elastic scattering feature
of the spectrum taken at 3.1 ns (�2 analysis). Here, ne, Te, and ZBe are kept fixed to the values
reported in Ref. [60] and only the argon fraction and argon ionization state are varied. The
�2 analysis reveals that the elastic scattering strength is not sensitive to argon ionization
until the argon ionizes into to the L-shell, i.e. for ZAr � 8. The Compton energy (244
eV) is large enough such that all M-shell electrons scatter inelastically into the bound-free
contribution. Only for smaller scattering angles of ✓  55� (k  4 Å�1), would we expect
M-shell electrons to participate in the elastic scattering. Figure 6.5 also demonstrates that
0.75 ± 0.2 at.% of argon reproduces the measured elastic scattering signal strength if we
assume argon does not ionize into the L-shell. This finding is consistent throughout the
conditions probed (and also for di↵erent times - not shown) and agrees with our knowledge
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Figure 6.6: (Color online) �2 analysis of the elastic scattering strength in the spectrum at
5.7 ns, varying beryllium ionization and argon ionization. Best fits at each Ar ionization state
are shown as the bold white line, with 1� contours indicated by the dashed white lines. All
fits assume 0.75 at.% argon, Te = 41 eV, and ne = 1.9⇥ 1024 cm�3. The best fit is found for
ZBe = 2.5± 0.2 when the Ar ionization is constrained to ZAr  8. The white dots represent
the positions of Cretin simulations for ZBe and the required ZAr to match, and vice versa.
ZAr � 9.5 is unphysical, for details see text.

about the capsules; the producer of the capsules, General Atomics, now regularly measures
an argon impurity fraction of 0.5 to 2.0 at.% in the capsules they produce. At the time this
experiment was performed, however, the regular reporting of argon impurities had not yet
been implemented. We thus use our experimental finding and fix µAr to 0.75 at.% for the
following analysis and discussion of the XRTS spectrum at 5.7 ns.

The spectrum at 5.7 ns was taken very close to peak compression, when the sample was
heated to T = 41 eV with a free electron density of ne = 1.9⇥ 1024 cm�3. Fig. 6.6 shows the
�2 analysis of model spectra to the elastic feature of the spectrum at 5.7 ns that vary argon
and beryllium ionization; the inelastic feature is again reproduced by using the previously
inferred plasma parameters [60]. Similarly to Figure 6.5, the results show that the elastic
scattering strength is sensitive to both beryllium and argon ionization if the argon ionizes
into its L-shell, i.e. for ZAr > 8. The predictions for ionization balance vary more at these
hotter and denser conditions than they do at the conditions at 3.1 ns.

Figure 6.7 shows Cretin simulations of both beryllium (a) and argon (b) ionization versus
temperature with di↵erent models for ionization potential depression (IPD), assuming a
constant electron density of 1.9⇥1024 cm�3 and µAr = 0.75 at.%. At the previously reported
temperature of 41 eV, Cretin predicts that argon just begins to ionize into its L-shell, to
an average charge state between ZAr = 8.01 and 8.15, depending on the model used for
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Figure 6.7: (Color online) Cretin simulations of ZBe (a) and ZAr (b) vs. electron temperature
for three di↵erent models of IPD, assuming a constant electron density of 1.9 ⇥ 1024 cm�3

and µAr = 0.75 at.%. The temperature of the spectrum at 5.7 ns, 41 eV, is noted by the
vertical dashed line.

continuum lowering. If we constrain ZAr to these conditions, a beryllium ionization of
ZBe = 2.5 reproduces the elastic scattering strength, as indicated by the first white marker
in Figure 6.6. This significant ionization into the K-shell of beryllium is higher than the
Cretin predicted value of ZBe = 2.2 (cf. Figure 6.6(a)). The original analysis of the inelastic
feature also found ZBe = 2.5 from fitting the red-shifted tail on the Compton peak caused
by inelastic scattering from bound electrons [60].

