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ABSTRACT OF THE DISSERTATION

Strongly Hilbert Modules

by

Timothy Charles McEldowney

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2019

Professor Mei-Chu Chang, Chairperson

We will provide some results on Hilbert modules, namely an equivalent condition for

faithful Noetherian modules to be Hilbert. Then, we will generalize the notion of a Hilbert

rings and modules to create the concept of C-Hilbert rings and modules. Finally, to provide

more examples of C-Hilbert modules, we will take the notion of strongly Hilbert rings and

extend them to strongly Hilbert modules.
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Chapter 1

Introduction

Hilbert rings were created by Oscar Goldman in 1951 to generalize the proof of Hilbert's

Nullstellensatz Theorem. The Nullstellensatz Theorem is an important basis of Algebraic

Geometry which relates algebraic structures of ideals to geometric �gures. Goldman used

Hilbert rings to reframe Nullstellensatz under purely algebraic notions. Since then, Algebraic

Geometry has become more focused on schemes and varieties. However, Hilbert rings are

still being studied by Commuative Algebraists who have created multiple generalizations of

Hilbert rings.

Prime submodules were created in 1983 by McCasland in his doctoral thesis as a module

theory analog of prime ideals. Every prime submodule can be associated with a prime ideal;

however, it may not uniquely associated. Later, McCasland and Moore speci�ed a largest

such prime submodule, and called it p-maximal. In 2009, Naghipour created a new notion of

being prime, which they named strongly prime submodules. This new notion of being prime

involved two elements of the module, instead of one element from the ring and module,

respectively.
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In 2012, David Rush showed that for a submodule, being p-maximal or strongly prime

is actually the same property. This allowed him to create a notion of G-submodules and

Hilbert modules.

Noetherian rings can be viewed as generalizations of principal ideal rings, since ev-

ery ideal in a Noetherian ring is �nitely generated. This makes the ideals in Noetherian

rings particularly nice to work with. Noetherian rings tend to have additional and simpler

characterizations for properties. We will extend existing characterizations of subclasses of

Noetherian rings to corresponding Noetherian modules.

In this work, we will go over the theory needed to construct Hilbert modules and demon-

strate some associated new properties. Then, we will generalize the notion and theory of

Hilbert rings and modules to create a new class of mathematical objects, of which Hilbert

modules are an example. We will use this new process to create strongly Hilbert modules

based on the work of Karamzadeh and Moslemi, and give some classi�cation of the rings

which give rise to strongly Hilbert modules.

In the second chapter we will highlight classical ring theory of this �eld, up to the

de�nitions of Hilbert and Jacobson rings. Of special note is the additional characterization

for Noetherian Hilbert rings, and the equivalence between Hilbert and Jacobson rings. These

characterizations are the inspiration for most of the following work.

In the third chapter, we will brie�y detail the theory surrounding prime submodules,

then discuss the existing theory surrounding Hilbert and Jacobson modules. Of note is the

equivalence between Hilbert and Jacobson modules, which has not been recognized until

now. This will give us our �rst result.
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Theorem. Let M be a �nitely generated R-module. Then M is a Hilbert module if and only

if R/AnnR(M) is a Hilbert ring.

We will immediately use this theorem to extend the additional characterization for

Noetherian Hilbert rings to modules.

Theorem. Let M be a Noetherian, faithful, �nitely generated R-module. Then M is a

Hilbert module if and only if for every prime ideal p in R such that dim(R/p) = 1, there

must exist in�nitely many maximal ideals containing p.

We will then note that Rush's construction of Hilbert modules can be used to create a

new more general class of modules. We will start by de�ning C-Hilbert rings and modules,

and then prove the following main result.

Theorem. Suppose M is a faithful, �nitely generated R-module. Then M is a C-Hilbert

R-module, if and only if R is a C-Hilbert ring.

In the fourth chapter, we spend time going over the work of Karamzadeh and Moslemi

on creating strongly Hilbert rings. We note that those rings are examples of C-Hilbert rings,

and thus can be used to de�ne a new type of module we will name strongly Hilbert modules.

We close with the following characterization for Noetherian strongly Hilbert modules.

Theorem. Let M be a Noetherian, faithful, �nitely generated R-module. Then M is a

strongly Hilbert module if and only if for each prime ideal p with dim(R/p) ≥ 1 there exists

an uncountable number of non-zero minimal prime ideals in R/p.

We then close with some �nal thoughts and future directions for our work.
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Chapter 2

Preliminaries

It is necessary to start with some basic de�nitions from commutative ring theory. Then,

we will introduce the idea of a G-domain and use that to build G-ideals and Hilbert rings.

We will close this section with an introduction to Jacobson rings and their relationship to

Hilbert rings, which will be used to great e�ect in the next chapter.

2.1 Noetherian Rings

The ideals of an arbitrary ring can be di�cult to describe or work with. Ideals generated

by a single element are very easy to understand, so they do not provide particularly rich

examples. Finitely generated ideals are only slightly more complicated to work with, but

allow for many interesting examples. Thus, we will want to discuss rings where every ideal

is �nitely generated. First, we start with some useful notation for prime ideals.
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De�nition 2.1.1. The spectrum of a commutative ring R, denoted by SpecR, is the set

of all prime ideals of R. The spectrum of a ring can be equipped the Zariski topology, in

which the closed sets are the sets de�ned as V (I) = {P ∈ Spec (A) | I ⊆ P}, where I is an

ideal. We will use SpecR as shorthand for the set of prime ideals of R.

The following chain conditions will allow us to isolate sets of ideals that are easier to

work with.

De�nition 2.1.2. Given a set of ideals A, A is said to satisfy descending chain con-

dition if given any chain of ideals I1 ⊇ · · · ⊇ Ik−1 ⊇ Ik ⊇ Ik+1 ⊇ · · · where Ij ∈ A for

all j, then there exists an n such that: In = In+1 = · · · . Similarly, A is said to sat-

isfy the ascending chain condition if the same condition holds for any chain of ideals

I1 ⊆ · · · ⊆ Ik−1 ⊆ Ik ⊆ Ik+1 ⊆ · · ·.

Remark 2.1.3. If A is the set of all the ideals of R, then we say R is an Artinian ring.

Our primary interest is the case when A = SpecR. After de�ning chain conditions, we

can �nally properly de�ne Noetherian rings.

De�nition 2.1.4. Let R be a commutative ring and A be the collection of all ideals of R.

R is Noetherian if A satis�es the ascending chain condition.

Remark 2.1.5. Noetherian rings are named after Emmy Noether, a preeminent female math-

ematician from the turn of the 20th century. In addition to her extensive work in Abstract

Algebra, she also created Noether's theorem, which many consider to be a basis for much of

modern physics.

Noetherian rings are in general easier to work with than non-Noetherian rings. This idea

is demonstrated in the following classic result.
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Proposition 2.1.6. A commutative ring R is Noetherian if and only if all of its ideals are

�nitely generated.

This proposition demonstrates that Noetherian rings are generalizations of principle ideal

rings.

Since every chain of descending prime ideals eventually terminates in a Noetherian ring,

it makes sense to talk about the �nite length of these chains. These lengths will be used to

de�ned a way of measuring the size of rings, which will be called the dimension of a ring.

These can be de�ned for arbitrary rings, but they are most natural in Noetherian rings; we

will focus on using dimension in the Noetherian context.

First we will de�ne the height of a prime ideal.

De�nition 2.1.7. Given a prime p ∈ R, we de�ne the height of p to be the supremum of

the lengths of all chains of prime ideals contained in p. Namely, the height n of p is the

length of longest chain of ideals p0 ( p1 ( · · · ( pn−1 ( pn = p.

Remark 2.1.8. Note we are counting the number of containment relations, so the height

would be the number of prime ideals in the chain minus one.

De�nition 2.1.9. The Krull dimension of a commutative ring R, denoted dimR, is the

supremum of the heights all prime ideals in R. Namely, dimR is the supremum of the

lengths of all chains of prime ideals. Note that if dimR =∞, then for every positive integer

k there exists a prime ideal p of height k.
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Unless otherwise stated, all rings will be assumed to be commutative with unity. We

will be using the following notation throughout this paper:

• The symbol D is reserved for integral domains.

• The symbol K is reserved for the quotient �eld of D.

Most of the material in sections 2.2-2.4 is included in most commutative ring theory text-

books. We will be using Irving Kaplansky's Commutative Rings [4] as our primary source

for this section.

2.2 G-domains

In commutative algebra, G-domains were introduced by Oscar Goldman and Wolfgang Krull

as part of the e�ort to prove Hilbert's Nullstellensatz. Since there was already a class of

rings with Krull's name attached to it, the honor went to Goldman.

De�nition 2.2.1. An integral domain D is called a G-domain if its quotient �eld K is such

that

K = D

[
a1
b1
,
a2
b2
... ,

ai
bi
, ... ,

an
bn

]
.

In other words, K is a �nitely generated ring over D.

Remark 2.2.2. D is a G-domain if and only if K can be generated as ring by a single element,

since

K = D

[
a1
b1
,
a2
b2
... ,

ai
bi
, ... ,

an
bn

]
= D

[
1

b1b2...bi...bn

]
.

Trivially, any �eld is G-domain, since zero additional elements need to be added to make it

a �eld.
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Example 2.2.3. Consider Z2Z =
{
a
n |a ∈ Z, n odd

}
, the rationals with only odd denomi-

nators. This is the same as Z localized at the prime ideal 2Z. Given a ∈ Z2Z, there exists a

b ∈ Z2Z such that ab = 2k for some k. Thus, Z2Z
[
1
2

]
is a �eld, and by de�nition Z2Z is a

G-domain.

There are other simple G-domains. For example, the formal power series ring over

the rationals Q[[x]]. Q[[x]] is a G-domain, since after adjoining the element 1
x the domain

becomes the �eld Q ((x)). However, it is more illustrative to mention a domain that is not

a G-domain.

Example 2.2.4. Z is not a G-domain, since Z has an in�nite number of prime elements.

Therefore no �nite list of rational numbers will allow you to generate all of their inverses.

This non-example demonstrates an important distinction between G-domains and other

domains. A G-domain is a �nite number of elements away from being a �eld, while a domain

that is not a G-domain needs to have an in�nite number of elements added to make it a

�eld. The set of integers also suggests a connection between prime elements and G-domains.

The following result solidi�es this idea.

Proposition 2.2.5. Let D be a unique factorization domain. Then D is a G-domain if and

only if it has a �nite number of non-associated prime elements.

Proof. Assume D has a �nite number of non-associated prime elements. Namely, D has

a �nite number of prime elements up to multiplication by a unit. Denote these prime

elements as p1, p2, .... , pn. Since D is a unique factorization domain, for any a ∈ D we can

write a = upk11 p
k2
2 ...p

kn
n where u is a unit of D and the ki are non-negative integers. If K is

8



the �eld of fractions of D, then

K =
{a
b
|a, b ∈ D, b 6= 0

}
=

{
a

pk11 p
k2
2 ...p

kn
n

|a ∈ D, ki are non-negative integers

}

= D

[
1

p1
,
1

p2
, ... ,

1

pn

]
.

Therefore D is a G-domain.

Next assume that D is a G-domain. Then, if K is the �eld of fractions of D, K = D
[
1
b

]
where b is a non-zero element in D. Since D is an unique factorization domain we can write

b = upk11 p
k2
2 ...p

kn
n where u is a unit of D and the ki are non negative integers. Therefore

K = D
[

1
p1p2...pn

]
. Assume for contradiction that D has an in�nite number of non-associated

prime elements. Then there exists a prime element q ∈ D such that q 6= upi for all 1 ≤ i ≤ n

and u unit in D. But then 1
q ∈ K and 1

q /∈ D
[

1
p1p2...pn

]
. This is a contradiction to K =

D
[

1
p1p2...pn

]
. Therefore D must have a �nite number of non-associated prime elements.

Remark 2.2.6. If D is an unique factorization domain and has a �nite number of primes,

up to units, then it is a principal ideal domain. So there is no G-domain that is an unique

factorization domain but not a principal ideal domain.

Even if we are not working with a unique factorization domain, there are several equiv-

alent conditions to being a G-Domain [4].

9



Proposition 2.2.7. Let D be an integral domain with quotient �eld K. For any non-zero

element u in D, the following are equivalent:

1. Any non-zero prime ideal contains u.

2. Any non-zero ideal contains a power of u.

3. K = D[u−1].

Remark 2.2.8. Note that condition 3 is the de�nition G-domain.

Proof. Assume every non-zero prime ideal in D contains a non-zero element u. Suppose

for contradiction that I is a non-zero ideal that contains no power of u. Then I can be

expanded to a prime ideal p disjoint from {un}, which contradicts that every prime ideal

contains u (so 1 implies 2).

Assume every non-zero ideal in D contains a power of a non-zero element u. Take any

non-zero b ∈ D; The ideal 〈 b 〉 contains some power of u, say un = bc. This then implies

b−1 = cu−n ∈ D[u−1]. But b was an arbitrary non-zero element in D; thus K = D[u−1] (so

2 implies 3).

Assume the quotient �eld of D is K = D[u−1] for some non-zero element u in D. If we

take a non-zero prime ideal p and any non-zero element b in p, then b−1 = cu−n for some

c ∈ D and n ∈ Z+, since K = D[u−1]. Then un = bc ∈ p, and thus u ∈ p. (3 implies 1).

There is an additional equivalent condition in the context of Noetherian rings, though

we need the following lemma to prove it.

Lemma 2.2.9. Let D be an integral domain having only a �nite number of prime ideals.

Then D is a G-domain.

10



Proof. Let { p1, p2, ... , pn } be all the non-zero prime ideals of an integral domain D. Then

for each pi, choose a non-zero element ai ∈ pi. Let u = a1a2...an and note u ∈ pi for all i.

Then by Theorem 2.2.7, K = D[u−1], which means D is a G-domain.

We can generalize this idea as follows.

Proposition 2.2.10. An integral domain D with the descending chain condition on �nite

intersections of prime ideals is a G-domain.

Proof. Assume D is an integral domain with the descending chain condition on �nite inter-

sections of prime ideals. Let A be minimal among the ideals which are �nite intersections of

non-zero prime ideals. Thus A 6= {0} and A = ∩
p∈SpecD

p. Let u ∈ A, then for all p ∈ Spec (D)

u ∈ p. By Proposition 2.2.7, K = D[u−1], and D is a G-domain.

We can use Lemma 2.2.9 to prove an additional characterization for Noetherian G-

Domains [4].

Theorem 2.2.11. A Noetherian integral domain D is a G-domain if and only if dim(D) ≤ 1

and D has only a �nite number of maximal ideals (or, equivalently, prime ideals).

Proof. Assume the Noetherian integral domain D has has only a �nite number of maximal

ideals and that dim(D) ≤ 1. Then, since dim(D) ≤ 1, every non-zero prime ideal in D is

maximal. Thus, D has only a �nite number of prime ideals, and by Lemma 2.2.9 D is a

G-domain.

If we instead assume D is a Noetherian G-domain, by Proposition 2.2.7 the intersection

of the non-zero prime ideals in D is non-zero. By Theorem 145 in [4], D has only a �nite

number of minimal prime ideals (prime ideals of height 1). If dim(D) > 1, then there exist

11



a chain of prime ideals {0} ⊂ p ⊂ q where, without loss of generality, we may assume p is of

height 1 and q is of height 2. Since there exists one prime ideal properly between {0} and q

(namely p), by Theorem 144 also in [4], there must exist in�nite many primes between them.

But then D would have an in�nite number of minimal prime ideals, which is a contradiction.

So dim(D) ≤ 1, and D has a �nite number of maximal ideals (since all non-zero ideals are

of height 1, thus both minimal and maximal).

It's a common theme that algebraic structures have a nice characterization in the Noethe-

rian setting, and this theorem is this �rst of many in this paper. To get to our next Noethe-

rian characterization we need to introduce our next majors objects: G-ideals and Hilbert

rings.

2.3 G-ideals

With the notion of G-domains, we can move onto G-ideals, the main substructure we'll be

dealing with.

De�nition 2.3.1. A prime ideal p of a commutative ring R is a G-ideal if R/p is aG-domain.

An intuitive sense of the structure of a G-ideal is that they kill o� all but a �nite

amount prime elements. Note that any maximal ideal is a G-ideal, since a �eld is trivially

a G-domain.

Example 2.3.2. The ideal 〈x 〉 in Z2Z [x] is a non-maximal G-ideal, since 〈x 〉 ⊂ 〈x, 2 〉 and

Z2Z [x] /〈x 〉 ∼= Z2Z, which is a G-domain.

Proposition 2.3.3. Let a ring R have descending chain condition on �nite intersections

of prime ideals. Then each prime ideal p of R is a G-ideal.