The �2 plot in Figure 6.6 shows that the elastic scattering strength is much more sensitive
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to beryllium K-shell ionization than to argon L-shell ionization. As discussed above, the
elastic scattering does not change for Ar ionizations below ZAr  8. Argon would have
to ionize to ZAr = 15 if we fixed the beryllium ionization to the Cretin-predicted value of
ZBe = 2.2 (noted by the second marker in Figure 6.6). However, we consider values of
ZAr > 9.5 to be unphysical; Figure 6.7 shows that the temperatures required to ionize argon
beyond ZAr = 9.5 are over two times higher than the inferred temperature of 41 eV. This is
true even for the most extreme IPD model considered: Ecker-Kröll. In order for the Cretin
simulations to report a Be ionization of 2.5, the temperature would need to be increased
by 50%, which is well beyond the experimental error. We thus conclude that we measure a
higher Be charge state than is predicted by the widely used ionization models that we tested.
However, more experiments are needed to discern a more precise temperature dependence
of beryllium K-shell ionization.

6.5 Conclusions and Proposed Extensions

We have investigated the influence of argon impurities in samples of warm dense beryllium
on the elastic scattering strength as measured by XRTS. We find that even small amounts of
argon can have a significant e↵ect on the elastic scattering strength in XRTS spectra. This
influence arises from the larger number of bound electrons in argon as well as the tighter
bounds of the electrons, which stretches the atomic form factor further out into k-space. It
is therefore of high importance to characterize carefully targets with respect to mid- and
high-Z impurities to interpret the elastic feature of XRTS spectra properly.

On the other hand, we have demonstrated that under suitable experimental geometries
and plasma conditions the mid-Z impurity content can be inferred from the elastic scattering
strength. The analysis of the elastic scattering contribution in the spectra taken by Kritcher
et al. [60] allowed for a precise determination of the argon content as 0.75± 0.2 at.%, which
is consistent with the capsule production process. Because of the large scattering angle
used here, the elastic scattering only probes the K- and L-shell occupation of argon, and is
therefore insensitive to the argon ionization states of ZAr  8. For the plasma conditions
present in this study we do not expect significant ionization into the L-shell. In principle, a
combination of backward and forward scattering XRTS measurements could probe all atomic
shells of argon and thus yield valuable data for its ionization in the warm dense environment
created by the compressed beryllium.

Our analysis describes a potential method to study the ionization balance of mid- and
high-Z elements at extreme conditions by doping a small well-characterized impurity fraction
into a low-Z host material. Ideally, such experiments should first be conducted with pure
beryllium capsules to determine the plasma parameters in the compressed sample. Then the
experiment could be repeated with capsules containing a known mid- or high-Z impurity of
interest and study its ionization balance under these conditions. A larger laser like, e.g., the
National Ignition Facility (NIF) [57] could ionize the mid-Z element further into the L- or
even the K-shell. Such experiments would avoid challenges arising from the high opacities



CHAPTER 6. INFLUENCE OF ARGON IMPURITIES ON THE ELASTIC
SCATTERING OF X-RAYS FROM IMPLODING BERYLLIUM CAPSULES 104

of such elements when being highly compressed in a pure state. Our results demonstrate
that the elastic scattering strength in XRTS measurements of compressed, doped beryllium
provides the opportunity to test theoretical models for the ionization balance in warm and
hot dense matter.
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Chapter 7

Using X-ray Thomson Scattering to
Measure Temperature in Ion Stopping
Power Experiments

In order to benchmark scattering simulations from complicated geometries and inhomoge-
neous conditions, it is important to measure spectra from homogeneous plasmas where some
parameters are known a priori. One such example can be found in isochorically heated
matter, where the mass density is known and only ionization and electron temperature are
left to be fit from scattering spectra. This chapter outlines an experiment we performed
in collaboration with the MIT Plasma and Fusion Center in which we used x-ray Thomson
scattering to measure plasma conditions for material relevant ion stopping power experi-
ments. These experiments also measured the temperatures of plasmas involved in stopping
power experiments for the first time; previous e↵orts relied on simulations of the e↵ects of
radiative heating, in which there is much uncertainty.