12



Proof. Assume R has descending chain condition on �nite intersections of prime ideals. Then

for any prime ideal p of R, R/p will have descending chain condition on �nite intersections

of prime ideals. So by Proposition 2.2.10 R/p is a G-domain and p is a G-ideal.

We also have an interesting connection to nilradicals. Recall the following de�nition:

De�nition 2.3.4. Given a ring R, the nilradical, N , of R is the set of all nilpotent elements

of R. Namely: N = {x ∈ R |xn = 0 for some positve integer n}.

The nilradical can also be described as the intersection of all prime ideals in the ring.

The following result from [4] demonstrates an important connection between nilradicals

and G-Domains in commutative rings.

Proposition 2.3.5. The nilradical N of any commutative ring R is the intersection of all

G-ideals in R.

Proof. The nilradical is the intersection of all prime ideals of R, and thus needs to be a

subset of the intersection of all G-ideals in R.

For the other containment suppose u /∈ N, and construct a G-ideal excluding u. Take

the zero ideal, which is disjoint from {un}, and expand it to an ideal p that is maximal

with respect to being disjoint from {un}. p is prime, since it is maximal with respect to

excluding a multiplicatively closed set. In the domain R/p, let u∗ denote the image of u. The

maximality of p ensures that every non-zero prime ideal in R/p contains u∗. By Proposition

2.2.7, R/p is a G-domain, and thus p is a G-ideal.

De�nition 2.3.6. The radical of an ideal I in a commutative ring R, denoted by Rad (I),

13



is the set of elements whose power is in the ideal I. Namely,

Rad (I) = {r ∈ R | rn ∈ I for some positive integer n}.

These two facts, along with Proposition 2.3.5, give us the following two Corollaries:

The radical of an ideal is the preimage of the nilradical in the quotient ring R/I. Also,

the radical of any prime ideal p is itself, namely , Rad (p) = p.

Corollary 2.3.7. Let I be any ideal in a commutative ring R. Then the radical of I is the

intersection of all G-ideals containing I.

Corollary 2.3.8. Let p be a prime ideal in a commutative ring R. Then p is equal to the

intersection of all G-ideals containing p.

The two previous results imply that G-ideals lie somewhere between prime ideals and

maximal ideals. We will explore this idea further.

2.4 Hilbert Rings

After building G-domains and G-ideals, we can now de�ne a Hilbert ring.

De�nition 2.4.1. A Hilbert ring is a ring R such that every G-ideal is a maximal ideal.

Example 2.4.2. Z is a Hilbert ring.

Proof. All prime ideals in Z are of the form {0} or pZ where p is a prime element.

i. For {0}, we �nd Z/{0} ∼= Z and Z is not a G-domain; thus, {0} is not a G-ideal.

ii. Any other prime ideal in Z will be of the form pZ, and Z/pZ ∼= Zp, which is a �eld.

14



Thus, any non-zero prime ideal is maximal. But note that any G-ideal in Z is a non-zero

prime ideal, and thus Z is a Hilbert ring.

Example 2.4.3. Q[x] is also a Hilbert ring, since any non-zero prime ideal is maximal, and

Q[x]/{0} ∼= Q[x] is not a G-domain.

Remark 2.4.4. However, Z2Z [x] is not a Hilbert ring, since 〈x 〉 is a G-ideal that is not

maximal as it is contained in 〈 2, x 〉.

Since maximal ideals and G-ideals are the same in a Hilbert ring, Corollary 2.3.7 gives

us the following:

Proposition 2.4.5. In a Hilbert ring, the radical of any ideal I is the intersection of the

maximal ideals containing I.

We will �nd the a more speci�c form of the Proposition 2.4.5 useful in our later proofs.

Corollary 2.4.6. If R is a Hilbert ring, every prime ideal p in R is equal to the the inter-

section of the maximal ideals containing p.

To give us a better idea of how Hilbert rings work, let's go through a short exercise from

[4].

Lemma 2.4.7. Let R be a Hilbert ring having only a �nite number of maximal ideals. Then

these maximal ideals are the only prime ideals of R.

Proof. By Corollary 2.4.6, every prime ideal of R is an intersection of some of the maximal

ideals. Since there is only a �nite number of maximal ideals of R, there can only be a

�nite number of prime ideals of R. Let q be an arbitrary prime ideal of R. Since R/q is a
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homomorphic image of R, it has only a �nite number of prime ideals. By Lemma 2.2.9, R/q

is a G-domain, thus q is a G-ideal. Since R is a Hilbert ring, q must be a maximal ideal,

showing that every prime ideal in R is maximal.

The second of the Noetherian equivalent conditions is for Hilbert rings [4].

Theorem 2.4.8. A Noetherian ring R is a Hilbert ring if and only if for every prime ideal

p in R such that dim(R/p) = 1, there must exist in�nitely many maximal ideals containing

p.

Proof. Assume that for every prime ideal p such that dim(R/p) = 1, there must exist

in�nitely many maximal ideals containing p. Let q be a G-ideal, so R/q is a G-domain. By

Theorem 2.2.11, the dimension of R/q is at most 1, and has only a �nite number of maximal

ideals. In the case where, dim(R/q) = 1, then R has both �nitely and in�nitely many ideals

containing q which is not possible. Thus the dim(R/q) = 0 and q is a maximal ideal. Since

an arbitrary G-ideal in R is maximal then R is a Hilbert ring.

Now, assume R is a Hilbert Ring. Let q be a prime ideal in R such that dim(R/q) = 1.

Assume for contradiction that R has only �nitely many maximal ideals containing q; then

R/q is a domain with only a �nite number of maximal ideals. By Theorem 2.2.11, R/q is

a G-domain, so q is a G-ideal. This is a contradiction to q not being a maximal ideal, and

therefore R must have in�nitely many maximal ideals containing q.

Example 2.4.9. Q[x1, x2, x3, . . . , xn, . . .] is a non-Noetherian Hilbert ring.
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2.5 Jacobson Rings

De�nition 2.5.1. A ring for which every prime ideal is an intersection of maximal ideals

is called a Jacobson ring.

Remark 2.5.2. Jacobson rings can be de�ned for non-commutative rings, which is not the

case for Hilbert rings.

Example 2.5.3. Z is a Jacobson ring. The only non-maximal prime ideal it contains is the

zero ideal, and ⋂
p prime

pZ = {0}.

The following theorem is the inspiration for much of our work in the next chapter. This

equivalence has been known for half a century, though we'll produce a proof here of our own

construction.

Theorem 2.5.4. If R is a commutative ring, then R is Hilbert if and only if it is Jacobson.

Proof. Suppose R is a Hilbert commutative ring. By 2.4.6, any prime ideal p of R is an

intersection of G-ideals. In a Hilbert ring, all G-ideals are maximal, so the prime ideal is

the intersection of maximal ideals, and R is Jacobson.

On the other hand, if R is a Jacobson commutative ring, choose a nonzero G-ideal

g. Then D = R/g is a G-domain. Assume for contradiction D is not a �eld. Then by

Proposition 2.2.7, there exists a u ∈ D such that u is contained in every nonzero prime ideal

of D. Thus, the intersection of all maximal ideals in D is not the zero ideal. Since R is

Jacobson

g =
⋂
g⊂m

m,
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where all m are maximal. But the maximal ideals inD are the maximal ideals of R containing

g, so their intersection in D = R/g should be 0, a contradiction. Hence, D must be a �eld,

and R is a Hilbert ring.

This completes our study of Hilbert and Jacobson rings. In Chapter 3, we will discuss

how these rings were used to construct Hilbert and Jacobson modules. Before that, we want

to over some ideas from Karamzadeh's and Moslemi's work [5], which will address a newer

type of ring called a strongly Hilbert ring. We will use this ring to construct our main results

in Chapter 4.

2.6 G-type Domain

G-domains were de�ned using the di�erence between a �nite set and an in�nite set. We can

generalize that idea to talk about the di�erence of larger cardinalities.

De�nition 2.6.1. D is a G-type domain if there exists a countable multiplicatively closed

set S in D with K = D
[
S−1

]
where we de�ne S−1 =

{
1
s |s ∈ S

}
.

Observe that if A is countable subset of a ring R, then the multiplicatively closed set

generated by A is still countable.

All G-domains are G-type domains, since any �nite set is countable. For an example of

a G-type domain that is not a G-domain we have our favorite domain: the integers.

Example 2.6.2. Z is a G-type domain, since if S = Z\{0}, then

Q = Z[S−1] = Z[
1

2
,
1

3
,
1

4
, ... ,

1

n
, ...].
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In fact, any countable domain is a G-type domain. Take S = D\{0}, and since D is

countable, so is S and K = D
[
S−1

]
. Thus D is a G-type domain.

We also get a version of Proposition 2.2.5 for G-type factorization domains.

Proposition 2.6.3. A unique factorization domain is a G-type domain if and only if it has

only a countable number of prime elements (up to units).

Thus, if K is a countable �eld, then K[x] is a G-type domain that is not a G-domain.

Even if we are not working with a unique factorization domain, there are several equiv-

alent conditions to being a G-type domain via an analogue of Proposition 2.2.7 for G-type

domains.

Proposition 2.6.4. Let D be a a domain with quotient �eld K, and let S be a multiplicatively

closed set in D. The following are equivalent:

1.Each non-zero prime ideal of D intersects S.

2.Each non-zero ideal of D intersects S.

3. K = D[S−1]

Remark 2.6.5. Condition 3 is equivalent to D being a G-type domain.

Proof. Assume every non-zero prime ideal in D intersects S. Suppose for contradiction that

I is a non-zero ideal that is disjoint from S. Then I can be expanded to a prime ideal p

disjoint from S, which contradicts that every non-zero prime ideal of D intersects S (so 1

implies 2).

Assume every non-zero ideal in D intersects S. Take any non-zero b ∈ D; the ideal 〈 b 〉

contains some element of S, say s = bc. Then b−1 = cs−1 ∈ D[S−1]. But b was an arbitrary

non-zero element in D, and thus K = D[u−1] (so 2 implies 3).
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Assume the quotient �eld of D is K = D[S−1]. If we take a non-zero prime ideal p and

any non-zero element b in p, then b−1 = cs−1 for some c ∈ D, since K = D[S−1]. Then

s = bc and thus p intersects S. (3 implies 1).

These equivalent conditions for being a G-type domain will be immediately useful in the

proof of Proposition 2.6.3 for general integral domains.

Lemma 2.6.6. If a domain D has a countable number of prime ideals, then D is a G-type

domain.

Proof. The set SpecD\{0} is countable, so we may index them by N and consider {p1, p2, p3, ...}

as all the non-zero prime ideals of D. Choose a non zero ai ∈ pi for each i ∈ N, and let S be

the multiplicatively closed set generated by {a1, a2, a3, ...}. Note that D is a domain, and

S is a countable multiplicatively closed set such that for every non-zero prime ideal p in D,

p ∩ S 6= ∅. Then by Proposition 2.6.4, the quotient �eld of D is equal to D[S−1]. Thus D

is a G-type domain.

The following Proposition is included in a proof in [5], but we will state and prove it by

itself.

Proposition 2.6.7. Let D be an integral domain. If D has the descending chain condition

on prime ideals and only a countable number of nonzero minimal prime ideals then D is a

G-type domain.

Proof. Let p1, p2, p3, ... , pn, ... be the non-zero minimal prime ideals of D and note that any

prime ideal q contains one of the pn's. For each n, take 0 6= an ∈ pn and let S be the

multiplicatively closed set generated by {a1, a2, a3, ... , an, ...}. But q ∩ S 6= ∅ for all prime

ideals q. Thus by Proposition 2.6.4, K = D[S−1]. Thus D is a G-type domain.
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Now we have the tools necessary to prove an equivalent condition for Noetherian G-type

domains.

Theorem 2.6.8. Let D be a Noetherian domain. Then D is a G-type domain if and only

if D has only a countable number of non-zero minimal prime ideals.

Proof. Suppose D has only a countable number of non-zero prime ideals. Since D is Noethe-

rian, it has descending chain condition on prime ideals by the height function. Then by the

proof of Proposition 2.6.7, D is a G-type domain.

Conversely, if D is a G-type domain let S = {s1, s2, s3, . . .} be a countable multiplica-

tively closed set such that S∩p 6= ∅ for all non-zero prime ideals p. Assume for contradiction

the set of non-zero minimal prime ideals is uncountable. Since S is countable and S∩p 6= ∅

for all prime p, there must exist an element s ∈ S such that s belongs to an uncountable

number of non-zero minimal prime ideals. Let {pα} be the subset of minimal non-zero prime

ideals that contain s, namely s ∈ pα for all α. Considering the ideal 〈 s 〉, all the pα's are

minimal over 〈 s 〉. But since D is Noetherian, there can only be a �nite number of minimal

prime ideals over any given ideal. This is a contradiction, and therefore D has a countable

number of minimal prime ideals.

Example 2.6.9. D = Z
[
2

k
2n

]
where n ∈ N and 1 ≤ k < n is a countable non-Noetherian

domain, and thus a G-type domain. D is countable, since it is a subring of the algebraic

closure of Z, which is countable. It is non-Noetherian, since
〈√

2
〉
⊂
〈

4
√
2
〉
⊂
〈

8
√
2
〉
⊂ ...

is an in�nite chain of ascending ideals in D.
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2.7 G-type Ideal

De�nition 2.7.1. A prime ideal p of a ring R is called a G-type ideal if R/p is a G-type

domain.

Remark 2.7.2. A way of intuiting what these G-ideals are is that they kill o� all but a

countable amount prime elements.

Example 2.7.3. Any G-ideal is a G-type ideal.

Example 2.7.4. In the ring Z[x], the prime ideal 〈x 〉 = {f(x) ∈ Z[x] | f(0) = 0} is a G-

type ideal, since Z[x]/ 〈x 〉 ∼= Z and Z is a G-type ideal. However, 〈x 〉 is not a G-ideal,

since Z is not a G-domain.

Example 2.7.5. In Z×R, the prime ideal {0}×R is a G-type ideal, since (Z×R)/({0}×R) ∼=

Z is a G-type domain.

Proposition 2.7.6. Let a ring R have descending chain condition on prime ideals, and R/p

has only a countable number of non-zero minimal prime ideals for each prime ideal p in R.

Then each prime ideal p of R is a G-type ideal.

Proof. Assume R has the descending chain condition on prime ideals, and R/p has only a

countable number of non-zero minimal prime ideals for each prime ideal p in R. Given any

prime ideal p in R, then R/p will have the descending chain condition on prime ideals and

only a countable number of nonzero minimal prime ideals. Thus, by Proposition 2.6.7 R/p

will be a G-type domain, which makes p a G-type ideal.
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2.8 Strongly Hilbert Rings

De�nition 2.8.1. A ring R is a strongly Hilbert ring if each G-type ideal in R is maximal.

Remark 2.8.2. Any strongly Hilbert ring is a Hilbert ring, since a G-ideal is a G-type ideal.

However, Z is not a strongly Hilbert ring, since {0} is a G-type ideal that is not maximal.

Example 2.8.3. R = C[x]/
〈
x2
〉
is a strongly Hilbert ring. (Note that it is not a domain,

since x ∗ x = 0). R is the image of a principal ideal ring, thus is one itself. In fact, all

ideals in R can be described g(x)R, where g(x) ∈ C[x]. Prime ideals in C[x] are {0}, or of

the form 〈x− a 〉 where a ∈ C. In R, 0R is not prime since x ∗x = 0. However, (x− a)R is

prime, with R/(x− a)R ∼= C Thus (x− a)R is in fact maximal, and therefore any G-type

ideal in R is maximal. Hence, R is a strongly Hilbert ring.

In general, dimR = 0 implies R is a strongly Hilbert ring (since every prime ideal is

already maximal).

Example 2.8.4. LetK be an uncountable �eld. ThenK[x1, x2, ... , xn] andK[x1, x2, ... , xn, ...]

are strongly Hilbert rings. Note that K[x1, x2, ..., xn, ...] is non-Noetherian.

If K is a countable �eld, K[x] is never a strongly Hilbert ring. Since {0} is prime and

K[x] is a G-type domain, {0} is a G-type ideal that is not maximal.

Next, we have an equivalent condition for Noetherian Hilbert rings.

Theorem 2.8.5. Let R be a Noetherian ring. Then R is a strongly Hilbert ring if and only

if for each prime ideal p with dim(R/p) ≥ 1, there exists an uncountable number of non-zero

minimal prime ideals in R/p.
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Proof. Assume for any prime ideal p in R with dim(R/p) ≥ 1, there exists an uncountable

number of non-zero minimal prime ideals in R/p. Let q be an arbitrary G-type ideal, so R/q

is a Noetherian G-type domain. By Theorem 2.6.8, R/q has only a countable number of

non-zero minimal prime ideals. This implies dimR/q = 0, since having dimR/q ≥ 1 would

lead to contradiction on the cardinality of minimal prime ideals of R/q. But dimR/q = 0

implies q is a maximal ideal. Thus any arbitrary G-type ideal is maximal, and R is a strongly

Hilbert ring.