7.1 Introduction to Ion Stopping Power

Understanding how charged particles deposit their energy into plasmas is paramount to
achieving ignition through inertial confinement fusion (ICF) at facilities like the NIF [51, 57,
168]. In an ICF experiment, lasers compress a spherical shell of hydrogenic fuel. A central
hot-spot forms as the capsule approaches peak compression, in which fusion reactions begin
to occur and to generate ↵ particles [35, 34]. The energetic ↵ particles propagate outwards
from the center into colder material, at which point they can redeposit their energy and
cause more fusion reactions to occur; this concept is known as thermonuclear burn. In
cold material, charged particles redeposit their energy through interactions with the bound
electrons. Experimenters have studied energy loss in cold material in great detail [169].
However, the problem becomes more complicated in plasmas, in which charged particles lose
energy due to Coulomb interactions with particles that are within a length-scale defined by
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the plasma screening length [170]. Several experiments studied the stopping power in plasmas
with densities of ne < 1022 g cm�3 and temperatures of Te < 60 eV. The stopping power
of warmer and denser material has also been extensively investigated through calculations
and simulations [171]. However, there remains a dearth of experimental data to benchmark
models for stopping power in high energy density plasmas.

In recent years, experimenters developed platforms for the OMEGA [56] laser that mea-
sure the energy lost by charged particles traveling through higher density plasmas [170,
172]. One OMEGA experiment measured the energy lost by 14 - 16 MeV protons traveling
through radiatively heated solid-density material [170]. The experiment showed that stop-
ping power could be measured to an accuracy that reduced uncertainties in modeling at these
high densities. However, the experiment failed to measure the temperature of the radiatively
heated material, and the interpretations of the stopping power data relied on simulations of
the temperatures of radiatively heated material, in which there is much uncertainty. Indeed,
a particular challenge of stopping power experiments is the accurate characterization of the
plasma conditions, as electron temperature, density, and ionization all a↵ect how charged
particles redeposit their energy. Warm dense matter presents a particular challenge when
modeling ion stopping power, as strong particle correlations and pressure ionization all a↵ect
the plasma conditions [170, 173].

The interpretation of XRTS spectra in the warm dense matter regime relies on accurate
modeling of how x-rays scatter from plasmas. This includes modeling of atomic form factors,
structure factors [103, 139], screening contributions [105], and the physics of the electrons
that undero Raman-like transitions to the continuum [4]. However, not all scattering features
scale linearly with plasma conditions, which means the resulting spectra may poorly reflect
average conditions. There remains a dearth of experimental data from uniform conditions
to validate the many models used in interpreting XRTS data. Indeed, recent XRTS work
has come under criticism due to the inconsistent models used in conjunction for the inelastic
and elastic scattering features to interpret plasma properties [107].

Thus, it is of interest to take XRTS spectra from materials at relatively uniform con-
ditions, where some of the plasma properties are known a priori, in order to benchmark
modeling of XRTS spectra. One such example of an experimental geometry that allows
for probing of uniform conditions is a geometry that is also relevant to stopping power ex-
periments: namely, a cylindrical plug of solid density material that is isochorically heated
by x-rays from an x-ray converter foil backlighter that surrounds the radial portions of the
cylinder. Stopping power experiments measure the energy lost by charged particles through
the axis of the cylinder, which is also where the XRTS measurement can be made. Following
the method of Reference [170], the sound speed of the solid density material can be estimated
to be tens of µm/ns, whereas the radius of the cylinder is hundreds of µm/ns. By restricting
the times of measurement to early after the laser drive turn-on, the material at the center
of the cylinder can be assumed to be at solid density.