Conversely, let R be a strongly Hilbert ring. If p is a prime ideal with dimR/p ≥ 1.

Then p is not a maximal ideal, thus p is not a G-type ideal. Then R/p is not a G-type

domain, so by Theorem 2.6.8 R/p has an uncountable number of non-zero minimal prime

ideals.

We can get the forward direction without the assumption of being Noetherian via Lemma

2.6.6.

Lemma 2.8.6. If R is a strongly Hilbert ring, then for each prime ideal p with dim(R/p) ≥ 1

there exists an uncountable number of prime ideals in R/p.

Proof. Let R be a strongly Hilbert ring, and p ∈ SpecR such that dim(R/p) ≥ 1 . Since

dim(R/p) ≥ 1, p is not a maximal ideal. Assume for contradiction that R/p has a countable

number of prime ideals. By Lemma 2.6.6, R/p is a G-type domain. Thus by de�nition, p

is a G-type ideal. However, p is not a maximal ideal, a contradiction to R being a strongly

Hilbert ring. Therefore R/p has an uncountable number of prime ideals.

After �nishing all of the necessary material from ring theory, we can �nally discuss

Hilbert and Jacobson modules in the next chapter.
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Chapter 3

Hilbert and Jacobson Modules

3.1 Modules

Modules are a generalization of vector spaces, where the scalars come from an arbitrary ring

instead of a �eld. For the rest of this work, we will assume all modules are unitary left

modules over a commutative ring R and refer to them as R-modules.

Ideals are used to study the structure of rings in commutative ring theory. We would like

to be able to use the tools and knowledge we have about ideals and apply them to modules.

To do this, we will need a way to associate ideals with submodules.

De�nition 3.1.1. Given two submodules L and N of an R-module M , we de�ne

(N :R L) := {r ∈ R | rL ⊆ N} .

We call this the colon operator.
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The signi�cance of this operator is not apparent until we introduce another fact:

(N :R L) is an ideal. With this, we can construct a correspondence between submodules and

ideals. Let L be the entire module M. Then given any submodule N , we have an associated

ideal of R, (N :R M). We illustrate this with the following example.

Example 3.1.2. The following are some simple examples of the colon operator in Z⊕ Z:

• ((2Z⊕ Z) :Z (Z⊕ Z)) = 2Z

• ((2Z⊕ {0}) :Z (Z⊕ Z)) = {0}

• ((2Z⊕ 3Z) :Z (Z⊕ Z)) = 6Z

One of the recurring themes of Chapter 2 was having additional characterizations for

Noetherian rings. We would like to be able to keep that additional structure as we begin to

work with modules. To do so, we need to de�ne Noetherian modules.

De�nition 3.1.3. An R-module is called Noetherian if it satis�es the ascending chain

condition on its submodules.

The following classical theorem allows us to construct explicit examples of Noetherian

submodules.

Proposition 3.1.4. Let R be a Noetherian ring. Then any R-module is Noetherian if and

only if it is �nitely generated.

Thus, any �nitely generated Z-module, such as Z⊕Z, will be Noetherian. We will come

back to this particular module when we talk about prime submodules. Before moving on,

we want to note that for an R-module M to be non-Noetherian, the ring R has to be be
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non-Noetherian. However, the converse is not true. For a simple counterexample, look at Z

as a Z[x1, x2, x3, .........]-module, with multiplication de�ned by

f(x1, x2, x3, ... , xn) · k := f(0, 0, 0, ... , 0) · k.

The module is Noetherian, but the ring Z[x1, x2, x3, .........] is not. The reason the coun-

terexample worked is because the annihilator ofM killed o� the possible in�nitely ascending

chains of submodules. However, when we look at modules where the annihilator is the zero

ideal � namely faithful modules � we get the following result.

Lemma 3.1.5. If M is a faithful Noetherian R-module, then the ring R is Noetherian.

We will use this Lemma later to prove our new results for Noetherian modules.

3.2 Prime Submodules

Much of commutative ring theory is based around the study of prime ideals. Recently,

McCasland and Moore [9] created the following notion of a prime submodule.

De�nition 3.2.1. A proper submodule N of an R-module M is said to be prime if for all

a ∈ R and x ∈M, if ax ∈ N then either x ∈ N or a ∈ (N :R M) .

Since McCasland and Moore introduced this de�nition, there has been signi�cant re-

search activity generalizing ring-theoretic results regarding prime ideals to modules. The

rest of the section will discuss these generalizations and the connection between prime sub-

modules and prime ideals. The following proposition shows that the ideal associated to a

prime submodule is prime.
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Proposition 3.2.2. If N is a prime submodule of an R-module M , then (N :R M) is a

prime ideal of R.

Example 3.2.3. Consider the submodule 2Z ⊕ 2Z in the Z-module Z ⊕ Z. If the product

r(a, b) is an element of 2Z ⊕ 2Z, then ra, rb ∈ 2Z. Since 2Z is a prime ideal, either r ∈

((2Z⊕ 2Z) :Z (Z⊕ Z)) = 2Z or (a, b) ∈ 2Z⊕ 2Z. Therefore, 2Z⊕ 2Z is a prime submodule.

Using the de�nition of a prime submodule, we can prove the following useful result about

maximal submodules in �nitely generated modules [6].

Proposition 3.2.4. Let M be a �nitely generated R-module. If N is a maximal submodule

of M , then the ideal (N :R M) is a maximal ideal of R.

Proof. Let N be a maximal submodule of a �nitely generated R-module M . Assume that

(N :R M) is not a maximal ideal. Let p be a prime ideal properly containing (N :R M). Then

(N + pM)(p) is a p-prime submodule of M properly containing N . This is a contradiction

to N being maximal. Therefore, (N :R M) must be a maximal ideal.

Remark 3.2.5. Note that the converse of this Proposition is not true. Going back to our

example of 2Z⊕2Z in the Z-module Z⊕Z, ((2Z⊕ 2Z) :Z (Z⊕ Z)) = 2Z, which is a maximal

ideal in Z. However, 2Z⊕ 2Z is not a maximal submodule, since (2Z⊕ 2Z) ⊆ (2Z⊕ Z).

After creating prime submodules, McCasland and Moore introduced the notion of the

radical of a submodule in [9].

De�nition 3.2.6. Given a submodule N of an R-module M , the radical of N is the inter-

section of all prime submodules of M containing N .

28



A concern with the ideal (N :R M) is that it is not unique with respect to the submodule

N . We would like to be able to talk about a �unique� submodule associated with a prime

ideal p. Since we are dealing with �nitely generated modules, we can look for the largest

module associated to an ideal. This leads us to the de�nition of I-maximal [9].

De�nition 3.2.7. A proper submodule N of a �nitely generated R-module M with I =

(N :R M) is said to I-maximal if it is maximal among submodules K of M with I =

(K :R M) .

Example 3.2.8. The submodule 2Z ⊕ 2Z is not 2Z-maximal, since (2Z⊕ 2Z) ⊆ (2Z⊕ Z)

and ((2Z⊕ Z) :Z (Z⊕ Z)) = 2Z. However, 2Z⊕Z is 2Z-maximal, since 2Z⊕Z is a maximal

submodule of Z⊕ Z.

We will only be concerned with the case when I is a prime ideal. The following Propo-

sition, from [9], will be useful in moving from prime ideals to prime submodules.

Proposition 3.2.9. Let M be a �nitely generated R-module. Given any prime ideal p in R

such that Ann(M) ⊆ p, there exists a prime submodule N that is p-maximal.

We are going to want to work with prime submodules that are p-maximal with respect to

their ideal p. These can be hard to identify in general. In [12], Rush was able to demonstrate

that a prime submodule being p-maximal is equivalent to two other conditions. We will start

with de�ning those conditions, and then properly state Rush's theorem.

De�nition 3.2.10. A proper submodule N of a R-module M is said to be strongly prime

if ((N +Rx) :R M) y ⊆ N implies either x ∈ N or y ∈ N for x, y ∈M .

Remark 3.2.11. Every strongly prime submodule is a prime submodule.

29



De�nition 3.2.12. If D is an integral domain with quotient �eld K and M is a D-module,

the rank of M is de�ned as the dimensions of K ⊗DM as a vector space over K.

The following theorem of Rush from the same publication gives equivalent conditions for

a submodule N to be p-maximal.

Theorem 3.2.13. Let N be a submodule of a �nitely generated R-module M , and p be a

prime ideal of R. The following are equivalent:

(1) N is a strongly prime submodule with (N :R M) = p;

(2) N is p-maximal;

(3) N is prime submodule with (N :R M) = p and M/N is an (R/p)-module of rank 1.

This theorem is powerful tool that will allow us identify and prove results on p-maximal

submodules. The following proposition, which is a partial inverse to 3.2.4, quickly follows.

Proposition 3.2.14. Let M be a �nitely generated R-module. Suppose N is a submodule of

M such that (N :R M) = p is a maximal ideal and N is p-maximal. Then N is a maximal

submodule of M .

Proof. Let N be a submodule of M such that (N :R M) = p is a maximal ideal and N is

p-maximal. Since N is p-maximal, by Theorem 3.2.13, M/N is an (R/p)-module of rank 1.

But p is maximal, so R/p is a �eld. Thus, N is a maximal submodule of M .

3.3 Hilbert Modules

Using the notion of p-maximal prime submodules, Rush de�ned the notion of a G-submodule

in [12] by uniquely associating a prime submodule with a G-ideal in R.
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De�nition 3.3.1. A submodule N of a �nitely generated R-module M is a G-submodule if

p = (N :R M) is a G-ideal of R and N is p-maximal.

Remark 3.3.2. Every maximal submodule is a G-submodule, since by Proposition 3.2.4

(N :R M) will be a maximal ideal, and thus a G-ideal.

Example 3.3.3. Let M be the Z2Z[x]-module Z2Z[x]⊕Z2Z[x]. We claim that the submodule

N = xZ2Z[x] ⊕ Z2Z[x] is a G-submodule. Note that (N :Z2Z[x] M) = xZ2Z[x]. Recall that

Z2Z[x]/ (xZ2Z[x]) ∼= Z2Z which is a G-domain, thus xZ2Z[x] is a G-ideal. N is xZ2Z-maximal,

since the only proper submodule of M that contains N is (2, x)Z2Z[x]⊕ Z2Z[x], and

(
(2, x)Z2Z[x]⊕ Z2Z[x] :Z2Z[x] M

)
= (2, x)Z2Z[x].

Thus, N is p-maximal for a G-ideal and is a G-submodule. Note that N is not a maximal

submodule.

Remark 3.3.4. A G-submodule for a given G-ideal is not unique. For example, by the same

reasoning as above, Z2Z[x] ⊕ (x)Z2Z[x] is also a G-submodule associated with the G-ideal

xZ2Z[x].

After de�ning G-submodules we get the following new corollary of 2.7.6.

Corollary 3.3.5. Let R have the descending chain condition on �nite intersections of prime

ideals, and M be a �nitely generated R-module. If a submodule N of M is strongly prime,

then N is a G-submodule.
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Proof. Let N be a strongly prime submodule and p = (N :R M). Then by Theorem 3.2.13

N is p-maximal. But by Theorem 2.3.3 every prime ideal of R is a G-ideal. Thus, N is a

G-submodule.

Returning to material the from [12], recall from Corollary 2.3.7 that the radical of an

ideal is the intersection of all G-ideals containing it. We have a similar result for modules.

Proposition 3.3.6. If N is a submodule of a �nitely generated R-module M , then the

radical of N is equal to the intersection of all of the G-submodule of M containing N .

Similar to the ring theory version, we will �nd the following corollary concerning prime

submodules particularly useful.

Corollary 3.3.7. If N is a prime submodule of a �nitely generated R-module M , then N

is equal to the intersection of all of the G-submodule of M containing N .

Now, we can �nally de�ne Hilbert modules.

De�nition 3.3.8. A �nitely generated R-module is said to be a Hilbert module if each

G-submodule of M is a maximal submodule of M .

Remark 3.3.9. Rush originally named these modules Jacobson modules in an attempt to

avoid confusion to Hilbert C*-modules from Hilbert spaces. We will refer to them as Hilbert

modules to highlight the connection of this de�nition with de�nition 2.4.1. This will also

allow us to save the name Jacobson modules for another module we will de�ne soon.

The following major result from [12] shows the relationship between Hilbert rings and

modules.
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Theorem 3.3.10. If R is a Hilbert ring, then every �nitely generated R-module M is a

Hilbert module.

Proof. If R is a Hilbert ring and N is a G-submodule of the �nitely generated R-module

M , then by de�nition p = (N :R M) is a G-ideal of R, and N is p-maximal. Thus p is

a maximal ideal of R, since R is Hilbert. Since p is a maximal ideal and N is p-maximal

then by Proposition 3.2.14 N is a maximal submodule of M . Therefore M is a Hilbert

module.

Example 3.3.11. This theorem give us a multiple example of Hilbert modules. For instance,

Z⊕ Z over Z is a Hilbert module since Z is a Hilbert ring.

Now consider the reverse direction of 3.3.10. If an R-moduleM is a Hilbert module does

that mean R is a Hilbert ring? Unfortunately that is not the case.

Remark 3.3.12. Recall from 2.4.4 that Z2Z [x] is not a Hilbert ring. Look at the simple

module Z2Z [x] / 〈2, x〉 over Z2Z [x]. This module only has one submodule, namely the zero

submodule. Since every submodule is maximal then every G-submodule is maximal. There-

fore Z2Z [x] / 〈2, x〉 is a Hilbert module.

However, with some minor alterations to remove such cases we can obtain an equivalence

relationship between Hilbert rings and modules. To do so we need to introduce the notion

of a Jacobson module.

3.4 Jacobson Modules

In [7] Mani Shirazi and Sharif used the notion of a Jacobson rings to de�ne a new charac-

terization of a particular type of module.
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De�nition 3.4.1. A R-moduleM is said to be a Jacobson module if every prime submodule

is an intersection of maximal submodules.

In [7], these modules were called Hilbert modules. We will refer to them as Jacobson

modules to highlight the connection of this de�nition with de�nition 2.5.1. We ended the

last chapter by showing that Hilbert rings are the same as Jacobson rings in the commutative

setting. We have a similar result for modules [12].

Theorem 3.4.2. A �nitely generated R-module M is a Hilbert module if and only if it is a

Jacobson module.

Proof. AssumeM is a Hilbert module. Since every G-submodule is maximal then by Corol-

lary 3.3.7 every prime submodule N of M is equal to the intersection of all maximal sub-

modules containing N . Thus, M is a Jacobson module.

Assume M is a Jacobson module. Let N be a G-submodule of M . Then since N is

prime N =
⋂
i∈I
Mi where Mi are maximal submodules of M . So by Proposition 3.2.4 if Mi

is maximal then each mi = (Mi :R M) is a maximal ideal. Thus,

p = (N :R M) =

(⋂
i∈I

Mi :R M

)
=
⋂
i∈I

(Mi :R M) =
⋂
i∈I

mi.

But by the de�nition of G-submodule, p is a G-ideal of R and D = R/g is a G-domain.

Assume for contradiction D is not a �eld. Then by Proposition 2.2.7, there exists a u ∈ D

such that u is contained in every nonzero prime ideal of D. Thus, the intersection of all

maximal ideals in D is not the zero ideal. However p =
⋂
i∈I

mi, where all mi ∈ R are maximal.

But the maximal ideals in D are precisely the maximal ideals of R containing g, so their

intersection in D = R/g should be 0, a contradiction. Hence, D must be a �eld, and p
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is a maximal ideal. N is p-maximal where p is a maximal ideal, so by Proposition 3.2.14

N is a maximal submodule. Since every G-submodule in M is maximal, M is a Hilbert

module.

Hilbert and Jacobson modules were created independently from each other. In fact, the

original statement of Theorem 3.4.2 is that M is a Hilbert module if and only if every prime

submodule is an intersection of maximal submodules. It is only in this work that these two

modules are recognized to be the same. This is powerful new idea, and it allows us to use

theorems about Jacobson modules to prove results on Hilbert modules. We are going to

focus on the following theorem from [7].

Theorem 3.4.3. Let M be a faithful, �nitely generated R-module. Then M is a Jacobson

module if and only if R is a Jacobson ring.

Remark 3.4.4. Recall, a module is said to be faithful if the annihilator of the module is the

zero ideal. Namely, a R-module M is faithful if and only if ({0} :R M) = {0}.