Initial XRTS measurements on sample-geometries relevant to stopping power experiments
were made on the OMEGA laser in 2003 [99], in which experimenters determined the elec-
tron temperatures and ionization states of isochorically heated beryllium. Recent stopping
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Figure 7.1: (a) A schematic of the target geometry, laser configurations, and scattering
k-vectors. (b) A photograph of the B target. (c) The top image shows the spectrometer
calibration spectrum from a brass foil, showing the Zn He-↵ doublet at 9 keV in the center
of the strip, as well as Cu He-↵ and Cu K-↵ at 8.05 keV and Cu He-� at 9.87 keV. The
bottom picture shows data from a B plug on the same scale as a the calibration shot.

power experiments on the OMEGA laser revived the need for accurate plasma characteri-
zation [170]. In the following sections, we present XRTS data taken from a new OMEGA
platform on isochorically heated solid-density beryllium and boron, which was designed to
work in series with stopping power measurements for the same materials. We analyze the
results to obtain an electron temperature and beryllium and boron ionization states, and use
to results to refine the modeling of XRTS spectra for future experiments on more complicated
geometries.

7.2 Overview of Experimental Setup and Results

In this section, we present an overview of the experimental geometry used to collect data.
Figure 7.1(a) shows a schematic of the target geometry, along with the laser configurations

and scattering k-vectors. The cylindrical sample is a 450 µm long cylinder with an 860 µm
diameter. A 2 µm thick x-ray converter foil coats the outer radius of the cylinder. A high-Z
material shielding cone with an opening angle of 120� abuts one end of the cylinder and serves
to block the spectrometer’s direct line-of-sight to the Zn backlighter foils that are glued to
the sides of the cone. The cone contains a 400 µm diameter collimator hole at its tip to
allow x-rays scattered by the sample through to the spectrometer, as seen in Figure 7.1. In
the first experimental iteration, the shielding cone was made of 75 µm-thick Au, coated with
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Figure 7.2: XRTS spectrum from Be cylinders with Au shielding cones. Line emission and
thermal x-ray backgrounds appear at energies higher than the scattering signals.

10 µm of CH plastic in order to prevent the Au from becoming heated by hot electrons or
direct laser irradiation. The second target design used a 3-D printed plastic cone, wrapped
with 70 µm-thick Ta foils, which were also coated in CH plastic.

The sample consists either of solid density Be or solid density B. In both cases, the
sample’s density was characterized prior to the XRTS measurements. The Be was measured
to be more than 99% pure, with a density of 1.858 g cm�3 on average; the measured density is
slightly higher than the nominal Be solid density, as the outer layers of the Be are expected
to oxidize. Oxygen exists at a concentration of less than 0.4 at.%, which will not a↵ect
interpretation of scattering data. Other trace metal impurities such as iron and magnesium
are in concentrations well below 0.07 at.%. The B plugs were also measured to be more than
99% pure, with a mass density of 2.36 g cm�3. There is again expected to be some oxidation
of the outer layers and trace metal impurities which are not expected to a↵ect scattering
signals at such low concentrations.

14 beams heat the metal around the sample in a 1 ns square pulse. The heated metal
radiates x-rays and isochorically heats the material in the inner cylinder. 6-10 beams heat
the Zn foils, beginning at 1.2 ns, around the time the inner-cylinder is expected to reach
its maximum temperature. The 9 keV Zn He-↵ x-rays that scatter from the sample are
collected by the spectrometer, ZSPEC, as described in Chapter 4. The sample cylinder is
aligned such that its axis aligns with the ZSPEC’s line-of-sight.

We made the first measurements on solid density Be cylinders with Ag converter foils and
an Au cone. Figure 7.2 shows an image of a spectrum from one strip along with an image of
the raw data in the upper left hand corner. A high energy x-ray background signal appears
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Figure 7.3: XRTS spectrum from B cylinders with Ta shielding cones. The Ta cones elimi-
nated unwanted background signals.

above the elastic scattering, along with a Zn K-↵ line that appears shifted upward in energy.
The Zn K-↵ line results from a small fraction of the Zn foil extending beyond the shielding
cone, which fluoresced as a result of interaction from high energy x-rays. We attribute the
broader, higher-energy background to Au L-shell emission from the shielding cone, but it
remains unclear how the Au became heated. Current estimates suggest that the edge of
the Au collimator in the shielding cone was heated by x-rays from the converter foil, which
caused the Au to emit. The backgrounds present in the shot decreased the signal-to-noise
ratio in the data and contributed more uncertainty to the final fitting.

In order to mitigate the x-ray background signals, we developed a new shielding cone
that comprised a 3-D printed plastic cone surrounded by 70 µm thick Ta foils. We also
ensured that no portion of the Zn foil was visible above the shielding cone. Figure 7.3 shows
a spectrum taken from the Ta cone target, with the raw data in the upper left hand corner.
In this case, the cylindrical sample was B with a Cr heating material layer. As seen in
Figure 7.3 the new shielding cone design eliminated the higher energy background signals
and improved the signal-to-noise ratio by a factor of 2. Thus, the highest quality data was
achieved on B, and the Ta cone design will be used in the future.

The following sections outline the theory used to analyze the spectra, and perform a full
analysis of the spectra.
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7.3 Relevant XRTS Theory and Previous Work

As previously described, the use of inelastic scattering to determine electron properties such
as temperature and density is well documented in the literature [99, 100, 60, 4]. Much recent
work focuses on the information found in the elastic scattering feature; various authors use
the strength of the elastic scattering feature to deduce plasma properties, such as the ion
structure factor [103], the ionization state [4, 75, 104, 5, 30], or the screening properties [105].
The values of f(k), q(k), and Sii(k,!) all depend on the magnitude of the scattering vector,
k = 2

c
!i sin ✓/2, which depends on the frequency of incident radiation, !i, and the scattering

angle, ✓. The ionic form factor, f(k), provides the dominant contribution to elastic scatter-
ing, and is calculated by the Fourier transform of bound electrons around an ion species. The
contribution from the electron screening cloud arises from the response of the free electrons
to the ions, and is found to be best modeled by a finite wavelength screening method [5,
105]. The Sii(k) can be modeled with several di↵erent potentials, including Debye-Hückel,
Coulomb, and finite wavelength. However, the Debye-Hückel potential is known to pro-
vide the best approximation in the case or partially ionized, moderate density and low-Z
plasmas [98].

Because f(k), q(k), and Sii all contribute to elastic scattering signal strength, inferring
properties like ionization from elastic scattering relies on accurate modeling of these features.
It is possible to take measurements at high k-values in which q(k) and Sii approach their
limiting values of 0 and 1, respectively. In that case, the values of Sii and q become insensitive
to model choice, which increases certainty in the findings. It also means that the elastic
scattering depends only on f(k), and provides a reliable measurement of the ionization
state.

Figure 7.4 shows both q and Sii as calculated by di↵erent models for the screening
cloud and the static structure factor for solid-density beryllium at 10 eV. It is worth noting
that the results here are e↵ectively temperature independent within the warm dense matter
regime. The dashed vertical line marks the k-value of the experiment, 7.6 Å�1. Figure 7.4
shows that the values of Sii and q are model independent given the experimental geometry
and energy of the probe source. By taking a measurement at a high k-value, we provide
benchmarking measurements of ionization through the use of elastically scattered x-rays with
high confidence.

7.4 Analysis of Spectra

We fit two XRTS spectra, one taken from beryllium and one from boron, by comparing the
data with theoretically generated fits with a �2 fitting method. These spectra are unique
compared to many previous XRTS measurement, as x-rays that reach the spectrometer
scatter from an area of the sample with homogeneous plasma conditions and a known mass
density. Only the electron temperature and the ionization states (and thus the electron
density) remain to be fixed by the scattering spectra.
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Figure 7.4: a) A plot of the ion structure factor as calculated by several di↵erent models
available in the MCSS code [98, 138]: Debye-Hückel [174], E↵ective-Coulomb, and finite-
wavelength [105]. b) A plot of the screening cloud contribution versus k as calculated by
several di↵erent models available in the MCSS code [98, 138]: E↵ective-Coulomb, the Hard
Empty Core, and the Soft Empty Core. In both cases, the k-value of the experiment (7.6
Å�1) is noted by the dashed vertical line. The ion structure factor converges to 1 and the
screening cloud converges to 0 at at the k-value probed for all possible models, increasing
confidence in the ionization measurement.