Proof. Assume that R is a Jacobson ring. Then by Theorem 2.5.4, R is a Hilbert ring.

Since R is Hilbert and M is a �nitely generated R-module, by Theorem 3.3.10 M is a

Hilbert module. Finally, use Theorem 3.4.2 to �nd that M is a Jacobson module.

Now assume that the �nitely generated R-module M is a Jacobson module. Let p be a

prime ideal of R. Then by Proposition 3.2.9, since Ann (M) = {0} ⊆ p there exists a prime

submodule K of M with p = (K :R M). Since K is a prime submodule in a Jacobson

module K =
⋂
i∈I

Mi, where Mi are maximal submodules. By Proposition 3.2.4, for each

submodule Mi the ideal (Mi :R M) is a maximal ideal of R. We will denote this maximal

ideal mi.

35



Thus,

p = (K :R M) =

(⋂
i∈I

Mi :R M

)
=
⋂
i∈I

(Mi :R M) =
⋂
i∈I

mi.

We have shown that any arbitrary prime ideal in R is an intersection of maximal ideals, and

thus R is a Jacobson ring.

Remark 3.4.5. Note that we use the fact that Hilbert and Jacobson modules are equivalent

to prove this theorem. This was not how it was originally proved in [7], since they did

not have our notion of a Hilbert module. We used our new proof to highlight this new

connection.

The following result from [7] give a complete characterization of the relationship between

Jacobson rings and modules.

Corollary 3.4.6. Let M be a �nitely generated R-module. Then M is a Jacobson module

if and only if R/AnnR(M) is a Jacobson ring.

Proof. Let M be a non-zero �nitely generated R-module. Then M is a Jacobson R-module

if and only if M is a Jacobson (R/AnnR(M))-module. By Theorem 3.4.3, this is equivalent

to R/AnnR(M) being a Jacobson ring.

As we mentioned at the end of the discussion on Theorem 3.3.10 we wanted when M

being a Hilbert Modules implies that R is a Hilbert ring. Using Theorems 3.4.2 and 3.4.3,

we have our �rst major new result.

Theorem 3.4.7. Let M be a faithful, �nitely generated R-module. If M is a Hilbert module

then R is a Hilbert ring.
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Corollary 3.4.8. Let M be a �nitely generated R-module. Then M is a Hilbert module if

and only if R/AnnR(M) is a Hilbert ring.

We now have have a full classi�cation of Hilbert modules. It �rmly solidi�es the notion

that being Hilbert is really a property of the ring; under certain conditions this can be

inherited properly to the module. One issue is that we had to use the theory of Jacobson

modules in order to get this result. Since it is possible to prove this same result for Jacobson

modules without mentioning Hilbert modules, the converse should be doable. That will

be one of our goals for Chapter 4. Another thing we note is the process of de�ning G-

submodules was very �exible, and we could replace other types of ideals for G-ideals and

still get a meaningful de�nition. Instead of doing all of those one by one, we will consolidate

them in Chapter 4.

Before moving on, we want to prove one more new result using this Hilbert module and

ring equivalence. Recall that from Theorem 2.4.8, a Noetherian ring R is a Hilbert ring if

and only if for every prime ideal p such that dim(R/p) = 1, there must exist in�nitely many

maximal ideals containing p. We would like to have a similar classi�cation of Noetherian

Hilbert modules. Like Theorem 3.4.3, we require our modules to be faithful.

Theorem 3.4.9. Let M be a Noetherian, faithful, �nitely generated R-module. Then M is

a Hilbert module if and only if for every prime ideal p in R such that dim(R/p) = 1, there

must exist in�nitely many maximal ideals containing p.

Proof. Let M be a Noetherian, faithful, �nitely generated R-module. Since M is a faithful,

Noetherian R-module, by Lemma 3.1.5 the ring R is Noetherian.

Assume that M is a Hilbert module. By Corollary 3.4.8, M is a Hilbert Module if and
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only if R is a Hilbert ring. By Theorem 2.4.8, R is Hilbert ring if and only if for every prime

ideal p such that dim(R/p) = 1, there must exist in�nitely many maximal ideals containing

p.

This theorem gives a classi�cation for Noetherian Hilbert modules based only on the

maximal ideals in the ring R. This powerful result sadly only holds true for faithful modules

since otherwise there is no way to guarantee that ring R will be Noetherian.

This concludes our study of Jacobson and Hilbert modules together. There is still more

results that can be obtained by studying their interdependence but we will be moving on to

generalizing and directly proving the theorems on Hilbert modules. Then we will introduce

a new module to justify this work which we will name strongly Hilbert modules.
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Chapter 4

Strongly Hilbert Modules

4.1 Generalized Hilbert Modules

We want to generalize the notion of a G-submodule and Hilbert modules. Since most of

the structure of these Hilbert modules were inherited from ring theory, if we can de�ne this

process more generally it would allow us to create new types of modules, and then state

theorems about them en masse. To do this we will �rst need to generalize the notion of a

G-ideal and Hilbert ring.

De�nition 4.1.1. Let R be a commutative ring with identity. Given a collection C of prime

ideals in R, we de�ne an ideal to be a C-ideal if it is contained in that collection C.

We de�ne a ring R to be a C-Hilbert if every C-ideal is a maximal ideal.

Example 4.1.2. If we choose our collection of ideals C to be G-ideals, then the C -Hilbert

ring is a Hilbert ring.
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Example 4.1.3. If we choose our collection of ideals C to be G-type ideals, then the C -

Hilbert ring is a strongly Hilbert ring.

Example 4.1.4. If we choose our collection of ideals to be all prime ideals, then a C -Hilbert

ring is a ring of dimension zero.

Thus, the notion of a C-Hilbert rings allows us to talk about Hilbert and strongly Hilbert

rings at the same time. As seen in the example of a ring with dimension zero, it also allows

us to prove results on other structures in addition to those two known structures. Moving

on, we can de�ne C-Hilbert modules in the same way Rush de�ned Hilbert modules in [12].

De�nition 4.1.5. Suppose M is a �nitely generated R-module. We de�ne a submodule N

of M to be a C-submodule if (N :R M) = p is a C-ideal and N is p-maximal.

We de�ne a �nitely generated R-module M to be a C-Hilbert module if every C-

submodule of M is a maximal submodule.

We now get to one of our two major results relating C-Hilbert rings and modules. It is

a version of Theorem 3.3.10, with C-Hilbert modules instead of Hilbert modules. Note that

proof itself is derived from [12] , where we essentially replace G-ideals and G-submodules

with our newly de�ned C-ideals and C-submodules.

Theorem 4.1.6. If R is a C-Hilbert ring, then every �nitely generated R-module M is

C-Hilbert module.

Proof. Suppose R is a C -Hilbert ring, and N is a C -submodule of the �nitely generated

R-module M . We need to prove that N is maximal. By de�nition, p = (N :R M) is a

C -ideal of R, and N is p-maximal. Since R is an C -Hilbert ring, p is a maximal ideal of
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R. N is a p-maximal submodule and p is a maximal ideal, so by Proposition 3.2.14 N is

a maximal submodule of M . Therefore, every C -submodule of M is maximal and M is a

C -Hilbert module.

With this new Theorem, Theorem 3.3.10 can be considered a corollary of this more

general result. Our second major result relating C-Hilbert rings and modules is a new

version of Theorem 3.4.7. The proof is new and is independent of Jacobson modules.

Theorem 4.1.7. Suppose M is a faithful, �nitely generated R-module. If M is a C-Hilbert

module, then R is a C-Hilbert ring.

Proof. Let p be a C-ideal of R. Then since p is a prime ideal and Ann(M) = {0} ⊆ p

by Theorem 3.2.9 there exists a prime submodule N of M that is maximal with respect

to having (N :R M) = p. So N is a p-maximal submodule where p is C-ideal. Thus, N

is a C -submodule in a C -Hilbert module, and therefore maximal. But if N is a maximal

submodule, then by Proposition 3.2.4 (N :R M) = p must be a maximal ideal of R. Since

every C -ideal is maximal, by de�nition R is a C -Hilbert ring.

Note that Theorem 3.4.7 becomes a corollary of this more general result. Combining

these two theorems, we also derive the following corollary.

Corollary 4.1.8. Suppose M is a faithful, �nitely generated R-module. Then M is a C-

Hilbert module if and only if R is a C-Hilbert ring.

Unfortunately, these do not extend to the case when Ann(M) 6= 0. Being a C-ideal,

and thus a C-Hilbert ring, is not necessarily retained under homomorphic images. This is

due to the way we de�ned C-ideals based of an arbitrary collection of prime ideals in R.
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Thus, we can not immediately �nd an additional relationship between the C-ideals of R and

R/AnnR(M).

Next, we will use strongly Hilbert rings to make a new example of C-Hilbert modules.

4.2 Strongly Hilbert Modules

Using the tools developed in the construction of Hilbert modules, we can create a new object:

Strongly Hilbert modules. We start with the de�nition of a G-type submodule.

De�nition 4.2.1. A submoduleN of a �nitely generatedR-moduleM is aG-type submodule

if p = (N :R M) is a G-type ideal of R and N is p-maximal.

Remark 4.2.2. Any G-submodule is a G-type submodule, since any G-ideal is a G-type ideal.

Remark 4.2.3. A G-type submodule is an example of an C-submodule, with G-type ideals

being our collection C.

It is helpful to consider an example of a G-type submodule that is not a G-submodule.

Example 4.2.4. LetM = Z[x]⊕Z[x] be a Z[x]-module, and note thatM is �nitely generated

by {(1, 0), (0, 1)}. Let

N = xZ[x]⊕ Z[x] = {(x · f(x), g(x)) | f(x), g(x) ∈ Z[x]} ,

which is a submodule ofM . (N :Z[x] M) = 〈x〉 is a G-type ideal, as Z[x]/ 〈x〉 ∼= Z is a G-type

domain. N is 〈x〉-maximal, since the only proper, prime submodules of M that contain N

are (p, x)Z[x] ⊕ Z[x] where p is a prime integer. However,
(
(p, x)Z[x]⊕ Z[x] :Z[x] M

)
=

(p, x)Z[x]⊕ Z[x]. So N is p-maximal for a G-type ideal and thus is a G-type submodule.
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After de�ning G-type submodules, we can prove the following corollary of Proposition

2.7.6.

Corollary 4.2.5. Let a ring R have the descending chain condition on prime ideals, and let

M be a �nitely generated R-module. Additionally, suppose R/p has only a countable number

of non-zero minimal prime ideals for each prime ideal p in R. If a submodule N of M is

strongly prime, then N is a G-type submodule.

Proof. Let N be a strongly prime submodule and p = (N :R M). Then by Theorem 3.2.13,

N is p-maximal. But by Theorem 2.7.6, every prime ideal of R is a G-type ideal. Thus, N

is a G-type submodule.

Now we can �nally de�ne strongly Hilbert modules.

De�nition 4.2.6. A �nitely generated R-module M is said to be a strongly Hilbert module

if each G-type submodule in M is maximal submodule.

Remark 4.2.7. Any strongly Hilbert module is a Hilbert module since if every G-type sub-

module is maximal then so is every G-submodule.

Remark 4.2.8. A strongly Hilbert module is a example of a C-Hilbert module, with G-type

ideals being our collection C.

Theorem 4.2.9. If R is a strongly Hilbert ring, then each �nitely generated R-module M is

a strongly Hilbert module.

Proof. This is an immediate result of Theorem 4.1.6, since strongly Hilbert is an example of

C-Hilbert where we choose our collection of prime ideals to be the set of G-type ideals.
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Example 4.2.10. Since C[x] is a strongly Hilbert ring, any �nitely generated C[x]-module

will be a strongly Hilbert module. For example, C[x]⊕C[x] over the ring C[x] is a strongly

Hilbert module.

Recall any ring R of dimension zero is a strongly Hilbert ring, since the ring would have

no prime ideal that is not maximal. By Theorem 4.2.9, if dimR = 0 any �nitely generated

R-module is a strongly Hilbert module. We can expand this notion by looking at a module

with only maximal submodules.

Example 4.2.11. Any simple moduleM is a strongly Hilbert module, since {0} is the only

maximal submodule (and any maximal submodule is a G-type submodule).

We can actually take this idea a little further, by looking at modules where every strongly

prime submodule is maximal.

Corollary 4.2.12. Let M be a �nitely generated R-module such that every strongly prime

submodule is a maximal submodule. Then M is a strongly Hilbert module.

Proof. Let M be a �nitely generated R-module such that every strongly prime submodule

is maximal. Let N be a G-type submodule of M . Then p = (N :R M) is a G-type ideal

and N is p-maximal. Then by 3.2.13 since N is p-maximal it is a strongly prime submodule.

But every strongly prime submodule of M is a maximal submodule. Thus N is a maximal

submodule. Since every G-type submodule in M is a maximal then M is a strongly Hilbert

module.

This Corollary gives us the following example of a strongly Hilbert module.

Example 4.2.13. LetM = Z/4Z be a Z-module. We claimM is a strongly Hilbert module.

M has only two proper submodules: 0M and 2M .
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1. 0M is not a G-type submodule, since (0M :Z M) = 4Z is not a prime ideal, and thus

cannot be a G-type ideal.

2. 2M is a G-type submodule, since (2M :Z M) = 2Z is a maximal ideal, thus G-type.

Also, 2M is 2Z-maximal, since it is a maximal submodule.

Thus, all G-type submodules of M are maximal submodules, so M is a strongly Hilbert

module.

However, note that Z is not a strongly Hilbert ring. Thus, the converse of Theorem 4.2.9

is not true in general. If we restrict ourselves to faithful modules, the converse does hold.

Theorem 4.2.14. Let M be a faithful, �nitely generated R-module. If M is a strongly

Hilbert module, then R is a strongly Hilbert ring.

Proof. This is an immediate result of Theorem 4.1.7, since strongly Hilbert is an example of

C-Hilbert, where we chose our collection C of prime ideals to be the set of G-type ideals.

Corollary 4.2.15. Let M be a faithful, �nitely generated R-module. Then M is a strongly

Hilbert module if and only if R is a strongly Hilbert ring.

Corollary 4.2.16. Let M be a �nitely generated R-module. Then M is a strongly Hilbert

module if and only if R/AnnR(M) is a strongly Hilbert module.

Proof. Let M be a non-zero �nitely generated R-module. Then M is a strongly Hilbert R-

module if and only if M is a strongly Hilbert (R/AnnR(M))-module. By Corollary 4.2.15,

this is equivalent to R/AnnR(M) being a strongly Hilbert ring.

We close with our �nal equivalent condition in the Noetherian case, this time for strongly

Hilbert modules.
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Theorem 4.2.17. Let M be a Noetherian, faithful, �nitely generated R-module. Then M

is a strongly Hilbert module if and only if for each prime ideal p with dim(R/p) ≥ 1, there

exists an uncountable number of non-zero minimal prime ideals in R/p.

Proof. Let M be a Noetherian, faithful, �nitely generated R-module. Since M is a faithful,

Noetherian R-module, the ring R is Noetherian.

Assume thatM is a strongly Hilbert module. SinceM is faithful, by Corollary 4.2.15M

is a strongly Hilbert Module if and only if R is a Hilbert ring. By Theorem 2.8.5, R is Hilbert

ring if and only if for each prime ideal p with dim(R/p) ≥ 1 there exists an uncountable

number of non-zero minimal prime ideals in R/p.
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Chapter 5

Future Thoughts

5.1 Improve C -Hilbert Rings and Modules

C-Hilbert rings are a useful abstraction of existing generalizations of Hilbert rings, but it

still has room to be re�ned. One unfortunate issue is that the current de�nition, tied to the

property of a ring or module being C-Hilbert, is not necessarily retained under homomorphic

images. However, it is the case that being Hilbert or strongly Hilbert is retained under

homomorphisms, so this is a meaningful weakness. Further re�nement of how we de�ned

our collection C could rectify this issue. Also, we should �nd a better name for these objects

than C-Hilbert.

5.2 More Examples of C -Hilbert Rings and Modules

There are generalizations of Hilbert rings other than being strongly Hilbert that have been

published over the roughly 50 years since Hilbert rings were de�ned. Through the lens of

our C-Hilbert notion, we can revisit and describe these objects. Then, we can create new

modules from those objects.
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5.3 In�nitely Generated Hilbert Modules

An annoying problem is thus far is that we have been restrained to working with only �nitely

generated modules. We needed to restrict ourselves to ensure that the we can always �nd

a submodule is p-maximal for a given prime ideal p. In the future, we hope to expand the

notion of Hilbert modules to in�nitely generated modules, as long we can always �nd a

submodule that is maximal maximal with respect to given prime ideal. Naively, in�nitely

generated Noetherian modules seem like a good candidate.
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