The right side of Figure 7.5 shows the spectrum (smoothed by the resolution of the instru-
ment), along with several theoretically-generated spectra that vary both electron tempera-
ture (top left) and beryllium ionization (bottom left). The best fits occurred with Te = 6±3
eV and ZBe = 2.1± 0.1, and are also shown in Figure 7.5. All fits assumed a constant mass
density of 1.86 g cm�3, which was the measured mass-density of the beryllium sample. The
left side of Figure 7.5 shows the chi-squared fitting of the spectrum, with 1� confidence inter-
vals denoted by the dashed white lines. No ionization states below ZBe = 2 were considered,
as the beryllium L-shell is low enough in energy such that no L-shell electrons could remain
in bound states at solid mass density.

Figure 7.6 shows the best fit to the scattering spectrum of boron, along with a �2 plot
that varies ionization and electron temperature. For the case of boron, the best fits were
found to be Te = 10±2.5 eV and ZB = 3.05±0.05. The improved shielding cone reduced the
experimental error from 50% to only 25% due to the improved signal-to-noise ratio and lack
of x-ray background. The resulting fits of temperature and ionization show the e↵ectiveness
of this platform to measure plasma parameters in geometries relevant to stopping power
experiments.
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Figure 7.5: Left: A measured XRTS spectrum at 120� from pure beryllium at homogeneous
conditions, showing the best fits for electron temperature and beryllium ionization state at
6±3 eV and 2.1±0.1. Other displayed fits vary electron temperature and ionization state to
show the sensitivity to these parameters at the experimental conditions. Right: �-squared
fitting to the beryllium spectrum, altering electron temperature and ionization state. The
1� confidence levels are marked by the dashed lines.

7.5 Conclusion and Proposed Extensions

In this chapter, we presented two measurements from a new XRTS platform designed to work
in conjunction with stopping power experiments on the OMEGA laser. The measurements
came from isochorically heated and Be and B at solid mass density, allowing us to deduce
electron temperature and ionization from spectral fits. We found the temperature of the
beryllium to be Te = 6 ± 3 eV and the ionization state to be ZBe = 2.1 ± 0.1, and the
best fits for boron to be Te = 10 ± 2.5 eV and ZB = 3.05 ± 0.5. Future experiments
could further improve the error bars on the returned plasma parameters by increasing the
signal-to-noise ratio of the measurement, presumably by adding more lasers to heat the x-
ray backlighter, or by summing repeated measurements. In addition, spectral sensitivity
to temperature could be increased if the material were heated to higher temperatures, as
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Figure 7.6: Left: a �2 plot of an XRTS spectrum from boron that varies electron temperature
and boron ionization state. 1� confidence intervals are marked by the white dashed lines.
The best fit is found to be at 10.0 ± 2.5 eV with ZB = 3.05 ± 0.05. Right: an example of
temperature sensitivity to fitting. The data is plotted with three di↵erent curves of di↵erent
electron temperatures.

the electron velocity distribution, and thus the free-free scattering feature, becomes more
sensitive to temperature and less to density as the plasma becomes less degenerate.

In principle, this platform o↵ers the opportunity to make more XRTS measurements from
uniform conditions on many di↵erent samples. The starting density of the sample could be
systematically varied to probe a full area of phase space and to identify the e↵ects of density
both on ionization and on radiative heating rates. As it stands, this platform has been
demonstrated to measure the temperature and ionization state of a sample used in stopping
power experiments. These measurements allow refinement of models used in the stopping
power community by providing a reliable way to measure the conditions in a sample.
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Chapter 8

Conclusions and Future Directions

In this thesis, I presented the motivation behind studying high energy density physics and
discussed the various applications of HEDP, including inertial confinement fusion, stockpile
stewardship, and laboratory astrophysics. I also outlined the physics fundamentals of the
diagnostics used to measure plasma parameters in shock physics experiments. X-rays pen-
etrate deeply into dense low-Z material, which makes them ideal tools to measure plasma
conditions in warm dense matter. X-ray Thomson scattering measures the electron distri-
bution of a plasma, making it particularly well suited to measuring parameters relevant to
the EOS. I discussed several experiments that used XRTS as a primary diagnostic. One ex-
periment measured scattering spectra from imploding diamond spheres and found that the
ionization state was higher than predicted by many commonly-applied ionization models.
Another experiment analyzed the contributions to elastic scattering from an argon impurity
in imploding beryllium shells; the experiment found that even a small percentage of argon
has a significant e↵ect on elastic scattering and quantified the e↵ect and returned the beryl-
lium ionization state. The final experiment used XRTS to measure the plasma temperature
and ionization state of isochorically heated material used in stopping power experiments. All
these studies showed the power of XRTS to measure equation of state variables in HEDP
experiments.

I propose several extensions to the Gbar platform on OMEGA. Solid spheres reach un-
precedented pressures and o↵er the ability to probe multiple points along the Hugoniot,
which warrants their use despite the complications that arise in data analysis. I propose
repeating the experiment with two goals in mind. The first would repeat the measurement
on solid diamond spheres, but with 500 µm diameter targets. The smaller targets would
reach more extreme conditions in the shocked material, and allow for exploration of the
onset of K-shell ionization in carbon. The second proposed extension to the Gbar work
would repeat the experiment with 1 mm and 500 µm spheres, but would include a layer of
mid- or high-Z dopant at a given radius; the position of the radius would vary between 5
to 400 µm. X-ray radiography measurements would confirm the implosion time at which
the shock passes over the radius of the dopant and assess the symmetry of the implosion.
An x-ray fluorescence measurement could be taken at the time the shock front passed over
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the doped region. The fluorescence measurement would arise from the extreme conditions
of the shock front and allow for spatially-resolved temperature measurements. In the case
that a non-spherically symmetric shock front causes inhomogeneities in the experiment, the
dopant could be localized to a single point. The challenge in this experiment arises from
target fabrication issues; doping a single layer or a single point in a solid sphere still requires
development work. This proposed experiment would combine the knowledge from the solid
diamond sphere scattering experiments and from the doped beryllium shell elastic scattering
analysis to return more localized temperature measurements from imploding spheres.

We also propose to extend the work done on the e↵ects of mid-Z impurities on elastic
scattering from low-Z materials. The experiment described in Chapter 6 could be repeated
with Be capsules for di↵erent mid- and high-Z dopants to measure inner-shell ionization of
the dopants. In order to bring the materials to more extreme conditions such that inner-shell
ionization occurs, smaller capsules (⇠ 500 µm diameter) or a larger laser (the NIF) could be
used.

We can also use the XRTS stopping power platform to optimize future stopping power
experiments. XRTS can measure the time-dependent temperatures of radiatively heated
materials in order to characterize the optimal heater foil material and thickness. Another
extension to this work involves exploiting the stopping power XRTS platform to measure
the onset of pressure ionization in warm dense matter. In principle, the cylinders could
be made with materials at di↵erent starting densities. Then, the di↵erent ion densities
would be known a priori and XRTS could be used to measure the temperatures and the
ionization states. This would allow for a full exploration of the onset of pressure ionization
as a function of ion density. Such a measurement would help constrain the models that
predict the strength of IPD. However, as discussed previously, there is a trade-o↵ between
understanding the e↵ects of density and temperature on scattering spectra, so this extension
is not as trivial as it may seem.

Overall, XRTS o↵ers the unique ability to measure the conditions of plasmas in the
warm dense matter state. A single XRTS spectrum can constrain mass density, electron
density, ionization state, and electron temperature, which is capable of fully benchmarking
equation of state models. Because of this, XRTS is a technique worth further development
in the HEDP community. Of course, there are still limitations to XRTS as a diagnostic.
For one, the small scattering cross section means that target development with regards to
appropriate shielding is often di�cult and can span several shot days. Secondly, XRTS is
still a relatively new technique; there is an active discussion in the community as to the
best methods to extract plasma parameters from scattering spectra. Hopefully, as more
data is collected, the community will coalesce and agree upon interpretation of scattering
spectra to push forward the use of x-ray scattering as a plasma diagnostic. For the present,
experimenters continue to collect high-quality and precise XRTS measurements in order to
obtain data capable of benchmaking ionization and EOS models in warm dense matter.
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